intel-iommu: Disallow interrupt remapping if not all ioapics covered
[deliverable/linux.git] / drivers / pci / dmar.c
CommitLineData
10e5247f
KA
1/*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
98bcef56 17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
10e5247f 21 *
e61d98d8 22 * This file implements early detection/parsing of Remapping Devices
10e5247f
KA
23 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
24 * tables.
e61d98d8
SS
25 *
26 * These routines are used by both DMA-remapping and Interrupt-remapping
10e5247f
KA
27 */
28
29#include <linux/pci.h>
30#include <linux/dmar.h>
38717946
KA
31#include <linux/iova.h>
32#include <linux/intel-iommu.h>
fe962e90 33#include <linux/timer.h>
0ac2491f
SS
34#include <linux/irq.h>
35#include <linux/interrupt.h>
10e5247f
KA
36
37#undef PREFIX
38#define PREFIX "DMAR:"
39
40/* No locks are needed as DMA remapping hardware unit
41 * list is constructed at boot time and hotplug of
42 * these units are not supported by the architecture.
43 */
44LIST_HEAD(dmar_drhd_units);
10e5247f
KA
45
46static struct acpi_table_header * __initdata dmar_tbl;
8e1568f3 47static acpi_size dmar_tbl_size;
10e5247f
KA
48
49static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
50{
51 /*
52 * add INCLUDE_ALL at the tail, so scan the list will find it at
53 * the very end.
54 */
55 if (drhd->include_all)
56 list_add_tail(&drhd->list, &dmar_drhd_units);
57 else
58 list_add(&drhd->list, &dmar_drhd_units);
59}
60
10e5247f
KA
61static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
62 struct pci_dev **dev, u16 segment)
63{
64 struct pci_bus *bus;
65 struct pci_dev *pdev = NULL;
66 struct acpi_dmar_pci_path *path;
67 int count;
68
69 bus = pci_find_bus(segment, scope->bus);
70 path = (struct acpi_dmar_pci_path *)(scope + 1);
71 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
72 / sizeof(struct acpi_dmar_pci_path);
73
74 while (count) {
75 if (pdev)
76 pci_dev_put(pdev);
77 /*
78 * Some BIOSes list non-exist devices in DMAR table, just
79 * ignore it
80 */
81 if (!bus) {
82 printk(KERN_WARNING
83 PREFIX "Device scope bus [%d] not found\n",
84 scope->bus);
85 break;
86 }
87 pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn));
88 if (!pdev) {
89 printk(KERN_WARNING PREFIX
90 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
91 segment, bus->number, path->dev, path->fn);
92 break;
93 }
94 path ++;
95 count --;
96 bus = pdev->subordinate;
97 }
98 if (!pdev) {
99 printk(KERN_WARNING PREFIX
100 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
101 segment, scope->bus, path->dev, path->fn);
102 *dev = NULL;
103 return 0;
104 }
105 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
106 pdev->subordinate) || (scope->entry_type == \
107 ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
108 pci_dev_put(pdev);
109 printk(KERN_WARNING PREFIX
110 "Device scope type does not match for %s\n",
111 pci_name(pdev));
112 return -EINVAL;
113 }
114 *dev = pdev;
115 return 0;
116}
117
118static int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
119 struct pci_dev ***devices, u16 segment)
120{
121 struct acpi_dmar_device_scope *scope;
122 void * tmp = start;
123 int index;
124 int ret;
125
126 *cnt = 0;
127 while (start < end) {
128 scope = start;
129 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
130 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
131 (*cnt)++;
132 else
133 printk(KERN_WARNING PREFIX
134 "Unsupported device scope\n");
135 start += scope->length;
136 }
137 if (*cnt == 0)
138 return 0;
139
140 *devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
141 if (!*devices)
142 return -ENOMEM;
143
144 start = tmp;
145 index = 0;
146 while (start < end) {
147 scope = start;
148 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
149 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
150 ret = dmar_parse_one_dev_scope(scope,
151 &(*devices)[index], segment);
152 if (ret) {
153 kfree(*devices);
154 return ret;
155 }
156 index ++;
157 }
158 start += scope->length;
159 }
160
161 return 0;
162}
163
164/**
165 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
166 * structure which uniquely represent one DMA remapping hardware unit
167 * present in the platform
168 */
169static int __init
170dmar_parse_one_drhd(struct acpi_dmar_header *header)
171{
172 struct acpi_dmar_hardware_unit *drhd;
173 struct dmar_drhd_unit *dmaru;
174 int ret = 0;
10e5247f 175
e523b38e
DW
176 drhd = (struct acpi_dmar_hardware_unit *)header;
177 if (!drhd->address) {
178 /* Promote an attitude of violence to a BIOS engineer today */
179 WARN(1, "Your BIOS is broken; DMAR reported at address zero!\n"
180 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
181 dmi_get_system_info(DMI_BIOS_VENDOR),
182 dmi_get_system_info(DMI_BIOS_VERSION),
183 dmi_get_system_info(DMI_PRODUCT_VERSION));
184 return -ENODEV;
185 }
10e5247f
KA
186 dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
187 if (!dmaru)
188 return -ENOMEM;
189
1886e8a9 190 dmaru->hdr = header;
10e5247f 191 dmaru->reg_base_addr = drhd->address;
276dbf99 192 dmaru->segment = drhd->segment;
10e5247f
KA
193 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
194
1886e8a9
SS
195 ret = alloc_iommu(dmaru);
196 if (ret) {
197 kfree(dmaru);
198 return ret;
199 }
200 dmar_register_drhd_unit(dmaru);
201 return 0;
202}
203
f82851a8 204static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
1886e8a9
SS
205{
206 struct acpi_dmar_hardware_unit *drhd;
f82851a8 207 int ret = 0;
1886e8a9
SS
208
209 drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;
210
2e824f79
YZ
211 if (dmaru->include_all)
