x64, x2apic/intr-remap: Intel vt-d, IOMMU code reorganization
[deliverable/linux.git] / drivers / pci / intel-iommu.c
CommitLineData
ba395927
KA
1/*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
98bcef56 17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
ba395927
KA
21 */
22
23#include <linux/init.h>
24#include <linux/bitmap.h>
5e0d2a6f 25#include <linux/debugfs.h>
ba395927
KA
26#include <linux/slab.h>
27#include <linux/irq.h>
28#include <linux/interrupt.h>
29#include <linux/sysdev.h>
30#include <linux/spinlock.h>
31#include <linux/pci.h>
32#include <linux/dmar.h>
33#include <linux/dma-mapping.h>
34#include <linux/mempool.h>
5e0d2a6f 35#include <linux/timer.h>
ba395927
KA
36#include "iova.h"
37#include "intel-iommu.h"
38#include <asm/proto.h> /* force_iommu in this header in x86-64*/
39#include <asm/cacheflush.h>
395624fc 40#include <asm/gart.h>
ba395927
KA
41#include "pci.h"
42
43#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
44#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
45
46#define IOAPIC_RANGE_START (0xfee00000)
47#define IOAPIC_RANGE_END (0xfeefffff)
48#define IOVA_START_ADDR (0x1000)
49
50#define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
51
a7eb08c2 52#define DMAR_OPERATION_TIMEOUT ((cycles_t) tsc_khz*10*1000) /* 10sec */
ba395927
KA
53
54#define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1)
55
5e0d2a6f 56
57static void flush_unmaps_timeout(unsigned long data);
58
59DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
60
61static struct intel_iommu *g_iommus;
80b20dd8 62
63#define HIGH_WATER_MARK 250
64struct deferred_flush_tables {
65 int next;
66 struct iova *iova[HIGH_WATER_MARK];
67 struct dmar_domain *domain[HIGH_WATER_MARK];
68};
69
70static struct deferred_flush_tables *deferred_flush;
71
5e0d2a6f 72/* bitmap for indexing intel_iommus */
5e0d2a6f 73static int g_num_of_iommus;
74
75static DEFINE_SPINLOCK(async_umap_flush_lock);
76static LIST_HEAD(unmaps_to_do);
77
78static int timer_on;
79static long list_size;
5e0d2a6f 80
ba395927
KA
81static void domain_remove_dev_info(struct dmar_domain *domain);
82
83static int dmar_disabled;
84static int __initdata dmar_map_gfx = 1;
7d3b03ce 85static int dmar_forcedac;
5e0d2a6f 86static int intel_iommu_strict;
ba395927
KA
87
88#define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
89static DEFINE_SPINLOCK(device_domain_lock);
90static LIST_HEAD(device_domain_list);
91
92static int __init intel_iommu_setup(char *str)
93{
94 if (!str)
95 return -EINVAL;
96 while (*str) {
97 if (!strncmp(str, "off", 3)) {
98 dmar_disabled = 1;
99 printk(KERN_INFO"Intel-IOMMU: disabled\n");
100 } else if (!strncmp(str, "igfx_off", 8)) {
101 dmar_map_gfx = 0;
102 printk(KERN_INFO
103 "Intel-IOMMU: disable GFX device mapping\n");
7d3b03ce 104 } else if (!strncmp(str, "forcedac", 8)) {
5e0d2a6f 105 printk(KERN_INFO
7d3b03ce
KA
106 "Intel-IOMMU: Forcing DAC for PCI devices\n");
107 dmar_forcedac = 1;
5e0d2a6f 108 } else if (!strncmp(str, "strict", 6)) {
109 printk(KERN_INFO
110 "Intel-IOMMU: disable batched IOTLB flush\n");
111 intel_iommu_strict = 1;
ba395927
KA
112 }
113
114 str += strcspn(str, ",");
115 while (*str == ',')
116 str++;
117 }
118 return 0;
119}
120__setup("intel_iommu=", intel_iommu_setup);
121
122static struct kmem_cache *iommu_domain_cache;
123static struct kmem_cache *iommu_devinfo_cache;
124static struct kmem_cache *iommu_iova_cache;
125
eb3fa7cb
KA
126static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep)
127{
128 unsigned int flags;
129 void *vaddr;
130
131 /* trying to avoid low memory issues */
132 flags = current->flags & PF_MEMALLOC;
133 current->flags |= PF_MEMALLOC;
134 vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC);
135 current->flags &= (~PF_MEMALLOC | flags);
136 return vaddr;
137}
138
139
ba395927
KA
140static inline void *alloc_pgtable_page(void)
141{
eb3fa7cb
KA
142 unsigned int flags;
143 void *vaddr;
144
145 /* trying to avoid low memory issues */
146 flags = current->flags & PF_MEMALLOC;
147 current->flags |= PF_MEMALLOC;
148 vaddr = (void *)get_zeroed_page(GFP_ATOMIC);
149 current->flags &= (~PF_MEMALLOC | flags);
150 return vaddr;
ba395927
KA
151}
152
153static inline void free_pgtable_page(void *vaddr)
154{
155 free_page((unsigned long)vaddr);
156}
157
158static inline void *alloc_domain_mem(void)
159{
eb3fa7cb 160 return iommu_kmem_cache_alloc(iommu_domain_cache);
ba395927
KA
161}
162
163static inline void free_domain_mem(void *vaddr)
164{
165 kmem_cache_free(iommu_domain_cache, vaddr);
166}
167
168static inline void * alloc_devinfo_mem(void)
169{
eb3fa7cb 170 return iommu_kmem_cache_alloc(iommu_devinfo_cache);
ba395927
KA
171}
172
173static inline void free_devinfo_mem(void *vaddr)
174{
175 kmem_cache_free(iommu_devinfo_cache, vaddr);
176}
177
178struct iova *alloc_iova_mem(void)
179{
eb3fa7cb 180 return iommu_kmem_cache_alloc(iommu_iova_cache);
ba395927
KA
181}
182
183void free_iova_mem(struct iova *iova)
184{
185 kmem_cache_free(iommu_iova_cache, iova);
186}
187
188static inline void __iommu_flush_cache(
189 struct intel_iommu *iommu, void *addr, int size)
190{
191 if (!ecap_coherent(iommu->ecap))
192 clflush_cache_range(addr, size);
193}
194
195/* Gets context entry for a given bus and devfn */
196static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
197 u8 bus, u8 devfn)
198{
199 struct root_entry *root;
200 struct context_entry *context;
201 unsigned long phy_addr;
202 unsigned long flags;
203
204 spin_lock_irqsave(&iommu->lock, flags);
205 root = &iommu->root_entry[bus];
206 context = get_context_addr_from_root(root);
207 if (!context) {
208 context = (struct context_entry *)alloc_pgtable_page();
209 if (!context) {
210 spin_unlock_irqrestore(&iommu->lock, flags);
211 return NULL;
212 }
213 __iommu_flush_cache(iommu, (void *)context, PAGE_SIZE_4K);
214 phy_addr = virt_to_phys((void *)context);
215 set_root_value(root, phy_addr);
216 set_root_present(root);
217 __iommu_flush_cache(iommu, root, sizeof(*root));
218 }
219 spin_unlock_irqrestore(&iommu->lock, flags);
220 return &context[devfn];
221}
222
223static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
224{
225 struct root_entry *root;
226 struct context_entry *context;
227 int ret;
228 unsigned long flags;
229
230 spin_lock_irqsave(&iommu->lock, flags);
231 root = &iommu->root_entry[bus];
232 context = get_context_addr_from_root(root);
233 if (!context) {
234 ret = 0;
235 goto out;
236 }
237 ret = context_present(context[devfn]);
238out:
239 spin_unlock_irqrestore(&iommu->lock, flags);
240 return ret;
241}
242
243static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
244{
245 struct root_entry *root;
246 struct context_entry *context;
247 unsigned long flags;
248
249 spin_lock_irqsave(&iommu->lock, flags);
250 root = &iommu->root_entry[bus];
251 context = get_context_addr_from_root(root);
252 if (context) {
253 context_clear_entry(context[devfn]);
254 __iommu_flush_cache(iommu, &context[devfn], \
255 sizeof(*context));
256 }
257 spin_unlock_irqrestore(&iommu->lock, flags);
258}
259
260static void free_context_table(struct intel_iommu *iommu)
261{
262 struct root_entry *root;
263 int i;
264 unsigned long flags;
265 struct context_entry *context;
266
267 spin_lock_irqsave(&iommu->lock, flags);
268 if (!iommu->root_entry) {
269 goto out;
270 }
271 for (i = 0; i < ROOT_ENTRY_NR; i++) {
272 root = &iommu->root_entry[i];
273 context = get_context_addr_from_root(root);
274 if (context)
275 free_pgtable_page(context);
276 }
277 free_pgtable_page(iommu->root_entry);
278 iommu->root_entry = NULL;
279out:
280 spin_unlock_irqrestore(&iommu->lock, flags);
281}
282
283/* page table handling */
284#define LEVEL_STRIDE (9)
285#define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
286
287static inline int agaw_to_level(int agaw)
288{
289 return agaw + 2;
290}
291
292static inline int agaw_to_width(int agaw)
293{
294 return 30 + agaw * LEVEL_STRIDE;
295
296}
297
298static inline int width_to_agaw(int width)
299{
300 return (width - 30) / LEVEL_STRIDE;
301}
302
303static inline unsigned int level_to_offset_bits(int level)
304{
305 return (12 + (level - 1) * LEVEL_STRIDE);
306}
307
308static inline int address_level_offset(u64 addr, int level)
309{
310 return ((addr >> level_to_offset_bits(level)) & LEVEL_MASK);
311}
312
313static inline u64 level_mask(int level)
314{
315 return ((u64)-1 << level_to_offset_bits(level));
316}
317
318static inline u64 level_size(int level)
319{
320 return ((u64)1 << level_to_offset_bits(level));
321}
322
323static inline u64 align_to_level(u64 addr, int level)
324{
325 return ((addr + level_size(level) - 1) & level_mask(level));
326}
327
328static struct dma_pte * addr_to_dma_pte(struct dmar_domain *domain, u64 addr)
329{
330 int addr_width = agaw_to_width(domain->agaw);
331 struct dma_pte *parent, *pte = NULL;
332 int level = agaw_to_level(domain->agaw);
333 int offset;
334 unsigned long flags;
335
336 BUG_ON(!domain->pgd);
337
338 addr &= (((u64)1) << addr_width) - 1;
