remoteproc: calculate max_notifyid by counting vrings
[deliverable/linux.git] / drivers / remoteproc / remoteproc_core.c
CommitLineData
400e64df
OBC
1/*
2 * Remote Processor Framework
3 *
4 * Copyright (C) 2011 Texas Instruments, Inc.
5 * Copyright (C) 2011 Google, Inc.
6 *
7 * Ohad Ben-Cohen <ohad@wizery.com>
8 * Brian Swetland <swetland@google.com>
9 * Mark Grosen <mgrosen@ti.com>
10 * Fernando Guzman Lugo <fernando.lugo@ti.com>
11 * Suman Anna <s-anna@ti.com>
12 * Robert Tivy <rtivy@ti.com>
13 * Armando Uribe De Leon <x0095078@ti.com>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * version 2 as published by the Free Software Foundation.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 */
24
25#define pr_fmt(fmt) "%s: " fmt, __func__
26
27#include <linux/kernel.h>
28#include <linux/module.h>
29#include <linux/device.h>
30#include <linux/slab.h>
31#include <linux/mutex.h>
32#include <linux/dma-mapping.h>
33#include <linux/firmware.h>
34#include <linux/string.h>
35#include <linux/debugfs.h>
36#include <linux/remoteproc.h>
37#include <linux/iommu.h>
b5ab5e24 38#include <linux/idr.h>
400e64df
OBC
39#include <linux/elf.h>
40#include <linux/virtio_ids.h>
41#include <linux/virtio_ring.h>
cf59d3e9 42#include <asm/byteorder.h>
400e64df
OBC
43
44#include "remoteproc_internal.h"
45
400e64df 46typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
fd2c15ec
OBC
47 struct resource_table *table, int len);
48typedef int (*rproc_handle_resource_t)(struct rproc *rproc, void *, int avail);
400e64df 49
b5ab5e24
OBC
50/* Unique indices for remoteproc devices */
51static DEFINE_IDA(rproc_dev_index);
52
8afd519c
FGL
53static const char * const rproc_crash_names[] = {
54 [RPROC_MMUFAULT] = "mmufault",
55};
56
57/* translate rproc_crash_type to string */
58static const char *rproc_crash_to_string(enum rproc_crash_type type)
59{
60 if (type < ARRAY_SIZE(rproc_crash_names))
61 return rproc_crash_names[type];
62 return "unkown";
63}
64
400e64df
OBC
65/*
66 * This is the IOMMU fault handler we register with the IOMMU API
67 * (when relevant; not all remote processors access memory through
68 * an IOMMU).
69 *
70 * IOMMU core will invoke this handler whenever the remote processor
71 * will try to access an unmapped device address.
400e64df
OBC
72 */
73static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
77ca2332 74 unsigned long iova, int flags, void *token)
400e64df 75{
8afd519c
FGL
76 struct rproc *rproc = token;
77
400e64df
OBC
78 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
79
8afd519c
FGL
80 rproc_report_crash(rproc, RPROC_MMUFAULT);
81
400e64df
OBC
82 /*
83 * Let the iommu core know we're not really handling this fault;
8afd519c 84 * we just used it as a recovery trigger.
400e64df
OBC
85 */
86 return -ENOSYS;
87}
88
89static int rproc_enable_iommu(struct rproc *rproc)
90{
91 struct iommu_domain *domain;
b5ab5e24 92 struct device *dev = rproc->dev.parent;
400e64df
OBC
93 int ret;
94
95 /*
96 * We currently use iommu_present() to decide if an IOMMU
97 * setup is needed.
98 *
99 * This works for simple cases, but will easily fail with
100 * platforms that do have an IOMMU, but not for this specific
101 * rproc.
102 *
103 * This will be easily solved by introducing hw capabilities
104 * that will be set by the remoteproc driver.
105 */
106 if (!iommu_present(dev->bus)) {
0798e1da
MG
107 dev_dbg(dev, "iommu not found\n");
108 return 0;
400e64df
OBC
109 }
110
111 domain = iommu_domain_alloc(dev->bus);
112 if (!domain) {
113 dev_err(dev, "can't alloc iommu domain\n");
114 return -ENOMEM;
115 }
116
77ca2332 117 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
400e64df
OBC
118
119 ret = iommu_attach_device(domain, dev);
120 if (ret) {
121 dev_err(dev, "can't attach iommu device: %d\n", ret);
122 goto free_domain;
123 }
124
125 rproc->domain = domain;
126
127 return 0;
128
129free_domain:
130 iommu_domain_free(domain);
131 return ret;
132}
133
134static void rproc_disable_iommu(struct rproc *rproc)
135{
136 struct iommu_domain *domain = rproc->domain;
b5ab5e24 137 struct device *dev = rproc->dev.parent;
400e64df
OBC
138
139 if (!domain)
140 return;
141
142 iommu_detach_device(domain, dev);
143 iommu_domain_free(domain);
144
145 return;
146}
147
148/*
149 * Some remote processors will ask us to allocate them physically contiguous
150 * memory regions (which we call "carveouts"), and map them to specific
151 * device addresses (which are hardcoded in the firmware).
152 *
153 * They may then ask us to copy objects into specific device addresses (e.g.
154 * code/data sections) or expose us certain symbols in other device address
155 * (e.g. their trace buffer).
156 *
157 * This function is an internal helper with which we can go over the allocated
158 * carveouts and translate specific device address to kernel virtual addresses
159 * so we can access the referenced memory.
160 *
161 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
162 * but only on kernel direct mapped RAM memory. Instead, we're just using
163 * here the output of the DMA API, which should be more correct.
