pci: hotplug: ibmphp: convert to kthread
[deliverable/linux.git] / drivers / pci / hotplug / cpqphp_ctrl.c
CommitLineData
1da177e4
LT
1/*
2 * Compaq Hot Plug Controller Driver
3 *
4 * Copyright (C) 1995,2001 Compaq Computer Corporation
5 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
6 * Copyright (C) 2001 IBM Corp.
7 *
8 * All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
18 * NON INFRINGEMENT. See the GNU General Public License for more
19 * details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 *
25 * Send feedback to <greg@kroah.com>
26 *
27 */
28
1da177e4
LT
29#include <linux/module.h>
30#include <linux/kernel.h>
31#include <linux/types.h>
32#include <linux/slab.h>
33#include <linux/workqueue.h>
34#include <linux/interrupt.h>
35#include <linux/delay.h>
36#include <linux/wait.h>
37#include <linux/smp_lock.h>
38#include <linux/pci.h>
7a54f25c 39#include <linux/pci_hotplug.h>
1da177e4
LT
40#include "cpqphp.h"
41
42static u32 configure_new_device(struct controller* ctrl, struct pci_func *func,
43 u8 behind_bridge, struct resource_lists *resources);
44static int configure_new_function(struct controller* ctrl, struct pci_func *func,
45 u8 behind_bridge, struct resource_lists *resources);
46static void interrupt_event_handler(struct controller *ctrl);
47
48static struct semaphore event_semaphore; /* mutex for process loop (up if something to process) */
49static struct semaphore event_exit; /* guard ensure thread has exited before calling it quits */
50static int event_finished;
51static unsigned long pushbutton_pending; /* = 0 */
52
53/* things needed for the long_delay function */
54static struct semaphore delay_sem;
55static wait_queue_head_t delay_wait;
56
57/* delay is in jiffies to wait for */
58static void long_delay(int delay)
59{
60 DECLARE_WAITQUEUE(wait, current);
61
62 /* only allow 1 customer into the delay queue at once
63 * yes this makes some people wait even longer, but who really cares?
64 * this is for _huge_ delays to make the hardware happy as the
65 * signals bounce around
66 */
67 down (&delay_sem);
68
69 init_waitqueue_head(&delay_wait);
70
71 add_wait_queue(&delay_wait, &wait);
72 msleep_interruptible(jiffies_to_msecs(delay));
73 remove_wait_queue(&delay_wait, &wait);
74
75 up(&delay_sem);
76}
77
78
79/* FIXME: The following line needs to be somewhere else... */
80#define WRONG_BUS_FREQUENCY 0x07
81static u8 handle_switch_change(u8 change, struct controller * ctrl)
82{
83 int hp_slot;
84 u8 rc = 0;
85 u16 temp_word;
86 struct pci_func *func;
87 struct event_info *taskInfo;
88
89 if (!change)
90 return 0;
91
92 /* Switch Change */
93 dbg("cpqsbd: Switch interrupt received.\n");
94
95 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
96 if (change & (0x1L << hp_slot)) {
97 /**********************************
98 * this one changed.
99 **********************************/
100 func = cpqhp_slot_find(ctrl->bus,
101 (hp_slot + ctrl->slot_device_offset), 0);
102
103 /* this is the structure that tells the worker thread
104 *what to do */
105 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
106 ctrl->next_event = (ctrl->next_event + 1) % 10;
107 taskInfo->hp_slot = hp_slot;
108
109 rc++;
110
111 temp_word = ctrl->ctrl_int_comp >> 16;
112 func->presence_save = (temp_word >> hp_slot) & 0x01;
113 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
114
115 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
116 /**********************************
117 * Switch opened
118 **********************************/
119
120 func->switch_save = 0;
121
122 taskInfo->event_type = INT_SWITCH_OPEN;
123 } else {
124 /**********************************
125 * Switch closed
126 **********************************/
127
128 func->switch_save = 0x10;
129
130 taskInfo->event_type = INT_SWITCH_CLOSE;
131 }
132 }
133 }
134
135 return rc;
136}
137
138/**
139 * cpqhp_find_slot: find the struct slot of given device
140 * @ctrl: scan lots of this controller
141 * @device: the device id to find
142 */
143static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
144{
145 struct slot *slot = ctrl->slot;
146
147 while (slot && (slot->device != device)) {
148 slot = slot->next;
149 }
150
151 return slot;
152}
153
154
155static u8 handle_presence_change(u16 change, struct controller * ctrl)
156{
157 int hp_slot;
158 u8 rc = 0;
159 u8 temp_byte;
160 u16 temp_word;
161 struct pci_func *func;
162 struct event_info *taskInfo;
163 struct slot *p_slot;
164
165 if (!change)
166 return 0;
167
168 /**********************************
169 * Presence Change
170 **********************************/
171 dbg("cpqsbd: Presence/Notify input change.\n");
172 dbg(" Changed bits are 0x%4.4x\n", change );
173
174 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
175 if (change & (0x0101 << hp_slot)) {
176 /**********************************
177 * this one changed.
178 **********************************/
179 func = cpqhp_slot_find(ctrl->bus,
180 (hp_slot + ctrl->slot_device_offset), 0);
181
182 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
183 ctrl->next_event = (ctrl->next_event + 1) % 10;
184 taskInfo->hp_slot = hp_slot;
185
186 rc++;
187
188 p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
189 if (!p_slot)
190 return 0;
191
192 /* If the switch closed, must be a button
193 * If not in button mode, nevermind */
194 if (func->switch_save && (ctrl->push_button == 1)) {
195 temp_word = ctrl->ctrl_int_comp >> 16;
196 temp_byte = (temp_word >> hp_slot) & 0x01;
197 temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
198
199 if (temp_byte != func->presence_save) {
200 /**************************************
201 * button Pressed (doesn't do anything)
202 **************************************/
203 dbg("hp_slot %d button pressed\n", hp_slot);
204 taskInfo->event_type = INT_BUTTON_PRESS;
205 } else {
206 /**********************************
207 * button Released - TAKE ACTION!!!!
208 **********************************/
209 dbg("hp_slot %d button released\n", hp_slot);
210 taskInfo->event_type = INT_BUTTON_RELEASE;
211
212 /* Cancel if we are still blinking */
213 if ((p_slot->state == BLINKINGON_STATE)
214 || (p_slot->state == BLINKINGOFF_STATE)) {
215 taskInfo->event_type = INT_BUTTON_CANCEL;
216 dbg("hp_slot %d button cancel\n", hp_slot);
217 } else if ((p_slot->state == POWERON_STATE)
218 || (p_slot->state == POWEROFF_STATE)) {
219 /* info(msg_button_ignore, p_slot->number); */
220 taskInfo->event_type = INT_BUTTON_IGNORE;
221 dbg("hp_slot %d button ignore\n", hp_slot);
222 }
223 }
224 } else {
225 /* Switch is open, assume a presence change
226 * Save the presence state */
227 temp_word = ctrl->ctrl_int_comp >> 16;
228 func->presence_save = (temp_word >> hp_slot) & 0x01;
229 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
230
231 if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
232 (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
233 /* Present */
234 taskInfo->event_type = INT_PRESENCE_ON;
235 } else {
236 /* Not Present */
237 taskInfo->event_type = INT_PRESENCE_OFF;
238 }
239 }
240 }
241 }
242
243 return rc;
244}
245
246
247static u8 handle_power_fault(u8 change, struct controller * ctrl)
248{
249 int hp_slot;
250 u8 rc = 0;
251 struct pci_func *func;
252 struct event_info *taskInfo;
253
254 if (!change)
255 return 0;
256
257 /**********************************
258 * power fault
259 **********************************/
260
261 info("power fault interrupt\n");
262
263 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
264 if (change & (0x01 << hp_slot)) {
265 /**********************************
266 * this one changed.
267 **********************************/
268 func = cpqhp_slot_find(ctrl->bus,
269 (hp_slot + ctrl->slot_device_offset), 0);
270
271 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
272 ctrl->next_event = (ctrl->next_event + 1) % 10;
273 taskInfo->hp_slot = hp_slot;
274
275 rc++;
276
277 if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
278 /**********************************
279 * power fault Cleared
280 **********************************/
281 func->status = 0x00;
282
283 taskInfo->event_type = INT_POWER_FAULT_CLEAR;
284 } else {
285 /**********************************
286 * power fault
287 **********************************/
288 taskInfo->event_type = INT_POWER_FAULT;
289
290 if (ctrl->rev < 4) {
291 amber_LED_on (ctrl, hp_slot);
292 green_LED_off (ctrl, hp_slot);
293 set_SOGO (ctrl);
294
295 /* this is a fatal condition, we want
296 * to crash the machine to protect from
297 * data corruption. simulated_NMI
298 * shouldn't ever return */
299 /* FIXME
300 simulated_NMI(hp_slot, ctrl); */
301
302 /* The following code causes a software
303 * crash just in case simulated_NMI did
304 * return */
305 /*FIXME
306 panic(msg_power_fault); */
307 } else {
308 /* set power fault status for this board */
309 func->status = 0xFF;
310 info("power fault bit %x set\n", hp_slot);
311 }
312 }
313 }
314 }
315
316 return rc;
317}
318
319
320/**
321 * sort_by_size: sort nodes on the list by their length, smallest first.
322 * @head: list to sort
323 *
324 */
325static int sort_by_size(struct pci_resource **head)
326{
327 struct pci_resource *current_res;
328 struct pci_resource *next_res;
329 int out_of_order = 1;
330
331 if (!(*head))
332 return 1;
333
334 if (!((*head)->next))
335 return 0;
336
337 while (out_of_order) {
338 out_of_order = 0;
339
340 /* Special case for swapping list head */
341 if (((*head)->next) &&
342 ((*head)->length > (*head)->next->length)) {
343 out_of_order++;
344 current_res = *head;
345 *head = (*head)->next;
346 current_res->next = (*head)->next;
347 (*head)->next = current_res;
348 }
349
350 current_res = *head;
351
352 while (current_res->next && current_res->next->next) {
353 if (current_res->next->length > current_res->next->next->length) {
354 out_of_order++;
355 next_res = current_res->next;
356 current_res->next = current_res->next->next;
357 current_res = current_res->next;
358 next_res->next = current_res->next;
359 current_res->next = next_res;
360 } else
361 current_res = current_res->next;
362 }
363 } /* End of out_of_order loop */
364
365 return 0;
366}
367
368
369/**
370 * sort_by_max_size: sort nodes on the list by their length, largest first.