212 return 0;
213
214 ret = dmar_parse_dev_scope((void *)(drhd + 1),
1886e8a9 215 ((void *)drhd) + drhd->header.length,
10e5247f
KA
216 &dmaru->devices_cnt, &dmaru->devices,
217 drhd->segment);
1c7d1bca 218 if (ret) {
1886e8a9 219 list_del(&dmaru->list);
10e5247f 220 kfree(dmaru);
1886e8a9 221 }
10e5247f
KA
222 return ret;
223}
224
aaa9d1dd
SS
225#ifdef CONFIG_DMAR
226LIST_HEAD(dmar_rmrr_units);
227
228static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
229{
230 list_add(&rmrr->list, &dmar_rmrr_units);
231}
232
233
10e5247f
KA
234static int __init
235dmar_parse_one_rmrr(struct acpi_dmar_header *header)
236{
237 struct acpi_dmar_reserved_memory *rmrr;
238 struct dmar_rmrr_unit *rmrru;
10e5247f
KA
239
240 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
241 if (!rmrru)
242 return -ENOMEM;
243
1886e8a9 244 rmrru->hdr = header;
10e5247f
KA
245 rmrr = (struct acpi_dmar_reserved_memory *)header;
246 rmrru->base_address = rmrr->base_address;
247 rmrru->end_address = rmrr->end_address;
1886e8a9
SS
248
249 dmar_register_rmrr_unit(rmrru);
250 return 0;
251}
252
253static int __init
254rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
255{
256 struct acpi_dmar_reserved_memory *rmrr;
257 int ret;
258
259 rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
10e5247f 260 ret = dmar_parse_dev_scope((void *)(rmrr + 1),
1886e8a9 261 ((void *)rmrr) + rmrr->header.length,
10e5247f
KA
262 &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
263
1886e8a9
SS
264 if (ret || (rmrru->devices_cnt == 0)) {
265 list_del(&rmrru->list);
10e5247f 266 kfree(rmrru);
1886e8a9 267 }
10e5247f
KA
268 return ret;
269}
aa5d2b51
YZ
270
271static LIST_HEAD(dmar_atsr_units);
272
273static int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
274{
275 struct acpi_dmar_atsr *atsr;
276 struct dmar_atsr_unit *atsru;
277
278 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
279 atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
280 if (!atsru)
281 return -ENOMEM;
282
283 atsru->hdr = hdr;
284 atsru->include_all = atsr->flags & 0x1;
285
286 list_add(&atsru->list, &dmar_atsr_units);
287
288 return 0;
289}
290
291static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru)
292{
293 int rc;
294 struct acpi_dmar_atsr *atsr;
295
296 if (atsru->include_all)
297 return 0;
298
299 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
300 rc = dmar_parse_dev_scope((void *)(atsr + 1),
301 (void *)atsr + atsr->header.length,
302 &atsru->devices_cnt, &atsru->devices,
303 atsr->segment);
304 if (rc || !atsru->devices_cnt) {
305 list_del(&atsru->list);
306 kfree(atsru);
307 }
308
309 return rc;
310}
311
312int dmar_find_matched_atsr_unit(struct pci_dev *dev)
313{
314 int i;
315 struct pci_bus *bus;
316 struct acpi_dmar_atsr *atsr;
317 struct dmar_atsr_unit *atsru;
318
319 list_for_each_entry(atsru, &dmar_atsr_units, list) {
320 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
321 if (atsr->segment == pci_domain_nr(dev->bus))
322 goto found;
323 }
324
325 return 0;
326
327found:
328 for (bus = dev->bus; bus; bus = bus->parent) {
329 struct pci_dev *bridge = bus->self;
330
331 if (!bridge || !bridge->is_pcie ||
332 bridge->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
333 return 0;
334
335 if (bridge->pcie_type == PCI_EXP_TYPE_ROOT_PORT) {
336 for (i = 0; i < atsru->devices_cnt; i++)
337 if (atsru->devices[i] == bridge)
338 return 1;
339 break;
340 }
341 }
342
343 if (atsru->include_all)
344 return 1;
345
346 return 0;
347}
aaa9d1dd 348#endif
10e5247f
KA
349
350static void __init
351dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
352{
353 struct acpi_dmar_hardware_unit *drhd;
354 struct acpi_dmar_reserved_memory *rmrr;
aa5d2b51 355 struct acpi_dmar_atsr *atsr;
10e5247f
KA
356
357 switch (header->type) {
358 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
aa5d2b51
YZ
359 drhd = container_of(header, struct acpi_dmar_hardware_unit,
360 header);
10e5247f 361 printk (KERN_INFO PREFIX
aa5d2b51
YZ
362 "DRHD base: %#016Lx flags: %#x\n",
363 (unsigned long long)drhd->address, drhd->flags);
10e5247f
KA
364 break;
365 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
aa5d2b51
YZ
366 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
367 header);
10e5247f 368 printk (KERN_INFO PREFIX
aa5d2b51 369 "RMRR base: %#016Lx end: %#016Lx\n",
5b6985ce
FY
370 (unsigned long long)rmrr->base_address,
371 (unsigned long long)rmrr->end_address);
10e5247f 372 break;
aa5d2b51
YZ
373 case ACPI_DMAR_TYPE_ATSR:
374 atsr = container_of(header, struct acpi_dmar_atsr, header);
375 printk(KERN_INFO PREFIX "ATSR flags: %#x\n", atsr->flags);
376 break;
10e5247f
KA
377 }
378}
379
f6dd5c31
YL
380/**
381 * dmar_table_detect - checks to see if the platform supports DMAR devices
382 */
383static int __init dmar_table_detect(void)
384{
385 acpi_status status = AE_OK;
386
387 /* if we could find DMAR table, then there are DMAR devices */
8e1568f3
YL
388 status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
389 (struct acpi_table_header **)&dmar_tbl,
390 &dmar_tbl_size);
f6dd5c31
YL
391
392 if (ACPI_SUCCESS(status) && !dmar_tbl) {
393 printk (KERN_WARNING PREFIX "Unable to map DMAR\n");
394 status = AE_NOT_FOUND;
395 }
396
397 return (ACPI_SUCCESS(status) ? 1 : 0);
398}
aaa9d1dd 399
10e5247f
KA
400/**
401 * parse_dmar_table - parses the DMA reporting table
402 */
403static int __init
404parse_dmar_table(void)
405{
406 struct acpi_table_dmar *dmar;
407 struct acpi_dmar_header *entry_header;
408 int ret = 0;
409
f6dd5c31
YL
410 /*
411 * Do it again, earlier dmar_tbl mapping could be mapped with
412 * fixed map.