339 parent = domain->pgd;
340
341 spin_lock_irqsave(&domain->mapping_lock, flags);
342 while (level > 0) {
343 void *tmp_page;
344
345 offset = address_level_offset(addr, level);
346 pte = &parent[offset];
347 if (level == 1)
348 break;
349
350 if (!dma_pte_present(*pte)) {
351 tmp_page = alloc_pgtable_page();
352
353 if (!tmp_page) {
354 spin_unlock_irqrestore(&domain->mapping_lock,
355 flags);
356 return NULL;
357 }
358 __iommu_flush_cache(domain->iommu, tmp_page,
359 PAGE_SIZE_4K);
360 dma_set_pte_addr(*pte, virt_to_phys(tmp_page));
361 /*
362 * high level table always sets r/w, last level page
363 * table control read/write
364 */
365 dma_set_pte_readable(*pte);
366 dma_set_pte_writable(*pte);
367 __iommu_flush_cache(domain->iommu, pte, sizeof(*pte));
368 }
369 parent = phys_to_virt(dma_pte_addr(*pte));
370 level--;
371 }
372
373 spin_unlock_irqrestore(&domain->mapping_lock, flags);
374 return pte;
375}
376
377/* return address's pte at specific level */
378static struct dma_pte *dma_addr_level_pte(struct dmar_domain *domain, u64 addr,
379 int level)
380{
381 struct dma_pte *parent, *pte = NULL;
382 int total = agaw_to_level(domain->agaw);
383 int offset;
384
385 parent = domain->pgd;
386 while (level <= total) {
387 offset = address_level_offset(addr, total);
388 pte = &parent[offset];
389 if (level == total)
390 return pte;
391
392 if (!dma_pte_present(*pte))
393 break;
394 parent = phys_to_virt(dma_pte_addr(*pte));
395 total--;
396 }
397 return NULL;
398}
399
400/* clear one page's page table */
401static void dma_pte_clear_one(struct dmar_domain *domain, u64 addr)
402{
403 struct dma_pte *pte = NULL;
404
405 /* get last level pte */
406 pte = dma_addr_level_pte(domain, addr, 1);
407
408 if (pte) {
409 dma_clear_pte(*pte);
410 __iommu_flush_cache(domain->iommu, pte, sizeof(*pte));
411 }
412}
413
414/* clear last level pte, a tlb flush should be followed */
415static void dma_pte_clear_range(struct dmar_domain *domain, u64 start, u64 end)
416{
417 int addr_width = agaw_to_width(domain->agaw);
418
419 start &= (((u64)1) << addr_width) - 1;
420 end &= (((u64)1) << addr_width) - 1;
421 /* in case it's partial page */
422 start = PAGE_ALIGN_4K(start);
423 end &= PAGE_MASK_4K;
424
425 /* we don't need lock here, nobody else touches the iova range */
426 while (start < end) {
427 dma_pte_clear_one(domain, start);
428 start += PAGE_SIZE_4K;
429 }
430}
431
432/* free page table pages. last level pte should already be cleared */
433static void dma_pte_free_pagetable(struct dmar_domain *domain,
434 u64 start, u64 end)
435{
436 int addr_width = agaw_to_width(domain->agaw);
437 struct dma_pte *pte;
438 int total = agaw_to_level(domain->agaw);
439 int level;
440 u64 tmp;
441
442 start &= (((u64)1) << addr_width) - 1;
443 end &= (((u64)1) << addr_width) - 1;
444
445 /* we don't need lock here, nobody else touches the iova range */
446 level = 2;
447 while (level <= total) {
448 tmp = align_to_level(start, level);
449 if (tmp >= end || (tmp + level_size(level) > end))
450 return;
451
452 while (tmp < end) {
453 pte = dma_addr_level_pte(domain, tmp, level);
454 if (pte) {
455 free_pgtable_page(
456 phys_to_virt(dma_pte_addr(*pte)));
457 dma_clear_pte(*pte);
458 __iommu_flush_cache(domain->iommu,
459 pte, sizeof(*pte));
460 }
461 tmp += level_size(level);
462 }
463 level++;
464 }
465 /* free pgd */
466 if (start == 0 && end >= ((((u64)1) << addr_width) - 1)) {
467 free_pgtable_page(domain->pgd);
468 domain->pgd = NULL;
469 }
470}
471
472/* iommu handling */
473static int iommu_alloc_root_entry(struct intel_iommu *iommu)
474{
475 struct root_entry *root;
476 unsigned long flags;
477
478 root = (struct root_entry *)alloc_pgtable_page();
479 if (!root)
480 return -ENOMEM;
481
482 __iommu_flush_cache(iommu, root, PAGE_SIZE_4K);
483
484 spin_lock_irqsave(&iommu->lock, flags);
485 iommu->root_entry = root;
486 spin_unlock_irqrestore(&iommu->lock, flags);
487
488 return 0;
489}
490
491#define IOMMU_WAIT_OP(iommu, offset, op, cond, sts) \
492{\
a7eb08c2 493 cycles_t start_time = get_cycles();\
ba395927
KA
494 while (1) {\
495 sts = op (iommu->reg + offset);\
496 if (cond)\
497 break;\
a7eb08c2 498 if (DMAR_OPERATION_TIMEOUT < (get_cycles() - start_time))\
ba395927
KA
499 panic("DMAR hardware is malfunctioning\n");\
500 cpu_relax();\
501 }\
502}
503
504static void iommu_set_root_entry(struct intel_iommu *iommu)
505{
506 void *addr;
507 u32 cmd, sts;
508 unsigned long flag;
509
510 addr = iommu->root_entry;
511
512 spin_lock_irqsave(&iommu->register_lock, flag);
513 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
514
515 cmd = iommu->gcmd | DMA_GCMD_SRTP;
516 writel(cmd, iommu->reg + DMAR_GCMD_REG);
517
518 /* Make sure hardware complete it */
519 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
520 readl, (sts & DMA_GSTS_RTPS), sts);
521
522 spin_unlock_irqrestore(&iommu->register_lock, flag);
523}
524
525static void iommu_flush_write_buffer(struct intel_iommu *iommu)
526{
527 u32 val;
528 unsigned long flag;
529
530 if (!cap_rwbf(iommu->cap))
531 return;
532 val = iommu->gcmd | DMA_GCMD_WBF;
533
534 spin_lock_irqsave(&iommu->register_lock, flag);
535 writel(val, iommu->reg + DMAR_GCMD_REG);
536
537 /* Make sure hardware complete it */
538 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
539 readl, (!(val & DMA_GSTS_WBFS)), val);
540
541 spin_unlock_irqrestore(&iommu->register_lock, flag);
542}
543
544/* return value determine if we need a write buffer flush */
545static int __iommu_flush_context(struct intel_iommu *iommu,
546 u16 did, u16 source_id, u8 function_mask, u64 type,
547 int non_present_entry_flush)
548{
549 u64 val = 0;
550 unsigned long flag;
551
552 /*
553 * In the non-present entry flush case, if hardware doesn't cache
554 * non-present entry we do nothing and if hardware cache non-present
555 * entry, we flush entries of domain 0 (the domain id is used to cache
556 * any non-present entries)
557 */
558 if (non_present_entry_flush) {
559 if (!cap_caching_mode(iommu->cap))
560 return 1;
561 else
562 did = 0;
563 }
564
565 switch (type) {
566 case DMA_CCMD_GLOBAL_INVL:
567 val = DMA_CCMD_GLOBAL_INVL;
568 break;
569 case DMA_CCMD_DOMAIN_INVL:
570 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
571 break;
572 case DMA_CCMD_DEVICE_INVL:
573 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
574 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
575 break;
576 default:
577 BUG();
578 }
579 val |= DMA_CCMD_ICC;
580
581 spin_lock_irqsave(&iommu->register_lock, flag);
582 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
583
584 /* Make sure hardware complete it */
585 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
586 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
587
588 spin_unlock_irqrestore(&iommu->register_lock, flag);
589
590 /* flush context entry will implictly flush write buffer */
591 return 0;
592}
593
594static int inline iommu_flush_context_global(struct intel_iommu *iommu,
595 int non_present_entry_flush)
596{
597 return __iommu_flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL,
598 non_present_entry_flush);
599}
600
601static int inline iommu_flush_context_domain(struct intel_iommu *iommu, u16 did,
602 int non_present_entry_flush)
603{
604 return __iommu_flush_context(iommu, did, 0, 0, DMA_CCMD_DOMAIN_INVL,
605 non_present_entry_flush);
606}
607
608static int inline iommu_flush_context_device(struct intel_iommu *iommu,
609 u16 did, u16 source_id, u8 function_mask, int non_present_entry_flush)
610{
611 return __iommu_flush_context(iommu, did, source_id, function_mask,
612 DMA_CCMD_DEVICE_INVL, non_present_entry_flush);
613}
614
615/* return value determine if we need a write buffer flush */
616static int __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
617 u64 addr, unsigned int size_order, u64 type,
618 int non_present_entry_flush)
619{
620 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
621 u64 val = 0, val_iva = 0;
622 unsigned long flag;
623
624 /*
625 * In the non-present entry flush case, if hardware doesn't cache
626 * non-present entry we do nothing and if hardware cache non-present
627 * entry, we flush entries of domain 0 (the domain id is used to cache
628 * any non-present entries)
629 */
630 if (non_present_entry_flush) {
631 if (!cap_caching_mode(iommu->cap))
632 return 1;
633 else
634 did = 0;
635 }
636
637 switch (type) {
638 case DMA_TLB_GLOBAL_FLUSH:
639 /* global flush doesn't need set IVA_REG */
640 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
641 break;
642 case DMA_TLB_DSI_FLUSH:
643 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
644 break;
645 case DMA_TLB_PSI_FLUSH:
646 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
647 /* Note: always flush non-leaf currently */
648 val_iva = size_order | addr;
649 break;
650 default:
651 BUG();
652 }
653 /* Note: set drain read/write */
654#if 0
655 /*
656 * This is probably to be super secure.. Looks like we can
657 * ignore it without any impact.
