Intel IOMMU: Avoid memory allocation failures in dma map api calls
[deliverable/linux.git] / drivers / pci / intel-iommu.c
CommitLineData
ba395927
KA
1/*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Copyright (C) Ashok Raj <ashok.raj@intel.com>
18 * Copyright (C) Shaohua Li <shaohua.li@intel.com>
19 * Copyright (C) Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
20 */
21
22#include <linux/init.h>
23#include <linux/bitmap.h>
24#include <linux/slab.h>
25#include <linux/irq.h>
26#include <linux/interrupt.h>
27#include <linux/sysdev.h>
28#include <linux/spinlock.h>
29#include <linux/pci.h>
30#include <linux/dmar.h>
31#include <linux/dma-mapping.h>
32#include <linux/mempool.h>
33#include "iova.h"
34#include "intel-iommu.h"
35#include <asm/proto.h> /* force_iommu in this header in x86-64*/
36#include <asm/cacheflush.h>
37#include <asm/iommu.h>
38#include "pci.h"
39
40#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
41#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
42
43#define IOAPIC_RANGE_START (0xfee00000)
44#define IOAPIC_RANGE_END (0xfeefffff)
45#define IOVA_START_ADDR (0x1000)
46
47#define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
48
49#define DMAR_OPERATION_TIMEOUT (HZ*60) /* 1m */
50
51#define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1)
52
53static void domain_remove_dev_info(struct dmar_domain *domain);
54
55static int dmar_disabled;
56static int __initdata dmar_map_gfx = 1;
57
58#define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
59static DEFINE_SPINLOCK(device_domain_lock);
60static LIST_HEAD(device_domain_list);
61
62static int __init intel_iommu_setup(char *str)
63{
64 if (!str)
65 return -EINVAL;
66 while (*str) {
67 if (!strncmp(str, "off", 3)) {
68 dmar_disabled = 1;
69 printk(KERN_INFO"Intel-IOMMU: disabled\n");
70 } else if (!strncmp(str, "igfx_off", 8)) {
71 dmar_map_gfx = 0;
72 printk(KERN_INFO
73 "Intel-IOMMU: disable GFX device mapping\n");
74 }
75
76 str += strcspn(str, ",");
77 while (*str == ',')
78 str++;
79 }
80 return 0;
81}
82__setup("intel_iommu=", intel_iommu_setup);
83
84static struct kmem_cache *iommu_domain_cache;
85static struct kmem_cache *iommu_devinfo_cache;
86static struct kmem_cache *iommu_iova_cache;
87
eb3fa7cb
KA
88static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep)
89{
90 unsigned int flags;
91 void *vaddr;
92
93 /* trying to avoid low memory issues */
94 flags = current->flags & PF_MEMALLOC;
95 current->flags |= PF_MEMALLOC;
96 vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC);
97 current->flags &= (~PF_MEMALLOC | flags);
98 return vaddr;
99}
100
101
ba395927
KA
102static inline void *alloc_pgtable_page(void)
103{
eb3fa7cb
KA
104 unsigned int flags;
105 void *vaddr;
106
107 /* trying to avoid low memory issues */
108 flags = current->flags & PF_MEMALLOC;
109 current->flags |= PF_MEMALLOC;
110 vaddr = (void *)get_zeroed_page(GFP_ATOMIC);
111 current->flags &= (~PF_MEMALLOC | flags);
112 return vaddr;
ba395927
KA
113}
114
115static inline void free_pgtable_page(void *vaddr)
116{
117 free_page((unsigned long)vaddr);
118}
119
120static inline void *alloc_domain_mem(void)
121{
eb3fa7cb 122 return iommu_kmem_cache_alloc(iommu_domain_cache);
ba395927
KA
123}
124
125static inline void free_domain_mem(void *vaddr)
126{
127 kmem_cache_free(iommu_domain_cache, vaddr);
128}
129
130static inline void * alloc_devinfo_mem(void)
131{
eb3fa7cb 132 return iommu_kmem_cache_alloc(iommu_devinfo_cache);
ba395927
KA
133}
134
135static inline void free_devinfo_mem(void *vaddr)
136{
137 kmem_cache_free(iommu_devinfo_cache, vaddr);
138}
139
140struct iova *alloc_iova_mem(void)
141{
eb3fa7cb 142 return iommu_kmem_cache_alloc(iommu_iova_cache);
ba395927
KA
143}
144
145void free_iova_mem(struct iova *iova)
146{
147 kmem_cache_free(iommu_iova_cache, iova);
148}
149
150static inline void __iommu_flush_cache(
151 struct intel_iommu *iommu, void *addr, int size)
152{
153 if (!ecap_coherent(iommu->ecap))
154 clflush_cache_range(addr, size);
155}
156
157/* Gets context entry for a given bus and devfn */
158static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
159 u8 bus, u8 devfn)
160{
161 struct root_entry *root;
162 struct context_entry *context;
163 unsigned long phy_addr;
164 unsigned long flags;
165
166 spin_lock_irqsave(&iommu->lock, flags);
167 root = &iommu->root_entry[bus];
168 context = get_context_addr_from_root(root);
169 if (!context) {
170 context = (struct context_entry *)alloc_pgtable_page();
171 if (!context) {
172 spin_unlock_irqrestore(&iommu->lock, flags);
173 return NULL;
174 }
175 __iommu_flush_cache(iommu, (void *)context, PAGE_SIZE_4K);
176 phy_addr = virt_to_phys((void *)context);
177 set_root_value(root, phy_addr);
178 set_root_present(root);
179 __iommu_flush_cache(iommu, root, sizeof(*root));
180 }
181 spin_unlock_irqrestore(&iommu->lock, flags);
182 return &context[devfn];
183}
184
185static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
186{
187 struct root_entry *root;
188 struct context_entry *context;
189 int ret;
190 unsigned long flags;
191
192 spin_lock_irqsave(&iommu->lock, flags);
193 root = &iommu->root_entry[bus];
194 context = get_context_addr_from_root(root);
195 if (!context) {
196 ret = 0;
197 goto out;
198 }
199 ret = context_present(context[devfn]);
200out:
201 spin_unlock_irqrestore(&iommu->lock, flags);
202 return ret;
203}
204
205static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
206{
207 struct root_entry *root;
208 struct context_entry *context;
209 unsigned long flags;
210
211 spin_lock_irqsave(&iommu->lock, flags);
212 root = &iommu->root_entry[bus];
213 context = get_context_addr_from_root(root);
214 if (context) {
215 context_clear_entry(context[devfn]);
216 __iommu_flush_cache(iommu, &context[devfn], \
217 sizeof(*context));
218 }
219 spin_unlock_irqrestore(&iommu->lock, flags);
220}
221
222static void free_context_table(struct intel_iommu *iommu)
223{
224 struct root_entry *root;
225 int i;
226 unsigned long flags;
227 struct context_entry *context;
228
229 spin_lock_irqsave(&iommu->lock, flags);
230 if (!iommu->root_entry) {
231 goto out;
232 }
233 for (i = 0; i < ROOT_ENTRY_NR; i++) {
234 root = &iommu->root_entry[i];
235 context = get_context_addr_from_root(root);
236 if (context)
237 free_pgtable_page(context);
238 }
239 free_pgtable_page(iommu->root_entry);
240 iommu->root_entry = NULL;
241out:
242 spin_unlock_irqrestore(&iommu->lock, flags);
243}
244
245/* page table handling */
246#define LEVEL_STRIDE (9)
247#define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
248
249static inline int agaw_to_level(int agaw)
250{
251 return agaw + 2;
252}
253
254static inline int agaw_to_width(int agaw)
255{
256 return 30 + agaw * LEVEL_STRIDE;
257
258}
259
260static inline int width_to_agaw(int width)
261{
262 return (width - 30) / LEVEL_STRIDE;
263}
264
265static inline unsigned int level_to_offset_bits(int level)
266{
267 return (12 + (level - 1) * LEVEL_STRIDE);
268}
269
270static inline int address_level_offset(u64 addr, int level)
271{
272 return ((addr >> level_to_offset_bits(level)) & LEVEL_MASK);
