ab8500_charger: Detect charger removal
[deliverable/linux.git] / drivers / power / ab8500_fg.c
CommitLineData
13151631
AM
1/*
2 * Copyright (C) ST-Ericsson AB 2012
3 *
4 * Main and Back-up battery management driver.
5 *
6 * Note: Backup battery management is required in case of Li-Ion battery and not
7 * for capacitive battery. HREF boards have capacitive battery and hence backup
8 * battery management is not used and the supported code is available in this
9 * driver.
10 *
11 * License Terms: GNU General Public License v2
12 * Author:
13 * Johan Palsson <johan.palsson@stericsson.com>
14 * Karl Komierowski <karl.komierowski@stericsson.com>
15 * Arun R Murthy <arun.murthy@stericsson.com>
16 */
17
18#include <linux/init.h>
19#include <linux/module.h>
20#include <linux/device.h>
21#include <linux/interrupt.h>
22#include <linux/platform_device.h>
23#include <linux/power_supply.h>
24#include <linux/kobject.h>
13151631 25#include <linux/slab.h>
13151631 26#include <linux/delay.h>
13151631 27#include <linux/time.h>
e0f1abeb 28#include <linux/of.h>
13151631 29#include <linux/completion.h>
e0f1abeb
R
30#include <linux/mfd/core.h>
31#include <linux/mfd/abx500.h>
32#include <linux/mfd/abx500/ab8500.h>
33#include <linux/mfd/abx500/ab8500-bm.h>
34#include <linux/mfd/abx500/ab8500-gpadc.h>
13151631
AM
35
36#define MILLI_TO_MICRO 1000
37#define FG_LSB_IN_MA 1627
38#define QLSB_NANO_AMP_HOURS_X10 1129
39#define INS_CURR_TIMEOUT (3 * HZ)
40
41#define SEC_TO_SAMPLE(S) (S * 4)
42
43#define NBR_AVG_SAMPLES 20
44
45#define LOW_BAT_CHECK_INTERVAL (2 * HZ)
46
47#define VALID_CAPACITY_SEC (45 * 60) /* 45 minutes */
48#define BATT_OK_MIN 2360 /* mV */
49#define BATT_OK_INCREMENT 50 /* mV */
50#define BATT_OK_MAX_NR_INCREMENTS 0xE
51
52/* FG constants */
53#define BATT_OVV 0x01
54
55#define interpolate(x, x1, y1, x2, y2) \
56 ((y1) + ((((y2) - (y1)) * ((x) - (x1))) / ((x2) - (x1))));
57
58#define to_ab8500_fg_device_info(x) container_of((x), \
59 struct ab8500_fg, fg_psy);
60
61/**
62 * struct ab8500_fg_interrupts - ab8500 fg interupts
63 * @name: name of the interrupt
64 * @isr function pointer to the isr
65 */
66struct ab8500_fg_interrupts {
67 char *name;
68 irqreturn_t (*isr)(int irq, void *data);
69};
70
71enum ab8500_fg_discharge_state {
72 AB8500_FG_DISCHARGE_INIT,
73 AB8500_FG_DISCHARGE_INITMEASURING,
74 AB8500_FG_DISCHARGE_INIT_RECOVERY,
75 AB8500_FG_DISCHARGE_RECOVERY,
76 AB8500_FG_DISCHARGE_READOUT_INIT,
77 AB8500_FG_DISCHARGE_READOUT,
78 AB8500_FG_DISCHARGE_WAKEUP,
79};
80
81static char *discharge_state[] = {
82 "DISCHARGE_INIT",
83 "DISCHARGE_INITMEASURING",
84 "DISCHARGE_INIT_RECOVERY",
85 "DISCHARGE_RECOVERY",
86 "DISCHARGE_READOUT_INIT",
87 "DISCHARGE_READOUT",
88 "DISCHARGE_WAKEUP",
89};
90
91enum ab8500_fg_charge_state {
92 AB8500_FG_CHARGE_INIT,
93 AB8500_FG_CHARGE_READOUT,
94};
95
96static char *charge_state[] = {
97 "CHARGE_INIT",
98 "CHARGE_READOUT",
99};
100
101enum ab8500_fg_calibration_state {
102 AB8500_FG_CALIB_INIT,
103 AB8500_FG_CALIB_WAIT,
104 AB8500_FG_CALIB_END,
105};
106
107struct ab8500_fg_avg_cap {
108 int avg;
109 int samples[NBR_AVG_SAMPLES];
110 __kernel_time_t time_stamps[NBR_AVG_SAMPLES];
111 int pos;
112 int nbr_samples;
113 int sum;
114};
115
116struct ab8500_fg_battery_capacity {
117 int max_mah_design;
118 int max_mah;
119 int mah;
120 int permille;
121 int level;
122 int prev_mah;
123 int prev_percent;
124 int prev_level;
125 int user_mah;
126};
127
128struct ab8500_fg_flags {
129 bool fg_enabled;
130 bool conv_done;
131 bool charging;
132 bool fully_charged;
133 bool force_full;
134 bool low_bat_delay;
135 bool low_bat;
136 bool bat_ovv;
137 bool batt_unknown;
138 bool calibrate;
139 bool user_cap;
140 bool batt_id_received;
141};
142
143struct inst_curr_result_list {
144 struct list_head list;
145 int *result;
146};
147
148/**
149 * struct ab8500_fg - ab8500 FG device information
150 * @dev: Pointer to the structure device
151 * @node: a list of AB8500 FGs, hence prepared for reentrance
152 * @irq holds the CCEOC interrupt number
153 * @vbat: Battery voltage in mV
154 * @vbat_nom: Nominal battery voltage in mV
155 * @inst_curr: Instantenous battery current in mA
156 * @avg_curr: Average battery current in mA
157 * @bat_temp battery temperature
158 * @fg_samples: Number of samples used in the FG accumulation
159 * @accu_charge: Accumulated charge from the last conversion
160 * @recovery_cnt: Counter for recovery mode
161 * @high_curr_cnt: Counter for high current mode
162 * @init_cnt: Counter for init mode
3988a4df 163 * @nbr_cceoc_irq_cnt Counter for number of CCEOC irqs received since enabled
13151631
AM
164 * @recovery_needed: Indicate if recovery is needed
165 * @high_curr_mode: Indicate if we're in high current mode
166 * @init_capacity: Indicate if initial capacity measuring should be done
167 * @turn_off_fg: True if fg was off before current measurement
168 * @calib_state State during offset calibration
169 * @discharge_state: Current discharge state
170 * @charge_state: Current charge state
3988a4df 171 * @ab8500_fg_started Completion struct used for the instant current start
13151631
AM
172 * @ab8500_fg_complete Completion struct used for the instant current reading
173 * @flags: Structure for information about events triggered
174 * @bat_cap: Structure for battery capacity specific parameters
175 * @avg_cap: Average capacity filter
176 * @parent: Pointer to the struct ab8500
177 * @gpadc: Pointer to the struct gpadc
b0284de0 178 * @bm: Platform specific battery management information
13151631
AM
179 * @fg_psy: Structure that holds the FG specific battery properties
180 * @fg_wq: Work queue for running the FG algorithm
181 * @fg_periodic_work: Work to run the FG algorithm periodically
182 * @fg_low_bat_work: Work to check low bat condition
183 * @fg_reinit_work Work used to reset and reinitialise the FG algorithm
184 * @fg_work: Work to run the FG algorithm instantly
185 * @fg_acc_cur_work: Work to read the FG accumulator
186 * @fg_check_hw_failure_work: Work for checking HW state
187 * @cc_lock: Mutex for locking the CC
188 * @fg_kobject: Structure of type kobject
189 */
190struct ab8500_fg {
191 struct device *dev;
192 struct list_head node;
193 int irq;
194 int vbat;
195 int vbat_nom;
196 int inst_curr;
197 int avg_curr;
198 int bat_temp;
199 int fg_samples;
200 int accu_charge;
201 int recovery_cnt;
202 int high_curr_cnt;
203 int init_cnt;
3988a4df 204 int nbr_cceoc_irq_cnt;
13151631
AM
205 bool recovery_needed;
206 bool high_curr_mode;
207 bool init_capacity;
208 bool turn_off_fg;
209 enum ab8500_fg_calibration_state calib_state;
210 enum ab8500_fg_discharge_state discharge_state;
211 enum ab8500_fg_charge_state charge_state;
3988a4df 212 struct completion ab8500_fg_started;
13151631
AM
213 struct completion ab8500_fg_complete;
214 struct ab8500_fg_flags flags;
215 struct ab8500_fg_battery_capacity bat_cap;
216 struct ab8500_fg_avg_cap avg_cap;
217 struct ab8500 *parent;
218 struct ab8500_gpadc *gpadc;
b0284de0 219 struct abx500_bm_data *bm;
13151631
AM
220 struct power_supply fg_psy;
221 struct workqueue_struct *fg_wq;
222 struct delayed_work fg_periodic_work;
223 struct delayed_work fg_low_bat_work;
224 struct delayed_work fg_reinit_work;
225 struct work_struct fg_work;
226 struct work_struct fg_acc_cur_work;
227 struct delayed_work fg_check_hw_failure_work;
228 struct mutex cc_lock;
229 struct kobject fg_kobject;
230};
231static LIST_HEAD(ab8500_fg_list);
232
233/**
234 * ab8500_fg_get() - returns a reference to the primary AB8500 fuel gauge
235 * (i.e. the first fuel gauge in the instance list)
236 */
237struct ab8500_fg *ab8500_fg_get(void)
238{
239 struct ab8500_fg *fg;
240
241 if (list_empty(&ab8500_fg_list))
242 return NULL;
243
244 fg = list_first_entry(&ab8500_fg_list, struct ab8500_fg, node);
245 return fg;
246}
247
248/* Main battery properties */
249static enum power_supply_property ab8500_fg_props[] = {
250 POWER_SUPPLY_PROP_VOLTAGE_NOW,
251 POWER_SUPPLY_PROP_CURRENT_NOW,
252 POWER_SUPPLY_PROP_CURRENT_AVG,
253 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
254 POWER_SUPPLY_PROP_ENERGY_FULL,
255 POWER_SUPPLY_PROP_ENERGY_NOW,
256 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
257 POWER_SUPPLY_PROP_CHARGE_FULL,
258 POWER_SUPPLY_PROP_CHARGE_NOW,
259 POWER_SUPPLY_PROP_CAPACITY,
260 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
261};
262
263/*
264 * This array maps the raw hex value to lowbat voltage used by the AB8500
265 * Values taken from the UM0836
266 */
267static int ab8500_fg_lowbat_voltage_map[] = {
268 2300 ,
269 2325 ,
270 2350 ,
271 2375 ,
272 2400 ,
273 2425 ,
274 2450 ,
275 2475 ,
276 2500 ,
277 2525 ,
278 2550 ,
279 2575 ,
280 2600 ,
281 2625 ,
282 2650 ,
283 2675 ,
284 2700 ,
285 2725 ,
286 2750 ,
287 2775 ,
288 2800 ,
289 2825 ,
290 2850 ,
291 2875 ,
292 2900 ,
293 2925 ,
294 2950 ,
295 2975 ,
296 3000 ,
297 3025 ,
298 3050 ,
299 3075 ,
300 3100 ,
301 3125 ,
302 3150 ,
303 3175 ,
304 3200 ,
305 3225 ,
306 3250 ,
307 3275 ,
308 3300 ,
309 3325 ,
310 3350 ,
311 3375 ,
312 3400 ,
313 3425 ,
314 3450 ,
315 3475 ,
316 3500 ,
317 3525 ,
318 3550 ,
319 3575 ,
320 3600 ,
321 3625 ,
322 3650 ,
323 3675 ,
324 3700 ,
325 3725 ,
326 3750 ,
327 3775 ,
328 3800 ,
329 3825 ,
330 3850 ,
331 3850 ,
332};
333
334static u8 ab8500_volt_to_regval(int voltage)
335{
336 int i;
337
338 if (voltage < ab8500_fg_lowbat_voltage_map[0])
339 return 0;
340
341 for (i = 0; i < ARRAY_SIZE(ab8500_fg_lowbat_voltage_map); i++) {
342 if (voltage < ab8500_fg_lowbat_voltage_map[i])
343 return (u8) i - 1;
344 }
345
346 /* If not captured above, return index of last element */
347 return (u8) ARRAY_SIZE(ab8500_fg_lowbat_voltage_map) - 1;
348}
349
350/**
351 * ab8500_fg_is_low_curr() - Low or high current mode
352 * @di: pointer to the ab8500_fg structure
353 * @curr: the current to base or our decision on
354 *
355 * Low current mode if the current consumption is below a certain threshold
356 */
357static int ab8500_fg_is_low_curr(struct ab8500_fg *di, int curr)
358{
359 /*
360 * We want to know if we're in low current mode
361 */
b0284de0 362 if (curr > -di->bm->fg_params->high_curr_threshold)
13151631
AM
363 return true;
364 else
365 return false;
366}
367
368/**
369 * ab8500_fg_add_cap_sample() - Add capacity to average filter
370 * @di: pointer to the ab8500_fg structure
371 * @sample: the capacity in mAh to add to the filter
372 *
373 * A capacity is added to the filter and a new mean capacity is calculated and
374 * returned
375 */
376static int ab8500_fg_add_cap_sample(struct ab8500_fg *di, int sample)
377{
378 struct timespec ts;
379 struct ab8500_fg_avg_cap *avg = &di->avg_cap;
380
381 getnstimeofday(&ts);
382
383 do {
384 avg->sum += sample - avg->samples[avg->pos];
385 avg->samples[avg->pos] = sample;
386 avg->time_stamps[avg->pos] = ts.tv_sec;
387 avg->pos++;
388
389 if (avg->pos == NBR_AVG_SAMPLES)
390 avg->pos = 0;
391
392 if (avg->nbr_samples < NBR_AVG_SAMPLES)
393 avg->nbr_samples++;
394
395 /*
396 * Check the time stamp for each sample. If too old,
397 * replace with latest sample
398 */
399 } while (ts.tv_sec - VALID_CAPACITY_SEC > avg->time_stamps[avg->pos]);
400
401 avg->avg = avg->sum / avg->nbr_samples;
402
403 return avg->avg;
404}
405
406/**
407 * ab8500_fg_clear_cap_samples() - Clear average filter
408 * @di: pointer to the ab8500_fg structure
409 *
410 * The capacity filter is is reset to zero.
