x86: introduce max_low_pfn_mapped for 64-bit
[deliverable/linux.git] / drivers / pci / intel-iommu.c
CommitLineData
ba395927
KA
1/*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
98bcef56 17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
ba395927
KA
21 */
22
23#include <linux/init.h>
24#include <linux/bitmap.h>
5e0d2a6f 25#include <linux/debugfs.h>
ba395927
KA
26#include <linux/slab.h>
27#include <linux/irq.h>
28#include <linux/interrupt.h>
29#include <linux/sysdev.h>
30#include <linux/spinlock.h>
31#include <linux/pci.h>
32#include <linux/dmar.h>
33#include <linux/dma-mapping.h>
34#include <linux/mempool.h>
5e0d2a6f 35#include <linux/timer.h>
ba395927
KA
36#include "iova.h"
37#include "intel-iommu.h"
38#include <asm/proto.h> /* force_iommu in this header in x86-64*/
39#include <asm/cacheflush.h>
395624fc 40#include <asm/gart.h>
ba395927
KA
41#include "pci.h"
42
43#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
44#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
45
46#define IOAPIC_RANGE_START (0xfee00000)
47#define IOAPIC_RANGE_END (0xfeefffff)
48#define IOVA_START_ADDR (0x1000)
49
50#define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
51
a7eb08c2 52#define DMAR_OPERATION_TIMEOUT ((cycles_t) tsc_khz*10*1000) /* 10sec */
ba395927
KA
53
54#define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1)
55
5e0d2a6f 56
57static void flush_unmaps_timeout(unsigned long data);
58
59DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
60
61static struct intel_iommu *g_iommus;
80b20dd8 62
63#define HIGH_WATER_MARK 250
64struct deferred_flush_tables {
65 int next;
66 struct iova *iova[HIGH_WATER_MARK];
67 struct dmar_domain *domain[HIGH_WATER_MARK];
68};
69
70static struct deferred_flush_tables *deferred_flush;
71
5e0d2a6f 72/* bitmap for indexing intel_iommus */
5e0d2a6f 73static int g_num_of_iommus;
74
75static DEFINE_SPINLOCK(async_umap_flush_lock);
76static LIST_HEAD(unmaps_to_do);
77
78static int timer_on;
79static long list_size;
5e0d2a6f 80
ba395927
KA
81static void domain_remove_dev_info(struct dmar_domain *domain);
82
83static int dmar_disabled;
84static int __initdata dmar_map_gfx = 1;
7d3b03ce 85static int dmar_forcedac;
5e0d2a6f 86static int intel_iommu_strict;
ba395927
KA
87
88#define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
89static DEFINE_SPINLOCK(device_domain_lock);
90static LIST_HEAD(device_domain_list);
91
92static int __init intel_iommu_setup(char *str)
93{
94 if (!str)
95 return -EINVAL;
96 while (*str) {
97 if (!strncmp(str, "off", 3)) {
98 dmar_disabled = 1;
99 printk(KERN_INFO"Intel-IOMMU: disabled\n");
100 } else if (!strncmp(str, "igfx_off", 8)) {
101 dmar_map_gfx = 0;
102 printk(KERN_INFO
103 "Intel-IOMMU: disable GFX device mapping\n");
7d3b03ce 104 } else if (!strncmp(str, "forcedac", 8)) {
5e0d2a6f 105 printk(KERN_INFO
7d3b03ce
KA
106 "Intel-IOMMU: Forcing DAC for PCI devices\n");
107 dmar_forcedac = 1;
5e0d2a6f 108 } else if (!strncmp(str, "strict", 6)) {
109 printk(KERN_INFO
110 "Intel-IOMMU: disable batched IOTLB flush\n");
111 intel_iommu_strict = 1;
ba395927
KA
112 }
113
114 str += strcspn(str, ",");
115 while (*str == ',')
116 str++;
117 }
118 return 0;
119}
120__setup("intel_iommu=", intel_iommu_setup);
121
122static struct kmem_cache *iommu_domain_cache;
123static struct kmem_cache *iommu_devinfo_cache;
124static struct kmem_cache *iommu_iova_cache;
125
eb3fa7cb
KA
126static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep)
127{
128 unsigned int flags;
129 void *vaddr;
130
131 /* trying to avoid low memory issues */
132 flags = current->flags & PF_MEMALLOC;
133 current->flags |= PF_MEMALLOC;
134 vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC);
135 current->flags &= (~PF_MEMALLOC | flags);
136 return vaddr;
137}
138
139
ba395927
KA
140static inline void *alloc_pgtable_page(void)
141{
eb3fa7cb
KA
142 unsigned int flags;
143 void *vaddr;
144
145 /* trying to avoid low memory issues */
146 flags = current->flags & PF_MEMALLOC;
147 current->flags |= PF_MEMALLOC;
148 vaddr = (void *)get_zeroed_page(GFP_ATOMIC);
149 current->flags &= (~PF_MEMALLOC | flags);
150 return vaddr;
ba395927
KA
151}
152
153static inline void free_pgtable_page(void *vaddr)
154{
155 free_page((unsigned long)vaddr);
156}
157
158static inline void *alloc_domain_mem(void)
159{
eb3fa7cb 160 return iommu_kmem_cache_alloc(iommu_domain_cache);
ba395927
KA
161}
162
163static inline void free_domain_mem(void *vaddr)
164{
165 kmem_cache_free(iommu_domain_cache, vaddr);
166}
167
168static inline void * alloc_devinfo_mem(void)
169{
eb3fa7cb 170 return iommu_kmem_cache_alloc(iommu_devinfo_cache);
ba395927
KA
171}
172
173static inline void free_devinfo_mem(void *vaddr)
174{
175 kmem_cache_free(iommu_devinfo_cache, vaddr);
176}
177
178struct iova *alloc_iova_mem(void)
179{
eb3fa7cb 180 return iommu_kmem_cache_alloc(iommu_iova_cache);
ba395927
KA
181}
182
183void free_iova_mem(struct iova *iova)
184{
185 kmem_cache_free(iommu_iova_cache, iova);
186}
187
188static inline void __iommu_flush_cache(
189 struct intel_iommu *iommu, void *addr, int size)
190{
191 if (!ecap_coherent(iommu->ecap))
192 clflush_cache_range(addr, size);
193}
194
195/* Gets context entry for a given bus and devfn */
196static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
197 u8 bus, u8 devfn)
198{
199 struct root_entry *root;
200 struct context_entry *context;
201 unsigned long phy_addr;
202 unsigned long flags;
203
204 spin_lock_irqsave(&iommu->lock, flags);
205 root = &iommu->root_entry[bus];
206 context = get_context_addr_from_root(root);
207 if (!context) {
208 context = (struct context_entry *)alloc_pgtable_page();
209 if (!context) {
210 spin_unlock_irqrestore(&iommu->lock, flags);
211 return NULL;
212 }
213 __iommu_flush_cache(iommu, (void *)context, PAGE_SIZE_4K);
214 phy_addr = virt_to_phys((void *)context);
215 set_root_value(root, phy_addr);
216 set_root_present(root);
217 __iommu_flush_cache(iommu, root, sizeof(*root));
218 }
219 spin_unlock_irqrestore(&iommu->lock, flags);
220 return &context[devfn];
221}
222
223static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
224{
225 struct root_entry *root;
226 struct context_entry *context;
227 int ret;
228 unsigned long flags;
229
230 spin_lock_irqsave(&iommu->lock, flags);
231 root = &iommu->root_entry[bus];
232 context = get_context_addr_from_root(root);
233 if (!context) {
234 ret = 0;
235 goto out;
236 }
237 ret = context_present(context[devfn]);
238out:
239 spin_unlock_irqrestore(&iommu->lock, flags);
240 return ret;
241}
242
243static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
244{
245 struct root_entry *root;
246 struct context_entry *context;
247 unsigned long flags;
248
249 spin_lock_irqsave(&iommu->lock, flags);
250 root = &iommu->root_entry[bus];
251 context = get_context_addr_from_root(root);
252 if (context) {
253 context_clear_entry(context[devfn]);
254 __iommu_flush_cache(iommu, &context[devfn], \
255 sizeof(*context));
256 }
257 spin_unlock_irqrestore(&iommu->lock, flags);
258}
259
260static void free_context_table(struct intel_iommu *iommu)
261{
262 struct root_entry *root;
263 int i;
264 unsigned long flags;
265 struct context_entry *context;
266
267 spin_lock_irqsave(&iommu->lock, flags);
268 if (!iommu->root_entry) {
269 goto out;
270 }
271 for (i = 0; i < ROOT_ENTRY_NR; i++) {
272 root = &iommu->root_entry[i];
273 context = get_context_addr_from_root(root);
274 if (context)
275 free_pgtable_page(context);
276 }
277 free_pgtable_page(iommu->root_entry);
278 iommu->root_entry = NULL;
279out:
280 spin_unlock_irqrestore(&iommu->lock, flags);
281}
282
283/* page table handling */
284#define LEVEL_STRIDE (9)
285#define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
286
287static inline int agaw_to_level(int agaw)
288{
289 return agaw + 2;
290}
291
292static inline int agaw_to_width(int agaw)
293{
294 return 30 + agaw * LEVEL_STRIDE;
295
296}
297
298static inline int width_to_agaw(int width)
299{
300 return (width - 30) / LEVEL_STRIDE;
301}
302
303static inline unsigned int level_to_offset_bits(int level)
304{
305 return (12 + (level - 1) * LEVEL_STRIDE);
306}
307
308static inline int address_level_offset(u64 addr, int level)
309{
310 return ((addr >> level_to_offset_bits(level)) & LEVEL_MASK);
311}
312
313static inline u64 level_mask(int level)
314{
315 return ((u64)-1 << level_to_offset_bits(level));
316}
317
318static inline u64 level_size(int level)
319{
320 return ((u64)1 << level_to_offset_bits(level));
321}
322
323static inline u64 align_to_level(u64 addr, int level)
324{
325 return ((addr + level_size(level) - 1) & level_mask(level));
326}
327
328static struct dma_pte * addr_to_dma_pte(struct dmar_domain *domain, u64 addr)
329{
330 int addr_width = agaw_to_width(domain->agaw);
331 struct dma_pte *parent, *pte = NULL;
332 int level = agaw_to_level(domain->agaw);
333 int offset;
334 unsigned long flags;
335
336 BUG_ON(!domain->pgd);
337
338 addr &= (((u64)1) << addr_width) - 1;
