[SCSI] csiostor: Fix sparse warnings.
[deliverable/linux.git] / drivers / scsi / csiostor / csio_hw.c
CommitLineData
a3667aae
NKI
1/*
2 * This file is part of the Chelsio FCoE driver for Linux.
3 *
4 * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35#include <linux/pci.h>
36#include <linux/pci_regs.h>
37#include <linux/firmware.h>
38#include <linux/stddef.h>
39#include <linux/delay.h>
40#include <linux/string.h>
41#include <linux/compiler.h>
42#include <linux/jiffies.h>
43#include <linux/kernel.h>
44#include <linux/log2.h>
45
46#include "csio_hw.h"
47#include "csio_lnode.h"
48#include "csio_rnode.h"
49
50int csio_force_master;
51int csio_dbg_level = 0xFEFF;
52unsigned int csio_port_mask = 0xf;
53
54/* Default FW event queue entries. */
55static uint32_t csio_evtq_sz = CSIO_EVTQ_SIZE;
56
57/* Default MSI param level */
58int csio_msi = 2;
59
60/* FCoE function instances */
61static int dev_num;
62
63/* FCoE Adapter types & its description */
64static const struct csio_adap_desc csio_fcoe_adapters[] = {
65 {"T440-Dbg 10G", "Chelsio T440-Dbg 10G [FCoE]"},
66 {"T420-CR 10G", "Chelsio T420-CR 10G [FCoE]"},
67 {"T422-CR 10G/1G", "Chelsio T422-CR 10G/1G [FCoE]"},
68 {"T440-CR 10G", "Chelsio T440-CR 10G [FCoE]"},
69 {"T420-BCH 10G", "Chelsio T420-BCH 10G [FCoE]"},
70 {"T440-BCH 10G", "Chelsio T440-BCH 10G [FCoE]"},
71 {"T440-CH 10G", "Chelsio T440-CH 10G [FCoE]"},
72 {"T420-SO 10G", "Chelsio T420-SO 10G [FCoE]"},
73 {"T420-CX4 10G", "Chelsio T420-CX4 10G [FCoE]"},
74 {"T420-BT 10G", "Chelsio T420-BT 10G [FCoE]"},
75 {"T404-BT 1G", "Chelsio T404-BT 1G [FCoE]"},
76 {"B420-SR 10G", "Chelsio B420-SR 10G [FCoE]"},
77 {"B404-BT 1G", "Chelsio B404-BT 1G [FCoE]"},
78 {"T480-CR 10G", "Chelsio T480-CR 10G [FCoE]"},
79 {"T440-LP-CR 10G", "Chelsio T440-LP-CR 10G [FCoE]"},
80 {"T4 FPGA", "Chelsio T4 FPGA [FCoE]"}
81};
82
83static void csio_mgmtm_cleanup(struct csio_mgmtm *);
84static void csio_hw_mbm_cleanup(struct csio_hw *);
85
86/* State machine forward declarations */
87static void csio_hws_uninit(struct csio_hw *, enum csio_hw_ev);
88static void csio_hws_configuring(struct csio_hw *, enum csio_hw_ev);
89static void csio_hws_initializing(struct csio_hw *, enum csio_hw_ev);
90static void csio_hws_ready(struct csio_hw *, enum csio_hw_ev);
91static void csio_hws_quiescing(struct csio_hw *, enum csio_hw_ev);
92static void csio_hws_quiesced(struct csio_hw *, enum csio_hw_ev);
93static void csio_hws_resetting(struct csio_hw *, enum csio_hw_ev);
94static void csio_hws_removing(struct csio_hw *, enum csio_hw_ev);
95static void csio_hws_pcierr(struct csio_hw *, enum csio_hw_ev);
96
97static void csio_hw_initialize(struct csio_hw *hw);
98static void csio_evtq_stop(struct csio_hw *hw);
99static void csio_evtq_start(struct csio_hw *hw);
100
101int csio_is_hw_ready(struct csio_hw *hw)
102{
103 return csio_match_state(hw, csio_hws_ready);
104}
105
106int csio_is_hw_removing(struct csio_hw *hw)
107{
108 return csio_match_state(hw, csio_hws_removing);
109}
110
111
112/*
113 * csio_hw_wait_op_done_val - wait until an operation is completed
114 * @hw: the HW module
115 * @reg: the register to check for completion
116 * @mask: a single-bit field within @reg that indicates completion
117 * @polarity: the value of the field when the operation is completed
118 * @attempts: number of check iterations
119 * @delay: delay in usecs between iterations
120 * @valp: where to store the value of the register at completion time
121 *
122 * Wait until an operation is completed by checking a bit in a register
123 * up to @attempts times. If @valp is not NULL the value of the register
124 * at the time it indicated completion is stored there. Returns 0 if the
125 * operation completes and -EAGAIN otherwise.
126 */
127static int
128csio_hw_wait_op_done_val(struct csio_hw *hw, int reg, uint32_t mask,
129 int polarity, int attempts, int delay, uint32_t *valp)
130{
131 uint32_t val;
132 while (1) {
133 val = csio_rd_reg32(hw, reg);
134
135 if (!!(val & mask) == polarity) {
136 if (valp)
137 *valp = val;
138 return 0;
139 }
140
141 if (--attempts == 0)
142 return -EAGAIN;
143 if (delay)
144 udelay(delay);
145 }
146}
147
148void
149csio_set_reg_field(struct csio_hw *hw, uint32_t reg, uint32_t mask,
150 uint32_t value)
151{
152 uint32_t val = csio_rd_reg32(hw, reg) & ~mask;
153
154 csio_wr_reg32(hw, val | value, reg);
155 /* Flush */
156 csio_rd_reg32(hw, reg);
157
158}
159
160/*
161 * csio_hw_mc_read - read from MC through backdoor accesses
162 * @hw: the hw module
163 * @addr: address of first byte requested
164 * @data: 64 bytes of data containing the requested address
165 * @ecc: where to store the corresponding 64-bit ECC word
166 *
167 * Read 64 bytes of data from MC starting at a 64-byte-aligned address
168 * that covers the requested address @addr. If @parity is not %NULL it
169 * is assigned the 64-bit ECC word for the read data.
170 */
171int
5036f0a0 172csio_hw_mc_read(struct csio_hw *hw, uint32_t addr, __be32 *data,
a3667aae
NKI
173 uint64_t *ecc)
174{
175 int i;
176
177 if (csio_rd_reg32(hw, MC_BIST_CMD) & START_BIST)
178 return -EBUSY;
179 csio_wr_reg32(hw, addr & ~0x3fU, MC_BIST_CMD_ADDR);
180 csio_wr_reg32(hw, 64, MC_BIST_CMD_LEN);
181 csio_wr_reg32(hw, 0xc, MC_BIST_DATA_PATTERN);
182 csio_wr_reg32(hw, BIST_OPCODE(1) | START_BIST | BIST_CMD_GAP(1),
183 MC_BIST_CMD);
184 i = csio_hw_wait_op_done_val(hw, MC_BIST_CMD, START_BIST,
185 0, 10, 1, NULL);
186 if (i)
187 return i;
188
189#define MC_DATA(i) MC_BIST_STATUS_REG(MC_BIST_STATUS_RDATA, i)
190
191 for (i = 15; i >= 0; i--)
192 *data++ = htonl(csio_rd_reg32(hw, MC_DATA(i)));
193 if (ecc)
194 *ecc = csio_rd_reg64(hw, MC_DATA(16));
195#undef MC_DATA
196 return 0;
197}
198
199/*
200 * csio_hw_edc_read - read from EDC through backdoor accesses
201 * @hw: the hw module
202 * @idx: which EDC to access
203 * @addr: address of first byte requested
204 * @data: 64 bytes of data containing the requested address
205 * @ecc: where to store the corresponding 64-bit ECC word
206 *
207 * Read 64 bytes of data from EDC starting at a 64-byte-aligned address
208 * that covers the requested address @addr. If @parity is not %NULL it
209 * is assigned the 64-bit ECC word for the read data.
210 */
211int
5036f0a0 212csio_hw_edc_read(struct csio_hw *hw, int idx, uint32_t addr, __be32 *data,
a3667aae
NKI
213 uint64_t *ecc)
214{
215 int i;
216
217 idx *= EDC_STRIDE;
218 if (csio_rd_reg32(hw, EDC_BIST_CMD + idx) & START_BIST)
219 return -EBUSY;
220 csio_wr_reg32(hw, addr & ~0x3fU, EDC_BIST_CMD_ADDR + idx);
221 csio_wr_reg32(hw, 64, EDC_BIST_CMD_LEN + idx);
222 csio_wr_reg32(hw, 0xc, EDC_BIST_DATA_PATTERN + idx);
223 csio_wr_reg32(hw, BIST_OPCODE(1) | BIST_CMD_GAP(1) | START_BIST,
224 EDC_BIST_CMD + idx);
225 i = csio_hw_wait_op_done_val(hw, EDC_BIST_CMD + idx, START_BIST,
226 0, 10, 1, NULL);
227 if (i)
228 return i;
229
230#define EDC_DATA(i) (EDC_BIST_STATUS_REG(EDC_BIST_STATUS_RDATA, i) + idx)
231
232 for (i = 15; i >= 0; i--)
233 *data++ = htonl(csio_rd_reg32(hw, EDC_DATA(i)));
234 if (ecc)
235 *ecc = csio_rd_reg64(hw, EDC_DATA(16));
236#undef EDC_DATA
237 return 0;
238}
239
240/*
241 * csio_mem_win_rw - read/write memory through PCIE memory window
242 * @hw: the adapter
243 * @addr: address of first byte requested
244 * @data: MEMWIN0_APERTURE bytes of data containing the requested address
245 * @dir: direction of transfer 1 => read, 0 => write
246 *
247 * Read/write MEMWIN0_APERTURE bytes of data from MC starting at a
248 * MEMWIN0_APERTURE-byte-aligned address that covers the requested
249 * address @addr.