411 */
412static void ab8500_fg_clear_cap_samples(struct ab8500_fg *di)
413{
414 int i;
415 struct ab8500_fg_avg_cap *avg = &di->avg_cap;
416
417 avg->pos = 0;
418 avg->nbr_samples = 0;
419 avg->sum = 0;
420 avg->avg = 0;
421
422 for (i = 0; i < NBR_AVG_SAMPLES; i++) {
423 avg->samples[i] = 0;
424 avg->time_stamps[i] = 0;
425 }
426}
427
428/**
429 * ab8500_fg_fill_cap_sample() - Fill average filter
430 * @di: pointer to the ab8500_fg structure
431 * @sample: the capacity in mAh to fill the filter with
432 *
433 * The capacity filter is filled with a capacity in mAh
434 */
435static void ab8500_fg_fill_cap_sample(struct ab8500_fg *di, int sample)
436{
437 int i;
438 struct timespec ts;
439 struct ab8500_fg_avg_cap *avg = &di->avg_cap;
440
441 getnstimeofday(&ts);
442
443 for (i = 0; i < NBR_AVG_SAMPLES; i++) {
444 avg->samples[i] = sample;
445 avg->time_stamps[i] = ts.tv_sec;
446 }
447
448 avg->pos = 0;
449 avg->nbr_samples = NBR_AVG_SAMPLES;
450 avg->sum = sample * NBR_AVG_SAMPLES;
451 avg->avg = sample;
452}
453
454/**
455 * ab8500_fg_coulomb_counter() - enable coulomb counter
456 * @di: pointer to the ab8500_fg structure
457 * @enable: enable/disable
458 *
459 * Enable/Disable coulomb counter.
460 * On failure returns negative value.
461 */
462static int ab8500_fg_coulomb_counter(struct ab8500_fg *di, bool enable)
463{
464 int ret = 0;
465 mutex_lock(&di->cc_lock);
466 if (enable) {
467 /* To be able to reprogram the number of samples, we have to
468 * first stop the CC and then enable it again */
469 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
470 AB8500_RTC_CC_CONF_REG, 0x00);
471 if (ret)
472 goto cc_err;
473
474 /* Program the samples */
475 ret = abx500_set_register_interruptible(di->dev,
476 AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
477 di->fg_samples);
478 if (ret)
479 goto cc_err;
480
481 /* Start the CC */
482 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
483 AB8500_RTC_CC_CONF_REG,
484 (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
485 if (ret)
486 goto cc_err;
487
488 di->flags.fg_enabled = true;
489 } else {
490 /* Clear any pending read requests */
e32ad07c
KK
491 ret = abx500_mask_and_set_register_interruptible(di->dev,
492 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
493 (RESET_ACCU | READ_REQ), 0);
13151631
AM
494 if (ret)
495 goto cc_err;
496
497 ret = abx500_set_register_interruptible(di->dev,
498 AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_CTRL, 0);
499 if (ret)
500 goto cc_err;
501
502 /* Stop the CC */
503 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
504 AB8500_RTC_CC_CONF_REG, 0);
505 if (ret)
506 goto cc_err;
507
508 di->flags.fg_enabled = false;
509
510 }
511 dev_dbg(di->dev, " CC enabled: %d Samples: %d\n",
512 enable, di->fg_samples);
513
514 mutex_unlock(&di->cc_lock);
515
516 return ret;
517cc_err:
518 dev_err(di->dev, "%s Enabling coulomb counter failed\n", __func__);
519 mutex_unlock(&di->cc_lock);
520 return ret;
521}
522
523/**
524 * ab8500_fg_inst_curr_start() - start battery instantaneous current
525 * @di: pointer to the ab8500_fg structure
526 *
527 * Returns 0 or error code
528 * Note: This is part "one" and has to be called before
529 * ab8500_fg_inst_curr_finalize()
530 */
3988a4df 531int ab8500_fg_inst_curr_start(struct ab8500_fg *di)
13151631
AM
532{
533 u8 reg_val;
534 int ret;
535
536 mutex_lock(&di->cc_lock);
537
3988a4df 538 di->nbr_cceoc_irq_cnt = 0;
13151631
AM
539 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
540 AB8500_RTC_CC_CONF_REG, &reg_val);
541 if (ret < 0)
542 goto fail;
543
544 if (!(reg_val & CC_PWR_UP_ENA)) {
545 dev_dbg(di->dev, "%s Enable FG\n", __func__);
546 di->turn_off_fg = true;
547
548 /* Program the samples */
549 ret = abx500_set_register_interruptible(di->dev,
550 AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
551 SEC_TO_SAMPLE(10));
552 if (ret)
553 goto fail;
554
555 /* Start the CC */
556 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
557 AB8500_RTC_CC_CONF_REG,
558 (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
559 if (ret)
560 goto fail;
561 } else {
562 di->turn_off_fg = false;
563 }
564
565 /* Return and WFI */
3988a4df 566 INIT_COMPLETION(di->ab8500_fg_started);
13151631
AM
567 INIT_COMPLETION(di->ab8500_fg_complete);
568 enable_irq(di->irq);
569
570 /* Note: cc_lock is still locked */
571 return 0;
572fail:
573 mutex_unlock(&di->cc_lock);
574 return ret;
575}
576
3988a4df
JB
577/**
578 * ab8500_fg_inst_curr_started() - check if fg conversion has started
579 * @di: pointer to the ab8500_fg structure
580 *
581 * Returns 1 if conversion started, 0 if still waiting
582 */
583int ab8500_fg_inst_curr_started(struct ab8500_fg *di)
584{
585 return completion_done(&di->ab8500_fg_started);
586}
587
13151631
AM
588/**
589 * ab8500_fg_inst_curr_done() - check if fg conversion is done
590 * @di: pointer to the ab8500_fg structure
591 *
592 * Returns 1 if conversion done, 0 if still waiting
593 */
594int ab8500_fg_inst_curr_done(struct ab8500_fg *di)
595{
596 return completion_done(&di->ab8500_fg_complete);
597}
598
599/**
600 * ab8500_fg_inst_curr_finalize() - battery instantaneous current
601 * @di: pointer to the ab8500_fg structure
602 * @res: battery instantenous current(on success)
603 *
604 * Returns 0 or an error code
605 * Note: This is part "two" and has to be called at earliest 250 ms
606 * after ab8500_fg_inst_curr_start()
607 */
608int ab8500_fg_inst_curr_finalize(struct ab8500_fg *di, int *res)
609{
610 u8 low, high;
611 int val;
612 int ret;
613 int timeout;
614
615 if (!completion_done(&di->ab8500_fg_complete)) {
3988a4df
JB
616 timeout = wait_for_completion_timeout(
617 &di->ab8500_fg_complete,
13151631
AM
618 INS_CURR_TIMEOUT);
619 dev_dbg(di->dev, "Finalize time: %d ms\n",
620 ((INS_CURR_TIMEOUT - timeout) * 1000) / HZ);
621 if (!timeout) {
622 ret = -ETIME;
623 disable_irq(di->irq);
3988a4df 624 di->nbr_cceoc_irq_cnt = 0;
13151631
AM
625 dev_err(di->dev, "completion timed out [%d]\n",
626 __LINE__);
627 goto fail;
628 }
629 }
630
631 disable_irq(di->irq);
3988a4df 632 di->nbr_cceoc_irq_cnt = 0;
13151631
AM
633
634 ret = abx500_mask_and_set_register_interruptible(di->dev,
635 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
636 READ_REQ, READ_REQ);
637
638 /* 100uS between read request and read is needed */
639 usleep_range(100, 100);
640
641 /* Read CC Sample conversion value Low and high */
642 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
643 AB8500_GASG_CC_SMPL_CNVL_REG, &low);
644 if (ret < 0)
645 goto fail;
646
647 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
648 AB8500_GASG_CC_SMPL_CNVH_REG, &high);
649 if (ret < 0)
650 goto fail;
651
652 /*
653 * negative value for Discharging
654 * convert 2's compliment into decimal
655 */
656 if (high & 0x10)
657 val = (low | (high << 8) | 0xFFFFE000);
658 else
659 val = (low | (high << 8));
660
661 /*
662 * Convert to unit value in mA
663 * Full scale input voltage is
664 * 66.660mV => LSB = 66.660mV/(4096*res) = 1.627mA
665 * Given a 250ms conversion cycle time the LSB corresponds
666 * to 112.9 nAh. Convert to current by dividing by the conversion
667 * time in hours (250ms = 1 / (3600 * 4)h)
668 * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
669 */
670 val = (val * QLSB_NANO_AMP_HOURS_X10 * 36 * 4) /
b0284de0 671 (1000 * di->bm->fg_res);
13151631
AM
672
673 if (di->turn_off_fg) {
674 dev_dbg(di->dev, "%s Disable FG\n", __func__);
675
676 /* Clear any pending read requests */
677 ret = abx500_set_register_interruptible(di->dev,
678 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0);
679 if (ret)
680 goto fail;
681
682 /* Stop the CC */
683 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
684 AB8500_RTC_CC_CONF_REG, 0);
685 if (ret)
686 goto fail;
687 }
688 mutex_unlock(&di->cc_lock);
689 (*res) = val;
690
691 return 0;
692fail:
693 mutex_unlock(&di->cc_lock);
694 return ret;
695}
696
697/**
698 * ab8500_fg_inst_curr_blocking() - battery instantaneous current
699 * @di: pointer to the ab8500_fg structure
700 * @res: battery instantenous current(on success)
701 *
702 * Returns 0 else error code
703 */
704int ab8500_fg_inst_curr_blocking(struct ab8500_fg *di)
705{
706 int ret;
3988a4df 707 int timeout;
13151631
AM
708 int res = 0;
709
710 ret = ab8500_fg_inst_curr_start(di);
711 if (ret) {
712 dev_err(di->dev, "Failed to initialize fg_inst\n");
713 return 0;
714 }
715
3988a4df
JB
716 /* Wait for CC to actually start */
717 if (!completion_done(&di->ab8500_fg_started)) {
718 timeout = wait_for_completion_timeout(
719 &di->ab8500_fg_started,
720 INS_CURR_TIMEOUT);
721 dev_dbg(di->dev, "Start time: %d ms\n",
722 ((INS_CURR_TIMEOUT - timeout) * 1000) / HZ);
723 if (!timeout) {
724 ret = -ETIME;
725 dev_err(di->dev, "completion timed out [%d]\n",
726 __LINE__);
727 goto fail;
728 }
729 }
730
13151631
AM
731 ret = ab8500_fg_inst_curr_finalize(di, &res);
732 if (ret) {
733 dev_err(di->dev, "Failed to finalize fg_inst\n");
734 return 0;
735 }
736
3988a4df 737 dev_dbg(di->dev, "%s instant current: %d", __func__, res);
13151631 738 return res;
3988a4df
JB
739fail:
740 mutex_unlock(&di->cc_lock);
741 return ret;
13151631
AM
742}
743
744/**
745 * ab8500_fg_acc_cur_work() - average battery current
746 * @work: pointer to the work_struct structure
747 *
748 * Updated the average battery current obtained from the
749 * coulomb counter.