339 parent = domain->pgd;
340
341 spin_lock_irqsave(&domain->mapping_lock, flags);
342 while (level > 0) {
343 void *tmp_page;
344
345 offset = address_level_offset(addr, level);
346 pte = &parent[offset];
347 if (level == 1)
348 break;
349
350 if (!dma_pte_present(*pte)) {
351 tmp_page = alloc_pgtable_page();
352
353 if (!tmp_page) {
354 spin_unlock_irqrestore(&domain->mapping_lock,
355 flags);
356 return NULL;
357 }
358 __iommu_flush_cache(domain->iommu, tmp_page,
359 PAGE_SIZE_4K);
360 dma_set_pte_addr(*pte, virt_to_phys(tmp_page));
361 /*
362 * high level table always sets r/w, last level page
363 * table control read/write
364 */
365 dma_set_pte_readable(*pte);
366 dma_set_pte_writable(*pte);
367 __iommu_flush_cache(domain->iommu, pte, sizeof(*pte));
368 }
369 parent = phys_to_virt(dma_pte_addr(*pte));
370 level--;
371 }
372
373 spin_unlock_irqrestore(&domain->mapping_lock, flags);
374 return pte;
375}
376
377/* return address's pte at specific level */
378static struct dma_pte *dma_addr_level_pte(struct dmar_domain *domain, u64 addr,
379 int level)
380{
381 struct dma_pte *parent, *pte = NULL;
382 int total = agaw_to_level(domain->agaw);
383 int offset;
384
385 parent = domain->pgd;
386 while (level <= total) {
387 offset = address_level_offset(addr, total);
388 pte = &parent[offset];
389 if (level == total)
390 return pte;
391
392 if (!dma_pte_present(*pte))
393 break;
394 parent = phys_to_virt(dma_pte_addr(*pte));
395 total--;
396 }
397 return NULL;
398}
399
400/* clear one page's page table */
401static void dma_pte_clear_one(struct dmar_domain *domain, u64 addr)
402{
403 struct dma_pte *pte = NULL;
404
405 /* get last level pte */
406 pte = dma_addr_level_pte(domain, addr, 1);
407
408 if (pte) {
409 dma_clear_pte(*pte);
410 __iommu_flush_cache(domain->iommu, pte, sizeof(*pte));
411 }
412}
413
414/* clear last level pte, a tlb flush should be followed */
415static void dma_pte_clear_range(struct dmar_domain *domain, u64 start, u64 end)
416{
417 int addr_width = agaw_to_width(domain->agaw);
418
419 start &= (((u64)1) << addr_width) - 1;
420 end &= (((u64)1) << addr_width) - 1;
421 /* in case it's partial page */
422 start = PAGE_ALIGN_4K(start);
423 end &= PAGE_MASK_4K;
424
425 /* we don't need lock here, nobody else touches the iova range */
426 while (start < end) {
427 dma_pte_clear_one(domain, start);
428 start += PAGE_SIZE_4K;
429 }
430}
431
432/* free page table pages. last level pte should already be cleared */
433static void dma_pte_free_pagetable(struct dmar_domain *domain,
434 u64 start, u64 end)
435{
436 int addr_width = agaw_to_width(domain->agaw);
437 struct dma_pte *pte;
438 int total = agaw_to_level(domain->agaw);
439 int level;
440 u64 tmp;
441
442 start &= (((u64)1) << addr_width) - 1;
443 end &= (((u64)1) << addr_width) - 1;
444
445 /* we don't need lock here, nobody else touches the iova range */
446 level = 2;
447 while (level <= total) {
448 tmp = align_to_level(start, level);
449 if (tmp >= end || (tmp + level_size(level) > end))
450 return;
451
452 while (tmp < end) {
453 pte = dma_addr_level_pte(domain, tmp, level);
454 if (pte) {
455 free_pgtable_page(
456 phys_to_virt(dma_pte_addr(*pte)));
457 dma_clear_pte(*pte);
458 __iommu_flush_cache(domain->iommu,
459 pte, sizeof(*pte));
460 }
461 tmp += level_size(level);
462 }
463 level++;
464 }
465 /* free pgd */
466 if (start == 0 && end >= ((((u64)1) << addr_width) - 1)) {
467 free_pgtable_page(domain->pgd);
468 domain->pgd = NULL;
469 }
470}
471
472/* iommu handling */
473static int iommu_alloc_root_entry(struct intel_iommu *iommu)
474{
475 struct root_entry *root;
476 unsigned long flags;
477
478 root = (struct root_entry *)alloc_pgtable_page();
479 if (!root)
480 return -ENOMEM;
481
482 __iommu_flush_cache(iommu, root, PAGE_SIZE_4K);
483
484 spin_lock_irqsave(&iommu->lock, flags);
485 iommu->root_entry = root;
486 spin_unlock_irqrestore(&iommu->lock, flags);
487
488 return 0;
489}
490
491#define IOMMU_WAIT_OP(iommu, offset, op, cond, sts) \
492{\
a7eb08c2 493 cycles_t start_time = get_cycles();\
ba395927
KA
494 while (1) {\
495 sts = op (iommu->reg + offset);\
496 if (cond)\
497 break;\
a7eb08c2 498 if (DMAR_OPERATION_TIMEOUT < (get_cycles() - start_time))\
ba395927
KA
499 panic("DMAR hardware is malfunctioning\n");\
500 cpu_relax();\
501 }\
502}
503
504static void iommu_set_root_entry(struct intel_iommu *iommu)
505{
506 void *addr;
507 u32 cmd, sts;
508 unsigned long flag;
509
510 addr = iommu->root_entry;
511
512 spin_lock_irqsave(&iommu->register_lock, flag);
513 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
514
515 cmd = iommu->gcmd | DMA_GCMD_SRTP;
516 writel(cmd, iommu->reg + DMAR_GCMD_REG);
517
518 /* Make sure hardware complete it */
519 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
520 readl, (sts & DMA_GSTS_RTPS), sts);
521
522 spin_unlock_irqrestore(&iommu->register_lock, flag);
523}
524
525static void iommu_flush_write_buffer(struct intel_iommu *iommu)
526{
527 u32 val;
528 unsigned long flag;
529
530 if (!cap_rwbf(iommu->cap))
531 return;
532 val = iommu->gcmd | DMA_GCMD_WBF;
533
534 spin_lock_irqsave(&iommu->register_lock, flag);
535 writel(val, iommu->reg + DMAR_GCMD_REG);
536
537 /* Make sure hardware complete it */
538 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
539 readl, (!(val & DMA_GSTS_WBFS)), val);
540
541 spin_unlock_irqrestore(&iommu->register_lock, flag);
542}
543
544/* return value determine if we need a write buffer flush */
545static int __iommu_flush_context(struct intel_iommu *iommu,
546 u16 did, u16 source_id, u8 function_mask, u64 type,
547 int non_present_entry_flush)
548{
549 u64 val = 0;
550 unsigned long flag;
551
552 /*
553 * In the non-present entry flush case, if hardware doesn't cache
554 * non-present entry we do nothing and if hardware cache non-present
555 * entry, we flush entries of domain 0 (the domain id is used to cache
556 * any non-present entries)
557 */
558 if (non_present_entry_flush) {
559 if (!cap_caching_mode(iommu->cap))
560 return 1;
561 else
562 did = 0;
563 }
564
565 switch (type) {
566 case DMA_CCMD_GLOBAL_INVL:
567 val = DMA_CCMD_GLOBAL_INVL;
568 break;
569 case DMA_CCMD_DOMAIN_INVL:
570 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
571 break;
572 case DMA_CCMD_DEVICE_INVL:
573 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
574 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
575 break;
576 default:
577 BUG();
578 }
579 val |= DMA_CCMD_ICC;
580
581 spin_lock_irqsave(&iommu->register_lock, flag);
582 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
583
584 /* Make sure hardware complete it */
585 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
586 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
587
588 spin_unlock_irqrestore(&iommu->register_lock, flag);
589
590 /* flush context entry will implictly flush write buffer */
591 return 0;
592}
593
594static int inline iommu_flush_context_global(struct intel_iommu *iommu,
595 int non_present_entry_flush)
596{
597 return __iommu_flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL,
598 non_present_entry_flush);
599}
600
601static int inline iommu_flush_context_domain(struct intel_iommu *iommu, u16 did,
602 int non_present_entry_flush)
603{
604 return __iommu_flush_context(iommu, did, 0, 0, DMA_CCMD_DOMAIN_INVL,
605 non_present_entry_flush);
606}
607
608static int inline iommu_flush_context_device(struct intel_iommu *iommu,
609 u16 did, u16 source_id, u8 function_mask, int non_present_entry_flush)
610{
611 return __iommu_flush_context(iommu, did, source_id, function_mask,
612 DMA_CCMD_DEVICE_INVL, non_present_entry_flush);
613}
614
615/* return value determine if we need a write buffer flush */
616static int __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
617 u64 addr, unsigned int size_order, u64 type,
618 int non_present_entry_flush)
619{
620 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
621 u64 val = 0, val_iva = 0;
622 unsigned long flag;
623
624 /*
625 * In the non-present entry flush case, if hardware doesn't cache
626 * non-present entry we do nothing and if hardware cache non-present
627 * entry, we flush entries of domain 0 (the domain id is used to cache
628 * any non-present entries)
629 */
630 if (non_present_entry_flush) {
631 if (!cap_caching_mode(iommu->cap))
632 return 1;
633 else
634 did = 0;
635 }
636
637 switch (type) {
638 case DMA_TLB_GLOBAL_FLUSH:
639 /* global flush doesn't need set IVA_REG */
640 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
641 break;
642 case DMA_TLB_DSI_FLUSH:
643 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
644 break;
645 case DMA_TLB_PSI_FLUSH:
646 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
647 /* Note: always flush non-leaf currently */
648 val_iva = size_order | addr;
649 break;
650 default:
651 BUG();
652 }
653 /* Note: set drain read/write */
654#if 0
655 /*
656 * This is probably to be super secure.. Looks like we can
657 * ignore it without any impact.