273}
274
275static inline u64 level_mask(int level)
276{
277 return ((u64)-1 << level_to_offset_bits(level));
278}
279
280static inline u64 level_size(int level)
281{
282 return ((u64)1 << level_to_offset_bits(level));
283}
284
285static inline u64 align_to_level(u64 addr, int level)
286{
287 return ((addr + level_size(level) - 1) & level_mask(level));
288}
289
290static struct dma_pte * addr_to_dma_pte(struct dmar_domain *domain, u64 addr)
291{
292 int addr_width = agaw_to_width(domain->agaw);
293 struct dma_pte *parent, *pte = NULL;
294 int level = agaw_to_level(domain->agaw);
295 int offset;
296 unsigned long flags;
297
298 BUG_ON(!domain->pgd);
299
300 addr &= (((u64)1) << addr_width) - 1;
301 parent = domain->pgd;
302
303 spin_lock_irqsave(&domain->mapping_lock, flags);
304 while (level > 0) {
305 void *tmp_page;
306
307 offset = address_level_offset(addr, level);
308 pte = &parent[offset];
309 if (level == 1)
310 break;
311
312 if (!dma_pte_present(*pte)) {
313 tmp_page = alloc_pgtable_page();
314
315 if (!tmp_page) {
316 spin_unlock_irqrestore(&domain->mapping_lock,
317 flags);
318 return NULL;
319 }
320 __iommu_flush_cache(domain->iommu, tmp_page,
321 PAGE_SIZE_4K);
322 dma_set_pte_addr(*pte, virt_to_phys(tmp_page));
323 /*
324 * high level table always sets r/w, last level page
325 * table control read/write
326 */
327 dma_set_pte_readable(*pte);
328 dma_set_pte_writable(*pte);
329 __iommu_flush_cache(domain->iommu, pte, sizeof(*pte));
330 }
331 parent = phys_to_virt(dma_pte_addr(*pte));
332 level--;
333 }
334
335 spin_unlock_irqrestore(&domain->mapping_lock, flags);
336 return pte;
337}
338
339/* return address's pte at specific level */
340static struct dma_pte *dma_addr_level_pte(struct dmar_domain *domain, u64 addr,
341 int level)
342{
343 struct dma_pte *parent, *pte = NULL;
344 int total = agaw_to_level(domain->agaw);
345 int offset;
346
347 parent = domain->pgd;
348 while (level <= total) {
349 offset = address_level_offset(addr, total);
350 pte = &parent[offset];
351 if (level == total)
352 return pte;
353
354 if (!dma_pte_present(*pte))
355 break;
356 parent = phys_to_virt(dma_pte_addr(*pte));
357 total--;
358 }
359 return NULL;
360}
361
362/* clear one page's page table */
363static void dma_pte_clear_one(struct dmar_domain *domain, u64 addr)
364{
365 struct dma_pte *pte = NULL;
366
367 /* get last level pte */
368 pte = dma_addr_level_pte(domain, addr, 1);
369
370 if (pte) {
371 dma_clear_pte(*pte);
372 __iommu_flush_cache(domain->iommu, pte, sizeof(*pte));
373 }
374}
375
376/* clear last level pte, a tlb flush should be followed */
377static void dma_pte_clear_range(struct dmar_domain *domain, u64 start, u64 end)
378{
379 int addr_width = agaw_to_width(domain->agaw);
380
381 start &= (((u64)1) << addr_width) - 1;
382 end &= (((u64)1) << addr_width) - 1;
383 /* in case it's partial page */
384 start = PAGE_ALIGN_4K(start);
385 end &= PAGE_MASK_4K;
386
387 /* we don't need lock here, nobody else touches the iova range */
388 while (start < end) {
389 dma_pte_clear_one(domain, start);
390 start += PAGE_SIZE_4K;
391 }
392}
393
394/* free page table pages. last level pte should already be cleared */
395static void dma_pte_free_pagetable(struct dmar_domain *domain,
396 u64 start, u64 end)
397{
398 int addr_width = agaw_to_width(domain->agaw);
399 struct dma_pte *pte;
400 int total = agaw_to_level(domain->agaw);
401 int level;
402 u64 tmp;
403
404 start &= (((u64)1) << addr_width) - 1;
405 end &= (((u64)1) << addr_width) - 1;
406
407 /* we don't need lock here, nobody else touches the iova range */
408 level = 2;
409 while (level <= total) {
410 tmp = align_to_level(start, level);
411 if (tmp >= end || (tmp + level_size(level) > end))
412 return;
413
414 while (tmp < end) {
415 pte = dma_addr_level_pte(domain, tmp, level);
416 if (pte) {
417 free_pgtable_page(
418 phys_to_virt(dma_pte_addr(*pte)));
419 dma_clear_pte(*pte);
420 __iommu_flush_cache(domain->iommu,
421 pte, sizeof(*pte));
422 }
423 tmp += level_size(level);
424 }
425 level++;
426 }
427 /* free pgd */
428 if (start == 0 && end >= ((((u64)1) << addr_width) - 1)) {
429 free_pgtable_page(domain->pgd);
430 domain->pgd = NULL;
431 }
432}
433
434/* iommu handling */
435static int iommu_alloc_root_entry(struct intel_iommu *iommu)
436{
437 struct root_entry *root;
438 unsigned long flags;
439
440 root = (struct root_entry *)alloc_pgtable_page();
441 if (!root)
442 return -ENOMEM;
443
444 __iommu_flush_cache(iommu, root, PAGE_SIZE_4K);
445
446 spin_lock_irqsave(&iommu->lock, flags);
447 iommu->root_entry = root;
448 spin_unlock_irqrestore(&iommu->lock, flags);
449
450 return 0;
451}
452
453#define IOMMU_WAIT_OP(iommu, offset, op, cond, sts) \
454{\
455 unsigned long start_time = jiffies;\
456 while (1) {\
457 sts = op (iommu->reg + offset);\
458 if (cond)\
459 break;\
460 if (time_after(jiffies, start_time + DMAR_OPERATION_TIMEOUT))\
461 panic("DMAR hardware is malfunctioning\n");\
462 cpu_relax();\
463 }\
464}
465
466static void iommu_set_root_entry(struct intel_iommu *iommu)
467{
468 void *addr;
469 u32 cmd, sts;
470 unsigned long flag;
471
472 addr = iommu->root_entry;
473
474 spin_lock_irqsave(&iommu->register_lock, flag);
475 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
476
477 cmd = iommu->gcmd | DMA_GCMD_SRTP;
478 writel(cmd, iommu->reg + DMAR_GCMD_REG);
479
480 /* Make sure hardware complete it */
481 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
482 readl, (sts & DMA_GSTS_RTPS), sts);
483
484 spin_unlock_irqrestore(&iommu->register_lock, flag);
485}
486
487static void iommu_flush_write_buffer(struct intel_iommu *iommu)
488{
489 u32 val;
490 unsigned long flag;
491
492 if (!cap_rwbf(iommu->cap))
493 return;
494 val = iommu->gcmd | DMA_GCMD_WBF;
495
496 spin_lock_irqsave(&iommu->register_lock, flag);
497 writel(val, iommu->reg + DMAR_GCMD_REG);
498
499 /* Make sure hardware complete it */
500 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
501 readl, (!(val & DMA_GSTS_WBFS)), val);
502
503 spin_unlock_irqrestore(&iommu->register_lock, flag);
504}
505
506/* return value determine if we need a write buffer flush */
507static int __iommu_flush_context(struct intel_iommu *iommu,
508 u16 did, u16 source_id, u8 function_mask, u64 type,
509 int non_present_entry_flush)
510{
511 u64 val = 0;
512 unsigned long flag;
513
514 /*
515 * In the non-present entry flush case, if hardware doesn't cache
516 * non-present entry we do nothing and if hardware cache non-present
517 * entry, we flush entries of domain 0 (the domain id is used to cache
518 * any non-present entries)
519 */
520 if (non_present_entry_flush) {
521 if (!cap_caching_mode(iommu->cap))
522 return 1;
523 else
524 did = 0;
525 }
526
527 switch (type) {
528 case DMA_CCMD_GLOBAL_INVL:
529 val = DMA_CCMD_GLOBAL_INVL;
530 break;
531 case DMA_CCMD_DOMAIN_INVL:
532 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
533 break;
534 case DMA_CCMD_DEVICE_INVL:
535 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
536 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