250 */
251static int
5036f0a0 252csio_mem_win_rw(struct csio_hw *hw, u32 addr, u32 *data, int dir)
a3667aae
NKI
253{
254 int i;
255
256 /*
257 * Setup offset into PCIE memory window. Address must be a
258 * MEMWIN0_APERTURE-byte-aligned address. (Read back MA register to
259 * ensure that changes propagate before we attempt to use the new
260 * values.)
261 */
262 csio_wr_reg32(hw, addr & ~(MEMWIN0_APERTURE - 1),
263 PCIE_MEM_ACCESS_OFFSET);
264 csio_rd_reg32(hw, PCIE_MEM_ACCESS_OFFSET);
265
266 /* Collecting data 4 bytes at a time upto MEMWIN0_APERTURE */
267 for (i = 0; i < MEMWIN0_APERTURE; i = i + sizeof(__be32)) {
268 if (dir)
269 *data++ = csio_rd_reg32(hw, (MEMWIN0_BASE + i));
270 else
271 csio_wr_reg32(hw, *data++, (MEMWIN0_BASE + i));
272 }
273
274 return 0;
275}
276
277/*
278 * csio_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
279 * @hw: the csio_hw
280 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
281 * @addr: address within indicated memory type
282 * @len: amount of memory to transfer
283 * @buf: host memory buffer
284 * @dir: direction of transfer 1 => read, 0 => write
285 *
286 * Reads/writes an [almost] arbitrary memory region in the firmware: the
287 * firmware memory address, length and host buffer must be aligned on
288 * 32-bit boudaries. The memory is transferred as a raw byte sequence
289 * from/to the firmware's memory. If this memory contains data
290 * structures which contain multi-byte integers, it's the callers
291 * responsibility to perform appropriate byte order conversions.
292 */
293static int
294csio_memory_rw(struct csio_hw *hw, int mtype, u32 addr, u32 len,
295 uint32_t *buf, int dir)
296{
297 uint32_t pos, start, end, offset, memoffset;
298 int ret;
5036f0a0 299 uint32_t *data;
a3667aae
NKI
300
301 /*
302 * Argument sanity checks ...
303 */
304 if ((addr & 0x3) || (len & 0x3))
305 return -EINVAL;
306
307 data = kzalloc(MEMWIN0_APERTURE, GFP_KERNEL);
308 if (!data)
309 return -ENOMEM;
310
311 /* Offset into the region of memory which is being accessed
312 * MEM_EDC0 = 0
313 * MEM_EDC1 = 1
314 * MEM_MC = 2
315 */
316 memoffset = (mtype * (5 * 1024 * 1024));
317
318 /* Determine the PCIE_MEM_ACCESS_OFFSET */
319 addr = addr + memoffset;
320
321 /*
322 * The underlaying EDC/MC read routines read MEMWIN0_APERTURE bytes
323 * at a time so we need to round down the start and round up the end.
324 * We'll start copying out of the first line at (addr - start) a word
325 * at a time.
326 */
327 start = addr & ~(MEMWIN0_APERTURE-1);
328 end = (addr + len + MEMWIN0_APERTURE-1) & ~(MEMWIN0_APERTURE-1);
329 offset = (addr - start)/sizeof(__be32);
330
331 for (pos = start; pos < end; pos += MEMWIN0_APERTURE, offset = 0) {
332 /*
333 * If we're writing, copy the data from the caller's memory
334 * buffer
335 */
336 if (!dir) {
337 /*
338 * If we're doing a partial write, then we need to do
339 * a read-modify-write ...
340 */
341 if (offset || len < MEMWIN0_APERTURE) {
342 ret = csio_mem_win_rw(hw, pos, data, 1);
343 if (ret) {
344 kfree(data);
345 return ret;
346 }
347 }
348 while (offset < (MEMWIN0_APERTURE/sizeof(__be32)) &&
349 len > 0) {
350 data[offset++] = *buf++;
351 len -= sizeof(__be32);
352 }
353 }
354
355 /*
356 * Transfer a block of memory and bail if there's an error.
357 */
358 ret = csio_mem_win_rw(hw, pos, data, dir);
359 if (ret) {
360 kfree(data);
361 return ret;
362 }
363
364 /*
365 * If we're reading, copy the data into the caller's memory
366 * buffer.
367 */
368 if (dir)
369 while (offset < (MEMWIN0_APERTURE/sizeof(__be32)) &&
370 len > 0) {
371 *buf++ = data[offset++];
372 len -= sizeof(__be32);
373 }
374 }
375
376 kfree(data);
377
378 return 0;
379}
380
381static int
5036f0a0 382csio_memory_write(struct csio_hw *hw, int mtype, u32 addr, u32 len, u32 *buf)
a3667aae
NKI
383{
384 return csio_memory_rw(hw, mtype, addr, len, buf, 0);
385}
386
387/*
388 * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
389 */
390#define EEPROM_MAX_RD_POLL 40
391#define EEPROM_MAX_WR_POLL 6
392#define EEPROM_STAT_ADDR 0x7bfc
393#define VPD_BASE 0x400
394#define VPD_BASE_OLD 0
395#define VPD_LEN 512
396#define VPD_INFO_FLD_HDR_SIZE 3
397
398/*
399 * csio_hw_seeprom_read - read a serial EEPROM location
400 * @hw: hw to read
401 * @addr: EEPROM virtual address
402 * @data: where to store the read data
403 *
404 * Read a 32-bit word from a location in serial EEPROM using the card's PCI
405 * VPD capability. Note that this function must be called with a virtual
406 * address.
407 */
408static int
409csio_hw_seeprom_read(struct csio_hw *hw, uint32_t addr, uint32_t *data)
410{
411 uint16_t val = 0;
412 int attempts = EEPROM_MAX_RD_POLL;
413 uint32_t base = hw->params.pci.vpd_cap_addr;
414
415 if (addr >= EEPROMVSIZE || (addr & 3))
416 return -EINVAL;
417
418 pci_write_config_word(hw->pdev, base + PCI_VPD_ADDR, (uint16_t)addr);
419
420 do {
421 udelay(10);
422 pci_read_config_word(hw->pdev, base + PCI_VPD_ADDR, &val);
423 } while (!(val & PCI_VPD_ADDR_F) && --attempts);
424
425 if (!(val & PCI_VPD_ADDR_F)) {
426 csio_err(hw, "reading EEPROM address 0x%x failed\n", addr);
427 return -EINVAL;
428 }
429
430 pci_read_config_dword(hw->pdev, base + PCI_VPD_DATA, data);
431 *data = le32_to_cpu(*data);
5036f0a0 432
a3667aae
NKI
433 return 0;
434}
435
436/*
437 * Partial EEPROM Vital Product Data structure. Includes only the ID and
438 * VPD-R sections.
439 */
440struct t4_vpd_hdr {
441 u8 id_tag;
442 u8 id_len[2];
443 u8 id_data[ID_LEN];
444 u8 vpdr_tag;
445 u8 vpdr_len[2];
446};
447
448/*
449 * csio_hw_get_vpd_keyword_val - Locates an information field keyword in
450 * the VPD
451 * @v: Pointer to buffered vpd data structure
452 * @kw: The keyword to search for
453 *
454 * Returns the value of the information field keyword or
455 * -EINVAL otherwise.
456 */
457static int
458csio_hw_get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw)
459{
460 int32_t i;
461 int32_t offset , len;
462 const uint8_t *buf = &v->id_tag;
463 const uint8_t *vpdr_len = &v->vpdr_tag;
464 offset = sizeof(struct t4_vpd_hdr);
465 len = (uint16_t)vpdr_len[1] + ((uint16_t)vpdr_len[2] << 8);
466
467 if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN)
468 return -EINVAL;
469
470 for (i = offset; (i + VPD_INFO_FLD_HDR_SIZE) <= (offset + len);) {
471 if (memcmp(buf + i , kw, 2) == 0) {
472 i += VPD_INFO_FLD_HDR_SIZE;
473 return i;
474 }
475
476 i += VPD_INFO_FLD_HDR_SIZE + buf[i+2];
477 }
478
479 return -EINVAL;
480}
481
482static int
483csio_pci_capability(struct pci_dev *pdev, int cap, int *pos)
484{
485 *pos = pci_find_capability(pdev, cap);
486 if (*pos)
487 return 0;
488
489 return -1;
490}
491
492/*
493 * csio_hw_get_vpd_params - read VPD parameters from VPD EEPROM
494 * @hw: HW module
495 * @p: where to store the parameters
496 *
497 * Reads card parameters stored in VPD EEPROM.
498 */
499static int
500csio_hw_get_vpd_params(struct csio_hw *hw, struct csio_vpd *p)
501{
502 int i, ret, ec, sn, addr;
503 uint8_t *vpd, csum;
504 const struct t4_vpd_hdr *v;
505 /* To get around compilation warning from strstrip */
506 char *s;
507
508 if (csio_is_valid_vpd(hw))
509 return 0;
510
511 ret = csio_pci_capability(hw->pdev, PCI_CAP_ID_VPD,
512 &hw->params.pci.vpd_cap_addr);
513 if (ret)
514 return -EINVAL;
515
516 vpd = kzalloc(VPD_LEN, GFP_ATOMIC);
517 if (vpd == NULL)
518 return -ENOMEM;
519
520 /*
521 * Card information normally starts at VPD_BASE but early cards had
522 * it at 0.