658 */
659 if (cap_read_drain(iommu->cap))
660 val |= DMA_TLB_READ_DRAIN;
661#endif
662 if (cap_write_drain(iommu->cap))
663 val |= DMA_TLB_WRITE_DRAIN;
664
665 spin_lock_irqsave(&iommu->register_lock, flag);
666 /* Note: Only uses first TLB reg currently */
667 if (val_iva)
668 dmar_writeq(iommu->reg + tlb_offset, val_iva);
669 dmar_writeq(iommu->reg + tlb_offset + 8, val);
670
671 /* Make sure hardware complete it */
672 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
673 dmar_readq, (!(val & DMA_TLB_IVT)), val);
674
675 spin_unlock_irqrestore(&iommu->register_lock, flag);
676
677 /* check IOTLB invalidation granularity */
678 if (DMA_TLB_IAIG(val) == 0)
679 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
680 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
681 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
682 DMA_TLB_IIRG(type), DMA_TLB_IAIG(val));
683 /* flush context entry will implictly flush write buffer */
684 return 0;
685}
686
687static int inline iommu_flush_iotlb_global(struct intel_iommu *iommu,
688 int non_present_entry_flush)
689{
690 return __iommu_flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH,
691 non_present_entry_flush);
692}
693
694static int inline iommu_flush_iotlb_dsi(struct intel_iommu *iommu, u16 did,
695 int non_present_entry_flush)
696{
697 return __iommu_flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH,
698 non_present_entry_flush);
699}
700
ba395927
KA
701static int iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
702 u64 addr, unsigned int pages, int non_present_entry_flush)
703{
f76aec76 704 unsigned int mask;
ba395927
KA
705
706 BUG_ON(addr & (~PAGE_MASK_4K));
707 BUG_ON(pages == 0);
708
709 /* Fallback to domain selective flush if no PSI support */
710 if (!cap_pgsel_inv(iommu->cap))
711 return iommu_flush_iotlb_dsi(iommu, did,
712 non_present_entry_flush);
713
714 /*
715 * PSI requires page size to be 2 ^ x, and the base address is naturally
716 * aligned to the size
717 */
f76aec76 718 mask = ilog2(__roundup_pow_of_two(pages));
ba395927 719 /* Fallback to domain selective flush if size is too big */
f76aec76 720 if (mask > cap_max_amask_val(iommu->cap))
ba395927
KA
721 return iommu_flush_iotlb_dsi(iommu, did,
722 non_present_entry_flush);
723
f76aec76 724 return __iommu_flush_iotlb(iommu, did, addr, mask,
ba395927
KA
725 DMA_TLB_PSI_FLUSH, non_present_entry_flush);
726}
727
f8bab735 728static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
729{
730 u32 pmen;
731 unsigned long flags;
732
733 spin_lock_irqsave(&iommu->register_lock, flags);
734 pmen = readl(iommu->reg + DMAR_PMEN_REG);
735 pmen &= ~DMA_PMEN_EPM;
736 writel(pmen, iommu->reg + DMAR_PMEN_REG);
737
738 /* wait for the protected region status bit to clear */
739 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
740 readl, !(pmen & DMA_PMEN_PRS), pmen);
741
742 spin_unlock_irqrestore(&iommu->register_lock, flags);
743}
744
ba395927
KA
745static int iommu_enable_translation(struct intel_iommu *iommu)
746{
747 u32 sts;
748 unsigned long flags;
749
750 spin_lock_irqsave(&iommu->register_lock, flags);
751 writel(iommu->gcmd|DMA_GCMD_TE, iommu->reg + DMAR_GCMD_REG);
752
753 /* Make sure hardware complete it */
754 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
755 readl, (sts & DMA_GSTS_TES), sts);
756
757 iommu->gcmd |= DMA_GCMD_TE;
758 spin_unlock_irqrestore(&iommu->register_lock, flags);
759 return 0;
760}
761
762static int iommu_disable_translation(struct intel_iommu *iommu)
763{
764 u32 sts;
765 unsigned long flag;
766
767 spin_lock_irqsave(&iommu->register_lock, flag);
768 iommu->gcmd &= ~DMA_GCMD_TE;
769 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
770
771 /* Make sure hardware complete it */
772 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
773 readl, (!(sts & DMA_GSTS_TES)), sts);
774
775 spin_unlock_irqrestore(&iommu->register_lock, flag);
776 return 0;
777}
778
3460a6d9
KA
779/* iommu interrupt handling. Most stuff are MSI-like. */
780
d94afc6c 781static const char *fault_reason_strings[] =
3460a6d9
KA
782{
783 "Software",
784 "Present bit in root entry is clear",
785 "Present bit in context entry is clear",
786 "Invalid context entry",
787 "Access beyond MGAW",
788 "PTE Write access is not set",
789 "PTE Read access is not set",
790 "Next page table ptr is invalid",
791 "Root table address invalid",
792 "Context table ptr is invalid",
793 "non-zero reserved fields in RTP",
794 "non-zero reserved fields in CTP",
795 "non-zero reserved fields in PTE",
3460a6d9 796};
f8bab735 797#define MAX_FAULT_REASON_IDX (ARRAY_SIZE(fault_reason_strings) - 1)
3460a6d9 798
d94afc6c 799const char *dmar_get_fault_reason(u8 fault_reason)
3460a6d9 800{
d94afc6c 801 if (fault_reason > MAX_FAULT_REASON_IDX)
802 return "Unknown";
3460a6d9
KA
803 else
804 return fault_reason_strings[fault_reason];
805}
806
807void dmar_msi_unmask(unsigned int irq)
808{
809 struct intel_iommu *iommu = get_irq_data(irq);
810 unsigned long flag;
811
812 /* unmask it */
813 spin_lock_irqsave(&iommu->register_lock, flag);
814 writel(0, iommu->reg + DMAR_FECTL_REG);
815 /* Read a reg to force flush the post write */
816 readl(iommu->reg + DMAR_FECTL_REG);
817 spin_unlock_irqrestore(&iommu->register_lock, flag);
818}
819
820void dmar_msi_mask(unsigned int irq)
821{
822 unsigned long flag;
823 struct intel_iommu *iommu = get_irq_data(irq);
824
825 /* mask it */
826 spin_lock_irqsave(&iommu->register_lock, flag);
827 writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
828 /* Read a reg to force flush the post write */
829 readl(iommu->reg + DMAR_FECTL_REG);
830 spin_unlock_irqrestore(&iommu->register_lock, flag);
831}
832
833void dmar_msi_write(int irq, struct msi_msg *msg)
834{
835 struct intel_iommu *iommu = get_irq_data(irq);
836 unsigned long flag;
837
838 spin_lock_irqsave(&iommu->register_lock, flag);
839 writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
840 writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
841 writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
842 spin_unlock_irqrestore(&iommu->register_lock, flag);
843}
844
845void dmar_msi_read(int irq, struct msi_msg *msg)
846{
847 struct intel_iommu *iommu = get_irq_data(irq);
848 unsigned long flag;
849
850 spin_lock_irqsave(&iommu->register_lock, flag);
851 msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
852 msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
853 msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
854 spin_unlock_irqrestore(&iommu->register_lock, flag);
855}
856
857static int iommu_page_fault_do_one(struct intel_iommu *iommu, int type,
858 u8 fault_reason, u16 source_id, u64 addr)
859{
d94afc6c 860 const char *reason;
3460a6d9
KA
861
862 reason = dmar_get_fault_reason(fault_reason);
863
864 printk(KERN_ERR
865 "DMAR:[%s] Request device [%02x:%02x.%d] "
866 "fault addr %llx \n"
867 "DMAR:[fault reason %02d] %s\n",
868 (type ? "DMA Read" : "DMA Write"),
869 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
870 PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
871 return 0;
872}
873
874#define PRIMARY_FAULT_REG_LEN (16)
875static irqreturn_t iommu_page_fault(int irq, void *dev_id)
876{
877 struct intel_iommu *iommu = dev_id;
878 int reg, fault_index;
879 u32 fault_status;
880 unsigned long flag;
881
882 spin_lock_irqsave(&iommu->register_lock, flag);
883 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
884
885 /* TBD: ignore advanced fault log currently */
886 if (!(fault_status & DMA_FSTS_PPF))
887 goto clear_overflow;
888
889 fault_index = dma_fsts_fault_record_index(fault_status);
890 reg = cap_fault_reg_offset(iommu->cap);
891 while (1) {
892 u8 fault_reason;
893 u16 source_id;
894 u64 guest_addr;
895 int type;
896 u32 data;
897
898 /* highest 32 bits */
899 data = readl(iommu->reg + reg +
900 fault_index * PRIMARY_FAULT_REG_LEN + 12);
901 if (!(data & DMA_FRCD_F))
902 break;
903
904 fault_reason = dma_frcd_fault_reason(data);
905 type = dma_frcd_type(data);
906
907 data = readl(iommu->reg + reg +
908 fault_index * PRIMARY_FAULT_REG_LEN + 8);
909 source_id = dma_frcd_source_id(data);
910
911 guest_addr = dmar_readq(iommu->reg + reg +
912 fault_index * PRIMARY_FAULT_REG_LEN);
913 guest_addr = dma_frcd_page_addr(guest_addr);
914 /* clear the fault */
915 writel(DMA_FRCD_F, iommu->reg + reg +
916 fault_index * PRIMARY_FAULT_REG_LEN + 12);
917
918 spin_unlock_irqrestore(&iommu->register_lock, flag);
919
920 iommu_page_fault_do_one(iommu, type, fault_reason,
921 source_id, guest_addr);
922
923 fault_index++;
924 if (fault_index > cap_num_fault_regs(iommu->cap))
925 fault_index = 0;
926 spin_lock_irqsave(&iommu->register_lock, flag);
927 }
928clear_overflow:
929 /* clear primary fault overflow */
930 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
931 if (fault_status & DMA_FSTS_PFO)
932 writel(DMA_FSTS_PFO, iommu->reg + DMAR_FSTS_REG);
933
934 spin_unlock_irqrestore(&iommu->register_lock, flag);
935 return IRQ_HANDLED;
936}
937
938int dmar_set_interrupt(struct intel_iommu *iommu)
939{
940 int irq, ret;
941
942 irq = create_irq();
943 if (!irq) {
944 printk(KERN_ERR "IOMMU: no free vectors\n");
945 return -EINVAL;
946 }
947
948 set_irq_data(irq, iommu);
949 iommu->irq = irq;
950
951 ret = arch_setup_dmar_msi(irq);
952 if (ret) {
953 set_irq_data(irq, NULL);
954 iommu->irq = 0;
955 destroy_irq(irq);
956 return 0;
957 }
958
959 /* Force fault register is cleared */
960 iommu_page_fault(irq, iommu);
961
962 ret = request_irq(irq, iommu_page_fault, 0, iommu->name, iommu);
963 if (ret)
964 printk(KERN_ERR "IOMMU: can't request irq\n");
965 return ret;
966}
967
ba395927
KA
968static int iommu_init_domains(struct intel_iommu *iommu)
969{
970 unsigned long ndomains;
971 unsigned long nlongs;
972
973 ndomains = cap_ndoms(iommu->cap);
974 pr_debug("Number of Domains supportd <%ld>\n", ndomains);
975 nlongs = BITS_TO_LONGS(ndomains);
976
977 /* TBD: there might be 64K domains,
978 * consider other allocation for future chip
979 */
980 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
981 if (!iommu->domain_ids) {
982 printk(KERN_ERR "Allocating domain id array failed\n");
983 return -ENOMEM;
984 }
985 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
986 GFP_KERNEL);
987 if (!iommu->domains) {
988 printk(KERN_ERR "Allocating domain array failed\n");
989 kfree(iommu->domain_ids);
990 return -ENOMEM;
991 }
992
993 /*
994 * if Caching mode is set, then invalid translations are tagged
995 * with domainid 0. Hence we need to pre-allocate it.