537 break;
538 default:
539 BUG();
540 }
541 val |= DMA_CCMD_ICC;
542
543 spin_lock_irqsave(&iommu->register_lock, flag);
544 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
545
546 /* Make sure hardware complete it */
547 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
548 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
549
550 spin_unlock_irqrestore(&iommu->register_lock, flag);
551
552 /* flush context entry will implictly flush write buffer */
553 return 0;
554}
555
556static int inline iommu_flush_context_global(struct intel_iommu *iommu,
557 int non_present_entry_flush)
558{
559 return __iommu_flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL,
560 non_present_entry_flush);
561}
562
563static int inline iommu_flush_context_domain(struct intel_iommu *iommu, u16 did,
564 int non_present_entry_flush)
565{
566 return __iommu_flush_context(iommu, did, 0, 0, DMA_CCMD_DOMAIN_INVL,
567 non_present_entry_flush);
568}
569
570static int inline iommu_flush_context_device(struct intel_iommu *iommu,
571 u16 did, u16 source_id, u8 function_mask, int non_present_entry_flush)
572{
573 return __iommu_flush_context(iommu, did, source_id, function_mask,
574 DMA_CCMD_DEVICE_INVL, non_present_entry_flush);
575}
576
577/* return value determine if we need a write buffer flush */
578static int __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
579 u64 addr, unsigned int size_order, u64 type,
580 int non_present_entry_flush)
581{
582 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
583 u64 val = 0, val_iva = 0;
584 unsigned long flag;
585
586 /*
587 * In the non-present entry flush case, if hardware doesn't cache
588 * non-present entry we do nothing and if hardware cache non-present
589 * entry, we flush entries of domain 0 (the domain id is used to cache
590 * any non-present entries)
591 */
592 if (non_present_entry_flush) {
593 if (!cap_caching_mode(iommu->cap))
594 return 1;
595 else
596 did = 0;
597 }
598
599 switch (type) {
600 case DMA_TLB_GLOBAL_FLUSH:
601 /* global flush doesn't need set IVA_REG */
602 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
603 break;
604 case DMA_TLB_DSI_FLUSH:
605 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
606 break;
607 case DMA_TLB_PSI_FLUSH:
608 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
609 /* Note: always flush non-leaf currently */
610 val_iva = size_order | addr;
611 break;
612 default:
613 BUG();
614 }
615 /* Note: set drain read/write */
616#if 0
617 /*
618 * This is probably to be super secure.. Looks like we can
619 * ignore it without any impact.
620 */
621 if (cap_read_drain(iommu->cap))
622 val |= DMA_TLB_READ_DRAIN;
623#endif
624 if (cap_write_drain(iommu->cap))
625 val |= DMA_TLB_WRITE_DRAIN;
626
627 spin_lock_irqsave(&iommu->register_lock, flag);
628 /* Note: Only uses first TLB reg currently */
629 if (val_iva)
630 dmar_writeq(iommu->reg + tlb_offset, val_iva);
631 dmar_writeq(iommu->reg + tlb_offset + 8, val);
632
633 /* Make sure hardware complete it */
634 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
635 dmar_readq, (!(val & DMA_TLB_IVT)), val);
636
637 spin_unlock_irqrestore(&iommu->register_lock, flag);
638
639 /* check IOTLB invalidation granularity */
640 if (DMA_TLB_IAIG(val) == 0)
641 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
642 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
643 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
644 DMA_TLB_IIRG(type), DMA_TLB_IAIG(val));
645 /* flush context entry will implictly flush write buffer */
646 return 0;
647}
648
649static int inline iommu_flush_iotlb_global(struct intel_iommu *iommu,
650 int non_present_entry_flush)
651{
652 return __iommu_flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH,
653 non_present_entry_flush);
654}
655
656static int inline iommu_flush_iotlb_dsi(struct intel_iommu *iommu, u16 did,
657 int non_present_entry_flush)
658{
659 return __iommu_flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH,
660 non_present_entry_flush);
661}
662
663static int iommu_get_alignment(u64 base, unsigned int size)
664{
665 int t = 0;
666 u64 end;
667
668 end = base + size - 1;
669 while (base != end) {
670 t++;
671 base >>= 1;
672 end >>= 1;
673 }
674 return t;
675}
676
677static int iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
678 u64 addr, unsigned int pages, int non_present_entry_flush)
679{
680 unsigned int align;
681
682 BUG_ON(addr & (~PAGE_MASK_4K));
683 BUG_ON(pages == 0);
684
685 /* Fallback to domain selective flush if no PSI support */
686 if (!cap_pgsel_inv(iommu->cap))
687 return iommu_flush_iotlb_dsi(iommu, did,
688 non_present_entry_flush);
689
690 /*
691 * PSI requires page size to be 2 ^ x, and the base address is naturally
692 * aligned to the size
693 */
694 align = iommu_get_alignment(addr >> PAGE_SHIFT_4K, pages);
695 /* Fallback to domain selective flush if size is too big */
696 if (align > cap_max_amask_val(iommu->cap))
697 return iommu_flush_iotlb_dsi(iommu, did,
698 non_present_entry_flush);
699
700 addr >>= PAGE_SHIFT_4K + align;
701 addr <<= PAGE_SHIFT_4K + align;
702
703 return __iommu_flush_iotlb(iommu, did, addr, align,
704 DMA_TLB_PSI_FLUSH, non_present_entry_flush);
705}
706
707static int iommu_enable_translation(struct intel_iommu *iommu)
708{
709 u32 sts;
710 unsigned long flags;
711
712 spin_lock_irqsave(&iommu->register_lock, flags);
713 writel(iommu->gcmd|DMA_GCMD_TE, iommu->reg + DMAR_GCMD_REG);
714
715 /* Make sure hardware complete it */
716 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
717 readl, (sts & DMA_GSTS_TES), sts);
718
719 iommu->gcmd |= DMA_GCMD_TE;
720 spin_unlock_irqrestore(&iommu->register_lock, flags);
721 return 0;
722}
723
724static int iommu_disable_translation(struct intel_iommu *iommu)
725{
726 u32 sts;
727 unsigned long flag;
728
729 spin_lock_irqsave(&iommu->register_lock, flag);
730 iommu->gcmd &= ~DMA_GCMD_TE;
731 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
732
733 /* Make sure hardware complete it */
734 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
735 readl, (!(sts & DMA_GSTS_TES)), sts);
736
737 spin_unlock_irqrestore(&iommu->register_lock, flag);
738 return 0;
739}
740
741static int iommu_init_domains(struct intel_iommu *iommu)
742{
743 unsigned long ndomains;
744 unsigned long nlongs;
745
746 ndomains = cap_ndoms(iommu->cap);
747 pr_debug("Number of Domains supportd <%ld>\n", ndomains);
748 nlongs = BITS_TO_LONGS(ndomains);
749
750 /* TBD: there might be 64K domains,
751 * consider other allocation for future chip
752 */
753 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
754 if (!iommu->domain_ids) {
755 printk(KERN_ERR "Allocating domain id array failed\n");
756 return -ENOMEM;
757 }
758 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
759 GFP_KERNEL);
760 if (!iommu->domains) {
761 printk(KERN_ERR "Allocating domain array failed\n");
762 kfree(iommu->domain_ids);
763 return -ENOMEM;
764 }
765
766 /*
767 * if Caching mode is set, then invalid translations are tagged
768 * with domainid 0. Hence we need to pre-allocate it.
