remoteproc: fix various checkpatch warnings
[deliverable/linux.git] / drivers / remoteproc / remoteproc_core.c
CommitLineData
400e64df
OBC
1/*
2 * Remote Processor Framework
3 *
4 * Copyright (C) 2011 Texas Instruments, Inc.
5 * Copyright (C) 2011 Google, Inc.
6 *
7 * Ohad Ben-Cohen <ohad@wizery.com>
8 * Brian Swetland <swetland@google.com>
9 * Mark Grosen <mgrosen@ti.com>
10 * Fernando Guzman Lugo <fernando.lugo@ti.com>
11 * Suman Anna <s-anna@ti.com>
12 * Robert Tivy <rtivy@ti.com>
13 * Armando Uribe De Leon <x0095078@ti.com>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * version 2 as published by the Free Software Foundation.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 */
24
25#define pr_fmt(fmt) "%s: " fmt, __func__
26
27#include <linux/kernel.h>
28#include <linux/module.h>
29#include <linux/device.h>
30#include <linux/slab.h>
31#include <linux/mutex.h>
32#include <linux/dma-mapping.h>
33#include <linux/firmware.h>
34#include <linux/string.h>
35#include <linux/debugfs.h>
36#include <linux/remoteproc.h>
37#include <linux/iommu.h>
b5ab5e24 38#include <linux/idr.h>
400e64df 39#include <linux/elf.h>
a2b950ac 40#include <linux/crc32.h>
400e64df
OBC
41#include <linux/virtio_ids.h>
42#include <linux/virtio_ring.h>
cf59d3e9 43#include <asm/byteorder.h>
400e64df
OBC
44
45#include "remoteproc_internal.h"
46
400e64df 47typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
fd2c15ec 48 struct resource_table *table, int len);
a2b950ac
OBC
49typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
50 void *, int offset, int avail);
400e64df 51
b5ab5e24
OBC
52/* Unique indices for remoteproc devices */
53static DEFINE_IDA(rproc_dev_index);
54
8afd519c
FGL
55static const char * const rproc_crash_names[] = {
56 [RPROC_MMUFAULT] = "mmufault",
57};
58
59/* translate rproc_crash_type to string */
60static const char *rproc_crash_to_string(enum rproc_crash_type type)
61{
62 if (type < ARRAY_SIZE(rproc_crash_names))
63 return rproc_crash_names[type];
b23f7a09 64 return "unknown";
8afd519c
FGL
65}
66
400e64df
OBC
67/*
68 * This is the IOMMU fault handler we register with the IOMMU API
69 * (when relevant; not all remote processors access memory through
70 * an IOMMU).
71 *
72 * IOMMU core will invoke this handler whenever the remote processor
73 * will try to access an unmapped device address.
400e64df
OBC
74 */
75static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
77ca2332 76 unsigned long iova, int flags, void *token)
400e64df 77{
8afd519c
FGL
78 struct rproc *rproc = token;
79
400e64df
OBC
80 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
81
8afd519c
FGL
82 rproc_report_crash(rproc, RPROC_MMUFAULT);
83
400e64df
OBC
84 /*
85 * Let the iommu core know we're not really handling this fault;
8afd519c 86 * we just used it as a recovery trigger.
400e64df
OBC
87 */
88 return -ENOSYS;
89}
90
91static int rproc_enable_iommu(struct rproc *rproc)
92{
93 struct iommu_domain *domain;
b5ab5e24 94 struct device *dev = rproc->dev.parent;
400e64df
OBC
95 int ret;
96
315491e5
SA
97 if (!rproc->has_iommu) {
98 dev_dbg(dev, "iommu not present\n");
0798e1da 99 return 0;
400e64df
OBC
100 }
101
102 domain = iommu_domain_alloc(dev->bus);
103 if (!domain) {
104 dev_err(dev, "can't alloc iommu domain\n");
105 return -ENOMEM;
106 }
107
77ca2332 108 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
400e64df
OBC
109
110 ret = iommu_attach_device(domain, dev);
111 if (ret) {
112 dev_err(dev, "can't attach iommu device: %d\n", ret);
113 goto free_domain;
114 }
115
116 rproc->domain = domain;
117
118 return 0;
119
120free_domain:
121 iommu_domain_free(domain);
122 return ret;
123}
124
125static void rproc_disable_iommu(struct rproc *rproc)
126{
127 struct iommu_domain *domain = rproc->domain;
b5ab5e24 128 struct device *dev = rproc->dev.parent;
400e64df
OBC
129
130 if (!domain)
131 return;
132
133 iommu_detach_device(domain, dev);
134 iommu_domain_free(domain);
400e64df
OBC
135}
136
137/*
138 * Some remote processors will ask us to allocate them physically contiguous
139 * memory regions (which we call "carveouts"), and map them to specific
140 * device addresses (which are hardcoded in the firmware).
141 *
142 * They may then ask us to copy objects into specific device addresses (e.g.
143 * code/data sections) or expose us certain symbols in other device address
144 * (e.g. their trace buffer).
145 *
146 * This function is an internal helper with which we can go over the allocated
147 * carveouts and translate specific device address to kernel virtual addresses
148 * so we can access the referenced memory.
149 *
150 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
151 * but only on kernel direct mapped RAM memory. Instead, we're just using
152 * here the output of the DMA API, which should be more correct.