413 */
414 dmar_table_detect();
415
10e5247f
KA
416 dmar = (struct acpi_table_dmar *)dmar_tbl;
417 if (!dmar)
418 return -ENODEV;
419
5b6985ce 420 if (dmar->width < PAGE_SHIFT - 1) {
093f87d2 421 printk(KERN_WARNING PREFIX "Invalid DMAR haw\n");
10e5247f
KA
422 return -EINVAL;
423 }
424
425 printk (KERN_INFO PREFIX "Host address width %d\n",
426 dmar->width + 1);
427
428 entry_header = (struct acpi_dmar_header *)(dmar + 1);
429 while (((unsigned long)entry_header) <
430 (((unsigned long)dmar) + dmar_tbl->length)) {
084eb960
TB
431 /* Avoid looping forever on bad ACPI tables */
432 if (entry_header->length == 0) {
433 printk(KERN_WARNING PREFIX
434 "Invalid 0-length structure\n");
435 ret = -EINVAL;
436 break;
437 }
438
10e5247f
KA
439 dmar_table_print_dmar_entry(entry_header);
440
441 switch (entry_header->type) {
442 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
443 ret = dmar_parse_one_drhd(entry_header);
444 break;
445 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
aaa9d1dd 446#ifdef CONFIG_DMAR
10e5247f 447 ret = dmar_parse_one_rmrr(entry_header);
aa5d2b51
YZ
448#endif
449 break;
450 case ACPI_DMAR_TYPE_ATSR:
451#ifdef CONFIG_DMAR
452 ret = dmar_parse_one_atsr(entry_header);
aaa9d1dd 453#endif
10e5247f
KA
454 break;
455 default:
456 printk(KERN_WARNING PREFIX
457 "Unknown DMAR structure type\n");
458 ret = 0; /* for forward compatibility */
459 break;
460 }
461 if (ret)
462 break;
463
464 entry_header = ((void *)entry_header + entry_header->length);
465 }
466 return ret;
467}
468
e61d98d8
SS
469int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
470 struct pci_dev *dev)
471{
472 int index;
473
474 while (dev) {
475 for (index = 0; index < cnt; index++)
476 if (dev == devices[index])
477 return 1;
478
479 /* Check our parent */
480 dev = dev->bus->self;
481 }
482
483 return 0;
484}
485
486struct dmar_drhd_unit *
487dmar_find_matched_drhd_unit(struct pci_dev *dev)
488{
2e824f79
YZ
489 struct dmar_drhd_unit *dmaru = NULL;
490 struct acpi_dmar_hardware_unit *drhd;
491
492 list_for_each_entry(dmaru, &dmar_drhd_units, list) {
493 drhd = container_of(dmaru->hdr,
494 struct acpi_dmar_hardware_unit,
495 header);
496
497 if (dmaru->include_all &&
498 drhd->segment == pci_domain_nr(dev->bus))
499 return dmaru;
e61d98d8 500
2e824f79
YZ
501 if (dmar_pci_device_match(dmaru->devices,
502 dmaru->devices_cnt, dev))
503 return dmaru;
e61d98d8
SS
504 }
505
506 return NULL;
507}
508
1886e8a9
SS
509int __init dmar_dev_scope_init(void)
510{
04e2ea67 511 struct dmar_drhd_unit *drhd, *drhd_n;
1886e8a9
SS
512 int ret = -ENODEV;
513
04e2ea67 514 list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
1886e8a9
SS
515 ret = dmar_parse_dev(drhd);
516 if (ret)
517 return ret;
518 }
519
aaa9d1dd
SS
520#ifdef CONFIG_DMAR
521 {
04e2ea67 522 struct dmar_rmrr_unit *rmrr, *rmrr_n;
aa5d2b51
YZ
523 struct dmar_atsr_unit *atsr, *atsr_n;
524
04e2ea67 525 list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
aaa9d1dd
SS
526 ret = rmrr_parse_dev(rmrr);
527 if (ret)
528 return ret;
529 }
aa5d2b51
YZ
530
531 list_for_each_entry_safe(atsr, atsr_n, &dmar_atsr_units, list) {
532 ret = atsr_parse_dev(atsr);
533 if (ret)
534 return ret;
535 }
1886e8a9 536 }
aaa9d1dd 537#endif
1886e8a9
SS
538
539 return ret;
540}
541
10e5247f
KA
542
543int __init dmar_table_init(void)
544{
1886e8a9 545 static int dmar_table_initialized;
093f87d2
FY
546 int ret;
547
1886e8a9
SS
548 if (dmar_table_initialized)
549 return 0;
550
551 dmar_table_initialized = 1;
552
093f87d2
FY
553 ret = parse_dmar_table();
554 if (ret) {
1886e8a9
SS
555 if (ret != -ENODEV)
556 printk(KERN_INFO PREFIX "parse DMAR table failure.\n");
093f87d2
FY
557 return ret;
558 }
559
10e5247f
KA
560 if (list_empty(&dmar_drhd_units)) {
561 printk(KERN_INFO PREFIX "No DMAR devices found\n");
562 return -ENODEV;
563 }
093f87d2 564
aaa9d1dd 565#ifdef CONFIG_DMAR
2d6b5f85 566 if (list_empty(&dmar_rmrr_units))
093f87d2 567 printk(KERN_INFO PREFIX "No RMRR found\n");
aa5d2b51
YZ
568
569 if (list_empty(&dmar_atsr_units))
570 printk(KERN_INFO PREFIX "No ATSR found\n");
aaa9d1dd 571#endif
093f87d2 572
10e5247f
KA
573 return 0;
574}
575
2ae21010
SS