769 */
770 if (cap_caching_mode(iommu->cap))
771 set_bit(0, iommu->domain_ids);
772 return 0;
773}
774
775static struct intel_iommu *alloc_iommu(struct dmar_drhd_unit *drhd)
776{
777 struct intel_iommu *iommu;
778 int ret;
779 int map_size;
780 u32 ver;
781
782 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
783 if (!iommu)
784 return NULL;
785 iommu->reg = ioremap(drhd->reg_base_addr, PAGE_SIZE_4K);
786 if (!iommu->reg) {
787 printk(KERN_ERR "IOMMU: can't map the region\n");
788 goto error;
789 }
790 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
791 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
792
793 /* the registers might be more than one page */
794 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
795 cap_max_fault_reg_offset(iommu->cap));
796 map_size = PAGE_ALIGN_4K(map_size);
797 if (map_size > PAGE_SIZE_4K) {
798 iounmap(iommu->reg);
799 iommu->reg = ioremap(drhd->reg_base_addr, map_size);
800 if (!iommu->reg) {
801 printk(KERN_ERR "IOMMU: can't map the region\n");
802 goto error;
803 }
804 }
805
806 ver = readl(iommu->reg + DMAR_VER_REG);
807 pr_debug("IOMMU %llx: ver %d:%d cap %llx ecap %llx\n",
808 drhd->reg_base_addr, DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
809 iommu->cap, iommu->ecap);
810 ret = iommu_init_domains(iommu);
811 if (ret)
812 goto error_unmap;
813 spin_lock_init(&iommu->lock);
814 spin_lock_init(&iommu->register_lock);
815
816 drhd->iommu = iommu;
817 return iommu;
818error_unmap:
819 iounmap(iommu->reg);
820 iommu->reg = 0;
821error:
822 kfree(iommu);
823 return NULL;
824}
825
826static void domain_exit(struct dmar_domain *domain);
827static void free_iommu(struct intel_iommu *iommu)
828{
829 struct dmar_domain *domain;
830 int i;
831
832 if (!iommu)
833 return;
834
835 i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap));
836 for (; i < cap_ndoms(iommu->cap); ) {
837 domain = iommu->domains[i];
838 clear_bit(i, iommu->domain_ids);
839 domain_exit(domain);
840 i = find_next_bit(iommu->domain_ids,
841 cap_ndoms(iommu->cap), i+1);
842 }
843
844 if (iommu->gcmd & DMA_GCMD_TE)
845 iommu_disable_translation(iommu);
846
847 if (iommu->irq) {
848 set_irq_data(iommu->irq, NULL);
849 /* This will mask the irq */
850 free_irq(iommu->irq, iommu);
851 destroy_irq(iommu->irq);
852 }
853
854 kfree(iommu->domains);
855 kfree(iommu->domain_ids);
856
857 /* free context mapping */
858 free_context_table(iommu);
859
860 if (iommu->reg)
861 iounmap(iommu->reg);
862 kfree(iommu);
863}
864
865static struct dmar_domain * iommu_alloc_domain(struct intel_iommu *iommu)
866{
867 unsigned long num;
868 unsigned long ndomains;
869 struct dmar_domain *domain;
870 unsigned long flags;
871
872 domain = alloc_domain_mem();
873 if (!domain)
874 return NULL;
875
876 ndomains = cap_ndoms(iommu->cap);
877
878 spin_lock_irqsave(&iommu->lock, flags);
879 num = find_first_zero_bit(iommu->domain_ids, ndomains);
880 if (num >= ndomains) {
881 spin_unlock_irqrestore(&iommu->lock, flags);
882 free_domain_mem(domain);
883 printk(KERN_ERR "IOMMU: no free domain ids\n");
884 return NULL;
885 }
886
887 set_bit(num, iommu->domain_ids);
888 domain->id = num;
889 domain->iommu = iommu;
890 iommu->domains[num] = domain;
891 spin_unlock_irqrestore(&iommu->lock, flags);
892
893 return domain;
894}
895
896static void iommu_free_domain(struct dmar_domain *domain)
897{
898 unsigned long flags;
899
900 spin_lock_irqsave(&domain->iommu->lock, flags);
901 clear_bit(domain->id, domain->iommu->domain_ids);
902 spin_unlock_irqrestore(&domain->iommu->lock, flags);
903}
904
905static struct iova_domain reserved_iova_list;
906
907static void dmar_init_reserved_ranges(void)
908{
909 struct pci_dev *pdev = NULL;
910 struct iova *iova;
911 int i;
912 u64 addr, size;
913
914 init_iova_domain(&reserved_iova_list);
915
916 /* IOAPIC ranges shouldn't be accessed by DMA */
917 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
918 IOVA_PFN(IOAPIC_RANGE_END));
919 if (!iova)
920 printk(KERN_ERR "Reserve IOAPIC range failed\n");
921
922 /* Reserve all PCI MMIO to avoid peer-to-peer access */
923 for_each_pci_dev(pdev) {
924 struct resource *r;
925
926 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
927 r = &pdev->resource[i];
928 if (!r->flags || !(r->flags & IORESOURCE_MEM))
929 continue;
930 addr = r->start;
931 addr &= PAGE_MASK_4K;
932 size = r->end - addr;
933 size = PAGE_ALIGN_4K(size);
934 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(addr),
935 IOVA_PFN(size + addr) - 1);
936 if (!iova)
937 printk(KERN_ERR "Reserve iova failed\n");
938 }
939 }
940
941}
942
943static void domain_reserve_special_ranges(struct dmar_domain *domain)
944{
945 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
946}
947
948static inline int guestwidth_to_adjustwidth(int gaw)
949{
950 int agaw;
951 int r = (gaw - 12) % 9;
952
953 if (r == 0)
954 agaw = gaw;
955 else
956 agaw = gaw + 9 - r;
957 if (agaw > 64)
958 agaw = 64;
959 return agaw;
960}
961
962static int domain_init(struct dmar_domain *domain, int guest_width)
963{
964 struct intel_iommu *iommu;
965 int adjust_width, agaw;
966 unsigned long sagaw;
967
968 init_iova_domain(&domain->iovad);
969 spin_lock_init(&domain->mapping_lock);
970
971 domain_reserve_special_ranges(domain);
972
973 /* calculate AGAW */
974 iommu = domain->iommu;
975 if (guest_width > cap_mgaw(iommu->cap))
976 guest_width = cap_mgaw(iommu->cap);
977 domain->gaw = guest_width;
978 adjust_width = guestwidth_to_adjustwidth(guest_width);
979 agaw = width_to_agaw(adjust_width);
980 sagaw = cap_sagaw(iommu->cap);
981 if (!test_bit(agaw, &sagaw)) {
982 /* hardware doesn't support it, choose a bigger one */
983 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
984 agaw = find_next_bit(&sagaw, 5, agaw);
985 if (agaw >= 5)
986 return -ENODEV;
987 }
988 domain->agaw = agaw;
989 INIT_LIST_HEAD(&domain->devices);
990
991 /* always allocate the top pgd */
992 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
993 if (!domain->pgd)
994 return -ENOMEM;
995 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE_4K);
996 return 0;
997}
998
999static void domain_exit(struct dmar_domain *domain)
1000{
1001 u64 end;
1002
1003 /* Domain 0 is reserved, so dont process it */
1004 if (!domain)
1005 return;
1006
1007 domain_remove_dev_info(domain);
1008 /* destroy iovas */
1009 put_iova_domain(&domain->iovad);
1010 end = DOMAIN_MAX_ADDR(domain->gaw);
1011 end = end & (~PAGE_MASK_4K);
1012
1013 /* clear ptes */
1014 dma_pte_clear_range(domain, 0, end);
1015
1016 /* free page tables */
1017 dma_pte_free_pagetable(domain, 0, end);
1018
1019 iommu_free_domain(domain);
1020 free_domain_mem(domain);
1021}
1022
1023static int domain_context_mapping_one(struct dmar_domain *domain,
1024 u8 bus, u8 devfn)
1025{
1026 struct context_entry *context;
1027 struct intel_iommu *iommu = domain->iommu;
1028 unsigned long flags;
1029
1030 pr_debug("Set context mapping for %02x:%02x.%d\n",
1031 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1032 BUG_ON(!domain->pgd);
1033 context = device_to_context_entry(iommu, bus, devfn);
1034 if (!context)
1035 return -ENOMEM;
1036 spin_lock_irqsave(&iommu->lock, flags);
1037 if (context_present(*context)) {
1038 spin_unlock_irqrestore(&iommu->lock, flags);
1039 return 0;
1040 }
1041
1042 context_set_domain_id(*context, domain->id);
1043 context_set_address_width(*context, domain->agaw);