153 */
72854fb0 154void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
400e64df
OBC
155{
156 struct rproc_mem_entry *carveout;
157 void *ptr = NULL;
158
159 list_for_each_entry(carveout, &rproc->carveouts, node) {
160 int offset = da - carveout->da;
161
162 /* try next carveout if da is too small */
163 if (offset < 0)
164 continue;
165
166 /* try next carveout if da is too large */
167 if (offset + len > carveout->len)
168 continue;
169
170 ptr = carveout->va + offset;
171
172 break;
173 }
174
175 return ptr;
176}
4afc89d6 177EXPORT_SYMBOL(rproc_da_to_va);
400e64df 178
6db20ea8 179int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
400e64df 180{
7a186941 181 struct rproc *rproc = rvdev->rproc;
b5ab5e24 182 struct device *dev = &rproc->dev;
6db20ea8 183 struct rproc_vring *rvring = &rvdev->vring[i];
c0d63157 184 struct fw_rsc_vdev *rsc;
7a186941
OBC
185 dma_addr_t dma;
186 void *va;
187 int ret, size, notifyid;
400e64df 188
7a186941 189 /* actual size of vring (in bytes) */
6db20ea8 190 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
7a186941 191
7a186941
OBC
192 /*
193 * Allocate non-cacheable memory for the vring. In the future
194 * this call will also configure the IOMMU for us
195 */
b5ab5e24 196 va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL);
7a186941 197 if (!va) {
b5ab5e24 198 dev_err(dev->parent, "dma_alloc_coherent failed\n");
400e64df
OBC
199 return -EINVAL;
200 }
201
6db20ea8
OBC
202 /*
203 * Assign an rproc-wide unique index for this vring
204 * TODO: assign a notifyid for rvdev updates as well
6db20ea8
OBC
205 * TODO: support predefined notifyids (via resource table)
206 */
15fc6110 207 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
b39599b7 208 if (ret < 0) {
15fc6110 209 dev_err(dev, "idr_alloc failed: %d\n", ret);
b5ab5e24 210 dma_free_coherent(dev->parent, size, va, dma);
7a186941
OBC
211 return ret;
212 }
15fc6110 213 notifyid = ret;
400e64df 214
d09f53a7
EG
215 dev_dbg(dev, "vring%d: va %p dma %llx size %x idr %d\n", i, va,
216 (unsigned long long)dma, size, notifyid);
7a186941 217
6db20ea8
OBC
218 rvring->va = va;
219 rvring->dma = dma;
220 rvring->notifyid = notifyid;
400e64df 221
c0d63157
SB
222 /*
223 * Let the rproc know the notifyid and da of this vring.
224 * Not all platforms use dma_alloc_coherent to automatically
225 * set up the iommu. In this case the device address (da) will
226 * hold the physical address and not the device address.
227 */
228 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
229 rsc->vring[i].da = dma;
230 rsc->vring[i].notifyid = notifyid;
400e64df
OBC
231 return 0;
232}
233
6db20ea8
OBC
234static int
235rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
7a186941
OBC
236{
237 struct rproc *rproc = rvdev->rproc;
b5ab5e24 238 struct device *dev = &rproc->dev;
6db20ea8
OBC
239 struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
240 struct rproc_vring *rvring = &rvdev->vring[i];
7a186941 241
6db20ea8
OBC
242 dev_dbg(dev, "vdev rsc: vring%d: da %x, qsz %d, align %d\n",
243 i, vring->da, vring->num, vring->align);
7a186941 244
6db20ea8
OBC
245 /* make sure reserved bytes are zeroes */
246 if (vring->reserved) {
247 dev_err(dev, "vring rsc has non zero reserved bytes\n");
248 return -EINVAL;
249 }
7a186941 250
6db20ea8
OBC
251 /* verify queue size and vring alignment are sane */
252 if (!vring->num || !vring->align) {
253 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
254 vring->num, vring->align);
255 return -EINVAL;
7a186941 256 }
6db20ea8
OBC
257
258 rvring->len = vring->num;
259 rvring->align = vring->align;
260 rvring->rvdev = rvdev;
261
262 return 0;
263}
264
265void rproc_free_vring(struct rproc_vring *rvring)
266{
267 int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
268 struct rproc *rproc = rvring->rvdev->rproc;
c0d63157
SB
269 int idx = rvring->rvdev->vring - rvring;
270 struct fw_rsc_vdev *rsc;
6db20ea8 271
b5ab5e24 272 dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma);
6db20ea8 273 idr_remove(&rproc->notifyids, rvring->notifyid);
099a3f33 274
c0d63157
SB
275 /* reset resource entry info */
276 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
277 rsc->vring[idx].da = 0;
278 rsc->vring[idx].notifyid = -1;
7a186941
OBC
279}
280
400e64df 281/**
fd2c15ec 282 * rproc_handle_vdev() - handle a vdev fw resource
400e64df
OBC
283 * @rproc: the remote processor
284 * @rsc: the vring resource descriptor
fd2c15ec 285 * @avail: size of available data (for sanity checking the image)
400e64df 286 *
7a186941
OBC
287 * This resource entry requests the host to statically register a virtio
288 * device (vdev), and setup everything needed to support it. It contains
289 * everything needed to make it possible: the virtio device id, virtio
290 * device features, vrings information, virtio config space, etc...
291 *
292 * Before registering the vdev, the vrings are allocated from non-cacheable
293 * physically contiguous memory. Currently we only support two vrings per
294 * remote processor (temporary limitation). We might also want to consider
295 * doing the vring allocation only later when ->find_vqs() is invoked, and
296 * then release them upon ->del_vqs().
297 *
298 * Note: @da is currently not really handled correctly: we dynamically
299 * allocate it using the DMA API, ignoring requested hard coded addresses,
300 * and we don't take care of any required IOMMU programming. This is all
301 * going to be taken care of when the generic iommu-based DMA API will be
302 * merged. Meanwhile, statically-addressed iommu-based firmware images should
303 * use RSC_DEVMEM resource entries to map their required @da to the physical
304 * address of their base CMA region (ouch, hacky!).
400e64df
OBC
305 *
306 * Returns 0 on success, or an appropriate error code otherwise
307 */
fd2c15ec 308static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
a2b950ac 309 int offset, int avail)
400e64df 310{
b5ab5e24 311 struct device *dev = &rproc->dev;
7a186941
OBC
312 struct rproc_vdev *rvdev;
313 int i, ret;
400e64df 314
fd2c15ec
OBC
315 /* make sure resource isn't truncated */
316 if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
317 + rsc->config_len > avail) {
b5ab5e24 318 dev_err(dev, "vdev rsc is truncated\n");
400e64df
OBC
319 return -EINVAL;
320 }
321
fd2c15ec
OBC
322 /* make sure reserved bytes are zeroes */
323 if (rsc->reserved[0] || rsc->reserved[1]) {
324 dev_err(dev, "vdev rsc has non zero reserved bytes\n");
400e64df
OBC
325 return -EINVAL;
326 }
327
fd2c15ec
OBC
328 dev_dbg(dev, "vdev rsc: id %d, dfeatures %x, cfg len %d, %d vrings\n",
329 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
330
7a186941
OBC
331 /* we currently support only two vrings per rvdev */
332 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
fd2c15ec 333 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
400e64df
OBC
334 return -EINVAL;
335 }
336
7a186941
OBC
337 rvdev = kzalloc(sizeof(struct rproc_vdev), GFP_KERNEL);
338 if (!rvdev)
339 return -ENOMEM;
400e64df 340
7a186941 341 rvdev->rproc = rproc;
400e64df 342
6db20ea8 343 /* parse the vrings */
7a186941 344 for (i = 0; i < rsc->num_of_vrings; i++) {
6db20ea8 345 ret = rproc_parse_vring(rvdev, rsc, i);
7a186941 346 if (ret)
6db20ea8 347 goto free_rvdev;
7a186941 348 }
400e64df 349
a2b950ac
OBC
350 /* remember the resource offset*/
351 rvdev->rsc_offset = offset;
fd2c15ec 352
7a186941 353 list_add_tail(&rvdev->node, &rproc->rvdevs);
fd2c15ec 354
7a186941
OBC
355 /* it is now safe to add the virtio device */
356 ret = rproc_add_virtio_dev(rvdev, rsc->id);
357 if (ret)
cde42e07 358 goto remove_rvdev;
400e64df
OBC
359
360 return 0;
7a186941 361
cde42e07
SB
362remove_rvdev:
363 list_del(&rvdev->node);
6db20ea8 364free_rvdev:
7a186941
OBC
365 kfree(rvdev);
366 return ret;
400e64df
OBC
367}
368
369/**
370 * rproc_handle_trace() - handle a shared trace buffer resource
371 * @rproc: the remote processor
372 * @rsc: the trace resource descriptor
fd2c15ec 373 * @avail: size of available data (for sanity checking the image)
400e64df
OBC
374 *
375 * In case the remote processor dumps trace logs into memory,
376 * export it via debugfs.