371 * @head: list to sort
372 *
373 */
374static int sort_by_max_size(struct pci_resource **head)
375{
376 struct pci_resource *current_res;
377 struct pci_resource *next_res;
378 int out_of_order = 1;
379
380 if (!(*head))
381 return 1;
382
383 if (!((*head)->next))
384 return 0;
385
386 while (out_of_order) {
387 out_of_order = 0;
388
389 /* Special case for swapping list head */
390 if (((*head)->next) &&
391 ((*head)->length < (*head)->next->length)) {
392 out_of_order++;
393 current_res = *head;
394 *head = (*head)->next;
395 current_res->next = (*head)->next;
396 (*head)->next = current_res;
397 }
398
399 current_res = *head;
400
401 while (current_res->next && current_res->next->next) {
402 if (current_res->next->length < current_res->next->next->length) {
403 out_of_order++;
404 next_res = current_res->next;
405 current_res->next = current_res->next->next;
406 current_res = current_res->next;
407 next_res->next = current_res->next;
408 current_res->next = next_res;
409 } else
410 current_res = current_res->next;
411 }
412 } /* End of out_of_order loop */
413
414 return 0;
415}
416
417
418/**
419 * do_pre_bridge_resource_split: find node of resources that are unused
420 *
421 */
422static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
423 struct pci_resource **orig_head, u32 alignment)
424{
425 struct pci_resource *prevnode = NULL;
426 struct pci_resource *node;
427 struct pci_resource *split_node;
428 u32 rc;
429 u32 temp_dword;
430 dbg("do_pre_bridge_resource_split\n");
431
432 if (!(*head) || !(*orig_head))
433 return NULL;
434
435 rc = cpqhp_resource_sort_and_combine(head);
436
437 if (rc)
438 return NULL;
439
440 if ((*head)->base != (*orig_head)->base)
441 return NULL;
442
443 if ((*head)->length == (*orig_head)->length)
444 return NULL;
445
446
447 /* If we got here, there the bridge requires some of the resource, but
448 * we may be able to split some off of the front */
449
450 node = *head;
451
452 if (node->length & (alignment -1)) {
453 /* this one isn't an aligned length, so we'll make a new entry
454 * and split it up. */
455 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
456
457 if (!split_node)
458 return NULL;
459
460 temp_dword = (node->length | (alignment-1)) + 1 - alignment;
461
462 split_node->base = node->base;
463 split_node->length = temp_dword;
464
465 node->length -= temp_dword;
466 node->base += split_node->length;
467
468 /* Put it in the list */
469 *head = split_node;
470 split_node->next = node;
471 }
472
473 if (node->length < alignment)
474 return NULL;
475
476 /* Now unlink it */
477 if (*head == node) {
478 *head = node->next;
479 } else {
480 prevnode = *head;
481 while (prevnode->next != node)
482 prevnode = prevnode->next;
483
484 prevnode->next = node->next;
485 }
486 node->next = NULL;
487
488 return node;
489}
490
491
492/**
493 * do_bridge_resource_split: find one node of resources that aren't in use
494 *
495 */
496static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
497{
498 struct pci_resource *prevnode = NULL;
499 struct pci_resource *node;
500 u32 rc;
501 u32 temp_dword;
502
503 rc = cpqhp_resource_sort_and_combine(head);
504
505 if (rc)
506 return NULL;
507
508 node = *head;
509
510 while (node->next) {
511 prevnode = node;
512 node = node->next;
513 kfree(prevnode);
514 }
515
516 if (node->length < alignment)
517 goto error;
518
519 if (node->base & (alignment - 1)) {
520 /* Short circuit if adjusted size is too small */
521 temp_dword = (node->base | (alignment-1)) + 1;
522 if ((node->length - (temp_dword - node->base)) < alignment)
523 goto error;
524
525 node->length -= (temp_dword - node->base);
526 node->base = temp_dword;
527 }
528
529 if (node->length & (alignment - 1))
530 /* There's stuff in use after this node */
531 goto error;
532
533 return node;
534error:
535 kfree(node);
536 return NULL;
537}
538
539
540/**
541 * get_io_resource: find first node of given size not in ISA aliasing window.
542 * @head: list to search
543 * @size: size of node to find, must be a power of two.
544 *
545 * Description: this function sorts the resource list by size and then returns
546 * returns the first node of "size" length that is not in the ISA aliasing
547 * window. If it finds a node larger than "size" it will split it up.
548 *
549 */
550static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
551{
552 struct pci_resource *prevnode;
553 struct pci_resource *node;
554 struct pci_resource *split_node;
555 u32 temp_dword;
556
557 if (!(*head))
558 return NULL;
559
560 if ( cpqhp_resource_sort_and_combine(head) )
561 return NULL;
562
563 if ( sort_by_size(head) )
564 return NULL;
565
566 for (node = *head; node; node = node->next) {
567 if (node->length < size)
568 continue;
569
570 if (node->base & (size - 1)) {
571 /* this one isn't base aligned properly
572 * so we'll make a new entry and split it up */
573 temp_dword = (node->base | (size-1)) + 1;
574
575 /* Short circuit if adjusted size is too small */
576 if ((node->length - (temp_dword - node->base)) < size)
577 continue;
578
579 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
580
581 if (!split_node)
582 return NULL;
583
584 split_node->base = node->base;
585 split_node->length = temp_dword - node->base;
586 node->base = temp_dword;
587 node->length -= split_node->length;
588
589 /* Put it in the list */
590 split_node->next = node->next;
591 node->next = split_node;
592 } /* End of non-aligned base */
593
594 /* Don't need to check if too small since we already did */
595 if (node->length > size) {
596 /* this one is longer than we need
597 * so we'll make a new entry and split it up */
598 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
599
600 if (!split_node)
601 return NULL;
602
603 split_node->base = node->base + size;
604 split_node->length = node->length - size;
605 node->length = size;
606
607 /* Put it in the list */
608 split_node->next = node->next;
609 node->next = split_node;
610 } /* End of too big on top end */
611
612 /* For IO make sure it's not in the ISA aliasing space */
613 if (node->base & 0x300L)
614 continue;
615
616 /* If we got here, then it is the right size
617 * Now take it out of the list and break */
618 if (*head == node) {
619 *head = node->next;
620 } else {
621 prevnode = *head;
622 while (prevnode->next != node)
623 prevnode = prevnode->next;
624
625 prevnode->next = node->next;
626 }
627 node->next = NULL;
628 break;
629 }
630
631 return node;
632}
633
634
635/**
636 * get_max_resource: get largest node which has at least the given size.
637 * @head: the list to search the node in
638 * @size: the minimum size of the node to find
639 *
640 * Description: Gets the largest node that is at least "size" big from the
641 * list pointed to by head. It aligns the node on top and bottom
642 * to "size" alignment before returning it.
643 */
644static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
645{
646 struct pci_resource *max;
647 struct pci_resource *temp;
648 struct pci_resource *split_node;
649 u32 temp_dword;
650
651 if (cpqhp_resource_sort_and_combine(head))
652 return NULL;
653
654 if (sort_by_max_size(head))
655 return NULL;
656
657 for (max = *head; max; max = max->next) {
658 /* If not big enough we could probably just bail,
659 * instead we'll continue to the next. */
660 if (max->length < size)
661 continue;
662
663 if (max->base & (size - 1)) {
664 /* this one isn't base aligned properly
665 * so we'll make a new entry and split it up */
666 temp_dword = (max->base | (size-1)) + 1;
667
668 /* Short circuit if adjusted size is too small */
669 if ((max->length - (temp_dword - max->base)) < size)
670 continue;
671
672 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
673
674 if (!split_node)
675 return NULL;
676
677 split_node->base = max->base;
678 split_node->length = temp_dword - max->base;
679 max->base = temp_dword;
680 max->length -= split_node->length;
681
682 split_node->next = max->next;
683 max->next = split_node;
684 }
685
686 if ((max->base + max->length) & (size - 1)) {
687 /* this one isn't end aligned properly at the top
688 * so we'll make a new entry and split it up */
689 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
690
691 if (!split_node)
692 return NULL;
693 temp_dword = ((max->base + max->length) & ~(size - 1));
694 split_node->base = temp_dword;
695 split_node->length = max->length + max->base
696 - split_node->base;
697 max->length -= split_node->length;
698
699 split_node->next = max->next;
700 max->next = split_node;
701 }
702
703 /* Make sure it didn't shrink too much when we aligned it */
704 if (max->length < size)
705 continue;
706
707 /* Now take it out of the list */
708 temp = *head;
709 if (temp == max) {
710 *head = max->next;
711 } else {
712 while (temp && temp->next != max) {
713 temp = temp->next;
714 }
715
716 temp->next = max->next;
717 }
718
719 max->next = NULL;
720 break;
721 }
722
723 return max;
724}
725
726
727/**
728 * get_resource: find resource of given size and split up larger ones.
729 * @head: the list to search for resources
730 * @size: the size limit to use
731 *
732 * Description: This function sorts the resource list by size and then
733 * returns the first node of "size" length. If it finds a node
734 * larger than "size" it will split it up.
735 *
736 * size must be a power of two.
737 */
738static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
739{
740 struct pci_resource *prevnode;
741 struct pci_resource *node;
742 struct pci_resource *split_node;
743 u32 temp_dword;
744
745 if (cpqhp_resource_sort_and_combine(head))
746 return NULL;
747
748 if (sort_by_size(head))
749 return NULL;
750
751 for (node = *head; node; node = node->next) {
752 dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
753 __FUNCTION__, size, node, node->base, node->length);
754 if (node->length < size)
755 continue;
756
757 if (node->base & (size - 1)) {
758 dbg("%s: not aligned\n", __FUNCTION__);
759 /* this one isn't base aligned properly
760 * so we'll make a new entry and split it up */
761 temp_dword = (node->base | (size-1)) + 1;
762
763 /* Short circuit if adjusted size is too small */
764 if ((node->length - (temp_dword - node->base)) < size)
765 continue;
766
767 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
768
769 if (!split_node)
770 return NULL;
771
772 split_node->base = node->base;
773 split_node->length = temp_dword - node->base;
774 node->base = temp_dword;
775 node->length -= split_node->length;
776
777 split_node->next = node->next;
778 node->next = split_node;
779 } /* End of non-aligned base */
780
781 /* Don't need to check if too small since we already did */
782 if (node->length > size) {
783 dbg("%s: too big\n", __FUNCTION__);
784 /* this one is longer than we need
785 * so we'll make a new entry and split it up */
786 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
787
788 if (!split_node)
789 return NULL;
790
791 split_node->base = node->base + size;
792 split_node->length = node->length - size;
793 node->length = size;
794
795 /* Put it in the list */
796 split_node->next = node->next;
797 node->next = split_node;
798 } /* End of too big on top end */
799
800 dbg("%s: got one!!!\n", __FUNCTION__);
801 /* If we got here, then it is the right size
802 * Now take it out of the list */
803 if (*head == node) {
804 *head = node->next;
805 } else {
806 prevnode = *head;
807 while (prevnode->next != node)
808 prevnode = prevnode->next;
809
810 prevnode->next = node->next;
811 }
812 node->next = NULL;
813 break;
814 }
815 return node;
816}
817
818
819/**
820 * cpqhp_resource_sort_and_combine: sort nodes by base addresses and clean up.
821 * @head: the list to sort and clean up
822 *
823 * Description: Sorts all of the nodes in the list in ascending order by
824 * their base addresses. Also does garbage collection by
825 * combining adjacent nodes.