996 */
997 if (cap_caching_mode(iommu->cap))
998 set_bit(0, iommu->domain_ids);
999 return 0;
1000}
5e0d2a6f 1001static struct intel_iommu *alloc_iommu(struct intel_iommu *iommu,
1002 struct dmar_drhd_unit *drhd)
ba395927 1003{
ba395927
KA
1004 int ret;
1005 int map_size;
1006 u32 ver;
1007
ba395927
KA
1008 iommu->reg = ioremap(drhd->reg_base_addr, PAGE_SIZE_4K);
1009 if (!iommu->reg) {
1010 printk(KERN_ERR "IOMMU: can't map the region\n");
1011 goto error;
1012 }
1013 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
1014 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
1015
1016 /* the registers might be more than one page */
1017 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
1018 cap_max_fault_reg_offset(iommu->cap));
1019 map_size = PAGE_ALIGN_4K(map_size);
1020 if (map_size > PAGE_SIZE_4K) {
1021 iounmap(iommu->reg);
1022 iommu->reg = ioremap(drhd->reg_base_addr, map_size);
1023 if (!iommu->reg) {
1024 printk(KERN_ERR "IOMMU: can't map the region\n");
1025 goto error;
1026 }
1027 }
1028
1029 ver = readl(iommu->reg + DMAR_VER_REG);
1030 pr_debug("IOMMU %llx: ver %d:%d cap %llx ecap %llx\n",
1031 drhd->reg_base_addr, DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1032 iommu->cap, iommu->ecap);
1033 ret = iommu_init_domains(iommu);
1034 if (ret)
1035 goto error_unmap;
1036 spin_lock_init(&iommu->lock);
1037 spin_lock_init(&iommu->register_lock);
1038
1039 drhd->iommu = iommu;
1040 return iommu;
1041error_unmap:
1042 iounmap(iommu->reg);
ba395927
KA
1043error:
1044 kfree(iommu);
1045 return NULL;
1046}
1047
1048static void domain_exit(struct dmar_domain *domain);
1049static void free_iommu(struct intel_iommu *iommu)
1050{
1051 struct dmar_domain *domain;
1052 int i;
1053
1054 if (!iommu)
1055 return;
1056
1057 i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap));
1058 for (; i < cap_ndoms(iommu->cap); ) {
1059 domain = iommu->domains[i];
1060 clear_bit(i, iommu->domain_ids);
1061 domain_exit(domain);
1062 i = find_next_bit(iommu->domain_ids,
1063 cap_ndoms(iommu->cap), i+1);
1064 }
1065
1066 if (iommu->gcmd & DMA_GCMD_TE)
1067 iommu_disable_translation(iommu);
1068
1069 if (iommu->irq) {
1070 set_irq_data(iommu->irq, NULL);
1071 /* This will mask the irq */
1072 free_irq(iommu->irq, iommu);
1073 destroy_irq(iommu->irq);
1074 }
1075
1076 kfree(iommu->domains);
1077 kfree(iommu->domain_ids);
1078
1079 /* free context mapping */
1080 free_context_table(iommu);
1081
1082 if (iommu->reg)
1083 iounmap(iommu->reg);
1084 kfree(iommu);
1085}
1086
1087static struct dmar_domain * iommu_alloc_domain(struct intel_iommu *iommu)
1088{
1089 unsigned long num;
1090 unsigned long ndomains;
1091 struct dmar_domain *domain;
1092 unsigned long flags;
1093
1094 domain = alloc_domain_mem();
1095 if (!domain)
1096 return NULL;
1097
1098 ndomains = cap_ndoms(iommu->cap);
1099
1100 spin_lock_irqsave(&iommu->lock, flags);
1101 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1102 if (num >= ndomains) {
1103 spin_unlock_irqrestore(&iommu->lock, flags);
1104 free_domain_mem(domain);
1105 printk(KERN_ERR "IOMMU: no free domain ids\n");
1106 return NULL;
1107 }
1108
1109 set_bit(num, iommu->domain_ids);
1110 domain->id = num;
1111 domain->iommu = iommu;
1112 iommu->domains[num] = domain;
1113 spin_unlock_irqrestore(&iommu->lock, flags);
1114
1115 return domain;
1116}
1117
1118static void iommu_free_domain(struct dmar_domain *domain)
1119{
1120 unsigned long flags;
1121
1122 spin_lock_irqsave(&domain->iommu->lock, flags);
1123 clear_bit(domain->id, domain->iommu->domain_ids);
1124 spin_unlock_irqrestore(&domain->iommu->lock, flags);
1125}
1126
1127static struct iova_domain reserved_iova_list;
8a443df4
MG
1128static struct lock_class_key reserved_alloc_key;
1129static struct lock_class_key reserved_rbtree_key;
ba395927
KA
1130
1131static void dmar_init_reserved_ranges(void)
1132{
1133 struct pci_dev *pdev = NULL;
1134 struct iova *iova;
1135 int i;
1136 u64 addr, size;
1137
f661197e 1138 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
ba395927 1139
8a443df4
MG
1140 lockdep_set_class(&reserved_iova_list.iova_alloc_lock,
1141 &reserved_alloc_key);
1142 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1143 &reserved_rbtree_key);
1144
ba395927
KA
1145 /* IOAPIC ranges shouldn't be accessed by DMA */
1146 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1147 IOVA_PFN(IOAPIC_RANGE_END));
1148 if (!iova)
1149 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1150
1151 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1152 for_each_pci_dev(pdev) {
1153 struct resource *r;
1154
1155 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1156 r = &pdev->resource[i];
1157 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1158 continue;
1159 addr = r->start;
1160 addr &= PAGE_MASK_4K;
1161 size = r->end - addr;
1162 size = PAGE_ALIGN_4K(size);
1163 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(addr),
1164 IOVA_PFN(size + addr) - 1);
1165 if (!iova)
1166 printk(KERN_ERR "Reserve iova failed\n");
1167 }
1168 }
1169
1170}
1171
1172static void domain_reserve_special_ranges(struct dmar_domain *domain)
1173{
1174 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1175}
1176
1177static inline int guestwidth_to_adjustwidth(int gaw)
1178{
1179 int agaw;
1180 int r = (gaw - 12) % 9;
1181
1182 if (r == 0)
1183 agaw = gaw;
1184 else
1185 agaw = gaw + 9 - r;
1186 if (agaw > 64)
1187 agaw = 64;
1188 return agaw;
1189}
1190
1191static int domain_init(struct dmar_domain *domain, int guest_width)
1192{
1193 struct intel_iommu *iommu;
1194 int adjust_width, agaw;
1195 unsigned long sagaw;
1196
f661197e 1197 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
ba395927
KA
1198 spin_lock_init(&domain->mapping_lock);
1199
1200 domain_reserve_special_ranges(domain);
1201
1202 /* calculate AGAW */
1203 iommu = domain->iommu;
1204 if (guest_width > cap_mgaw(iommu->cap))
1205 guest_width = cap_mgaw(iommu->cap);
1206 domain->gaw = guest_width;
1207 adjust_width = guestwidth_to_adjustwidth(guest_width);
1208 agaw = width_to_agaw(adjust_width);
1209 sagaw = cap_sagaw(iommu->cap);
1210 if (!test_bit(agaw, &sagaw)) {
1211 /* hardware doesn't support it, choose a bigger one */
1212 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1213 agaw = find_next_bit(&sagaw, 5, agaw);
1214 if (agaw >= 5)
1215 return -ENODEV;
1216 }
1217 domain->agaw = agaw;
1218 INIT_LIST_HEAD(&domain->devices);
1219
1220 /* always allocate the top pgd */
1221 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
1222 if (!domain->pgd)
1223 return -ENOMEM;
1224 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE_4K);
1225 return 0;
1226}
1227
1228static void domain_exit(struct dmar_domain *domain)
1229{
1230 u64 end;
1231
1232 /* Domain 0 is reserved, so dont process it */
1233 if (!domain)
1234 return;
1235
1236 domain_remove_dev_info(domain);
1237 /* destroy iovas */
1238 put_iova_domain(&domain->iovad);
1239 end = DOMAIN_MAX_ADDR(domain->gaw);
1240 end = end & (~PAGE_MASK_4K);
1241
1242 /* clear ptes */
1243 dma_pte_clear_range(domain, 0, end);
1244
1245 /* free page tables */
1246 dma_pte_free_pagetable(domain, 0, end);
1247
1248 iommu_free_domain(domain);
1249 free_domain_mem(domain);
1250}
1251
1252static int domain_context_mapping_one(struct dmar_domain *domain,
1253 u8 bus, u8 devfn)
1254{
1255 struct context_entry *context;
1256 struct intel_iommu *iommu = domain->iommu;
1257 unsigned long flags;
1258
1259 pr_debug("Set context mapping for %02x:%02x.%d\n",
1260 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1261 BUG_ON(!domain->pgd);
1262 context = device_to_context_entry(iommu, bus, devfn);
1263 if (!context)
1264 return -ENOMEM;
1265 spin_lock_irqsave(&iommu->lock, flags);
1266 if (context_present(*context)) {
1267 spin_unlock_irqrestore(&iommu->lock, flags);
1268 return 0;
1269 }
1270