377 *
378 * Currently, the 'da' member of @rsc should contain the device address
379 * where the remote processor is dumping the traces. Later we could also
380 * support dynamically allocating this address using the generic
381 * DMA API (but currently there isn't a use case for that).
382 *
383 * Returns 0 on success, or an appropriate error code otherwise
384 */
fd2c15ec 385static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
a2b950ac 386 int offset, int avail)
400e64df
OBC
387{
388 struct rproc_mem_entry *trace;
b5ab5e24 389 struct device *dev = &rproc->dev;
400e64df
OBC
390 void *ptr;
391 char name[15];
392
fd2c15ec 393 if (sizeof(*rsc) > avail) {
b5ab5e24 394 dev_err(dev, "trace rsc is truncated\n");
fd2c15ec
OBC
395 return -EINVAL;
396 }
397
398 /* make sure reserved bytes are zeroes */
399 if (rsc->reserved) {
400 dev_err(dev, "trace rsc has non zero reserved bytes\n");
401 return -EINVAL;
402 }
403
400e64df
OBC
404 /* what's the kernel address of this resource ? */
405 ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
406 if (!ptr) {
407 dev_err(dev, "erroneous trace resource entry\n");
408 return -EINVAL;
409 }
410
411 trace = kzalloc(sizeof(*trace), GFP_KERNEL);
172e6ab1 412 if (!trace)
400e64df 413 return -ENOMEM;
400e64df
OBC
414
415 /* set the trace buffer dma properties */
416 trace->len = rsc->len;
417 trace->va = ptr;
418
419 /* make sure snprintf always null terminates, even if truncating */
420 snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
421
422 /* create the debugfs entry */
423 trace->priv = rproc_create_trace_file(name, rproc, trace);
424 if (!trace->priv) {
425 trace->va = NULL;
426 kfree(trace);
427 return -EINVAL;
428 }
429
430 list_add_tail(&trace->node, &rproc->traces);
431
432 rproc->num_traces++;
433
fd2c15ec 434 dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n", name, ptr,
400e64df
OBC
435 rsc->da, rsc->len);
436
437 return 0;
438}
439
440/**
441 * rproc_handle_devmem() - handle devmem resource entry
442 * @rproc: remote processor handle
443 * @rsc: the devmem resource entry
fd2c15ec 444 * @avail: size of available data (for sanity checking the image)
400e64df
OBC
445 *
446 * Remote processors commonly need to access certain on-chip peripherals.
447 *
448 * Some of these remote processors access memory via an iommu device,
449 * and might require us to configure their iommu before they can access
450 * the on-chip peripherals they need.
451 *
452 * This resource entry is a request to map such a peripheral device.
453 *
454 * These devmem entries will contain the physical address of the device in
455 * the 'pa' member. If a specific device address is expected, then 'da' will
456 * contain it (currently this is the only use case supported). 'len' will
457 * contain the size of the physical region we need to map.
458 *
459 * Currently we just "trust" those devmem entries to contain valid physical
460 * addresses, but this is going to change: we want the implementations to
461 * tell us ranges of physical addresses the firmware is allowed to request,
462 * and not allow firmwares to request access to physical addresses that
463 * are outside those ranges.
464 */
fd2c15ec 465static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
a2b950ac 466 int offset, int avail)
400e64df
OBC
467{
468 struct rproc_mem_entry *mapping;
b5ab5e24 469 struct device *dev = &rproc->dev;
400e64df
OBC
470 int ret;
471
472 /* no point in handling this resource without a valid iommu domain */
473 if (!rproc->domain)
474 return -EINVAL;
475
fd2c15ec 476 if (sizeof(*rsc) > avail) {
b5ab5e24 477 dev_err(dev, "devmem rsc is truncated\n");
fd2c15ec
OBC
478 return -EINVAL;
479 }
480
481 /* make sure reserved bytes are zeroes */
482 if (rsc->reserved) {
b5ab5e24 483 dev_err(dev, "devmem rsc has non zero reserved bytes\n");
fd2c15ec
OBC
484 return -EINVAL;
485 }
486
400e64df 487 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
172e6ab1 488 if (!mapping)
400e64df 489 return -ENOMEM;
400e64df
OBC
490
491 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
492 if (ret) {
b5ab5e24 493 dev_err(dev, "failed to map devmem: %d\n", ret);
400e64df
OBC
494 goto out;
495 }
496
497 /*
498 * We'll need this info later when we'll want to unmap everything
499 * (e.g. on shutdown).
500 *
501 * We can't trust the remote processor not to change the resource
502 * table, so we must maintain this info independently.
503 */
504 mapping->da = rsc->da;
505 mapping->len = rsc->len;
506 list_add_tail(&mapping->node, &rproc->mappings);
507
b5ab5e24 508 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
400e64df
OBC
509 rsc->pa, rsc->da, rsc->len);
510
511 return 0;
512
513out:
514 kfree(mapping);
515 return ret;
516}
517
518/**
519 * rproc_handle_carveout() - handle phys contig memory allocation requests
520 * @rproc: rproc handle
521 * @rsc: the resource entry
fd2c15ec 522 * @avail: size of available data (for image validation)
400e64df
OBC
523 *
524 * This function will handle firmware requests for allocation of physically
525 * contiguous memory regions.