826 *
827 * returns 0 if success
828 */
829int cpqhp_resource_sort_and_combine(struct pci_resource **head)
830{
831 struct pci_resource *node1;
832 struct pci_resource *node2;
833 int out_of_order = 1;
834
835 dbg("%s: head = %p, *head = %p\n", __FUNCTION__, head, *head);
836
837 if (!(*head))
838 return 1;
839
840 dbg("*head->next = %p\n",(*head)->next);
841
842 if (!(*head)->next)
843 return 0; /* only one item on the list, already sorted! */
844
845 dbg("*head->base = 0x%x\n",(*head)->base);
846 dbg("*head->next->base = 0x%x\n",(*head)->next->base);
847 while (out_of_order) {
848 out_of_order = 0;
849
850 /* Special case for swapping list head */
851 if (((*head)->next) &&
852 ((*head)->base > (*head)->next->base)) {
853 node1 = *head;
854 (*head) = (*head)->next;
855 node1->next = (*head)->next;
856 (*head)->next = node1;
857 out_of_order++;
858 }
859
860 node1 = (*head);
861
862 while (node1->next && node1->next->next) {
863 if (node1->next->base > node1->next->next->base) {
864 out_of_order++;
865 node2 = node1->next;
866 node1->next = node1->next->next;
867 node1 = node1->next;
868 node2->next = node1->next;
869 node1->next = node2;
870 } else
871 node1 = node1->next;
872 }
873 } /* End of out_of_order loop */
874
875 node1 = *head;
876
877 while (node1 && node1->next) {
878 if ((node1->base + node1->length) == node1->next->base) {
879 /* Combine */
880 dbg("8..\n");
881 node1->length += node1->next->length;
882 node2 = node1->next;
883 node1->next = node1->next->next;
884 kfree(node2);
885 } else
886 node1 = node1->next;
887 }
888
889 return 0;
890}
891
892
7d12e780 893irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data)
1da177e4
LT
894{
895 struct controller *ctrl = data;
896 u8 schedule_flag = 0;
897 u8 reset;
898 u16 misc;
899 u32 Diff;
900 u32 temp_dword;
901
902
903 misc = readw(ctrl->hpc_reg + MISC);
904 /***************************************
905 * Check to see if it was our interrupt
906 ***************************************/
907 if (!(misc & 0x000C)) {
908 return IRQ_NONE;
909 }
910
911 if (misc & 0x0004) {
912 /**********************************
913 * Serial Output interrupt Pending
914 **********************************/
915
916 /* Clear the interrupt */
917 misc |= 0x0004;
918 writew(misc, ctrl->hpc_reg + MISC);
919
920 /* Read to clear posted writes */
921 misc = readw(ctrl->hpc_reg + MISC);
922
923 dbg ("%s - waking up\n", __FUNCTION__);
924 wake_up_interruptible(&ctrl->queue);
925 }
926
927 if (misc & 0x0008) {
928 /* General-interrupt-input interrupt Pending */
929 Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
930
931 ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
932
933 /* Clear the interrupt */
934 writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
935
936 /* Read it back to clear any posted writes */
937 temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
938
939 if (!Diff)
940 /* Clear all interrupts */
941 writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
942
943 schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
944 schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
945 schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
946 }
947
948 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
949 if (reset & 0x40) {
950 /* Bus reset has completed */
951 reset &= 0xCF;
952 writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
953 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
954 wake_up_interruptible(&ctrl->queue);
955 }
956
957 if (schedule_flag) {
958 up(&event_semaphore);
959 dbg("Signal event_semaphore\n");
960 }
961 return IRQ_HANDLED;
962}
963
964
965/**
966 * cpqhp_slot_create - Creates a node and adds it to the proper bus.
967 * @busnumber - bus where new node is to be located
968 *
969 * Returns pointer to the new node or NULL if unsuccessful
970 */
971struct pci_func *cpqhp_slot_create(u8 busnumber)
972{
973 struct pci_func *new_slot;
974 struct pci_func *next;
975
73a985a1 976 new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL);
1da177e4
LT
977 if (new_slot == NULL) {
978 /* I'm not dead yet!
979 * You will be. */
980 return new_slot;
981 }
982
1da177e4
LT
983 new_slot->next = NULL;
984 new_slot->configured = 1;
985
986 if (cpqhp_slot_list[busnumber] == NULL) {
987 cpqhp_slot_list[busnumber] = new_slot;
988 } else {
989 next = cpqhp_slot_list[busnumber];
990 while (next->next != NULL)
991 next = next->next;
992 next->next = new_slot;
993 }
994 return new_slot;
995}
996
997
998/**
999 * slot_remove - Removes a node from the linked list of slots.
1000 * @old_slot: slot to remove
1001 *
1002 * Returns 0 if successful, !0 otherwise.
1003 */
1004static int slot_remove(struct pci_func * old_slot)
1005{
1006 struct pci_func *next;
1007
1008 if (old_slot == NULL)
1009 return 1;
1010
1011 next = cpqhp_slot_list[old_slot->bus];
1012
1013 if (next == NULL) {
1014 return 1;
1015 }
1016
1017 if (next == old_slot) {
1018 cpqhp_slot_list[old_slot->bus] = old_slot->next;
1019 cpqhp_destroy_board_resources(old_slot);
1020 kfree(old_slot);
1021 return 0;
1022 }
1023
1024 while ((next->next != old_slot) && (next->next != NULL)) {
1025 next = next->next;
1026 }
1027
1028 if (next->next == old_slot) {
1029 next->next = old_slot->next;
1030 cpqhp_destroy_board_resources(old_slot);
1031 kfree(old_slot);
1032 return 0;
1033 } else
1034 return 2;
1035}
1036
1037
1038/**
1039 * bridge_slot_remove - Removes a node from the linked list of slots.
1040 * @bridge: bridge to remove
1041 *
1042 * Returns 0 if successful, !0 otherwise.
1043 */
1044static int bridge_slot_remove(struct pci_func *bridge)
1045{
1046 u8 subordinateBus, secondaryBus;
1047 u8 tempBus;
1048 struct pci_func *next;
1049
1050 secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
1051 subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
1052
1053 for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
1054 next = cpqhp_slot_list[tempBus];
1055
1056 while (!slot_remove(next)) {
1057 next = cpqhp_slot_list[tempBus];
1058 }
1059 }
1060
1061 next = cpqhp_slot_list[bridge->bus];
1062
1063 if (next == NULL)
1064 return 1;
1065
1066 if (next == bridge) {
1067 cpqhp_slot_list[bridge->bus] = bridge->next;
1068 goto out;
1069 }
1070
1071 while ((next->next != bridge) && (next->next != NULL))
1072 next = next->next;
1073
1074 if (next->next != bridge)
1075 return 2;
1076 next->next = bridge->next;
1077out:
1078 kfree(bridge);
1079 return 0;
1080}
1081
1082
1083/**
1084 * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1085 * @bus: bus to find
1086 * @device: device to find
1087 * @index: is 0 for first function found, 1 for the second...
1088 *
1089 * Returns pointer to the node if successful, %NULL otherwise.
1090 */
1091struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
1092{
1093 int found = -1;
1094 struct pci_func *func;
1095
1096 func = cpqhp_slot_list[bus];
1097
1098 if ((func == NULL) || ((func->device == device) && (index == 0)))
1099 return func;
1100
1101 if (func->device == device)
1102 found++;
1103
1104 while (func->next != NULL) {
1105 func = func->next;
1106
1107 if (func->device == device)
1108 found++;
1109
1110 if (found == index)
1111 return func;
1112 }
1113
1114 return NULL;
1115}
1116
1117
1118/* DJZ: I don't think is_bridge will work as is.
1119 * FIXME */
1120static int is_bridge(struct pci_func * func)
1121{
1122 /* Check the header type */
1123 if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
1124 return 1;
1125 else
1126 return 0;
1127}
1128
1129
1130/**
1131 * set_controller_speed - set the frequency and/or mode of a specific
1132 * controller segment.
1133 *
1134 * @ctrl: controller to change frequency/mode for.
1135 * @adapter_speed: the speed of the adapter we want to match.
1136 * @hp_slot: the slot number where the adapter is installed.
1137 *
1138 * Returns 0 if we successfully change frequency and/or mode to match the
1139 * adapter speed.
1140 *
1141 */
1142static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
1143{
1144 struct slot *slot;
1145 u8 reg;
1146 u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
1147 u16 reg16;
1148 u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
1149
1150 if (ctrl->speed == adapter_speed)
1151 return 0;
1152
1153 /* We don't allow freq/mode changes if we find another adapter running
1154 * in another slot on this controller */
1155 for(slot = ctrl->slot; slot; slot = slot->next) {
1156 if (slot->device == (hp_slot + ctrl->slot_device_offset))
1157 continue;
1158 if (!slot->hotplug_slot && !slot->hotplug_slot->info)
1159 continue;
1160 if (slot->hotplug_slot->info->adapter_status == 0)
1161 continue;
1162 /* If another adapter is running on the same segment but at a
1163 * lower speed/mode, we allow the new adapter to function at
1164 * this rate if supported */
1165 if (ctrl->speed < adapter_speed)
1166 return 0;
1167
1168 return 1;
1169 }
1170
1171 /* If the controller doesn't support freq/mode changes and the
1172 * controller is running at a higher mode, we bail */
1173 if ((ctrl->speed > adapter_speed) && (!ctrl->pcix_speed_capability))
1174 return 1;
1175
1176 /* But we allow the adapter to run at a lower rate if possible */
1177 if ((ctrl->speed < adapter_speed) && (!ctrl->pcix_speed_capability))
1178 return 0;
1179
1180 /* We try to set the max speed supported by both the adapter and
1181 * controller */
1182 if (ctrl->speed_capability < adapter_speed) {
1183 if (ctrl->speed == ctrl->speed_capability)
1184 return 0;
1185 adapter_speed = ctrl->speed_capability;
1186 }
1187
1188 writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
1189 writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
1190
1191 set_SOGO(ctrl);
1192 wait_for_ctrl_irq(ctrl);
1193
1194 if (adapter_speed != PCI_SPEED_133MHz_PCIX)
1195 reg = 0xF5;
1196 else
1197 reg = 0xF4;
1198 pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1199
1200 reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
1201 reg16 &= ~0x000F;
1202 switch(adapter_speed) {
1203 case(PCI_SPEED_133MHz_PCIX):
1204 reg = 0x75;
1205 reg16 |= 0xB;
1206 break;
1207 case(PCI_SPEED_100MHz_PCIX):
1208 reg = 0x74;
1209 reg16 |= 0xA;
1210 break;
1211 case(PCI_SPEED_66MHz_PCIX):
1212 reg = 0x73;
1213 reg16 |= 0x9;
1214 break;
1215 case(PCI_SPEED_66MHz):
1216 reg = 0x73;
1217 reg16 |= 0x1;
1218 break;
1219 default: /* 33MHz PCI 2.2 */
1220 reg = 0x71;
1221 break;
1222
1223 }
1224 reg16 |= 0xB << 12;
1225 writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
1226
1227 mdelay(5);
1228
1229 /* Reenable interrupts */
1230 writel(0, ctrl->hpc_reg + INT_MASK);
1231
1232 pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1233
1234 /* Restart state machine */
1235 reg = ~0xF;
1236 pci_read_config_byte(ctrl->pci_dev, 0x43, &reg);
1237 pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
1238
1239 /* Only if mode change...*/
1240 if (((ctrl->speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
1241 ((ctrl->speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz)))
1242 set_SOGO(ctrl);
1243
1244 wait_for_ctrl_irq(ctrl);
1245 mdelay(1100);
1246
1247 /* Restore LED/Slot state */
1248 writel(leds, ctrl->hpc_reg + LED_CONTROL);
1249 writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
1250
1251 set_SOGO(ctrl);
1252 wait_for_ctrl_irq(ctrl);
1253
1254 ctrl->speed = adapter_speed;
1255 slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1256
1257 info("Successfully changed frequency/mode for adapter in slot %d\n",
1258 slot->number);
1259 return 0;
1260}
1261
1262/* the following routines constitute the bulk of the
1263 hotplug controller logic
1264 */
1265
1266
1267/**
1268 * board_replaced - Called after a board has been replaced in the system.
1269 *
1270 * This is only used if we don't have resources for hot add
1271 * Turns power on for the board
1272 * Checks to see if board is the same
1273 * If board is same, reconfigures it
1274 * If board isn't same, turns it back off.
1275 *
1276 */
1277static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
1278{
1279 u8 hp_slot;
1280 u8 temp_byte;
1281 u8 adapter_speed;
1da177e4 1282 u32 rc = 0;
1da177e4
LT
1283
1284 hp_slot = func->device - ctrl->slot_device_offset;
1285
1286 if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot)) {
1287 /**********************************
1288 * The switch is open.