658 */
659 if (cap_read_drain(iommu->cap))
660 val |= DMA_TLB_READ_DRAIN;
661#endif
662 if (cap_write_drain(iommu->cap))
663 val |= DMA_TLB_WRITE_DRAIN;
664
665 spin_lock_irqsave(&iommu->register_lock, flag);
666 /* Note: Only uses first TLB reg currently */
667 if (val_iva)
668 dmar_writeq(iommu->reg + tlb_offset, val_iva);
669 dmar_writeq(iommu->reg + tlb_offset + 8, val);
670
671 /* Make sure hardware complete it */
672 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
673 dmar_readq, (!(val & DMA_TLB_IVT)), val);
674
675 spin_unlock_irqrestore(&iommu->register_lock, flag);
676
677 /* check IOTLB invalidation granularity */
678 if (DMA_TLB_IAIG(val) == 0)
679 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
680 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
681 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
682 DMA_TLB_IIRG(type), DMA_TLB_IAIG(val));
683 /* flush context entry will implictly flush write buffer */
684 return 0;
685}
686
687static int inline iommu_flush_iotlb_global(struct intel_iommu *iommu,
688 int non_present_entry_flush)
689{
690 return __iommu_flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH,
691 non_present_entry_flush);
692}
693
694static int inline iommu_flush_iotlb_dsi(struct intel_iommu *iommu, u16 did,
695 int non_present_entry_flush)
696{
697 return __iommu_flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH,
698 non_present_entry_flush);
699}
700
ba395927
KA
701static int iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
702 u64 addr, unsigned int pages, int non_present_entry_flush)
703{
f76aec76 704 unsigned int mask;
ba395927
KA
705
706 BUG_ON(addr & (~PAGE_MASK_4K));
707 BUG_ON(pages == 0);
708
709 /* Fallback to domain selective flush if no PSI support */
710 if (!cap_pgsel_inv(iommu->cap))
711 return iommu_flush_iotlb_dsi(iommu, did,
712 non_present_entry_flush);
713
714 /*
715 * PSI requires page size to be 2 ^ x, and the base address is naturally
716 * aligned to the size
717 */
f76aec76 718 mask = ilog2(__roundup_pow_of_two(pages));
ba395927 719 /* Fallback to domain selective flush if size is too big */
f76aec76 720 if (mask > cap_max_amask_val(iommu->cap))
ba395927
KA
721 return iommu_flush_iotlb_dsi(iommu, did,
722 non_present_entry_flush);
723
f76aec76 724 return __iommu_flush_iotlb(iommu, did, addr, mask,
ba395927
KA
725 DMA_TLB_PSI_FLUSH, non_present_entry_flush);
726}
727
f8bab735 728static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
729{
730 u32 pmen;
731 unsigned long flags;
732
733 spin_lock_irqsave(&iommu->register_lock, flags);
734 pmen = readl(iommu->reg + DMAR_PMEN_REG);
735 pmen &= ~DMA_PMEN_EPM;
736 writel(pmen, iommu->reg + DMAR_PMEN_REG);
737
738 /* wait for the protected region status bit to clear */
739 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
740 readl, !(pmen & DMA_PMEN_PRS), pmen);
741
742 spin_unlock_irqrestore(&iommu->register_lock, flags);
743}
744
ba395927
KA
745static int iommu_enable_translation(struct intel_iommu *iommu)
746{
747 u32 sts;
748 unsigned long flags;
749
750 spin_lock_irqsave(&iommu->register_lock, flags);
751 writel(iommu->gcmd|DMA_GCMD_TE, iommu->reg + DMAR_GCMD_REG);
752
753 /* Make sure hardware complete it */
754 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
755 readl, (sts & DMA_GSTS_TES), sts);
756
757 iommu->gcmd |= DMA_GCMD_TE;
758 spin_unlock_irqrestore(&iommu->register_lock, flags);
759 return 0;
760}
761
762static int iommu_disable_translation(struct intel_iommu *iommu)
763{
764 u32 sts;
765 unsigned long flag;
766
767 spin_lock_irqsave(&iommu->register_lock, flag);
768 iommu->gcmd &= ~DMA_GCMD_TE;
769 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
770
771 /* Make sure hardware complete it */
772 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
773 readl, (!(sts & DMA_GSTS_TES)), sts);
774
775 spin_unlock_irqrestore(&iommu->register_lock, flag);
776 return 0;
777}
778
3460a6d9
KA
779/* iommu interrupt handling. Most stuff are MSI-like. */
780
d94afc6c 781static const char *fault_reason_strings[] =
3460a6d9
KA
782{
783 "Software",
784 "Present bit in root entry is clear",
785 "Present bit in context entry is clear",
786 "Invalid context entry",
787 "Access beyond MGAW",
788 "PTE Write access is not set",
789 "PTE Read access is not set",
790 "Next page table ptr is invalid",
791 "Root table address invalid",
792 "Context table ptr is invalid",
793 "non-zero reserved fields in RTP",
794 "non-zero reserved fields in CTP",
795 "non-zero reserved fields in PTE",
3460a6d9 796};
f8bab735 797#define MAX_FAULT_REASON_IDX (ARRAY_SIZE(fault_reason_strings) - 1)
3460a6d9 798
d94afc6c 799const char *dmar_get_fault_reason(u8 fault_reason)
3460a6d9 800{
d94afc6c 801 if (fault_reason > MAX_FAULT_REASON_IDX)
802 return "Unknown";
3460a6d9
KA
803 else
804 return fault_reason_strings[fault_reason];
805}
806
807void dmar_msi_unmask(unsigned int irq)
808{
809 struct intel_iommu *iommu = get_irq_data(irq);
810 unsigned long flag;
811
812 /* unmask it */
813 spin_lock_irqsave(&iommu->register_lock, flag);
814 writel(0, iommu->reg + DMAR_FECTL_REG);
815 /* Read a reg to force flush the post write */
816 readl(iommu->reg + DMAR_FECTL_REG);
817 spin_unlock_irqrestore(&iommu->register_lock, flag);
818}
819
820void dmar_msi_mask(unsigned int irq)
821{
822 unsigned long flag;
823 struct intel_iommu *iommu = get_irq_data(irq);
824
825 /* mask it */
826 spin_lock_irqsave(&iommu->register_lock, flag);
827 writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
828 /* Read a reg to force flush the post write */
829 readl(iommu->reg + DMAR_FECTL_REG);
830 spin_unlock_irqrestore(&iommu->register_lock, flag);
831}
832
833void dmar_msi_write(int irq, struct msi_msg *msg)
834{
835 struct intel_iommu *iommu = get_irq_data(irq);
836 unsigned long flag;
837
838 spin_lock_irqsave(&iommu->register_lock, flag);
839 writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
840 writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
841 writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
842 spin_unlock_irqrestore(&iommu->register_lock, flag);
843}
844
845void dmar_msi_read(int irq, struct msi_msg *msg)
846{
847 struct intel_iommu *iommu = get_irq_data(irq);
848 unsigned long flag;
849
850 spin_lock_irqsave(&iommu->register_lock, flag);
851 msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
852 msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
853 msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
854 spin_unlock_irqrestore(&iommu->register_lock, flag);
855}
856
857static int iommu_page_fault_do_one(struct intel_iommu *iommu, int type,
858 u8 fault_reason, u16 source_id, u64 addr)
859{
d94afc6c 860 const char *reason;
3460a6d9
KA
861
862 reason = dmar_get_fault_reason(fault_reason);
863
864 printk(KERN_ERR
865 "DMAR:[%s] Request device [%02x:%02x.%d] "
866 "fault addr %llx \n"
867 "DMAR:[fault reason %02d] %s\n",
868 (type ? "DMA Read" : "DMA Write"),
869 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
870 PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
871 return 0;
872}
873
874#define PRIMARY_FAULT_REG_LEN (16)
875static irqreturn_t iommu_page_fault(int irq, void *dev_id)
876{
877 struct intel_iommu *iommu = dev_id;
878 int reg, fault_index;
879 u32 fault_status;
880 unsigned long flag;
881
882 spin_lock_irqsave(&iommu->register_lock, flag);
883 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
884
885 /* TBD: ignore advanced fault log currently */
886 if (!(fault_status & DMA_FSTS_PPF))
887 goto clear_overflow;
888
889 fault_index = dma_fsts_fault_record_index(fault_status);
890 reg = cap_fault_reg_offset(iommu->cap);
891 while (1) {
892 u8 fault_reason;
893 u16 source_id;
894 u64 guest_addr;
895 int type;
896 u32 data;
897
898 /* highest 32 bits */
899 data = readl(iommu->reg + reg +
900 fault_index * PRIMARY_FAULT_REG_LEN + 12);
901 if (!(data & DMA_FRCD_F))
902 break;
903
904 fault_reason = dma_frcd_fault_reason(data);
905 type = dma_frcd_type(data);
906
907 data = readl(iommu->reg + reg +
908 fault_index * PRIMARY_FAULT_REG_LEN + 8);
909 source_id = dma_frcd_source_id(data);
910
911 guest_addr = dmar_readq(iommu->reg + reg +
912 fault_index * PRIMARY_FAULT_REG_LEN);
913 guest_addr = dma_frcd_page_addr(guest_addr);
914 /* clear the fault */
915 writel(DMA_FRCD_F, iommu->reg + reg +
916 fault_index * PRIMARY_FAULT_REG_LEN + 12);
917
918 spin_unlock_irqrestore(&iommu->register_lock, flag);
919
920 iommu_page_fault_do_one(iommu, type, fault_reason,
921 source_id, guest_addr);
922
923 fault_index++;
924 if (fault_index > cap_num_fault_regs(iommu->cap))
925 fault_index = 0;
926 spin_lock_irqsave(&iommu->register_lock, flag);
927 }
928clear_overflow:
929 /* clear primary fault overflow */
930 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
931 if (fault_status & DMA_FSTS_PFO)
932 writel(DMA_FSTS_PFO, iommu->reg + DMAR_FSTS_REG);
933
934 spin_unlock_irqrestore(&iommu->register_lock, flag);
935 return IRQ_HANDLED;
936}
937
938int dmar_set_interrupt(struct intel_iommu *iommu)
939{
940 int irq, ret;
941
942 irq = create_irq();
943 if (!irq) {
944 printk(KERN_ERR "IOMMU: no free vectors\n");
945 return -EINVAL;
946 }
947
948 set_irq_data(irq, iommu);
949 iommu->irq = irq;
950
951 ret = arch_setup_dmar_msi(irq);
952 if (ret) {
953 set_irq_data(irq, NULL);
954 iommu->irq = 0;
955 destroy_irq(irq);
956 return 0;
957 }
958
959 /* Force fault register is cleared */
960 iommu_page_fault(irq, iommu);
961
962 ret = request_irq(irq, iommu_page_fault, 0, iommu->name, iommu);
963 if (ret)
964 printk(KERN_ERR "IOMMU: can't request irq\n");
965 return ret;
966}
967
ba395927
KA
968static int iommu_init_domains(struct intel_iommu *iommu)
969{
970 unsigned long ndomains;
971 unsigned long nlongs;
972
973 ndomains = cap_ndoms(iommu->cap);
974 pr_debug("Number of Domains supportd <%ld>\n", ndomains);
975 nlongs = BITS_TO_LONGS(ndomains);
976
977 /* TBD: there might be 64K domains,
978 * consider other allocation for future chip
979 */
980 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
981 if (!iommu->domain_ids) {
982 printk(KERN_ERR "Allocating domain id array failed\n");
983 return -ENOMEM;
984 }
985 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
986 GFP_KERNEL);
987 if (!iommu->domains) {
988 printk(KERN_ERR "Allocating domain array failed\n");
989 kfree(iommu->domain_ids);
990 return -ENOMEM;
991 }
992
e61d98d8
SS
993 spin_lock_init(&iommu->lock);
994
ba395927
KA
995 /*
996 * if Caching mode is set, then invalid translations are tagged
997 * with domainid 0. Hence we need to pre-allocate it.
