remoteproc: safer boot/shutdown order
[deliverable/linux.git] / drivers / remoteproc / remoteproc_core.c
CommitLineData
400e64df
OBC
1/*
2 * Remote Processor Framework
3 *
4 * Copyright (C) 2011 Texas Instruments, Inc.
5 * Copyright (C) 2011 Google, Inc.
6 *
7 * Ohad Ben-Cohen <ohad@wizery.com>
8 * Brian Swetland <swetland@google.com>
9 * Mark Grosen <mgrosen@ti.com>
10 * Fernando Guzman Lugo <fernando.lugo@ti.com>
11 * Suman Anna <s-anna@ti.com>
12 * Robert Tivy <rtivy@ti.com>
13 * Armando Uribe De Leon <x0095078@ti.com>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * version 2 as published by the Free Software Foundation.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 */
24
25#define pr_fmt(fmt) "%s: " fmt, __func__
26
27#include <linux/kernel.h>
28#include <linux/module.h>
29#include <linux/device.h>
30#include <linux/slab.h>
31#include <linux/mutex.h>
32#include <linux/dma-mapping.h>
33#include <linux/firmware.h>
34#include <linux/string.h>
35#include <linux/debugfs.h>
36#include <linux/remoteproc.h>
37#include <linux/iommu.h>
38#include <linux/klist.h>
39#include <linux/elf.h>
40#include <linux/virtio_ids.h>
41#include <linux/virtio_ring.h>
cf59d3e9 42#include <asm/byteorder.h>
400e64df
OBC
43
44#include "remoteproc_internal.h"
45
46static void klist_rproc_get(struct klist_node *n);
47static void klist_rproc_put(struct klist_node *n);
48
49/*
50 * klist of the available remote processors.
51 *
52 * We need this in order to support name-based lookups (needed by the
53 * rproc_get_by_name()).
54 *
55 * That said, we don't use rproc_get_by_name() anymore within the rpmsg
56 * framework. The use cases that do require its existence should be
57 * scrutinized, and hopefully migrated to rproc_boot() using device-based
58 * binding.
59 *
60 * If/when this materializes, we could drop the klist (and the by_name
61 * API).
62 */
63static DEFINE_KLIST(rprocs, klist_rproc_get, klist_rproc_put);
64
65typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
fd2c15ec
OBC
66 struct resource_table *table, int len);
67typedef int (*rproc_handle_resource_t)(struct rproc *rproc, void *, int avail);
400e64df
OBC
68
69/*
70 * This is the IOMMU fault handler we register with the IOMMU API
71 * (when relevant; not all remote processors access memory through
72 * an IOMMU).
73 *
74 * IOMMU core will invoke this handler whenever the remote processor
75 * will try to access an unmapped device address.
76 *
77 * Currently this is mostly a stub, but it will be later used to trigger
78 * the recovery of the remote processor.
79 */
80static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
81 unsigned long iova, int flags)
82{
83 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
84
85 /*
86 * Let the iommu core know we're not really handling this fault;
87 * we just plan to use this as a recovery trigger.
88 */
89 return -ENOSYS;
90}
91
92static int rproc_enable_iommu(struct rproc *rproc)
93{
94 struct iommu_domain *domain;
95 struct device *dev = rproc->dev;
96 int ret;
97
98 /*
99 * We currently use iommu_present() to decide if an IOMMU
100 * setup is needed.
101 *
102 * This works for simple cases, but will easily fail with
103 * platforms that do have an IOMMU, but not for this specific
104 * rproc.
105 *
106 * This will be easily solved by introducing hw capabilities
107 * that will be set by the remoteproc driver.
108 */
109 if (!iommu_present(dev->bus)) {
0798e1da
MG
110 dev_dbg(dev, "iommu not found\n");
111 return 0;
400e64df
OBC
112 }
113
114 domain = iommu_domain_alloc(dev->bus);
115 if (!domain) {
116 dev_err(dev, "can't alloc iommu domain\n");
117 return -ENOMEM;
118 }
119
120 iommu_set_fault_handler(domain, rproc_iommu_fault);
121
122 ret = iommu_attach_device(domain, dev);
123 if (ret) {
124 dev_err(dev, "can't attach iommu device: %d\n", ret);
125 goto free_domain;
126 }
127
128 rproc->domain = domain;
129
130 return 0;
131
132free_domain:
133 iommu_domain_free(domain);
134 return ret;
135}
136
137static void rproc_disable_iommu(struct rproc *rproc)
138{
139 struct iommu_domain *domain = rproc->domain;
140 struct device *dev = rproc->dev;
141
142 if (!domain)
143 return;
144
145 iommu_detach_device(domain, dev);
146 iommu_domain_free(domain);
147
148 return;
149}
150
151/*
152 * Some remote processors will ask us to allocate them physically contiguous
153 * memory regions (which we call "carveouts"), and map them to specific
154 * device addresses (which are hardcoded in the firmware).
155 *
156 * They may then ask us to copy objects into specific device addresses (e.g.
157 * code/data sections) or expose us certain symbols in other device address
158 * (e.g. their trace buffer).
159 *
160 * This function is an internal helper with which we can go over the allocated
161 * carveouts and translate specific device address to kernel virtual addresses
162 * so we can access the referenced memory.
163 *
164 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
165 * but only on kernel direct mapped RAM memory. Instead, we're just using
166 * here the output of the DMA API, which should be more correct.
167 */
168static void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
169{
170 struct rproc_mem_entry *carveout;
171 void *ptr = NULL;
172
173 list_for_each_entry(carveout, &rproc->carveouts, node) {
174 int offset = da - carveout->da;
175
176 /* try next carveout if da is too small */
177 if (offset < 0)
178 continue;
179
180 /* try next carveout if da is too large */
181 if (offset + len > carveout->len)
182 continue;
183
184 ptr = carveout->va + offset;
185
186 break;
187 }
188
189 return ptr;
190}
191
192/**
193 * rproc_load_segments() - load firmware segments to memory
194 * @rproc: remote processor which will be booted using these fw segments
195 * @elf_data: the content of the ELF firmware image
9bc91231 196 * @len: firmware size (in bytes)
400e64df
OBC
197 *
198 * This function loads the firmware segments to memory, where the remote
199 * processor expects them.
200 *
201 * Some remote processors will expect their code and data to be placed
202 * in specific device addresses, and can't have them dynamically assigned.
203 *
204 * We currently support only those kind of remote processors, and expect
205 * the program header's paddr member to contain those addresses. We then go
206 * through the physically contiguous "carveout" memory regions which we
207 * allocated (and mapped) earlier on behalf of the remote processor,
208 * and "translate" device address to kernel addresses, so we can copy the
209 * segments where they are expected.
210 *
211 * Currently we only support remote processors that required carveout
212 * allocations and got them mapped onto their iommus. Some processors
213 * might be different: they might not have iommus, and would prefer to
214 * directly allocate memory for every segment/resource. This is not yet
215 * supported, though.