164 */
72854fb0 165void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
400e64df
OBC
166{
167 struct rproc_mem_entry *carveout;
168 void *ptr = NULL;
169
170 list_for_each_entry(carveout, &rproc->carveouts, node) {
171 int offset = da - carveout->da;
172
173 /* try next carveout if da is too small */
174 if (offset < 0)
175 continue;
176
177 /* try next carveout if da is too large */
178 if (offset + len > carveout->len)
179 continue;
180
181 ptr = carveout->va + offset;
182
183 break;
184 }
185
186 return ptr;
187}
4afc89d6 188EXPORT_SYMBOL(rproc_da_to_va);
400e64df 189
6db20ea8 190int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
400e64df 191{
7a186941 192 struct rproc *rproc = rvdev->rproc;
b5ab5e24 193 struct device *dev = &rproc->dev;
6db20ea8 194 struct rproc_vring *rvring = &rvdev->vring[i];
7a186941
OBC
195 dma_addr_t dma;
196 void *va;
197 int ret, size, notifyid;
400e64df 198
7a186941 199 /* actual size of vring (in bytes) */
6db20ea8 200 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
7a186941 201
7a186941
OBC
202 /*
203 * Allocate non-cacheable memory for the vring. In the future
204 * this call will also configure the IOMMU for us
6db20ea8 205 * TODO: let the rproc know the da of this vring
7a186941 206 */
b5ab5e24 207 va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL);
7a186941 208 if (!va) {
b5ab5e24 209 dev_err(dev->parent, "dma_alloc_coherent failed\n");
400e64df
OBC
210 return -EINVAL;
211 }
212
6db20ea8
OBC
213 /*
214 * Assign an rproc-wide unique index for this vring
215 * TODO: assign a notifyid for rvdev updates as well
216 * TODO: let the rproc know the notifyid of this vring
217 * TODO: support predefined notifyids (via resource table)
218 */
15fc6110 219 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
7a186941 220 if (ret) {
15fc6110 221 dev_err(dev, "idr_alloc failed: %d\n", ret);
b5ab5e24 222 dma_free_coherent(dev->parent, size, va, dma);
7a186941
OBC
223 return ret;
224 }
15fc6110 225 notifyid = ret;
400e64df 226
d09f53a7
EG
227 dev_dbg(dev, "vring%d: va %p dma %llx size %x idr %d\n", i, va,
228 (unsigned long long)dma, size, notifyid);
7a186941 229
6db20ea8
OBC
230 rvring->va = va;
231 rvring->dma = dma;
232 rvring->notifyid = notifyid;
400e64df
OBC
233
234 return 0;
235}
236
6db20ea8
OBC
237static int
238rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
7a186941
OBC
239{
240 struct rproc *rproc = rvdev->rproc;
b5ab5e24 241 struct device *dev = &rproc->dev;
6db20ea8
OBC
242 struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
243 struct rproc_vring *rvring = &rvdev->vring[i];
7a186941 244
6db20ea8
OBC
245 dev_dbg(dev, "vdev rsc: vring%d: da %x, qsz %d, align %d\n",
246 i, vring->da, vring->num, vring->align);
7a186941 247
6db20ea8
OBC
248 /* make sure reserved bytes are zeroes */
249 if (vring->reserved) {
250 dev_err(dev, "vring rsc has non zero reserved bytes\n");
251 return -EINVAL;
252 }
7a186941 253
6db20ea8
OBC
254 /* verify queue size and vring alignment are sane */
255 if (!vring->num || !vring->align) {
256 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
257 vring->num, vring->align);
258 return -EINVAL;
7a186941 259 }
6db20ea8
OBC
260
261 rvring->len = vring->num;
262 rvring->align = vring->align;
263 rvring->rvdev = rvdev;
264
265 return 0;
266}
267
268void rproc_free_vring(struct rproc_vring *rvring)
269{
270 int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
271 struct rproc *rproc = rvring->rvdev->rproc;
272
b5ab5e24 273 dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma);
6db20ea8 274 idr_remove(&rproc->notifyids, rvring->notifyid);
7a186941
OBC
275}
276
400e64df 277/**
fd2c15ec 278 * rproc_handle_vdev() - handle a vdev fw resource
400e64df
OBC
279 * @rproc: the remote processor
280 * @rsc: the vring resource descriptor
fd2c15ec 281 * @avail: size of available data (for sanity checking the image)
400e64df 282 *
7a186941
OBC
283 * This resource entry requests the host to statically register a virtio
284 * device (vdev), and setup everything needed to support it. It contains
285 * everything needed to make it possible: the virtio device id, virtio
286 * device features, vrings information, virtio config space, etc...
287 *
288 * Before registering the vdev, the vrings are allocated from non-cacheable
289 * physically contiguous memory. Currently we only support two vrings per
290 * remote processor (temporary limitation). We might also want to consider
291 * doing the vring allocation only later when ->find_vqs() is invoked, and
292 * then release them upon ->del_vqs().
293 *
294 * Note: @da is currently not really handled correctly: we dynamically
295 * allocate it using the DMA API, ignoring requested hard coded addresses,
296 * and we don't take care of any required IOMMU programming. This is all
297 * going to be taken care of when the generic iommu-based DMA API will be
298 * merged. Meanwhile, statically-addressed iommu-based firmware images should
299 * use RSC_DEVMEM resource entries to map their required @da to the physical
300 * address of their base CMA region (ouch, hacky!).