1271 context_set_domain_id(*context, domain->id);
1272 context_set_address_width(*context, domain->agaw);
1273 context_set_address_root(*context, virt_to_phys(domain->pgd));
1274 context_set_translation_type(*context, CONTEXT_TT_MULTI_LEVEL);
1275 context_set_fault_enable(*context);
1276 context_set_present(*context);
1277 __iommu_flush_cache(iommu, context, sizeof(*context));
1278
1279 /* it's a non-present to present mapping */
1280 if (iommu_flush_context_device(iommu, domain->id,
1281 (((u16)bus) << 8) | devfn, DMA_CCMD_MASK_NOBIT, 1))
1282 iommu_flush_write_buffer(iommu);
1283 else
1284 iommu_flush_iotlb_dsi(iommu, 0, 0);
1285 spin_unlock_irqrestore(&iommu->lock, flags);
1286 return 0;
1287}
1288
1289static int
1290domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev)
1291{
1292 int ret;
1293 struct pci_dev *tmp, *parent;
1294
1295 ret = domain_context_mapping_one(domain, pdev->bus->number,
1296 pdev->devfn);
1297 if (ret)
1298 return ret;
1299
1300 /* dependent device mapping */
1301 tmp = pci_find_upstream_pcie_bridge(pdev);
1302 if (!tmp)
1303 return 0;
1304 /* Secondary interface's bus number and devfn 0 */
1305 parent = pdev->bus->self;
1306 while (parent != tmp) {
1307 ret = domain_context_mapping_one(domain, parent->bus->number,
1308 parent->devfn);
1309 if (ret)
1310 return ret;
1311 parent = parent->bus->self;
1312 }
1313 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
1314 return domain_context_mapping_one(domain,
1315 tmp->subordinate->number, 0);
1316 else /* this is a legacy PCI bridge */
1317 return domain_context_mapping_one(domain,
1318 tmp->bus->number, tmp->devfn);
1319}
1320
1321static int domain_context_mapped(struct dmar_domain *domain,
1322 struct pci_dev *pdev)
1323{
1324 int ret;
1325 struct pci_dev *tmp, *parent;
1326
1327 ret = device_context_mapped(domain->iommu,
1328 pdev->bus->number, pdev->devfn);
1329 if (!ret)
1330 return ret;
1331 /* dependent device mapping */
1332 tmp = pci_find_upstream_pcie_bridge(pdev);
1333 if (!tmp)
1334 return ret;
1335 /* Secondary interface's bus number and devfn 0 */
1336 parent = pdev->bus->self;
1337 while (parent != tmp) {
1338 ret = device_context_mapped(domain->iommu, parent->bus->number,
1339 parent->devfn);
1340 if (!ret)
1341 return ret;
1342 parent = parent->bus->self;
1343 }
1344 if (tmp->is_pcie)
1345 return device_context_mapped(domain->iommu,
1346 tmp->subordinate->number, 0);
1347 else
1348 return device_context_mapped(domain->iommu,
1349 tmp->bus->number, tmp->devfn);
1350}
1351
1352static int
1353domain_page_mapping(struct dmar_domain *domain, dma_addr_t iova,
1354 u64 hpa, size_t size, int prot)
1355{
1356 u64 start_pfn, end_pfn;
1357 struct dma_pte *pte;
1358 int index;
1359
1360 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1361 return -EINVAL;
1362 iova &= PAGE_MASK_4K;
1363 start_pfn = ((u64)hpa) >> PAGE_SHIFT_4K;
1364 end_pfn = (PAGE_ALIGN_4K(((u64)hpa) + size)) >> PAGE_SHIFT_4K;
1365 index = 0;
1366 while (start_pfn < end_pfn) {
1367 pte = addr_to_dma_pte(domain, iova + PAGE_SIZE_4K * index);
1368 if (!pte)
1369 return -ENOMEM;
1370 /* We don't need lock here, nobody else
1371 * touches the iova range
1372 */
1373 BUG_ON(dma_pte_addr(*pte));
1374 dma_set_pte_addr(*pte, start_pfn << PAGE_SHIFT_4K);
1375 dma_set_pte_prot(*pte, prot);
1376 __iommu_flush_cache(domain->iommu, pte, sizeof(*pte));
1377 start_pfn++;
1378 index++;
1379 }
1380 return 0;
1381}
1382
1383static void detach_domain_for_dev(struct dmar_domain *domain, u8 bus, u8 devfn)
1384{
1385 clear_context_table(domain->iommu, bus, devfn);
1386 iommu_flush_context_global(domain->iommu, 0);
1387 iommu_flush_iotlb_global(domain->iommu, 0);
1388}
1389
1390static void domain_remove_dev_info(struct dmar_domain *domain)
1391{
1392 struct device_domain_info *info;
1393 unsigned long flags;
1394
1395 spin_lock_irqsave(&device_domain_lock, flags);
1396 while (!list_empty(&domain->devices)) {
1397 info = list_entry(domain->devices.next,
1398 struct device_domain_info, link);
1399 list_del(&info->link);
1400 list_del(&info->global);
1401 if (info->dev)
358dd8ac 1402 info->dev->dev.archdata.iommu = NULL;
ba395927
KA
1403 spin_unlock_irqrestore(&device_domain_lock, flags);
1404
1405 detach_domain_for_dev(info->domain, info->bus, info->devfn);
1406 free_devinfo_mem(info);
1407
1408 spin_lock_irqsave(&device_domain_lock, flags);
1409 }
1410 spin_unlock_irqrestore(&device_domain_lock, flags);
1411}
1412
1413/*
1414 * find_domain
358dd8ac 1415 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
ba395927
KA
1416 */
1417struct dmar_domain *
1418find_domain(struct pci_dev *pdev)
1419{
1420 struct device_domain_info *info;
1421
1422 /* No lock here, assumes no domain exit in normal case */
358dd8ac 1423 info = pdev->dev.archdata.iommu;
ba395927
KA
1424 if (info)
1425 return info->domain;
1426 return NULL;
1427}
1428
1429static int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
1430 struct pci_dev *dev)
1431{
1432 int index;
1433
1434 while (dev) {
5e0d2a6f 1435 for (index = 0; index < cnt; index++)
ba395927
KA
1436 if (dev == devices[index])
1437 return 1;
1438
1439 /* Check our parent */
1440 dev = dev->bus->self;
1441 }
1442
1443 return 0;
1444}
1445
1446static struct dmar_drhd_unit *
1447dmar_find_matched_drhd_unit(struct pci_dev *dev)
1448{
1449 struct dmar_drhd_unit *drhd = NULL;
1450
1451 list_for_each_entry(drhd, &dmar_drhd_units, list) {
1452 if (drhd->include_all || dmar_pci_device_match(drhd->devices,
1453 drhd->devices_cnt, dev))
1454 return drhd;
1455 }
1456
1457 return NULL;
1458}
1459
1460/* domain is initialized */
1461static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1462{
1463 struct dmar_domain *domain, *found = NULL;
1464 struct intel_iommu *iommu;
1465 struct dmar_drhd_unit *drhd;
1466 struct device_domain_info *info, *tmp;
1467 struct pci_dev *dev_tmp;
1468 unsigned long flags;
1469 int bus = 0, devfn = 0;
1470
1471 domain = find_domain(pdev);
1472 if (domain)
1473 return domain;
1474
1475 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1476 if (dev_tmp) {
1477 if (dev_tmp->is_pcie) {
1478 bus = dev_tmp->subordinate->number;
1479 devfn = 0;
1480 } else {
1481 bus = dev_tmp->bus->number;
1482 devfn = dev_tmp->devfn;
1483 }
1484 spin_lock_irqsave(&device_domain_lock, flags);
1485 list_for_each_entry(info, &device_domain_list, global) {
1486 if (info->bus == bus && info->devfn == devfn) {
1487 found = info->domain;
1488 break;
1489 }
1490 }
1491 spin_unlock_irqrestore(&device_domain_lock, flags);
1492 /* pcie-pci bridge already has a domain, uses it */
1493 if (found) {
1494 domain = found;
1495 goto found_domain;
1496 }
1497 }
1498
1499 /* Allocate new domain for the device */
1500 drhd = dmar_find_matched_drhd_unit(pdev);
1501 if (!drhd) {
1502 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1503 pci_name(pdev));
1504 return NULL;
1505 }
1506 iommu = drhd->iommu;
1507
1508 domain = iommu_alloc_domain(iommu);
1509 if (!domain)
1510 goto error;
1511
1512 if (domain_init(domain, gaw)) {
1513 domain_exit(domain);
1514 goto error;
1515 }
1516
1517 /* register pcie-to-pci device */
1518 if (dev_tmp) {
1519 info = alloc_devinfo_mem();
1520 if (!info) {
1521 domain_exit(domain);
1522 goto error;
1523 }
1524 info->bus = bus;
1525 info->devfn = devfn;
1526 info->dev = NULL;
1527 info->domain = domain;
1528 /* This domain is shared by devices under p2p bridge */
1529 domain->flags |= DOMAIN_FLAG_MULTIPLE_DEVICES;
1530
1531 /* pcie-to-pci bridge already has a domain, uses it */
1532 found = NULL;
1533 spin_lock_irqsave(&device_domain_lock, flags);
1534 list_for_each_entry(tmp, &device_domain_list, global) {
1535 if (tmp->bus == bus && tmp->devfn == devfn) {
1536 found = tmp->domain;
1537 break;
1538 }
1539 }
1540 if (found) {
1541 free_devinfo_mem(info);
1542 domain_exit(domain);
1543 domain = found;
1544 } else {
1545 list_add(&info->link, &domain->devices);