216 */
9bc91231
OBC
217static int
218rproc_load_segments(struct rproc *rproc, const u8 *elf_data, size_t len)
400e64df
OBC
219{
220 struct device *dev = rproc->dev;
221 struct elf32_hdr *ehdr;
222 struct elf32_phdr *phdr;
223 int i, ret = 0;
224
225 ehdr = (struct elf32_hdr *)elf_data;
226 phdr = (struct elf32_phdr *)(elf_data + ehdr->e_phoff);
227
228 /* go through the available ELF segments */
229 for (i = 0; i < ehdr->e_phnum; i++, phdr++) {
230 u32 da = phdr->p_paddr;
231 u32 memsz = phdr->p_memsz;
232 u32 filesz = phdr->p_filesz;
9bc91231 233 u32 offset = phdr->p_offset;
400e64df
OBC
234 void *ptr;
235
236 if (phdr->p_type != PT_LOAD)
237 continue;
238
239 dev_dbg(dev, "phdr: type %d da 0x%x memsz 0x%x filesz 0x%x\n",
240 phdr->p_type, da, memsz, filesz);
241
242 if (filesz > memsz) {
243 dev_err(dev, "bad phdr filesz 0x%x memsz 0x%x\n",
244 filesz, memsz);
245 ret = -EINVAL;
246 break;
247 }
248
9bc91231
OBC
249 if (offset + filesz > len) {
250 dev_err(dev, "truncated fw: need 0x%x avail 0x%x\n",
251 offset + filesz, len);
252 ret = -EINVAL;
253 break;
254 }
255
400e64df
OBC
256 /* grab the kernel address for this device address */
257 ptr = rproc_da_to_va(rproc, da, memsz);
258 if (!ptr) {
259 dev_err(dev, "bad phdr da 0x%x mem 0x%x\n", da, memsz);
260 ret = -EINVAL;
261 break;
262 }
263
264 /* put the segment where the remote processor expects it */
265 if (phdr->p_filesz)
266 memcpy(ptr, elf_data + phdr->p_offset, filesz);
267
268 /*
269 * Zero out remaining memory for this segment.
270 *
271 * This isn't strictly required since dma_alloc_coherent already
272 * did this for us. albeit harmless, we may consider removing
273 * this.
274 */
275 if (memsz > filesz)
276 memset(ptr + filesz, 0, memsz - filesz);
277 }
278
279 return ret;
280}
281
282/**
fd2c15ec 283 * rproc_handle_early_vdev() - early handle a virtio header resource
400e64df
OBC
284 * @rproc: the remote processor
285 * @rsc: the resource descriptor
fd2c15ec 286 * @avail: size of available data (for sanity checking the image)
400e64df
OBC
287 *
288 * The existence of this virtio hdr resource entry means that the firmware
289 * of this @rproc supports this virtio device.
290 *
291 * Currently we support only a single virtio device of type VIRTIO_ID_RPMSG,
292 * but the plan is to remove this limitation and support any number
293 * of virtio devices (and of any type). We'll also add support for dynamically
fd2c15ec 294 * adding (and removing) virtio devices over the rpmsg bus, but simple
400e64df 295 * firmwares that doesn't want to get involved with rpmsg will be able
fd2c15ec 296 * to simply use the resource table for this.
400e64df
OBC
297 *
298 * Returns 0 on success, or an appropriate error code otherwise
299 */
fd2c15ec
OBC
300static int rproc_handle_early_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
301 int avail)
400e64df
OBC
302{
303 struct rproc_vdev *rvdev;
304
fd2c15ec
OBC
305 /* make sure resource isn't truncated */
306 if (sizeof(*rsc) > avail) {
307 dev_err(rproc->dev, "vdev rsc is truncated\n");
308 return -EINVAL;
309 }
310
400e64df 311 /* we only support VIRTIO_ID_RPMSG devices for now */
fd2c15ec
OBC
312 if (rsc->id != VIRTIO_ID_RPMSG) {
313 dev_warn(rproc->dev, "unsupported vdev: %d\n", rsc->id);
400e64df
OBC
314 return -EINVAL;
315 }
316
317 /* we only support a single vdev per rproc for now */
fd2c15ec
OBC
318 if (rproc->rvdev) {
319 dev_warn(rproc->dev, "redundant vdev entry\n");
400e64df
OBC
320 return -EINVAL;
321 }
322
323 rvdev = kzalloc(sizeof(struct rproc_vdev), GFP_KERNEL);
324 if (!rvdev)
325 return -ENOMEM;
326
327 /* remember the device features */
fd2c15ec 328 rvdev->dfeatures = rsc->dfeatures;
400e64df
OBC
329
330 rproc->rvdev = rvdev;
331 rvdev->rproc = rproc;
332
333 return 0;
334}
335
336/**
fd2c15ec 337 * rproc_handle_vdev() - handle a vdev fw resource
400e64df
OBC
338 * @rproc: the remote processor
339 * @rsc: the vring resource descriptor
fd2c15ec 340 * @avail: size of available data (for sanity checking the image)
400e64df
OBC
341 *
342 * This resource entry requires allocation of non-cacheable memory
343 * for a virtio vring. Currently we only support two vrings per remote
344 * processor, required for the virtio rpmsg device.
345 *
346 * The 'len' member of @rsc should contain the number of buffers this vring
347 * support and 'da' should either contain the device address where
348 * the remote processor is expecting the vring, or indicate that
349 * dynamically allocation of the vring's device address is supported.
350 *
351 * Note: 'da' is currently not handled. This will be revised when the generic
352 * iommu-based DMA API will arrive, or a dynanic & non-iommu use case show
353 * up. Meanwhile, statically-addressed iommu-based images should use
354 * RSC_DEVMEM resource entries to map their require 'da' to the physical
355 * address of their base CMA region.