400e64df
OBC
301 *
302 * Returns 0 on success, or an appropriate error code otherwise
303 */
fd2c15ec
OBC
304static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
305 int avail)
400e64df 306{
b5ab5e24 307 struct device *dev = &rproc->dev;
7a186941
OBC
308 struct rproc_vdev *rvdev;
309 int i, ret;
400e64df 310
fd2c15ec
OBC
311 /* make sure resource isn't truncated */
312 if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
313 + rsc->config_len > avail) {
b5ab5e24 314 dev_err(dev, "vdev rsc is truncated\n");
400e64df
OBC
315 return -EINVAL;
316 }
317
fd2c15ec
OBC
318 /* make sure reserved bytes are zeroes */
319 if (rsc->reserved[0] || rsc->reserved[1]) {
320 dev_err(dev, "vdev rsc has non zero reserved bytes\n");
400e64df
OBC
321 return -EINVAL;
322 }
323
fd2c15ec
OBC
324 dev_dbg(dev, "vdev rsc: id %d, dfeatures %x, cfg len %d, %d vrings\n",
325 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
326
7a186941
OBC
327 /* we currently support only two vrings per rvdev */
328 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
fd2c15ec 329 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
400e64df
OBC
330 return -EINVAL;
331 }
332
7a186941
OBC
333 rvdev = kzalloc(sizeof(struct rproc_vdev), GFP_KERNEL);
334 if (!rvdev)
335 return -ENOMEM;
400e64df 336
7a186941 337 rvdev->rproc = rproc;
400e64df 338
6db20ea8 339 /* parse the vrings */
7a186941 340 for (i = 0; i < rsc->num_of_vrings; i++) {
6db20ea8 341 ret = rproc_parse_vring(rvdev, rsc, i);
7a186941 342 if (ret)
6db20ea8 343 goto free_rvdev;
7a186941 344 }
400e64df 345
7a186941
OBC
346 /* remember the device features */
347 rvdev->dfeatures = rsc->dfeatures;
fd2c15ec 348
7a186941 349 list_add_tail(&rvdev->node, &rproc->rvdevs);
fd2c15ec 350
7a186941
OBC
351 /* it is now safe to add the virtio device */
352 ret = rproc_add_virtio_dev(rvdev, rsc->id);
353 if (ret)
6db20ea8 354 goto free_rvdev;
400e64df
OBC
355
356 return 0;
7a186941 357
6db20ea8 358free_rvdev:
7a186941
OBC
359 kfree(rvdev);
360 return ret;
400e64df
OBC
361}
362
363/**
364 * rproc_handle_trace() - handle a shared trace buffer resource
365 * @rproc: the remote processor
366 * @rsc: the trace resource descriptor
fd2c15ec 367 * @avail: size of available data (for sanity checking the image)
400e64df
OBC
368 *
369 * In case the remote processor dumps trace logs into memory,
370 * export it via debugfs.
371 *
372 * Currently, the 'da' member of @rsc should contain the device address
373 * where the remote processor is dumping the traces. Later we could also
374 * support dynamically allocating this address using the generic
375 * DMA API (but currently there isn't a use case for that).
376 *
377 * Returns 0 on success, or an appropriate error code otherwise
378 */
fd2c15ec
OBC
379static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
380 int avail)
400e64df
OBC
381{
382 struct rproc_mem_entry *trace;
b5ab5e24 383 struct device *dev = &rproc->dev;
400e64df
OBC
384 void *ptr;
385 char name[15];
386
fd2c15ec 387 if (sizeof(*rsc) > avail) {
b5ab5e24 388 dev_err(dev, "trace rsc is truncated\n");
fd2c15ec
OBC
389 return -EINVAL;
390 }
391
392 /* make sure reserved bytes are zeroes */
393 if (rsc->reserved) {
394 dev_err(dev, "trace rsc has non zero reserved bytes\n");
395 return -EINVAL;
396 }
397
400e64df
OBC
398 /* what's the kernel address of this resource ? */
399 ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
400 if (!ptr) {
401 dev_err(dev, "erroneous trace resource entry\n");
402 return -EINVAL;
403 }
404
405 trace = kzalloc(sizeof(*trace), GFP_KERNEL);
406 if (!trace) {
407 dev_err(dev, "kzalloc trace failed\n");
408 return -ENOMEM;
409 }
410
411 /* set the trace buffer dma properties */
412 trace->len = rsc->len;
413 trace->va = ptr;
414
415 /* make sure snprintf always null terminates, even if truncating */
416 snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
417
418 /* create the debugfs entry */
419 trace->priv = rproc_create_trace_file(name, rproc, trace);
420 if (!trace->priv) {
421 trace->va = NULL;
422 kfree(trace);
423 return -EINVAL;
424 }
425
426 list_add_tail(&trace->node, &rproc->traces);
427
428 rproc->num_traces++;
429
fd2c15ec 430 dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n", name, ptr,
400e64df
OBC
431 rsc->da, rsc->len);
432
433 return 0;
434}
435
436/**
437 * rproc_handle_devmem() - handle devmem resource entry
438 * @rproc: remote processor handle
439 * @rsc: the devmem resource entry
fd2c15ec 440 * @avail: size of available data (for sanity checking the image)
400e64df
OBC
441 *
442 * Remote processors commonly need to access certain on-chip peripherals.
443 *
444 * Some of these remote processors access memory via an iommu device,
445 * and might require us to configure their iommu before they can access
446 * the on-chip peripherals they need.
447 *
448 * This resource entry is a request to map such a peripheral device.
449 *
450 * These devmem entries will contain the physical address of the device in
451 * the 'pa' member. If a specific device address is expected, then 'da' will
452 * contain it (currently this is the only use case supported). 'len' will
453 * contain the size of the physical region we need to map.
454 *
455 * Currently we just "trust" those devmem entries to contain valid physical
456 * addresses, but this is going to change: we want the implementations to
457 * tell us ranges of physical addresses the firmware is allowed to request,
458 * and not allow firmwares to request access to physical addresses that
459 * are outside those ranges.
460 */
fd2c15ec
OBC
461static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
462 int avail)
400e64df
OBC
463{
464 struct rproc_mem_entry *mapping;
b5ab5e24 465 struct device *dev = &rproc->dev;
400e64df
OBC
466 int ret;
467
468 /* no point in handling this resource without a valid iommu domain */
469 if (!rproc->domain)
470 return -EINVAL;
471
fd2c15ec 472 if (sizeof(*rsc) > avail) {
b5ab5e24 473 dev_err(dev, "devmem rsc is truncated\n");
fd2c15ec
OBC
474 return -EINVAL;
475 }
476
477 /* make sure reserved bytes are zeroes */
478 if (rsc->reserved) {
b5ab5e24 479 dev_err(dev, "devmem rsc has non zero reserved bytes\n");
fd2c15ec
OBC
480 return -EINVAL;
481 }
482
400e64df
OBC
483 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
484 if (!mapping) {
b5ab5e24 485 dev_err(dev, "kzalloc mapping failed\n");
400e64df
OBC
486 return -ENOMEM;
487 }
488
489 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
490 if (ret) {
b5ab5e24 491 dev_err(dev, "failed to map devmem: %d\n", ret);
400e64df
OBC
492 goto out;
493 }
494
495 /*
496 * We'll need this info later when we'll want to unmap everything
497 * (e.g. on shutdown).