1289 **********************************/
1290 rc = INTERLOCK_OPEN;
1291 } else if (is_slot_enabled (ctrl, hp_slot)) {
1292 /**********************************
1293 * The board is already on
1294 **********************************/
1295 rc = CARD_FUNCTIONING;
1296 } else {
6aa4cdd0 1297 mutex_lock(&ctrl->crit_sect);
1da177e4
LT
1298
1299 /* turn on board without attaching to the bus */
1300 enable_slot_power (ctrl, hp_slot);
1301
1302 set_SOGO(ctrl);
1303
1304 /* Wait for SOBS to be unset */
1305 wait_for_ctrl_irq (ctrl);
1306
1307 /* Change bits in slot power register to force another shift out
1308 * NOTE: this is to work around the timer bug */
1309 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1310 writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1311 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1312
1313 set_SOGO(ctrl);
1314
1315 /* Wait for SOBS to be unset */
1316 wait_for_ctrl_irq (ctrl);
1317
1318 adapter_speed = get_adapter_speed(ctrl, hp_slot);
1319 if (ctrl->speed != adapter_speed)
1320 if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1321 rc = WRONG_BUS_FREQUENCY;
1322
1323 /* turn off board without attaching to the bus */
1324 disable_slot_power (ctrl, hp_slot);
1325
1326 set_SOGO(ctrl);
1327
1328 /* Wait for SOBS to be unset */
1329 wait_for_ctrl_irq (ctrl);
1330
6aa4cdd0 1331 mutex_unlock(&ctrl->crit_sect);
1da177e4
LT
1332
1333 if (rc)
1334 return rc;
1335
6aa4cdd0 1336 mutex_lock(&ctrl->crit_sect);
1da177e4
LT
1337
1338 slot_enable (ctrl, hp_slot);
1339 green_LED_blink (ctrl, hp_slot);
1340
1341 amber_LED_off (ctrl, hp_slot);
1342
1343 set_SOGO(ctrl);
1344
1345 /* Wait for SOBS to be unset */
1346 wait_for_ctrl_irq (ctrl);
1347
6aa4cdd0 1348 mutex_unlock(&ctrl->crit_sect);
1da177e4
LT
1349
1350 /* Wait for ~1 second because of hot plug spec */
1351 long_delay(1*HZ);
1352
1353 /* Check for a power fault */
1354 if (func->status == 0xFF) {
1355 /* power fault occurred, but it was benign */
1356 rc = POWER_FAILURE;
1357 func->status = 0;
1358 } else
1359 rc = cpqhp_valid_replace(ctrl, func);
1360
1361 if (!rc) {
1362 /* It must be the same board */
1363
1364 rc = cpqhp_configure_board(ctrl, func);
1365
1305e918
AB
1366 /* If configuration fails, turn it off
1367 * Get slot won't work for devices behind
1368 * bridges, but in this case it will always be
1369 * called for the "base" bus/dev/func of an
1370 * adapter. */
1da177e4 1371
6aa4cdd0 1372 mutex_lock(&ctrl->crit_sect);
1da177e4 1373
1305e918
AB
1374 amber_LED_on (ctrl, hp_slot);
1375 green_LED_off (ctrl, hp_slot);
1376 slot_disable (ctrl, hp_slot);
1da177e4
LT
1377
1378 set_SOGO(ctrl);
1379
1380 /* Wait for SOBS to be unset */
1381 wait_for_ctrl_irq (ctrl);
1382
6aa4cdd0 1383 mutex_unlock(&ctrl->crit_sect);
1305e918
AB
1384
1385 if (rc)
1386 return rc;
1387 else
1388 return 1;
1389
1da177e4
LT
1390 } else {
1391 /* Something is wrong
1392
1393 * Get slot won't work for devices behind bridges, but
1394 * in this case it will always be called for the "base"
1395 * bus/dev/func of an adapter. */
1396
6aa4cdd0 1397 mutex_lock(&ctrl->crit_sect);
1da177e4
LT
1398
1399 amber_LED_on (ctrl, hp_slot);
1400 green_LED_off (ctrl, hp_slot);
1401 slot_disable (ctrl, hp_slot);
1402
1403 set_SOGO(ctrl);
1404
1405 /* Wait for SOBS to be unset */
1406 wait_for_ctrl_irq (ctrl);
1407
6aa4cdd0 1408 mutex_unlock(&ctrl->crit_sect);
1da177e4
LT
1409 }
1410
1411 }
1412 return rc;
1413
1414}
1415
1416
1417/**
1418 * board_added - Called after a board has been added to the system.
1419 *
1420 * Turns power on for the board
1421 * Configures board
1422 *
1423 */
1424static u32 board_added(struct pci_func *func, struct controller *ctrl)
1425{
1426 u8 hp_slot;
1427 u8 temp_byte;
1428 u8 adapter_speed;
1429 int index;
1430 u32 temp_register = 0xFFFFFFFF;
1431 u32 rc = 0;
1432 struct pci_func *new_slot = NULL;
1433 struct slot *p_slot;
1434 struct resource_lists res_lists;
1435
1436 hp_slot = func->device - ctrl->slot_device_offset;
1437 dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1438 __FUNCTION__, func->device, ctrl->slot_device_offset, hp_slot);
1439
6aa4cdd0 1440 mutex_lock(&ctrl->crit_sect);
1da177e4
LT
1441
1442 /* turn on board without attaching to the bus */
1443 enable_slot_power(ctrl, hp_slot);
1444
1445 set_SOGO(ctrl);
1446
1447 /* Wait for SOBS to be unset */
1448 wait_for_ctrl_irq (ctrl);
1449
1450 /* Change bits in slot power register to force another shift out
1451 * NOTE: this is to work around the timer bug */
1452 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1453 writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1454 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1455
1456 set_SOGO(ctrl);
1457
1458 /* Wait for SOBS to be unset */
1459 wait_for_ctrl_irq (ctrl);
1460
1461 adapter_speed = get_adapter_speed(ctrl, hp_slot);
1462 if (ctrl->speed != adapter_speed)
1463 if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1464 rc = WRONG_BUS_FREQUENCY;
1465
1466 /* turn off board without attaching to the bus */
1467 disable_slot_power (ctrl, hp_slot);
1468
1469 set_SOGO(ctrl);
1470
1471 /* Wait for SOBS to be unset */
1472 wait_for_ctrl_irq(ctrl);
1473
6aa4cdd0 1474 mutex_unlock(&ctrl->crit_sect);
1da177e4
LT
1475
1476 if (rc)
1477 return rc;
1478
1479 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1480
1481 /* turn on board and blink green LED */
1482
1483 dbg("%s: before down\n", __FUNCTION__);
6aa4cdd0 1484 mutex_lock(&ctrl->crit_sect);
1da177e4
LT
1485 dbg("%s: after down\n", __FUNCTION__);
1486
1487 dbg("%s: before slot_enable\n", __FUNCTION__);
1488 slot_enable (ctrl, hp_slot);
1489
1490 dbg("%s: before green_LED_blink\n", __FUNCTION__);
1491 green_LED_blink (ctrl, hp_slot);
1492
1493 dbg("%s: before amber_LED_blink\n", __FUNCTION__);
1494 amber_LED_off (ctrl, hp_slot);
1495
1496 dbg("%s: before set_SOGO\n", __FUNCTION__);
1497 set_SOGO(ctrl);
1498
1499 /* Wait for SOBS to be unset */
1500 dbg("%s: before wait_for_ctrl_irq\n", __FUNCTION__);
1501 wait_for_ctrl_irq (ctrl);
1502 dbg("%s: after wait_for_ctrl_irq\n", __FUNCTION__);
1503
1504 dbg("%s: before up\n", __FUNCTION__);
6aa4cdd0 1505 mutex_unlock(&ctrl->crit_sect);
1da177e4
LT
1506 dbg("%s: after up\n", __FUNCTION__);
1507
1508 /* Wait for ~1 second because of hot plug spec */
1509 dbg("%s: before long_delay\n", __FUNCTION__);
1510 long_delay(1*HZ);
1511 dbg("%s: after long_delay\n", __FUNCTION__);
1512
1513 dbg("%s: func status = %x\n", __FUNCTION__, func->status);
1514 /* Check for a power fault */
1515 if (func->status == 0xFF) {
1516 /* power fault occurred, but it was benign */
1517 temp_register = 0xFFFFFFFF;
1518 dbg("%s: temp register set to %x by power fault\n", __FUNCTION__, temp_register);
1519 rc = POWER_FAILURE;
1520 func->status = 0;
1521 } else {
1522 /* Get vendor/device ID u32 */
1523 ctrl->pci_bus->number = func->bus;
1524 rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
1525 dbg("%s: pci_read_config_dword returns %d\n", __FUNCTION__, rc);
1526 dbg("%s: temp_register is %x\n", __FUNCTION__, temp_register);
1527
1528 if (rc != 0) {
1529 /* Something's wrong here */
1530 temp_register = 0xFFFFFFFF;
1531 dbg("%s: temp register set to %x by error\n", __FUNCTION__, temp_register);
1532 }
1533 /* Preset return code. It will be changed later if things go okay. */
1534 rc = NO_ADAPTER_PRESENT;
1535 }
1536
1537 /* All F's is an empty slot or an invalid board */
1538 if (temp_register != 0xFFFFFFFF) { /* Check for a board in the slot */
1539 res_lists.io_head = ctrl->io_head;
1540 res_lists.mem_head = ctrl->mem_head;
1541 res_lists.p_mem_head = ctrl->p_mem_head;
1542 res_lists.bus_head = ctrl->bus_head;
1543 res_lists.irqs = NULL;
1544
1545 rc = configure_new_device(ctrl, func, 0, &res_lists);
1546
1547 dbg("%s: back from configure_new_device\n", __FUNCTION__);
1548 ctrl->io_head = res_lists.io_head;
1549 ctrl->mem_head = res_lists.mem_head;
1550 ctrl->p_mem_head = res_lists.p_mem_head;
1551 ctrl->bus_head = res_lists.bus_head;
1552
1553 cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1554 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1555 cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1556 cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1557
1558 if (rc) {
6aa4cdd0 1559 mutex_lock(&ctrl->crit_sect);
1da177e4
LT
1560
1561 amber_LED_on (ctrl, hp_slot);
1562 green_LED_off (ctrl, hp_slot);
1563 slot_disable (ctrl, hp_slot);
1564
1565 set_SOGO(ctrl);
1566
1567 /* Wait for SOBS to be unset */
1568 wait_for_ctrl_irq (ctrl);
1569
6aa4cdd0 1570 mutex_unlock(&ctrl->crit_sect);
1da177e4
LT
1571 return rc;
1572 } else {
1573 cpqhp_save_slot_config(ctrl, func);
1574 }
1575
1576
1577 func->status = 0;
1578 func->switch_save = 0x10;
1579 func->is_a_board = 0x01;
1580
1581 /* next, we will instantiate the linux pci_dev structures (with
1582 * appropriate driver notification, if already present) */
1583 dbg("%s: configure linux pci_dev structure\n", __FUNCTION__);
1584 index = 0;
1585 do {
1586 new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
1587 if (new_slot && !new_slot->pci_dev) {
1588 cpqhp_configure_device(ctrl, new_slot);
1589 }
1590 } while (new_slot);
1591
6aa4cdd0 1592 mutex_lock(&ctrl->crit_sect);
1da177e4
LT
1593
1594 green_LED_on (ctrl, hp_slot);
1595
1596 set_SOGO(ctrl);
1597
1598 /* Wait for SOBS to be unset */
1599 wait_for_ctrl_irq (ctrl);
1600
6aa4cdd0 1601 mutex_unlock(&ctrl->crit_sect);
1da177e4 1602 } else {
6aa4cdd0 1603 mutex_lock(&ctrl->crit_sect);
1da177e4
LT
1604
1605 amber_LED_on (ctrl, hp_slot);
1606 green_LED_off (ctrl, hp_slot);
1607 slot_disable (ctrl, hp_slot);
1608
1609 set_SOGO(ctrl);
1610
1611 /* Wait for SOBS to be unset */
1612 wait_for_ctrl_irq (ctrl);
1613
6aa4cdd0 1614 mutex_unlock(&ctrl->crit_sect);
1da177e4
LT
1615
1616 return rc;
1617 }
1618 return 0;
1619}
1620
1621
1622/**
1623 * remove_board - Turns off slot and LED's
1624 *
1625 */
1626static u32 remove_board(struct pci_func * func, u32 replace_flag, struct controller * ctrl)
1627{
1628 int index;
1629 u8 skip = 0;
1630 u8 device;
1631 u8 hp_slot;
1632 u8 temp_byte;
1633 u32 rc;
1634 struct resource_lists res_lists;
1635 struct pci_func *temp_func;
1636
1637 if (cpqhp_unconfigure_device(func))
1638 return 1;
1639
1640 device = func->device;
1641
1642 hp_slot = func->device - ctrl->slot_device_offset;
1643 dbg("In %s, hp_slot = %d\n", __FUNCTION__, hp_slot);
1644
1645 /* When we get here, it is safe to change base address registers.