750 */
751static void ab8500_fg_acc_cur_work(struct work_struct *work)
752{
753 int val;
754 int ret;
755 u8 low, med, high;
756
757 struct ab8500_fg *di = container_of(work,
758 struct ab8500_fg, fg_acc_cur_work);
759
760 mutex_lock(&di->cc_lock);
761 ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE,
762 AB8500_GASG_CC_NCOV_ACCU_CTRL, RD_NCONV_ACCU_REQ);
763 if (ret)
764 goto exit;
765
766 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
767 AB8500_GASG_CC_NCOV_ACCU_LOW, &low);
768 if (ret < 0)
769 goto exit;
770
771 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
772 AB8500_GASG_CC_NCOV_ACCU_MED, &med);
773 if (ret < 0)
774 goto exit;
775
776 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
777 AB8500_GASG_CC_NCOV_ACCU_HIGH, &high);
778 if (ret < 0)
779 goto exit;
780
781 /* Check for sign bit in case of negative value, 2's compliment */
782 if (high & 0x10)
783 val = (low | (med << 8) | (high << 16) | 0xFFE00000);
784 else
785 val = (low | (med << 8) | (high << 16));
786
787 /*
788 * Convert to uAh
789 * Given a 250ms conversion cycle time the LSB corresponds
790 * to 112.9 nAh.
791 * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
792 */
793 di->accu_charge = (val * QLSB_NANO_AMP_HOURS_X10) /
b0284de0 794 (100 * di->bm->fg_res);
13151631
AM
795
796 /*
797 * Convert to unit value in mA
798 * Full scale input voltage is
799 * 66.660mV => LSB = 66.660mV/(4096*res) = 1.627mA
800 * Given a 250ms conversion cycle time the LSB corresponds
801 * to 112.9 nAh. Convert to current by dividing by the conversion
802 * time in hours (= samples / (3600 * 4)h)
803 * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
804 */
805 di->avg_curr = (val * QLSB_NANO_AMP_HOURS_X10 * 36) /
b0284de0 806 (1000 * di->bm->fg_res * (di->fg_samples / 4));
13151631
AM
807
808 di->flags.conv_done = true;
809
810 mutex_unlock(&di->cc_lock);
811
812 queue_work(di->fg_wq, &di->fg_work);
813
814 return;
815exit:
816 dev_err(di->dev,
817 "Failed to read or write gas gauge registers\n");
818 mutex_unlock(&di->cc_lock);
819 queue_work(di->fg_wq, &di->fg_work);
820}
821
822/**
823 * ab8500_fg_bat_voltage() - get battery voltage
824 * @di: pointer to the ab8500_fg structure
825 *
826 * Returns battery voltage(on success) else error code
827 */
828static int ab8500_fg_bat_voltage(struct ab8500_fg *di)
829{
830 int vbat;
831 static int prev;
832
833 vbat = ab8500_gpadc_convert(di->gpadc, MAIN_BAT_V);
834 if (vbat < 0) {
835 dev_err(di->dev,
836 "%s gpadc conversion failed, using previous value\n",
837 __func__);
838 return prev;
839 }
840
841 prev = vbat;
842 return vbat;
843}
844
845/**
846 * ab8500_fg_volt_to_capacity() - Voltage based capacity
847 * @di: pointer to the ab8500_fg structure
848 * @voltage: The voltage to convert to a capacity
849 *
850 * Returns battery capacity in per mille based on voltage
851 */
852static int ab8500_fg_volt_to_capacity(struct ab8500_fg *di, int voltage)
853{
854 int i, tbl_size;
450ceb2b 855 struct abx500_v_to_cap *tbl;
13151631
AM
856 int cap = 0;
857
b0284de0
LJ
858 tbl = di->bm->bat_type[di->bm->batt_id].v_to_cap_tbl,
859 tbl_size = di->bm->bat_type[di->bm->batt_id].n_v_cap_tbl_elements;
13151631
AM
860
861 for (i = 0; i < tbl_size; ++i) {
862 if (voltage > tbl[i].voltage)
863 break;
864 }
865
866 if ((i > 0) && (i < tbl_size)) {
867 cap = interpolate(voltage,
868 tbl[i].voltage,
869 tbl[i].capacity * 10,
870 tbl[i-1].voltage,
871 tbl[i-1].capacity * 10);
872 } else if (i == 0) {
873 cap = 1000;
874 } else {
875 cap = 0;
876 }
877
878 dev_dbg(di->dev, "%s Vbat: %d, Cap: %d per mille",
879 __func__, voltage, cap);
880
881 return cap;
882}
883
884/**
885 * ab8500_fg_uncomp_volt_to_capacity() - Uncompensated voltage based capacity
886 * @di: pointer to the ab8500_fg structure
887 *
888 * Returns battery capacity based on battery voltage that is not compensated
889 * for the voltage drop due to the load
890 */
891static int ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg *di)
892{
893 di->vbat = ab8500_fg_bat_voltage(di);
894 return ab8500_fg_volt_to_capacity(di, di->vbat);
895}
896
897/**
898 * ab8500_fg_battery_resistance() - Returns the battery inner resistance
899 * @di: pointer to the ab8500_fg structure
900 *
901 * Returns battery inner resistance added with the fuel gauge resistor value
902 * to get the total resistance in the whole link from gnd to bat+ node.
903 */
904static int ab8500_fg_battery_resistance(struct ab8500_fg *di)
905{
906 int i, tbl_size;
907 struct batres_vs_temp *tbl;
908 int resist = 0;
909
b0284de0
LJ
910 tbl = di->bm->bat_type[di->bm->batt_id].batres_tbl;
911 tbl_size = di->bm->bat_type[di->bm->batt_id].n_batres_tbl_elements;
13151631
AM
912
913 for (i = 0; i < tbl_size; ++i) {
914 if (di->bat_temp / 10 > tbl[i].temp)
915 break;
916 }
917
918 if ((i > 0) && (i < tbl_size)) {
919 resist = interpolate(di->bat_temp / 10,
920 tbl[i].temp,
921 tbl[i].resist,
922 tbl[i-1].temp,
923 tbl[i-1].resist);
924 } else if (i == 0) {
925 resist = tbl[0].resist;
926 } else {
927 resist = tbl[tbl_size - 1].resist;
928 }
929
930 dev_dbg(di->dev, "%s Temp: %d battery internal resistance: %d"
931 " fg resistance %d, total: %d (mOhm)\n",
b0284de0
LJ
932 __func__, di->bat_temp, resist, di->bm->fg_res / 10,
933 (di->bm->fg_res / 10) + resist);
13151631
AM
934
935 /* fg_res variable is in 0.1mOhm */
b0284de0 936 resist += di->bm->fg_res / 10;
13151631
AM
937
938 return resist;
939}
940
941/**
942 * ab8500_fg_load_comp_volt_to_capacity() - Load compensated voltage based capacity
943 * @di: pointer to the ab8500_fg structure
944 *
945 * Returns battery capacity based on battery voltage that is load compensated
946 * for the voltage drop
947 */
948static int ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg *di)
949{
950 int vbat_comp, res;
951 int i = 0;
952 int vbat = 0;
953
954 ab8500_fg_inst_curr_start(di);
955
956 do {
957 vbat += ab8500_fg_bat_voltage(di);
958 i++;
959 msleep(5);
960 } while (!ab8500_fg_inst_curr_done(di));
961
962 ab8500_fg_inst_curr_finalize(di, &di->inst_curr);
963
964 di->vbat = vbat / i;
965 res = ab8500_fg_battery_resistance(di);
966
967 /* Use Ohms law to get the load compensated voltage */
968 vbat_comp = di->vbat - (di->inst_curr * res) / 1000;
969
970 dev_dbg(di->dev, "%s Measured Vbat: %dmV,Compensated Vbat %dmV, "
971 "R: %dmOhm, Current: %dmA Vbat Samples: %d\n",
972 __func__, di->vbat, vbat_comp, res, di->inst_curr, i);
973
974 return ab8500_fg_volt_to_capacity(di, vbat_comp);
975}
976
977/**
978 * ab8500_fg_convert_mah_to_permille() - Capacity in mAh to permille
979 * @di: pointer to the ab8500_fg structure
980 * @cap_mah: capacity in mAh
981 *
982 * Converts capacity in mAh to capacity in permille
983 */
984static int ab8500_fg_convert_mah_to_permille(struct ab8500_fg *di, int cap_mah)
985{
986 return (cap_mah * 1000) / di->bat_cap.max_mah_design;
987}
988
989/**
990 * ab8500_fg_convert_permille_to_mah() - Capacity in permille to mAh
991 * @di: pointer to the ab8500_fg structure
992 * @cap_pm: capacity in permille
993 *
994 * Converts capacity in permille to capacity in mAh
995 */
996static int ab8500_fg_convert_permille_to_mah(struct ab8500_fg *di, int cap_pm)
997{
998 return cap_pm * di->bat_cap.max_mah_design / 1000;
999}
1000
1001/**
1002 * ab8500_fg_convert_mah_to_uwh() - Capacity in mAh to uWh
1003 * @di: pointer to the ab8500_fg structure
1004 * @cap_mah: capacity in mAh
1005 *
1006 * Converts capacity in mAh to capacity in uWh
1007 */
1008static int ab8500_fg_convert_mah_to_uwh(struct ab8500_fg *di, int cap_mah)
1009{
1010 u64 div_res;
1011 u32 div_rem;
1012
1013 div_res = ((u64) cap_mah) * ((u64) di->vbat_nom);
1014 div_rem = do_div(div_res, 1000);
1015
1016 /* Make sure to round upwards if necessary */
1017 if (div_rem >= 1000 / 2)
1018 div_res++;
1019
1020 return (int) div_res;
1021}
1022
1023/**
1024 * ab8500_fg_calc_cap_charging() - Calculate remaining capacity while charging
1025 * @di: pointer to the ab8500_fg structure
1026 *
1027 * Return the capacity in mAh based on previous calculated capcity and the FG
1028 * accumulator register value. The filter is filled with this capacity
1029 */
1030static int ab8500_fg_calc_cap_charging(struct ab8500_fg *di)
1031{
1032 dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1033 __func__,
1034 di->bat_cap.mah,
1035 di->accu_charge);
1036
1037 /* Capacity should not be less than 0 */
1038 if (di->bat_cap.mah + di->accu_charge > 0)
1039 di->bat_cap.mah += di->accu_charge;
1040 else
1041 di->bat_cap.mah = 0;
1042 /*
1043 * We force capacity to 100% once when the algorithm
1044 * reports that it's full.
1045 */
1046 if (di->bat_cap.mah >= di->bat_cap.max_mah_design ||
1047 di->flags.force_full) {
1048 di->bat_cap.mah = di->bat_cap.max_mah_design;
1049 }
1050
1051 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1052 di->bat_cap.permille =
1053 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1054
1055 /* We need to update battery voltage and inst current when charging */
1056 di->vbat = ab8500_fg_bat_voltage(di);
1057 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1058
1059 return di->bat_cap.mah;
1060}
1061
1062/**
1063 * ab8500_fg_calc_cap_discharge_voltage() - Capacity in discharge with voltage
1064 * @di: pointer to the ab8500_fg structure
1065 * @comp: if voltage should be load compensated before capacity calc
1066 *
1067 * Return the capacity in mAh based on the battery voltage. The voltage can
1068 * either be load compensated or not. This value is added to the filter and a
1069 * new mean value is calculated and returned.