498 *
499 * We can't trust the remote processor not to change the resource
500 * table, so we must maintain this info independently.
501 */
502 mapping->da = rsc->da;
503 mapping->len = rsc->len;
504 list_add_tail(&mapping->node, &rproc->mappings);
505
b5ab5e24 506 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
400e64df
OBC
507 rsc->pa, rsc->da, rsc->len);
508
509 return 0;
510
511out:
512 kfree(mapping);
513 return ret;
514}
515
516/**
517 * rproc_handle_carveout() - handle phys contig memory allocation requests
518 * @rproc: rproc handle
519 * @rsc: the resource entry
fd2c15ec 520 * @avail: size of available data (for image validation)
400e64df
OBC
521 *
522 * This function will handle firmware requests for allocation of physically
523 * contiguous memory regions.
524 *
525 * These request entries should come first in the firmware's resource table,
526 * as other firmware entries might request placing other data objects inside
527 * these memory regions (e.g. data/code segments, trace resource entries, ...).
528 *
529 * Allocating memory this way helps utilizing the reserved physical memory
530 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
531 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
532 * pressure is important; it may have a substantial impact on performance.
533 */
fd2c15ec
OBC
534static int rproc_handle_carveout(struct rproc *rproc,
535 struct fw_rsc_carveout *rsc, int avail)
400e64df
OBC
536{
537 struct rproc_mem_entry *carveout, *mapping;
b5ab5e24 538 struct device *dev = &rproc->dev;
400e64df
OBC
539 dma_addr_t dma;
540 void *va;
541 int ret;
542
fd2c15ec 543 if (sizeof(*rsc) > avail) {
b5ab5e24 544 dev_err(dev, "carveout rsc is truncated\n");
fd2c15ec
OBC
545 return -EINVAL;
546 }
547
548 /* make sure reserved bytes are zeroes */
549 if (rsc->reserved) {
550 dev_err(dev, "carveout rsc has non zero reserved bytes\n");
551 return -EINVAL;
552 }
553
554 dev_dbg(dev, "carveout rsc: da %x, pa %x, len %x, flags %x\n",
555 rsc->da, rsc->pa, rsc->len, rsc->flags);
556
400e64df
OBC
557 carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
558 if (!carveout) {
559 dev_err(dev, "kzalloc carveout failed\n");
7168d914 560 return -ENOMEM;
400e64df
OBC
561 }
562
b5ab5e24 563 va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL);
400e64df 564 if (!va) {
b5ab5e24 565 dev_err(dev->parent, "dma_alloc_coherent err: %d\n", rsc->len);
400e64df
OBC
566 ret = -ENOMEM;
567 goto free_carv;
568 }
569
d09f53a7
EG
570 dev_dbg(dev, "carveout va %p, dma %llx, len 0x%x\n", va,
571 (unsigned long long)dma, rsc->len);
400e64df
OBC
572
573 /*
574 * Ok, this is non-standard.
575 *
576 * Sometimes we can't rely on the generic iommu-based DMA API
577 * to dynamically allocate the device address and then set the IOMMU
578 * tables accordingly, because some remote processors might
579 * _require_ us to use hard coded device addresses that their
580 * firmware was compiled with.
581 *
582 * In this case, we must use the IOMMU API directly and map
583 * the memory to the device address as expected by the remote
584 * processor.
585 *
586 * Obviously such remote processor devices should not be configured
587 * to use the iommu-based DMA API: we expect 'dma' to contain the
588 * physical address in this case.
589 */
590 if (rproc->domain) {
7168d914
DC
591 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
592 if (!mapping) {
593 dev_err(dev, "kzalloc mapping failed\n");
594 ret = -ENOMEM;
595 goto dma_free;
596 }
597
400e64df
OBC
598 ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
599 rsc->flags);
600 if (ret) {
601 dev_err(dev, "iommu_map failed: %d\n", ret);
7168d914 602 goto free_mapping;
400e64df
OBC
603 }
604
605 /*
606 * We'll need this info later when we'll want to unmap
607 * everything (e.g. on shutdown).
608 *
609 * We can't trust the remote processor not to change the
610 * resource table, so we must maintain this info independently.
611 */
612 mapping->da = rsc->da;
613 mapping->len = rsc->len;
614 list_add_tail(&mapping->node, &rproc->mappings);
615
d09f53a7
EG
616 dev_dbg(dev, "carveout mapped 0x%x to 0x%llx\n",
617 rsc->da, (unsigned long long)dma);
400e64df
OBC
618 }
619
0e49b72c
OBC
620 /*
621 * Some remote processors might need to know the pa
622 * even though they are behind an IOMMU. E.g., OMAP4's
623 * remote M3 processor needs this so it can control
624 * on-chip hardware accelerators that are not behind
625 * the IOMMU, and therefor must know the pa.
626 *
627 * Generally we don't want to expose physical addresses
628 * if we don't have to (remote processors are generally
629 * _not_ trusted), so we might want to do this only for
630 * remote processor that _must_ have this (e.g. OMAP4's
631 * dual M3 subsystem).
632 *
633 * Non-IOMMU processors might also want to have this info.
634 * In this case, the device address and the physical address
635 * are the same.
636 */
637 rsc->pa = dma;
638
400e64df
OBC
639 carveout->va = va;
640 carveout->len = rsc->len;
641 carveout->dma = dma;
642 carveout->da = rsc->da;
643
644 list_add_tail(&carveout->node, &rproc->carveouts);
645
646 return 0;
647
7168d914
DC
648free_mapping:
649 kfree(mapping);
400e64df 650dma_free:
b5ab5e24 651 dma_free_coherent(dev->parent, rsc->len, va, dma);
400e64df
OBC
652free_carv:
653 kfree(carveout);
400e64df
OBC
654 return ret;
655}
656
ba7290e0
SB
657static int rproc_count_vrings(struct rproc *rproc, struct fw_rsc_vdev *rsc,
658 int avail)
659{
660 /* Summarize the number of notification IDs */
661 rproc->max_notifyid += rsc->num_of_vrings;
662
663 return 0;
664}
665
e12bc14b
OBC
666/*
667 * A lookup table for resource handlers. The indices are defined in
668 * enum fw_resource_type.