523 */
524 ret = csio_hw_seeprom_read(hw, VPD_BASE, (uint32_t *)(vpd));
525 addr = *vpd == 0x82 ? VPD_BASE : VPD_BASE_OLD;
526
527 for (i = 0; i < VPD_LEN; i += 4) {
528 ret = csio_hw_seeprom_read(hw, addr + i, (uint32_t *)(vpd + i));
529 if (ret) {
530 kfree(vpd);
531 return ret;
532 }
533 }
534
535 /* Reset the VPD flag! */
536 hw->flags &= (~CSIO_HWF_VPD_VALID);
537
538 v = (const struct t4_vpd_hdr *)vpd;
539
540#define FIND_VPD_KW(var, name) do { \
541 var = csio_hw_get_vpd_keyword_val(v, name); \
542 if (var < 0) { \
543 csio_err(hw, "missing VPD keyword " name "\n"); \
544 kfree(vpd); \
545 return -EINVAL; \
546 } \
547} while (0)
548
549 FIND_VPD_KW(i, "RV");
550 for (csum = 0; i >= 0; i--)
551 csum += vpd[i];
552
553 if (csum) {
554 csio_err(hw, "corrupted VPD EEPROM, actual csum %u\n", csum);
555 kfree(vpd);
556 return -EINVAL;
557 }
558 FIND_VPD_KW(ec, "EC");
559 FIND_VPD_KW(sn, "SN");
560#undef FIND_VPD_KW
561
562 memcpy(p->id, v->id_data, ID_LEN);
563 s = strstrip(p->id);
564 memcpy(p->ec, vpd + ec, EC_LEN);
565 s = strstrip(p->ec);
566 i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
567 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
568 s = strstrip(p->sn);
569
570 csio_valid_vpd_copied(hw);
571
572 kfree(vpd);
573 return 0;
574}
575
576/*
577 * csio_hw_sf1_read - read data from the serial flash
578 * @hw: the HW module
579 * @byte_cnt: number of bytes to read
580 * @cont: whether another operation will be chained
581 * @lock: whether to lock SF for PL access only
582 * @valp: where to store the read data
583 *
584 * Reads up to 4 bytes of data from the serial flash. The location of
585 * the read needs to be specified prior to calling this by issuing the
586 * appropriate commands to the serial flash.
587 */
588static int
589csio_hw_sf1_read(struct csio_hw *hw, uint32_t byte_cnt, int32_t cont,
590 int32_t lock, uint32_t *valp)
591{
592 int ret;
593
594 if (!byte_cnt || byte_cnt > 4)
595 return -EINVAL;
596 if (csio_rd_reg32(hw, SF_OP) & SF_BUSY)
597 return -EBUSY;
598
599 cont = cont ? SF_CONT : 0;
600 lock = lock ? SF_LOCK : 0;
601
602 csio_wr_reg32(hw, lock | cont | BYTECNT(byte_cnt - 1), SF_OP);
603 ret = csio_hw_wait_op_done_val(hw, SF_OP, SF_BUSY, 0, SF_ATTEMPTS,
604 10, NULL);
605 if (!ret)
606 *valp = csio_rd_reg32(hw, SF_DATA);
607 return ret;
608}
609
610/*
611 * csio_hw_sf1_write - write data to the serial flash
612 * @hw: the HW module
613 * @byte_cnt: number of bytes to write
614 * @cont: whether another operation will be chained
615 * @lock: whether to lock SF for PL access only
616 * @val: value to write
617 *
618 * Writes up to 4 bytes of data to the serial flash. The location of
619 * the write needs to be specified prior to calling this by issuing the
620 * appropriate commands to the serial flash.
621 */
622static int
623csio_hw_sf1_write(struct csio_hw *hw, uint32_t byte_cnt, uint32_t cont,
624 int32_t lock, uint32_t val)
625{
626 if (!byte_cnt || byte_cnt > 4)
627 return -EINVAL;
628 if (csio_rd_reg32(hw, SF_OP) & SF_BUSY)
629 return -EBUSY;
630
631 cont = cont ? SF_CONT : 0;
632 lock = lock ? SF_LOCK : 0;
633
634 csio_wr_reg32(hw, val, SF_DATA);
635 csio_wr_reg32(hw, cont | BYTECNT(byte_cnt - 1) | OP_WR | lock, SF_OP);
636
637 return csio_hw_wait_op_done_val(hw, SF_OP, SF_BUSY, 0, SF_ATTEMPTS,
638 10, NULL);
639}
640
641/*
642 * csio_hw_flash_wait_op - wait for a flash operation to complete
643 * @hw: the HW module
644 * @attempts: max number of polls of the status register
645 * @delay: delay between polls in ms
646 *
647 * Wait for a flash operation to complete by polling the status register.
648 */
649static int
650csio_hw_flash_wait_op(struct csio_hw *hw, int32_t attempts, int32_t delay)
651{
652 int ret;
653 uint32_t status;
654
655 while (1) {
656 ret = csio_hw_sf1_write(hw, 1, 1, 1, SF_RD_STATUS);
657 if (ret != 0)
658 return ret;
659
660 ret = csio_hw_sf1_read(hw, 1, 0, 1, &status);
661 if (ret != 0)
662 return ret;
663
664 if (!(status & 1))
665 return 0;
666 if (--attempts == 0)
667 return -EAGAIN;
668 if (delay)
669 msleep(delay);
670 }
671}
672
673/*
674 * csio_hw_read_flash - read words from serial flash
675 * @hw: the HW module
676 * @addr: the start address for the read
677 * @nwords: how many 32-bit words to read
678 * @data: where to store the read data
679 * @byte_oriented: whether to store data as bytes or as words
680 *
681 * Read the specified number of 32-bit words from the serial flash.
682 * If @byte_oriented is set the read data is stored as a byte array
683 * (i.e., big-endian), otherwise as 32-bit words in the platform's
684 * natural endianess.
685 */
686static int
687csio_hw_read_flash(struct csio_hw *hw, uint32_t addr, uint32_t nwords,
688 uint32_t *data, int32_t byte_oriented)
689{
690 int ret;
691
692 if (addr + nwords * sizeof(uint32_t) > hw->params.sf_size || (addr & 3))
693 return -EINVAL;
694
695 addr = swab32(addr) | SF_RD_DATA_FAST;
696
697 ret = csio_hw_sf1_write(hw, 4, 1, 0, addr);
698 if (ret != 0)
699 return ret;
700
701 ret = csio_hw_sf1_read(hw, 1, 1, 0, data);
702 if (ret != 0)
703 return ret;
704
705 for ( ; nwords; nwords--, data++) {
706 ret = csio_hw_sf1_read(hw, 4, nwords > 1, nwords == 1, data);
707 if (nwords == 1)
708 csio_wr_reg32(hw, 0, SF_OP); /* unlock SF */
709 if (ret)
710 return ret;
711 if (byte_oriented)
712 *data = htonl(*data);
713 }
714 return 0;
715}
716
717/*
718 * csio_hw_write_flash - write up to a page of data to the serial flash
719 * @hw: the hw
720 * @addr: the start address to write
721 * @n: length of data to write in bytes
722 * @data: the data to write
723 *
724 * Writes up to a page of data (256 bytes) to the serial flash starting
725 * at the given address. All the data must be written to the same page.
726 */
727static int
728csio_hw_write_flash(struct csio_hw *hw, uint32_t addr,
729 uint32_t n, const uint8_t *data)
730{
731 int ret = -EINVAL;
732 uint32_t buf[64];
733 uint32_t i, c, left, val, offset = addr & 0xff;
734
735 if (addr >= hw->params.sf_size || offset + n > SF_PAGE_SIZE)
736 return -EINVAL;
737
738 val = swab32(addr) | SF_PROG_PAGE;
739
740 ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
741 if (ret != 0)
742 goto unlock;
743
744 ret = csio_hw_sf1_write(hw, 4, 1, 1, val);
745 if (ret != 0)
746 goto unlock;
747
748 for (left = n; left; left -= c) {
749 c = min(left, 4U);
750 for (val = 0, i = 0; i < c; ++i)
751 val = (val << 8) + *data++;
752
753 ret = csio_hw_sf1_write(hw, c, c != left, 1, val);
754 if (ret)
755 goto unlock;
756 }
757 ret = csio_hw_flash_wait_op(hw, 8, 1);
758 if (ret)
759 goto unlock;
760
761 csio_wr_reg32(hw, 0, SF_OP); /* unlock SF */
762
763 /* Read the page to verify the write succeeded */
764 ret = csio_hw_read_flash(hw, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
765 if (ret)
766 return ret;
767
768 if (memcmp(data - n, (uint8_t *)buf + offset, n)) {
769 csio_err(hw,
770 "failed to correctly write the flash page at %#x\n",
771 addr);
772 return -EINVAL;
773 }
774
775 return 0;
776
777unlock:
778 csio_wr_reg32(hw, 0, SF_OP); /* unlock SF */
779 return ret;
780}
781
782/*
783 * csio_hw_flash_erase_sectors - erase a range of flash sectors
784 * @hw: the HW module
785 * @start: the first sector to erase
786 * @end: the last sector to erase
787 *
788 * Erases the sectors in the given inclusive range.
789 */
790static int
791csio_hw_flash_erase_sectors(struct csio_hw *hw, int32_t start, int32_t end)
792{
793 int ret = 0;
794
795 while (start <= end) {
796
797 ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
798 if (ret != 0)
799 goto out;
800
801 ret = csio_hw_sf1_write(hw, 4, 0, 1,
802 SF_ERASE_SECTOR | (start << 8));
803 if (ret != 0)
804 goto out;
805
806 ret = csio_hw_flash_wait_op(hw, 14, 500);
807 if (ret != 0)
808 goto out;
809
810 start++;
811 }
812out:
813 if (ret)
814 csio_err(hw, "erase of flash sector %d failed, error %d\n",
815 start, ret);
816 csio_wr_reg32(hw, 0, SF_OP); /* unlock SF */
817 return 0;
818}
819
820/*
821 * csio_hw_flash_cfg_addr - return the address of the flash
822 * configuration file
823 * @hw: the HW module
824 *
825 * Return the address within the flash where the Firmware Configuration
826 * File is stored.