1646 * We will attempt to save the base address register lengths */
1647 if (replace_flag || !ctrl->add_support)
1648 rc = cpqhp_save_base_addr_length(ctrl, func);
1649 else if (!func->bus_head && !func->mem_head &&
1650 !func->p_mem_head && !func->io_head) {
1651 /* Here we check to see if we've saved any of the board's
1652 * resources already. If so, we'll skip the attempt to
1653 * determine what's being used. */
1654 index = 0;
1655 temp_func = cpqhp_slot_find(func->bus, func->device, index++);
1656 while (temp_func) {
1657 if (temp_func->bus_head || temp_func->mem_head
1658 || temp_func->p_mem_head || temp_func->io_head) {
1659 skip = 1;
1660 break;
1661 }
1662 temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
1663 }
1664
1665 if (!skip)
1666 rc = cpqhp_save_used_resources(ctrl, func);
1667 }
1668 /* Change status to shutdown */
1669 if (func->is_a_board)
1670 func->status = 0x01;
1671 func->configured = 0;
1672
6aa4cdd0 1673 mutex_lock(&ctrl->crit_sect);
1da177e4
LT
1674
1675 green_LED_off (ctrl, hp_slot);
1676 slot_disable (ctrl, hp_slot);
1677
1678 set_SOGO(ctrl);
1679
1680 /* turn off SERR for slot */
1681 temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
1682 temp_byte &= ~(0x01 << hp_slot);
1683 writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
1684
1685 /* Wait for SOBS to be unset */
1686 wait_for_ctrl_irq (ctrl);
1687
6aa4cdd0 1688 mutex_unlock(&ctrl->crit_sect);
1da177e4
LT
1689
1690 if (!replace_flag && ctrl->add_support) {
1691 while (func) {
1692 res_lists.io_head = ctrl->io_head;
1693 res_lists.mem_head = ctrl->mem_head;
1694 res_lists.p_mem_head = ctrl->p_mem_head;
1695 res_lists.bus_head = ctrl->bus_head;
1696
1697 cpqhp_return_board_resources(func, &res_lists);
1698
1699 ctrl->io_head = res_lists.io_head;
1700 ctrl->mem_head = res_lists.mem_head;
1701 ctrl->p_mem_head = res_lists.p_mem_head;
1702 ctrl->bus_head = res_lists.bus_head;
1703
1704 cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1705 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1706 cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1707 cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1708
1709 if (is_bridge(func)) {
1710 bridge_slot_remove(func);
1711 } else
1712 slot_remove(func);
1713
1714 func = cpqhp_slot_find(ctrl->bus, device, 0);
1715 }
1716
1717 /* Setup slot structure with entry for empty slot */
1718 func = cpqhp_slot_create(ctrl->bus);
1719
1720 if (func == NULL)
1721 return 1;
1722
1723 func->bus = ctrl->bus;
1724 func->device = device;
1725 func->function = 0;
1726 func->configured = 0;
1727 func->switch_save = 0x10;
1728 func->is_a_board = 0;
1729 func->p_task_event = NULL;
1730 }
1731
1732 return 0;
1733}
1734
1735static void pushbutton_helper_thread(unsigned long data)
1736{
1737 pushbutton_pending = data;
1738 up(&event_semaphore);
1739}
1740
1741
1742/* this is the main worker thread */
1743static int event_thread(void* data)
1744{
1745 struct controller *ctrl;
60ac8f20 1746
1da177e4 1747 daemonize("phpd_event");
1da177e4
LT
1748
1749 while (1) {
1750 dbg("!!!!event_thread sleeping\n");
1751 down_interruptible (&event_semaphore);
1752 dbg("event_thread woken finished = %d\n", event_finished);
1753 if (event_finished) break;
1754 /* Do stuff here */
1755 if (pushbutton_pending)
1756 cpqhp_pushbutton_thread(pushbutton_pending);
1757 else
1758 for (ctrl = cpqhp_ctrl_list; ctrl; ctrl=ctrl->next)
1759 interrupt_event_handler(ctrl);
1760 }
1761 dbg("event_thread signals exit\n");
1762 up(&event_exit);
1763 return 0;
1764}
1765
1766
1767int cpqhp_event_start_thread(void)
1768{
1769 int pid;
1770
1771 /* initialize our semaphores */
1772 init_MUTEX(&delay_sem);
1773 init_MUTEX_LOCKED(&event_semaphore);
1774 init_MUTEX_LOCKED(&event_exit);
1775 event_finished=0;
1776
1777 pid = kernel_thread(event_thread, NULL, 0);
1778 if (pid < 0) {
1779 err ("Can't start up our event thread\n");
1780 return -1;
1781 }
1782 dbg("Our event thread pid = %d\n", pid);
1783 return 0;
1784}
1785
1786
1787void cpqhp_event_stop_thread(void)
1788{
1789 event_finished = 1;
1790 dbg("event_thread finish command given\n");
1791 up(&event_semaphore);
1792 dbg("wait for event_thread to exit\n");
1793 down(&event_exit);
1794}
1795
1796
1797static int update_slot_info(struct controller *ctrl, struct slot *slot)
1798{
1799 struct hotplug_slot_info *info;
1800 int result;
1801
1802 info = kmalloc(sizeof(*info), GFP_KERNEL);
1803 if (!info)
1804 return -ENOMEM;
1805
1806 info->power_status = get_slot_enabled(ctrl, slot);
1807 info->attention_status = cpq_get_attention_status(ctrl, slot);
1808 info->latch_status = cpq_get_latch_status(ctrl, slot);
1809 info->adapter_status = get_presence_status(ctrl, slot);
1810 result = pci_hp_change_slot_info(slot->hotplug_slot, info);
1811 kfree (info);
1812 return result;
1813}
1814
1815static void interrupt_event_handler(struct controller *ctrl)
1816{
1817 int loop = 0;
1818 int change = 1;
1819 struct pci_func *func;
1820 u8 hp_slot;
1821 struct slot *p_slot;
1822
1823 while (change) {
1824 change = 0;
1825
1826 for (loop = 0; loop < 10; loop++) {
1827 /* dbg("loop %d\n", loop); */
1828 if (ctrl->event_queue[loop].event_type != 0) {
1829 hp_slot = ctrl->event_queue[loop].hp_slot;
1830
1831 func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
1832 if (!func)
1833 return;
1834
1835 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1836 if (!p_slot)
1837 return;
1838
1839 dbg("hp_slot %d, func %p, p_slot %p\n",
1840 hp_slot, func, p_slot);
1841
1842 if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
1843 dbg("button pressed\n");
1844 } else if (ctrl->event_queue[loop].event_type ==
1845 INT_BUTTON_CANCEL) {
1846 dbg("button cancel\n");
1847 del_timer(&p_slot->task_event);
1848
6aa4cdd0 1849 mutex_lock(&ctrl->crit_sect);
1da177e4
LT
1850
1851 if (p_slot->state == BLINKINGOFF_STATE) {
1852 /* slot is on */
1853 dbg("turn on green LED\n");
1854 green_LED_on (ctrl, hp_slot);
1855 } else if (p_slot->state == BLINKINGON_STATE) {
1856 /* slot is off */
1857 dbg("turn off green LED\n");
1858 green_LED_off (ctrl, hp_slot);
1859 }
1860
1861 info(msg_button_cancel, p_slot->number);
1862
1863 p_slot->state = STATIC_STATE;
1864
1865 amber_LED_off (ctrl, hp_slot);
1866
1867 set_SOGO(ctrl);
1868
1869 /* Wait for SOBS to be unset */
1870 wait_for_ctrl_irq (ctrl);
1871
6aa4cdd0 1872 mutex_unlock(&ctrl->crit_sect);
1da177e4
LT
1873 }
1874 /*** button Released (No action on press...) */
1875 else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
1876 dbg("button release\n");
1877
1878 if (is_slot_enabled (ctrl, hp_slot)) {
1879 dbg("slot is on\n");
1880 p_slot->state = BLINKINGOFF_STATE;
1881 info(msg_button_off, p_slot->number);
1882 } else {
1883 dbg("slot is off\n");
1884 p_slot->state = BLINKINGON_STATE;
1885 info(msg_button_on, p_slot->number);
1886 }
6aa4cdd0 1887 mutex_lock(&ctrl->crit_sect);
1da177e4
LT
1888
1889 dbg("blink green LED and turn off amber\n");
1890
1891 amber_LED_off (ctrl, hp_slot);
1892 green_LED_blink (ctrl, hp_slot);
1893
1894 set_SOGO(ctrl);
1895
1896 /* Wait for SOBS to be unset */
1897 wait_for_ctrl_irq (ctrl);
1898
6aa4cdd0 1899 mutex_unlock(&ctrl->crit_sect);
1da177e4
LT
1900 init_timer(&p_slot->task_event);
1901 p_slot->hp_slot = hp_slot;
1902 p_slot->ctrl = ctrl;
1903/* p_slot->physical_slot = physical_slot; */
1904 p_slot->task_event.expires = jiffies + 5 * HZ; /* 5 second delay */
1905 p_slot->task_event.function = pushbutton_helper_thread;
1906 p_slot->task_event.data = (u32) p_slot;
1907
1908 dbg("add_timer p_slot = %p\n", p_slot);
1909 add_timer(&p_slot->task_event);
1910 }
1911 /***********POWER FAULT */
1912 else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
1913 dbg("power fault\n");
1914 } else {
1915 /* refresh notification */
1916 if (p_slot)
1917 update_slot_info(ctrl, p_slot);
1918 }
1919
1920 ctrl->event_queue[loop].event_type = 0;
1921
1922 change = 1;
1923 }
1924 } /* End of FOR loop */
1925 }
1926
1927 return;
1928}
1929
1930
1931/**
1932 * cpqhp_pushbutton_thread
1933 *
1934 * Scheduled procedure to handle blocking stuff for the pushbuttons
1935 * Handles all pending events and exits.