356 *
357 * Returns 0 on success, or an appropriate error code otherwise
358 */
fd2c15ec
OBC
359static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
360 int avail)
400e64df
OBC
361{
362 struct device *dev = rproc->dev;
363 struct rproc_vdev *rvdev = rproc->rvdev;
fd2c15ec 364 int i;
400e64df 365
fd2c15ec
OBC
366 /* make sure resource isn't truncated */
367 if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
368 + rsc->config_len > avail) {
369 dev_err(rproc->dev, "vdev rsc is truncated\n");
400e64df
OBC
370 return -EINVAL;
371 }
372
fd2c15ec
OBC
373 /* make sure reserved bytes are zeroes */
374 if (rsc->reserved[0] || rsc->reserved[1]) {
375 dev_err(dev, "vdev rsc has non zero reserved bytes\n");
400e64df
OBC
376 return -EINVAL;
377 }
378
fd2c15ec
OBC
379 dev_dbg(dev, "vdev rsc: id %d, dfeatures %x, cfg len %d, %d vrings\n",
380 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
381
382 /* no vdev is in place ? */
383 if (!rvdev) {
384 dev_err(dev, "vring requested without a virtio dev entry\n");
400e64df
OBC
385 return -EINVAL;
386 }
387
fd2c15ec
OBC
388 /* we currently support two vrings per rproc (for rx and tx) */
389 if (rsc->num_of_vrings != ARRAY_SIZE(rvdev->vring)) {
390 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
400e64df
OBC
391 return -EINVAL;
392 }
393
fd2c15ec
OBC
394 /* initialize the vrings */
395 for (i = 0; i < rsc->num_of_vrings; i++) {
396 struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
397 dma_addr_t dma;
398 int size;
399 void *va;
400
401 /* make sure reserved bytes are zeroes */
402 if (vring->reserved) {
403 dev_err(dev, "vring rsc has non zero reserved bytes\n");
404 return -EINVAL;
405 }
400e64df 406
fd2c15ec
OBC
407 /* the firmware must provide the expected queue size */
408 if (!vring->num) {
409 dev_err(dev, "missing expected queue size\n");
410 /* potential cleanups are taken care of later on */
411 return -EINVAL;
412 }
400e64df 413
fd2c15ec
OBC
414 /* actual size of vring (in bytes) */
415 size = PAGE_ALIGN(vring_size(vring->num, AMP_VRING_ALIGN));
400e64df 416
fd2c15ec
OBC
417 /*
418 * Allocate non-cacheable memory for the vring. In the future
419 * this call will also configure the IOMMU for us
420 */
421 va = dma_alloc_coherent(dev, size, &dma, GFP_KERNEL);
422 if (!va) {
423 dev_err(dev, "dma_alloc_coherent failed\n");
424 /* potential cleanups are taken care of later on */
425 return -EINVAL;
426 }
427
428 dev_dbg(dev, "vring%d: va %p dma %x qsz %d ring size %x\n", i,
429 va, dma, vring->num, size);
430
431 rvdev->vring[i].len = vring->num;
432 rvdev->vring[i].va = va;
433 rvdev->vring[i].dma = dma;
434 }
400e64df
OBC
435
436 return 0;
437}
438
439/**
440 * rproc_handle_trace() - handle a shared trace buffer resource
441 * @rproc: the remote processor
442 * @rsc: the trace resource descriptor
fd2c15ec 443 * @avail: size of available data (for sanity checking the image)
400e64df
OBC
444 *
445 * In case the remote processor dumps trace logs into memory,
446 * export it via debugfs.
447 *
448 * Currently, the 'da' member of @rsc should contain the device address
449 * where the remote processor is dumping the traces. Later we could also
450 * support dynamically allocating this address using the generic
451 * DMA API (but currently there isn't a use case for that).
452 *
453 * Returns 0 on success, or an appropriate error code otherwise
454 */
fd2c15ec
OBC
455static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
456 int avail)
400e64df
OBC
457{
458 struct rproc_mem_entry *trace;
459 struct device *dev = rproc->dev;
460 void *ptr;
461 char name[15];
462
fd2c15ec
OBC
463 if (sizeof(*rsc) > avail) {
464 dev_err(rproc->dev, "trace rsc is truncated\n");
465 return -EINVAL;
466 }
467
468 /* make sure reserved bytes are zeroes */
469 if (rsc->reserved) {
470 dev_err(dev, "trace rsc has non zero reserved bytes\n");
471 return -EINVAL;
472 }
473
400e64df
OBC
474 /* what's the kernel address of this resource ? */
475 ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
476 if (!ptr) {
477 dev_err(dev, "erroneous trace resource entry\n");
478 return -EINVAL;
479 }
480
481 trace = kzalloc(sizeof(*trace), GFP_KERNEL);
482 if (!trace) {
483 dev_err(dev, "kzalloc trace failed\n");
484 return -ENOMEM;
485 }
486
487 /* set the trace buffer dma properties */
488 trace->len = rsc->len;
489 trace->va = ptr;
490
491 /* make sure snprintf always null terminates, even if truncating */
492 snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
493
494 /* create the debugfs entry */
495 trace->priv = rproc_create_trace_file(name, rproc, trace);
496 if (!trace->priv) {
497 trace->va = NULL;
498 kfree(trace);
499 return -EINVAL;
500 }
501
502 list_add_tail(&trace->node, &rproc->traces);
503
504 rproc->num_traces++;
505
fd2c15ec 506 dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n", name, ptr,
400e64df
OBC
507 rsc->da, rsc->len);
508
509 return 0;
510}
511
512/**
513 * rproc_handle_devmem() - handle devmem resource entry
514 * @rproc: remote processor handle
515 * @rsc: the devmem resource entry
fd2c15ec 516 * @avail: size of available data (for sanity checking the image)
400e64df
OBC
517 *
518 * Remote processors commonly need to access certain on-chip peripherals.
519 *
520 * Some of these remote processors access memory via an iommu device,
521 * and might require us to configure their iommu before they can access
522 * the on-chip peripherals they need.
523 *
524 * This resource entry is a request to map such a peripheral device.
525 *
526 * These devmem entries will contain the physical address of the device in
527 * the 'pa' member. If a specific device address is expected, then 'da' will
528 * contain it (currently this is the only use case supported). 'len' will
529 * contain the size of the physical region we need to map.
530 *
531 * Currently we just "trust" those devmem entries to contain valid physical
532 * addresses, but this is going to change: we want the implementations to
533 * tell us ranges of physical addresses the firmware is allowed to request,
534 * and not allow firmwares to request access to physical addresses that
535 * are outside those ranges.
536 */
fd2c15ec
OBC
537static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
538 int avail)
400e64df
OBC
539{
540 struct rproc_mem_entry *mapping;
541 int ret;
542
543 /* no point in handling this resource without a valid iommu domain */
544 if (!rproc->domain)
545 return -EINVAL;
546
fd2c15ec
OBC
547 if (sizeof(*rsc) > avail) {
548 dev_err(rproc->dev, "devmem rsc is truncated\n");
549 return -EINVAL;
550 }
551
552 /* make sure reserved bytes are zeroes */
553 if (rsc->reserved) {
554 dev_err(rproc->dev, "devmem rsc has non zero reserved bytes\n");
555 return -EINVAL;
556 }
557
400e64df
OBC
558 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
559 if (!mapping) {
560 dev_err(rproc->dev, "kzalloc mapping failed\n");
561 return -ENOMEM;
562 }
563
564 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
565 if (ret) {
566 dev_err(rproc->dev, "failed to map devmem: %d\n", ret);
567 goto out;
568 }
569
570 /*
571 * We'll need this info later when we'll want to unmap everything
572 * (e.g. on shutdown).
573 *
574 * We can't trust the remote processor not to change the resource
575 * table, so we must maintain this info independently.