827 */
828static unsigned int
829csio_hw_flash_cfg_addr(struct csio_hw *hw)
830{
831 if (hw->params.sf_size == 0x100000)
832 return FPGA_FLASH_CFG_OFFSET;
833 else
834 return FLASH_CFG_OFFSET;
835}
836
837static void
838csio_hw_print_fw_version(struct csio_hw *hw, char *str)
839{
840 csio_info(hw, "%s: %u.%u.%u.%u\n", str,
841 FW_HDR_FW_VER_MAJOR_GET(hw->fwrev),
842 FW_HDR_FW_VER_MINOR_GET(hw->fwrev),
843 FW_HDR_FW_VER_MICRO_GET(hw->fwrev),
844 FW_HDR_FW_VER_BUILD_GET(hw->fwrev));
845}
846
847/*
848 * csio_hw_get_fw_version - read the firmware version
849 * @hw: HW module
850 * @vers: where to place the version
851 *
852 * Reads the FW version from flash.
853 */
854static int
855csio_hw_get_fw_version(struct csio_hw *hw, uint32_t *vers)
856{
857 return csio_hw_read_flash(hw, FW_IMG_START +
858 offsetof(struct fw_hdr, fw_ver), 1,
859 vers, 0);
860}
861
862/*
863 * csio_hw_get_tp_version - read the TP microcode version
864 * @hw: HW module
865 * @vers: where to place the version
866 *
867 * Reads the TP microcode version from flash.
868 */
869static int
870csio_hw_get_tp_version(struct csio_hw *hw, u32 *vers)
871{
872 return csio_hw_read_flash(hw, FLASH_FW_START +
873 offsetof(struct fw_hdr, tp_microcode_ver), 1,
874 vers, 0);
875}
876
877/*
878 * csio_hw_check_fw_version - check if the FW is compatible with
879 * this driver
880 * @hw: HW module
881 *
882 * Checks if an adapter's FW is compatible with the driver. Returns 0
883 * if there's exact match, a negative error if the version could not be
884 * read or there's a major/minor version mismatch/minor.
885 */
886static int
887csio_hw_check_fw_version(struct csio_hw *hw)
888{
889 int ret, major, minor, micro;
890
891 ret = csio_hw_get_fw_version(hw, &hw->fwrev);
892 if (!ret)
893 ret = csio_hw_get_tp_version(hw, &hw->tp_vers);
894 if (ret)
895 return ret;
896
897 major = FW_HDR_FW_VER_MAJOR_GET(hw->fwrev);
898 minor = FW_HDR_FW_VER_MINOR_GET(hw->fwrev);
899 micro = FW_HDR_FW_VER_MICRO_GET(hw->fwrev);
900
901 if (major != FW_VERSION_MAJOR) { /* major mismatch - fail */
902 csio_err(hw, "card FW has major version %u, driver wants %u\n",
903 major, FW_VERSION_MAJOR);
904 return -EINVAL;
905 }
906
907 if (minor == FW_VERSION_MINOR && micro == FW_VERSION_MICRO)
908 return 0; /* perfect match */
909
910 /* Minor/micro version mismatch */
911 return -EINVAL;
912}
913
914/*
915 * csio_hw_fw_dload - download firmware.
916 * @hw: HW module
917 * @fw_data: firmware image to write.
918 * @size: image size
919 *
920 * Write the supplied firmware image to the card's serial flash.
921 */
922static int
923csio_hw_fw_dload(struct csio_hw *hw, uint8_t *fw_data, uint32_t size)
924{
925 uint32_t csum;
926 int32_t addr;
927 int ret;
928 uint32_t i;
929 uint8_t first_page[SF_PAGE_SIZE];
5036f0a0 930 const __be32 *p = (const __be32 *)fw_data;
a3667aae
NKI
931 struct fw_hdr *hdr = (struct fw_hdr *)fw_data;
932 uint32_t sf_sec_size;
933
934 if ((!hw->params.sf_size) || (!hw->params.sf_nsec)) {
935 csio_err(hw, "Serial Flash data invalid\n");
936 return -EINVAL;
937 }
938
939 if (!size) {
940 csio_err(hw, "FW image has no data\n");
941 return -EINVAL;
942 }
943
944 if (size & 511) {
945 csio_err(hw, "FW image size not multiple of 512 bytes\n");
946 return -EINVAL;
947 }
948
949 if (ntohs(hdr->len512) * 512 != size) {
950 csio_err(hw, "FW image size differs from size in FW header\n");
951 return -EINVAL;
952 }
953
954 if (size > FW_MAX_SIZE) {
955 csio_err(hw, "FW image too large, max is %u bytes\n",
956 FW_MAX_SIZE);
957 return -EINVAL;
958 }
959
960 for (csum = 0, i = 0; i < size / sizeof(csum); i++)
961 csum += ntohl(p[i]);
962
963 if (csum != 0xffffffff) {
964 csio_err(hw, "corrupted firmware image, checksum %#x\n", csum);
965 return -EINVAL;
966 }
967
968 sf_sec_size = hw->params.sf_size / hw->params.sf_nsec;
969 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
970
971 csio_dbg(hw, "Erasing sectors... start:%d end:%d\n",
972 FW_START_SEC, FW_START_SEC + i - 1);
973
974 ret = csio_hw_flash_erase_sectors(hw, FW_START_SEC,
975 FW_START_SEC + i - 1);
976 if (ret) {
977 csio_err(hw, "Flash Erase failed\n");
978 goto out;
979 }
980
981 /*
982 * We write the correct version at the end so the driver can see a bad
983 * version if the FW write fails. Start by writing a copy of the
984 * first page with a bad version.
985 */
986 memcpy(first_page, fw_data, SF_PAGE_SIZE);
987 ((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
988 ret = csio_hw_write_flash(hw, FW_IMG_START, SF_PAGE_SIZE, first_page);
989 if (ret)
990 goto out;
991
992 csio_dbg(hw, "Writing Flash .. start:%d end:%d\n",
993 FW_IMG_START, FW_IMG_START + size);
994
995 addr = FW_IMG_START;
996 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
997 addr += SF_PAGE_SIZE;
998 fw_data += SF_PAGE_SIZE;
999 ret = csio_hw_write_flash(hw, addr, SF_PAGE_SIZE, fw_data);
1000 if (ret)
1001 goto out;
1002 }
1003
1004 ret = csio_hw_write_flash(hw,
1005 FW_IMG_START +
1006 offsetof(struct fw_hdr, fw_ver),
1007 sizeof(hdr->fw_ver),
1008 (const uint8_t *)&hdr->fw_ver);
1009
1010out:
1011 if (ret)
1012 csio_err(hw, "firmware download failed, error %d\n", ret);
1013 return ret;
1014}
1015
1016static int
1017csio_hw_get_flash_params(struct csio_hw *hw)
1018{
1019 int ret;
1020 uint32_t info = 0;
1021
1022 ret = csio_hw_sf1_write(hw, 1, 1, 0, SF_RD_ID);
1023 if (!ret)
1024 ret = csio_hw_sf1_read(hw, 3, 0, 1, &info);
1025 csio_wr_reg32(hw, 0, SF_OP); /* unlock SF */
1026 if (ret != 0)
1027 return ret;
1028
1029 if ((info & 0xff) != 0x20) /* not a Numonix flash */
1030 return -EINVAL;
1031 info >>= 16; /* log2 of size */
1032 if (info >= 0x14 && info < 0x18)
1033 hw->params.sf_nsec = 1 << (info - 16);
1034 else if (info == 0x18)
1035 hw->params.sf_nsec = 64;
1036 else
1037 return -EINVAL;
1038 hw->params.sf_size = 1 << info;
1039
1040 return 0;
1041}
1042
1043static void
1044csio_set_pcie_completion_timeout(struct csio_hw *hw, u8 range)
1045{
1046 uint16_t val;
1047 uint32_t pcie_cap;
1048
1049 if (!csio_pci_capability(hw->pdev, PCI_CAP_ID_EXP, &pcie_cap)) {
1050 pci_read_config_word(hw->pdev,
1051 pcie_cap + PCI_EXP_DEVCTL2, &val);
1052 val &= 0xfff0;
1053 val |= range ;
1054 pci_write_config_word(hw->pdev,
1055 pcie_cap + PCI_EXP_DEVCTL2, val);
1056 }
1057}
1058
1059
1060/*
1061 * Return the specified PCI-E Configuration Space register from our Physical
1062 * Function. We try first via a Firmware LDST Command since we prefer to let
1063 * the firmware own all of these registers, but if that fails we go for it
1064 * directly ourselves.
1065 */
1066static uint32_t
1067csio_read_pcie_cfg4(struct csio_hw *hw, int reg)
1068{
1069 u32 val = 0;
1070 struct csio_mb *mbp;
1071 int rv;
1072 struct fw_ldst_cmd *ldst_cmd;
1073
1074 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1075 if (!mbp) {
1076 CSIO_INC_STATS(hw, n_err_nomem);
1077 pci_read_config_dword(hw->pdev, reg, &val);
1078 return val;
1079 }
1080
1081 csio_mb_ldst(hw, mbp, CSIO_MB_DEFAULT_TMO, reg);
1082
1083 rv = csio_mb_issue(hw, mbp);
1084
1085 /*
1086 * If the LDST Command suucceeded, exctract the returned register
1087 * value. Otherwise read it directly ourself.
1088 */
1089 if (rv == 0) {
1090 ldst_cmd = (struct fw_ldst_cmd *)(mbp->mb);
1091 val = ntohl(ldst_cmd->u.pcie.data[0]);
1092 } else
1093 pci_read_config_dword(hw->pdev, reg, &val);
1094
1095 mempool_free(mbp, hw->mb_mempool);
1096
1097 return val;
1098} /* csio_read_pcie_cfg4 */
1099
1100static int
1101csio_hw_set_mem_win(struct csio_hw *hw)
1102{
1103 u32 bar0;
1104
1105 /*
1106 * Truncation intentional: we only read the bottom 32-bits of the
1107 * 64-bit BAR0/BAR1 ... We use the hardware backdoor mechanism to
1108 * read BAR0 instead of using pci_resource_start() because we could be
1109 * operating from within a Virtual Machine which is trapping our
1110 * accesses to our Configuration Space and we need to set up the PCI-E
1111 * Memory Window decoders with the actual addresses which will be
1112 * coming across the PCI-E link.