526 *
527 * These request entries should come first in the firmware's resource table,
528 * as other firmware entries might request placing other data objects inside
529 * these memory regions (e.g. data/code segments, trace resource entries, ...).
530 *
531 * Allocating memory this way helps utilizing the reserved physical memory
532 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
533 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
534 * pressure is important; it may have a substantial impact on performance.
535 */
fd2c15ec 536static int rproc_handle_carveout(struct rproc *rproc,
a2b950ac
OBC
537 struct fw_rsc_carveout *rsc,
538 int offset, int avail)
539
400e64df
OBC
540{
541 struct rproc_mem_entry *carveout, *mapping;
b5ab5e24 542 struct device *dev = &rproc->dev;
400e64df
OBC
543 dma_addr_t dma;
544 void *va;
545 int ret;
546
fd2c15ec 547 if (sizeof(*rsc) > avail) {
b5ab5e24 548 dev_err(dev, "carveout rsc is truncated\n");
fd2c15ec
OBC
549 return -EINVAL;
550 }
551
552 /* make sure reserved bytes are zeroes */
553 if (rsc->reserved) {
554 dev_err(dev, "carveout rsc has non zero reserved bytes\n");
555 return -EINVAL;
556 }
557
558 dev_dbg(dev, "carveout rsc: da %x, pa %x, len %x, flags %x\n",
559 rsc->da, rsc->pa, rsc->len, rsc->flags);
560
400e64df 561 carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
172e6ab1 562 if (!carveout)
7168d914 563 return -ENOMEM;
400e64df 564
b5ab5e24 565 va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL);
400e64df 566 if (!va) {
b5ab5e24 567 dev_err(dev->parent, "dma_alloc_coherent err: %d\n", rsc->len);
400e64df
OBC
568 ret = -ENOMEM;
569 goto free_carv;
570 }
571
d09f53a7
EG
572 dev_dbg(dev, "carveout va %p, dma %llx, len 0x%x\n", va,
573 (unsigned long long)dma, rsc->len);
400e64df
OBC
574
575 /*
576 * Ok, this is non-standard.
577 *
578 * Sometimes we can't rely on the generic iommu-based DMA API
579 * to dynamically allocate the device address and then set the IOMMU
580 * tables accordingly, because some remote processors might
581 * _require_ us to use hard coded device addresses that their
582 * firmware was compiled with.
583 *
584 * In this case, we must use the IOMMU API directly and map
585 * the memory to the device address as expected by the remote
586 * processor.
587 *
588 * Obviously such remote processor devices should not be configured
589 * to use the iommu-based DMA API: we expect 'dma' to contain the
590 * physical address in this case.
591 */
592 if (rproc->domain) {
7168d914
DC
593 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
594 if (!mapping) {
595 dev_err(dev, "kzalloc mapping failed\n");
596 ret = -ENOMEM;
597 goto dma_free;
598 }
599
400e64df
OBC
600 ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
601 rsc->flags);
602 if (ret) {
603 dev_err(dev, "iommu_map failed: %d\n", ret);
7168d914 604 goto free_mapping;
400e64df
OBC
605 }
606
607 /*
608 * We'll need this info later when we'll want to unmap
609 * everything (e.g. on shutdown).
610 *
611 * We can't trust the remote processor not to change the
612 * resource table, so we must maintain this info independently.
613 */
614 mapping->da = rsc->da;
615 mapping->len = rsc->len;
616 list_add_tail(&mapping->node, &rproc->mappings);
617
d09f53a7
EG
618 dev_dbg(dev, "carveout mapped 0x%x to 0x%llx\n",
619 rsc->da, (unsigned long long)dma);
400e64df
OBC
620 }
621
0e49b72c
OBC
622 /*
623 * Some remote processors might need to know the pa
624 * even though they are behind an IOMMU. E.g., OMAP4's
625 * remote M3 processor needs this so it can control
626 * on-chip hardware accelerators that are not behind
627 * the IOMMU, and therefor must know the pa.
628 *
629 * Generally we don't want to expose physical addresses
630 * if we don't have to (remote processors are generally
631 * _not_ trusted), so we might want to do this only for
632 * remote processor that _must_ have this (e.g. OMAP4's
633 * dual M3 subsystem).
634 *
635 * Non-IOMMU processors might also want to have this info.
636 * In this case, the device address and the physical address
637 * are the same.
638 */
639 rsc->pa = dma;
640
400e64df
OBC
641 carveout->va = va;
642 carveout->len = rsc->len;
643 carveout->dma = dma;
644 carveout->da = rsc->da;
645
646 list_add_tail(&carveout->node, &rproc->carveouts);
647
648 return 0;
649
7168d914
DC
650free_mapping:
651 kfree(mapping);
400e64df 652dma_free:
b5ab5e24 653 dma_free_coherent(dev->parent, rsc->len, va, dma);
400e64df
OBC
654free_carv:
655 kfree(carveout);
400e64df
OBC
656 return ret;
657}
658
ba7290e0 659static int rproc_count_vrings(struct rproc *rproc, struct fw_rsc_vdev *rsc,
a2b950ac 660 int offset, int avail)
ba7290e0
SB
661{
662 /* Summarize the number of notification IDs */
663 rproc->max_notifyid += rsc->num_of_vrings;
664
665 return 0;
666}
667
e12bc14b
OBC
668/*
669 * A lookup table for resource handlers. The indices are defined in
670 * enum fw_resource_type.