576 */
577 mapping->da = rsc->da;
578 mapping->len = rsc->len;
579 list_add_tail(&mapping->node, &rproc->mappings);
580
fd2c15ec 581 dev_dbg(rproc->dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
400e64df
OBC
582 rsc->pa, rsc->da, rsc->len);
583
584 return 0;
585
586out:
587 kfree(mapping);
588 return ret;
589}
590
591/**
592 * rproc_handle_carveout() - handle phys contig memory allocation requests
593 * @rproc: rproc handle
594 * @rsc: the resource entry
fd2c15ec 595 * @avail: size of available data (for image validation)
400e64df
OBC
596 *
597 * This function will handle firmware requests for allocation of physically
598 * contiguous memory regions.
599 *
600 * These request entries should come first in the firmware's resource table,
601 * as other firmware entries might request placing other data objects inside
602 * these memory regions (e.g. data/code segments, trace resource entries, ...).
603 *
604 * Allocating memory this way helps utilizing the reserved physical memory
605 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
606 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
607 * pressure is important; it may have a substantial impact on performance.
608 */
fd2c15ec
OBC
609static int rproc_handle_carveout(struct rproc *rproc,
610 struct fw_rsc_carveout *rsc, int avail)
400e64df
OBC
611{
612 struct rproc_mem_entry *carveout, *mapping;
613 struct device *dev = rproc->dev;
614 dma_addr_t dma;
615 void *va;
616 int ret;
617
fd2c15ec
OBC
618 if (sizeof(*rsc) > avail) {
619 dev_err(rproc->dev, "carveout rsc is truncated\n");
620 return -EINVAL;
621 }
622
623 /* make sure reserved bytes are zeroes */
624 if (rsc->reserved) {
625 dev_err(dev, "carveout rsc has non zero reserved bytes\n");
626 return -EINVAL;
627 }
628
629 dev_dbg(dev, "carveout rsc: da %x, pa %x, len %x, flags %x\n",
630 rsc->da, rsc->pa, rsc->len, rsc->flags);
631
400e64df
OBC
632 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
633 if (!mapping) {
634 dev_err(dev, "kzalloc mapping failed\n");
635 return -ENOMEM;
636 }
637
638 carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
639 if (!carveout) {
640 dev_err(dev, "kzalloc carveout failed\n");
641 ret = -ENOMEM;
642 goto free_mapping;
643 }
644
645 va = dma_alloc_coherent(dev, rsc->len, &dma, GFP_KERNEL);
646 if (!va) {
647 dev_err(dev, "failed to dma alloc carveout: %d\n", rsc->len);
648 ret = -ENOMEM;
649 goto free_carv;
650 }
651
652 dev_dbg(dev, "carveout va %p, dma %x, len 0x%x\n", va, dma, rsc->len);
653
654 /*
655 * Ok, this is non-standard.
656 *
657 * Sometimes we can't rely on the generic iommu-based DMA API
658 * to dynamically allocate the device address and then set the IOMMU
659 * tables accordingly, because some remote processors might
660 * _require_ us to use hard coded device addresses that their
661 * firmware was compiled with.
662 *
663 * In this case, we must use the IOMMU API directly and map
664 * the memory to the device address as expected by the remote
665 * processor.
666 *
667 * Obviously such remote processor devices should not be configured
668 * to use the iommu-based DMA API: we expect 'dma' to contain the
669 * physical address in this case.
670 */
671 if (rproc->domain) {
672 ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
673 rsc->flags);
674 if (ret) {
675 dev_err(dev, "iommu_map failed: %d\n", ret);
676 goto dma_free;
677 }
678
679 /*
680 * We'll need this info later when we'll want to unmap
681 * everything (e.g. on shutdown).
682 *
683 * We can't trust the remote processor not to change the
684 * resource table, so we must maintain this info independently.
685 */
686 mapping->da = rsc->da;
687 mapping->len = rsc->len;
688 list_add_tail(&mapping->node, &rproc->mappings);
689
fd2c15ec 690 dev_dbg(dev, "carveout mapped 0x%x to 0x%x\n", rsc->da, dma);
400e64df
OBC
691
692 /*
693 * Some remote processors might need to know the pa
694 * even though they are behind an IOMMU. E.g., OMAP4's
695 * remote M3 processor needs this so it can control
696 * on-chip hardware accelerators that are not behind
697 * the IOMMU, and therefor must know the pa.
698 *
699 * Generally we don't want to expose physical addresses
700 * if we don't have to (remote processors are generally
701 * _not_ trusted), so we might want to do this only for
702 * remote processor that _must_ have this (e.g. OMAP4's
703 * dual M3 subsystem).
704 */
705 rsc->pa = dma;
706 }
707
708 carveout->va = va;
709 carveout->len = rsc->len;
710 carveout->dma = dma;
711 carveout->da = rsc->da;
712
713 list_add_tail(&carveout->node, &rproc->carveouts);
714
715 return 0;
716
717dma_free:
718 dma_free_coherent(dev, rsc->len, va, dma);
719free_carv:
720 kfree(carveout);
721free_mapping:
722 kfree(mapping);
723 return ret;
724}
725
e12bc14b
OBC
726/*
727 * A lookup table for resource handlers. The indices are defined in
728 * enum fw_resource_type.
729 */
730static rproc_handle_resource_t rproc_handle_rsc[] = {
fd2c15ec
OBC
731 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
732 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
733 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
734 [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
e12bc14b
OBC
735};
736
400e64df
OBC
737/* handle firmware resource entries before booting the remote processor */
738static int
fd2c15ec 739rproc_handle_boot_rsc(struct rproc *rproc, struct resource_table *table, int len)
400e64df
OBC
740{
741 struct device *dev = rproc->dev;
e12bc14b 742 rproc_handle_resource_t handler;
fd2c15ec
OBC
743 int ret = 0, i;
744
745 for (i = 0; i < table->num; i++) {
746 int offset = table->offset[i];
747 struct fw_rsc_hdr *hdr = (void *)table + offset;
748 int avail = len - offset - sizeof(*hdr);
749 void *rsc = (void *)hdr + sizeof(*hdr);
750
751 /* make sure table isn't truncated */
752 if (avail < 0) {
753 dev_err(dev, "rsc table is truncated\n");
754 return -EINVAL;
755 }
400e64df 756
fd2c15ec 757 dev_dbg(dev, "rsc: type %d\n", hdr->type);
400e64df 758
fd2c15ec
OBC
759 if (hdr->type >= RSC_LAST) {
760 dev_warn(dev, "unsupported resource %d\n", hdr->type);
e12bc14b 761 continue;
400e64df
OBC
762 }
763
fd2c15ec 764 handler = rproc_handle_rsc[hdr->type];
e12bc14b
OBC
765 if (!handler)
766 continue;
767
fd2c15ec 768 ret = handler(rproc, rsc, avail);
400e64df
OBC
769 if (ret)
770 break;
400e64df
OBC
771 }
772
773 return ret;
774}
775
776/* handle firmware resource entries while registering the remote processor */
777static int
fd2c15ec 778rproc_handle_virtio_rsc(struct rproc *rproc, struct resource_table *table, int len)
400e64df
OBC
779{
780 struct device *dev = rproc->dev;
fd2c15ec
OBC
781 int ret = 0, i;
782
783 for (i = 0; i < table->num; i++) {
784 int offset = table->offset[i];
785 struct fw_rsc_hdr *hdr = (void *)table + offset;
786 int avail = len - offset - sizeof(*hdr);
400e64df 787
fd2c15ec
OBC
788 /* make sure table isn't truncated */
789 if (avail < 0) {
790 dev_err(dev, "rsc table is truncated\n");
791 return -EINVAL;
792 }
793
794 dev_dbg(dev, "%s: rsc type %d\n", __func__, hdr->type);
795
796 if (hdr->type == RSC_VDEV) {
797 struct fw_rsc_vdev *vrsc =
798 (struct fw_rsc_vdev *)hdr->data;
799 ret = rproc_handle_early_vdev(rproc, vrsc, avail);
400e64df
OBC
800 break;
801 }
fd2c15ec 802 }
400e64df
OBC
803
804 return ret;
805}
806
807/**
808 * rproc_handle_resources() - find and handle the resource table
809 * @rproc: the rproc handle
810 * @elf_data: the content of the ELF firmware image
9bc91231 811 * @len: firmware size (in bytes)
400e64df
OBC
812 * @handler: function that should be used to handle the resource table
813 *
814 * This function finds the resource table inside the remote processor's
815 * firmware, and invoke a user-supplied handler with it (we have two
816 * possible handlers: one is invoked upon registration of @rproc,
817 * in order to register the supported virito devices, and the other is
818 * invoked when @rproc is actually booted).