1113 */
1114 bar0 = csio_read_pcie_cfg4(hw, PCI_BASE_ADDRESS_0);
1115 bar0 &= PCI_BASE_ADDRESS_MEM_MASK;
1116
1117 /*
1118 * Set up memory window for accessing adapter memory ranges. (Read
1119 * back MA register to ensure that changes propagate before we attempt
1120 * to use the new values.)
1121 */
1122 csio_wr_reg32(hw, (bar0 + MEMWIN0_BASE) | BIR(0) |
1123 WINDOW(ilog2(MEMWIN0_APERTURE) - 10),
1124 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 0));
1125 csio_wr_reg32(hw, (bar0 + MEMWIN1_BASE) | BIR(0) |
1126 WINDOW(ilog2(MEMWIN1_APERTURE) - 10),
1127 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 1));
1128 csio_wr_reg32(hw, (bar0 + MEMWIN2_BASE) | BIR(0) |
1129 WINDOW(ilog2(MEMWIN2_APERTURE) - 10),
1130 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2));
1131 csio_rd_reg32(hw, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2));
1132 return 0;
1133} /* csio_hw_set_mem_win */
1134
1135
1136
1137/*****************************************************************************/
1138/* HW State machine assists */
1139/*****************************************************************************/
1140
1141static int
1142csio_hw_dev_ready(struct csio_hw *hw)
1143{
1144 uint32_t reg;
1145 int cnt = 6;
1146
1147 while (((reg = csio_rd_reg32(hw, PL_WHOAMI)) == 0xFFFFFFFF) &&
1148 (--cnt != 0))
1149 mdelay(100);
1150
1151 if ((cnt == 0) && (((int32_t)(SOURCEPF_GET(reg)) < 0) ||
1152 (SOURCEPF_GET(reg) >= CSIO_MAX_PFN))) {
1153 csio_err(hw, "PL_WHOAMI returned 0x%x, cnt:%d\n", reg, cnt);
1154 return -EIO;
1155 }
1156
1157 hw->pfn = SOURCEPF_GET(reg);
1158
1159 return 0;
1160}
1161
1162/*
1163 * csio_do_hello - Perform the HELLO FW Mailbox command and process response.
1164 * @hw: HW module
1165 * @state: Device state
1166 *
1167 * FW_HELLO_CMD has to be polled for completion.
1168 */
1169static int
1170csio_do_hello(struct csio_hw *hw, enum csio_dev_state *state)
1171{
1172 struct csio_mb *mbp;
1173 int rv = 0;
1174 enum csio_dev_master master;
1175 enum fw_retval retval;
1176 uint8_t mpfn;
1177 char state_str[16];
1178 int retries = FW_CMD_HELLO_RETRIES;
1179
1180 memset(state_str, 0, sizeof(state_str));
1181
1182 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1183 if (!mbp) {
1184 rv = -ENOMEM;
1185 CSIO_INC_STATS(hw, n_err_nomem);
1186 goto out;
1187 }
1188
1189 master = csio_force_master ? CSIO_MASTER_MUST : CSIO_MASTER_MAY;
1190
1191retry:
1192 csio_mb_hello(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn,
1193 hw->pfn, master, NULL);
1194
1195 rv = csio_mb_issue(hw, mbp);
1196 if (rv) {
1197 csio_err(hw, "failed to issue HELLO cmd. ret:%d.\n", rv);
1198 goto out_free_mb;
1199 }
1200
1201 csio_mb_process_hello_rsp(hw, mbp, &retval, state, &mpfn);
1202 if (retval != FW_SUCCESS) {
1203 csio_err(hw, "HELLO cmd failed with ret: %d\n", retval);
1204 rv = -EINVAL;
1205 goto out_free_mb;
1206 }
1207
1208 /* Firmware has designated us to be master */
1209 if (hw->pfn == mpfn) {
1210 hw->flags |= CSIO_HWF_MASTER;
1211 } else if (*state == CSIO_DEV_STATE_UNINIT) {
1212 /*
1213 * If we're not the Master PF then we need to wait around for
1214 * the Master PF Driver to finish setting up the adapter.
1215 *
1216 * Note that we also do this wait if we're a non-Master-capable
1217 * PF and there is no current Master PF; a Master PF may show up
1218 * momentarily and we wouldn't want to fail pointlessly. (This
1219 * can happen when an OS loads lots of different drivers rapidly
1220 * at the same time). In this case, the Master PF returned by
1221 * the firmware will be PCIE_FW_MASTER_MASK so the test below
1222 * will work ...
1223 */
1224
1225 int waiting = FW_CMD_HELLO_TIMEOUT;
1226
1227 /*
1228 * Wait for the firmware to either indicate an error or
1229 * initialized state. If we see either of these we bail out
1230 * and report the issue to the caller. If we exhaust the
1231 * "hello timeout" and we haven't exhausted our retries, try
1232 * again. Otherwise bail with a timeout error.
1233 */
1234 for (;;) {
1235 uint32_t pcie_fw;
1236
1237 msleep(50);
1238 waiting -= 50;
1239
1240 /*
1241 * If neither Error nor Initialialized are indicated
1242 * by the firmware keep waiting till we exaust our
1243 * timeout ... and then retry if we haven't exhausted
1244 * our retries ...
1245 */
1246 pcie_fw = csio_rd_reg32(hw, PCIE_FW);
1247 if (!(pcie_fw & (PCIE_FW_ERR|PCIE_FW_INIT))) {
1248 if (waiting <= 0) {
1249 if (retries-- > 0)
1250 goto retry;
1251
1252 rv = -ETIMEDOUT;
1253 break;
1254 }
1255 continue;
1256 }
1257
1258 /*
1259 * We either have an Error or Initialized condition
1260 * report errors preferentially.
1261 */
1262 if (state) {
1263 if (pcie_fw & PCIE_FW_ERR) {
1264 *state = CSIO_DEV_STATE_ERR;
1265 rv = -ETIMEDOUT;
1266 } else if (pcie_fw & PCIE_FW_INIT)
1267 *state = CSIO_DEV_STATE_INIT;
1268 }
1269
1270 /*
1271 * If we arrived before a Master PF was selected and
1272 * there's not a valid Master PF, grab its identity
1273 * for our caller.
1274 */
1275 if (mpfn == PCIE_FW_MASTER_MASK &&
1276 (pcie_fw & PCIE_FW_MASTER_VLD))
1277 mpfn = PCIE_FW_MASTER_GET(pcie_fw);
1278 break;
1279 }
1280 hw->flags &= ~CSIO_HWF_MASTER;
1281 }
1282
1283 switch (*state) {
1284 case CSIO_DEV_STATE_UNINIT:
1285 strcpy(state_str, "Initializing");
1286 break;
1287 case CSIO_DEV_STATE_INIT:
1288 strcpy(state_str, "Initialized");
1289 break;
1290 case CSIO_DEV_STATE_ERR:
1291 strcpy(state_str, "Error");
1292 break;
1293 default:
1294 strcpy(state_str, "Unknown");
1295 break;
1296 }
1297
1298 if (hw->pfn == mpfn)
1299 csio_info(hw, "PF: %d, Coming up as MASTER, HW state: %s\n",
1300 hw->pfn, state_str);
1301 else
1302 csio_info(hw,
1303 "PF: %d, Coming up as SLAVE, Master PF: %d, HW state: %s\n",
1304 hw->pfn, mpfn, state_str);
1305
1306out_free_mb:
1307 mempool_free(mbp, hw->mb_mempool);
1308out:
1309 return rv;
1310}
1311
1312/*
1313 * csio_do_bye - Perform the BYE FW Mailbox command and process response.
1314 * @hw: HW module
1315 *
1316 */
1317static int
1318csio_do_bye(struct csio_hw *hw)
1319{
1320 struct csio_mb *mbp;
1321 enum fw_retval retval;
1322
1323 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1324 if (!mbp) {
1325 CSIO_INC_STATS(hw, n_err_nomem);
1326 return -ENOMEM;
1327 }
1328
1329 csio_mb_bye(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
1330
1331 if (csio_mb_issue(hw, mbp)) {
1332 csio_err(hw, "Issue of BYE command failed\n");
1333 mempool_free(mbp, hw->mb_mempool);
1334 return -EINVAL;
1335 }
1336
1337 retval = csio_mb_fw_retval(mbp);
1338 if (retval != FW_SUCCESS) {
1339 mempool_free(mbp, hw->mb_mempool);
1340 return -EINVAL;
1341 }
1342
1343 mempool_free(mbp, hw->mb_mempool);
1344
1345 return 0;
1346}
1347
1348/*
1349 * csio_do_reset- Perform the device reset.
1350 * @hw: HW module
1351 * @fw_rst: FW reset
1352 *
1353 * If fw_rst is set, issues FW reset mbox cmd otherwise
1354 * does PIO reset.
1355 * Performs reset of the function.