671 */
232fcdbb 672static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
fd2c15ec
OBC
673 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
674 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
675 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
7a186941 676 [RSC_VDEV] = NULL, /* VDEVs were handled upon registrarion */
e12bc14b
OBC
677};
678
232fcdbb
SB
679static rproc_handle_resource_t rproc_vdev_handler[RSC_LAST] = {
680 [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
681};
682
ba7290e0
SB
683static rproc_handle_resource_t rproc_count_vrings_handler[RSC_LAST] = {
684 [RSC_VDEV] = (rproc_handle_resource_t)rproc_count_vrings,
685};
686
400e64df 687/* handle firmware resource entries before booting the remote processor */
a2b950ac 688static int rproc_handle_resources(struct rproc *rproc, int len,
232fcdbb 689 rproc_handle_resource_t handlers[RSC_LAST])
400e64df 690{
b5ab5e24 691 struct device *dev = &rproc->dev;
e12bc14b 692 rproc_handle_resource_t handler;
fd2c15ec
OBC
693 int ret = 0, i;
694
a2b950ac
OBC
695 for (i = 0; i < rproc->table_ptr->num; i++) {
696 int offset = rproc->table_ptr->offset[i];
697 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
fd2c15ec
OBC
698 int avail = len - offset - sizeof(*hdr);
699 void *rsc = (void *)hdr + sizeof(*hdr);
700
701 /* make sure table isn't truncated */
702 if (avail < 0) {
703 dev_err(dev, "rsc table is truncated\n");
704 return -EINVAL;
705 }
400e64df 706
fd2c15ec 707 dev_dbg(dev, "rsc: type %d\n", hdr->type);
400e64df 708
fd2c15ec
OBC
709 if (hdr->type >= RSC_LAST) {
710 dev_warn(dev, "unsupported resource %d\n", hdr->type);
e12bc14b 711 continue;
400e64df
OBC
712 }
713
232fcdbb 714 handler = handlers[hdr->type];
e12bc14b
OBC
715 if (!handler)
716 continue;
717
a2b950ac 718 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
7a186941 719 if (ret)
400e64df 720 break;
fd2c15ec 721 }
400e64df
OBC
722
723 return ret;
724}
725
400e64df
OBC
726/**
727 * rproc_resource_cleanup() - clean up and free all acquired resources
728 * @rproc: rproc handle
729 *
730 * This function will free all resources acquired for @rproc, and it
7a186941 731 * is called whenever @rproc either shuts down or fails to boot.
400e64df
OBC
732 */
733static void rproc_resource_cleanup(struct rproc *rproc)
734{
735 struct rproc_mem_entry *entry, *tmp;
b5ab5e24 736 struct device *dev = &rproc->dev;
400e64df
OBC
737
738 /* clean up debugfs trace entries */
739 list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
740 rproc_remove_trace_file(entry->priv);
741 rproc->num_traces--;
742 list_del(&entry->node);
743 kfree(entry);
744 }
745
400e64df
OBC
746 /* clean up iommu mapping entries */
747 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
748 size_t unmapped;
749
750 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
751 if (unmapped != entry->len) {
752 /* nothing much to do besides complaining */
e981f6d4 753 dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
400e64df
OBC
754 unmapped);
755 }
756
757 list_del(&entry->node);
758 kfree(entry);
759 }
b6356a01
SA
760
761 /* clean up carveout allocations */
762 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
172e6ab1
SA
763 dma_free_coherent(dev->parent, entry->len, entry->va,
764 entry->dma);
b6356a01
SA
765 list_del(&entry->node);
766 kfree(entry);
767 }
400e64df
OBC
768}
769
400e64df
OBC
770/*
771 * take a firmware and boot a remote processor with it.
772 */
773static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
774{
b5ab5e24 775 struct device *dev = &rproc->dev;
400e64df 776 const char *name = rproc->firmware;
a2b950ac 777 struct resource_table *table, *loaded_table;
1e3e2c7c 778 int ret, tablesz;
400e64df 779
a2b950ac
OBC
780 if (!rproc->table_ptr)
781 return -ENOMEM;
782
400e64df
OBC
783 ret = rproc_fw_sanity_check(rproc, fw);
784 if (ret)
785 return ret;
786
e981f6d4 787 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
400e64df
OBC
788
789 /*
790 * if enabling an IOMMU isn't relevant for this rproc, this is
791 * just a nop
792 */
793 ret = rproc_enable_iommu(rproc);
794 if (ret) {
795 dev_err(dev, "can't enable iommu: %d\n", ret);
796 return ret;
797 }
798
3e5f9eb5 799 rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
89970d28 800 ret = -EINVAL;
400e64df 801
1e3e2c7c 802 /* look for the resource table */
bd484984 803 table = rproc_find_rsc_table(rproc, fw, &tablesz);
172e6ab1 804 if (!table)
1e3e2c7c
OBC
805 goto clean_up;
806
a2b950ac
OBC
807 /* Verify that resource table in loaded fw is unchanged */
808 if (rproc->table_csum != crc32(0, table, tablesz)) {
809 dev_err(dev, "resource checksum failed, fw changed?\n");
a2b950ac
OBC
810 goto clean_up;
811 }
812
400e64df 813 /* handle fw resources which are required to boot rproc */
a2b950ac 814 ret = rproc_handle_resources(rproc, tablesz, rproc_loading_handlers);
400e64df
OBC
815 if (ret) {
816 dev_err(dev, "Failed to process resources: %d\n", ret);
817 goto clean_up;
818 }
819
820 /* load the ELF segments to memory */
bd484984 821 ret = rproc_load_segments(rproc, fw);
400e64df
OBC
822 if (ret) {
823 dev_err(dev, "Failed to load program segments: %d\n", ret);
824 goto clean_up;
825 }
826
a2b950ac
OBC
827 /*
828 * The starting device has been given the rproc->cached_table as the
829 * resource table. The address of the vring along with the other
830 * allocated resources (carveouts etc) is stored in cached_table.
831 * In order to pass this information to the remote device we must
832 * copy this information to device memory.
833 */
834 loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
89970d28
WY
835 if (!loaded_table) {
836 ret = -EINVAL;
a2b950ac 837 goto clean_up;
89970d28 838 }
a2b950ac
OBC
839
840 memcpy(loaded_table, rproc->cached_table, tablesz);
841
400e64df
OBC
842 /* power up the remote processor */
843 ret = rproc->ops->start(rproc);
844 if (ret) {
845 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
846 goto clean_up;
847 }
848
a2b950ac
OBC
849 /*
850 * Update table_ptr so that all subsequent vring allocations and
851 * virtio fields manipulation update the actual loaded resource table
852 * in device memory.
853 */
854 rproc->table_ptr = loaded_table;
855
400e64df
OBC
856 rproc->state = RPROC_RUNNING;
857
858 dev_info(dev, "remote processor %s is now up\n", rproc->name);
859
860 return 0;
861
862clean_up:
863 rproc_resource_cleanup(rproc);
864 rproc_disable_iommu(rproc);
865 return ret;
866}
867
868/*
869 * take a firmware and look for virtio devices to register.
870 *
871 * Note: this function is called asynchronously upon registration of the
872 * remote processor (so we must wait until it completes before we try
873 * to unregister the device. one other option is just to use kref here,
874 * that might be cleaner).