1070 */
1071static int ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg *di, bool comp)
1072{
1073 int permille, mah;
1074
1075 if (comp)
1076 permille = ab8500_fg_load_comp_volt_to_capacity(di);
1077 else
1078 permille = ab8500_fg_uncomp_volt_to_capacity(di);
1079
1080 mah = ab8500_fg_convert_permille_to_mah(di, permille);
1081
1082 di->bat_cap.mah = ab8500_fg_add_cap_sample(di, mah);
1083 di->bat_cap.permille =
1084 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1085
1086 return di->bat_cap.mah;
1087}
1088
1089/**
1090 * ab8500_fg_calc_cap_discharge_fg() - Capacity in discharge with FG
1091 * @di: pointer to the ab8500_fg structure
1092 *
1093 * Return the capacity in mAh based on previous calculated capcity and the FG
1094 * accumulator register value. This value is added to the filter and a
1095 * new mean value is calculated and returned.
1096 */
1097static int ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg *di)
1098{
1099 int permille_volt, permille;
1100
1101 dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1102 __func__,
1103 di->bat_cap.mah,
1104 di->accu_charge);
1105
1106 /* Capacity should not be less than 0 */
1107 if (di->bat_cap.mah + di->accu_charge > 0)
1108 di->bat_cap.mah += di->accu_charge;
1109 else
1110 di->bat_cap.mah = 0;
1111
1112 if (di->bat_cap.mah >= di->bat_cap.max_mah_design)
1113 di->bat_cap.mah = di->bat_cap.max_mah_design;
1114
1115 /*
1116 * Check against voltage based capacity. It can not be lower
1117 * than what the uncompensated voltage says
1118 */
1119 permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1120 permille_volt = ab8500_fg_uncomp_volt_to_capacity(di);
1121
1122 if (permille < permille_volt) {
1123 di->bat_cap.permille = permille_volt;
1124 di->bat_cap.mah = ab8500_fg_convert_permille_to_mah(di,
1125 di->bat_cap.permille);
1126
1127 dev_dbg(di->dev, "%s voltage based: perm %d perm_volt %d\n",
1128 __func__,
1129 permille,
1130 permille_volt);
1131
1132 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1133 } else {
1134 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1135 di->bat_cap.permille =
1136 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1137 }
1138
1139 return di->bat_cap.mah;
1140}
1141
1142/**
1143 * ab8500_fg_capacity_level() - Get the battery capacity level
1144 * @di: pointer to the ab8500_fg structure
1145 *
1146 * Get the battery capacity level based on the capacity in percent
1147 */
1148static int ab8500_fg_capacity_level(struct ab8500_fg *di)
1149{
1150 int ret, percent;
1151
1152 percent = di->bat_cap.permille / 10;
1153
b0284de0 1154 if (percent <= di->bm->cap_levels->critical ||
13151631
AM
1155 di->flags.low_bat)
1156 ret = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
b0284de0 1157 else if (percent <= di->bm->cap_levels->low)
13151631 1158 ret = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
b0284de0 1159 else if (percent <= di->bm->cap_levels->normal)
13151631 1160 ret = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
b0284de0 1161 else if (percent <= di->bm->cap_levels->high)
13151631
AM
1162 ret = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
1163 else
1164 ret = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1165
1166 return ret;
1167}
1168
1169/**
1170 * ab8500_fg_check_capacity_limits() - Check if capacity has changed
1171 * @di: pointer to the ab8500_fg structure
1172 * @init: capacity is allowed to go up in init mode
1173 *
1174 * Check if capacity or capacity limit has changed and notify the system
1175 * about it using the power_supply framework
1176 */
1177static void ab8500_fg_check_capacity_limits(struct ab8500_fg *di, bool init)
1178{
1179 bool changed = false;
1180
1181 di->bat_cap.level = ab8500_fg_capacity_level(di);
1182
1183 if (di->bat_cap.level != di->bat_cap.prev_level) {
1184 /*
1185 * We do not allow reported capacity level to go up
1186 * unless we're charging or if we're in init
1187 */
1188 if (!(!di->flags.charging && di->bat_cap.level >
1189 di->bat_cap.prev_level) || init) {
1190 dev_dbg(di->dev, "level changed from %d to %d\n",
1191 di->bat_cap.prev_level,
1192 di->bat_cap.level);
1193 di->bat_cap.prev_level = di->bat_cap.level;
1194 changed = true;
1195 } else {
1196 dev_dbg(di->dev, "level not allowed to go up "
1197 "since no charger is connected: %d to %d\n",
1198 di->bat_cap.prev_level,
1199 di->bat_cap.level);
1200 }
1201 }
1202
1203 /*
1204 * If we have received the LOW_BAT IRQ, set capacity to 0 to initiate
1205 * shutdown
1206 */
1207 if (di->flags.low_bat) {
1208 dev_dbg(di->dev, "Battery low, set capacity to 0\n");
1209 di->bat_cap.prev_percent = 0;
1210 di->bat_cap.permille = 0;
1211 di->bat_cap.prev_mah = 0;
1212 di->bat_cap.mah = 0;
1213 changed = true;
1214 } else if (di->flags.fully_charged) {
1215 /*
1216 * We report 100% if algorithm reported fully charged
1217 * unless capacity drops too much
1218 */
1219 if (di->flags.force_full) {
1220 di->bat_cap.prev_percent = di->bat_cap.permille / 10;
1221 di->bat_cap.prev_mah = di->bat_cap.mah;
1222 } else if (!di->flags.force_full &&
1223 di->bat_cap.prev_percent !=
1224 (di->bat_cap.permille) / 10 &&
1225 (di->bat_cap.permille / 10) <
b0284de0 1226 di->bm->fg_params->maint_thres) {
13151631
AM
1227 dev_dbg(di->dev,
1228 "battery reported full "
1229 "but capacity dropping: %d\n",
1230 di->bat_cap.permille / 10);
1231 di->bat_cap.prev_percent = di->bat_cap.permille / 10;
1232 di->bat_cap.prev_mah = di->bat_cap.mah;
1233
1234 changed = true;
1235 }
1236 } else if (di->bat_cap.prev_percent != di->bat_cap.permille / 10) {
1237 if (di->bat_cap.permille / 10 == 0) {
1238 /*
1239 * We will not report 0% unless we've got
1240 * the LOW_BAT IRQ, no matter what the FG
1241 * algorithm says.
1242 */
1243 di->bat_cap.prev_percent = 1;
1244 di->bat_cap.permille = 1;
1245 di->bat_cap.prev_mah = 1;
1246 di->bat_cap.mah = 1;
1247
1248 changed = true;
1249 } else if (!(!di->flags.charging &&
1250 (di->bat_cap.permille / 10) >
1251 di->bat_cap.prev_percent) || init) {
1252 /*
1253 * We do not allow reported capacity to go up
1254 * unless we're charging or if we're in init
1255 */
1256 dev_dbg(di->dev,
1257 "capacity changed from %d to %d (%d)\n",
1258 di->bat_cap.prev_percent,
1259 di->bat_cap.permille / 10,
1260 di->bat_cap.permille);
1261 di->bat_cap.prev_percent = di->bat_cap.permille / 10;
1262 di->bat_cap.prev_mah = di->bat_cap.mah;
1263
1264 changed = true;
1265 } else {
1266 dev_dbg(di->dev, "capacity not allowed to go up since "
1267 "no charger is connected: %d to %d (%d)\n",
1268 di->bat_cap.prev_percent,
1269 di->bat_cap.permille / 10,
1270 di->bat_cap.permille);
1271 }
1272 }
1273
1274 if (changed) {
1275 power_supply_changed(&di->fg_psy);
1276 if (di->flags.fully_charged && di->flags.force_full) {
1277 dev_dbg(di->dev, "Battery full, notifying.\n");
1278 di->flags.force_full = false;
1279 sysfs_notify(&di->fg_kobject, NULL, "charge_full");
1280 }
1281 sysfs_notify(&di->fg_kobject, NULL, "charge_now");
1282 }
1283}
1284
1285static void ab8500_fg_charge_state_to(struct ab8500_fg *di,
1286 enum ab8500_fg_charge_state new_state)
1287{
1288 dev_dbg(di->dev, "Charge state from %d [%s] to %d [%s]\n",
1289 di->charge_state,
1290 charge_state[di->charge_state],
1291 new_state,
1292 charge_state[new_state]);
1293
1294 di->charge_state = new_state;
1295}
1296
1297static void ab8500_fg_discharge_state_to(struct ab8500_fg *di,
0fff22ee 1298 enum ab8500_fg_discharge_state new_state)
13151631
AM
1299{
1300 dev_dbg(di->dev, "Disharge state from %d [%s] to %d [%s]\n",
1301 di->discharge_state,
1302 discharge_state[di->discharge_state],
1303 new_state,
1304 discharge_state[new_state]);
1305
1306 di->discharge_state = new_state;
1307}
1308
1309/**
1310 * ab8500_fg_algorithm_charging() - FG algorithm for when charging
1311 * @di: pointer to the ab8500_fg structure
1312 *
1313 * Battery capacity calculation state machine for when we're charging
1314 */
1315static void ab8500_fg_algorithm_charging(struct ab8500_fg *di)
1316{
1317 /*
1318 * If we change to discharge mode
1319 * we should start with recovery
1320 */
1321 if (di->discharge_state != AB8500_FG_DISCHARGE_INIT_RECOVERY)
1322 ab8500_fg_discharge_state_to(di,
1323 AB8500_FG_DISCHARGE_INIT_RECOVERY);
1324
1325 switch (di->charge_state) {
1326 case AB8500_FG_CHARGE_INIT:
1327 di->fg_samples = SEC_TO_SAMPLE(
b0284de0 1328 di->bm->fg_params->accu_charging);
13151631
AM
1329
1330 ab8500_fg_coulomb_counter(di, true);
1331 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_READOUT);
1332
1333 break;
1334
1335 case AB8500_FG_CHARGE_READOUT:
1336 /*
1337 * Read the FG and calculate the new capacity
1338 */
1339 mutex_lock(&di->cc_lock);
1340 if (!di->flags.conv_done) {
1341 /* Wasn't the CC IRQ that got us here */
1342 mutex_unlock(&di->cc_lock);
1343 dev_dbg(di->dev, "%s CC conv not done\n",
1344 __func__);
1345
1346 break;
1347 }
1348 di->flags.conv_done = false;
1349 mutex_unlock(&di->cc_lock);
1350
1351 ab8500_fg_calc_cap_charging(di);
1352
1353 break;
1354
1355 default:
1356 break;
1357 }
1358
1359 /* Check capacity limits */
1360 ab8500_fg_check_capacity_limits(di, false);
1361}
1362
1363static void force_capacity(struct ab8500_fg *di)
1364{
1365 int cap;
1366
1367 ab8500_fg_clear_cap_samples(di);
1368 cap = di->bat_cap.user_mah;
1369 if (cap > di->bat_cap.max_mah_design) {
1370 dev_dbg(di->dev, "Remaining cap %d can't be bigger than total"
1371 " %d\n", cap, di->bat_cap.max_mah_design);
1372 cap = di->bat_cap.max_mah_design;
1373 }
1374 ab8500_fg_fill_cap_sample(di, di->bat_cap.user_mah);
1375 di->bat_cap.permille = ab8500_fg_convert_mah_to_permille(di, cap);
1376 di->bat_cap.mah = cap;
1377 ab8500_fg_check_capacity_limits(di, true);
1378}
1379
1380static bool check_sysfs_capacity(struct ab8500_fg *di)
1381{
1382 int cap, lower, upper;
1383 int cap_permille;
1384
1385 cap = di->bat_cap.user_mah;
1386
1387 cap_permille = ab8500_fg_convert_mah_to_permille(di,
1388 di->bat_cap.user_mah);
1389
b0284de0
LJ
1390 lower = di->bat_cap.permille - di->bm->fg_params->user_cap_limit * 10;
1391 upper = di->bat_cap.permille + di->bm->fg_params->user_cap_limit * 10;
13151631
AM
1392
1393 if (lower < 0)
1394 lower = 0;
1395 /* 1000 is permille, -> 100 percent */
1396 if (upper > 1000)
1397 upper = 1000;
1398
1399 dev_dbg(di->dev, "Capacity limits:"
1400 " (Lower: %d User: %d Upper: %d) [user: %d, was: %d]\n",
1401 lower, cap_permille, upper, cap, di->bat_cap.mah);
1402
1403 /* If within limits, use the saved capacity and exit estimation...*/
1404 if (cap_permille > lower && cap_permille < upper) {
1405 dev_dbg(di->dev, "OK! Using users cap %d uAh now\n", cap);
1406 force_capacity(di);
1407 return true;
1408 }
1409 dev_dbg(di->dev, "Capacity from user out of limits, ignoring");
1410 return false;
1411}
1412
1413/**
1414 * ab8500_fg_algorithm_discharging() - FG algorithm for when discharging
1415 * @di: pointer to the ab8500_fg structure
1416 *
1417 * Battery capacity calculation state machine for when we're discharging
1418 */
1419static void ab8500_fg_algorithm_discharging(struct ab8500_fg *di)
1420{
1421 int sleep_time;
1422
1423 /* If we change to charge mode we should start with init */
1424 if (di->charge_state != AB8500_FG_CHARGE_INIT)
1425 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
1426
1427 switch (di->discharge_state) {
1428 case AB8500_FG_DISCHARGE_INIT:
1429 /* We use the FG IRQ to work on */
1430 di->init_cnt = 0;
b0284de0 1431 di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
13151631
AM
1432 ab8500_fg_coulomb_counter(di, true);
1433 ab8500_fg_discharge_state_to(di,
1434 AB8500_FG_DISCHARGE_INITMEASURING);
1435
1436 /* Intentional fallthrough */
1437 case AB8500_FG_DISCHARGE_INITMEASURING:
1438 /*
1439 * Discard a number of samples during startup.