819 *
820 * Currently this function fails if a resource table doesn't exist.
821 * This restriction will be removed when we'll start supporting remote
822 * processors that don't need a resource table.
823 */
824static int rproc_handle_resources(struct rproc *rproc, const u8 *elf_data,
9bc91231 825 size_t len, rproc_handle_resources_t handler)
400e64df
OBC
826
827{
828 struct elf32_hdr *ehdr;
829 struct elf32_shdr *shdr;
830 const char *name_table;
fd2c15ec 831 struct device *dev = rproc->dev;
400e64df 832 int i, ret = -EINVAL;
fd2c15ec 833 struct resource_table *table;
400e64df
OBC
834
835 ehdr = (struct elf32_hdr *)elf_data;
836 shdr = (struct elf32_shdr *)(elf_data + ehdr->e_shoff);
837 name_table = elf_data + shdr[ehdr->e_shstrndx].sh_offset;
838
839 /* look for the resource table and handle it */
840 for (i = 0; i < ehdr->e_shnum; i++, shdr++) {
fd2c15ec
OBC
841 int size = shdr->sh_size;
842 int offset = shdr->sh_offset;
400e64df 843
fd2c15ec
OBC
844 if (strcmp(name_table + shdr->sh_name, ".resource_table"))
845 continue;
9bc91231 846
fd2c15ec 847 table = (struct resource_table *)(elf_data + offset);
400e64df 848
fd2c15ec
OBC
849 /* make sure we have the entire table */
850 if (offset + size > len) {
851 dev_err(dev, "resource table truncated\n");
852 return -EINVAL;
853 }
854
855 /* make sure table has at least the header */
856 if (sizeof(struct resource_table) > size) {
857 dev_err(dev, "header-less resource table\n");
858 return -EINVAL;
400e64df 859 }
fd2c15ec
OBC
860
861 /* we don't support any version beyond the first */
862 if (table->ver != 1) {
863 dev_err(dev, "unsupported fw ver: %d\n", table->ver);
864 return -EINVAL;
865 }
866
867 /* make sure reserved bytes are zeroes */
868 if (table->reserved[0] || table->reserved[1]) {
869 dev_err(dev, "non zero reserved bytes\n");
870 return -EINVAL;
871 }
872
873 /* make sure the offsets array isn't truncated */
874 if (table->num * sizeof(table->offset[0]) +
875 sizeof(struct resource_table) > size) {
876 dev_err(dev, "resource table incomplete\n");
877 return -EINVAL;
878 }
879
880 ret = handler(rproc, table, shdr->sh_size);
881 break;
400e64df
OBC
882 }
883
884 return ret;
885}
886
887/**
888 * rproc_resource_cleanup() - clean up and free all acquired resources
889 * @rproc: rproc handle
890 *
891 * This function will free all resources acquired for @rproc, and it
892 * is called when @rproc shuts down, or just failed booting.
893 */
894static void rproc_resource_cleanup(struct rproc *rproc)
895{
896 struct rproc_mem_entry *entry, *tmp;
897 struct device *dev = rproc->dev;
898 struct rproc_vdev *rvdev = rproc->rvdev;
899 int i;
900
901 /* clean up debugfs trace entries */
902 list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
903 rproc_remove_trace_file(entry->priv);
904 rproc->num_traces--;
905 list_del(&entry->node);
906 kfree(entry);
907 }
908
909 /* free the coherent memory allocated for the vrings */
910 for (i = 0; rvdev && i < ARRAY_SIZE(rvdev->vring); i++) {
911 int qsz = rvdev->vring[i].len;
912 void *va = rvdev->vring[i].va;
913 int dma = rvdev->vring[i].dma;
914
915 /* virtqueue size is expressed in number of buffers supported */
916 if (qsz) {
917 /* how many bytes does this vring really occupy ? */
918 int size = PAGE_ALIGN(vring_size(qsz, AMP_VRING_ALIGN));
919
920 dma_free_coherent(rproc->dev, size, va, dma);
921
922 rvdev->vring[i].len = 0;
923 }
924 }
925
926 /* clean up carveout allocations */
927 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
928 dma_free_coherent(dev, entry->len, entry->va, entry->dma);
929 list_del(&entry->node);
930 kfree(entry);
931 }
932
933 /* clean up iommu mapping entries */
934 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
935 size_t unmapped;
936
937 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
938 if (unmapped != entry->len) {
939 /* nothing much to do besides complaining */
940 dev_err(dev, "failed to unmap %u/%u\n", entry->len,
941 unmapped);
942 }
943
944 list_del(&entry->node);
945 kfree(entry);
946 }
947}
948
949/* make sure this fw image is sane */
950static int rproc_fw_sanity_check(struct rproc *rproc, const struct firmware *fw)
951{
952 const char *name = rproc->firmware;
953 struct device *dev = rproc->dev;
954 struct elf32_hdr *ehdr;
40b78b2c 955 char class;
400e64df
OBC
956
957 if (!fw) {
958 dev_err(dev, "failed to load %s\n", name);
959 return -EINVAL;
960 }
961
962 if (fw->size < sizeof(struct elf32_hdr)) {
963 dev_err(dev, "Image is too small\n");
964 return -EINVAL;
965 }
966
967 ehdr = (struct elf32_hdr *)fw->data;
968
40b78b2c
OBC
969 /* We only support ELF32 at this point */
970 class = ehdr->e_ident[EI_CLASS];
971 if (class != ELFCLASS32) {
972 dev_err(dev, "Unsupported class: %d\n", class);
973 return -EINVAL;
974 }
975
cf59d3e9
OBC
976 /* We assume the firmware has the same endianess as the host */
977# ifdef __LITTLE_ENDIAN
978 if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB) {
979# else /* BIG ENDIAN */
980 if (ehdr->e_ident[EI_DATA] != ELFDATA2MSB) {
981# endif
982 dev_err(dev, "Unsupported firmware endianess\n");
983 return -EINVAL;
984 }
985
9bc91231
OBC
986 if (fw->size < ehdr->e_shoff + sizeof(struct elf32_shdr)) {
987 dev_err(dev, "Image is too small\n");
988 return -EINVAL;
989 }
990
400e64df
OBC
991 if (memcmp(ehdr->e_ident, ELFMAG, SELFMAG)) {
992 dev_err(dev, "Image is corrupted (bad magic)\n");
993 return -EINVAL;
994 }
995
996 if (ehdr->e_phnum == 0) {
997 dev_err(dev, "No loadable segments\n");
998 return -EINVAL;
999 }
1000
1001 if (ehdr->e_phoff > fw->size) {
1002 dev_err(dev, "Firmware size is too small\n");
1003 return -EINVAL;
1004 }
1005
1006 return 0;
1007}
1008
1009/*
1010 * take a firmware and boot a remote processor with it.