576void __init detect_intel_iommu(void)
577{
578 int ret;
579
f6dd5c31 580 ret = dmar_table_detect();
2ae21010 581
2ae21010 582 {
cacd4213 583#ifdef CONFIG_INTR_REMAP
1cb11583
SS
584 struct acpi_table_dmar *dmar;
585 /*
586 * for now we will disable dma-remapping when interrupt
587 * remapping is enabled.
588 * When support for queued invalidation for IOTLB invalidation
589 * is added, we will not need this any more.
590 */
591 dmar = (struct acpi_table_dmar *) dmar_tbl;
cacd4213 592 if (ret && cpu_has_x2apic && dmar->flags & 0x1)
1cb11583
SS
593 printk(KERN_INFO
594 "Queued invalidation will be enabled to support "
595 "x2apic and Intr-remapping.\n");
cacd4213 596#endif
cacd4213 597#ifdef CONFIG_DMAR
2ae21010
SS
598 if (ret && !no_iommu && !iommu_detected && !swiotlb &&
599 !dmar_disabled)
600 iommu_detected = 1;
2ae21010 601#endif
cacd4213 602 }
8e1568f3 603 early_acpi_os_unmap_memory(dmar_tbl, dmar_tbl_size);
f6dd5c31 604 dmar_tbl = NULL;
2ae21010
SS
605}
606
607
1886e8a9 608int alloc_iommu(struct dmar_drhd_unit *drhd)
e61d98d8 609{
c42d9f32 610 struct intel_iommu *iommu;
e61d98d8
SS
611 int map_size;
612 u32 ver;
c42d9f32 613 static int iommu_allocated = 0;
43f7392b 614 int agaw = 0;
4ed0d3e6 615 int msagaw = 0;
c42d9f32
SS
616
617 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
618 if (!iommu)
1886e8a9 619 return -ENOMEM;
c42d9f32
SS
620
621 iommu->seq_id = iommu_allocated++;
9d783ba0 622 sprintf (iommu->name, "dmar%d", iommu->seq_id);
e61d98d8 623
5b6985ce 624 iommu->reg = ioremap(drhd->reg_base_addr, VTD_PAGE_SIZE);
e61d98d8
SS
625 if (!iommu->reg) {
626 printk(KERN_ERR "IOMMU: can't map the region\n");
627 goto error;
628 }
629 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
630 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
631
0815565a
DW
632 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
633 /* Promote an attitude of violence to a BIOS engineer today */
634 WARN(1, "Your BIOS is broken; DMAR reported at address %llx returns all ones!\n"
635 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
636 drhd->reg_base_addr,
637 dmi_get_system_info(DMI_BIOS_VENDOR),
638 dmi_get_system_info(DMI_BIOS_VERSION),
639 dmi_get_system_info(DMI_PRODUCT_VERSION));
640 goto err_unmap;
641 }
642
43f7392b 643#ifdef CONFIG_DMAR
1b573683
WH
644 agaw = iommu_calculate_agaw(iommu);
645 if (agaw < 0) {
646 printk(KERN_ERR
4ed0d3e6
FY
647 "Cannot get a valid agaw for iommu (seq_id = %d)\n",
648 iommu->seq_id);
0815565a 649 goto err_unmap;
4ed0d3e6
FY
650 }
651 msagaw = iommu_calculate_max_sagaw(iommu);
652 if (msagaw < 0) {
653 printk(KERN_ERR
654 "Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1b573683 655 iommu->seq_id);
0815565a 656 goto err_unmap;
1b573683 657 }
43f7392b 658#endif
1b573683 659 iommu->agaw = agaw;
4ed0d3e6 660 iommu->msagaw = msagaw;
1b573683 661
e61d98d8
SS
662 /* the registers might be more than one page */
663 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
664 cap_max_fault_reg_offset(iommu->cap));
5b6985ce
FY
665 map_size = VTD_PAGE_ALIGN(map_size);
666 if (map_size > VTD_PAGE_SIZE) {
e61d98d8
SS
667 iounmap(iommu->reg);
668 iommu->reg = ioremap(drhd->reg_base_addr, map_size);
669 if (!iommu->reg) {
670 printk(KERN_ERR "IOMMU: can't map the region\n");
671 goto error;
672 }
673 }
674
675 ver = readl(iommu->reg + DMAR_VER_REG);
0815565a 676 pr_info("IOMMU %llx: ver %d:%d cap %llx ecap %llx\n",
5b6985ce
FY
677 (unsigned long long)drhd->reg_base_addr,
678 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
679 (unsigned long long)iommu->cap,
680 (unsigned long long)iommu->ecap);
e61d98d8
SS
681
682 spin_lock_init(&iommu->register_lock);
683
684 drhd->iommu = iommu;
1886e8a9 685 return 0;
0815565a
DW
686
687 err_unmap:
688 iounmap(iommu->reg);
689 error:
e61d98d8 690 kfree(iommu);
1886e8a9 691 return -1;
e61d98d8
SS
692}
693
694void free_iommu(struct intel_iommu *iommu)
695{
696 if (!iommu)
697 return;
698
699#ifdef CONFIG_DMAR
700 free_dmar_iommu(iommu);
701#endif
702
703 if (iommu->reg)
704 iounmap(iommu->reg);
705 kfree(iommu);
706}
fe962e90
SS
707
708/*
709 * Reclaim all the submitted descriptors which have completed its work.