1440 * After that, use compensated voltage for a few
1441 * samples to get an initial capacity.
1442 * Then go to READOUT
1443 */
b0284de0 1444 sleep_time = di->bm->fg_params->init_timer;
13151631
AM
1445
1446 /* Discard the first [x] seconds */
b0284de0 1447 if (di->init_cnt > di->bm->fg_params->init_discard_time) {
13151631
AM
1448 ab8500_fg_calc_cap_discharge_voltage(di, true);
1449
1450 ab8500_fg_check_capacity_limits(di, true);
1451 }
1452
1453 di->init_cnt += sleep_time;
b0284de0 1454 if (di->init_cnt > di->bm->fg_params->init_total_time)
13151631
AM
1455 ab8500_fg_discharge_state_to(di,
1456 AB8500_FG_DISCHARGE_READOUT_INIT);
1457
1458 break;
1459
1460 case AB8500_FG_DISCHARGE_INIT_RECOVERY:
1461 di->recovery_cnt = 0;
1462 di->recovery_needed = true;
1463 ab8500_fg_discharge_state_to(di,
1464 AB8500_FG_DISCHARGE_RECOVERY);
1465
1466 /* Intentional fallthrough */
1467
1468 case AB8500_FG_DISCHARGE_RECOVERY:
b0284de0 1469 sleep_time = di->bm->fg_params->recovery_sleep_timer;
13151631
AM
1470
1471 /*
1472 * We should check the power consumption
1473 * If low, go to READOUT (after x min) or
1474 * RECOVERY_SLEEP if time left.
1475 * If high, go to READOUT
1476 */
1477 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1478
1479 if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1480 if (di->recovery_cnt >
b0284de0 1481 di->bm->fg_params->recovery_total_time) {
13151631 1482 di->fg_samples = SEC_TO_SAMPLE(
b0284de0 1483 di->bm->fg_params->accu_high_curr);
13151631
AM
1484 ab8500_fg_coulomb_counter(di, true);
1485 ab8500_fg_discharge_state_to(di,
1486 AB8500_FG_DISCHARGE_READOUT);
1487 di->recovery_needed = false;
1488 } else {
1489 queue_delayed_work(di->fg_wq,
1490 &di->fg_periodic_work,
1491 sleep_time * HZ);
1492 }
1493 di->recovery_cnt += sleep_time;
1494 } else {
1495 di->fg_samples = SEC_TO_SAMPLE(
b0284de0 1496 di->bm->fg_params->accu_high_curr);
13151631
AM
1497 ab8500_fg_coulomb_counter(di, true);
1498 ab8500_fg_discharge_state_to(di,
1499 AB8500_FG_DISCHARGE_READOUT);
1500 }
1501 break;
1502
1503 case AB8500_FG_DISCHARGE_READOUT_INIT:
1504 di->fg_samples = SEC_TO_SAMPLE(
b0284de0 1505 di->bm->fg_params->accu_high_curr);
13151631
AM
1506 ab8500_fg_coulomb_counter(di, true);
1507 ab8500_fg_discharge_state_to(di,
1508 AB8500_FG_DISCHARGE_READOUT);
1509 break;
1510
1511 case AB8500_FG_DISCHARGE_READOUT:
1512 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1513
1514 if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1515 /* Detect mode change */
1516 if (di->high_curr_mode) {
1517 di->high_curr_mode = false;
1518 di->high_curr_cnt = 0;
1519 }
1520
1521 if (di->recovery_needed) {
1522 ab8500_fg_discharge_state_to(di,
1523 AB8500_FG_DISCHARGE_RECOVERY);
1524
1525 queue_delayed_work(di->fg_wq,
1526 &di->fg_periodic_work, 0);
1527
1528 break;
1529 }
1530
1531 ab8500_fg_calc_cap_discharge_voltage(di, true);
1532 } else {
1533 mutex_lock(&di->cc_lock);
1534 if (!di->flags.conv_done) {
1535 /* Wasn't the CC IRQ that got us here */
1536 mutex_unlock(&di->cc_lock);
1537 dev_dbg(di->dev, "%s CC conv not done\n",
1538 __func__);
1539
1540 break;
1541 }
1542 di->flags.conv_done = false;
1543 mutex_unlock(&di->cc_lock);
1544
1545 /* Detect mode change */
1546 if (!di->high_curr_mode) {
1547 di->high_curr_mode = true;
1548 di->high_curr_cnt = 0;
1549 }
1550
1551 di->high_curr_cnt +=
b0284de0 1552 di->bm->fg_params->accu_high_curr;
13151631 1553 if (di->high_curr_cnt >
b0284de0 1554 di->bm->fg_params->high_curr_time)
13151631
AM
1555 di->recovery_needed = true;
1556
1557 ab8500_fg_calc_cap_discharge_fg(di);
1558 }
1559
1560 ab8500_fg_check_capacity_limits(di, false);
1561
1562 break;
1563
1564 case AB8500_FG_DISCHARGE_WAKEUP:
1565 ab8500_fg_coulomb_counter(di, true);
13151631
AM
1566 ab8500_fg_calc_cap_discharge_voltage(di, true);
1567
1568 di->fg_samples = SEC_TO_SAMPLE(
b0284de0 1569 di->bm->fg_params->accu_high_curr);
13151631
AM
1570 ab8500_fg_coulomb_counter(di, true);
1571 ab8500_fg_discharge_state_to(di,
1572 AB8500_FG_DISCHARGE_READOUT);
1573
1574 ab8500_fg_check_capacity_limits(di, false);
1575
1576 break;
1577
1578 default:
1579 break;
1580 }
1581}
1582
1583/**
1584 * ab8500_fg_algorithm_calibrate() - Internal columb counter offset calibration
1585 * @di: pointer to the ab8500_fg structure
1586 *
1587 */
1588static void ab8500_fg_algorithm_calibrate(struct ab8500_fg *di)
1589{
1590 int ret;
1591
1592 switch (di->calib_state) {
1593 case AB8500_FG_CALIB_INIT:
1594 dev_dbg(di->dev, "Calibration ongoing...\n");
1595
1596 ret = abx500_mask_and_set_register_interruptible(di->dev,
1597 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1598 CC_INT_CAL_N_AVG_MASK, CC_INT_CAL_SAMPLES_8);
1599 if (ret < 0)
1600 goto err;
1601
1602 ret = abx500_mask_and_set_register_interruptible(di->dev,
1603 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1604 CC_INTAVGOFFSET_ENA, CC_INTAVGOFFSET_ENA);
1605 if (ret < 0)
1606 goto err;
1607 di->calib_state = AB8500_FG_CALIB_WAIT;
1608 break;
1609 case AB8500_FG_CALIB_END:
1610 ret = abx500_mask_and_set_register_interruptible(di->dev,
1611 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1612 CC_MUXOFFSET, CC_MUXOFFSET);
1613 if (ret < 0)
1614 goto err;
1615 di->flags.calibrate = false;
1616 dev_dbg(di->dev, "Calibration done...\n");
1617 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1618 break;
1619 case AB8500_FG_CALIB_WAIT:
1620 dev_dbg(di->dev, "Calibration WFI\n");
1621 default:
1622 break;
1623 }
1624 return;
1625err:
1626 /* Something went wrong, don't calibrate then */
1627 dev_err(di->dev, "failed to calibrate the CC\n");
1628 di->flags.calibrate = false;
1629 di->calib_state = AB8500_FG_CALIB_INIT;
1630 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1631}
1632
1633/**
1634 * ab8500_fg_algorithm() - Entry point for the FG algorithm
1635 * @di: pointer to the ab8500_fg structure
1636 *
1637 * Entry point for the battery capacity calculation state machine
1638 */
1639static void ab8500_fg_algorithm(struct ab8500_fg *di)
1640{
1641 if (di->flags.calibrate)
1642 ab8500_fg_algorithm_calibrate(di);
1643 else {
1644 if (di->flags.charging)
1645 ab8500_fg_algorithm_charging(di);
1646 else
1647 ab8500_fg_algorithm_discharging(di);
1648 }
1649
1650 dev_dbg(di->dev, "[FG_DATA] %d %d %d %d %d %d %d %d %d "
1651 "%d %d %d %d %d %d %d\n",
1652 di->bat_cap.max_mah_design,
1653 di->bat_cap.mah,
1654 di->bat_cap.permille,
1655 di->bat_cap.level,
1656 di->bat_cap.prev_mah,
1657 di->bat_cap.prev_percent,
1658 di->bat_cap.prev_level,
1659 di->vbat,
1660 di->inst_curr,
1661 di->avg_curr,
1662 di->accu_charge,
1663 di->flags.charging,
1664 di->charge_state,
1665 di->discharge_state,
1666 di->high_curr_mode,
1667 di->recovery_needed);
1668}
1669
1670/**
1671 * ab8500_fg_periodic_work() - Run the FG state machine periodically
1672 * @work: pointer to the work_struct structure
1673 *
1674 * Work queue function for periodic work
1675 */
1676static void ab8500_fg_periodic_work(struct work_struct *work)
1677{
1678 struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1679 fg_periodic_work.work);
1680
1681 if (di->init_capacity) {
13151631
AM
1682 /* Get an initial capacity calculation */
1683 ab8500_fg_calc_cap_discharge_voltage(di, true);
1684 ab8500_fg_check_capacity_limits(di, true);
1685 di->init_capacity = false;
1686
1687 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1688 } else if (di->flags.user_cap) {
1689 if (check_sysfs_capacity(di)) {
1690 ab8500_fg_check_capacity_limits(di, true);
1691 if (di->flags.charging)
1692 ab8500_fg_charge_state_to(di,
1693 AB8500_FG_CHARGE_INIT);
1694 else
1695 ab8500_fg_discharge_state_to(di,
1696 AB8500_FG_DISCHARGE_READOUT_INIT);
1697 }
1698 di->flags.user_cap = false;
1699 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1700 } else
1701 ab8500_fg_algorithm(di);
1702
1703}
1704
1705/**
1706 * ab8500_fg_check_hw_failure_work() - Check OVV_BAT condition
1707 * @work: pointer to the work_struct structure
1708 *
1709 * Work queue function for checking the OVV_BAT condition
1710 */
1711static void ab8500_fg_check_hw_failure_work(struct work_struct *work)
1712{
1713 int ret;
1714 u8 reg_value;
1715
1716 struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1717 fg_check_hw_failure_work.work);
1718
1719 /*
1720 * If we have had a battery over-voltage situation,
1721 * check ovv-bit to see if it should be reset.