1044 context_set_address_root(*context, virt_to_phys(domain->pgd));
1045 context_set_translation_type(*context, CONTEXT_TT_MULTI_LEVEL);
1046 context_set_fault_enable(*context);
1047 context_set_present(*context);
1048 __iommu_flush_cache(iommu, context, sizeof(*context));
1049
1050 /* it's a non-present to present mapping */
1051 if (iommu_flush_context_device(iommu, domain->id,
1052 (((u16)bus) << 8) | devfn, DMA_CCMD_MASK_NOBIT, 1))
1053 iommu_flush_write_buffer(iommu);
1054 else
1055 iommu_flush_iotlb_dsi(iommu, 0, 0);
1056 spin_unlock_irqrestore(&iommu->lock, flags);
1057 return 0;
1058}
1059
1060static int
1061domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev)
1062{
1063 int ret;
1064 struct pci_dev *tmp, *parent;
1065
1066 ret = domain_context_mapping_one(domain, pdev->bus->number,
1067 pdev->devfn);
1068 if (ret)
1069 return ret;
1070
1071 /* dependent device mapping */
1072 tmp = pci_find_upstream_pcie_bridge(pdev);
1073 if (!tmp)
1074 return 0;
1075 /* Secondary interface's bus number and devfn 0 */
1076 parent = pdev->bus->self;
1077 while (parent != tmp) {
1078 ret = domain_context_mapping_one(domain, parent->bus->number,
1079 parent->devfn);
1080 if (ret)
1081 return ret;
1082 parent = parent->bus->self;
1083 }
1084 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
1085 return domain_context_mapping_one(domain,
1086 tmp->subordinate->number, 0);
1087 else /* this is a legacy PCI bridge */
1088 return domain_context_mapping_one(domain,
1089 tmp->bus->number, tmp->devfn);
1090}
1091
1092static int domain_context_mapped(struct dmar_domain *domain,
1093 struct pci_dev *pdev)
1094{
1095 int ret;
1096 struct pci_dev *tmp, *parent;
1097
1098 ret = device_context_mapped(domain->iommu,
1099 pdev->bus->number, pdev->devfn);
1100 if (!ret)
1101 return ret;
1102 /* dependent device mapping */
1103 tmp = pci_find_upstream_pcie_bridge(pdev);
1104 if (!tmp)
1105 return ret;
1106 /* Secondary interface's bus number and devfn 0 */
1107 parent = pdev->bus->self;
1108 while (parent != tmp) {
1109 ret = device_context_mapped(domain->iommu, parent->bus->number,
1110 parent->devfn);
1111 if (!ret)
1112 return ret;
1113 parent = parent->bus->self;
1114 }
1115 if (tmp->is_pcie)
1116 return device_context_mapped(domain->iommu,
1117 tmp->subordinate->number, 0);
1118 else
1119 return device_context_mapped(domain->iommu,
1120 tmp->bus->number, tmp->devfn);
1121}
1122
1123static int
1124domain_page_mapping(struct dmar_domain *domain, dma_addr_t iova,
1125 u64 hpa, size_t size, int prot)
1126{
1127 u64 start_pfn, end_pfn;
1128 struct dma_pte *pte;
1129 int index;
1130
1131 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1132 return -EINVAL;
1133 iova &= PAGE_MASK_4K;
1134 start_pfn = ((u64)hpa) >> PAGE_SHIFT_4K;
1135 end_pfn = (PAGE_ALIGN_4K(((u64)hpa) + size)) >> PAGE_SHIFT_4K;
1136 index = 0;
1137 while (start_pfn < end_pfn) {
1138 pte = addr_to_dma_pte(domain, iova + PAGE_SIZE_4K * index);
1139 if (!pte)
1140 return -ENOMEM;
1141 /* We don't need lock here, nobody else
1142 * touches the iova range
1143 */
1144 BUG_ON(dma_pte_addr(*pte));
1145 dma_set_pte_addr(*pte, start_pfn << PAGE_SHIFT_4K);
1146 dma_set_pte_prot(*pte, prot);
1147 __iommu_flush_cache(domain->iommu, pte, sizeof(*pte));
1148 start_pfn++;
1149 index++;
1150 }
1151 return 0;
1152}
1153
1154static void detach_domain_for_dev(struct dmar_domain *domain, u8 bus, u8 devfn)
1155{
1156 clear_context_table(domain->iommu, bus, devfn);
1157 iommu_flush_context_global(domain->iommu, 0);
1158 iommu_flush_iotlb_global(domain->iommu, 0);
1159}
1160
1161static void domain_remove_dev_info(struct dmar_domain *domain)
1162{
1163 struct device_domain_info *info;
1164 unsigned long flags;
1165
1166 spin_lock_irqsave(&device_domain_lock, flags);
1167 while (!list_empty(&domain->devices)) {
1168 info = list_entry(domain->devices.next,
1169 struct device_domain_info, link);
1170 list_del(&info->link);
1171 list_del(&info->global);
1172 if (info->dev)
1173 info->dev->sysdata = NULL;
1174 spin_unlock_irqrestore(&device_domain_lock, flags);
1175
1176 detach_domain_for_dev(info->domain, info->bus, info->devfn);
1177 free_devinfo_mem(info);
1178
1179 spin_lock_irqsave(&device_domain_lock, flags);
1180 }
1181 spin_unlock_irqrestore(&device_domain_lock, flags);
1182}
1183
1184/*
1185 * find_domain
1186 * Note: we use struct pci_dev->sysdata stores the info
1187 */
1188struct dmar_domain *
1189find_domain(struct pci_dev *pdev)
1190{
1191 struct device_domain_info *info;
1192
1193 /* No lock here, assumes no domain exit in normal case */
1194 info = pdev->sysdata;
1195 if (info)
1196 return info->domain;
1197 return NULL;
1198}
1199
1200static int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
1201 struct pci_dev *dev)
1202{
1203 int index;
1204
1205 while (dev) {
1206 for (index = 0; index < cnt; index ++)
1207 if (dev == devices[index])
1208 return 1;
1209
1210 /* Check our parent */
1211 dev = dev->bus->self;
1212 }
1213
1214 return 0;
1215}
1216
1217static struct dmar_drhd_unit *
1218dmar_find_matched_drhd_unit(struct pci_dev *dev)
1219{
1220 struct dmar_drhd_unit *drhd = NULL;
1221
1222 list_for_each_entry(drhd, &dmar_drhd_units, list) {
1223 if (drhd->include_all || dmar_pci_device_match(drhd->devices,
1224 drhd->devices_cnt, dev))
1225 return drhd;
1226 }
1227
1228 return NULL;
1229}
1230
1231/* domain is initialized */
1232static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1233{
1234 struct dmar_domain *domain, *found = NULL;
1235 struct intel_iommu *iommu;
1236 struct dmar_drhd_unit *drhd;
1237 struct device_domain_info *info, *tmp;
1238 struct pci_dev *dev_tmp;
1239 unsigned long flags;
1240 int bus = 0, devfn = 0;
1241
1242 domain = find_domain(pdev);
1243 if (domain)
1244 return domain;
1245
1246 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1247 if (dev_tmp) {
1248 if (dev_tmp->is_pcie) {
1249 bus = dev_tmp->subordinate->number;
1250 devfn = 0;
1251 } else {
1252 bus = dev_tmp->bus->number;
1253 devfn = dev_tmp->devfn;
1254 }
1255 spin_lock_irqsave(&device_domain_lock, flags);
1256 list_for_each_entry(info, &device_domain_list, global) {
1257 if (info->bus == bus && info->devfn == devfn) {
1258 found = info->domain;
1259 break;
1260 }
1261 }
1262 spin_unlock_irqrestore(&device_domain_lock, flags);
1263 /* pcie-pci bridge already has a domain, uses it */
1264 if (found) {
1265 domain = found;
1266 goto found_domain;
1267 }
1268 }
1269
1270 /* Allocate new domain for the device */
1271 drhd = dmar_find_matched_drhd_unit(pdev);
1272 if (!drhd) {
1273 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1274 pci_name(pdev));
1275 return NULL;
1276 }
1277 iommu = drhd->iommu;
1278
1279 domain = iommu_alloc_domain(iommu);
1280 if (!domain)
1281 goto error;
1282
1283 if (domain_init(domain, gaw)) {
1284 domain_exit(domain);
1285 goto error;
1286 }
1287
1288 /* register pcie-to-pci device */
1289 if (dev_tmp) {
1290 info = alloc_devinfo_mem();
1291 if (!info) {
1292 domain_exit(domain);
1293 goto error;
1294 }
1295 info->bus = bus;
1296 info->devfn = devfn;
1297 info->dev = NULL;
1298 info->domain = domain;
1299 /* This domain is shared by devices under p2p bridge */
1300 domain->flags |= DOMAIN_FLAG_MULTIPLE_DEVICES;
1301
1302 /* pcie-to-pci bridge already has a domain, uses it */
1303 found = NULL;
1304 spin_lock_irqsave(&device_domain_lock, flags);
1305 list_for_each_entry(tmp, &device_domain_list, global) {