710 */
711static inline void reclaim_free_desc(struct q_inval *qi)
712{
6ba6c3a4
YZ
713 while (qi->desc_status[qi->free_tail] == QI_DONE ||
714 qi->desc_status[qi->free_tail] == QI_ABORT) {
fe962e90
SS
715 qi->desc_status[qi->free_tail] = QI_FREE;
716 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
717 qi->free_cnt++;
718 }
719}
720
704126ad
YZ
721static int qi_check_fault(struct intel_iommu *iommu, int index)
722{
723 u32 fault;
6ba6c3a4 724 int head, tail;
704126ad
YZ
725 struct q_inval *qi = iommu->qi;
726 int wait_index = (index + 1) % QI_LENGTH;
727
6ba6c3a4
YZ
728 if (qi->desc_status[wait_index] == QI_ABORT)
729 return -EAGAIN;
730
704126ad
YZ
731 fault = readl(iommu->reg + DMAR_FSTS_REG);
732
733 /*
734 * If IQE happens, the head points to the descriptor associated
735 * with the error. No new descriptors are fetched until the IQE
736 * is cleared.
737 */
738 if (fault & DMA_FSTS_IQE) {
739 head = readl(iommu->reg + DMAR_IQH_REG);
6ba6c3a4
YZ
740 if ((head >> DMAR_IQ_SHIFT) == index) {
741 printk(KERN_ERR "VT-d detected invalid descriptor: "
742 "low=%llx, high=%llx\n",
743 (unsigned long long)qi->desc[index].low,
744 (unsigned long long)qi->desc[index].high);
704126ad
YZ
745 memcpy(&qi->desc[index], &qi->desc[wait_index],
746 sizeof(struct qi_desc));
747 __iommu_flush_cache(iommu, &qi->desc[index],
748 sizeof(struct qi_desc));
749 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
750 return -EINVAL;
751 }
752 }
753
6ba6c3a4
YZ
754 /*
755 * If ITE happens, all pending wait_desc commands are aborted.
756 * No new descriptors are fetched until the ITE is cleared.
757 */
758 if (fault & DMA_FSTS_ITE) {
759 head = readl(iommu->reg + DMAR_IQH_REG);
760 head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
761 head |= 1;
762 tail = readl(iommu->reg + DMAR_IQT_REG);
763 tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
764
765 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
766
767 do {
768 if (qi->desc_status[head] == QI_IN_USE)
769 qi->desc_status[head] = QI_ABORT;
770 head = (head - 2 + QI_LENGTH) % QI_LENGTH;
771 } while (head != tail);
772
773 if (qi->desc_status[wait_index] == QI_ABORT)
774 return -EAGAIN;
775 }
776
777 if (fault & DMA_FSTS_ICE)
778 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
779
704126ad
YZ
780 return 0;
781}
782
fe962e90
SS
783/*
784 * Submit the queued invalidation descriptor to the remapping
785 * hardware unit and wait for its completion.
786 */
704126ad 787int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
fe962e90 788{
6ba6c3a4 789 int rc;
fe962e90
SS
790 struct q_inval *qi = iommu->qi;
791 struct qi_desc *hw, wait_desc;
792 int wait_index, index;
793 unsigned long flags;
794
795 if (!qi)
704126ad 796 return 0;
fe962e90
SS
797
798 hw = qi->desc;
799
6ba6c3a4
YZ
800restart:
801 rc = 0;
802
f05810c9 803 spin_lock_irqsave(&qi->q_lock, flags);
fe962e90 804 while (qi->free_cnt < 3) {
f05810c9 805 spin_unlock_irqrestore(&qi->q_lock, flags);
fe962e90 806 cpu_relax();
f05810c9 807 spin_lock_irqsave(&qi->q_lock, flags);
fe962e90
SS
808 }
809
810 index = qi->free_head;
811 wait_index = (index + 1) % QI_LENGTH;
812
813 qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
814
815 hw[index] = *desc;
816
704126ad
YZ
817 wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
818 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
fe962e90
SS
819 wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
820
821 hw[wait_index] = wait_desc;
822
823 __iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
824 __iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));
825
826 qi->free_head = (qi->free_head + 2) % QI_LENGTH;
827 qi->free_cnt -= 2;
828
fe962e90
SS
829 /*
830 * update the HW tail register indicating the presence of
831 * new descriptors.