1936 *
1937 */
1938void cpqhp_pushbutton_thread(unsigned long slot)
1939{
1940 u8 hp_slot;
1941 u8 device;
1942 struct pci_func *func;
1943 struct slot *p_slot = (struct slot *) slot;
1944 struct controller *ctrl = (struct controller *) p_slot->ctrl;
1945
1946 pushbutton_pending = 0;
1947 hp_slot = p_slot->hp_slot;
1948
1949 device = p_slot->device;
1950
1951 if (is_slot_enabled(ctrl, hp_slot)) {
1952 p_slot->state = POWEROFF_STATE;
1953 /* power Down board */
1954 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1955 dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
1956 if (!func) {
1957 dbg("Error! func NULL in %s\n", __FUNCTION__);
1958 return ;
1959 }
1960
1961 if (func != NULL && ctrl != NULL) {
1962 if (cpqhp_process_SS(ctrl, func) != 0) {
1963 amber_LED_on (ctrl, hp_slot);
1964 green_LED_on (ctrl, hp_slot);
1965
1966 set_SOGO(ctrl);
1967
1968 /* Wait for SOBS to be unset */
1969 wait_for_ctrl_irq (ctrl);
1970 }
1971 }
1972
1973 p_slot->state = STATIC_STATE;
1974 } else {
1975 p_slot->state = POWERON_STATE;
1976 /* slot is off */
1977
1978 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1979 dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
1980 if (!func) {
1981 dbg("Error! func NULL in %s\n", __FUNCTION__);
1982 return ;
1983 }
1984
1985 if (func != NULL && ctrl != NULL) {
1986 if (cpqhp_process_SI(ctrl, func) != 0) {
1987 amber_LED_on(ctrl, hp_slot);
1988 green_LED_off(ctrl, hp_slot);
1989
1990 set_SOGO(ctrl);
1991
1992 /* Wait for SOBS to be unset */
1993 wait_for_ctrl_irq (ctrl);
1994 }
1995 }
1996
1997 p_slot->state = STATIC_STATE;
1998 }
1999
2000 return;
2001}
2002
2003
2004int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
2005{
2006 u8 device, hp_slot;
2007 u16 temp_word;
2008 u32 tempdword;
2009 int rc;
2010 struct slot* p_slot;
2011 int physical_slot = 0;
2012
2013 tempdword = 0;
2014
2015 device = func->device;
2016 hp_slot = device - ctrl->slot_device_offset;
2017 p_slot = cpqhp_find_slot(ctrl, device);
2018 if (p_slot)
2019 physical_slot = p_slot->number;
2020
2021 /* Check to see if the interlock is closed */
2022 tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
2023
2024 if (tempdword & (0x01 << hp_slot)) {
2025 return 1;
2026 }
2027
2028 if (func->is_a_board) {
2029 rc = board_replaced(func, ctrl);
2030 } else {
2031 /* add board */
2032 slot_remove(func);
2033
2034 func = cpqhp_slot_create(ctrl->bus);
2035 if (func == NULL)
2036 return 1;
2037
2038 func->bus = ctrl->bus;
2039 func->device = device;
2040 func->function = 0;
2041 func->configured = 0;
2042 func->is_a_board = 1;
2043
2044 /* We have to save the presence info for these slots */
2045 temp_word = ctrl->ctrl_int_comp >> 16;
2046 func->presence_save = (temp_word >> hp_slot) & 0x01;
2047 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
2048
2049 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2050 func->switch_save = 0;
2051 } else {
2052 func->switch_save = 0x10;
2053 }
2054
2055 rc = board_added(func, ctrl);
2056 if (rc) {
2057 if (is_bridge(func)) {
2058 bridge_slot_remove(func);
2059 } else
2060 slot_remove(func);
2061
2062 /* Setup slot structure with entry for empty slot */
2063 func = cpqhp_slot_create(ctrl->bus);
2064
2065 if (func == NULL)
2066 return 1;
2067
2068 func->bus = ctrl->bus;
2069 func->device = device;
2070 func->function = 0;
2071 func->configured = 0;
2072 func->is_a_board = 0;
2073
2074 /* We have to save the presence info for these slots */
2075 temp_word = ctrl->ctrl_int_comp >> 16;
2076 func->presence_save = (temp_word >> hp_slot) & 0x01;
2077 func->presence_save |=
2078 (temp_word >> (hp_slot + 7)) & 0x02;
2079
2080 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2081 func->switch_save = 0;
2082 } else {
2083 func->switch_save = 0x10;
2084 }
2085 }
2086 }
2087
2088 if (rc) {
2089 dbg("%s: rc = %d\n", __FUNCTION__, rc);
2090 }
2091
2092 if (p_slot)
2093 update_slot_info(ctrl, p_slot);
2094
2095 return rc;
2096}
2097
2098
2099int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
2100{
2101 u8 device, class_code, header_type, BCR;
2102 u8 index = 0;
2103 u8 replace_flag;
2104 u32 rc = 0;
2105 unsigned int devfn;
2106 struct slot* p_slot;
2107 struct pci_bus *pci_bus = ctrl->pci_bus;
2108 int physical_slot=0;
2109
2110 device = func->device;
2111 func = cpqhp_slot_find(ctrl->bus, device, index++);
2112 p_slot = cpqhp_find_slot(ctrl, device);
2113 if (p_slot) {
2114 physical_slot = p_slot->number;
2115 }
2116
2117 /* Make sure there are no video controllers here */
2118 while (func && !rc) {
2119 pci_bus->number = func->bus;
2120 devfn = PCI_DEVFN(func->device, func->function);
2121
2122 /* Check the Class Code */
2123 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2124 if (rc)
2125 return rc;
2126
2127 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2128 /* Display/Video adapter (not supported) */
2129 rc = REMOVE_NOT_SUPPORTED;
2130 } else {
2131 /* See if it's a bridge */
2132 rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
2133 if (rc)
2134 return rc;
2135
2136 /* If it's a bridge, check the VGA Enable bit */
2137 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2138 rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
2139 if (rc)
2140 return rc;
2141
2142 /* If the VGA Enable bit is set, remove isn't
2143 * supported */
2144 if (BCR & PCI_BRIDGE_CTL_VGA) {
2145 rc = REMOVE_NOT_SUPPORTED;
2146 }
2147 }
2148 }
2149
2150 func = cpqhp_slot_find(ctrl->bus, device, index++);
2151 }
2152
2153 func = cpqhp_slot_find(ctrl->bus, device, 0);
2154 if ((func != NULL) && !rc) {
2155 /* FIXME: Replace flag should be passed into process_SS */
2156 replace_flag = !(ctrl->add_support);
2157 rc = remove_board(func, replace_flag, ctrl);
2158 } else if (!rc) {
2159 rc = 1;
2160 }
2161
2162 if (p_slot)
2163 update_slot_info(ctrl, p_slot);
2164
2165 return rc;
2166}
2167
2168/**
2169 * switch_leds: switch the leds, go from one site to the other.
2170 * @ctrl: controller to use
2171 * @num_of_slots: number of slots to use
2172 * @direction: 1 to start from the left side, 0 to start right.
2173 */
2174static void switch_leds(struct controller *ctrl, const int num_of_slots,
2175 u32 *work_LED, const int direction)
2176{
2177 int loop;
2178
2179 for (loop = 0; loop < num_of_slots; loop++) {
2180 if (direction)
2181 *work_LED = *work_LED >> 1;
2182 else
2183 *work_LED = *work_LED << 1;
2184 writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
2185
2186 set_SOGO(ctrl);
2187
2188 /* Wait for SOGO interrupt */
2189 wait_for_ctrl_irq(ctrl);
2190
2191 /* Get ready for next iteration */
2192 long_delay((2*HZ)/10);
2193 }
2194}
2195
2196/**
2197 * hardware_test - runs hardware tests
2198 *
2199 * For hot plug ctrl folks to play with.
2200 * test_num is the number written to the "test" file in sysfs
2201 *
2202 */
2203int cpqhp_hardware_test(struct controller *ctrl, int test_num)
2204{
2205 u32 save_LED;
2206 u32 work_LED;
2207 int loop;
2208 int num_of_slots;
2209
2210 num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
2211
2212 switch (test_num) {
2213 case 1:
2214 /* Do stuff here! */
2215
2216 /* Do that funky LED thing */
2217 /* so we can restore them later */
2218 save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
2219 work_LED = 0x01010101;
2220 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2221 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2222 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2223 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2224
2225 work_LED = 0x01010000;
2226 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2227 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2228 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2229 work_LED = 0x00000101;
2230 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2231 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2232 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2233
2234 work_LED = 0x01010000;
2235 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2236 for (loop = 0; loop < num_of_slots; loop++) {
2237 set_SOGO(ctrl);
2238
2239 /* Wait for SOGO interrupt */
2240 wait_for_ctrl_irq (ctrl);
2241
2242 /* Get ready for next iteration */
2243 long_delay((3*HZ)/10);
2244 work_LED = work_LED >> 16;
2245 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2246
2247 set_SOGO(ctrl);
2248
2249 /* Wait for SOGO interrupt */
2250 wait_for_ctrl_irq (ctrl);
2251
2252 /* Get ready for next iteration */
2253 long_delay((3*HZ)/10);
2254 work_LED = work_LED << 16;
2255 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2256 work_LED = work_LED << 1;
2257 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2258 }
2259
2260 /* put it back the way it was */
2261 writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
2262
2263 set_SOGO(ctrl);
2264
2265 /* Wait for SOBS to be unset */
2266 wait_for_ctrl_irq (ctrl);
2267 break;
2268 case 2:
2269 /* Do other stuff here! */
2270 break;
2271 case 3:
2272 /* and more... */
2273 break;
2274 }
2275 return 0;
2276}
2277
2278
2279/**
2280 * configure_new_device - Configures the PCI header information of one board.
2281 *
2282 * @ctrl: pointer to controller structure
2283 * @func: pointer to function structure
2284 * @behind_bridge: 1 if this is a recursive call, 0 if not
2285 * @resources: pointer to set of resource lists
2286 *
2287 * Returns 0 if success
2288 *
2289 */
2290static u32 configure_new_device(struct controller * ctrl, struct pci_func * func,
2291 u8 behind_bridge, struct resource_lists * resources)
2292{
2293 u8 temp_byte, function, max_functions, stop_it;
2294 int rc;
2295 u32 ID;
2296 struct pci_func *new_slot;
2297 int index;
2298
2299 new_slot = func;
2300
2301 dbg("%s\n", __FUNCTION__);
2302 /* Check for Multi-function device */
2303 ctrl->pci_bus->number = func->bus;
2304 rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
2305 if (rc) {
2306 dbg("%s: rc = %d\n", __FUNCTION__, rc);
2307 return rc;
2308 }
2309
2310 if (temp_byte & 0x80) /* Multi-function device */
2311 max_functions = 8;
2312 else
2313 max_functions = 1;
2314
2315 function = 0;
2316
2317 do {
2318 rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
2319
2320 if (rc) {
2321 dbg("configure_new_function failed %d\n",rc);
2322 index = 0;
2323
2324 while (new_slot) {
2325 new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
2326
2327 if (new_slot)
2328 cpqhp_return_board_resources(new_slot, resources);
2329 }
2330
2331 return rc;
2332 }
2333
2334 function++;
2335
2336 stop_it = 0;
2337
2338 /* The following loop skips to the next present function
2339 * and creates a board structure */
2340
2341 while ((function < max_functions) && (!stop_it)) {
2342 pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
2343
2344 if (ID == 0xFFFFFFFF) { /* There's nothing there. */
2345 function++;
2346 } else { /* There's something there */
2347 /* Setup slot structure. */
2348 new_slot = cpqhp_slot_create(func->bus);
2349
2350 if (new_slot == NULL)
2351 return 1;
2352
2353 new_slot->bus = func->bus;
2354 new_slot->device = func->device;
2355 new_slot->function = function;
2356 new_slot->is_a_board = 1;
2357 new_slot->status = 0;
2358
2359 stop_it++;
2360 }
2361 }
2362
2363 } while (function < max_functions);
2364 dbg("returning from configure_new_device\n");
2365
2366 return 0;
2367}
2368
2369
2370/*
2371 Configuration logic that involves the hotplug data structures and
2372 their bookkeeping
2373 */
2374
2375
2376/**
2377 * configure_new_function - Configures the PCI header information of one device
2378 *
2379 * @ctrl: pointer to controller structure
2380 * @func: pointer to function structure
2381 * @behind_bridge: 1 if this is a recursive call, 0 if not
2382 * @resources: pointer to set of resource lists
2383 *
2384 * Calls itself recursively for bridged devices.