1546 list_add(&info->global, &device_domain_list);
1547 }
1548 spin_unlock_irqrestore(&device_domain_lock, flags);
1549 }
1550
1551found_domain:
1552 info = alloc_devinfo_mem();
1553 if (!info)
1554 goto error;
1555 info->bus = pdev->bus->number;
1556 info->devfn = pdev->devfn;
1557 info->dev = pdev;
1558 info->domain = domain;
1559 spin_lock_irqsave(&device_domain_lock, flags);
1560 /* somebody is fast */
1561 found = find_domain(pdev);
1562 if (found != NULL) {
1563 spin_unlock_irqrestore(&device_domain_lock, flags);
1564 if (found != domain) {
1565 domain_exit(domain);
1566 domain = found;
1567 }
1568 free_devinfo_mem(info);
1569 return domain;
1570 }
1571 list_add(&info->link, &domain->devices);
1572 list_add(&info->global, &device_domain_list);
358dd8ac 1573 pdev->dev.archdata.iommu = info;
ba395927
KA
1574 spin_unlock_irqrestore(&device_domain_lock, flags);
1575 return domain;
1576error:
1577 /* recheck it here, maybe others set it */
1578 return find_domain(pdev);
1579}
1580
1581static int iommu_prepare_identity_map(struct pci_dev *pdev, u64 start, u64 end)
1582{
1583 struct dmar_domain *domain;
1584 unsigned long size;
1585 u64 base;
1586 int ret;
1587
1588 printk(KERN_INFO
1589 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1590 pci_name(pdev), start, end);
1591 /* page table init */
1592 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1593 if (!domain)
1594 return -ENOMEM;
1595
1596 /* The address might not be aligned */
1597 base = start & PAGE_MASK_4K;
1598 size = end - base;
1599 size = PAGE_ALIGN_4K(size);
1600 if (!reserve_iova(&domain->iovad, IOVA_PFN(base),
1601 IOVA_PFN(base + size) - 1)) {
1602 printk(KERN_ERR "IOMMU: reserve iova failed\n");
1603 ret = -ENOMEM;
1604 goto error;
1605 }
1606
1607 pr_debug("Mapping reserved region %lx@%llx for %s\n",
1608 size, base, pci_name(pdev));
1609 /*
1610 * RMRR range might have overlap with physical memory range,
1611 * clear it first
1612 */
1613 dma_pte_clear_range(domain, base, base + size);
1614
1615 ret = domain_page_mapping(domain, base, base, size,
1616 DMA_PTE_READ|DMA_PTE_WRITE);
1617 if (ret)
1618 goto error;
1619
1620 /* context entry init */
1621 ret = domain_context_mapping(domain, pdev);
1622 if (!ret)
1623 return 0;
1624error:
1625 domain_exit(domain);
1626 return ret;
1627
1628}
1629
1630static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
1631 struct pci_dev *pdev)
1632{
358dd8ac 1633 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
ba395927
KA
1634 return 0;
1635 return iommu_prepare_identity_map(pdev, rmrr->base_address,
1636 rmrr->end_address + 1);
1637}
1638
e820482c 1639#ifdef CONFIG_DMAR_GFX_WA
d52d53b8
YL
1640struct iommu_prepare_data {
1641 struct pci_dev *pdev;
1642 int ret;
1643};
1644
1645static int __init iommu_prepare_work_fn(unsigned long start_pfn,
1646 unsigned long end_pfn, void *datax)
1647{
1648 struct iommu_prepare_data *data;
1649
1650 data = (struct iommu_prepare_data *)datax;
1651
1652 data->ret = iommu_prepare_identity_map(data->pdev,
1653 start_pfn<<PAGE_SHIFT, end_pfn<<PAGE_SHIFT);
1654 return data->ret;
1655
1656}
1657
1658static int __init iommu_prepare_with_active_regions(struct pci_dev *pdev)
1659{
1660 int nid;
1661 struct iommu_prepare_data data;
1662
1663 data.pdev = pdev;
1664 data.ret = 0;
1665
1666 for_each_online_node(nid) {
1667 work_with_active_regions(nid, iommu_prepare_work_fn, &data);
1668 if (data.ret)
1669 return data.ret;
1670 }
1671 return data.ret;
1672}
1673
e820482c
KA
1674static void __init iommu_prepare_gfx_mapping(void)
1675{
1676 struct pci_dev *pdev = NULL;
e820482c
KA
1677 int ret;
1678
1679 for_each_pci_dev(pdev) {
358dd8ac 1680 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO ||
e820482c
KA
1681 !IS_GFX_DEVICE(pdev))
1682 continue;
1683 printk(KERN_INFO "IOMMU: gfx device %s 1-1 mapping\n",
1684 pci_name(pdev));
d52d53b8
YL
1685 ret = iommu_prepare_with_active_regions(pdev);
1686 if (ret)
1687 printk(KERN_ERR "IOMMU: mapping reserved region failed\n");
e820482c
KA
1688 }
1689}
1690#endif
1691
49a0429e
KA
1692#ifdef CONFIG_DMAR_FLOPPY_WA
1693static inline void iommu_prepare_isa(void)
1694{
1695 struct pci_dev *pdev;
1696 int ret;
1697
1698 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
1699 if (!pdev)
1700 return;
1701
1702 printk(KERN_INFO "IOMMU: Prepare 0-16M unity mapping for LPC\n");
1703 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
1704
1705 if (ret)
1706 printk("IOMMU: Failed to create 0-64M identity map, "
1707 "floppy might not work\n");
1708
1709}
1710#else
1711static inline void iommu_prepare_isa(void)
1712{
1713 return;
1714}
1715#endif /* !CONFIG_DMAR_FLPY_WA */
1716
ba395927
KA
1717int __init init_dmars(void)
1718{
1719 struct dmar_drhd_unit *drhd;
1720 struct dmar_rmrr_unit *rmrr;
1721 struct pci_dev *pdev;
1722 struct intel_iommu *iommu;
80b20dd8 1723 int i, ret, unit = 0;
ba395927
KA
1724
1725 /*
1726 * for each drhd
1727 * allocate root
1728 * initialize and program root entry to not present
1729 * endfor
1730 */
1731 for_each_drhd_unit(drhd) {
1732 if (drhd->ignored)
1733 continue;
5e0d2a6f 1734 g_num_of_iommus++;
1735 /*
1736 * lock not needed as this is only incremented in the single
1737 * threaded kernel __init code path all other access are read
1738 * only
1739 */
1740 }
1741
5e0d2a6f 1742 g_iommus = kzalloc(g_num_of_iommus * sizeof(*iommu), GFP_KERNEL);
1743 if (!g_iommus) {
80b20dd8 1744 ret = -ENOMEM;
1745 goto error;
1746 }
1747
1748 deferred_flush = kzalloc(g_num_of_iommus *
1749 sizeof(struct deferred_flush_tables), GFP_KERNEL);
1750 if (!deferred_flush) {
1751 kfree(g_iommus);
5e0d2a6f 1752 ret = -ENOMEM;
1753 goto error;
1754 }
1755
1756 i = 0;
1757 for_each_drhd_unit(drhd) {
1758 if (drhd->ignored)
1759 continue;
1760 iommu = alloc_iommu(&g_iommus[i], drhd);
1761 i++;
ba395927
KA
1762 if (!iommu) {
1763 ret = -ENOMEM;
1764 goto error;
1765 }
1766
1767 /*
1768 * TBD:
1769 * we could share the same root & context tables
1770 * amoung all IOMMU's. Need to Split it later.
1771 */
1772 ret = iommu_alloc_root_entry(iommu);
1773 if (ret) {
1774 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
1775 goto error;
1776 }
1777 }
1778
1779 /*
1780 * For each rmrr
1781 * for each dev attached to rmrr
1782 * do
1783 * locate drhd for dev, alloc domain for dev
1784 * allocate free domain
1785 * allocate page table entries for rmrr
1786 * if context not allocated for bus
1787 * allocate and init context
1788 * set present in root table for this bus
1789 * init context with domain, translation etc
1790 * endfor
1791 * endfor
1792 */
1793 for_each_rmrr_units(rmrr) {
ba395927
KA
1794 for (i = 0; i < rmrr->devices_cnt; i++) {
1795 pdev = rmrr->devices[i];
1796 /* some BIOS lists non-exist devices in DMAR table */
1797 if (!pdev)
1798 continue;
1799 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
1800 if (ret)
1801 printk(KERN_ERR
1802 "IOMMU: mapping reserved region failed\n");
1803 }
1804 }
1805
e820482c
KA
1806 iommu_prepare_gfx_mapping();
1807
49a0429e
KA
1808 iommu_prepare_isa();
1809
ba395927
KA
1810 /*
1811 * for each drhd
1812 * enable fault log
1813 * global invalidate context cache
1814 * global invalidate iotlb
1815 * enable translation
1816 */
1817 for_each_drhd_unit(drhd) {
1818 if (drhd->ignored)
1819 continue;
1820 iommu = drhd->iommu;
1821 sprintf (iommu->name, "dmar%d", unit++);
1822
1823 iommu_flush_write_buffer(iommu);
1824
3460a6d9
KA
1825 ret = dmar_set_interrupt(iommu);
1826 if (ret)
1827 goto error;
1828
ba395927
KA
1829 iommu_set_root_entry(iommu);
1830
1831 iommu_flush_context_global(iommu, 0);
1832 iommu_flush_iotlb_global(iommu, 0);
1833
f8bab735 1834 iommu_disable_protect_mem_regions(iommu);
1835
ba395927
KA
1836 ret = iommu_enable_translation(iommu);
1837 if (ret)
1838 goto error;
1839 }
1840
1841 return 0;
1842error:
1843 for_each_drhd_unit(drhd) {