998 */
999 if (cap_caching_mode(iommu->cap))
1000 set_bit(0, iommu->domain_ids);
1001 return 0;
1002}
ba395927 1003
ba395927
KA
1004
1005static void domain_exit(struct dmar_domain *domain);
e61d98d8
SS
1006
1007void free_dmar_iommu(struct intel_iommu *iommu)
ba395927
KA
1008{
1009 struct dmar_domain *domain;
1010 int i;
1011
ba395927
KA
1012 i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap));
1013 for (; i < cap_ndoms(iommu->cap); ) {
1014 domain = iommu->domains[i];
1015 clear_bit(i, iommu->domain_ids);
1016 domain_exit(domain);
1017 i = find_next_bit(iommu->domain_ids,
1018 cap_ndoms(iommu->cap), i+1);
1019 }
1020
1021 if (iommu->gcmd & DMA_GCMD_TE)
1022 iommu_disable_translation(iommu);
1023
1024 if (iommu->irq) {
1025 set_irq_data(iommu->irq, NULL);
1026 /* This will mask the irq */
1027 free_irq(iommu->irq, iommu);
1028 destroy_irq(iommu->irq);
1029 }
1030
1031 kfree(iommu->domains);
1032 kfree(iommu->domain_ids);
1033
1034 /* free context mapping */
1035 free_context_table(iommu);
ba395927
KA
1036}
1037
1038static struct dmar_domain * iommu_alloc_domain(struct intel_iommu *iommu)
1039{
1040 unsigned long num;
1041 unsigned long ndomains;
1042 struct dmar_domain *domain;
1043 unsigned long flags;
1044
1045 domain = alloc_domain_mem();
1046 if (!domain)
1047 return NULL;
1048
1049 ndomains = cap_ndoms(iommu->cap);
1050
1051 spin_lock_irqsave(&iommu->lock, flags);
1052 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1053 if (num >= ndomains) {
1054 spin_unlock_irqrestore(&iommu->lock, flags);
1055 free_domain_mem(domain);
1056 printk(KERN_ERR "IOMMU: no free domain ids\n");
1057 return NULL;
1058 }
1059
1060 set_bit(num, iommu->domain_ids);
1061 domain->id = num;
1062 domain->iommu = iommu;
1063 iommu->domains[num] = domain;
1064 spin_unlock_irqrestore(&iommu->lock, flags);
1065
1066 return domain;
1067}
1068
1069static void iommu_free_domain(struct dmar_domain *domain)
1070{
1071 unsigned long flags;
1072
1073 spin_lock_irqsave(&domain->iommu->lock, flags);
1074 clear_bit(domain->id, domain->iommu->domain_ids);
1075 spin_unlock_irqrestore(&domain->iommu->lock, flags);
1076}
1077
1078static struct iova_domain reserved_iova_list;
8a443df4
MG
1079static struct lock_class_key reserved_alloc_key;
1080static struct lock_class_key reserved_rbtree_key;
ba395927
KA
1081
1082static void dmar_init_reserved_ranges(void)
1083{
1084 struct pci_dev *pdev = NULL;
1085 struct iova *iova;
1086 int i;
1087 u64 addr, size;
1088
f661197e 1089 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
ba395927 1090
8a443df4
MG
1091 lockdep_set_class(&reserved_iova_list.iova_alloc_lock,
1092 &reserved_alloc_key);
1093 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1094 &reserved_rbtree_key);
1095
ba395927
KA
1096 /* IOAPIC ranges shouldn't be accessed by DMA */
1097 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1098 IOVA_PFN(IOAPIC_RANGE_END));
1099 if (!iova)
1100 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1101
1102 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1103 for_each_pci_dev(pdev) {
1104 struct resource *r;
1105
1106 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1107 r = &pdev->resource[i];
1108 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1109 continue;
1110 addr = r->start;
1111 addr &= PAGE_MASK_4K;
1112 size = r->end - addr;
1113 size = PAGE_ALIGN_4K(size);
1114 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(addr),
1115 IOVA_PFN(size + addr) - 1);
1116 if (!iova)
1117 printk(KERN_ERR "Reserve iova failed\n");
1118 }
1119 }
1120
1121}
1122
1123static void domain_reserve_special_ranges(struct dmar_domain *domain)
1124{
1125 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1126}
1127
1128static inline int guestwidth_to_adjustwidth(int gaw)
1129{
1130 int agaw;
1131 int r = (gaw - 12) % 9;
1132
1133 if (r == 0)
1134 agaw = gaw;
1135 else
1136 agaw = gaw + 9 - r;
1137 if (agaw > 64)
1138 agaw = 64;
1139 return agaw;
1140}
1141
1142static int domain_init(struct dmar_domain *domain, int guest_width)
1143{
1144 struct intel_iommu *iommu;
1145 int adjust_width, agaw;
1146 unsigned long sagaw;
1147
f661197e 1148 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
ba395927
KA
1149 spin_lock_init(&domain->mapping_lock);
1150
1151 domain_reserve_special_ranges(domain);
1152
1153 /* calculate AGAW */
1154 iommu = domain->iommu;
1155 if (guest_width > cap_mgaw(iommu->cap))
1156 guest_width = cap_mgaw(iommu->cap);
1157 domain->gaw = guest_width;
1158 adjust_width = guestwidth_to_adjustwidth(guest_width);
1159 agaw = width_to_agaw(adjust_width);
1160 sagaw = cap_sagaw(iommu->cap);
1161 if (!test_bit(agaw, &sagaw)) {
1162 /* hardware doesn't support it, choose a bigger one */
1163 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1164 agaw = find_next_bit(&sagaw, 5, agaw);
1165 if (agaw >= 5)
1166 return -ENODEV;
1167 }
1168 domain->agaw = agaw;
1169 INIT_LIST_HEAD(&domain->devices);
1170
1171 /* always allocate the top pgd */
1172 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
1173 if (!domain->pgd)
1174 return -ENOMEM;
1175 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE_4K);
1176 return 0;
1177}
1178
1179static void domain_exit(struct dmar_domain *domain)
1180{
1181 u64 end;
1182
1183 /* Domain 0 is reserved, so dont process it */
1184 if (!domain)
1185 return;
1186
1187 domain_remove_dev_info(domain);
1188 /* destroy iovas */
1189 put_iova_domain(&domain->iovad);
1190 end = DOMAIN_MAX_ADDR(domain->gaw);
1191 end = end & (~PAGE_MASK_4K);
1192
1193 /* clear ptes */
1194 dma_pte_clear_range(domain, 0, end);
1195
1196 /* free page tables */
1197 dma_pte_free_pagetable(domain, 0, end);
1198
1199 iommu_free_domain(domain);
1200 free_domain_mem(domain);
1201}
1202
1203static int domain_context_mapping_one(struct dmar_domain *domain,
1204 u8 bus, u8 devfn)
1205{
1206 struct context_entry *context;
1207 struct intel_iommu *iommu = domain->iommu;
1208 unsigned long flags;
1209
1210 pr_debug("Set context mapping for %02x:%02x.%d\n",
1211 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1212 BUG_ON(!domain->pgd);
1213 context = device_to_context_entry(iommu, bus, devfn);
1214 if (!context)
1215 return -ENOMEM;
1216 spin_lock_irqsave(&iommu->lock, flags);
1217 if (context_present(*context)) {
1218 spin_unlock_irqrestore(&iommu->lock, flags);
1219 return 0;
1220 }
1221
1222 context_set_domain_id(*context, domain->id);
1223 context_set_address_width(*context, domain->agaw);
1224 context_set_address_root(*context, virt_to_phys(domain->pgd));
1225 context_set_translation_type(*context, CONTEXT_TT_MULTI_LEVEL);
1226 context_set_fault_enable(*context);
1227 context_set_present(*context);
1228 __iommu_flush_cache(iommu, context, sizeof(*context));
1229
1230 /* it's a non-present to present mapping */
1231 if (iommu_flush_context_device(iommu, domain->id,
1232 (((u16)bus) << 8) | devfn, DMA_CCMD_MASK_NOBIT, 1))
1233 iommu_flush_write_buffer(iommu);
1234 else
1235 iommu_flush_iotlb_dsi(iommu, 0, 0);
1236 spin_unlock_irqrestore(&iommu->lock, flags);
1237 return 0;
1238}
1239
1240static int
1241domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev)
1242{
1243 int ret;
1244 struct pci_dev *tmp, *parent;
1245
1246 ret = domain_context_mapping_one(domain, pdev->bus->number,
1247 pdev->devfn);
1248 if (ret)
1249 return ret;
1250
1251 /* dependent device mapping */
1252 tmp = pci_find_upstream_pcie_bridge(pdev);
1253 if (!tmp)
1254 return 0;
1255 /* Secondary interface's bus number and devfn 0 */
1256 parent = pdev->bus->self;
1257 while (parent != tmp) {
1258 ret = domain_context_mapping_one(domain, parent->bus->number,
1259 parent->devfn);
1260 if (ret)
1261 return ret;
1262 parent = parent->bus->self;
1263 }
1264 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
1265 return domain_context_mapping_one(domain,
1266 tmp->subordinate->number, 0);
1267 else /* this is a legacy PCI bridge */
1268 return domain_context_mapping_one(domain,
1269 tmp->bus->number, tmp->devfn);
1270}
1271
1272static int domain_context_mapped(struct dmar_domain *domain,
1273 struct pci_dev *pdev)
1274{
1275 int ret;
1276 struct pci_dev *tmp, *parent;
1277
1278 ret = device_context_mapped(domain->iommu,
1279 pdev->bus->number, pdev->devfn);
1280 if (!ret)
1281 return ret;
1282 /* dependent device mapping */