1356 */
1357static int
1358csio_do_reset(struct csio_hw *hw, bool fw_rst)
1359{
1360 struct csio_mb *mbp;
1361 enum fw_retval retval;
1362
1363 if (!fw_rst) {
1364 /* PIO reset */
1365 csio_wr_reg32(hw, PIORSTMODE | PIORST, PL_RST);
1366 mdelay(2000);
1367 return 0;
1368 }
1369
1370 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1371 if (!mbp) {
1372 CSIO_INC_STATS(hw, n_err_nomem);
1373 return -ENOMEM;
1374 }
1375
1376 csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
1377 PIORSTMODE | PIORST, 0, NULL);
1378
1379 if (csio_mb_issue(hw, mbp)) {
1380 csio_err(hw, "Issue of RESET command failed.n");
1381 mempool_free(mbp, hw->mb_mempool);
1382 return -EINVAL;
1383 }
1384
1385 retval = csio_mb_fw_retval(mbp);
1386 if (retval != FW_SUCCESS) {
1387 csio_err(hw, "RESET cmd failed with ret:0x%x.\n", retval);
1388 mempool_free(mbp, hw->mb_mempool);
1389 return -EINVAL;
1390 }
1391
1392 mempool_free(mbp, hw->mb_mempool);
1393
1394 return 0;
1395}
1396
1397static int
1398csio_hw_validate_caps(struct csio_hw *hw, struct csio_mb *mbp)
1399{
1400 struct fw_caps_config_cmd *rsp = (struct fw_caps_config_cmd *)mbp->mb;
1401 uint16_t caps;
1402
1403 caps = ntohs(rsp->fcoecaps);
1404
1405 if (!(caps & FW_CAPS_CONFIG_FCOE_INITIATOR)) {
1406 csio_err(hw, "No FCoE Initiator capability in the firmware.\n");
1407 return -EINVAL;
1408 }
1409
1410 if (!(caps & FW_CAPS_CONFIG_FCOE_CTRL_OFLD)) {
1411 csio_err(hw, "No FCoE Control Offload capability\n");
1412 return -EINVAL;
1413 }
1414
1415 return 0;
1416}
1417
1418/*
1419 * csio_hw_fw_halt - issue a reset/halt to FW and put uP into RESET
1420 * @hw: the HW module
1421 * @mbox: mailbox to use for the FW RESET command (if desired)
1422 * @force: force uP into RESET even if FW RESET command fails
1423 *
1424 * Issues a RESET command to firmware (if desired) with a HALT indication
1425 * and then puts the microprocessor into RESET state. The RESET command
1426 * will only be issued if a legitimate mailbox is provided (mbox <=
1427 * PCIE_FW_MASTER_MASK).
1428 *
1429 * This is generally used in order for the host to safely manipulate the
1430 * adapter without fear of conflicting with whatever the firmware might
1431 * be doing. The only way out of this state is to RESTART the firmware
1432 * ...
1433 */
1434static int
1435csio_hw_fw_halt(struct csio_hw *hw, uint32_t mbox, int32_t force)
1436{
1437 enum fw_retval retval = 0;
1438
1439 /*
1440 * If a legitimate mailbox is provided, issue a RESET command
1441 * with a HALT indication.
1442 */
1443 if (mbox <= PCIE_FW_MASTER_MASK) {
1444 struct csio_mb *mbp;
1445
1446 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1447 if (!mbp) {
1448 CSIO_INC_STATS(hw, n_err_nomem);
1449 return -ENOMEM;
1450 }
1451
1452 csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
1453 PIORSTMODE | PIORST, FW_RESET_CMD_HALT(1),
1454 NULL);
1455
1456 if (csio_mb_issue(hw, mbp)) {
1457 csio_err(hw, "Issue of RESET command failed!\n");
1458 mempool_free(mbp, hw->mb_mempool);
1459 return -EINVAL;
1460 }
1461
1462 retval = csio_mb_fw_retval(mbp);
1463 mempool_free(mbp, hw->mb_mempool);
1464 }
1465
1466 /*
1467 * Normally we won't complete the operation if the firmware RESET
1468 * command fails but if our caller insists we'll go ahead and put the
1469 * uP into RESET. This can be useful if the firmware is hung or even
1470 * missing ... We'll have to take the risk of putting the uP into
1471 * RESET without the cooperation of firmware in that case.
1472 *
1473 * We also force the firmware's HALT flag to be on in case we bypassed
1474 * the firmware RESET command above or we're dealing with old firmware
1475 * which doesn't have the HALT capability. This will serve as a flag
1476 * for the incoming firmware to know that it's coming out of a HALT
1477 * rather than a RESET ... if it's new enough to understand that ...
1478 */
1479 if (retval == 0 || force) {
1480 csio_set_reg_field(hw, CIM_BOOT_CFG, UPCRST, UPCRST);
1481 csio_set_reg_field(hw, PCIE_FW, PCIE_FW_HALT, PCIE_FW_HALT);
1482 }
1483
1484 /*
1485 * And we always return the result of the firmware RESET command
1486 * even when we force the uP into RESET ...
1487 */
1488 return retval ? -EINVAL : 0;
1489}
1490
1491/*
1492 * csio_hw_fw_restart - restart the firmware by taking the uP out of RESET
1493 * @hw: the HW module
1494 * @reset: if we want to do a RESET to restart things
1495 *
1496 * Restart firmware previously halted by csio_hw_fw_halt(). On successful
1497 * return the previous PF Master remains as the new PF Master and there
1498 * is no need to issue a new HELLO command, etc.
1499 *
1500 * We do this in two ways:
1501 *
1502 * 1. If we're dealing with newer firmware we'll simply want to take
1503 * the chip's microprocessor out of RESET. This will cause the
1504 * firmware to start up from its start vector. And then we'll loop
1505 * until the firmware indicates it's started again (PCIE_FW.HALT
1506 * reset to 0) or we timeout.
1507 *
1508 * 2. If we're dealing with older firmware then we'll need to RESET
1509 * the chip since older firmware won't recognize the PCIE_FW.HALT
1510 * flag and automatically RESET itself on startup.
1511 */
1512static int
1513csio_hw_fw_restart(struct csio_hw *hw, uint32_t mbox, int32_t reset)
1514{
1515 if (reset) {
1516 /*
1517 * Since we're directing the RESET instead of the firmware
1518 * doing it automatically, we need to clear the PCIE_FW.HALT
1519 * bit.
1520 */
1521 csio_set_reg_field(hw, PCIE_FW, PCIE_FW_HALT, 0);
1522
1523 /*
1524 * If we've been given a valid mailbox, first try to get the
1525 * firmware to do the RESET. If that works, great and we can
1526 * return success. Otherwise, if we haven't been given a
1527 * valid mailbox or the RESET command failed, fall back to
1528 * hitting the chip with a hammer.
1529 */
1530 if (mbox <= PCIE_FW_MASTER_MASK) {
1531 csio_set_reg_field(hw, CIM_BOOT_CFG, UPCRST, 0);
1532 msleep(100);
1533 if (csio_do_reset(hw, true) == 0)
1534 return 0;
1535 }
1536
1537 csio_wr_reg32(hw, PIORSTMODE | PIORST, PL_RST);
1538 msleep(2000);
1539 } else {
1540 int ms;
1541
1542 csio_set_reg_field(hw, CIM_BOOT_CFG, UPCRST, 0);
1543 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
1544 if (!(csio_rd_reg32(hw, PCIE_FW) & PCIE_FW_HALT))
1545 return 0;
1546 msleep(100);
1547 ms += 100;
1548 }
1549 return -ETIMEDOUT;
1550 }
1551 return 0;
1552}
1553
1554/*
1555 * csio_hw_fw_upgrade - perform all of the steps necessary to upgrade FW
1556 * @hw: the HW module
1557 * @mbox: mailbox to use for the FW RESET command (if desired)
1558 * @fw_data: the firmware image to write
1559 * @size: image size
1560 * @force: force upgrade even if firmware doesn't cooperate
1561 *
1562 * Perform all of the steps necessary for upgrading an adapter's
1563 * firmware image. Normally this requires the cooperation of the
1564 * existing firmware in order to halt all existing activities
1565 * but if an invalid mailbox token is passed in we skip that step
1566 * (though we'll still put the adapter microprocessor into RESET in
1567 * that case).
1568 *
1569 * On successful return the new firmware will have been loaded and
1570 * the adapter will have been fully RESET losing all previous setup
1571 * state. On unsuccessful return the adapter may be completely hosed ...
1572 * positive errno indicates that the adapter is ~probably~ intact, a
1573 * negative errno indicates that things are looking bad ...
1574 */
1575static int
1576csio_hw_fw_upgrade(struct csio_hw *hw, uint32_t mbox,
1577 const u8 *fw_data, uint32_t size, int32_t force)
1578{
1579 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
1580 int reset, ret;
1581
1582 ret = csio_hw_fw_halt(hw, mbox, force);
1583 if (ret != 0 && !force)
1584 return ret;
1585
1586 ret = csio_hw_fw_dload(hw, (uint8_t *) fw_data, size);
1587 if (ret != 0)
1588 return ret;
1589
1590 /*
1591 * Older versions of the firmware don't understand the new
1592 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
1593 * restart. So for newly loaded older firmware we'll have to do the
1594 * RESET for it so it starts up on a clean slate. We can tell if
1595 * the newly loaded firmware will handle this right by checking
1596 * its header flags to see if it advertises the capability.
1597 */
1598 reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
1599 return csio_hw_fw_restart(hw, mbox, reset);
1600}
1601
1602
1603/*
1604 * csio_hw_fw_config_file - setup an adapter via a Configuration File
1605 * @hw: the HW module
1606 * @mbox: mailbox to use for the FW command
1607 * @mtype: the memory type where the Configuration File is located
1608 * @maddr: the memory address where the Configuration File is located
1609 * @finiver: return value for CF [fini] version
1610 * @finicsum: return value for CF [fini] checksum
1611 * @cfcsum: return value for CF computed checksum
1612 *
1613 * Issue a command to get the firmware to process the Configuration
1614 * File located at the specified mtype/maddress. If the Configuration
1615 * File is processed successfully and return value pointers are
1616 * provided, the Configuration File "[fini] section version and
1617 * checksum values will be returned along with the computed checksum.
1618 * It's up to the caller to decide how it wants to respond to the
1619 * checksums not matching but it recommended that a prominant warning
1620 * be emitted in order to help people rapidly identify changed or
1621 * corrupted Configuration Files.
1622 *
1623 * Also note that it's possible to modify things like "niccaps",
1624 * "toecaps",etc. between processing the Configuration File and telling
1625 * the firmware to use the new configuration. Callers which want to
1626 * do this will need to "hand-roll" their own CAPS_CONFIGS commands for
1627 * Configuration Files if they want to do this.