1306 if (tmp->bus == bus && tmp->devfn == devfn) {
1307 found = tmp->domain;
1308 break;
1309 }
1310 }
1311 if (found) {
1312 free_devinfo_mem(info);
1313 domain_exit(domain);
1314 domain = found;
1315 } else {
1316 list_add(&info->link, &domain->devices);
1317 list_add(&info->global, &device_domain_list);
1318 }
1319 spin_unlock_irqrestore(&device_domain_lock, flags);
1320 }
1321
1322found_domain:
1323 info = alloc_devinfo_mem();
1324 if (!info)
1325 goto error;
1326 info->bus = pdev->bus->number;
1327 info->devfn = pdev->devfn;
1328 info->dev = pdev;
1329 info->domain = domain;
1330 spin_lock_irqsave(&device_domain_lock, flags);
1331 /* somebody is fast */
1332 found = find_domain(pdev);
1333 if (found != NULL) {
1334 spin_unlock_irqrestore(&device_domain_lock, flags);
1335 if (found != domain) {
1336 domain_exit(domain);
1337 domain = found;
1338 }
1339 free_devinfo_mem(info);
1340 return domain;
1341 }
1342 list_add(&info->link, &domain->devices);
1343 list_add(&info->global, &device_domain_list);
1344 pdev->sysdata = info;
1345 spin_unlock_irqrestore(&device_domain_lock, flags);
1346 return domain;
1347error:
1348 /* recheck it here, maybe others set it */
1349 return find_domain(pdev);
1350}
1351
1352static int iommu_prepare_identity_map(struct pci_dev *pdev, u64 start, u64 end)
1353{
1354 struct dmar_domain *domain;
1355 unsigned long size;
1356 u64 base;
1357 int ret;
1358
1359 printk(KERN_INFO
1360 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1361 pci_name(pdev), start, end);
1362 /* page table init */
1363 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1364 if (!domain)
1365 return -ENOMEM;
1366
1367 /* The address might not be aligned */
1368 base = start & PAGE_MASK_4K;
1369 size = end - base;
1370 size = PAGE_ALIGN_4K(size);
1371 if (!reserve_iova(&domain->iovad, IOVA_PFN(base),
1372 IOVA_PFN(base + size) - 1)) {
1373 printk(KERN_ERR "IOMMU: reserve iova failed\n");
1374 ret = -ENOMEM;
1375 goto error;
1376 }
1377
1378 pr_debug("Mapping reserved region %lx@%llx for %s\n",
1379 size, base, pci_name(pdev));
1380 /*
1381 * RMRR range might have overlap with physical memory range,
1382 * clear it first
1383 */
1384 dma_pte_clear_range(domain, base, base + size);
1385
1386 ret = domain_page_mapping(domain, base, base, size,
1387 DMA_PTE_READ|DMA_PTE_WRITE);
1388 if (ret)
1389 goto error;
1390
1391 /* context entry init */
1392 ret = domain_context_mapping(domain, pdev);
1393 if (!ret)
1394 return 0;
1395error:
1396 domain_exit(domain);
1397 return ret;
1398
1399}
1400
1401static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
1402 struct pci_dev *pdev)
1403{
1404 if (pdev->sysdata == DUMMY_DEVICE_DOMAIN_INFO)
1405 return 0;
1406 return iommu_prepare_identity_map(pdev, rmrr->base_address,
1407 rmrr->end_address + 1);
1408}
1409
1410int __init init_dmars(void)
1411{
1412 struct dmar_drhd_unit *drhd;
1413 struct dmar_rmrr_unit *rmrr;
1414 struct pci_dev *pdev;
1415 struct intel_iommu *iommu;
1416 int ret, unit = 0;
1417
1418 /*
1419 * for each drhd
1420 * allocate root
1421 * initialize and program root entry to not present
1422 * endfor
1423 */
1424 for_each_drhd_unit(drhd) {
1425 if (drhd->ignored)
1426 continue;
1427 iommu = alloc_iommu(drhd);
1428 if (!iommu) {
1429 ret = -ENOMEM;
1430 goto error;
1431 }
1432
1433 /*
1434 * TBD:
1435 * we could share the same root & context tables
1436 * amoung all IOMMU's. Need to Split it later.
1437 */
1438 ret = iommu_alloc_root_entry(iommu);
1439 if (ret) {
1440 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
1441 goto error;
1442 }
1443 }
1444
1445 /*
1446 * For each rmrr
1447 * for each dev attached to rmrr
1448 * do
1449 * locate drhd for dev, alloc domain for dev
1450 * allocate free domain
1451 * allocate page table entries for rmrr
1452 * if context not allocated for bus
1453 * allocate and init context
1454 * set present in root table for this bus
1455 * init context with domain, translation etc
1456 * endfor
1457 * endfor
1458 */
1459 for_each_rmrr_units(rmrr) {
1460 int i;
1461 for (i = 0; i < rmrr->devices_cnt; i++) {
1462 pdev = rmrr->devices[i];
1463 /* some BIOS lists non-exist devices in DMAR table */
1464 if (!pdev)
1465 continue;
1466 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
1467 if (ret)
1468 printk(KERN_ERR
1469 "IOMMU: mapping reserved region failed\n");
1470 }
1471 }
1472
1473 /*
1474 * for each drhd
1475 * enable fault log
1476 * global invalidate context cache
1477 * global invalidate iotlb
1478 * enable translation
1479 */
1480 for_each_drhd_unit(drhd) {
1481 if (drhd->ignored)
1482 continue;
1483 iommu = drhd->iommu;
1484 sprintf (iommu->name, "dmar%d", unit++);
1485
1486 iommu_flush_write_buffer(iommu);
1487
1488 iommu_set_root_entry(iommu);
1489
1490 iommu_flush_context_global(iommu, 0);
1491 iommu_flush_iotlb_global(iommu, 0);
1492
1493 ret = iommu_enable_translation(iommu);
1494 if (ret)
1495 goto error;
1496 }
1497
1498 return 0;
1499error:
1500 for_each_drhd_unit(drhd) {
1501 if (drhd->ignored)
1502 continue;
1503 iommu = drhd->iommu;
1504 free_iommu(iommu);
1505 }
1506 return ret;
1507}
1508
1509static inline u64 aligned_size(u64 host_addr, size_t size)
1510{
1511 u64 addr;
1512 addr = (host_addr & (~PAGE_MASK_4K)) + size;
1513 return PAGE_ALIGN_4K(addr);
1514}
1515
1516struct iova *
1517iommu_alloc_iova(struct dmar_domain *domain, void *host_addr, size_t size,
1518 u64 start, u64 end)
1519{
1520 u64 start_addr;
1521 struct iova *piova;
1522
1523 /* Make sure it's in range */
1524 if ((start > DOMAIN_MAX_ADDR(domain->gaw)) || end < start)
1525 return NULL;
1526
1527 end = min_t(u64, DOMAIN_MAX_ADDR(domain->gaw), end);
1528 start_addr = PAGE_ALIGN_4K(start);
1529 size = aligned_size((u64)host_addr, size);
1530 if (!size || (start_addr + size > end))
1531 return NULL;
1532
1533 piova = alloc_iova(&domain->iovad,
1534 size >> PAGE_SHIFT_4K, IOVA_PFN(end));
1535
1536 return piova;
1537}
1538
1539static dma_addr_t __intel_map_single(struct device *dev, void *addr,
1540 size_t size, int dir, u64 *flush_addr, unsigned int *flush_size)
1541{
1542 struct dmar_domain *domain;
1543 struct pci_dev *pdev = to_pci_dev(dev);
1544 int ret;
1545 int prot = 0;
1546 struct iova *iova = NULL;
1547 u64 start_addr;
1548
1549 addr = (void *)virt_to_phys(addr);
1550
1551 domain = get_domain_for_dev(pdev,
1552 DEFAULT_DOMAIN_ADDRESS_WIDTH);
1553 if (!domain) {
1554 printk(KERN_ERR
1555 "Allocating domain for %s failed", pci_name(pdev));
1556 return 0;
1557 }
1558
1559 start_addr = IOVA_START_ADDR;
1560
1561 if (pdev->dma_mask <= DMA_32BIT_MASK) {
1562 iova = iommu_alloc_iova(domain, addr, size, start_addr,
1563 pdev->dma_mask);
1564 } else {
1565 /*
1566 * First try to allocate an io virtual address in
1567 * DMA_32BIT_MASK and if that fails then try allocating
1568 * from higer range
1569 */
1570 iova = iommu_alloc_iova(domain, addr, size, start_addr,
1571 DMA_32BIT_MASK);
1572 if (!iova)
1573 iova = iommu_alloc_iova(domain, addr, size, start_addr,
1574 pdev->dma_mask);
1575 }
1576
1577 if (!iova) {
1578 printk(KERN_ERR"Allocating iova for %s failed", pci_name(pdev));
1579 return 0;
1580 }
1581
1582 /* make sure context mapping is ok */
1583 if (unlikely(!domain_context_mapped(domain, pdev))) {
1584 ret = domain_context_mapping(domain, pdev);
1585 if (ret)
1586 goto error;
1587 }
1588
1589 /*
1590 * Check if DMAR supports zero-length reads on write only
1591 * mappings..