2385 * Returns 0 if success
2386 *
2387 */
2388static int configure_new_function(struct controller *ctrl, struct pci_func *func,
2389 u8 behind_bridge,
2390 struct resource_lists *resources)
2391{
2392 int cloop;
2393 u8 IRQ = 0;
2394 u8 temp_byte;
2395 u8 device;
2396 u8 class_code;
2397 u16 command;
2398 u16 temp_word;
2399 u32 temp_dword;
2400 u32 rc;
2401 u32 temp_register;
2402 u32 base;
2403 u32 ID;
2404 unsigned int devfn;
2405 struct pci_resource *mem_node;
2406 struct pci_resource *p_mem_node;
2407 struct pci_resource *io_node;
2408 struct pci_resource *bus_node;
2409 struct pci_resource *hold_mem_node;
2410 struct pci_resource *hold_p_mem_node;
2411 struct pci_resource *hold_IO_node;
2412 struct pci_resource *hold_bus_node;
2413 struct irq_mapping irqs;
2414 struct pci_func *new_slot;
2415 struct pci_bus *pci_bus;
2416 struct resource_lists temp_resources;
2417
2418 pci_bus = ctrl->pci_bus;
2419 pci_bus->number = func->bus;
2420 devfn = PCI_DEVFN(func->device, func->function);
2421
2422 /* Check for Bridge */
2423 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
2424 if (rc)
2425 return rc;
2426
2427 if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { /* PCI-PCI Bridge */
2428 /* set Primary bus */
2429 dbg("set Primary bus = %d\n", func->bus);
2430 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
2431 if (rc)
2432 return rc;
2433
2434 /* find range of busses to use */
2435 dbg("find ranges of buses to use\n");
2436 bus_node = get_max_resource(&(resources->bus_head), 1);
2437
2438 /* If we don't have any busses to allocate, we can't continue */
2439 if (!bus_node)
2440 return -ENOMEM;
2441
2442 /* set Secondary bus */
2443 temp_byte = bus_node->base;
2444 dbg("set Secondary bus = %d\n", bus_node->base);
2445 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
2446 if (rc)
2447 return rc;
2448
2449 /* set subordinate bus */
2450 temp_byte = bus_node->base + bus_node->length - 1;
2451 dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
2452 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2453 if (rc)
2454 return rc;
2455
2456 /* set subordinate Latency Timer and base Latency Timer */
2457 temp_byte = 0x40;
2458 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
2459 if (rc)
2460 return rc;
2461 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
2462 if (rc)
2463 return rc;
2464
2465 /* set Cache Line size */
2466 temp_byte = 0x08;
2467 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
2468 if (rc)
2469 return rc;
2470
2471 /* Setup the IO, memory, and prefetchable windows */
2472 io_node = get_max_resource(&(resources->io_head), 0x1000);
2473 if (!io_node)
2474 return -ENOMEM;
2475 mem_node = get_max_resource(&(resources->mem_head), 0x100000);
2476 if (!mem_node)
2477 return -ENOMEM;
2478 p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
2479 if (!p_mem_node)
2480 return -ENOMEM;
2481 dbg("Setup the IO, memory, and prefetchable windows\n");
2482 dbg("io_node\n");
2483 dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
2484 io_node->length, io_node->next);
2485 dbg("mem_node\n");
2486 dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
2487 mem_node->length, mem_node->next);
2488 dbg("p_mem_node\n");
2489 dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
2490 p_mem_node->length, p_mem_node->next);
2491
2492 /* set up the IRQ info */
2493 if (!resources->irqs) {
2494 irqs.barber_pole = 0;
2495 irqs.interrupt[0] = 0;
2496 irqs.interrupt[1] = 0;
2497 irqs.interrupt[2] = 0;
2498 irqs.interrupt[3] = 0;
2499 irqs.valid_INT = 0;
2500 } else {
2501 irqs.barber_pole = resources->irqs->barber_pole;
2502 irqs.interrupt[0] = resources->irqs->interrupt[0];
2503 irqs.interrupt[1] = resources->irqs->interrupt[1];
2504 irqs.interrupt[2] = resources->irqs->interrupt[2];
2505 irqs.interrupt[3] = resources->irqs->interrupt[3];
2506 irqs.valid_INT = resources->irqs->valid_INT;
2507 }
2508
2509 /* set up resource lists that are now aligned on top and bottom
2510 * for anything behind the bridge. */
2511 temp_resources.bus_head = bus_node;
2512 temp_resources.io_head = io_node;
2513 temp_resources.mem_head = mem_node;
2514 temp_resources.p_mem_head = p_mem_node;
2515 temp_resources.irqs = &irqs;
2516
2517 /* Make copies of the nodes we are going to pass down so that
2518 * if there is a problem,we can just use these to free resources */
2519 hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
2520 hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
2521 hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
2522 hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
2523
2524 if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
2525 kfree(hold_bus_node);
2526 kfree(hold_IO_node);
2527 kfree(hold_mem_node);
2528 kfree(hold_p_mem_node);
2529
2530 return 1;
2531 }
2532
2533 memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
2534
2535 bus_node->base += 1;
2536 bus_node->length -= 1;
2537 bus_node->next = NULL;
2538
2539 /* If we have IO resources copy them and fill in the bridge's
2540 * IO range registers */
2541 if (io_node) {
2542 memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
2543 io_node->next = NULL;
2544
2545 /* set IO base and Limit registers */
2546 temp_byte = io_node->base >> 8;
2547 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2548
2549 temp_byte = (io_node->base + io_node->length - 1) >> 8;
2550 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2551 } else {
2552 kfree(hold_IO_node);
2553 hold_IO_node = NULL;
2554 }
2555
2556 /* If we have memory resources copy them and fill in the
2557 * bridge's memory range registers. Otherwise, fill in the
2558 * range registers with values that disable them. */
2559 if (mem_node) {
2560 memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
2561 mem_node->next = NULL;
2562
2563 /* set Mem base and Limit registers */
2564 temp_word = mem_node->base >> 16;
2565 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2566
2567 temp_word = (mem_node->base + mem_node->length - 1) >> 16;
2568 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2569 } else {
2570 temp_word = 0xFFFF;
2571 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2572
2573 temp_word = 0x0000;
2574 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2575
2576 kfree(hold_mem_node);
2577 hold_mem_node = NULL;
2578 }
2579
2555f7bd
AB
2580 memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
2581 p_mem_node->next = NULL;
1da177e4 2582
2555f7bd
AB
2583 /* set Pre Mem base and Limit registers */
2584 temp_word = p_mem_node->base >> 16;
2585 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
1da177e4 2586
2555f7bd
AB
2587 temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
2588 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
1da177e4
LT
2589
2590 /* Adjust this to compensate for extra adjustment in first loop */
2591 irqs.barber_pole--;
2592
2593 rc = 0;
2594
2595 /* Here we actually find the devices and configure them */
2596 for (device = 0; (device <= 0x1F) && !rc; device++) {
2597 irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
2598
2599 ID = 0xFFFFFFFF;
2600 pci_bus->number = hold_bus_node->base;
2601 pci_bus_read_config_dword (pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
2602 pci_bus->number = func->bus;
2603
2604 if (ID != 0xFFFFFFFF) { /* device present */
2605 /* Setup slot structure. */
2606 new_slot = cpqhp_slot_create(hold_bus_node->base);
2607
2608 if (new_slot == NULL) {
2609 rc = -ENOMEM;
2610 continue;
2611 }
2612
2613 new_slot->bus = hold_bus_node->base;
2614 new_slot->device = device;
2615 new_slot->function = 0;
2616 new_slot->is_a_board = 1;
2617 new_slot->status = 0;
2618
2619 rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
2620 dbg("configure_new_device rc=0x%x\n",rc);
2621 } /* End of IF (device in slot?) */
2622 } /* End of FOR loop */
2623
2624 if (rc)
2625 goto free_and_out;
2626 /* save the interrupt routing information */
2627 if (resources->irqs) {
2628 resources->irqs->interrupt[0] = irqs.interrupt[0];
2629 resources->irqs->interrupt[1] = irqs.interrupt[1];
2630 resources->irqs->interrupt[2] = irqs.interrupt[2];
2631 resources->irqs->interrupt[3] = irqs.interrupt[3];
2632 resources->irqs->valid_INT = irqs.valid_INT;
2633 } else if (!behind_bridge) {
2634 /* We need to hook up the interrupts here */
2635 for (cloop = 0; cloop < 4; cloop++) {
2636 if (irqs.valid_INT & (0x01 << cloop)) {
2637 rc = cpqhp_set_irq(func->bus, func->device,
2638 0x0A + cloop, irqs.interrupt[cloop]);
2639 if (rc)
2640 goto free_and_out;
2641 }
2642 } /* end of for loop */
2643 }
2644 /* Return unused bus resources
2645 * First use the temporary node to store information for
2646 * the board */
2647 if (hold_bus_node && bus_node && temp_resources.bus_head) {
2648 hold_bus_node->length = bus_node->base - hold_bus_node->base;
2649
2650 hold_bus_node->next = func->bus_head;
2651 func->bus_head = hold_bus_node;
2652
2653 temp_byte = temp_resources.bus_head->base - 1;
2654
2655 /* set subordinate bus */
2656 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2657
2658 if (temp_resources.bus_head->length == 0) {
2659 kfree(temp_resources.bus_head);
2660 temp_resources.bus_head = NULL;
2661 } else {
2662 return_resource(&(resources->bus_head), temp_resources.bus_head);
2663 }
2664 }
2665
2666 /* If we have IO space available and there is some left,
2667 * return the unused portion */
2668 if (hold_IO_node && temp_resources.io_head) {
2669 io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
2670 &hold_IO_node, 0x1000);
2671
2672 /* Check if we were able to split something off */
2673 if (io_node) {
2674 hold_IO_node->base = io_node->base + io_node->length;
2675
2676 temp_byte = (hold_IO_node->base) >> 8;
2677 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_BASE, temp_byte);
2678
2679 return_resource(&(resources->io_head), io_node);
2680 }
2681
2682 io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
2683
2684 /* Check if we were able to split something off */
2685 if (io_node) {
2686 /* First use the temporary node to store
2687 * information for the board */
2688 hold_IO_node->length = io_node->base - hold_IO_node->base;
2689
2690 /* If we used any, add it to the board's list */
2691 if (hold_IO_node->length) {
2692 hold_IO_node->next = func->io_head;
2693 func->io_head = hold_IO_node;
2694
2695 temp_byte = (io_node->base - 1) >> 8;
2696 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2697
2698 return_resource(&(resources->io_head), io_node);
2699 } else {
2700 /* it doesn't need any IO */
2701 temp_word = 0x0000;
2702 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_LIMIT, temp_word);
2703
2704 return_resource(&(resources->io_head), io_node);