669 */
232fcdbb 670static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
fd2c15ec
OBC
671 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
672 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
673 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
7a186941 674 [RSC_VDEV] = NULL, /* VDEVs were handled upon registrarion */
e12bc14b
OBC
675};
676
232fcdbb
SB
677static rproc_handle_resource_t rproc_vdev_handler[RSC_LAST] = {
678 [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
679};
680
ba7290e0
SB
681static rproc_handle_resource_t rproc_count_vrings_handler[RSC_LAST] = {
682 [RSC_VDEV] = (rproc_handle_resource_t)rproc_count_vrings,
683};
684
400e64df 685/* handle firmware resource entries before booting the remote processor */
232fcdbb
SB
686static int rproc_handle_resources(struct rproc *rproc,
687 struct resource_table *table, int len,
688 rproc_handle_resource_t handlers[RSC_LAST])
400e64df 689{
b5ab5e24 690 struct device *dev = &rproc->dev;
e12bc14b 691 rproc_handle_resource_t handler;
fd2c15ec
OBC
692 int ret = 0, i;
693
694 for (i = 0; i < table->num; i++) {
695 int offset = table->offset[i];
696 struct fw_rsc_hdr *hdr = (void *)table + offset;
697 int avail = len - offset - sizeof(*hdr);
698 void *rsc = (void *)hdr + sizeof(*hdr);
699
700 /* make sure table isn't truncated */
701 if (avail < 0) {
702 dev_err(dev, "rsc table is truncated\n");
703 return -EINVAL;
704 }
400e64df 705
fd2c15ec 706 dev_dbg(dev, "rsc: type %d\n", hdr->type);
400e64df 707
fd2c15ec
OBC
708 if (hdr->type >= RSC_LAST) {
709 dev_warn(dev, "unsupported resource %d\n", hdr->type);
e12bc14b 710 continue;
400e64df
OBC
711 }
712
232fcdbb 713 handler = handlers[hdr->type];
e12bc14b
OBC
714 if (!handler)
715 continue;
716
fd2c15ec 717 ret = handler(rproc, rsc, avail);
400e64df
OBC
718 if (ret)
719 break;
400e64df
OBC
720 }
721
722 return ret;
723}
724
400e64df
OBC
725/**
726 * rproc_resource_cleanup() - clean up and free all acquired resources
727 * @rproc: rproc handle
728 *
729 * This function will free all resources acquired for @rproc, and it
7a186941 730 * is called whenever @rproc either shuts down or fails to boot.
400e64df
OBC
731 */
732static void rproc_resource_cleanup(struct rproc *rproc)
733{
734 struct rproc_mem_entry *entry, *tmp;
b5ab5e24 735 struct device *dev = &rproc->dev;
400e64df
OBC
736
737 /* clean up debugfs trace entries */
738 list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
739 rproc_remove_trace_file(entry->priv);
740 rproc->num_traces--;
741 list_del(&entry->node);
742 kfree(entry);
743 }
744
400e64df
OBC
745 /* clean up carveout allocations */
746 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
b5ab5e24 747 dma_free_coherent(dev->parent, entry->len, entry->va, entry->dma);
400e64df
OBC
748 list_del(&entry->node);
749 kfree(entry);
750 }
751
752 /* clean up iommu mapping entries */
753 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
754 size_t unmapped;
755
756 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
757 if (unmapped != entry->len) {
758 /* nothing much to do besides complaining */
e981f6d4 759 dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
400e64df
OBC
760 unmapped);
761 }
762
763 list_del(&entry->node);
764 kfree(entry);
765 }
766}
767
400e64df
OBC
768/*
769 * take a firmware and boot a remote processor with it.
770 */
771static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
772{
b5ab5e24 773 struct device *dev = &rproc->dev;
400e64df 774 const char *name = rproc->firmware;
1e3e2c7c
OBC
775 struct resource_table *table;
776 int ret, tablesz;
400e64df
OBC
777
778 ret = rproc_fw_sanity_check(rproc, fw);
779 if (ret)
780 return ret;
781
e981f6d4 782 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
400e64df
OBC
783
784 /*
785 * if enabling an IOMMU isn't relevant for this rproc, this is
786 * just a nop
787 */
788 ret = rproc_enable_iommu(rproc);
789 if (ret) {
790 dev_err(dev, "can't enable iommu: %d\n", ret);
791 return ret;
792 }
793
3e5f9eb5 794 rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
400e64df 795
1e3e2c7c 796 /* look for the resource table */
bd484984 797 table = rproc_find_rsc_table(rproc, fw, &tablesz);
30338cf0
SB
798 if (!table) {
799 ret = -EINVAL;
1e3e2c7c 800 goto clean_up;
30338cf0 801 }
1e3e2c7c 802
400e64df 803 /* handle fw resources which are required to boot rproc */
232fcdbb
SB
804 ret = rproc_handle_resources(rproc, table, tablesz,
805 rproc_loading_handlers);
400e64df
OBC
806 if (ret) {
807 dev_err(dev, "Failed to process resources: %d\n", ret);
808 goto clean_up;
809 }
810
811 /* load the ELF segments to memory */
bd484984 812 ret = rproc_load_segments(rproc, fw);
400e64df
OBC
813 if (ret) {
814 dev_err(dev, "Failed to load program segments: %d\n", ret);
815 goto clean_up;
816 }
817
818 /* power up the remote processor */
819 ret = rproc->ops->start(rproc);
820 if (ret) {
821 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
822 goto clean_up;
823 }
824
825 rproc->state = RPROC_RUNNING;
826
827 dev_info(dev, "remote processor %s is now up\n", rproc->name);
828
829 return 0;
830
831clean_up:
832 rproc_resource_cleanup(rproc);
833 rproc_disable_iommu(rproc);
834 return ret;
835}
836
837/*
838 * take a firmware and look for virtio devices to register.