1592 */
1593 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
1594 !cap_zlr(domain->iommu->cap))
1595 prot |= DMA_PTE_READ;
1596 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
1597 prot |= DMA_PTE_WRITE;
1598 /*
1599 * addr - (addr + size) might be partial page, we should map the whole
1600 * page. Note: if two part of one page are separately mapped, we
1601 * might have two guest_addr mapping to the same host addr, but this
1602 * is not a big problem
1603 */
1604 ret = domain_page_mapping(domain, iova->pfn_lo << PAGE_SHIFT_4K,
1605 ((u64)addr) & PAGE_MASK_4K,
1606 (iova->pfn_hi - iova->pfn_lo + 1) << PAGE_SHIFT_4K, prot);
1607 if (ret)
1608 goto error;
1609
1610 pr_debug("Device %s request: %lx@%llx mapping: %lx@%llx, dir %d\n",
1611 pci_name(pdev), size, (u64)addr,
1612 (iova->pfn_hi - iova->pfn_lo + 1) << PAGE_SHIFT_4K,
1613 (u64)(iova->pfn_lo << PAGE_SHIFT_4K), dir);
1614
1615 *flush_addr = iova->pfn_lo << PAGE_SHIFT_4K;
1616 *flush_size = (iova->pfn_hi - iova->pfn_lo + 1) << PAGE_SHIFT_4K;
1617 return (iova->pfn_lo << PAGE_SHIFT_4K) + ((u64)addr & (~PAGE_MASK_4K));
1618error:
1619 __free_iova(&domain->iovad, iova);
1620 printk(KERN_ERR"Device %s request: %lx@%llx dir %d --- failed\n",
1621 pci_name(pdev), size, (u64)addr, dir);
1622 return 0;
1623}
1624
1625static dma_addr_t intel_map_single(struct device *hwdev, void *addr,
1626 size_t size, int dir)
1627{
1628 struct pci_dev *pdev = to_pci_dev(hwdev);
1629 dma_addr_t ret;
1630 struct dmar_domain *domain;
1631 u64 flush_addr;
1632 unsigned int flush_size;
1633
1634 BUG_ON(dir == DMA_NONE);
1635 if (pdev->sysdata == DUMMY_DEVICE_DOMAIN_INFO)
1636 return virt_to_bus(addr);
1637
1638 ret = __intel_map_single(hwdev, addr, size,
1639 dir, &flush_addr, &flush_size);
1640 if (ret) {
1641 domain = find_domain(pdev);
1642 /* it's a non-present to present mapping */
1643 if (iommu_flush_iotlb_psi(domain->iommu, domain->id,
1644 flush_addr, flush_size >> PAGE_SHIFT_4K, 1))
1645 iommu_flush_write_buffer(domain->iommu);
1646 }
1647 return ret;
1648}
1649
1650static void __intel_unmap_single(struct device *dev, dma_addr_t dev_addr,
1651 size_t size, int dir, u64 *flush_addr, unsigned int *flush_size)
1652{
1653 struct dmar_domain *domain;
1654 struct pci_dev *pdev = to_pci_dev(dev);
1655 struct iova *iova;
1656
1657 domain = find_domain(pdev);
1658 BUG_ON(!domain);
1659
1660 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
1661 if (!iova) {
1662 *flush_size = 0;
1663 return;
1664 }
1665 pr_debug("Device %s unmapping: %lx@%llx\n",
1666 pci_name(pdev),
1667 (iova->pfn_hi - iova->pfn_lo + 1) << PAGE_SHIFT_4K,
1668 (u64)(iova->pfn_lo << PAGE_SHIFT_4K));
1669
1670 *flush_addr = iova->pfn_lo << PAGE_SHIFT_4K;
1671 *flush_size = (iova->pfn_hi - iova->pfn_lo + 1) << PAGE_SHIFT_4K;
1672 /* clear the whole page, not just dev_addr - (dev_addr + size) */
1673 dma_pte_clear_range(domain, *flush_addr, *flush_addr + *flush_size);
1674 /* free page tables */
1675 dma_pte_free_pagetable(domain, *flush_addr, *flush_addr + *flush_size);
1676 /* free iova */
1677 __free_iova(&domain->iovad, iova);
1678}
1679
1680static void intel_unmap_single(struct device *dev, dma_addr_t dev_addr,
1681 size_t size, int dir)
1682{
1683 struct pci_dev *pdev = to_pci_dev(dev);
1684 struct dmar_domain *domain;
1685 u64 flush_addr;
1686 unsigned int flush_size;
1687
1688 if (pdev->sysdata == DUMMY_DEVICE_DOMAIN_INFO)
1689 return;
1690
1691 domain = find_domain(pdev);
1692 __intel_unmap_single(dev, dev_addr, size,
1693 dir, &flush_addr, &flush_size);
1694 if (flush_size == 0)
1695 return;
1696 if (iommu_flush_iotlb_psi(domain->iommu, domain->id, flush_addr,
1697 flush_size >> PAGE_SHIFT_4K, 0))
1698 iommu_flush_write_buffer(domain->iommu);
1699}
1700
1701static void * intel_alloc_coherent(struct device *hwdev, size_t size,
1702 dma_addr_t *dma_handle, gfp_t flags)
1703{
1704 void *vaddr;
1705 int order;
1706
1707 size = PAGE_ALIGN_4K(size);
1708 order = get_order(size);
1709 flags &= ~(GFP_DMA | GFP_DMA32);
1710
1711 vaddr = (void *)__get_free_pages(flags, order);
1712 if (!vaddr)
1713 return NULL;
1714 memset(vaddr, 0, size);
1715
1716 *dma_handle = intel_map_single(hwdev, vaddr, size, DMA_BIDIRECTIONAL);
1717 if (*dma_handle)
1718 return vaddr;
1719 free_pages((unsigned long)vaddr, order);
1720 return NULL;
1721}
1722
1723static void intel_free_coherent(struct device *hwdev, size_t size,
1724 void *vaddr, dma_addr_t dma_handle)
1725{
1726 int order;
1727
1728 size = PAGE_ALIGN_4K(size);
1729 order = get_order(size);
1730
1731 intel_unmap_single(hwdev, dma_handle, size, DMA_BIDIRECTIONAL);
1732 free_pages((unsigned long)vaddr, order);
1733}
1734
1735static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sg,
1736 int nelems, int dir)
1737{
1738 int i;
1739 struct pci_dev *pdev = to_pci_dev(hwdev);
1740 struct dmar_domain *domain;
1741 u64 flush_addr;
1742 unsigned int flush_size;
1743
1744 if (pdev->sysdata == DUMMY_DEVICE_DOMAIN_INFO)
1745 return;
1746
1747 domain = find_domain(pdev);
1748 for (i = 0; i < nelems; i++, sg++)
1749 __intel_unmap_single(hwdev, sg->dma_address,
1750 sg->dma_length, dir, &flush_addr, &flush_size);
1751
1752 if (iommu_flush_iotlb_dsi(domain->iommu, domain->id, 0))
1753 iommu_flush_write_buffer(domain->iommu);
1754}
1755
1756#define SG_ENT_VIRT_ADDRESS(sg) (page_address((sg)->page) + (sg)->offset)