875 */
876static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
877{
878 struct rproc *rproc = context;
1e3e2c7c
OBC
879 struct resource_table *table;
880 int ret, tablesz;
400e64df
OBC
881
882 if (rproc_fw_sanity_check(rproc, fw) < 0)
883 goto out;
884
1e3e2c7c 885 /* look for the resource table */
bd484984 886 table = rproc_find_rsc_table(rproc, fw, &tablesz);
1e3e2c7c
OBC
887 if (!table)
888 goto out;
889
a2b950ac
OBC
890 rproc->table_csum = crc32(0, table, tablesz);
891
892 /*
893 * Create a copy of the resource table. When a virtio device starts
894 * and calls vring_new_virtqueue() the address of the allocated vring
895 * will be stored in the cached_table. Before the device is started,
896 * cached_table will be copied into devic memory.
897 */
95cee62c 898 rproc->cached_table = kmemdup(table, tablesz, GFP_KERNEL);
a2b950ac
OBC
899 if (!rproc->cached_table)
900 goto out;
901
a2b950ac
OBC
902 rproc->table_ptr = rproc->cached_table;
903
ba7290e0
SB
904 /* count the number of notify-ids */
905 rproc->max_notifyid = -1;
172e6ab1
SA
906 ret = rproc_handle_resources(rproc, tablesz,
907 rproc_count_vrings_handler);
1e3e2c7c 908 if (ret)
400e64df 909 goto out;
400e64df 910
a2b950ac
OBC
911 /* look for virtio devices and register them */
912 ret = rproc_handle_resources(rproc, tablesz, rproc_vdev_handler);
913
400e64df 914out:
3cc6e787 915 release_firmware(fw);
160e7c84 916 /* allow rproc_del() contexts, if any, to proceed */
400e64df
OBC
917 complete_all(&rproc->firmware_loading_complete);
918}
919
70b85ef8
FGL
920static int rproc_add_virtio_devices(struct rproc *rproc)
921{
922 int ret;
923
924 /* rproc_del() calls must wait until async loader completes */
925 init_completion(&rproc->firmware_loading_complete);
926
927 /*
928 * We must retrieve early virtio configuration info from
929 * the firmware (e.g. whether to register a virtio device,
930 * what virtio features does it support, ...).
931 *
932 * We're initiating an asynchronous firmware loading, so we can
933 * be built-in kernel code, without hanging the boot process.
934 */
935 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
936 rproc->firmware, &rproc->dev, GFP_KERNEL,
937 rproc, rproc_fw_config_virtio);
938 if (ret < 0) {
939 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
940 complete_all(&rproc->firmware_loading_complete);
941 }
942
943 return ret;
944}
945
946/**
947 * rproc_trigger_recovery() - recover a remoteproc
948 * @rproc: the remote processor
949 *
950 * The recovery is done by reseting all the virtio devices, that way all the
951 * rpmsg drivers will be reseted along with the remote processor making the
952 * remoteproc functional again.
953 *
954 * This function can sleep, so it cannot be called from atomic context.
955 */
956int rproc_trigger_recovery(struct rproc *rproc)
957{
958 struct rproc_vdev *rvdev, *rvtmp;
959
960 dev_err(&rproc->dev, "recovering %s\n", rproc->name);
961
962 init_completion(&rproc->crash_comp);
963
964 /* clean up remote vdev entries */
965 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
966 rproc_remove_virtio_dev(rvdev);
967
968 /* wait until there is no more rproc users */
969 wait_for_completion(&rproc->crash_comp);
970
a2b950ac
OBC
971 /* Free the copy of the resource table */
972 kfree(rproc->cached_table);
973
70b85ef8
FGL
974 return rproc_add_virtio_devices(rproc);
975}
976
8afd519c
FGL
977/**
978 * rproc_crash_handler_work() - handle a crash
979 *
980 * This function needs to handle everything related to a crash, like cpu
981 * registers and stack dump, information to help to debug the fatal error, etc.
982 */
983static void rproc_crash_handler_work(struct work_struct *work)
984{
985 struct rproc *rproc = container_of(work, struct rproc, crash_handler);
986 struct device *dev = &rproc->dev;
987
988 dev_dbg(dev, "enter %s\n", __func__);
989
990 mutex_lock(&rproc->lock);
991
992 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
993 /* handle only the first crash detected */
994 mutex_unlock(&rproc->lock);
995 return;
996 }
997
998 rproc->state = RPROC_CRASHED;
999 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1000 rproc->name);
1001
1002 mutex_unlock(&rproc->lock);
1003
2e37abb8
FGL
1004 if (!rproc->recovery_disabled)
1005 rproc_trigger_recovery(rproc);
8afd519c
FGL
1006}
1007
400e64df
OBC
1008/**
1009 * rproc_boot() - boot a remote processor
1010 * @rproc: handle of a remote processor
1011 *
1012 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1013 *
1014 * If the remote processor is already powered on, this function immediately
1015 * returns (successfully).
1016 *
1017 * Returns 0 on success, and an appropriate error value otherwise.
1018 */
1019int rproc_boot(struct rproc *rproc)
1020{
1021 const struct firmware *firmware_p;
1022 struct device *dev;
1023 int ret;
1024
1025 if (!rproc) {
1026 pr_err("invalid rproc handle\n");
1027 return -EINVAL;
1028 }
1029
b5ab5e24 1030 dev = &rproc->dev;
400e64df
OBC
1031
1032 ret = mutex_lock_interruptible(&rproc->lock);
1033 if (ret) {
1034 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1035 return ret;
1036 }
1037
1038 /* loading a firmware is required */
1039 if (!rproc->firmware) {
1040 dev_err(dev, "%s: no firmware to load\n", __func__);
1041 ret = -EINVAL;
1042 goto unlock_mutex;
1043 }
1044
1045 /* prevent underlying implementation from being removed */
b5ab5e24 1046 if (!try_module_get(dev->parent->driver->owner)) {
400e64df
OBC
1047 dev_err(dev, "%s: can't get owner\n", __func__);
1048 ret = -EINVAL;
1049 goto unlock_mutex;
1050 }
1051
1052 /* skip the boot process if rproc is already powered up */
1053 if (atomic_inc_return(&rproc->power) > 1) {
1054 ret = 0;
1055 goto unlock_mutex;
1056 }
1057
1058 dev_info(dev, "powering up %s\n", rproc->name);
1059
1060 /* load firmware */
1061 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1062 if (ret < 0) {
1063 dev_err(dev, "request_firmware failed: %d\n", ret);
1064 goto downref_rproc;
1065 }
1066
1067 ret = rproc_fw_boot(rproc, firmware_p);
1068
1069 release_firmware(firmware_p);
1070
1071downref_rproc:
1072 if (ret) {
b5ab5e24 1073 module_put(dev->parent->driver->owner);
400e64df
OBC
1074 atomic_dec(&rproc->power);
1075 }
1076unlock_mutex:
1077 mutex_unlock(&rproc->lock);
1078 return ret;
1079}
1080EXPORT_SYMBOL(rproc_boot);
1081
1082/**
1083 * rproc_shutdown() - power off the remote processor
1084 * @rproc: the remote processor
1085 *
1086 * Power off a remote processor (previously booted with rproc_boot()).