839 *
840 * Note: this function is called asynchronously upon registration of the
841 * remote processor (so we must wait until it completes before we try
842 * to unregister the device. one other option is just to use kref here,
843 * that might be cleaner).
844 */
845static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
846{
847 struct rproc *rproc = context;
1e3e2c7c
OBC
848 struct resource_table *table;
849 int ret, tablesz;
400e64df
OBC
850
851 if (rproc_fw_sanity_check(rproc, fw) < 0)
852 goto out;
853
1e3e2c7c 854 /* look for the resource table */
bd484984 855 table = rproc_find_rsc_table(rproc, fw, &tablesz);
1e3e2c7c
OBC
856 if (!table)
857 goto out;
858
ba7290e0
SB
859 /* count the number of notify-ids */
860 rproc->max_notifyid = -1;
861 ret = rproc_handle_resources(rproc, table, tablesz,
862 rproc_count_vrings_handler);
863
1e3e2c7c 864 /* look for virtio devices and register them */
232fcdbb 865 ret = rproc_handle_resources(rproc, table, tablesz, rproc_vdev_handler);
1e3e2c7c 866 if (ret)
400e64df 867 goto out;
400e64df 868
400e64df 869out:
3cc6e787 870 release_firmware(fw);
160e7c84 871 /* allow rproc_del() contexts, if any, to proceed */
400e64df
OBC
872 complete_all(&rproc->firmware_loading_complete);
873}
874
70b85ef8
FGL
875static int rproc_add_virtio_devices(struct rproc *rproc)
876{
877 int ret;
878
879 /* rproc_del() calls must wait until async loader completes */
880 init_completion(&rproc->firmware_loading_complete);
881
882 /*
883 * We must retrieve early virtio configuration info from
884 * the firmware (e.g. whether to register a virtio device,
885 * what virtio features does it support, ...).
886 *
887 * We're initiating an asynchronous firmware loading, so we can
888 * be built-in kernel code, without hanging the boot process.
889 */
890 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
891 rproc->firmware, &rproc->dev, GFP_KERNEL,
892 rproc, rproc_fw_config_virtio);
893 if (ret < 0) {
894 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
895 complete_all(&rproc->firmware_loading_complete);
896 }
897
898 return ret;
899}
900
901/**
902 * rproc_trigger_recovery() - recover a remoteproc
903 * @rproc: the remote processor
904 *
905 * The recovery is done by reseting all the virtio devices, that way all the
906 * rpmsg drivers will be reseted along with the remote processor making the
907 * remoteproc functional again.
908 *
909 * This function can sleep, so it cannot be called from atomic context.
910 */
911int rproc_trigger_recovery(struct rproc *rproc)
912{
913 struct rproc_vdev *rvdev, *rvtmp;
914
915 dev_err(&rproc->dev, "recovering %s\n", rproc->name);
916
917 init_completion(&rproc->crash_comp);
918
919 /* clean up remote vdev entries */
920 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
921 rproc_remove_virtio_dev(rvdev);
922
923 /* wait until there is no more rproc users */
924 wait_for_completion(&rproc->crash_comp);
925
926 return rproc_add_virtio_devices(rproc);
927}
928
8afd519c
FGL
929/**
930 * rproc_crash_handler_work() - handle a crash
931 *
932 * This function needs to handle everything related to a crash, like cpu
933 * registers and stack dump, information to help to debug the fatal error, etc.
934 */
935static void rproc_crash_handler_work(struct work_struct *work)
936{
937 struct rproc *rproc = container_of(work, struct rproc, crash_handler);
938 struct device *dev = &rproc->dev;
939
940 dev_dbg(dev, "enter %s\n", __func__);
941
942 mutex_lock(&rproc->lock);
943
944 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
945 /* handle only the first crash detected */
946 mutex_unlock(&rproc->lock);
947 return;
948 }
949
950 rproc->state = RPROC_CRASHED;
951 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
952 rproc->name);
953
954 mutex_unlock(&rproc->lock);
955
2e37abb8
FGL
956 if (!rproc->recovery_disabled)
957 rproc_trigger_recovery(rproc);
8afd519c
FGL
958}
959
400e64df
OBC
960/**
961 * rproc_boot() - boot a remote processor
962 * @rproc: handle of a remote processor
963 *
964 * Boot a remote processor (i.e. load its firmware, power it on, ...).
965 *
966 * If the remote processor is already powered on, this function immediately
967 * returns (successfully).
968 *
969 * Returns 0 on success, and an appropriate error value otherwise.
970 */
971int rproc_boot(struct rproc *rproc)
972{
973 const struct firmware *firmware_p;
974 struct device *dev;
975 int ret;
976
977 if (!rproc) {
978 pr_err("invalid rproc handle\n");
979 return -EINVAL;
980 }
981
b5ab5e24 982 dev = &rproc->dev;
400e64df
OBC
983
984 ret = mutex_lock_interruptible(&rproc->lock);
985 if (ret) {
986 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
987 return ret;
988 }
989
990 /* loading a firmware is required */
991 if (!rproc->firmware) {
992 dev_err(dev, "%s: no firmware to load\n", __func__);
993 ret = -EINVAL;
994 goto unlock_mutex;
995 }
996
997 /* prevent underlying implementation from being removed */
b5ab5e24 998 if (!try_module_get(dev->parent->driver->owner)) {
400e64df
OBC
999 dev_err(dev, "%s: can't get owner\n", __func__);
1000 ret = -EINVAL;
1001 goto unlock_mutex;
1002 }
1003
1004 /* skip the boot process if rproc is already powered up */
1005 if (atomic_inc_return(&rproc->power) > 1) {
1006 ret = 0;
1007 goto unlock_mutex;
1008 }
1009
1010 dev_info(dev, "powering up %s\n", rproc->name);
1011
1012 /* load firmware */
1013 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1014 if (ret < 0) {
1015 dev_err(dev, "request_firmware failed: %d\n", ret);
1016 goto downref_rproc;
1017 }
1018
1019 ret = rproc_fw_boot(rproc, firmware_p);
1020
1021 release_firmware(firmware_p);
1022
1023downref_rproc:
1024 if (ret) {
b5ab5e24 1025 module_put(dev->parent->driver->owner);
400e64df
OBC
1026 atomic_dec(&rproc->power);
1027 }
1028unlock_mutex:
1029 mutex_unlock(&rproc->lock);
1030 return ret;
1031}
1032EXPORT_SYMBOL(rproc_boot);
1033
1034/**
1035 * rproc_shutdown() - power off the remote processor
1036 * @rproc: the remote processor
1037 *
1038 * Power off a remote processor (previously booted with rproc_boot()).