1844 if (drhd->ignored)
1845 continue;
1846 iommu = drhd->iommu;
1847 free_iommu(iommu);
1848 }
5e0d2a6f 1849 kfree(g_iommus);
ba395927
KA
1850 return ret;
1851}
1852
1853static inline u64 aligned_size(u64 host_addr, size_t size)
1854{
1855 u64 addr;
1856 addr = (host_addr & (~PAGE_MASK_4K)) + size;
1857 return PAGE_ALIGN_4K(addr);
1858}
1859
1860struct iova *
f76aec76 1861iommu_alloc_iova(struct dmar_domain *domain, size_t size, u64 end)
ba395927 1862{
ba395927
KA
1863 struct iova *piova;
1864
1865 /* Make sure it's in range */
ba395927 1866 end = min_t(u64, DOMAIN_MAX_ADDR(domain->gaw), end);
f76aec76 1867 if (!size || (IOVA_START_ADDR + size > end))
ba395927
KA
1868 return NULL;
1869
1870 piova = alloc_iova(&domain->iovad,
f76aec76 1871 size >> PAGE_SHIFT_4K, IOVA_PFN(end), 1);
ba395927
KA
1872 return piova;
1873}
1874
f76aec76
KA
1875static struct iova *
1876__intel_alloc_iova(struct device *dev, struct dmar_domain *domain,
1877 size_t size)
ba395927 1878{
ba395927 1879 struct pci_dev *pdev = to_pci_dev(dev);
ba395927 1880 struct iova *iova = NULL;
ba395927 1881
7d3b03ce 1882 if ((pdev->dma_mask <= DMA_32BIT_MASK) || (dmar_forcedac)) {
f76aec76 1883 iova = iommu_alloc_iova(domain, size, pdev->dma_mask);
ba395927
KA
1884 } else {
1885 /*
1886 * First try to allocate an io virtual address in
1887 * DMA_32BIT_MASK and if that fails then try allocating
3609801e 1888 * from higher range
ba395927 1889 */
f76aec76 1890 iova = iommu_alloc_iova(domain, size, DMA_32BIT_MASK);
ba395927 1891 if (!iova)
f76aec76 1892 iova = iommu_alloc_iova(domain, size, pdev->dma_mask);
ba395927
KA
1893 }
1894
1895 if (!iova) {
1896 printk(KERN_ERR"Allocating iova for %s failed", pci_name(pdev));
f76aec76
KA
1897 return NULL;
1898 }
1899
1900 return iova;
1901}
1902
1903static struct dmar_domain *
1904get_valid_domain_for_dev(struct pci_dev *pdev)
1905{
1906 struct dmar_domain *domain;
1907 int ret;
1908
1909 domain = get_domain_for_dev(pdev,
1910 DEFAULT_DOMAIN_ADDRESS_WIDTH);
1911 if (!domain) {
1912 printk(KERN_ERR
1913 "Allocating domain for %s failed", pci_name(pdev));
4fe05bbc 1914 return NULL;
ba395927
KA
1915 }
1916
1917 /* make sure context mapping is ok */
1918 if (unlikely(!domain_context_mapped(domain, pdev))) {
1919 ret = domain_context_mapping(domain, pdev);
f76aec76
KA
1920 if (ret) {
1921 printk(KERN_ERR
1922 "Domain context map for %s failed",
1923 pci_name(pdev));
4fe05bbc 1924 return NULL;
f76aec76 1925 }
ba395927
KA
1926 }
1927
f76aec76
KA
1928 return domain;
1929}
1930
6865f0d1
IM
1931static dma_addr_t
1932intel_map_single(struct device *hwdev, phys_addr_t paddr, size_t size, int dir)
f76aec76
KA
1933{
1934 struct pci_dev *pdev = to_pci_dev(hwdev);
f76aec76 1935 struct dmar_domain *domain;
6865f0d1 1936 unsigned long start_paddr;
f76aec76
KA
1937 struct iova *iova;
1938 int prot = 0;
6865f0d1 1939 int ret;
f76aec76
KA
1940
1941 BUG_ON(dir == DMA_NONE);
358dd8ac 1942 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
6865f0d1 1943 return paddr;
f76aec76
KA
1944
1945 domain = get_valid_domain_for_dev(pdev);
1946 if (!domain)
1947 return 0;
1948
6865f0d1 1949 size = aligned_size((u64)paddr, size);
f76aec76
KA
1950
1951 iova = __intel_alloc_iova(hwdev, domain, size);
1952 if (!iova)
1953 goto error;
1954
6865f0d1 1955 start_paddr = iova->pfn_lo << PAGE_SHIFT_4K;
f76aec76 1956
ba395927
KA
1957 /*
1958 * Check if DMAR supports zero-length reads on write only
1959 * mappings..
1960 */
1961 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
1962 !cap_zlr(domain->iommu->cap))
1963 prot |= DMA_PTE_READ;
1964 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
1965 prot |= DMA_PTE_WRITE;
1966 /*
6865f0d1 1967 * paddr - (paddr + size) might be partial page, we should map the whole
ba395927 1968 * page. Note: if two part of one page are separately mapped, we
6865f0d1 1969 * might have two guest_addr mapping to the same host paddr, but this
ba395927
KA
1970 * is not a big problem
1971 */
6865f0d1
IM
1972 ret = domain_page_mapping(domain, start_paddr,
1973 ((u64)paddr) & PAGE_MASK_4K, size, prot);
ba395927
KA
1974 if (ret)
1975 goto error;
1976
1977 pr_debug("Device %s request: %lx@%llx mapping: %lx@%llx, dir %d\n",
6865f0d1
IM
1978 pci_name(pdev), size, (u64)paddr,
1979 size, (u64)start_paddr, dir);
f76aec76
KA
1980
1981 /* it's a non-present to present mapping */
1982 ret = iommu_flush_iotlb_psi(domain->iommu, domain->id,
6865f0d1 1983 start_paddr, size >> PAGE_SHIFT_4K, 1);
f76aec76
KA
1984 if (ret)
1985 iommu_flush_write_buffer(domain->iommu);
1986
6865f0d1 1987 return (start_paddr + ((u64)paddr & (~PAGE_MASK_4K)));
ba395927 1988
ba395927 1989error:
f76aec76
KA
1990 if (iova)
1991 __free_iova(&domain->iovad, iova);
ba395927 1992 printk(KERN_ERR"Device %s request: %lx@%llx dir %d --- failed\n",
6865f0d1 1993 pci_name(pdev), size, (u64)paddr, dir);
ba395927
KA
1994 return 0;
1995}
1996
5e0d2a6f 1997static void flush_unmaps(void)
1998{
80b20dd8 1999 int i, j;
5e0d2a6f 2000
5e0d2a6f 2001 timer_on = 0;
2002
2003 /* just flush them all */
2004 for (i = 0; i < g_num_of_iommus; i++) {
80b20dd8 2005 if (deferred_flush[i].next) {
5e0d2a6f 2006 iommu_flush_iotlb_global(&g_iommus[i], 0);
80b20dd8 2007 for (j = 0; j < deferred_flush[i].next; j++) {
2008 __free_iova(&deferred_flush[i].domain[j]->iovad,
2009 deferred_flush[i].iova[j]);
2010 }
2011 deferred_flush[i].next = 0;
2012 }
5e0d2a6f 2013 }
2014
5e0d2a6f 2015 list_size = 0;
5e0d2a6f 2016}
2017
2018static void flush_unmaps_timeout(unsigned long data)
2019{
80b20dd8 2020 unsigned long flags;
2021
2022 spin_lock_irqsave(&async_umap_flush_lock, flags);
5e0d2a6f 2023 flush_unmaps();
80b20dd8 2024 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
5e0d2a6f 2025}
2026
2027static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2028{
2029 unsigned long flags;
80b20dd8 2030 int next, iommu_id;
5e0d2a6f 2031
2032 spin_lock_irqsave(&async_umap_flush_lock, flags);
80b20dd8 2033 if (list_size == HIGH_WATER_MARK)
2034 flush_unmaps();
2035
2036 iommu_id = dom->iommu - g_iommus;
2037 next = deferred_flush[iommu_id].next;
2038 deferred_flush[iommu_id].domain[next] = dom;
2039 deferred_flush[iommu_id].iova[next] = iova;
2040 deferred_flush[iommu_id].next++;
5e0d2a6f 2041
2042 if (!timer_on) {
2043 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2044 timer_on = 1;
2045 }
2046 list_size++;
2047 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2048}
2049
f76aec76 2050static void intel_unmap_single(struct device *dev, dma_addr_t dev_addr,
ba395927
KA
2051 size_t size, int dir)
2052{
ba395927 2053 struct pci_dev *pdev = to_pci_dev(dev);
f76aec76
KA
2054 struct dmar_domain *domain;
2055 unsigned long start_addr;
ba395927
KA
2056 struct iova *iova;
2057
358dd8ac 2058 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
f76aec76 2059 return;
ba395927
KA
2060 domain = find_domain(pdev);
2061 BUG_ON(!domain);
2062
2063 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
f76aec76 2064 if (!iova)
ba395927 2065 return;
ba395927 2066
f76aec76
KA
2067 start_addr = iova->pfn_lo << PAGE_SHIFT_4K;
2068 size = aligned_size((u64)dev_addr, size);
ba395927 2069
f76aec76
KA
2070 pr_debug("Device %s unmapping: %lx@%llx\n",
2071 pci_name(pdev), size, (u64)start_addr);
ba395927 2072
f76aec76
KA
2073 /* clear the whole page */
2074 dma_pte_clear_range(domain, start_addr, start_addr + size);
2075 /* free page tables */
2076 dma_pte_free_pagetable(domain, start_addr, start_addr + size);
5e0d2a6f 2077 if (intel_iommu_strict) {
2078 if (iommu_flush_iotlb_psi(domain->iommu,
2079 domain->id, start_addr, size >> PAGE_SHIFT_4K, 0))
2080 iommu_flush_write_buffer(domain->iommu);
2081 /* free iova */
2082 __free_iova(&domain->iovad, iova);
2083 } else {
2084 add_unmap(domain, iova);
2085 /*
2086 * queue up the release of the unmap to save the 1/6th of the
2087 * cpu used up by the iotlb flush operation...