1757static int intel_nontranslate_map_sg(struct device *hddev,
1758 struct scatterlist *sg, int nelems, int dir)
1759{
1760 int i;
1761
1762 for (i = 0; i < nelems; i++) {
1763 struct scatterlist *s = &sg[i];
1764 BUG_ON(!s->page);
1765 s->dma_address = virt_to_bus(SG_ENT_VIRT_ADDRESS(s));
1766 s->dma_length = s->length;
1767 }
1768 return nelems;
1769}
1770
1771static int intel_map_sg(struct device *hwdev, struct scatterlist *sg,
1772 int nelems, int dir)
1773{
1774 void *addr;
1775 int i;
1776 dma_addr_t dma_handle;
1777 struct pci_dev *pdev = to_pci_dev(hwdev);
1778 struct dmar_domain *domain;
1779 u64 flush_addr;
1780 unsigned int flush_size;
1781
1782 BUG_ON(dir == DMA_NONE);
1783 if (pdev->sysdata == DUMMY_DEVICE_DOMAIN_INFO)
1784 return intel_nontranslate_map_sg(hwdev, sg, nelems, dir);
1785
1786 for (i = 0; i < nelems; i++, sg++) {
1787 addr = SG_ENT_VIRT_ADDRESS(sg);
1788 dma_handle = __intel_map_single(hwdev, addr,
1789 sg->length, dir, &flush_addr, &flush_size);
1790 if (!dma_handle) {
1791 intel_unmap_sg(hwdev, sg - i, i, dir);
1792 sg[0].dma_length = 0;
1793 return 0;
1794 }
1795 sg->dma_address = dma_handle;
1796 sg->dma_length = sg->length;
1797 }
1798
1799 domain = find_domain(pdev);
1800
1801 /* it's a non-present to present mapping */
1802 if (iommu_flush_iotlb_dsi(domain->iommu, domain->id, 1))
1803 iommu_flush_write_buffer(domain->iommu);
1804 return nelems;
1805}
1806
1807static struct dma_mapping_ops intel_dma_ops = {
1808 .alloc_coherent = intel_alloc_coherent,
1809 .free_coherent = intel_free_coherent,
1810 .map_single = intel_map_single,
1811 .unmap_single = intel_unmap_single,
1812 .map_sg = intel_map_sg,
1813 .unmap_sg = intel_unmap_sg,
1814};
1815
1816static inline int iommu_domain_cache_init(void)
1817{
1818 int ret = 0;
1819
1820 iommu_domain_cache = kmem_cache_create("iommu_domain",
1821 sizeof(struct dmar_domain),
1822 0,
1823 SLAB_HWCACHE_ALIGN,
1824
1825 NULL);
1826 if (!iommu_domain_cache) {
1827 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
1828 ret = -ENOMEM;
1829 }
1830
1831 return ret;
1832}
1833
1834static inline int iommu_devinfo_cache_init(void)
1835{
1836 int ret = 0;
1837
1838 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
1839 sizeof(struct device_domain_info),
1840 0,
1841 SLAB_HWCACHE_ALIGN,
1842
1843 NULL);
1844 if (!iommu_devinfo_cache) {
1845 printk(KERN_ERR "Couldn't create devinfo cache\n");
1846 ret = -ENOMEM;
1847 }
1848
1849 return ret;
1850}
1851
1852static inline int iommu_iova_cache_init(void)
1853{
1854 int ret = 0;
1855
1856 iommu_iova_cache = kmem_cache_create("iommu_iova",
1857 sizeof(struct iova),
1858 0,
1859 SLAB_HWCACHE_ALIGN,
1860
1861 NULL);
1862 if (!iommu_iova_cache) {
1863 printk(KERN_ERR "Couldn't create iova cache\n");
1864 ret = -ENOMEM;
1865 }
1866
1867 return ret;
1868}
1869
1870static int __init iommu_init_mempool(void)
1871{
1872 int ret;
1873 ret = iommu_iova_cache_init();
1874 if (ret)
1875 return ret;
1876
1877 ret = iommu_domain_cache_init();
1878 if (ret)
1879 goto domain_error;
1880
1881 ret = iommu_devinfo_cache_init();
1882 if (!ret)
1883 return ret;
1884
1885 kmem_cache_destroy(iommu_domain_cache);
1886domain_error:
1887 kmem_cache_destroy(iommu_iova_cache);
1888
1889 return -ENOMEM;
1890}
1891
1892static void __init iommu_exit_mempool(void)
1893{
1894 kmem_cache_destroy(iommu_devinfo_cache);
1895 kmem_cache_destroy(iommu_domain_cache);
1896 kmem_cache_destroy(iommu_iova_cache);
1897
1898}
1899
1900void __init detect_intel_iommu(void)
1901{
1902 if (swiotlb || no_iommu || iommu_detected || dmar_disabled)
1903 return;
1904 if (early_dmar_detect()) {
1905 iommu_detected = 1;
1906 }
1907}
1908
1909static void __init init_no_remapping_devices(void)
1910{
1911 struct dmar_drhd_unit *drhd;
1912
1913 for_each_drhd_unit(drhd) {
1914 if (!drhd->include_all) {
1915 int i;
1916 for (i = 0; i < drhd->devices_cnt; i++)
1917 if (drhd->devices[i] != NULL)
1918 break;
1919 /* ignore DMAR unit if no pci devices exist */
1920 if (i == drhd->devices_cnt)
1921 drhd->ignored = 1;
1922 }
1923 }
1924
1925 if (dmar_map_gfx)
1926 return;
1927
1928 for_each_drhd_unit(drhd) {
1929 int i;
1930 if (drhd->ignored || drhd->include_all)
1931 continue;
1932
1933 for (i = 0; i < drhd->devices_cnt; i++)
1934 if (drhd->devices[i] &&
1935 !IS_GFX_DEVICE(drhd->devices[i]))
1936 break;
1937
1938 if (i < drhd->devices_cnt)
1939 continue;
1940
1941 /* bypass IOMMU if it is just for gfx devices */
1942 drhd->ignored = 1;
1943 for (i = 0; i < drhd->devices_cnt; i++) {
1944 if (!drhd->devices[i])
1945 continue;
1946 drhd->devices[i]->sysdata = DUMMY_DEVICE_DOMAIN_INFO;
1947 }
1948 }
1949}
1950
1951int __init intel_iommu_init(void)
1952{
1953 int ret = 0;
1954
1955 if (no_iommu || swiotlb || dmar_disabled)
1956 return -ENODEV;
1957
1958 if (dmar_table_init())
1959 return -ENODEV;
1960
1961 iommu_init_mempool();
1962 dmar_init_reserved_ranges();
1963
1964 init_no_remapping_devices();
1965
1966 ret = init_dmars();
1967 if (ret) {
1968 printk(KERN_ERR "IOMMU: dmar init failed\n");
1969 put_iova_domain(&reserved_iova_list);
1970 iommu_exit_mempool();
1971 return ret;
1972 }
1973 printk(KERN_INFO
1974 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
1975
1976 force_iommu = 1;
1977 dma_ops = &intel_dma_ops;
1978 return 0;
1979}
This page took 0.093776 seconds and 5 git commands to generate.