1087 *
1088 * In case @rproc is still being used by an additional user(s), then
1089 * this function will just decrement the power refcount and exit,
1090 * without really powering off the device.
1091 *
1092 * Every call to rproc_boot() must (eventually) be accompanied by a call
1093 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1094 *
1095 * Notes:
1096 * - we're not decrementing the rproc's refcount, only the power refcount.
1097 * which means that the @rproc handle stays valid even after rproc_shutdown()
1098 * returns, and users can still use it with a subsequent rproc_boot(), if
1099 * needed.
400e64df
OBC
1100 */
1101void rproc_shutdown(struct rproc *rproc)
1102{
b5ab5e24 1103 struct device *dev = &rproc->dev;
400e64df
OBC
1104 int ret;
1105
1106 ret = mutex_lock_interruptible(&rproc->lock);
1107 if (ret) {
1108 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1109 return;
1110 }
1111
1112 /* if the remote proc is still needed, bail out */
1113 if (!atomic_dec_and_test(&rproc->power))
1114 goto out;
1115
1116 /* power off the remote processor */
1117 ret = rproc->ops->stop(rproc);
1118 if (ret) {
1119 atomic_inc(&rproc->power);
1120 dev_err(dev, "can't stop rproc: %d\n", ret);
1121 goto out;
1122 }
1123
1124 /* clean up all acquired resources */
1125 rproc_resource_cleanup(rproc);
1126
1127 rproc_disable_iommu(rproc);
1128
a2b950ac
OBC
1129 /* Give the next start a clean resource table */
1130 rproc->table_ptr = rproc->cached_table;
1131
70b85ef8
FGL
1132 /* if in crash state, unlock crash handler */
1133 if (rproc->state == RPROC_CRASHED)
1134 complete_all(&rproc->crash_comp);
1135
400e64df
OBC
1136 rproc->state = RPROC_OFFLINE;
1137
1138 dev_info(dev, "stopped remote processor %s\n", rproc->name);
1139
1140out:
1141 mutex_unlock(&rproc->lock);
1142 if (!ret)
b5ab5e24 1143 module_put(dev->parent->driver->owner);
400e64df
OBC
1144}
1145EXPORT_SYMBOL(rproc_shutdown);
1146
1147/**
160e7c84 1148 * rproc_add() - register a remote processor
400e64df
OBC
1149 * @rproc: the remote processor handle to register
1150 *
1151 * Registers @rproc with the remoteproc framework, after it has been
1152 * allocated with rproc_alloc().
1153 *
1154 * This is called by the platform-specific rproc implementation, whenever
1155 * a new remote processor device is probed.
1156 *
1157 * Returns 0 on success and an appropriate error code otherwise.
1158 *
1159 * Note: this function initiates an asynchronous firmware loading
1160 * context, which will look for virtio devices supported by the rproc's
1161 * firmware.
1162 *
1163 * If found, those virtio devices will be created and added, so as a result
7a186941 1164 * of registering this remote processor, additional virtio drivers might be
400e64df 1165 * probed.
400e64df 1166 */
160e7c84 1167int rproc_add(struct rproc *rproc)
400e64df 1168{
b5ab5e24 1169 struct device *dev = &rproc->dev;
70b85ef8 1170 int ret;
400e64df 1171
b5ab5e24
OBC
1172 ret = device_add(dev);
1173 if (ret < 0)
1174 return ret;
400e64df 1175
b5ab5e24 1176 dev_info(dev, "%s is available\n", rproc->name);
400e64df 1177
489d129a
OBC
1178 dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n");
1179 dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n");
1180
400e64df
OBC
1181 /* create debugfs entries */
1182 rproc_create_debug_dir(rproc);
1183
70b85ef8 1184 return rproc_add_virtio_devices(rproc);
400e64df 1185}
160e7c84 1186EXPORT_SYMBOL(rproc_add);
400e64df 1187
b5ab5e24
OBC
1188/**
1189 * rproc_type_release() - release a remote processor instance
1190 * @dev: the rproc's device
1191 *
1192 * This function should _never_ be called directly.
1193 *
1194 * It will be called by the driver core when no one holds a valid pointer
1195 * to @dev anymore.
1196 */
1197static void rproc_type_release(struct device *dev)
1198{
1199 struct rproc *rproc = container_of(dev, struct rproc, dev);
1200
7183a2a7
OBC
1201 dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1202
1203 rproc_delete_debug_dir(rproc);
1204
b5ab5e24
OBC
1205 idr_destroy(&rproc->notifyids);
1206
1207 if (rproc->index >= 0)
1208 ida_simple_remove(&rproc_dev_index, rproc->index);
1209
1210 kfree(rproc);
1211}
1212
1213static struct device_type rproc_type = {
1214 .name = "remoteproc",
1215 .release = rproc_type_release,
1216};
400e64df
OBC
1217
1218/**
1219 * rproc_alloc() - allocate a remote processor handle
1220 * @dev: the underlying device
1221 * @name: name of this remote processor
1222 * @ops: platform-specific handlers (mainly start/stop)
8b4aec9a 1223 * @firmware: name of firmware file to load, can be NULL
400e64df
OBC
1224 * @len: length of private data needed by the rproc driver (in bytes)
1225 *
1226 * Allocates a new remote processor handle, but does not register
8b4aec9a 1227 * it yet. if @firmware is NULL, a default name is used.
400e64df
OBC
1228 *
1229 * This function should be used by rproc implementations during initialization
1230 * of the remote processor.
1231 *
1232 * After creating an rproc handle using this function, and when ready,
160e7c84 1233 * implementations should then call rproc_add() to complete
400e64df
OBC
1234 * the registration of the remote processor.
1235 *
1236 * On success the new rproc is returned, and on failure, NULL.
1237 *
1238 * Note: _never_ directly deallocate @rproc, even if it was not registered
160e7c84 1239 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_put().
400e64df
OBC
1240 */
1241struct rproc *rproc_alloc(struct device *dev, const char *name,
1242 const struct rproc_ops *ops,
1243 const char *firmware, int len)
1244{
1245 struct rproc *rproc;
8b4aec9a
RT
1246 char *p, *template = "rproc-%s-fw";
1247 int name_len = 0;
400e64df
OBC
1248
1249 if (!dev || !name || !ops)
1250 return NULL;
1251
8b4aec9a
RT
1252 if (!firmware)
1253 /*
1254 * Make room for default firmware name (minus %s plus '\0').