1722 */
1723 if (di->flags.bat_ovv) {
1724 ret = abx500_get_register_interruptible(di->dev,
1725 AB8500_CHARGER, AB8500_CH_STAT_REG,
1726 &reg_value);
1727 if (ret < 0) {
1728 dev_err(di->dev, "%s ab8500 read failed\n", __func__);
1729 return;
1730 }
1731 if ((reg_value & BATT_OVV) != BATT_OVV) {
1732 dev_dbg(di->dev, "Battery recovered from OVV\n");
1733 di->flags.bat_ovv = false;
1734 power_supply_changed(&di->fg_psy);
1735 return;
1736 }
1737
1738 /* Not yet recovered from ovv, reschedule this test */
1739 queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work,
1740 round_jiffies(HZ));
1741 }
1742}
1743
1744/**
1745 * ab8500_fg_low_bat_work() - Check LOW_BAT condition
1746 * @work: pointer to the work_struct structure
1747 *
1748 * Work queue function for checking the LOW_BAT condition
1749 */
1750static void ab8500_fg_low_bat_work(struct work_struct *work)
1751{
1752 int vbat;
1753
1754 struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1755 fg_low_bat_work.work);
1756
1757 vbat = ab8500_fg_bat_voltage(di);
1758
1759 /* Check if LOW_BAT still fulfilled */
b0284de0 1760 if (vbat < di->bm->fg_params->lowbat_threshold) {
13151631
AM
1761 di->flags.low_bat = true;
1762 dev_warn(di->dev, "Battery voltage still LOW\n");
1763
1764 /*
1765 * We need to re-schedule this check to be able to detect
1766 * if the voltage increases again during charging
1767 */
1768 queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
1769 round_jiffies(LOW_BAT_CHECK_INTERVAL));
1770 } else {
1771 di->flags.low_bat = false;
1772 dev_warn(di->dev, "Battery voltage OK again\n");
1773 }
1774
1775 /* This is needed to dispatch LOW_BAT */
1776 ab8500_fg_check_capacity_limits(di, false);
1777
1778 /* Set this flag to check if LOW_BAT IRQ still occurs */
1779 di->flags.low_bat_delay = false;
1780}
1781
1782/**
1783 * ab8500_fg_battok_calc - calculate the bit pattern corresponding
1784 * to the target voltage.
1785 * @di: pointer to the ab8500_fg structure
1786 * @target target voltage
1787 *
1788 * Returns bit pattern closest to the target voltage
1789 * valid return values are 0-14. (0-BATT_OK_MAX_NR_INCREMENTS)
1790 */
1791
1792static int ab8500_fg_battok_calc(struct ab8500_fg *di, int target)
1793{
1794 if (target > BATT_OK_MIN +
1795 (BATT_OK_INCREMENT * BATT_OK_MAX_NR_INCREMENTS))
1796 return BATT_OK_MAX_NR_INCREMENTS;
1797 if (target < BATT_OK_MIN)
1798 return 0;
1799 return (target - BATT_OK_MIN) / BATT_OK_INCREMENT;
1800}
1801
1802/**
1803 * ab8500_fg_battok_init_hw_register - init battok levels
1804 * @di: pointer to the ab8500_fg structure
1805 *
1806 */
1807
1808static int ab8500_fg_battok_init_hw_register(struct ab8500_fg *di)
1809{
1810 int selected;
1811 int sel0;
1812 int sel1;
1813 int cbp_sel0;
1814 int cbp_sel1;
1815 int ret;
1816 int new_val;
1817
b0284de0
LJ
1818 sel0 = di->bm->fg_params->battok_falling_th_sel0;
1819 sel1 = di->bm->fg_params->battok_raising_th_sel1;
13151631
AM
1820
1821 cbp_sel0 = ab8500_fg_battok_calc(di, sel0);
1822 cbp_sel1 = ab8500_fg_battok_calc(di, sel1);
1823
1824 selected = BATT_OK_MIN + cbp_sel0 * BATT_OK_INCREMENT;
1825
1826 if (selected != sel0)
1827 dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1828 sel0, selected, cbp_sel0);
1829
1830 selected = BATT_OK_MIN + cbp_sel1 * BATT_OK_INCREMENT;
1831
1832 if (selected != sel1)
1833 dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1834 sel1, selected, cbp_sel1);
1835
1836 new_val = cbp_sel0 | (cbp_sel1 << 4);
1837
1838 dev_dbg(di->dev, "using: %x %d %d\n", new_val, cbp_sel0, cbp_sel1);
1839 ret = abx500_set_register_interruptible(di->dev, AB8500_SYS_CTRL2_BLOCK,
1840 AB8500_BATT_OK_REG, new_val);
1841 return ret;
1842}
1843
1844/**
1845 * ab8500_fg_instant_work() - Run the FG state machine instantly
1846 * @work: pointer to the work_struct structure
1847 *
1848 * Work queue function for instant work
1849 */
1850static void ab8500_fg_instant_work(struct work_struct *work)
1851{
1852 struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_work);
1853
1854 ab8500_fg_algorithm(di);
1855}
1856
1857/**
1858 * ab8500_fg_cc_data_end_handler() - isr to get battery avg current.
1859 * @irq: interrupt number
1860 * @_di: pointer to the ab8500_fg structure
1861 *
1862 * Returns IRQ status(IRQ_HANDLED)
1863 */
1864static irqreturn_t ab8500_fg_cc_data_end_handler(int irq, void *_di)
1865{
1866 struct ab8500_fg *di = _di;
3988a4df
JB
1867 if (!di->nbr_cceoc_irq_cnt) {
1868 di->nbr_cceoc_irq_cnt++;
1869 complete(&di->ab8500_fg_started);
1870 } else {
1871 di->nbr_cceoc_irq_cnt = 0;
1872 complete(&di->ab8500_fg_complete);
1873 }
13151631
AM
1874 return IRQ_HANDLED;
1875}
1876
1877/**
1878 * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
1879 * @irq: interrupt number
1880 * @_di: pointer to the ab8500_fg structure
1881 *
1882 * Returns IRQ status(IRQ_HANDLED)
1883 */
1884static irqreturn_t ab8500_fg_cc_int_calib_handler(int irq, void *_di)
1885{
1886 struct ab8500_fg *di = _di;
1887 di->calib_state = AB8500_FG_CALIB_END;
1888 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1889 return IRQ_HANDLED;
1890}
1891
1892/**
1893 * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
1894 * @irq: interrupt number
1895 * @_di: pointer to the ab8500_fg structure
1896 *
1897 * Returns IRQ status(IRQ_HANDLED)
1898 */
1899static irqreturn_t ab8500_fg_cc_convend_handler(int irq, void *_di)
1900{
1901 struct ab8500_fg *di = _di;
1902
1903 queue_work(di->fg_wq, &di->fg_acc_cur_work);
1904
1905 return IRQ_HANDLED;
1906}
1907
1908/**
1909 * ab8500_fg_batt_ovv_handler() - Battery OVV occured
1910 * @irq: interrupt number
1911 * @_di: pointer to the ab8500_fg structure
1912 *
1913 * Returns IRQ status(IRQ_HANDLED)
1914 */
1915static irqreturn_t ab8500_fg_batt_ovv_handler(int irq, void *_di)
1916{
1917 struct ab8500_fg *di = _di;
1918
1919 dev_dbg(di->dev, "Battery OVV\n");
1920 di->flags.bat_ovv = true;
1921 power_supply_changed(&di->fg_psy);
1922
1923 /* Schedule a new HW failure check */
1924 queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work, 0);
1925
1926 return IRQ_HANDLED;
1927}
1928
1929/**
1930 * ab8500_fg_lowbatf_handler() - Battery voltage is below LOW threshold
1931 * @irq: interrupt number
1932 * @_di: pointer to the ab8500_fg structure
1933 *
1934 * Returns IRQ status(IRQ_HANDLED)
1935 */
1936static irqreturn_t ab8500_fg_lowbatf_handler(int irq, void *_di)
1937{
1938 struct ab8500_fg *di = _di;
1939
1940 if (!di->flags.low_bat_delay) {
1941 dev_warn(di->dev, "Battery voltage is below LOW threshold\n");
1942 di->flags.low_bat_delay = true;
1943 /*
1944 * Start a timer to check LOW_BAT again after some time
1945 * This is done to avoid shutdown on single voltage dips
1946 */
1947 queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
1948 round_jiffies(LOW_BAT_CHECK_INTERVAL));
1949 }
1950 return IRQ_HANDLED;
1951}
1952
1953/**
1954 * ab8500_fg_get_property() - get the fg properties
1955 * @psy: pointer to the power_supply structure
1956 * @psp: pointer to the power_supply_property structure
1957 * @val: pointer to the power_supply_propval union
1958 *
1959 * This function gets called when an application tries to get the
1960 * fg properties by reading the sysfs files.