2705 kfree(hold_IO_node);
2706 }
2707 } else {
2708 /* it used most of the range */
2709 hold_IO_node->next = func->io_head;
2710 func->io_head = hold_IO_node;
2711 }
2712 } else if (hold_IO_node) {
2713 /* it used the whole range */
2714 hold_IO_node->next = func->io_head;
2715 func->io_head = hold_IO_node;
2716 }
2717 /* If we have memory space available and there is some left,
2718 * return the unused portion */
2719 if (hold_mem_node && temp_resources.mem_head) {
2720 mem_node = do_pre_bridge_resource_split(&(temp_resources. mem_head),
2721 &hold_mem_node, 0x100000);
2722
2723 /* Check if we were able to split something off */
2724 if (mem_node) {
2725 hold_mem_node->base = mem_node->base + mem_node->length;
2726
2727 temp_word = (hold_mem_node->base) >> 16;
2728 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2729
2730 return_resource(&(resources->mem_head), mem_node);
2731 }
2732
2733 mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
2734
2735 /* Check if we were able to split something off */
2736 if (mem_node) {
2737 /* First use the temporary node to store
2738 * information for the board */
2739 hold_mem_node->length = mem_node->base - hold_mem_node->base;
2740
2741 if (hold_mem_node->length) {
2742 hold_mem_node->next = func->mem_head;
2743 func->mem_head = hold_mem_node;
2744
2745 /* configure end address */
2746 temp_word = (mem_node->base - 1) >> 16;
2747 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2748
2749 /* Return unused resources to the pool */
2750 return_resource(&(resources->mem_head), mem_node);
2751 } else {
2752 /* it doesn't need any Mem */
2753 temp_word = 0x0000;
2754 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2755
2756 return_resource(&(resources->mem_head), mem_node);
2757 kfree(hold_mem_node);
2758 }
2759 } else {
2760 /* it used most of the range */
2761 hold_mem_node->next = func->mem_head;
2762 func->mem_head = hold_mem_node;
2763 }
2764 } else if (hold_mem_node) {
2765 /* it used the whole range */
2766 hold_mem_node->next = func->mem_head;
2767 func->mem_head = hold_mem_node;
2768 }
2769 /* If we have prefetchable memory space available and there
2770 * is some left at the end, return the unused portion */
2771 if (hold_p_mem_node && temp_resources.p_mem_head) {
2772 p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
2773 &hold_p_mem_node, 0x100000);
2774
2775 /* Check if we were able to split something off */
2776 if (p_mem_node) {
2777 hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
2778
2779 temp_word = (hold_p_mem_node->base) >> 16;
2780 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2781
2782 return_resource(&(resources->p_mem_head), p_mem_node);
2783 }
2784
2785 p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
2786
2787 /* Check if we were able to split something off */
2788 if (p_mem_node) {
2789 /* First use the temporary node to store
2790 * information for the board */
2791 hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
2792
2793 /* If we used any, add it to the board's list */
2794 if (hold_p_mem_node->length) {
2795 hold_p_mem_node->next = func->p_mem_head;
2796 func->p_mem_head = hold_p_mem_node;
2797
2798 temp_word = (p_mem_node->base - 1) >> 16;
2799 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2800
2801 return_resource(&(resources->p_mem_head), p_mem_node);
2802 } else {
2803 /* it doesn't need any PMem */
2804 temp_word = 0x0000;
2805 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2806
2807 return_resource(&(resources->p_mem_head), p_mem_node);
2808 kfree(hold_p_mem_node);
2809 }
2810 } else {
2811 /* it used the most of the range */
2812 hold_p_mem_node->next = func->p_mem_head;
2813 func->p_mem_head = hold_p_mem_node;
2814 }
2815 } else if (hold_p_mem_node) {
2816 /* it used the whole range */
2817 hold_p_mem_node->next = func->p_mem_head;
2818 func->p_mem_head = hold_p_mem_node;
2819 }
2820 /* We should be configuring an IRQ and the bridge's base address
2821 * registers if it needs them. Although we have never seen such
2822 * a device */
2823
2824 /* enable card */
2825 command = 0x0157; /* = PCI_COMMAND_IO |
2826 * PCI_COMMAND_MEMORY |
2827 * PCI_COMMAND_MASTER |
2828 * PCI_COMMAND_INVALIDATE |
2829 * PCI_COMMAND_PARITY |
2830 * PCI_COMMAND_SERR */
2831 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_COMMAND, command);
2832
2833 /* set Bridge Control Register */
2834 command = 0x07; /* = PCI_BRIDGE_CTL_PARITY |
2835 * PCI_BRIDGE_CTL_SERR |
2836 * PCI_BRIDGE_CTL_NO_ISA */
2837 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
2838 } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
2839 /* Standard device */
2840 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2841
2842 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2843 /* Display (video) adapter (not supported) */
2844 return DEVICE_TYPE_NOT_SUPPORTED;
2845 }
2846 /* Figure out IO and memory needs */
2847 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
2848 temp_register = 0xFFFFFFFF;
2849
2850 dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
2851 rc = pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
2852
2853 rc = pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp_register);
2854 dbg("CND: base = 0x%x\n", temp_register);
2855
2856 if (temp_register) { /* If this register is implemented */
2857 if ((temp_register & 0x03L) == 0x01) {
2858 /* Map IO */
2859
2860 /* set base = amount of IO space */
2861 base = temp_register & 0xFFFFFFFC;
2862 base = ~base + 1;
2863
2864 dbg("CND: length = 0x%x\n", base);
2865 io_node = get_io_resource(&(resources->io_head), base);
2866 dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2867 io_node->base, io_node->length, io_node->next);
2868 dbg("func (%p) io_head (%p)\n", func, func->io_head);
2869
2870 /* allocate the resource to the board */
2871 if (io_node) {
2872 base = io_node->base;
2873
2874 io_node->next = func->io_head;
2875 func->io_head = io_node;
2876 } else
2877 return -ENOMEM;
2878 } else if ((temp_register & 0x0BL) == 0x08) {
2879 /* Map prefetchable memory */
2880 base = temp_register & 0xFFFFFFF0;
2881 base = ~base + 1;
2882
2883 dbg("CND: length = 0x%x\n", base);
2884 p_mem_node = get_resource(&(resources->p_mem_head), base);
2885
2886 /* allocate the resource to the board */
2887 if (p_mem_node) {
2888 base = p_mem_node->base;
2889
2890 p_mem_node->next = func->p_mem_head;
2891 func->p_mem_head = p_mem_node;
2892 } else
2893 return -ENOMEM;
2894 } else if ((temp_register & 0x0BL) == 0x00) {
2895 /* Map memory */
2896 base = temp_register & 0xFFFFFFF0;
2897 base = ~base + 1;
2898
2899 dbg("CND: length = 0x%x\n", base);
2900 mem_node = get_resource(&(resources->mem_head), base);
2901
2902 /* allocate the resource to the board */
2903 if (mem_node) {
2904 base = mem_node->base;
2905
2906 mem_node->next = func->mem_head;
2907 func->mem_head = mem_node;
2908 } else
2909 return -ENOMEM;
2910 } else if ((temp_register & 0x0BL) == 0x04) {
2911 /* Map memory */
2912 base = temp_register & 0xFFFFFFF0;
2913 base = ~base + 1;
2914
2915 dbg("CND: length = 0x%x\n", base);
2916 mem_node = get_resource(&(resources->mem_head), base);
2917
2918 /* allocate the resource to the board */
2919 if (mem_node) {
2920 base = mem_node->base;
2921
2922 mem_node->next = func->mem_head;
2923 func->mem_head = mem_node;
2924 } else
2925 return -ENOMEM;
2926 } else if ((temp_register & 0x0BL) == 0x06) {
2927 /* Those bits are reserved, we can't handle this */
2928 return 1;
2929 } else {
2930 /* Requesting space below 1M */
2931 return NOT_ENOUGH_RESOURCES;
2932 }
2933
2934 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2935
2936 /* Check for 64-bit base */
2937 if ((temp_register & 0x07L) == 0x04) {
2938 cloop += 4;
2939
2940 /* Upper 32 bits of address always zero
2941 * on today's systems */
2942 /* FIXME this is probably not true on
2943 * Alpha and ia64??? */
2944 base = 0;
2945 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2946 }
2947 }
2948 } /* End of base register loop */
2949 if (cpqhp_legacy_mode) {
2950 /* Figure out which interrupt pin this function uses */
2951 rc = pci_bus_read_config_byte (pci_bus, devfn,
2952 PCI_INTERRUPT_PIN, &temp_byte);
2953
2954 /* If this function needs an interrupt and we are behind
2955 * a bridge and the pin is tied to something that's
2956 * alread mapped, set this one the same */
2957 if (temp_byte && resources->irqs &&
2958 (resources->irqs->valid_INT &
2959 (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
2960 /* We have to share with something already set up */
2961 IRQ = resources->irqs->interrupt[(temp_byte +
2962 resources->irqs->barber_pole - 1) & 0x03];
2963 } else {
2964 /* Program IRQ based on card type */
2965 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2966
2967 if (class_code == PCI_BASE_CLASS_STORAGE) {
2968 IRQ = cpqhp_disk_irq;
2969 } else {
2970 IRQ = cpqhp_nic_irq;
2971 }
2972 }
2973
2974 /* IRQ Line */
2975 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
2976 }
2977
2978 if (!behind_bridge) {
2979 rc = cpqhp_set_irq(func->bus, func->device, temp_byte + 0x09, IRQ);
2980 if (rc)
2981 return 1;
2982 } else {
2983 /* TBD - this code may also belong in the other clause
2984 * of this If statement */
2985 resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
2986 resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
2987 }
2988
2989 /* Latency Timer */
2990 temp_byte = 0x40;
2991 rc = pci_bus_write_config_byte(pci_bus, devfn,
2992 PCI_LATENCY_TIMER, temp_byte);
2993
2994 /* Cache Line size */
2995 temp_byte = 0x08;
2996 rc = pci_bus_write_config_byte(pci_bus, devfn,
2997 PCI_CACHE_LINE_SIZE, temp_byte);
2998
2999 /* disable ROM base Address */
3000 temp_dword = 0x00L;
3001 rc = pci_bus_write_config_word(pci_bus, devfn,
3002 PCI_ROM_ADDRESS, temp_dword);
3003
3004 /* enable card */
3005 temp_word = 0x0157; /* = PCI_COMMAND_IO |
3006 * PCI_COMMAND_MEMORY |
3007 * PCI_COMMAND_MASTER |
3008 * PCI_COMMAND_INVALIDATE |
3009 * PCI_COMMAND_PARITY |
3010 * PCI_COMMAND_SERR */
3011 rc = pci_bus_write_config_word (pci_bus, devfn,
3012 PCI_COMMAND, temp_word);
3013 } else { /* End of Not-A-Bridge else */
3014 /* It's some strange type of PCI adapter (Cardbus?) */
3015 return DEVICE_TYPE_NOT_SUPPORTED;
3016 }
3017
3018 func->configured = 1;
3019
3020 return 0;
3021free_and_out:
3022 cpqhp_destroy_resource_list (&temp_resources);
3023
3024 return_resource(&(resources-> bus_head), hold_bus_node);
3025 return_resource(&(resources-> io_head), hold_IO_node);
3026 return_resource(&(resources-> mem_head), hold_mem_node);
3027 return_resource(&(resources-> p_mem_head), hold_p_mem_node);
3028 return rc;
3029}
This page took 0.386154 seconds and 5 git commands to generate.