1011 */
1012static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1013{
1014 struct device *dev = rproc->dev;
1015 const char *name = rproc->firmware;
1016 struct elf32_hdr *ehdr;
1017 int ret;
1018
1019 ret = rproc_fw_sanity_check(rproc, fw);
1020 if (ret)
1021 return ret;
1022
1023 ehdr = (struct elf32_hdr *)fw->data;
1024
1025 dev_info(dev, "Booting fw image %s, size %d\n", name, fw->size);
1026
1027 /*
1028 * if enabling an IOMMU isn't relevant for this rproc, this is
1029 * just a nop
1030 */
1031 ret = rproc_enable_iommu(rproc);
1032 if (ret) {
1033 dev_err(dev, "can't enable iommu: %d\n", ret);
1034 return ret;
1035 }
1036
1037 /*
1038 * The ELF entry point is the rproc's boot addr (though this is not
1039 * a configurable property of all remote processors: some will always
1040 * boot at a specific hardcoded address).
1041 */
1042 rproc->bootaddr = ehdr->e_entry;
1043
1044 /* handle fw resources which are required to boot rproc */
9bc91231
OBC
1045 ret = rproc_handle_resources(rproc, fw->data, fw->size,
1046 rproc_handle_boot_rsc);
400e64df
OBC
1047 if (ret) {
1048 dev_err(dev, "Failed to process resources: %d\n", ret);
1049 goto clean_up;
1050 }
1051
1052 /* load the ELF segments to memory */
9bc91231 1053 ret = rproc_load_segments(rproc, fw->data, fw->size);
400e64df
OBC
1054 if (ret) {
1055 dev_err(dev, "Failed to load program segments: %d\n", ret);
1056 goto clean_up;
1057 }
1058
1059 /* power up the remote processor */
1060 ret = rproc->ops->start(rproc);
1061 if (ret) {
1062 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1063 goto clean_up;
1064 }
1065
1066 rproc->state = RPROC_RUNNING;
1067
1068 dev_info(dev, "remote processor %s is now up\n", rproc->name);
1069
1070 return 0;
1071
1072clean_up:
1073 rproc_resource_cleanup(rproc);
1074 rproc_disable_iommu(rproc);
1075 return ret;
1076}
1077
1078/*
1079 * take a firmware and look for virtio devices to register.
1080 *
1081 * Note: this function is called asynchronously upon registration of the
1082 * remote processor (so we must wait until it completes before we try
1083 * to unregister the device. one other option is just to use kref here,
1084 * that might be cleaner).
1085 */
1086static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
1087{
1088 struct rproc *rproc = context;
1089 struct device *dev = rproc->dev;
1090 int ret;
1091
1092 if (rproc_fw_sanity_check(rproc, fw) < 0)
1093 goto out;
1094
fd2c15ec 1095 /* does the fw support any virtio devices ? */
9bc91231
OBC
1096 ret = rproc_handle_resources(rproc, fw->data, fw->size,
1097 rproc_handle_virtio_rsc);
400e64df
OBC
1098 if (ret) {
1099 dev_info(dev, "No fw virtio device was found\n");
1100 goto out;
1101 }
1102
1103 /* add the virtio device (currently only rpmsg vdevs are supported) */
1104 ret = rproc_add_rpmsg_vdev(rproc);
1105 if (ret)
1106 goto out;
1107
1108out:
1109 if (fw)
1110 release_firmware(fw);
1111 /* allow rproc_unregister() contexts, if any, to proceed */
1112 complete_all(&rproc->firmware_loading_complete);
1113}
1114
1115/**
1116 * rproc_boot() - boot a remote processor
1117 * @rproc: handle of a remote processor
1118 *
1119 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1120 *
1121 * If the remote processor is already powered on, this function immediately
1122 * returns (successfully).
1123 *
1124 * Returns 0 on success, and an appropriate error value otherwise.
1125 */
1126int rproc_boot(struct rproc *rproc)
1127{
1128 const struct firmware *firmware_p;
1129 struct device *dev;
1130 int ret;
1131
1132 if (!rproc) {
1133 pr_err("invalid rproc handle\n");
1134 return -EINVAL;
1135 }
1136
1137 dev = rproc->dev;
1138
1139 ret = mutex_lock_interruptible(&rproc->lock);
1140 if (ret) {
1141 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1142 return ret;
1143 }
1144
1145 /* loading a firmware is required */
1146 if (!rproc->firmware) {
1147 dev_err(dev, "%s: no firmware to load\n", __func__);
1148 ret = -EINVAL;
1149 goto unlock_mutex;
1150 }
1151
1152 /* prevent underlying implementation from being removed */
1153 if (!try_module_get(dev->driver->owner)) {
1154 dev_err(dev, "%s: can't get owner\n", __func__);
1155 ret = -EINVAL;
1156 goto unlock_mutex;
1157 }
1158
1159 /* skip the boot process if rproc is already powered up */
1160 if (atomic_inc_return(&rproc->power) > 1) {
1161 ret = 0;
1162 goto unlock_mutex;
1163 }
1164
1165 dev_info(dev, "powering up %s\n", rproc->name);
1166
1167 /* load firmware */
1168 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1169 if (ret < 0) {
1170 dev_err(dev, "request_firmware failed: %d\n", ret);
1171 goto downref_rproc;
1172 }
1173
1174 ret = rproc_fw_boot(rproc, firmware_p);
1175
1176 release_firmware(firmware_p);
1177
1178downref_rproc:
1179 if (ret) {
1180 module_put(dev->driver->owner);
1181 atomic_dec(&rproc->power);
1182 }
1183unlock_mutex:
1184 mutex_unlock(&rproc->lock);
1185 return ret;
1186}
1187EXPORT_SYMBOL(rproc_boot);
1188
1189/**
1190 * rproc_shutdown() - power off the remote processor
1191 * @rproc: the remote processor
1192 *
1193 * Power off a remote processor (previously booted with rproc_boot()).