832 */
6ba6c3a4 833 writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
fe962e90
SS
834
835 while (qi->desc_status[wait_index] != QI_DONE) {
f05810c9
SS
836 /*
837 * We will leave the interrupts disabled, to prevent interrupt
838 * context to queue another cmd while a cmd is already submitted
839 * and waiting for completion on this cpu. This is to avoid
840 * a deadlock where the interrupt context can wait indefinitely
841 * for free slots in the queue.
842 */
704126ad
YZ
843 rc = qi_check_fault(iommu, index);
844 if (rc)
6ba6c3a4 845 break;
704126ad 846
fe962e90
SS
847 spin_unlock(&qi->q_lock);
848 cpu_relax();
849 spin_lock(&qi->q_lock);
850 }
6ba6c3a4
YZ
851
852 qi->desc_status[index] = QI_DONE;
fe962e90
SS
853
854 reclaim_free_desc(qi);
f05810c9 855 spin_unlock_irqrestore(&qi->q_lock, flags);
704126ad 856
6ba6c3a4
YZ
857 if (rc == -EAGAIN)
858 goto restart;
859
704126ad 860 return rc;
fe962e90
SS
861}
862
863/*
864 * Flush the global interrupt entry cache.
865 */
866void qi_global_iec(struct intel_iommu *iommu)
867{
868 struct qi_desc desc;
869
870 desc.low = QI_IEC_TYPE;
871 desc.high = 0;
872
704126ad 873 /* should never fail */
fe962e90
SS
874 qi_submit_sync(&desc, iommu);
875}
876
4c25a2c1
DW
877void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
878 u64 type)
3481f210 879{
3481f210
YS
880 struct qi_desc desc;
881
3481f210
YS
882 desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
883 | QI_CC_GRAN(type) | QI_CC_TYPE;
884 desc.high = 0;
885
4c25a2c1 886 qi_submit_sync(&desc, iommu);
3481f210
YS
887}
888
1f0ef2aa
DW
889void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
890 unsigned int size_order, u64 type)
3481f210
YS
891{
892 u8 dw = 0, dr = 0;
893
894 struct qi_desc desc;
895 int ih = 0;
896
3481f210
YS
897 if (cap_write_drain(iommu->cap))
898 dw = 1;
899
900 if (cap_read_drain(iommu->cap))
901 dr = 1;
902
903 desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
904 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
905 desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
906 | QI_IOTLB_AM(size_order);
907
1f0ef2aa 908 qi_submit_sync(&desc, iommu);
3481f210
YS
909}
910
6ba6c3a4
YZ
911void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
912 u64 addr, unsigned mask)
913{
914 struct qi_desc desc;
915
916 if (mask) {
917 BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
918 addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
919 desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
920 } else
921 desc.high = QI_DEV_IOTLB_ADDR(addr);
922
923 if (qdep >= QI_DEV_IOTLB_MAX_INVS)
924 qdep = 0;
925
926 desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
927 QI_DIOTLB_TYPE;
928
929 qi_submit_sync(&desc, iommu);
930}
931
eba67e5d
SS
932/*
933 * Disable Queued Invalidation interface.
934 */
935void dmar_disable_qi(struct intel_iommu *iommu)
936{
937 unsigned long flags;
938 u32 sts;
939 cycles_t start_time = get_cycles();
940
941 if (!ecap_qis(iommu->ecap))
942 return;
943
944 spin_lock_irqsave(&iommu->register_lock, flags);
945
946 sts = dmar_readq(iommu->reg + DMAR_GSTS_REG);
947 if (!(sts & DMA_GSTS_QIES))
948 goto end;
949
950 /*
951 * Give a chance to HW to complete the pending invalidation requests.
952 */
953 while ((readl(iommu->reg + DMAR_IQT_REG) !=
954 readl(iommu->reg + DMAR_IQH_REG)) &&
955 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
956 cpu_relax();
957
958 iommu->gcmd &= ~DMA_GCMD_QIE;
eba67e5d
SS
959 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
960
961 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
962 !(sts & DMA_GSTS_QIES), sts);
963end:
964 spin_unlock_irqrestore(&iommu->register_lock, flags);
965}
966
eb4a52bc
FY
967/*
968 * Enable queued invalidation.
969 */
970static void __dmar_enable_qi(struct intel_iommu *iommu)
971{
c416daa9 972 u32 sts;
eb4a52bc
FY
973 unsigned long flags;
974 struct q_inval *qi = iommu->qi;
975
976 qi->free_head = qi->free_tail = 0;
977 qi->free_cnt = QI_LENGTH;
978
979 spin_lock_irqsave(&iommu->register_lock, flags);
980
981 /* write zero to the tail reg */
982 writel(0, iommu->reg + DMAR_IQT_REG);
983
984 dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
985
eb4a52bc 986 iommu->gcmd |= DMA_GCMD_QIE;
c416daa9 987 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
eb4a52bc
FY
988
989 /* Make sure hardware complete it */
990 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
991
992 spin_unlock_irqrestore(&iommu->register_lock, flags);
993}
994
fe962e90
SS
995/*
996 * Enable Queued Invalidation interface. This is a must to support
997 * interrupt-remapping. Also used by DMA-remapping, which replaces
998 * register based IOTLB invalidation.
999 */
1000int dmar_enable_qi(struct intel_iommu *iommu)
1001{
fe962e90
SS
1002 struct q_inval *qi;
1003
1004 if (!ecap_qis(iommu->ecap))
1005 return -ENOENT;
1006
1007 /*
1008 * queued invalidation is already setup and enabled.