1283 tmp = pci_find_upstream_pcie_bridge(pdev);
1284 if (!tmp)
1285 return ret;
1286 /* Secondary interface's bus number and devfn 0 */
1287 parent = pdev->bus->self;
1288 while (parent != tmp) {
1289 ret = device_context_mapped(domain->iommu, parent->bus->number,
1290 parent->devfn);
1291 if (!ret)
1292 return ret;
1293 parent = parent->bus->self;
1294 }
1295 if (tmp->is_pcie)
1296 return device_context_mapped(domain->iommu,
1297 tmp->subordinate->number, 0);
1298 else
1299 return device_context_mapped(domain->iommu,
1300 tmp->bus->number, tmp->devfn);
1301}
1302
1303static int
1304domain_page_mapping(struct dmar_domain *domain, dma_addr_t iova,
1305 u64 hpa, size_t size, int prot)
1306{
1307 u64 start_pfn, end_pfn;
1308 struct dma_pte *pte;
1309 int index;
1310
1311 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1312 return -EINVAL;
1313 iova &= PAGE_MASK_4K;
1314 start_pfn = ((u64)hpa) >> PAGE_SHIFT_4K;
1315 end_pfn = (PAGE_ALIGN_4K(((u64)hpa) + size)) >> PAGE_SHIFT_4K;
1316 index = 0;
1317 while (start_pfn < end_pfn) {
1318 pte = addr_to_dma_pte(domain, iova + PAGE_SIZE_4K * index);
1319 if (!pte)
1320 return -ENOMEM;
1321 /* We don't need lock here, nobody else
1322 * touches the iova range
1323 */
1324 BUG_ON(dma_pte_addr(*pte));
1325 dma_set_pte_addr(*pte, start_pfn << PAGE_SHIFT_4K);
1326 dma_set_pte_prot(*pte, prot);
1327 __iommu_flush_cache(domain->iommu, pte, sizeof(*pte));
1328 start_pfn++;
1329 index++;
1330 }
1331 return 0;
1332}
1333
1334static void detach_domain_for_dev(struct dmar_domain *domain, u8 bus, u8 devfn)
1335{
1336 clear_context_table(domain->iommu, bus, devfn);
1337 iommu_flush_context_global(domain->iommu, 0);
1338 iommu_flush_iotlb_global(domain->iommu, 0);
1339}
1340
1341static void domain_remove_dev_info(struct dmar_domain *domain)
1342{
1343 struct device_domain_info *info;
1344 unsigned long flags;
1345
1346 spin_lock_irqsave(&device_domain_lock, flags);
1347 while (!list_empty(&domain->devices)) {
1348 info = list_entry(domain->devices.next,
1349 struct device_domain_info, link);
1350 list_del(&info->link);
1351 list_del(&info->global);
1352 if (info->dev)
358dd8ac 1353 info->dev->dev.archdata.iommu = NULL;
ba395927
KA
1354 spin_unlock_irqrestore(&device_domain_lock, flags);
1355
1356 detach_domain_for_dev(info->domain, info->bus, info->devfn);
1357 free_devinfo_mem(info);
1358
1359 spin_lock_irqsave(&device_domain_lock, flags);
1360 }
1361 spin_unlock_irqrestore(&device_domain_lock, flags);
1362}
1363
1364/*
1365 * find_domain
358dd8ac 1366 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
ba395927
KA
1367 */
1368struct dmar_domain *
1369find_domain(struct pci_dev *pdev)
1370{
1371 struct device_domain_info *info;
1372
1373 /* No lock here, assumes no domain exit in normal case */
358dd8ac 1374 info = pdev->dev.archdata.iommu;
ba395927
KA
1375 if (info)
1376 return info->domain;
1377 return NULL;
1378}
1379
ba395927
KA
1380/* domain is initialized */
1381static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1382{
1383 struct dmar_domain *domain, *found = NULL;
1384 struct intel_iommu *iommu;
1385 struct dmar_drhd_unit *drhd;
1386 struct device_domain_info *info, *tmp;
1387 struct pci_dev *dev_tmp;
1388 unsigned long flags;
1389 int bus = 0, devfn = 0;
1390
1391 domain = find_domain(pdev);
1392 if (domain)
1393 return domain;
1394
1395 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1396 if (dev_tmp) {
1397 if (dev_tmp->is_pcie) {
1398 bus = dev_tmp->subordinate->number;
1399 devfn = 0;
1400 } else {
1401 bus = dev_tmp->bus->number;
1402 devfn = dev_tmp->devfn;
1403 }
1404 spin_lock_irqsave(&device_domain_lock, flags);
1405 list_for_each_entry(info, &device_domain_list, global) {
1406 if (info->bus == bus && info->devfn == devfn) {
1407 found = info->domain;
1408 break;
1409 }
1410 }
1411 spin_unlock_irqrestore(&device_domain_lock, flags);
1412 /* pcie-pci bridge already has a domain, uses it */
1413 if (found) {
1414 domain = found;
1415 goto found_domain;
1416 }
1417 }
1418
1419 /* Allocate new domain for the device */
1420 drhd = dmar_find_matched_drhd_unit(pdev);
1421 if (!drhd) {
1422 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1423 pci_name(pdev));
1424 return NULL;
1425 }
1426 iommu = drhd->iommu;
1427
1428 domain = iommu_alloc_domain(iommu);
1429 if (!domain)
1430 goto error;
1431
1432 if (domain_init(domain, gaw)) {
1433 domain_exit(domain);
1434 goto error;
1435 }
1436
1437 /* register pcie-to-pci device */
1438 if (dev_tmp) {
1439 info = alloc_devinfo_mem();
1440 if (!info) {
1441 domain_exit(domain);
1442 goto error;
1443 }
1444 info->bus = bus;
1445 info->devfn = devfn;
1446 info->dev = NULL;
1447 info->domain = domain;
1448 /* This domain is shared by devices under p2p bridge */
1449 domain->flags |= DOMAIN_FLAG_MULTIPLE_DEVICES;
1450
1451 /* pcie-to-pci bridge already has a domain, uses it */
1452 found = NULL;
1453 spin_lock_irqsave(&device_domain_lock, flags);
1454 list_for_each_entry(tmp, &device_domain_list, global) {
1455 if (tmp->bus == bus && tmp->devfn == devfn) {
1456 found = tmp->domain;
1457 break;
1458 }
1459 }
1460 if (found) {
1461 free_devinfo_mem(info);
1462 domain_exit(domain);
1463 domain = found;
1464 } else {
1465 list_add(&info->link, &domain->devices);
1466 list_add(&info->global, &device_domain_list);
1467 }
1468 spin_unlock_irqrestore(&device_domain_lock, flags);
1469 }
1470
1471found_domain:
1472 info = alloc_devinfo_mem();
1473 if (!info)
1474 goto error;
1475 info->bus = pdev->bus->number;
1476 info->devfn = pdev->devfn;
1477 info->dev = pdev;
1478 info->domain = domain;
1479 spin_lock_irqsave(&device_domain_lock, flags);
1480 /* somebody is fast */
1481 found = find_domain(pdev);
1482 if (found != NULL) {
1483 spin_unlock_irqrestore(&device_domain_lock, flags);
1484 if (found != domain) {
1485 domain_exit(domain);
1486 domain = found;
1487 }
1488 free_devinfo_mem(info);
1489 return domain;
1490 }
1491 list_add(&info->link, &domain->devices);
1492 list_add(&info->global, &device_domain_list);
358dd8ac 1493 pdev->dev.archdata.iommu = info;
ba395927
KA
1494 spin_unlock_irqrestore(&device_domain_lock, flags);
1495 return domain;
1496error:
1497 /* recheck it here, maybe others set it */
1498 return find_domain(pdev);
1499}
1500
1501static int iommu_prepare_identity_map(struct pci_dev *pdev, u64 start, u64 end)
1502{
1503 struct dmar_domain *domain;
1504 unsigned long size;
1505 u64 base;
1506 int ret;
1507
1508 printk(KERN_INFO
1509 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1510 pci_name(pdev), start, end);
1511 /* page table init */
1512 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1513 if (!domain)
1514 return -ENOMEM;
1515
1516 /* The address might not be aligned */
1517 base = start & PAGE_MASK_4K;
1518 size = end - base;
1519 size = PAGE_ALIGN_4K(size);
1520 if (!reserve_iova(&domain->iovad, IOVA_PFN(base),
1521 IOVA_PFN(base + size) - 1)) {
1522 printk(KERN_ERR "IOMMU: reserve iova failed\n");
1523 ret = -ENOMEM;
1524 goto error;
1525 }
1526
1527 pr_debug("Mapping reserved region %lx@%llx for %s\n",
1528 size, base, pci_name(pdev));
1529 /*
1530 * RMRR range might have overlap with physical memory range,
1531 * clear it first
1532 */
1533 dma_pte_clear_range(domain, base, base + size);
1534
1535 ret = domain_page_mapping(domain, base, base, size,
1536 DMA_PTE_READ|DMA_PTE_WRITE);
1537 if (ret)
1538 goto error;
1539
1540 /* context entry init */
1541 ret = domain_context_mapping(domain, pdev);
1542 if (!ret)
1543 return 0;
1544error:
1545 domain_exit(domain);
1546 return ret;
1547
1548}
1549
1550static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
1551 struct pci_dev *pdev)
1552{
358dd8ac 1553 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
ba395927
KA
1554 return 0;
1555 return iommu_prepare_identity_map(pdev, rmrr->base_address,
1556 rmrr->end_address + 1);
1557}
1558
e820482c 1559#ifdef CONFIG_DMAR_GFX_WA
d52d53b8
YL
1560struct iommu_prepare_data {
1561 struct pci_dev *pdev;
1562 int ret;
1563};
1564
1565static int __init iommu_prepare_work_fn(unsigned long start_pfn,
1566 unsigned long end_pfn, void *datax)
1567{
1568 struct iommu_prepare_data *data;
1569
1570 data = (struct iommu_prepare_data *)datax;
1571
1572 data->ret = iommu_prepare_identity_map(data->pdev,
1573 start_pfn<<PAGE_SHIFT, end_pfn<<PAGE_SHIFT);