1039 *
1040 * In case @rproc is still being used by an additional user(s), then
1041 * this function will just decrement the power refcount and exit,
1042 * without really powering off the device.
1043 *
1044 * Every call to rproc_boot() must (eventually) be accompanied by a call
1045 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1046 *
1047 * Notes:
1048 * - we're not decrementing the rproc's refcount, only the power refcount.
1049 * which means that the @rproc handle stays valid even after rproc_shutdown()
1050 * returns, and users can still use it with a subsequent rproc_boot(), if
1051 * needed.
400e64df
OBC
1052 */
1053void rproc_shutdown(struct rproc *rproc)
1054{
b5ab5e24 1055 struct device *dev = &rproc->dev;
400e64df
OBC
1056 int ret;
1057
1058 ret = mutex_lock_interruptible(&rproc->lock);
1059 if (ret) {
1060 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1061 return;
1062 }
1063
1064 /* if the remote proc is still needed, bail out */
1065 if (!atomic_dec_and_test(&rproc->power))
1066 goto out;
1067
1068 /* power off the remote processor */
1069 ret = rproc->ops->stop(rproc);
1070 if (ret) {
1071 atomic_inc(&rproc->power);
1072 dev_err(dev, "can't stop rproc: %d\n", ret);
1073 goto out;
1074 }
1075
1076 /* clean up all acquired resources */
1077 rproc_resource_cleanup(rproc);
1078
1079 rproc_disable_iommu(rproc);
1080
70b85ef8
FGL
1081 /* if in crash state, unlock crash handler */
1082 if (rproc->state == RPROC_CRASHED)
1083 complete_all(&rproc->crash_comp);
1084
400e64df
OBC
1085 rproc->state = RPROC_OFFLINE;
1086
1087 dev_info(dev, "stopped remote processor %s\n", rproc->name);
1088
1089out:
1090 mutex_unlock(&rproc->lock);
1091 if (!ret)
b5ab5e24 1092 module_put(dev->parent->driver->owner);
400e64df
OBC
1093}
1094EXPORT_SYMBOL(rproc_shutdown);
1095
1096/**
160e7c84 1097 * rproc_add() - register a remote processor
400e64df
OBC
1098 * @rproc: the remote processor handle to register
1099 *
1100 * Registers @rproc with the remoteproc framework, after it has been
1101 * allocated with rproc_alloc().
1102 *
1103 * This is called by the platform-specific rproc implementation, whenever
1104 * a new remote processor device is probed.
1105 *
1106 * Returns 0 on success and an appropriate error code otherwise.
1107 *
1108 * Note: this function initiates an asynchronous firmware loading
1109 * context, which will look for virtio devices supported by the rproc's
1110 * firmware.
1111 *
1112 * If found, those virtio devices will be created and added, so as a result
7a186941 1113 * of registering this remote processor, additional virtio drivers might be
400e64df 1114 * probed.
400e64df 1115 */
160e7c84 1116int rproc_add(struct rproc *rproc)
400e64df 1117{
b5ab5e24 1118 struct device *dev = &rproc->dev;
70b85ef8 1119 int ret;
400e64df 1120
b5ab5e24
OBC
1121 ret = device_add(dev);
1122 if (ret < 0)
1123 return ret;
400e64df 1124
b5ab5e24 1125 dev_info(dev, "%s is available\n", rproc->name);
400e64df 1126
489d129a
OBC
1127 dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n");
1128 dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n");
1129
400e64df
OBC
1130 /* create debugfs entries */
1131 rproc_create_debug_dir(rproc);
1132
70b85ef8 1133 return rproc_add_virtio_devices(rproc);
400e64df 1134}
160e7c84 1135EXPORT_SYMBOL(rproc_add);
400e64df 1136
b5ab5e24
OBC
1137/**
1138 * rproc_type_release() - release a remote processor instance
1139 * @dev: the rproc's device
1140 *
1141 * This function should _never_ be called directly.
1142 *
1143 * It will be called by the driver core when no one holds a valid pointer
1144 * to @dev anymore.
1145 */
1146static void rproc_type_release(struct device *dev)
1147{
1148 struct rproc *rproc = container_of(dev, struct rproc, dev);
1149
7183a2a7
OBC
1150 dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1151
1152 rproc_delete_debug_dir(rproc);
1153
b5ab5e24
OBC
1154 idr_destroy(&rproc->notifyids);
1155
1156 if (rproc->index >= 0)
1157 ida_simple_remove(&rproc_dev_index, rproc->index);
1158
1159 kfree(rproc);
1160}
1161
1162static struct device_type rproc_type = {
1163 .name = "remoteproc",
1164 .release = rproc_type_release,
1165};
400e64df
OBC
1166
1167/**
1168 * rproc_alloc() - allocate a remote processor handle
1169 * @dev: the underlying device
1170 * @name: name of this remote processor
1171 * @ops: platform-specific handlers (mainly start/stop)
1172 * @firmware: name of firmware file to load
1173 * @len: length of private data needed by the rproc driver (in bytes)
1174 *
1175 * Allocates a new remote processor handle, but does not register
1176 * it yet.
1177 *
1178 * This function should be used by rproc implementations during initialization
1179 * of the remote processor.
1180 *
1181 * After creating an rproc handle using this function, and when ready,
160e7c84 1182 * implementations should then call rproc_add() to complete
400e64df
OBC
1183 * the registration of the remote processor.