1009 */
1010 if (iommu->qi)
1011 return 0;
1012
fa4b57cc 1013 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
fe962e90
SS
1014 if (!iommu->qi)
1015 return -ENOMEM;
1016
1017 qi = iommu->qi;
1018
fa4b57cc 1019 qi->desc = (void *)(get_zeroed_page(GFP_ATOMIC));
fe962e90
SS
1020 if (!qi->desc) {
1021 kfree(qi);
1022 iommu->qi = 0;
1023 return -ENOMEM;
1024 }
1025
fa4b57cc 1026 qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
fe962e90
SS
1027 if (!qi->desc_status) {
1028 free_page((unsigned long) qi->desc);
1029 kfree(qi);
1030 iommu->qi = 0;
1031 return -ENOMEM;
1032 }
1033
1034 qi->free_head = qi->free_tail = 0;
1035 qi->free_cnt = QI_LENGTH;
1036
1037 spin_lock_init(&qi->q_lock);
1038
eb4a52bc 1039 __dmar_enable_qi(iommu);
fe962e90
SS
1040
1041 return 0;
1042}
0ac2491f
SS
1043
1044/* iommu interrupt handling. Most stuff are MSI-like. */
1045
9d783ba0
SS
1046enum faulttype {
1047 DMA_REMAP,
1048 INTR_REMAP,
1049 UNKNOWN,
1050};
1051
1052static const char *dma_remap_fault_reasons[] =
0ac2491f
SS
1053{
1054 "Software",
1055 "Present bit in root entry is clear",
1056 "Present bit in context entry is clear",
1057 "Invalid context entry",
1058 "Access beyond MGAW",
1059 "PTE Write access is not set",
1060 "PTE Read access is not set",
1061 "Next page table ptr is invalid",
1062 "Root table address invalid",
1063 "Context table ptr is invalid",
1064 "non-zero reserved fields in RTP",
1065 "non-zero reserved fields in CTP",
1066 "non-zero reserved fields in PTE",
1067};
9d783ba0
SS
1068
1069static const char *intr_remap_fault_reasons[] =
1070{
1071 "Detected reserved fields in the decoded interrupt-remapped request",
1072 "Interrupt index exceeded the interrupt-remapping table size",
1073 "Present field in the IRTE entry is clear",
1074 "Error accessing interrupt-remapping table pointed by IRTA_REG",
1075 "Detected reserved fields in the IRTE entry",
1076 "Blocked a compatibility format interrupt request",
1077 "Blocked an interrupt request due to source-id verification failure",
1078};
1079
0ac2491f
SS
1080#define MAX_FAULT_REASON_IDX (ARRAY_SIZE(fault_reason_strings) - 1)
1081
9d783ba0 1082const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
0ac2491f 1083{
9d783ba0
SS
1084 if (fault_reason >= 0x20 && (fault_reason <= 0x20 +
1085 ARRAY_SIZE(intr_remap_fault_reasons))) {
1086 *fault_type = INTR_REMAP;
1087 return intr_remap_fault_reasons[fault_reason - 0x20];
1088 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1089 *fault_type = DMA_REMAP;
1090 return dma_remap_fault_reasons[fault_reason];
1091 } else {
1092 *fault_type = UNKNOWN;
0ac2491f 1093 return "Unknown";
9d783ba0 1094 }
0ac2491f
SS
1095}
1096
1097void dmar_msi_unmask(unsigned int irq)
1098{
1099 struct intel_iommu *iommu = get_irq_data(irq);
1100 unsigned long flag;
1101
1102 /* unmask it */
1103 spin_lock_irqsave(&iommu->register_lock, flag);
1104 writel(0, iommu->reg + DMAR_FECTL_REG);
1105 /* Read a reg to force flush the post write */
1106 readl(iommu->reg + DMAR_FECTL_REG);
1107 spin_unlock_irqrestore(&iommu->register_lock, flag);
1108}
1109
1110void dmar_msi_mask(unsigned int irq)
1111{
1112 unsigned long flag;
1113 struct intel_iommu *iommu = get_irq_data(irq);
1114
1115 /* mask it */
1116 spin_lock_irqsave(&iommu->register_lock, flag);
1117 writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
1118 /* Read a reg to force flush the post write */
1119 readl(iommu->reg + DMAR_FECTL_REG);
1120 spin_unlock_irqrestore(&iommu->register_lock, flag);
1121}
1122
1123void dmar_msi_write(int irq, struct msi_msg *msg)
1124{
1125 struct intel_iommu *iommu = get_irq_data(irq);
1126 unsigned long flag;
1127
1128 spin_lock_irqsave(&iommu->register_lock, flag);
1129 writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
1130 writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
1131 writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
1132 spin_unlock_irqrestore(&iommu->register_lock, flag);
1133}
1134
1135void dmar_msi_read(int irq, struct msi_msg *msg)
1136{
1137 struct intel_iommu *iommu = get_irq_data(irq);
1138 unsigned long flag;
1139
1140 spin_lock_irqsave(&iommu->register_lock, flag);
1141 msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
1142 msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
1143 msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
1144 spin_unlock_irqrestore(&iommu->register_lock, flag);
1145}
1146
1147static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1148 u8 fault_reason, u16 source_id, unsigned long long addr)
1149{
1150 const char *reason;
9d783ba0 1151 int fault_type;
0ac2491f 1152
9d783ba0 1153 reason = dmar_get_fault_reason(fault_reason, &fault_type);
0ac2491f 1154
9d783ba0