1574 return data->ret;
1575
1576}
1577
1578static int __init iommu_prepare_with_active_regions(struct pci_dev *pdev)
1579{
1580 int nid;
1581 struct iommu_prepare_data data;
1582
1583 data.pdev = pdev;
1584 data.ret = 0;
1585
1586 for_each_online_node(nid) {
1587 work_with_active_regions(nid, iommu_prepare_work_fn, &data);
1588 if (data.ret)
1589 return data.ret;
1590 }
1591 return data.ret;
1592}
1593
e820482c
KA
1594static void __init iommu_prepare_gfx_mapping(void)
1595{
1596 struct pci_dev *pdev = NULL;
e820482c
KA
1597 int ret;
1598
1599 for_each_pci_dev(pdev) {
358dd8ac 1600 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO ||
e820482c
KA
1601 !IS_GFX_DEVICE(pdev))
1602 continue;
1603 printk(KERN_INFO "IOMMU: gfx device %s 1-1 mapping\n",
1604 pci_name(pdev));
d52d53b8
YL
1605 ret = iommu_prepare_with_active_regions(pdev);
1606 if (ret)
1607 printk(KERN_ERR "IOMMU: mapping reserved region failed\n");
e820482c
KA
1608 }
1609}
1610#endif
1611
49a0429e
KA
1612#ifdef CONFIG_DMAR_FLOPPY_WA
1613static inline void iommu_prepare_isa(void)
1614{
1615 struct pci_dev *pdev;
1616 int ret;
1617
1618 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
1619 if (!pdev)
1620 return;
1621
1622 printk(KERN_INFO "IOMMU: Prepare 0-16M unity mapping for LPC\n");
1623 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
1624
1625 if (ret)
1626 printk("IOMMU: Failed to create 0-64M identity map, "
1627 "floppy might not work\n");
1628
1629}
1630#else
1631static inline void iommu_prepare_isa(void)
1632{
1633 return;
1634}
1635#endif /* !CONFIG_DMAR_FLPY_WA */
1636
ba395927
KA
1637int __init init_dmars(void)
1638{
1639 struct dmar_drhd_unit *drhd;
1640 struct dmar_rmrr_unit *rmrr;
1641 struct pci_dev *pdev;
1642 struct intel_iommu *iommu;
80b20dd8 1643 int i, ret, unit = 0;
ba395927
KA
1644
1645 /*
1646 * for each drhd
1647 * allocate root
1648 * initialize and program root entry to not present
1649 * endfor
1650 */
1651 for_each_drhd_unit(drhd) {
1652 if (drhd->ignored)
1653 continue;
5e0d2a6f 1654 g_num_of_iommus++;
1655 /*
1656 * lock not needed as this is only incremented in the single
1657 * threaded kernel __init code path all other access are read
1658 * only
1659 */
1660 }
1661
5e0d2a6f 1662 g_iommus = kzalloc(g_num_of_iommus * sizeof(*iommu), GFP_KERNEL);
1663 if (!g_iommus) {
80b20dd8 1664 ret = -ENOMEM;
1665 goto error;
1666 }
1667
1668 deferred_flush = kzalloc(g_num_of_iommus *
1669 sizeof(struct deferred_flush_tables), GFP_KERNEL);
1670 if (!deferred_flush) {
1671 kfree(g_iommus);
5e0d2a6f 1672 ret = -ENOMEM;
1673 goto error;
1674 }
1675
1676 i = 0;
1677 for_each_drhd_unit(drhd) {
1678 if (drhd->ignored)
1679 continue;
1680 iommu = alloc_iommu(&g_iommus[i], drhd);
1681 i++;
ba395927
KA
1682 if (!iommu) {
1683 ret = -ENOMEM;
1684 goto error;
1685 }
1686
e61d98d8
SS
1687 ret = iommu_init_domains(iommu);
1688 if (ret)
1689 goto error;
1690
ba395927
KA
1691 /*
1692 * TBD:
1693 * we could share the same root & context tables
1694 * amoung all IOMMU's. Need to Split it later.
1695 */
1696 ret = iommu_alloc_root_entry(iommu);
1697 if (ret) {
1698 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
1699 goto error;
1700 }
1701 }
1702
1703 /*
1704 * For each rmrr
1705 * for each dev attached to rmrr
1706 * do
1707 * locate drhd for dev, alloc domain for dev
1708 * allocate free domain
1709 * allocate page table entries for rmrr
1710 * if context not allocated for bus
1711 * allocate and init context
1712 * set present in root table for this bus
1713 * init context with domain, translation etc
1714 * endfor
1715 * endfor
1716 */
1717 for_each_rmrr_units(rmrr) {
ba395927
KA
1718 for (i = 0; i < rmrr->devices_cnt; i++) {
1719 pdev = rmrr->devices[i];
1720 /* some BIOS lists non-exist devices in DMAR table */
1721 if (!pdev)
1722 continue;
1723 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
1724 if (ret)
1725 printk(KERN_ERR
1726 "IOMMU: mapping reserved region failed\n");
1727 }
1728 }
1729
e820482c
KA
1730 iommu_prepare_gfx_mapping();
1731
49a0429e
KA
1732 iommu_prepare_isa();
1733
ba395927
KA
1734 /*
1735 * for each drhd
1736 * enable fault log
1737 * global invalidate context cache
1738 * global invalidate iotlb
1739 * enable translation
1740 */
1741 for_each_drhd_unit(drhd) {
1742 if (drhd->ignored)
1743 continue;
1744 iommu = drhd->iommu;
1745 sprintf (iommu->name, "dmar%d", unit++);
1746
1747 iommu_flush_write_buffer(iommu);
1748
3460a6d9
KA
1749 ret = dmar_set_interrupt(iommu);
1750 if (ret)
1751 goto error;
1752
ba395927
KA
1753 iommu_set_root_entry(iommu);
1754
1755 iommu_flush_context_global(iommu, 0);
1756 iommu_flush_iotlb_global(iommu, 0);
1757
f8bab735 1758 iommu_disable_protect_mem_regions(iommu);
1759
ba395927
KA
1760 ret = iommu_enable_translation(iommu);
1761 if (ret)
1762 goto error;
1763 }
1764
1765 return 0;
1766error:
1767 for_each_drhd_unit(drhd) {
1768 if (drhd->ignored)
1769 continue;
1770 iommu = drhd->iommu;
1771 free_iommu(iommu);
1772 }
5e0d2a6f 1773 kfree(g_iommus);
ba395927
KA
1774 return ret;
1775}
1776
1777static inline u64 aligned_size(u64 host_addr, size_t size)
1778{
1779 u64 addr;
1780 addr = (host_addr & (~PAGE_MASK_4K)) + size;
1781 return PAGE_ALIGN_4K(addr);
1782}
1783
1784struct iova *
f76aec76 1785iommu_alloc_iova(struct dmar_domain *domain, size_t size, u64 end)
ba395927 1786{
ba395927
KA
1787 struct iova *piova;
1788
1789 /* Make sure it's in range */
ba395927 1790 end = min_t(u64, DOMAIN_MAX_ADDR(domain->gaw), end);
f76aec76 1791 if (!size || (IOVA_START_ADDR + size > end))
ba395927
KA
1792 return NULL;
1793
1794 piova = alloc_iova(&domain->iovad,
f76aec76 1795 size >> PAGE_SHIFT_4K, IOVA_PFN(end), 1);
ba395927
KA
1796 return piova;
1797}
1798
f76aec76
KA
1799static struct iova *
1800__intel_alloc_iova(struct device *dev, struct dmar_domain *domain,
1801 size_t size)
ba395927 1802{
ba395927 1803 struct pci_dev *pdev = to_pci_dev(dev);
ba395927 1804 struct iova *iova = NULL;
ba395927 1805
7d3b03ce 1806 if ((pdev->dma_mask <= DMA_32BIT_MASK) || (dmar_forcedac)) {
f76aec76 1807 iova = iommu_alloc_iova(domain, size, pdev->dma_mask);
ba395927
KA
1808 } else {
1809 /*
1810 * First try to allocate an io virtual address in
1811 * DMA_32BIT_MASK and if that fails then try allocating
3609801e 1812 * from higher range
ba395927 1813 */
f76aec76 1814 iova = iommu_alloc_iova(domain, size, DMA_32BIT_MASK);
ba395927 1815 if (!iova)
f76aec76 1816 iova = iommu_alloc_iova(domain, size, pdev->dma_mask);
ba395927
KA
1817 }
1818
1819 if (!iova) {
1820 printk(KERN_ERR"Allocating iova for %s failed", pci_name(pdev));
f76aec76
KA
1821 return NULL;
1822 }
1823
1824 return iova;
1825}
1826
1827static struct dmar_domain *
1828get_valid_domain_for_dev(struct pci_dev *pdev)
1829{
1830 struct dmar_domain *domain;
1831 int ret;
1832
1833 domain = get_domain_for_dev(pdev,
1834 DEFAULT_DOMAIN_ADDRESS_WIDTH);
1835 if (!domain) {
1836 printk(KERN_ERR
1837 "Allocating domain for %s failed", pci_name(pdev));
4fe05bbc 1838 return NULL;
ba395927
KA
1839 }
1840
1841 /* make sure context mapping is ok */
1842 if (unlikely(!domain_context_mapped(domain, pdev))) {
1843 ret = domain_context_mapping(domain, pdev);
f76aec76
KA
1844 if (ret) {
1845 printk(KERN_ERR
1846 "Domain context map for %s failed",
1847 pci_name(pdev));
4fe05bbc 1848 return NULL;
f76aec76 1849 }
ba395927
KA
1850 }
1851
f76aec76
KA
1852 return domain;
1853}
1854
6865f0d1
IM
1855static dma_addr_t
1856intel_map_single(struct device *hwdev, phys_addr_t paddr, size_t size, int dir)
f76aec76
KA
1857{
1858 struct pci_dev *pdev = to_pci_dev(hwdev);
f76aec76 1859 struct dmar_domain *domain;
6865f0d1 1860 unsigned long start_paddr;
f76aec76
KA
1861 struct iova *iova;
1862 int prot = 0;
6865f0d1 1863 int ret;
f76aec76
KA
1864
1865 BUG_ON(dir == DMA_NONE);
358dd8ac 1866 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
6865f0d1 1867 return paddr;
f76aec76
KA
1868
1869 domain = get_valid_domain_for_dev(pdev);
1870 if (!domain)
1871 return 0;
1872
6865f0d1 1873 size = aligned_size((u64)paddr, size);
f76aec76
KA
1874
1875 iova = __intel_alloc_iova(hwdev, domain, size);
1876 if (!iova)
1877 goto error;
1878
6865f0d1 1879 start_paddr = iova->pfn_lo << PAGE_SHIFT_4K;
f76aec76 1880
ba395927
KA
1881 /*
1882 * Check if DMAR supports zero-length reads on write only
1883 * mappings..