1184 *
1185 * On success the new rproc is returned, and on failure, NULL.
1186 *
1187 * Note: _never_ directly deallocate @rproc, even if it was not registered
160e7c84 1188 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_put().
400e64df
OBC
1189 */
1190struct rproc *rproc_alloc(struct device *dev, const char *name,
1191 const struct rproc_ops *ops,
1192 const char *firmware, int len)
1193{
1194 struct rproc *rproc;
1195
1196 if (!dev || !name || !ops)
1197 return NULL;
1198
1199 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
1200 if (!rproc) {
1201 dev_err(dev, "%s: kzalloc failed\n", __func__);
1202 return NULL;
1203 }
1204
400e64df
OBC
1205 rproc->name = name;
1206 rproc->ops = ops;
1207 rproc->firmware = firmware;
1208 rproc->priv = &rproc[1];
1209
b5ab5e24
OBC
1210 device_initialize(&rproc->dev);
1211 rproc->dev.parent = dev;
1212 rproc->dev.type = &rproc_type;
1213
1214 /* Assign a unique device index and name */
1215 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
1216 if (rproc->index < 0) {
1217 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
1218 put_device(&rproc->dev);
1219 return NULL;
1220 }
1221
1222 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
1223
400e64df
OBC
1224 atomic_set(&rproc->power, 0);
1225
4afc89d6
SB
1226 /* Set ELF as the default fw_ops handler */
1227 rproc->fw_ops = &rproc_elf_fw_ops;
400e64df
OBC
1228
1229 mutex_init(&rproc->lock);
1230
7a186941
OBC
1231 idr_init(&rproc->notifyids);
1232
400e64df
OBC
1233 INIT_LIST_HEAD(&rproc->carveouts);
1234 INIT_LIST_HEAD(&rproc->mappings);
1235 INIT_LIST_HEAD(&rproc->traces);
7a186941 1236 INIT_LIST_HEAD(&rproc->rvdevs);
400e64df 1237
8afd519c 1238 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
70b85ef8 1239 init_completion(&rproc->crash_comp);
8afd519c 1240
400e64df
OBC
1241 rproc->state = RPROC_OFFLINE;
1242
1243 return rproc;
1244}
1245EXPORT_SYMBOL(rproc_alloc);
1246
1247/**
160e7c84 1248 * rproc_put() - unroll rproc_alloc()
400e64df
OBC
1249 * @rproc: the remote processor handle
1250 *
c6b5a276 1251 * This function decrements the rproc dev refcount.
400e64df 1252 *
c6b5a276
OBC
1253 * If no one holds any reference to rproc anymore, then its refcount would
1254 * now drop to zero, and it would be freed.
400e64df 1255 */
160e7c84 1256void rproc_put(struct rproc *rproc)
400e64df 1257{
b5ab5e24 1258 put_device(&rproc->dev);
400e64df 1259}
160e7c84 1260EXPORT_SYMBOL(rproc_put);
400e64df
OBC
1261
1262/**
160e7c84 1263 * rproc_del() - unregister a remote processor
400e64df
OBC
1264 * @rproc: rproc handle to unregister
1265 *
400e64df
OBC
1266 * This function should be called when the platform specific rproc
1267 * implementation decides to remove the rproc device. it should
160e7c84 1268 * _only_ be called if a previous invocation of rproc_add()
400e64df
OBC
1269 * has completed successfully.
1270 *
160e7c84 1271 * After rproc_del() returns, @rproc isn't freed yet, because
c6b5a276 1272 * of the outstanding reference created by rproc_alloc. To decrement that
160e7c84 1273 * one last refcount, one still needs to call rproc_put().
400e64df
OBC
1274 *
1275 * Returns 0 on success and -EINVAL if @rproc isn't valid.
1276 */
160e7c84 1277int rproc_del(struct rproc *rproc)
400e64df 1278{
6db20ea8 1279 struct rproc_vdev *rvdev, *tmp;
7a186941 1280
400e64df
OBC
1281 if (!rproc)
1282 return -EINVAL;
1283
1284 /* if rproc is just being registered, wait */
1285 wait_for_completion(&rproc->firmware_loading_complete);
1286
7a186941 1287 /* clean up remote vdev entries */
6db20ea8 1288 list_for_each_entry_safe(rvdev, tmp, &rproc->rvdevs, node)
7a186941 1289 rproc_remove_virtio_dev(rvdev);
400e64df 1290
b5ab5e24 1291 device_del(&rproc->dev);
400e64df
OBC
1292
1293 return 0;
1294}
160e7c84 1295EXPORT_SYMBOL(rproc_del);
400e64df 1296
8afd519c
FGL
1297/**
1298 * rproc_report_crash() - rproc crash reporter function
1299 * @rproc: remote processor
1300 * @type: crash type
1301 *
1302 * This function must be called every time a crash is detected by the low-level
1303 * drivers implementing a specific remoteproc. This should not be called from a
1304 * non-remoteproc driver.
1305 *
1306 * This function can be called from atomic/interrupt context.
1307 */
1308void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
1309{
1310 if (!rproc) {
1311 pr_err("NULL rproc pointer\n");
1312 return;
1313 }
1314
1315 dev_err(&rproc->dev, "crash detected in %s: type %s\n",
1316 rproc->name, rproc_crash_to_string(type));
1317
1318 /* create a new task to handle the error */
1319 schedule_work(&rproc->crash_handler);
1320}
1321EXPORT_SYMBOL(rproc_report_crash);
1322
400e64df
OBC
1323static int __init remoteproc_init(void)
1324{
1325 rproc_init_debugfs();
b5ab5e24 1326
400e64df
OBC
1327 return 0;
1328}
1329module_init(remoteproc_init);
1330
1331static void __exit remoteproc_exit(void)
1332{
1333 rproc_exit_debugfs();
1334}
1335module_exit(remoteproc_exit);
1336
1337MODULE_LICENSE("GPL v2");
1338MODULE_DESCRIPTION("Generic Remote Processor Framework");
This page took 0.148567 seconds and 5 git commands to generate.