SS
1155 if (fault_type == INTR_REMAP)
1156 printk(KERN_ERR "INTR-REMAP: Request device [[%02x:%02x.%d] "
1157 "fault index %llx\n"
1158 "INTR-REMAP:[fault reason %02d] %s\n",
1159 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1160 PCI_FUNC(source_id & 0xFF), addr >> 48,
1161 fault_reason, reason);
1162 else
1163 printk(KERN_ERR
1164 "DMAR:[%s] Request device [%02x:%02x.%d] "
1165 "fault addr %llx \n"
1166 "DMAR:[fault reason %02d] %s\n",
1167 (type ? "DMA Read" : "DMA Write"),
1168 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1169 PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
0ac2491f
SS
1170 return 0;
1171}
1172
1173#define PRIMARY_FAULT_REG_LEN (16)
1531a6a6 1174irqreturn_t dmar_fault(int irq, void *dev_id)
0ac2491f
SS
1175{
1176 struct intel_iommu *iommu = dev_id;
1177 int reg, fault_index;
1178 u32 fault_status;
1179 unsigned long flag;
1180
1181 spin_lock_irqsave(&iommu->register_lock, flag);
1182 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
9d783ba0
SS
1183 if (fault_status)
1184 printk(KERN_ERR "DRHD: handling fault status reg %x\n",
1185 fault_status);
0ac2491f
SS
1186
1187 /* TBD: ignore advanced fault log currently */
1188 if (!(fault_status & DMA_FSTS_PPF))
9d783ba0 1189 goto clear_rest;
0ac2491f
SS
1190
1191 fault_index = dma_fsts_fault_record_index(fault_status);
1192 reg = cap_fault_reg_offset(iommu->cap);
1193 while (1) {
1194 u8 fault_reason;
1195 u16 source_id;
1196 u64 guest_addr;
1197 int type;
1198 u32 data;
1199
1200 /* highest 32 bits */
1201 data = readl(iommu->reg + reg +
1202 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1203 if (!(data & DMA_FRCD_F))
1204 break;
1205
1206 fault_reason = dma_frcd_fault_reason(data);
1207 type = dma_frcd_type(data);
1208
1209 data = readl(iommu->reg + reg +
1210 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1211 source_id = dma_frcd_source_id(data);
1212
1213 guest_addr = dmar_readq(iommu->reg + reg +
1214 fault_index * PRIMARY_FAULT_REG_LEN);
1215 guest_addr = dma_frcd_page_addr(guest_addr);
1216 /* clear the fault */
1217 writel(DMA_FRCD_F, iommu->reg + reg +
1218 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1219
1220 spin_unlock_irqrestore(&iommu->register_lock, flag);
1221
1222 dmar_fault_do_one(iommu, type, fault_reason,
1223 source_id, guest_addr);
1224
1225 fault_index++;
8211a7b5 1226 if (fault_index >= cap_num_fault_regs(iommu->cap))
0ac2491f
SS
1227 fault_index = 0;
1228 spin_lock_irqsave(&iommu->register_lock, flag);
1229 }
9d783ba0
SS
1230clear_rest:
1231 /* clear all the other faults */
0ac2491f 1232 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
9d783ba0 1233 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
0ac2491f
SS
1234
1235 spin_unlock_irqrestore(&iommu->register_lock, flag);
1236 return IRQ_HANDLED;
1237}
1238
1239int dmar_set_interrupt(struct intel_iommu *iommu)
1240{
1241 int irq, ret;
1242
9d783ba0
SS
1243 /*
1244 * Check if the fault interrupt is already initialized.
1245 */
1246 if (iommu->irq)
1247 return 0;
1248
0ac2491f
SS
1249 irq = create_irq();
1250 if (!irq) {
1251 printk(KERN_ERR "IOMMU: no free vectors\n");
1252 return -EINVAL;
1253 }
1254
1255 set_irq_data(irq, iommu);
1256 iommu->irq = irq;
1257
1258 ret = arch_setup_dmar_msi(irq);
1259 if (ret) {
1260 set_irq_data(irq, NULL);
1261 iommu->irq = 0;
1262 destroy_irq(irq);
dd726435 1263 return ret;
0ac2491f
SS
1264 }
1265
0ac2491f
SS
1266 ret = request_irq(irq, dmar_fault, 0, iommu->name, iommu);
1267 if (ret)
1268 printk(KERN_ERR "IOMMU: can't request irq\n");
1269 return ret;
1270}
9d783ba0
SS
1271
1272int __init enable_drhd_fault_handling(void)
1273{
1274 struct dmar_drhd_unit *drhd;
1275
1276 /*
1277 * Enable fault control interrupt.
1278 */
1279 for_each_drhd_unit(drhd) {
1280 int ret;
1281 struct intel_iommu *iommu = drhd->iommu;
1282 ret = dmar_set_interrupt(iommu);
1283
1284 if (ret) {
1285 printk(KERN_ERR "DRHD %Lx: failed to enable fault, "
1286 " interrupt, ret %d\n",
1287 (unsigned long long)drhd->reg_base_addr, ret);
1288 return -1;
1289 }
1290 }
1291
1292 return 0;
1293}
eb4a52bc
FY
1294
1295/*
1296 * Re-enable Queued Invalidation interface.
1297 */
1298int dmar_reenable_qi(struct intel_iommu *iommu)
1299{
1300 if (!ecap_qis(iommu->ecap))
1301 return -ENOENT;
1302
1303 if (!iommu->qi)
1304 return -ENOENT;
1305
1306 /*
1307 * First disable queued invalidation.
1308 */
1309 dmar_disable_qi(iommu);
1310 /*
1311 * Then enable queued invalidation again. Since there is no pending
1312 * invalidation requests now, it's safe to re-enable queued
1313 * invalidation.
1314 */
1315 __dmar_enable_qi(iommu);
1316
1317 return 0;
1318}
This page took 0.321423 seconds and 5 git commands to generate.