1961 * voltage_now: battery voltage
1962 * current_now: battery instant current
1963 * current_avg: battery average current
1964 * charge_full_design: capacity where battery is considered full
1965 * charge_now: battery capacity in nAh
1966 * capacity: capacity in percent
1967 * capacity_level: capacity level
1968 *
1969 * Returns error code in case of failure else 0 on success
1970 */
1971static int ab8500_fg_get_property(struct power_supply *psy,
1972 enum power_supply_property psp,
1973 union power_supply_propval *val)
1974{
1975 struct ab8500_fg *di;
1976
1977 di = to_ab8500_fg_device_info(psy);
1978
1979 /*
1980 * If battery is identified as unknown and charging of unknown
1981 * batteries is disabled, we always report 100% capacity and
1982 * capacity level UNKNOWN, since we can't calculate
1983 * remaining capacity
1984 */
1985
1986 switch (psp) {
1987 case POWER_SUPPLY_PROP_VOLTAGE_NOW:
1988 if (di->flags.bat_ovv)
1989 val->intval = BATT_OVV_VALUE * 1000;
1990 else
1991 val->intval = di->vbat * 1000;
1992 break;
1993 case POWER_SUPPLY_PROP_CURRENT_NOW:
1994 val->intval = di->inst_curr * 1000;
1995 break;
1996 case POWER_SUPPLY_PROP_CURRENT_AVG:
1997 val->intval = di->avg_curr * 1000;
1998 break;
1999 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
2000 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2001 di->bat_cap.max_mah_design);
2002 break;
2003 case POWER_SUPPLY_PROP_ENERGY_FULL:
2004 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2005 di->bat_cap.max_mah);
2006 break;
2007 case POWER_SUPPLY_PROP_ENERGY_NOW:
b0284de0 2008 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
13151631
AM
2009 di->flags.batt_id_received)
2010 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2011 di->bat_cap.max_mah);
2012 else
2013 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2014 di->bat_cap.prev_mah);
2015 break;
2016 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
2017 val->intval = di->bat_cap.max_mah_design;
2018 break;
2019 case POWER_SUPPLY_PROP_CHARGE_FULL:
2020 val->intval = di->bat_cap.max_mah;
2021 break;
2022 case POWER_SUPPLY_PROP_CHARGE_NOW:
b0284de0 2023 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
13151631
AM
2024 di->flags.batt_id_received)
2025 val->intval = di->bat_cap.max_mah;
2026 else
2027 val->intval = di->bat_cap.prev_mah;
2028 break;
2029 case POWER_SUPPLY_PROP_CAPACITY:
b0284de0 2030 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
13151631
AM
2031 di->flags.batt_id_received)
2032 val->intval = 100;
2033 else
2034 val->intval = di->bat_cap.prev_percent;
2035 break;
2036 case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
b0284de0 2037 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
13151631
AM
2038 di->flags.batt_id_received)
2039 val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
2040 else
2041 val->intval = di->bat_cap.prev_level;
2042 break;
2043 default:
2044 return -EINVAL;
2045 }
2046 return 0;
2047}
2048
2049static int ab8500_fg_get_ext_psy_data(struct device *dev, void *data)
2050{
2051 struct power_supply *psy;
2052 struct power_supply *ext;
2053 struct ab8500_fg *di;
2054 union power_supply_propval ret;
2055 int i, j;
2056 bool psy_found = false;
2057
2058 psy = (struct power_supply *)data;
2059 ext = dev_get_drvdata(dev);
2060 di = to_ab8500_fg_device_info(psy);
2061
2062 /*
2063 * For all psy where the name of your driver
2064 * appears in any supplied_to
2065 */
2066 for (i = 0; i < ext->num_supplicants; i++) {
2067 if (!strcmp(ext->supplied_to[i], psy->name))
2068 psy_found = true;
2069 }
2070
2071 if (!psy_found)
2072 return 0;
2073
2074 /* Go through all properties for the psy */
2075 for (j = 0; j < ext->num_properties; j++) {
2076 enum power_supply_property prop;
2077 prop = ext->properties[j];
2078
2079 if (ext->get_property(ext, prop, &ret))
2080 continue;
2081
2082 switch (prop) {
2083 case POWER_SUPPLY_PROP_STATUS:
2084 switch (ext->type) {
2085 case POWER_SUPPLY_TYPE_BATTERY:
2086 switch (ret.intval) {
2087 case POWER_SUPPLY_STATUS_UNKNOWN:
2088 case POWER_SUPPLY_STATUS_DISCHARGING:
2089 case POWER_SUPPLY_STATUS_NOT_CHARGING:
2090 if (!di->flags.charging)
2091 break;
2092 di->flags.charging = false;
2093 di->flags.fully_charged = false;
2094 queue_work(di->fg_wq, &di->fg_work);
2095 break;
2096 case POWER_SUPPLY_STATUS_FULL:
2097 if (di->flags.fully_charged)
2098 break;
2099 di->flags.fully_charged = true;
2100 di->flags.force_full = true;
2101 /* Save current capacity as maximum */
2102 di->bat_cap.max_mah = di->bat_cap.mah;
2103 queue_work(di->fg_wq, &di->fg_work);
2104 break;
2105 case POWER_SUPPLY_STATUS_CHARGING:
2106 if (di->flags.charging)
2107 break;
2108 di->flags.charging = true;
2109 di->flags.fully_charged = false;
2110 queue_work(di->fg_wq, &di->fg_work);
2111 break;
2112 };
2113 default:
2114 break;
2115 };
2116 break;
2117 case POWER_SUPPLY_PROP_TECHNOLOGY:
2118 switch (ext->type) {
2119 case POWER_SUPPLY_TYPE_BATTERY:
2120 if (!di->flags.batt_id_received) {
c34a61b4
AV
2121 const struct abx500_battery_type *b;
2122
b0284de0 2123 b = &(di->bm->bat_type[di->bm->batt_id]);
13151631
AM
2124
2125 di->flags.batt_id_received = true;
2126
2127 di->bat_cap.max_mah_design =
2128 MILLI_TO_MICRO *
2129 b->charge_full_design;
2130
2131 di->bat_cap.max_mah =
2132 di->bat_cap.max_mah_design;
2133
2134 di->vbat_nom = b->nominal_voltage;
2135 }
2136
2137 if (ret.intval)
2138 di->flags.batt_unknown = false;
2139 else
2140 di->flags.batt_unknown = true;
2141 break;
2142 default:
2143 break;
2144 }
2145 break;
2146 case POWER_SUPPLY_PROP_TEMP:
2147 switch (ext->type) {
2148 case POWER_SUPPLY_TYPE_BATTERY:
2149 if (di->flags.batt_id_received)
2150 di->bat_temp = ret.intval;
2151 break;
2152 default:
2153 break;
2154 }
2155 break;
2156 default:
2157 break;
2158 }
2159 }
2160 return 0;
2161}
2162
2163/**
2164 * ab8500_fg_init_hw_registers() - Set up FG related registers
2165 * @di: pointer to the ab8500_fg structure
2166 *
2167 * Set up battery OVV, low battery voltage registers
2168 */
2169static int ab8500_fg_init_hw_registers(struct ab8500_fg *di)
2170{
2171 int ret;
2172
2173 /* Set VBAT OVV threshold */
2174 ret = abx500_mask_and_set_register_interruptible(di->dev,
2175 AB8500_CHARGER,
2176 AB8500_BATT_OVV,
2177 BATT_OVV_TH_4P75,
2178 BATT_OVV_TH_4P75);
2179 if (ret) {
2180 dev_err(di->dev, "failed to set BATT_OVV\n");
2181 goto out;
2182 }
2183
2184 /* Enable VBAT OVV detection */
2185 ret = abx500_mask_and_set_register_interruptible(di->dev,
2186 AB8500_CHARGER,
2187 AB8500_BATT_OVV,
2188 BATT_OVV_ENA,
2189 BATT_OVV_ENA);
2190 if (ret) {
2191 dev_err(di->dev, "failed to enable BATT_OVV\n");
2192 goto out;
2193 }
2194
2195 /* Low Battery Voltage */
2196 ret = abx500_set_register_interruptible(di->dev,
2197 AB8500_SYS_CTRL2_BLOCK,
2198 AB8500_LOW_BAT_REG,
2199 ab8500_volt_to_regval(
b0284de0 2200 di->bm->fg_params->lowbat_threshold) << 1 |
13151631
AM
2201 LOW_BAT_ENABLE);
2202 if (ret) {
2203 dev_err(di->dev, "%s write failed\n", __func__);
2204 goto out;
2205 }
2206
2207 /* Battery OK threshold */
2208 ret = ab8500_fg_battok_init_hw_register(di);
2209 if (ret) {
2210 dev_err(di->dev, "BattOk init write failed.\n");
2211 goto out;
2212 }
2213out:
2214 return ret;
2215}
2216
2217/**
2218 * ab8500_fg_external_power_changed() - callback for power supply changes
2219 * @psy: pointer to the structure power_supply
2220 *
2221 * This function is the entry point of the pointer external_power_changed
2222 * of the structure power_supply.
2223 * This function gets executed when there is a change in any external power
2224 * supply that this driver needs to be notified of.
2225 */
2226static void ab8500_fg_external_power_changed(struct power_supply *psy)
2227{
2228 struct ab8500_fg *di = to_ab8500_fg_device_info(psy);
2229
2230 class_for_each_device(power_supply_class, NULL,
2231 &di->fg_psy, ab8500_fg_get_ext_psy_data);
2232}
2233
2234/**
2235 * abab8500_fg_reinit_work() - work to reset the FG algorithm
2236 * @work: pointer to the work_struct structure
2237 *
2238 * Used to reset the current battery capacity to be able to
2239 * retrigger a new voltage base capacity calculation. For
2240 * test and verification purpose.
2241 */
2242static void ab8500_fg_reinit_work(struct work_struct *work)
2243{
2244 struct ab8500_fg *di = container_of(work, struct ab8500_fg,
2245 fg_reinit_work.work);
2246
2247 if (di->flags.calibrate == false) {
2248 dev_dbg(di->dev, "Resetting FG state machine to init.\n");
2249 ab8500_fg_clear_cap_samples(di);
2250 ab8500_fg_calc_cap_discharge_voltage(di, true);
2251 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
2252 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
2253 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2254
2255 } else {
2256 dev_err(di->dev, "Residual offset calibration ongoing "
2257 "retrying..\n");
2258 /* Wait one second until next try*/
2259 queue_delayed_work(di->fg_wq, &di->fg_reinit_work,
2260 round_jiffies(1));
2261 }
2262}
2263
2264/**
2265 * ab8500_fg_reinit() - forces FG algorithm to reinitialize with current values
2266 *
2267 * This function can be used to force the FG algorithm to recalculate a new
2268 * voltage based battery capacity.
2269 */
2270void ab8500_fg_reinit(void)
2271{
2272 struct ab8500_fg *di = ab8500_fg_get();
2273 /* User won't be notified if a null pointer returned. */
2274 if (di != NULL)
2275 queue_delayed_work(di->fg_wq, &di->fg_reinit_work, 0);
2276}
2277
2278/* Exposure to the sysfs interface */
2279
2280struct ab8500_fg_sysfs_entry {
2281 struct attribute attr;
2282 ssize_t (*show)(struct ab8500_fg *, char *);
2283 ssize_t (*store)(struct ab8500_fg *, const char *, size_t);
2284};
2285
2286static ssize_t charge_full_show(struct ab8500_fg *di, char *buf)
2287{
2288 return sprintf(buf, "%d\n", di->bat_cap.max_mah);
2289}
2290
2291static ssize_t charge_full_store(struct ab8500_fg *di, const char *buf,
2292 size_t count)
2293{
2294 unsigned long charge_full;
2295 ssize_t ret = -EINVAL;
2296
2297 ret = strict_strtoul(buf, 10, &charge_full);
2298
5ae2b822 2299 dev_dbg(di->dev, "Ret %zd charge_full %lu", ret, charge_full);
13151631
AM
2300
2301 if (!ret) {
2302 di->bat_cap.max_mah = (int) charge_full;
2303 ret = count;
2304 }
2305 return ret;
2306}
2307
2308static ssize_t charge_now_show(struct ab8500_fg *di, char *buf)
2309{
2310 return sprintf(buf, "%d\n", di->bat_cap.prev_mah);
2311}
2312
2313static ssize_t charge_now_store(struct ab8500_fg *di, const char *buf,
2314 size_t count)
2315{
2316 unsigned long charge_now;
2317 ssize_t ret;
2318
2319 ret = strict_strtoul(buf, 10, &charge_now);
2320
5ae2b822 2321 dev_dbg(di->dev, "Ret %zd charge_now %lu was %d",
13151631
AM
2322 ret, charge_now, di->bat_cap.prev_mah);
2323
2324 if (!ret) {
2325 di->bat_cap.user_mah = (int) charge_now;
2326 di->flags.user_cap = true;
2327 ret = count;
2328 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2329 }
2330 return ret;
2331}
2332
2333static struct ab8500_fg_sysfs_entry charge_full_attr =
2334 __ATTR(charge_full, 0644, charge_full_show, charge_full_store);
2335
2336static struct ab8500_fg_sysfs_entry charge_now_attr =
2337 __ATTR(charge_now, 0644, charge_now_show, charge_now_store);
2338
2339static ssize_t
2340ab8500_fg_show(struct kobject *kobj, struct attribute *attr, char *buf)
2341{
2342 struct ab8500_fg_sysfs_entry *entry;
2343 struct ab8500_fg *di;
2344
2345 entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2346 di = container_of(kobj, struct ab8500_fg, fg_kobject);
2347
2348 if (!entry->show)
2349 return -EIO;
2350
2351 return entry->show(di, buf);
2352}
2353static ssize_t
2354ab8500_fg_store(struct kobject *kobj, struct attribute *attr, const char *buf,
2355 size_t count)
2356{
2357 struct ab8500_fg_sysfs_entry *entry;
2358 struct ab8500_fg *di;
2359
2360 entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2361 di = container_of(kobj, struct ab8500_fg, fg_kobject);
2362
2363 if (!entry->store)
2364 return -EIO;
2365
2366 return entry->store(di, buf, count);
2367}
2368
64eb9b02 2369static const struct sysfs_ops ab8500_fg_sysfs_ops = {
13151631
AM
2370 .show = ab8500_fg_show,
2371 .store = ab8500_fg_store,
2372};
2373
2374static struct attribute *ab8500_fg_attrs[] = {
2375 &charge_full_attr.attr,
2376 &charge_now_attr.attr,
2377 NULL,
2378};
2379
2380static struct kobj_type ab8500_fg_ktype = {
2381 .sysfs_ops = &ab8500_fg_sysfs_ops,
2382 .default_attrs = ab8500_fg_attrs,
2383};
2384
2385/**
2386 * ab8500_chargalg_sysfs_exit() - de-init of sysfs entry
2387 * @di: pointer to the struct ab8500_chargalg
2388 *
2389 * This function removes the entry in sysfs.