1628 */
1629static int
1630csio_hw_fw_config_file(struct csio_hw *hw,
1631 unsigned int mtype, unsigned int maddr,
1632 uint32_t *finiver, uint32_t *finicsum, uint32_t *cfcsum)
1633{
1634 struct csio_mb *mbp;
1635 struct fw_caps_config_cmd *caps_cmd;
1636 int rv = -EINVAL;
1637 enum fw_retval ret;
1638
1639 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1640 if (!mbp) {
1641 CSIO_INC_STATS(hw, n_err_nomem);
1642 return -ENOMEM;
1643 }
1644 /*
1645 * Tell the firmware to process the indicated Configuration File.
1646 * If there are no errors and the caller has provided return value
1647 * pointers for the [fini] section version, checksum and computed
1648 * checksum, pass those back to the caller.
1649 */
1650 caps_cmd = (struct fw_caps_config_cmd *)(mbp->mb);
1651 CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1);
1652 caps_cmd->op_to_write =
1653 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1654 FW_CMD_REQUEST |
1655 FW_CMD_READ);
1656 caps_cmd->cfvalid_to_len16 =
1657 htonl(FW_CAPS_CONFIG_CMD_CFVALID |
1658 FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
1659 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
1660 FW_LEN16(*caps_cmd));
1661
1662 if (csio_mb_issue(hw, mbp)) {
1663 csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD failed!\n");
1664 goto out;
1665 }
1666
1667 ret = csio_mb_fw_retval(mbp);
1668 if (ret != FW_SUCCESS) {
1669 csio_dbg(hw, "FW_CAPS_CONFIG_CMD returned %d!\n", rv);
1670 goto out;
1671 }
1672
1673 if (finiver)
1674 *finiver = ntohl(caps_cmd->finiver);
1675 if (finicsum)
1676 *finicsum = ntohl(caps_cmd->finicsum);
1677 if (cfcsum)
1678 *cfcsum = ntohl(caps_cmd->cfcsum);
1679
1680 /* Validate device capabilities */
1681 if (csio_hw_validate_caps(hw, mbp)) {
1682 rv = -ENOENT;
1683 goto out;
1684 }
1685
1686 /*
1687 * And now tell the firmware to use the configuration we just loaded.
1688 */
1689 caps_cmd->op_to_write =
1690 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1691 FW_CMD_REQUEST |
1692 FW_CMD_WRITE);
1693 caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd));
1694
1695 if (csio_mb_issue(hw, mbp)) {
1696 csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD failed!\n");
1697 goto out;
1698 }
1699
1700 ret = csio_mb_fw_retval(mbp);
1701 if (ret != FW_SUCCESS) {
1702 csio_dbg(hw, "FW_CAPS_CONFIG_CMD returned %d!\n", rv);
1703 goto out;
1704 }
1705
1706 rv = 0;
1707out:
1708 mempool_free(mbp, hw->mb_mempool);
1709 return rv;
1710}
1711
1712/*
1713 * csio_get_device_params - Get device parameters.
1714 * @hw: HW module
1715 *
1716 */
1717static int
1718csio_get_device_params(struct csio_hw *hw)
1719{
1720 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1721 struct csio_mb *mbp;
1722 enum fw_retval retval;
1723 u32 param[6];
1724 int i, j = 0;
1725
1726 /* Initialize portids to -1 */
1727 for (i = 0; i < CSIO_MAX_PPORTS; i++)
1728 hw->pport[i].portid = -1;
1729
1730 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1731 if (!mbp) {
1732 CSIO_INC_STATS(hw, n_err_nomem);
1733 return -ENOMEM;
1734 }
1735
1736 /* Get port vec information. */
1737 param[0] = FW_PARAM_DEV(PORTVEC);
1738
1739 /* Get Core clock. */
1740 param[1] = FW_PARAM_DEV(CCLK);
1741
1742 /* Get EQ id start and end. */
1743 param[2] = FW_PARAM_PFVF(EQ_START);
1744 param[3] = FW_PARAM_PFVF(EQ_END);
1745
1746 /* Get IQ id start and end. */
1747 param[4] = FW_PARAM_PFVF(IQFLINT_START);
1748 param[5] = FW_PARAM_PFVF(IQFLINT_END);
1749
1750 csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
1751 ARRAY_SIZE(param), param, NULL, false, NULL);
1752 if (csio_mb_issue(hw, mbp)) {
1753 csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
1754 mempool_free(mbp, hw->mb_mempool);
1755 return -EINVAL;
1756 }
1757
1758 csio_mb_process_read_params_rsp(hw, mbp, &retval,
1759 ARRAY_SIZE(param), param);
1760 if (retval != FW_SUCCESS) {
1761 csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
1762 retval);
1763 mempool_free(mbp, hw->mb_mempool);
1764 return -EINVAL;
1765 }
1766
1767 /* cache the information. */
1768 hw->port_vec = param[0];
1769 hw->vpd.cclk = param[1];
1770 wrm->fw_eq_start = param[2];
1771 wrm->fw_iq_start = param[4];
1772
1773 /* Using FW configured max iqs & eqs */
1774 if ((hw->flags & CSIO_HWF_USING_SOFT_PARAMS) ||
1775 !csio_is_hw_master(hw)) {
1776 hw->cfg_niq = param[5] - param[4] + 1;
1777 hw->cfg_neq = param[3] - param[2] + 1;
1778 csio_dbg(hw, "Using fwconfig max niqs %d neqs %d\n",
1779 hw->cfg_niq, hw->cfg_neq);
1780 }
1781
1782 hw->port_vec &= csio_port_mask;
1783
1784 hw->num_pports = hweight32(hw->port_vec);
1785
1786 csio_dbg(hw, "Port vector: 0x%x, #ports: %d\n",
1787 hw->port_vec, hw->num_pports);
1788
1789 for (i = 0; i < hw->num_pports; i++) {
1790 while ((hw->port_vec & (1 << j)) == 0)
1791 j++;
1792 hw->pport[i].portid = j++;
1793 csio_dbg(hw, "Found Port:%d\n", hw->pport[i].portid);
1794 }
1795 mempool_free(mbp, hw->mb_mempool);
1796
1797 return 0;
1798}
1799
1800
1801/*
1802 * csio_config_device_caps - Get and set device capabilities.
1803 * @hw: HW module
1804 *
1805 */
1806static int
1807csio_config_device_caps(struct csio_hw *hw)
1808{
1809 struct csio_mb *mbp;
1810 enum fw_retval retval;
1811 int rv = -EINVAL;
1812
1813 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1814 if (!mbp) {
1815 CSIO_INC_STATS(hw, n_err_nomem);
1816 return -ENOMEM;
1817 }
1818
1819 /* Get device capabilities */
1820 csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, 0, 0, 0, 0, NULL);
1821
1822 if (csio_mb_issue(hw, mbp)) {
1823 csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(r) failed!\n");
1824 goto out;
1825 }
1826
1827 retval = csio_mb_fw_retval(mbp);
1828 if (retval != FW_SUCCESS) {
1829 csio_err(hw, "FW_CAPS_CONFIG_CMD(r) returned %d!\n", retval);
1830 goto out;
1831 }
1832
1833 /* Validate device capabilities */
1834 if (csio_hw_validate_caps(hw, mbp))
1835 goto out;
1836
1837 /* Don't config device capabilities if already configured */
1838 if (hw->fw_state == CSIO_DEV_STATE_INIT) {
1839 rv = 0;
1840 goto out;
1841 }
1842
1843 /* Write back desired device capabilities */
1844 csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, true, true,
1845 false, true, NULL);
1846
1847 if (csio_mb_issue(hw, mbp)) {
1848 csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(w) failed!\n");
1849 goto out;
1850 }
1851
1852 retval = csio_mb_fw_retval(mbp);
1853 if (retval != FW_SUCCESS) {
1854 csio_err(hw, "FW_CAPS_CONFIG_CMD(w) returned %d!\n", retval);
1855 goto out;
1856 }
1857
1858 rv = 0;
1859out:
1860 mempool_free(mbp, hw->mb_mempool);
1861 return rv;
1862}
1863
1864static int
1865csio_config_global_rss(struct csio_hw *hw)
1866{
1867 struct csio_mb *mbp;
1868 enum fw_retval retval;
1869
1870 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1871 if (!mbp) {
1872 CSIO_INC_STATS(hw, n_err_nomem);
1873 return -ENOMEM;
1874 }
1875
1876 csio_rss_glb_config(hw, mbp, CSIO_MB_DEFAULT_TMO,
1877 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
1878 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
1879 FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ |
1880 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP,
1881 NULL);
1882
1883 if (csio_mb_issue(hw, mbp)) {
1884 csio_err(hw, "Issue of FW_RSS_GLB_CONFIG_CMD failed!\n");
1885 mempool_free(mbp, hw->mb_mempool);
1886 return -EINVAL;
1887 }
1888
1889 retval = csio_mb_fw_retval(mbp);
1890 if (retval != FW_SUCCESS) {
1891 csio_err(hw, "FW_RSS_GLB_CONFIG_CMD returned 0x%x!\n", retval);
1892 mempool_free(mbp, hw->mb_mempool);
1893 return -EINVAL;
1894 }
1895
1896 mempool_free(mbp, hw->mb_mempool);
1897
1898 return 0;
1899}
1900
1901/*
1902 * csio_config_pfvf - Configure Physical/Virtual functions settings.
1903 * @hw: HW module
1904 *
1905 */
1906static int
1907csio_config_pfvf(struct csio_hw *hw)
1908{
1909 struct csio_mb *mbp;
1910 enum fw_retval retval;
1911
1912 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1913 if (!mbp) {
1914 CSIO_INC_STATS(hw, n_err_nomem);
1915 return -ENOMEM;
1916 }
1917
1918 /*
1919 * For now, allow all PFs to access to all ports using a pmask
1920 * value of 0xF (M_FW_PFVF_CMD_PMASK). Once we have VFs, we will
1921 * need to provide access based on some rule.