1884 */
1885 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
1886 !cap_zlr(domain->iommu->cap))
1887 prot |= DMA_PTE_READ;
1888 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
1889 prot |= DMA_PTE_WRITE;
1890 /*
6865f0d1 1891 * paddr - (paddr + size) might be partial page, we should map the whole
ba395927 1892 * page. Note: if two part of one page are separately mapped, we
6865f0d1 1893 * might have two guest_addr mapping to the same host paddr, but this
ba395927
KA
1894 * is not a big problem
1895 */
6865f0d1
IM
1896 ret = domain_page_mapping(domain, start_paddr,
1897 ((u64)paddr) & PAGE_MASK_4K, size, prot);
ba395927
KA
1898 if (ret)
1899 goto error;
1900
1901 pr_debug("Device %s request: %lx@%llx mapping: %lx@%llx, dir %d\n",
6865f0d1
IM
1902 pci_name(pdev), size, (u64)paddr,
1903 size, (u64)start_paddr, dir);
f76aec76
KA
1904
1905 /* it's a non-present to present mapping */
1906 ret = iommu_flush_iotlb_psi(domain->iommu, domain->id,
6865f0d1 1907 start_paddr, size >> PAGE_SHIFT_4K, 1);
f76aec76
KA
1908 if (ret)
1909 iommu_flush_write_buffer(domain->iommu);
1910
6865f0d1 1911 return (start_paddr + ((u64)paddr & (~PAGE_MASK_4K)));
ba395927 1912
ba395927 1913error:
f76aec76
KA
1914 if (iova)
1915 __free_iova(&domain->iovad, iova);
ba395927 1916 printk(KERN_ERR"Device %s request: %lx@%llx dir %d --- failed\n",
6865f0d1 1917 pci_name(pdev), size, (u64)paddr, dir);
ba395927
KA
1918 return 0;
1919}
1920
5e0d2a6f 1921static void flush_unmaps(void)
1922{
80b20dd8 1923 int i, j;
5e0d2a6f 1924
5e0d2a6f 1925 timer_on = 0;
1926
1927 /* just flush them all */
1928 for (i = 0; i < g_num_of_iommus; i++) {
80b20dd8 1929 if (deferred_flush[i].next) {
5e0d2a6f 1930 iommu_flush_iotlb_global(&g_iommus[i], 0);
80b20dd8 1931 for (j = 0; j < deferred_flush[i].next; j++) {
1932 __free_iova(&deferred_flush[i].domain[j]->iovad,
1933 deferred_flush[i].iova[j]);
1934 }
1935 deferred_flush[i].next = 0;
1936 }
5e0d2a6f 1937 }
1938
5e0d2a6f 1939 list_size = 0;
5e0d2a6f 1940}
1941
1942static void flush_unmaps_timeout(unsigned long data)
1943{
80b20dd8 1944 unsigned long flags;
1945
1946 spin_lock_irqsave(&async_umap_flush_lock, flags);
5e0d2a6f 1947 flush_unmaps();
80b20dd8 1948 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
5e0d2a6f 1949}
1950
1951static void add_unmap(struct dmar_domain *dom, struct iova *iova)
1952{
1953 unsigned long flags;
80b20dd8 1954 int next, iommu_id;
5e0d2a6f 1955
1956 spin_lock_irqsave(&async_umap_flush_lock, flags);
80b20dd8 1957 if (list_size == HIGH_WATER_MARK)
1958 flush_unmaps();
1959
1960 iommu_id = dom->iommu - g_iommus;
1961 next = deferred_flush[iommu_id].next;
1962 deferred_flush[iommu_id].domain[next] = dom;
1963 deferred_flush[iommu_id].iova[next] = iova;
1964 deferred_flush[iommu_id].next++;
5e0d2a6f 1965
1966 if (!timer_on) {
1967 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
1968 timer_on = 1;
1969 }
1970 list_size++;
1971 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
1972}
1973
f76aec76 1974static void intel_unmap_single(struct device *dev, dma_addr_t dev_addr,
ba395927
KA
1975 size_t size, int dir)
1976{
ba395927 1977 struct pci_dev *pdev = to_pci_dev(dev);
f76aec76
KA
1978 struct dmar_domain *domain;
1979 unsigned long start_addr;
ba395927
KA
1980 struct iova *iova;
1981
358dd8ac 1982 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
f76aec76 1983 return;
ba395927
KA
1984 domain = find_domain(pdev);
1985 BUG_ON(!domain);
1986
1987 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
f76aec76 1988 if (!iova)
ba395927 1989 return;
ba395927 1990
f76aec76
KA
1991 start_addr = iova->pfn_lo << PAGE_SHIFT_4K;
1992 size = aligned_size((u64)dev_addr, size);
ba395927 1993
f76aec76
KA
1994 pr_debug("Device %s unmapping: %lx@%llx\n",
1995 pci_name(pdev), size, (u64)start_addr);
ba395927 1996
f76aec76
KA
1997 /* clear the whole page */
1998 dma_pte_clear_range(domain, start_addr, start_addr + size);
1999 /* free page tables */
2000 dma_pte_free_pagetable(domain, start_addr, start_addr + size);
5e0d2a6f 2001 if (intel_iommu_strict) {
2002 if (iommu_flush_iotlb_psi(domain->iommu,
2003 domain->id, start_addr, size >> PAGE_SHIFT_4K, 0))
2004 iommu_flush_write_buffer(domain->iommu);
2005 /* free iova */
2006 __free_iova(&domain->iovad, iova);
2007 } else {
2008 add_unmap(domain, iova);
2009 /*
2010 * queue up the release of the unmap to save the 1/6th of the
2011 * cpu used up by the iotlb flush operation...