2390 */
2391static void ab8500_fg_sysfs_exit(struct ab8500_fg *di)
2392{
2393 kobject_del(&di->fg_kobject);
2394}
2395
2396/**
2397 * ab8500_chargalg_sysfs_init() - init of sysfs entry
2398 * @di: pointer to the struct ab8500_chargalg
2399 *
2400 * This function adds an entry in sysfs.
2401 * Returns error code in case of failure else 0(on success)
2402 */
2403static int ab8500_fg_sysfs_init(struct ab8500_fg *di)
2404{
2405 int ret = 0;
2406
2407 ret = kobject_init_and_add(&di->fg_kobject,
2408 &ab8500_fg_ktype,
2409 NULL, "battery");
2410 if (ret < 0)
2411 dev_err(di->dev, "failed to create sysfs entry\n");
2412
2413 return ret;
2414}
2415/* Exposure to the sysfs interface <<END>> */
2416
2417#if defined(CONFIG_PM)
2418static int ab8500_fg_resume(struct platform_device *pdev)
2419{
2420 struct ab8500_fg *di = platform_get_drvdata(pdev);
2421
2422 /*
2423 * Change state if we're not charging. If we're charging we will wake
2424 * up on the FG IRQ
2425 */
2426 if (!di->flags.charging) {
2427 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_WAKEUP);
2428 queue_work(di->fg_wq, &di->fg_work);
2429 }
2430
2431 return 0;
2432}
2433
2434static int ab8500_fg_suspend(struct platform_device *pdev,
2435 pm_message_t state)
2436{
2437 struct ab8500_fg *di = platform_get_drvdata(pdev);
2438
2439 flush_delayed_work(&di->fg_periodic_work);
2440
2441 /*
2442 * If the FG is enabled we will disable it before going to suspend
2443 * only if we're not charging
2444 */
2445 if (di->flags.fg_enabled && !di->flags.charging)
2446 ab8500_fg_coulomb_counter(di, false);
2447
2448 return 0;
2449}
2450#else
2451#define ab8500_fg_suspend NULL
2452#define ab8500_fg_resume NULL
2453#endif
2454
415ec69f 2455static int ab8500_fg_remove(struct platform_device *pdev)
13151631
AM
2456{
2457 int ret = 0;
2458 struct ab8500_fg *di = platform_get_drvdata(pdev);
2459
2460 list_del(&di->node);
2461
2462 /* Disable coulomb counter */
2463 ret = ab8500_fg_coulomb_counter(di, false);
2464 if (ret)
2465 dev_err(di->dev, "failed to disable coulomb counter\n");
2466
2467 destroy_workqueue(di->fg_wq);
2468 ab8500_fg_sysfs_exit(di);
2469
2470 flush_scheduled_work();
2471 power_supply_unregister(&di->fg_psy);
2472 platform_set_drvdata(pdev, NULL);
13151631
AM
2473 return ret;
2474}
2475
2476/* ab8500 fg driver interrupts and their respective isr */
2477static struct ab8500_fg_interrupts ab8500_fg_irq[] = {
2478 {"NCONV_ACCU", ab8500_fg_cc_convend_handler},
2479 {"BATT_OVV", ab8500_fg_batt_ovv_handler},
2480 {"LOW_BAT_F", ab8500_fg_lowbatf_handler},
2481 {"CC_INT_CALIB", ab8500_fg_cc_int_calib_handler},
2482 {"CCEOC", ab8500_fg_cc_data_end_handler},
2483};
2484
e0f1abeb
R
2485static char *supply_interface[] = {
2486 "ab8500_chargalg",
2487 "ab8500_usb",
2488};
2489
c8afa640 2490static int ab8500_fg_probe(struct platform_device *pdev)
13151631 2491{
e0f1abeb 2492 struct device_node *np = pdev->dev.of_node;
195c1c66 2493 struct abx500_bm_data *plat = pdev->dev.platform_data;
e0f1abeb 2494 struct ab8500_fg *di;
13151631
AM
2495 int i, irq;
2496 int ret = 0;
13151631 2497
e0f1abeb
R
2498 di = devm_kzalloc(&pdev->dev, sizeof(*di), GFP_KERNEL);
2499 if (!di) {
2500 dev_err(&pdev->dev, "%s no mem for ab8500_fg\n", __func__);
13151631 2501 return -ENOMEM;
e0f1abeb 2502 }
195c1c66
LJ
2503
2504 if (!plat) {
2505 dev_err(&pdev->dev, "no battery management data supplied\n");
2506 return -EINVAL;
2507 }
2508 di->bm = plat;
2509
2510 if (np) {
2511 ret = ab8500_bm_of_probe(&pdev->dev, np, di->bm);
2512 if (ret) {
2513 dev_err(&pdev->dev, "failed to get battery information\n");
2514 return ret;
e0f1abeb 2515 }
e0f1abeb 2516 }
13151631
AM
2517
2518 mutex_init(&di->cc_lock);
2519
2520 /* get parent data */
2521 di->dev = &pdev->dev;
2522 di->parent = dev_get_drvdata(pdev->dev.parent);
2523 di->gpadc = ab8500_gpadc_get("ab8500-gpadc.0");
2524
13151631
AM
2525 di->fg_psy.name = "ab8500_fg";
2526 di->fg_psy.type = POWER_SUPPLY_TYPE_BATTERY;
2527 di->fg_psy.properties = ab8500_fg_props;
2528 di->fg_psy.num_properties = ARRAY_SIZE(ab8500_fg_props);
2529 di->fg_psy.get_property = ab8500_fg_get_property;
e0f1abeb
R
2530 di->fg_psy.supplied_to = supply_interface;
2531 di->fg_psy.num_supplicants = ARRAY_SIZE(supply_interface),
13151631
AM
2532 di->fg_psy.external_power_changed = ab8500_fg_external_power_changed;
2533
2534 di->bat_cap.max_mah_design = MILLI_TO_MICRO *
b0284de0 2535 di->bm->bat_type[di->bm->batt_id].charge_full_design;
13151631
AM
2536
2537 di->bat_cap.max_mah = di->bat_cap.max_mah_design;
2538
b0284de0 2539 di->vbat_nom = di->bm->bat_type[di->bm->batt_id].nominal_voltage;
13151631
AM
2540
2541 di->init_capacity = true;
2542
2543 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
2544 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
2545
2546 /* Create a work queue for running the FG algorithm */
2547 di->fg_wq = create_singlethread_workqueue("ab8500_fg_wq");
2548 if (di->fg_wq == NULL) {
2549 dev_err(di->dev, "failed to create work queue\n");
e0f1abeb 2550 return -ENOMEM;
13151631
AM
2551 }
2552
2553 /* Init work for running the fg algorithm instantly */
2554 INIT_WORK(&di->fg_work, ab8500_fg_instant_work);
2555
2556 /* Init work for getting the battery accumulated current */
2557 INIT_WORK(&di->fg_acc_cur_work, ab8500_fg_acc_cur_work);
2558
2559 /* Init work for reinitialising the fg algorithm */
203b42f7 2560 INIT_DEFERRABLE_WORK(&di->fg_reinit_work,
13151631
AM
2561 ab8500_fg_reinit_work);
2562
2563 /* Work delayed Queue to run the state machine */
203b42f7 2564 INIT_DEFERRABLE_WORK(&di->fg_periodic_work,
13151631
AM
2565 ab8500_fg_periodic_work);
2566
2567 /* Work to check low battery condition */
203b42f7 2568 INIT_DEFERRABLE_WORK(&di->fg_low_bat_work,
13151631
AM
2569 ab8500_fg_low_bat_work);
2570
2571 /* Init work for HW failure check */
203b42f7 2572 INIT_DEFERRABLE_WORK(&di->fg_check_hw_failure_work,
13151631
AM
2573 ab8500_fg_check_hw_failure_work);
2574
2575 /* Initialize OVV, and other registers */
2576 ret = ab8500_fg_init_hw_registers(di);
2577 if (ret) {
2578 dev_err(di->dev, "failed to initialize registers\n");
2579 goto free_inst_curr_wq;
2580 }
2581
2582 /* Consider battery unknown until we're informed otherwise */
2583 di->flags.batt_unknown = true;
2584 di->flags.batt_id_received = false;
2585
2586 /* Register FG power supply class */
2587 ret = power_supply_register(di->dev, &di->fg_psy);
2588 if (ret) {
2589 dev_err(di->dev, "failed to register FG psy\n");
2590 goto free_inst_curr_wq;
2591 }
2592
b0284de0 2593 di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
13151631
AM
2594 ab8500_fg_coulomb_counter(di, true);
2595
3988a4df
JB
2596 /*
2597 * Initialize completion used to notify completion and start
2598 * of inst current
2599 */
2600 init_completion(&di->ab8500_fg_started);
13151631
AM
2601 init_completion(&di->ab8500_fg_complete);
2602
2603 /* Register interrupts */
2604 for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq); i++) {
2605 irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name);
2606 ret = request_threaded_irq(irq, NULL, ab8500_fg_irq[i].isr,
2607 IRQF_SHARED | IRQF_NO_SUSPEND,
2608 ab8500_fg_irq[i].name, di);
2609
2610 if (ret != 0) {
2611 dev_err(di->dev, "failed to request %s IRQ %d: %d\n"
2612 , ab8500_fg_irq[i].name, irq, ret);
2613 goto free_irq;
2614 }
2615 dev_dbg(di->dev, "Requested %s IRQ %d: %d\n",
2616 ab8500_fg_irq[i].name, irq, ret);
2617 }
2618 di->irq = platform_get_irq_byname(pdev, "CCEOC");
2619 disable_irq(di->irq);
3988a4df 2620 di->nbr_cceoc_irq_cnt = 0;
13151631
AM
2621
2622 platform_set_drvdata(pdev, di);
2623
2624 ret = ab8500_fg_sysfs_init(di);
2625 if (ret) {
2626 dev_err(di->dev, "failed to create sysfs entry\n");
2627 goto free_irq;
2628 }
2629
2630 /* Calibrate the fg first time */
2631 di->flags.calibrate = true;
2632 di->calib_state = AB8500_FG_CALIB_INIT;
2633
2634 /* Use room temp as default value until we get an update from driver. */
2635 di->bat_temp = 210;
2636
2637 /* Run the FG algorithm */
2638 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2639
2640 list_add_tail(&di->node, &ab8500_fg_list);
2641
2642 return ret;
2643
2644free_irq:
2645 power_supply_unregister(&di->fg_psy);
2646
2647 /* We also have to free all successfully registered irqs */
2648 for (i = i - 1; i >= 0; i--) {
2649 irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name);
2650 free_irq(irq, di);
2651 }
2652free_inst_curr_wq:
2653 destroy_workqueue(di->fg_wq);
13151631
AM
2654 return ret;
2655}
2656
e0f1abeb
R
2657static const struct of_device_id ab8500_fg_match[] = {
2658 { .compatible = "stericsson,ab8500-fg", },
2659 { },
2660};
2661
13151631
AM
2662static struct platform_driver ab8500_fg_driver = {
2663 .probe = ab8500_fg_probe,
28ea73f4 2664 .remove = ab8500_fg_remove,
13151631
AM
2665 .suspend = ab8500_fg_suspend,
2666 .resume = ab8500_fg_resume,
2667 .driver = {
2668 .name = "ab8500-fg",
2669 .owner = THIS_MODULE,
e0f1abeb 2670 .of_match_table = ab8500_fg_match,
13151631
AM
2671 },
2672};
2673
2674static int __init ab8500_fg_init(void)
2675{
2676 return platform_driver_register(&ab8500_fg_driver);
2677}
2678
2679static void __exit ab8500_fg_exit(void)
2680{
2681 platform_driver_unregister(&ab8500_fg_driver);
2682}
2683
2684subsys_initcall_sync(ab8500_fg_init);
2685module_exit(ab8500_fg_exit);
2686
2687MODULE_LICENSE("GPL v2");
2688MODULE_AUTHOR("Johan Palsson, Karl Komierowski");
2689MODULE_ALIAS("platform:ab8500-fg");
2690MODULE_DESCRIPTION("AB8500 Fuel Gauge driver");
This page took 0.16526 seconds and 5 git commands to generate.