1194 *
1195 * In case @rproc is still being used by an additional user(s), then
1196 * this function will just decrement the power refcount and exit,
1197 * without really powering off the device.
1198 *
1199 * Every call to rproc_boot() must (eventually) be accompanied by a call
1200 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1201 *
1202 * Notes:
1203 * - we're not decrementing the rproc's refcount, only the power refcount.
1204 * which means that the @rproc handle stays valid even after rproc_shutdown()
1205 * returns, and users can still use it with a subsequent rproc_boot(), if
1206 * needed.
1207 * - don't call rproc_shutdown() to unroll rproc_get_by_name(), exactly
1208 * because rproc_shutdown() _does not_ decrement the refcount of @rproc.
1209 * To decrement the refcount of @rproc, use rproc_put() (but _only_ if
1210 * you acquired @rproc using rproc_get_by_name()).
1211 */
1212void rproc_shutdown(struct rproc *rproc)
1213{
1214 struct device *dev = rproc->dev;
1215 int ret;
1216
1217 ret = mutex_lock_interruptible(&rproc->lock);
1218 if (ret) {
1219 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1220 return;
1221 }
1222
1223 /* if the remote proc is still needed, bail out */
1224 if (!atomic_dec_and_test(&rproc->power))
1225 goto out;
1226
1227 /* power off the remote processor */
1228 ret = rproc->ops->stop(rproc);
1229 if (ret) {
1230 atomic_inc(&rproc->power);
1231 dev_err(dev, "can't stop rproc: %d\n", ret);
1232 goto out;
1233 }
1234
1235 /* clean up all acquired resources */
1236 rproc_resource_cleanup(rproc);
1237
1238 rproc_disable_iommu(rproc);
1239
1240 rproc->state = RPROC_OFFLINE;
1241
1242 dev_info(dev, "stopped remote processor %s\n", rproc->name);
1243
1244out:
1245 mutex_unlock(&rproc->lock);
1246 if (!ret)
1247 module_put(dev->driver->owner);
1248}
1249EXPORT_SYMBOL(rproc_shutdown);
1250
1251/**
1252 * rproc_release() - completely deletes the existence of a remote processor
1253 * @kref: the rproc's kref
1254 *
1255 * This function should _never_ be called directly.
1256 *
1257 * The only reasonable location to use it is as an argument when kref_put'ing
1258 * @rproc's refcount.
1259 *
1260 * This way it will be called when no one holds a valid pointer to this @rproc
1261 * anymore (and obviously after it is removed from the rprocs klist).
1262 *
1263 * Note: this function is not static because rproc_vdev_release() needs it when
1264 * it decrements @rproc's refcount.
1265 */
1266void rproc_release(struct kref *kref)
1267{
1268 struct rproc *rproc = container_of(kref, struct rproc, refcount);
1269
1270 dev_info(rproc->dev, "removing %s\n", rproc->name);
1271
1272 rproc_delete_debug_dir(rproc);
1273
1274 /* at this point no one holds a reference to rproc anymore */
1275 kfree(rproc);
1276}
1277
1278/* will be called when an rproc is added to the rprocs klist */
1279static void klist_rproc_get(struct klist_node *n)
1280{
1281 struct rproc *rproc = container_of(n, struct rproc, node);
1282
1283 kref_get(&rproc->refcount);
1284}
1285
1286/* will be called when an rproc is removed from the rprocs klist */
1287static void klist_rproc_put(struct klist_node *n)
1288{
1289 struct rproc *rproc = container_of(n, struct rproc, node);
1290
1291 kref_put(&rproc->refcount, rproc_release);
1292}
1293
1294static struct rproc *next_rproc(struct klist_iter *i)
1295{
1296 struct klist_node *n;
1297
1298 n = klist_next(i);
1299 if (!n)
1300 return NULL;
1301
1302 return container_of(n, struct rproc, node);
1303}
1304
1305/**
1306 * rproc_get_by_name() - find a remote processor by name and boot it
1307 * @name: name of the remote processor
1308 *
1309 * Finds an rproc handle using the remote processor's name, and then
1310 * boot it. If it's already powered on, then just immediately return
1311 * (successfully).
1312 *
1313 * Returns the rproc handle on success, and NULL on failure.
1314 *
1315 * This function increments the remote processor's refcount, so always
1316 * use rproc_put() to decrement it back once rproc isn't needed anymore.
1317 *
1318 * Note: currently this function (and its counterpart rproc_put()) are not
1319 * used anymore by the rpmsg subsystem. We need to scrutinize the use cases
1320 * that still need them, and see if we can migrate them to use the non
1321 * name-based boot/shutdown interface.
1322 */
1323struct rproc *rproc_get_by_name(const char *name)
1324{
1325 struct rproc *rproc;
1326 struct klist_iter i;
1327 int ret;
1328
1329 /* find the remote processor, and upref its refcount */
1330 klist_iter_init(&rprocs, &i);
1331 while ((rproc = next_rproc(&i)) != NULL)
1332 if (!strcmp(rproc->name, name)) {
1333 kref_get(&rproc->refcount);
1334 break;
1335 }
1336 klist_iter_exit(&i);
1337
1338 /* can't find this rproc ? */
1339 if (!rproc) {
1340 pr_err("can't find remote processor %s\n", name);
1341 return NULL;
1342 }
1343
1344 ret = rproc_boot(rproc);
1345 if (ret < 0) {
1346 kref_put(&rproc->refcount, rproc_release);
1347 return NULL;
1348 }
1349
1350 return rproc;
1351}
1352EXPORT_SYMBOL(rproc_get_by_name);
1353
1354/**
1355 * rproc_put() - decrement the refcount of a remote processor, and shut it down
1356 * @rproc: the remote processor
1357 *
1358 * This function tries to shutdown @rproc, and it then decrements its
1359 * refcount.
1360 *
1361 * After this function returns, @rproc may _not_ be used anymore, and its
1362 * handle should be considered invalid.
1363 *
1364 * This function should be called _iff_ the @rproc handle was grabbed by
1365 * calling rproc_get_by_name().
1366 */
1367void rproc_put(struct rproc *rproc)
1368{
1369 /* try to power off the remote processor */
1370 rproc_shutdown(rproc);
1371
1372 /* downref rproc's refcount */
1373 kref_put(&rproc->refcount, rproc_release);
1374}
1375EXPORT_SYMBOL(rproc_put);
1376
1377/**
1378 * rproc_register() - register a remote processor
1379 * @rproc: the remote processor handle to register
1380 *
1381 * Registers @rproc with the remoteproc framework, after it has been
1382 * allocated with rproc_alloc().