2012 */
5e0d2a6f 2013 }
ba395927
KA
2014}
2015
2016static void * intel_alloc_coherent(struct device *hwdev, size_t size,
2017 dma_addr_t *dma_handle, gfp_t flags)
2018{
2019 void *vaddr;
2020 int order;
2021
2022 size = PAGE_ALIGN_4K(size);
2023 order = get_order(size);
2024 flags &= ~(GFP_DMA | GFP_DMA32);
2025
2026 vaddr = (void *)__get_free_pages(flags, order);
2027 if (!vaddr)
2028 return NULL;
2029 memset(vaddr, 0, size);
2030
6865f0d1 2031 *dma_handle = intel_map_single(hwdev, virt_to_bus(vaddr), size, DMA_BIDIRECTIONAL);
ba395927
KA
2032 if (*dma_handle)
2033 return vaddr;
2034 free_pages((unsigned long)vaddr, order);
2035 return NULL;
2036}
2037
2038static void intel_free_coherent(struct device *hwdev, size_t size,
2039 void *vaddr, dma_addr_t dma_handle)
2040{
2041 int order;
2042
2043 size = PAGE_ALIGN_4K(size);
2044 order = get_order(size);
2045
2046 intel_unmap_single(hwdev, dma_handle, size, DMA_BIDIRECTIONAL);
2047 free_pages((unsigned long)vaddr, order);
2048}
2049
12d4d40e 2050#define SG_ENT_VIRT_ADDRESS(sg) (sg_virt((sg)))
c03ab37c 2051static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
ba395927
KA
2052 int nelems, int dir)
2053{
2054 int i;
2055 struct pci_dev *pdev = to_pci_dev(hwdev);
2056 struct dmar_domain *domain;
f76aec76
KA
2057 unsigned long start_addr;
2058 struct iova *iova;
2059 size_t size = 0;
2060 void *addr;
c03ab37c 2061 struct scatterlist *sg;
ba395927 2062
358dd8ac 2063 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
ba395927
KA
2064 return;
2065
2066 domain = find_domain(pdev);
ba395927 2067
c03ab37c 2068 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
f76aec76
KA
2069 if (!iova)
2070 return;
c03ab37c 2071 for_each_sg(sglist, sg, nelems, i) {
f76aec76
KA
2072 addr = SG_ENT_VIRT_ADDRESS(sg);
2073 size += aligned_size((u64)addr, sg->length);
2074 }
2075
2076 start_addr = iova->pfn_lo << PAGE_SHIFT_4K;
2077
2078 /* clear the whole page */
2079 dma_pte_clear_range(domain, start_addr, start_addr + size);
2080 /* free page tables */
2081 dma_pte_free_pagetable(domain, start_addr, start_addr + size);
2082
2083 if (iommu_flush_iotlb_psi(domain->iommu, domain->id, start_addr,
2084 size >> PAGE_SHIFT_4K, 0))
ba395927 2085 iommu_flush_write_buffer(domain->iommu);
f76aec76
KA
2086
2087 /* free iova */
2088 __free_iova(&domain->iovad, iova);
ba395927
KA
2089}
2090
ba395927 2091static int intel_nontranslate_map_sg(struct device *hddev,
c03ab37c 2092 struct scatterlist *sglist, int nelems, int dir)
ba395927
KA
2093{
2094 int i;
c03ab37c 2095 struct scatterlist *sg;
ba395927 2096
c03ab37c 2097 for_each_sg(sglist, sg, nelems, i) {
12d4d40e 2098 BUG_ON(!sg_page(sg));
c03ab37c
FT
2099 sg->dma_address = virt_to_bus(SG_ENT_VIRT_ADDRESS(sg));
2100 sg->dma_length = sg->length;
ba395927
KA
2101 }
2102 return nelems;
2103}
2104
c03ab37c
FT
2105static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist,
2106 int nelems, int dir)
ba395927
KA
2107{
2108 void *addr;
2109 int i;
ba395927
KA
2110 struct pci_dev *pdev = to_pci_dev(hwdev);
2111 struct dmar_domain *domain;
f76aec76
KA
2112 size_t size = 0;
2113 int prot = 0;
2114 size_t offset = 0;
2115 struct iova *iova = NULL;
2116 int ret;
c03ab37c 2117 struct scatterlist *sg;
f76aec76 2118 unsigned long start_addr;
ba395927
KA
2119
2120 BUG_ON(dir == DMA_NONE);
358dd8ac 2121 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
c03ab37c 2122 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
ba395927 2123
f76aec76
KA
2124 domain = get_valid_domain_for_dev(pdev);
2125 if (!domain)
2126 return 0;
2127
c03ab37c 2128 for_each_sg(sglist, sg, nelems, i) {
ba395927 2129 addr = SG_ENT_VIRT_ADDRESS(sg);
f76aec76
KA
2130 addr = (void *)virt_to_phys(addr);
2131 size += aligned_size((u64)addr, sg->length);
2132 }
2133
2134 iova = __intel_alloc_iova(hwdev, domain, size);
2135 if (!iova) {
c03ab37c 2136 sglist->dma_length = 0;
f76aec76
KA
2137 return 0;
2138 }
2139
2140 /*
2141 * Check if DMAR supports zero-length reads on write only
2142 * mappings..
2143 */
2144 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2145 !cap_zlr(domain->iommu->cap))
2146 prot |= DMA_PTE_READ;
2147 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2148 prot |= DMA_PTE_WRITE;
2149
2150 start_addr = iova->pfn_lo << PAGE_SHIFT_4K;
2151 offset = 0;
c03ab37c 2152 for_each_sg(sglist, sg, nelems, i) {
f76aec76
KA
2153 addr = SG_ENT_VIRT_ADDRESS(sg);
2154 addr = (void *)virt_to_phys(addr);
2155 size = aligned_size((u64)addr, sg->length);
2156 ret = domain_page_mapping(domain, start_addr + offset,
2157 ((u64)addr) & PAGE_MASK_4K,
2158 size, prot);
2159 if (ret) {
2160 /* clear the page */
2161 dma_pte_clear_range(domain, start_addr,
2162 start_addr + offset);
2163 /* free page tables */
2164 dma_pte_free_pagetable(domain, start_addr,
2165 start_addr + offset);
2166 /* free iova */
2167 __free_iova(&domain->iovad, iova);
ba395927
KA
2168 return 0;
2169 }
f76aec76
KA
2170 sg->dma_address = start_addr + offset +
2171 ((u64)addr & (~PAGE_MASK_4K));
ba395927 2172 sg->dma_length = sg->length;
f76aec76 2173 offset += size;
ba395927
KA
2174 }
2175
ba395927 2176 /* it's a non-present to present mapping */
f76aec76
KA
2177 if (iommu_flush_iotlb_psi(domain->iommu, domain->id,
2178 start_addr, offset >> PAGE_SHIFT_4K, 1))
ba395927
KA
2179 iommu_flush_write_buffer(domain->iommu);
2180 return nelems;
2181}
2182
2183static struct dma_mapping_ops intel_dma_ops = {
2184 .alloc_coherent = intel_alloc_coherent,
2185 .free_coherent = intel_free_coherent,
2186 .map_single = intel_map_single,
2187 .unmap_single = intel_unmap_single,
2188 .map_sg = intel_map_sg,
2189 .unmap_sg = intel_unmap_sg,
2190};
2191
2192static inline int iommu_domain_cache_init(void)
2193{
2194 int ret = 0;
2195
2196 iommu_domain_cache = kmem_cache_create("iommu_domain",
2197 sizeof(struct dmar_domain),
2198 0,
2199 SLAB_HWCACHE_ALIGN,
2200
2201 NULL);
2202 if (!iommu_domain_cache) {
2203 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
2204 ret = -ENOMEM;
2205 }
2206
2207 return ret;
2208}
2209
2210static inline int iommu_devinfo_cache_init(void)
2211{
2212 int ret = 0;
2213
2214 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
2215 sizeof(struct device_domain_info),
2216 0,
2217 SLAB_HWCACHE_ALIGN,
2218
2219 NULL);
2220 if (!iommu_devinfo_cache) {
2221 printk(KERN_ERR "Couldn't create devinfo cache\n");
2222 ret = -ENOMEM;
2223 }
2224
2225 return ret;
2226}
2227
2228static inline int iommu_iova_cache_init(void)
2229{
2230 int ret = 0;
2231
2232 iommu_iova_cache = kmem_cache_create("iommu_iova",
2233 sizeof(struct iova),
2234 0,
2235 SLAB_HWCACHE_ALIGN,
2236
2237 NULL);
2238 if (!iommu_iova_cache) {
2239 printk(KERN_ERR "Couldn't create iova cache\n");
2240 ret = -ENOMEM;
2241 }
2242
2243 return ret;
2244}
2245
2246static int __init iommu_init_mempool(void)
2247{
2248 int ret;
2249 ret = iommu_iova_cache_init();
2250 if (ret)
2251 return ret;
2252
2253 ret = iommu_domain_cache_init();
2254 if (ret)
2255 goto domain_error;
2256
2257 ret = iommu_devinfo_cache_init();
2258 if (!ret)
2259 return ret;
2260
2261 kmem_cache_destroy(iommu_domain_cache);
2262domain_error:
2263 kmem_cache_destroy(iommu_iova_cache);
2264
2265 return -ENOMEM;
2266}
2267
2268static void __init iommu_exit_mempool(void)
2269{
2270 kmem_cache_destroy(iommu_devinfo_cache);
2271 kmem_cache_destroy(iommu_domain_cache);
2272 kmem_cache_destroy(iommu_iova_cache);
2273
2274}
2275
2276void __init detect_intel_iommu(void)
2277{
2278 if (swiotlb || no_iommu || iommu_detected || dmar_disabled)
2279 return;
2280 if (early_dmar_detect()) {
2281 iommu_detected = 1;
2282 }
2283}
2284
2285static void __init init_no_remapping_devices(void)
2286{
2287 struct dmar_drhd_unit *drhd;
2288
2289 for_each_drhd_unit(drhd) {
2290 if (!drhd->include_all) {
2291 int i;
2292 for (i = 0; i < drhd->devices_cnt; i++)
2293 if (drhd->devices[i] != NULL)
2294 break;
2295 /* ignore DMAR unit if no pci devices exist */
2296 if (i == drhd->devices_cnt)
2297 drhd->ignored = 1;
2298 }
2299 }
2300
2301 if (dmar_map_gfx)
2302 return;
2303
2304 for_each_drhd_unit(drhd) {
2305 int i;
2306 if (drhd->ignored || drhd->include_all)
2307 continue;
2308
2309 for (i = 0; i < drhd->devices_cnt; i++)
2310 if (drhd->devices[i] &&
2311 !IS_GFX_DEVICE(drhd->devices[i]))
2312 break;
2313
2314 if (i < drhd->devices_cnt)
2315 continue;
2316
2317 /* bypass IOMMU if it is just for gfx devices */
2318 drhd->ignored = 1;
2319 for (i = 0; i < drhd->devices_cnt; i++) {
2320 if (!drhd->devices[i])
2321 continue;
358dd8ac 2322 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
ba395927
KA
2323 }
2324 }
2325}
2326
2327int __init intel_iommu_init(void)
2328{
2329 int ret = 0;
2330
2331 if (no_iommu || swiotlb || dmar_disabled)
2332 return -ENODEV;
2333
2334 if (dmar_table_init())
2335 return -ENODEV;
2336
2337 iommu_init_mempool();
2338 dmar_init_reserved_ranges();
2339
2340 init_no_remapping_devices();
2341
2342 ret = init_dmars();
2343 if (ret) {
2344 printk(KERN_ERR "IOMMU: dmar init failed\n");
2345 put_iova_domain(&reserved_iova_list);
2346 iommu_exit_mempool();
2347 return ret;
2348 }
2349 printk(KERN_INFO
2350 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
2351
5e0d2a6f 2352 init_timer(&unmap_timer);
ba395927
KA
2353 force_iommu = 1;
2354 dma_ops = &intel_dma_ops;
2355 return 0;
2356}
e820482c 2357
This page took 0.197842 seconds and 5 git commands to generate.