2088 */
5e0d2a6f 2089 }
ba395927
KA
2090}
2091
2092static void * intel_alloc_coherent(struct device *hwdev, size_t size,
2093 dma_addr_t *dma_handle, gfp_t flags)
2094{
2095 void *vaddr;
2096 int order;
2097
2098 size = PAGE_ALIGN_4K(size);
2099 order = get_order(size);
2100 flags &= ~(GFP_DMA | GFP_DMA32);
2101
2102 vaddr = (void *)__get_free_pages(flags, order);
2103 if (!vaddr)
2104 return NULL;
2105 memset(vaddr, 0, size);
2106
6865f0d1 2107 *dma_handle = intel_map_single(hwdev, virt_to_bus(vaddr), size, DMA_BIDIRECTIONAL);
ba395927
KA
2108 if (*dma_handle)
2109 return vaddr;
2110 free_pages((unsigned long)vaddr, order);
2111 return NULL;
2112}
2113
2114static void intel_free_coherent(struct device *hwdev, size_t size,
2115 void *vaddr, dma_addr_t dma_handle)
2116{
2117 int order;
2118
2119 size = PAGE_ALIGN_4K(size);
2120 order = get_order(size);
2121
2122 intel_unmap_single(hwdev, dma_handle, size, DMA_BIDIRECTIONAL);
2123 free_pages((unsigned long)vaddr, order);
2124}
2125
12d4d40e 2126#define SG_ENT_VIRT_ADDRESS(sg) (sg_virt((sg)))
c03ab37c 2127static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
ba395927
KA
2128 int nelems, int dir)
2129{
2130 int i;
2131 struct pci_dev *pdev = to_pci_dev(hwdev);
2132 struct dmar_domain *domain;
f76aec76
KA
2133 unsigned long start_addr;
2134 struct iova *iova;
2135 size_t size = 0;
2136 void *addr;
c03ab37c 2137 struct scatterlist *sg;
ba395927 2138
358dd8ac 2139 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
ba395927
KA
2140 return;
2141
2142 domain = find_domain(pdev);
ba395927 2143
c03ab37c 2144 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
f76aec76
KA
2145 if (!iova)
2146 return;
c03ab37c 2147 for_each_sg(sglist, sg, nelems, i) {
f76aec76
KA
2148 addr = SG_ENT_VIRT_ADDRESS(sg);
2149 size += aligned_size((u64)addr, sg->length);
2150 }
2151
2152 start_addr = iova->pfn_lo << PAGE_SHIFT_4K;
2153
2154 /* clear the whole page */
2155 dma_pte_clear_range(domain, start_addr, start_addr + size);
2156 /* free page tables */
2157 dma_pte_free_pagetable(domain, start_addr, start_addr + size);
2158
2159 if (iommu_flush_iotlb_psi(domain->iommu, domain->id, start_addr,
2160 size >> PAGE_SHIFT_4K, 0))
ba395927 2161 iommu_flush_write_buffer(domain->iommu);
f76aec76
KA
2162
2163 /* free iova */
2164 __free_iova(&domain->iovad, iova);
ba395927
KA
2165}
2166
ba395927 2167static int intel_nontranslate_map_sg(struct device *hddev,
c03ab37c 2168 struct scatterlist *sglist, int nelems, int dir)
ba395927
KA
2169{
2170 int i;
c03ab37c 2171 struct scatterlist *sg;
ba395927 2172
c03ab37c 2173 for_each_sg(sglist, sg, nelems, i) {
12d4d40e 2174 BUG_ON(!sg_page(sg));
c03ab37c
FT
2175 sg->dma_address = virt_to_bus(SG_ENT_VIRT_ADDRESS(sg));
2176 sg->dma_length = sg->length;
ba395927
KA
2177 }
2178 return nelems;
2179}
2180
c03ab37c
FT
2181static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist,
2182 int nelems, int dir)
ba395927
KA
2183{
2184 void *addr;
2185 int i;
ba395927
KA
2186 struct pci_dev *pdev = to_pci_dev(hwdev);
2187 struct dmar_domain *domain;
f76aec76
KA
2188 size_t size = 0;
2189 int prot = 0;
2190 size_t offset = 0;
2191 struct iova *iova = NULL;
2192 int ret;
c03ab37c 2193 struct scatterlist *sg;
f76aec76 2194 unsigned long start_addr;
ba395927
KA
2195
2196 BUG_ON(dir == DMA_NONE);
358dd8ac 2197 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
c03ab37c 2198 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
ba395927 2199
f76aec76
KA
2200 domain = get_valid_domain_for_dev(pdev);
2201 if (!domain)
2202 return 0;
2203
c03ab37c 2204 for_each_sg(sglist, sg, nelems, i) {
ba395927 2205 addr = SG_ENT_VIRT_ADDRESS(sg);
f76aec76
KA
2206 addr = (void *)virt_to_phys(addr);
2207 size += aligned_size((u64)addr, sg->length);
2208 }
2209
2210 iova = __intel_alloc_iova(hwdev, domain, size);
2211 if (!iova) {
c03ab37c 2212 sglist->dma_length = 0;
f76aec76
KA
2213 return 0;
2214 }
2215
2216 /*
2217 * Check if DMAR supports zero-length reads on write only
2218 * mappings..
2219 */
2220 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2221 !cap_zlr(domain->iommu->cap))
2222 prot |= DMA_PTE_READ;
2223 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2224 prot |= DMA_PTE_WRITE;
2225
2226 start_addr = iova->pfn_lo << PAGE_SHIFT_4K;
2227 offset = 0;
c03ab37c 2228 for_each_sg(sglist, sg, nelems, i) {
f76aec76
KA
2229 addr = SG_ENT_VIRT_ADDRESS(sg);
2230 addr = (void *)virt_to_phys(addr);
2231 size = aligned_size((u64)addr, sg->length);
2232 ret = domain_page_mapping(domain, start_addr + offset,
2233 ((u64)addr) & PAGE_MASK_4K,
2234 size, prot);
2235 if (ret) {
2236 /* clear the page */
2237 dma_pte_clear_range(domain, start_addr,
2238 start_addr + offset);
2239 /* free page tables */
2240 dma_pte_free_pagetable(domain, start_addr,
2241 start_addr + offset);
2242 /* free iova */
2243 __free_iova(&domain->iovad, iova);
ba395927
KA
2244 return 0;
2245 }
f76aec76
KA
2246 sg->dma_address = start_addr + offset +
2247 ((u64)addr & (~PAGE_MASK_4K));
ba395927 2248 sg->dma_length = sg->length;
f76aec76 2249 offset += size;
ba395927
KA
2250 }
2251
ba395927 2252 /* it's a non-present to present mapping */
f76aec76
KA
2253 if (iommu_flush_iotlb_psi(domain->iommu, domain->id,
2254 start_addr, offset >> PAGE_SHIFT_4K, 1))
ba395927
KA
2255 iommu_flush_write_buffer(domain->iommu);
2256 return nelems;
2257}
2258
2259static struct dma_mapping_ops intel_dma_ops = {
2260 .alloc_coherent = intel_alloc_coherent,
2261 .free_coherent = intel_free_coherent,
2262 .map_single = intel_map_single,
2263 .unmap_single = intel_unmap_single,
2264 .map_sg = intel_map_sg,
2265 .unmap_sg = intel_unmap_sg,
2266};
2267
2268static inline int iommu_domain_cache_init(void)
2269{
2270 int ret = 0;
2271
2272 iommu_domain_cache = kmem_cache_create("iommu_domain",
2273 sizeof(struct dmar_domain),
2274 0,
2275 SLAB_HWCACHE_ALIGN,
2276
2277 NULL);
2278 if (!iommu_domain_cache) {
2279 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
2280 ret = -ENOMEM;
2281 }
2282
2283 return ret;
2284}
2285
2286static inline int iommu_devinfo_cache_init(void)
2287{
2288 int ret = 0;
2289
2290 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
2291 sizeof(struct device_domain_info),
2292 0,
2293 SLAB_HWCACHE_ALIGN,
2294
2295 NULL);
2296 if (!iommu_devinfo_cache) {
2297 printk(KERN_ERR "Couldn't create devinfo cache\n");
2298 ret = -ENOMEM;
2299 }
2300
2301 return ret;
2302}
2303
2304static inline int iommu_iova_cache_init(void)
2305{
2306 int ret = 0;
2307
2308 iommu_iova_cache = kmem_cache_create("iommu_iova",
2309 sizeof(struct iova),
2310 0,
2311 SLAB_HWCACHE_ALIGN,
2312
2313 NULL);
2314 if (!iommu_iova_cache) {
2315 printk(KERN_ERR "Couldn't create iova cache\n");
2316 ret = -ENOMEM;
2317 }
2318
2319 return ret;
2320}
2321
2322static int __init iommu_init_mempool(void)
2323{
2324 int ret;
2325 ret = iommu_iova_cache_init();
2326 if (ret)
2327 return ret;
2328
2329 ret = iommu_domain_cache_init();
2330 if (ret)
2331 goto domain_error;
2332
2333 ret = iommu_devinfo_cache_init();
2334 if (!ret)
2335 return ret;
2336
2337 kmem_cache_destroy(iommu_domain_cache);
2338domain_error:
2339 kmem_cache_destroy(iommu_iova_cache);
2340
2341 return -ENOMEM;
2342}
2343
2344static void __init iommu_exit_mempool(void)
2345{
2346 kmem_cache_destroy(iommu_devinfo_cache);
2347 kmem_cache_destroy(iommu_domain_cache);
2348 kmem_cache_destroy(iommu_iova_cache);
2349
2350}
2351
2352void __init detect_intel_iommu(void)
2353{
2354 if (swiotlb || no_iommu || iommu_detected || dmar_disabled)
2355 return;
2356 if (early_dmar_detect()) {
2357 iommu_detected = 1;
2358 }
2359}
2360
2361static void __init init_no_remapping_devices(void)
2362{
2363 struct dmar_drhd_unit *drhd;
2364
2365 for_each_drhd_unit(drhd) {
2366 if (!drhd->include_all) {
2367 int i;
2368 for (i = 0; i < drhd->devices_cnt; i++)
2369 if (drhd->devices[i] != NULL)
2370 break;
2371 /* ignore DMAR unit if no pci devices exist */
2372 if (i == drhd->devices_cnt)
2373 drhd->ignored = 1;
2374 }
2375 }
2376
2377 if (dmar_map_gfx)
2378 return;
2379
2380 for_each_drhd_unit(drhd) {
2381 int i;
2382 if (drhd->ignored || drhd->include_all)
2383 continue;
2384
2385 for (i = 0; i < drhd->devices_cnt; i++)
2386 if (drhd->devices[i] &&
2387 !IS_GFX_DEVICE(drhd->devices[i]))
2388 break;
2389
2390 if (i < drhd->devices_cnt)
2391 continue;
2392
2393 /* bypass IOMMU if it is just for gfx devices */
2394 drhd->ignored = 1;
2395 for (i = 0; i < drhd->devices_cnt; i++) {
2396 if (!drhd->devices[i])
2397 continue;
358dd8ac 2398 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
ba395927
KA
2399 }
2400 }
2401}
2402
2403int __init intel_iommu_init(void)
2404{
2405 int ret = 0;
2406
2407 if (no_iommu || swiotlb || dmar_disabled)
2408 return -ENODEV;
2409
2410 if (dmar_table_init())
2411 return -ENODEV;
2412
2413 iommu_init_mempool();
2414 dmar_init_reserved_ranges();
2415
2416 init_no_remapping_devices();
2417
2418 ret = init_dmars();
2419 if (ret) {
2420 printk(KERN_ERR "IOMMU: dmar init failed\n");
2421 put_iova_domain(&reserved_iova_list);
2422 iommu_exit_mempool();
2423 return ret;
2424 }
2425 printk(KERN_INFO
2426 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
2427
5e0d2a6f 2428 init_timer(&unmap_timer);
ba395927
KA
2429 force_iommu = 1;
2430 dma_ops = &intel_dma_ops;
2431 return 0;
2432}
e820482c 2433
This page took 0.193831 seconds and 5 git commands to generate.