1255 * If the caller didn't pass in a firmware name then
1256 * construct a default name. We're already glomming 'len'
1257 * bytes onto the end of the struct rproc allocation, so do
1258 * a few more for the default firmware name (but only if
1259 * the caller doesn't pass one).
1260 */
1261 name_len = strlen(name) + strlen(template) - 2 + 1;
1262
1263 rproc = kzalloc(sizeof(struct rproc) + len + name_len, GFP_KERNEL);
172e6ab1 1264 if (!rproc)
400e64df 1265 return NULL;
400e64df 1266
8b4aec9a
RT
1267 if (!firmware) {
1268 p = (char *)rproc + sizeof(struct rproc) + len;
1269 snprintf(p, name_len, template, name);
1270 } else {
1271 p = (char *)firmware;
1272 }
1273
1274 rproc->firmware = p;
400e64df
OBC
1275 rproc->name = name;
1276 rproc->ops = ops;
400e64df
OBC
1277 rproc->priv = &rproc[1];
1278
b5ab5e24
OBC
1279 device_initialize(&rproc->dev);
1280 rproc->dev.parent = dev;
1281 rproc->dev.type = &rproc_type;
1282
1283 /* Assign a unique device index and name */
1284 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
1285 if (rproc->index < 0) {
1286 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
1287 put_device(&rproc->dev);
1288 return NULL;
1289 }
1290
1291 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
1292
400e64df
OBC
1293 atomic_set(&rproc->power, 0);
1294
4afc89d6
SB
1295 /* Set ELF as the default fw_ops handler */
1296 rproc->fw_ops = &rproc_elf_fw_ops;
400e64df
OBC
1297
1298 mutex_init(&rproc->lock);
1299
7a186941
OBC
1300 idr_init(&rproc->notifyids);
1301
400e64df
OBC
1302 INIT_LIST_HEAD(&rproc->carveouts);
1303 INIT_LIST_HEAD(&rproc->mappings);
1304 INIT_LIST_HEAD(&rproc->traces);
7a186941 1305 INIT_LIST_HEAD(&rproc->rvdevs);
400e64df 1306
8afd519c 1307 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
70b85ef8 1308 init_completion(&rproc->crash_comp);
8afd519c 1309
400e64df
OBC
1310 rproc->state = RPROC_OFFLINE;
1311
1312 return rproc;
1313}
1314EXPORT_SYMBOL(rproc_alloc);
1315
1316/**
160e7c84 1317 * rproc_put() - unroll rproc_alloc()
400e64df
OBC
1318 * @rproc: the remote processor handle
1319 *
c6b5a276 1320 * This function decrements the rproc dev refcount.
400e64df 1321 *
c6b5a276
OBC
1322 * If no one holds any reference to rproc anymore, then its refcount would
1323 * now drop to zero, and it would be freed.
400e64df 1324 */
160e7c84 1325void rproc_put(struct rproc *rproc)
400e64df 1326{
b5ab5e24 1327 put_device(&rproc->dev);
400e64df 1328}
160e7c84 1329EXPORT_SYMBOL(rproc_put);
400e64df
OBC
1330
1331/**
160e7c84 1332 * rproc_del() - unregister a remote processor
400e64df
OBC
1333 * @rproc: rproc handle to unregister
1334 *
400e64df
OBC
1335 * This function should be called when the platform specific rproc
1336 * implementation decides to remove the rproc device. it should
160e7c84 1337 * _only_ be called if a previous invocation of rproc_add()
400e64df
OBC
1338 * has completed successfully.
1339 *
160e7c84 1340 * After rproc_del() returns, @rproc isn't freed yet, because
c6b5a276 1341 * of the outstanding reference created by rproc_alloc. To decrement that
160e7c84 1342 * one last refcount, one still needs to call rproc_put().
400e64df
OBC
1343 *
1344 * Returns 0 on success and -EINVAL if @rproc isn't valid.
1345 */
160e7c84 1346int rproc_del(struct rproc *rproc)
400e64df 1347{
6db20ea8 1348 struct rproc_vdev *rvdev, *tmp;
7a186941 1349
400e64df
OBC
1350 if (!rproc)
1351 return -EINVAL;
1352
1353 /* if rproc is just being registered, wait */
1354 wait_for_completion(&rproc->firmware_loading_complete);
1355
7a186941 1356 /* clean up remote vdev entries */
6db20ea8 1357 list_for_each_entry_safe(rvdev, tmp, &rproc->rvdevs, node)
7a186941 1358 rproc_remove_virtio_dev(rvdev);
400e64df 1359
a2b950ac
OBC
1360 /* Free the copy of the resource table */
1361 kfree(rproc->cached_table);
1362
b5ab5e24 1363 device_del(&rproc->dev);
400e64df
OBC
1364
1365 return 0;
1366}
160e7c84 1367EXPORT_SYMBOL(rproc_del);
400e64df 1368
8afd519c
FGL
1369/**
1370 * rproc_report_crash() - rproc crash reporter function
1371 * @rproc: remote processor
1372 * @type: crash type
1373 *
1374 * This function must be called every time a crash is detected by the low-level
1375 * drivers implementing a specific remoteproc. This should not be called from a
1376 * non-remoteproc driver.
1377 *
1378 * This function can be called from atomic/interrupt context.
1379 */
1380void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
1381{
1382 if (!rproc) {
1383 pr_err("NULL rproc pointer\n");
1384 return;
1385 }
1386
1387 dev_err(&rproc->dev, "crash detected in %s: type %s\n",
1388 rproc->name, rproc_crash_to_string(type));
1389
1390 /* create a new task to handle the error */
1391 schedule_work(&rproc->crash_handler);
1392}
1393EXPORT_SYMBOL(rproc_report_crash);
1394
400e64df
OBC
1395static int __init remoteproc_init(void)
1396{
1397 rproc_init_debugfs();
b5ab5e24 1398
400e64df
OBC
1399 return 0;
1400}
1401module_init(remoteproc_init);
1402
1403static void __exit remoteproc_exit(void)
1404{
1405 rproc_exit_debugfs();
1406}
1407module_exit(remoteproc_exit);
1408
1409MODULE_LICENSE("GPL v2");
1410MODULE_DESCRIPTION("Generic Remote Processor Framework");
This page took 0.259429 seconds and 5 git commands to generate.