1383 *
1384 * This is called by the platform-specific rproc implementation, whenever
1385 * a new remote processor device is probed.
1386 *
1387 * Returns 0 on success and an appropriate error code otherwise.
1388 *
1389 * Note: this function initiates an asynchronous firmware loading
1390 * context, which will look for virtio devices supported by the rproc's
1391 * firmware.
1392 *
1393 * If found, those virtio devices will be created and added, so as a result
1394 * of registering this remote processor, additional virtio drivers will be
1395 * probed.
1396 *
1397 * Currently, though, we only support a single RPMSG virtio vdev per remote
1398 * processor.
1399 */
1400int rproc_register(struct rproc *rproc)
1401{
1402 struct device *dev = rproc->dev;
1403 int ret = 0;
1404
1405 /* expose to rproc_get_by_name users */
1406 klist_add_tail(&rproc->node, &rprocs);
1407
1408 dev_info(rproc->dev, "%s is available\n", rproc->name);
1409
489d129a
OBC
1410 dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n");
1411 dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n");
1412
400e64df
OBC
1413 /* create debugfs entries */
1414 rproc_create_debug_dir(rproc);
1415
1416 /* rproc_unregister() calls must wait until async loader completes */
1417 init_completion(&rproc->firmware_loading_complete);
1418
1419 /*
1420 * We must retrieve early virtio configuration info from
1421 * the firmware (e.g. whether to register a virtio rpmsg device,
1422 * what virtio features does it support, ...).
1423 *
1424 * We're initiating an asynchronous firmware loading, so we can
1425 * be built-in kernel code, without hanging the boot process.
1426 */
1427 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
1428 rproc->firmware, dev, GFP_KERNEL,
1429 rproc, rproc_fw_config_virtio);
1430 if (ret < 0) {
1431 dev_err(dev, "request_firmware_nowait failed: %d\n", ret);
1432 complete_all(&rproc->firmware_loading_complete);
1433 klist_remove(&rproc->node);
1434 }
1435
1436 return ret;
1437}
1438EXPORT_SYMBOL(rproc_register);
1439
1440/**
1441 * rproc_alloc() - allocate a remote processor handle
1442 * @dev: the underlying device
1443 * @name: name of this remote processor
1444 * @ops: platform-specific handlers (mainly start/stop)
1445 * @firmware: name of firmware file to load
1446 * @len: length of private data needed by the rproc driver (in bytes)
1447 *
1448 * Allocates a new remote processor handle, but does not register
1449 * it yet.
1450 *
1451 * This function should be used by rproc implementations during initialization
1452 * of the remote processor.
1453 *
1454 * After creating an rproc handle using this function, and when ready,
1455 * implementations should then call rproc_register() to complete
1456 * the registration of the remote processor.
1457 *
1458 * On success the new rproc is returned, and on failure, NULL.
1459 *
1460 * Note: _never_ directly deallocate @rproc, even if it was not registered
1461 * yet. Instead, if you just need to unroll rproc_alloc(), use rproc_free().
1462 */
1463struct rproc *rproc_alloc(struct device *dev, const char *name,
1464 const struct rproc_ops *ops,
1465 const char *firmware, int len)
1466{
1467 struct rproc *rproc;
1468
1469 if (!dev || !name || !ops)
1470 return NULL;
1471
1472 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
1473 if (!rproc) {
1474 dev_err(dev, "%s: kzalloc failed\n", __func__);
1475 return NULL;
1476 }
1477
1478 rproc->dev = dev;
1479 rproc->name = name;
1480 rproc->ops = ops;
1481 rproc->firmware = firmware;
1482 rproc->priv = &rproc[1];
1483
1484 atomic_set(&rproc->power, 0);
1485
1486 kref_init(&rproc->refcount);
1487
1488 mutex_init(&rproc->lock);
1489
1490 INIT_LIST_HEAD(&rproc->carveouts);
1491 INIT_LIST_HEAD(&rproc->mappings);
1492 INIT_LIST_HEAD(&rproc->traces);
1493
1494 rproc->state = RPROC_OFFLINE;
1495
1496 return rproc;
1497}
1498EXPORT_SYMBOL(rproc_alloc);
1499
1500/**
1501 * rproc_free() - free an rproc handle that was allocated by rproc_alloc
1502 * @rproc: the remote processor handle
1503 *
1504 * This function should _only_ be used if @rproc was only allocated,
1505 * but not registered yet.
1506 *
1507 * If @rproc was already successfully registered (by calling rproc_register()),
1508 * then use rproc_unregister() instead.
1509 */
1510void rproc_free(struct rproc *rproc)
1511{
1512 kfree(rproc);
1513}
1514EXPORT_SYMBOL(rproc_free);
1515
1516/**
1517 * rproc_unregister() - unregister a remote processor
1518 * @rproc: rproc handle to unregister
1519 *
1520 * Unregisters a remote processor, and decrements its refcount.
1521 * If its refcount drops to zero, then @rproc will be freed. If not,
1522 * it will be freed later once the last reference is dropped.
1523 *
1524 * This function should be called when the platform specific rproc
1525 * implementation decides to remove the rproc device. it should
1526 * _only_ be called if a previous invocation of rproc_register()
1527 * has completed successfully.
1528 *
1529 * After rproc_unregister() returns, @rproc is _not_ valid anymore and
1530 * it shouldn't be used. More specifically, don't call rproc_free()
1531 * or try to directly free @rproc after rproc_unregister() returns;
1532 * none of these are needed, and calling them is a bug.
1533 *
1534 * Returns 0 on success and -EINVAL if @rproc isn't valid.
1535 */
1536int rproc_unregister(struct rproc *rproc)
1537{
1538 if (!rproc)
1539 return -EINVAL;
1540
1541 /* if rproc is just being registered, wait */
1542 wait_for_completion(&rproc->firmware_loading_complete);
1543
1544 /* was an rpmsg vdev created ? */
1545 if (rproc->rvdev)
1546 rproc_remove_rpmsg_vdev(rproc);
1547
1548 klist_remove(&rproc->node);
1549
1550 kref_put(&rproc->refcount, rproc_release);
1551
1552 return 0;
1553}
1554EXPORT_SYMBOL(rproc_unregister);
1555
1556static int __init remoteproc_init(void)
1557{
1558 rproc_init_debugfs();
1559 return 0;
1560}
1561module_init(remoteproc_init);
1562
1563static void __exit remoteproc_exit(void)
1564{
1565 rproc_exit_debugfs();
1566}
1567module_exit(remoteproc_exit);
1568
1569MODULE_LICENSE("GPL v2");
1570MODULE_DESCRIPTION("Generic Remote Processor Framework");
This page took 0.086191 seconds and 5 git commands to generate.