1922 */
1923 csio_mb_pfvf(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0, CSIO_NEQ,
1924 CSIO_NETH_CTRL, CSIO_NIQ_FLINT, 0, 0, CSIO_NVI, CSIO_CMASK,
1925 CSIO_PMASK, CSIO_NEXACTF, CSIO_R_CAPS, CSIO_WX_CAPS, NULL);
1926
1927 if (csio_mb_issue(hw, mbp)) {
1928 csio_err(hw, "Issue of FW_PFVF_CMD failed!\n");
1929 mempool_free(mbp, hw->mb_mempool);
1930 return -EINVAL;
1931 }
1932
1933 retval = csio_mb_fw_retval(mbp);
1934 if (retval != FW_SUCCESS) {
1935 csio_err(hw, "FW_PFVF_CMD returned 0x%x!\n", retval);
1936 mempool_free(mbp, hw->mb_mempool);
1937 return -EINVAL;
1938 }
1939
1940 mempool_free(mbp, hw->mb_mempool);
1941
1942 return 0;
1943}
1944
1945/*
1946 * csio_enable_ports - Bring up all available ports.
1947 * @hw: HW module.
1948 *
1949 */
1950static int
1951csio_enable_ports(struct csio_hw *hw)
1952{
1953 struct csio_mb *mbp;
1954 enum fw_retval retval;
1955 uint8_t portid;
1956 int i;
1957
1958 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1959 if (!mbp) {
1960 CSIO_INC_STATS(hw, n_err_nomem);
1961 return -ENOMEM;
1962 }
1963
1964 for (i = 0; i < hw->num_pports; i++) {
1965 portid = hw->pport[i].portid;
1966
1967 /* Read PORT information */
1968 csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid,
1969 false, 0, 0, NULL);
1970
1971 if (csio_mb_issue(hw, mbp)) {
1972 csio_err(hw, "failed to issue FW_PORT_CMD(r) port:%d\n",
1973 portid);
1974 mempool_free(mbp, hw->mb_mempool);
1975 return -EINVAL;
1976 }
1977
1978 csio_mb_process_read_port_rsp(hw, mbp, &retval,
1979 &hw->pport[i].pcap);
1980 if (retval != FW_SUCCESS) {
1981 csio_err(hw, "FW_PORT_CMD(r) port:%d failed: 0x%x\n",
1982 portid, retval);
1983 mempool_free(mbp, hw->mb_mempool);
1984 return -EINVAL;
1985 }
1986
1987 /* Write back PORT information */
1988 csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid, true,
1989 (PAUSE_RX | PAUSE_TX), hw->pport[i].pcap, NULL);
1990
1991 if (csio_mb_issue(hw, mbp)) {
1992 csio_err(hw, "failed to issue FW_PORT_CMD(w) port:%d\n",
1993 portid);
1994 mempool_free(mbp, hw->mb_mempool);
1995 return -EINVAL;
1996 }
1997
1998 retval = csio_mb_fw_retval(mbp);
1999 if (retval != FW_SUCCESS) {
2000 csio_err(hw, "FW_PORT_CMD(w) port:%d failed :0x%x\n",
2001 portid, retval);
2002 mempool_free(mbp, hw->mb_mempool);
2003 return -EINVAL;
2004 }
2005
2006 } /* For all ports */
2007
2008 mempool_free(mbp, hw->mb_mempool);
2009
2010 return 0;
2011}
2012
2013/*
2014 * csio_get_fcoe_resinfo - Read fcoe fw resource info.
2015 * @hw: HW module
2016 * Issued with lock held.
2017 */
2018static int
2019csio_get_fcoe_resinfo(struct csio_hw *hw)
2020{
2021 struct csio_fcoe_res_info *res_info = &hw->fres_info;
2022 struct fw_fcoe_res_info_cmd *rsp;
2023 struct csio_mb *mbp;
2024 enum fw_retval retval;
2025
2026 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
2027 if (!mbp) {
2028 CSIO_INC_STATS(hw, n_err_nomem);
2029 return -ENOMEM;
2030 }
2031
2032 /* Get FCoE FW resource information */
2033 csio_fcoe_read_res_info_init_mb(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
2034
2035 if (csio_mb_issue(hw, mbp)) {
2036 csio_err(hw, "failed to issue FW_FCOE_RES_INFO_CMD\n");
2037 mempool_free(mbp, hw->mb_mempool);
2038 return -EINVAL;
2039 }
2040
2041 rsp = (struct fw_fcoe_res_info_cmd *)(mbp->mb);
2042 retval = FW_CMD_RETVAL_GET(ntohl(rsp->retval_len16));
2043 if (retval != FW_SUCCESS) {
2044 csio_err(hw, "FW_FCOE_RES_INFO_CMD failed with ret x%x\n",
2045 retval);
2046 mempool_free(mbp, hw->mb_mempool);
2047 return -EINVAL;
2048 }
2049
2050 res_info->e_d_tov = ntohs(rsp->e_d_tov);
2051 res_info->r_a_tov_seq = ntohs(rsp->r_a_tov_seq);
2052 res_info->r_a_tov_els = ntohs(rsp->r_a_tov_els);
2053 res_info->r_r_tov = ntohs(rsp->r_r_tov);
2054 res_info->max_xchgs = ntohl(rsp->max_xchgs);
2055 res_info->max_ssns = ntohl(rsp->max_ssns);
2056 res_info->used_xchgs = ntohl(rsp->used_xchgs);
2057 res_info->used_ssns = ntohl(rsp->used_ssns);
2058 res_info->max_fcfs = ntohl(rsp->max_fcfs);
2059 res_info->max_vnps = ntohl(rsp->max_vnps);
2060 res_info->used_fcfs = ntohl(rsp->used_fcfs);
2061 res_info->used_vnps = ntohl(rsp->used_vnps);
2062
2063 csio_dbg(hw, "max ssns:%d max xchgs:%d\n", res_info->max_ssns,
2064 res_info->max_xchgs);
2065 mempool_free(mbp, hw->mb_mempool);
2066
2067 return 0;
2068}
2069
2070static int
2071csio_hw_check_fwconfig(struct csio_hw *hw, u32 *param)
2072{
2073 struct csio_mb *mbp;
2074 enum fw_retval retval;
2075 u32 _param[1];
2076
2077 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
2078 if (!mbp) {
2079 CSIO_INC_STATS(hw, n_err_nomem);
2080 return -ENOMEM;
2081 }
2082
2083 /*
2084 * Find out whether we're dealing with a version of
2085 * the firmware which has configuration file support.
2086 */
2087 _param[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
2088 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
2089
2090 csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
2091 ARRAY_SIZE(_param), _param, NULL, false, NULL);
2092 if (csio_mb_issue(hw, mbp)) {
2093 csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
2094 mempool_free(mbp, hw->mb_mempool);
2095 return -EINVAL;
2096 }
2097
2098 csio_mb_process_read_params_rsp(hw, mbp, &retval,
2099 ARRAY_SIZE(_param), _param);
2100 if (retval != FW_SUCCESS) {
2101 csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
2102 retval);
2103 mempool_free(mbp, hw->mb_mempool);
2104 return -EINVAL;
2105 }
2106
2107 mempool_free(mbp, hw->mb_mempool);
2108 *param = _param[0];
2109
2110 return 0;
2111}
2112
2113static int
2114csio_hw_flash_config(struct csio_hw *hw, u32 *fw_cfg_param, char *path)
2115{
2116 int ret = 0;
2117 const struct firmware *cf;
2118 struct pci_dev *pci_dev = hw->pdev;
2119 struct device *dev = &pci_dev->dev;
a3667aae
NKI
2120 unsigned int mtype = 0, maddr = 0;
2121 uint32_t *cfg_data;
2122 int value_to_add = 0;
2123
2124 if (request_firmware(&cf, CSIO_CF_FNAME, dev) < 0) {
2125 csio_err(hw, "could not find config file " CSIO_CF_FNAME
2126 ",err: %d\n", ret);
2127 return -ENOENT;
2128 }
2129
2130 if (cf->size%4 != 0)
2131 value_to_add = 4 - (cf->size % 4);
2132
2133 cfg_data = kzalloc(cf->size+value_to_add, GFP_KERNEL);
2134 if (cfg_data == NULL)
2135 return -ENOMEM;
2136
2137 memcpy((void *)cfg_data, (const void *)cf->data, cf->size);
2138
2139 if (csio_hw_check_fwconfig(hw, fw_cfg_param) != 0)
2140 return -EINVAL;
2141
2142 mtype = FW_PARAMS_PARAM_Y_GET(*fw_cfg_param);
2143 maddr = FW_PARAMS_PARAM_Z_GET(*fw_cfg_param) << 16;
2144
2145 ret = csio_memory_write(hw, mtype, maddr,
2146 cf->size + value_to_add, cfg_data);
2147 if (ret == 0) {
2148 csio_info(hw, "config file upgraded to " CSIO_CF_FNAME "\n");
2149 strncpy(path, "/lib/firmware/" CSIO_CF_FNAME, 64);
2150 }
2151
2152 kfree(cfg_data);
2153 release_firmware(cf);
2154
2155 return ret;
2156}
2157
2158/*
2159 * HW initialization: contact FW, obtain config, perform basic init.
2160 *
2161 * If the firmware we're dealing with has Configuration File support, then
2162 * we use that to perform all configuration -- either using the configuration
2163 * file stored in flash on the adapter or using a filesystem-local file
2164 * if available.
2165 *
2166 * If we don't have configuration file support in the firmware, then we'll
2167 * have to set things up the old fashioned way with hard-coded register
2168 * writes and firmware commands ...
2169 */
2170
2171/*
2172 * Attempt to initialize the HW via a Firmware Configuration File.
2173 */
2174static int
2175csio_hw_use_fwconfig(struct csio_hw *hw, int reset, u32 *fw_cfg_param)
2176{
2177 unsigned int mtype, maddr;
2178 int rv;
2179 uint32_t finiver, finicsum, cfcsum;
2180 int using_flash;
2181 char path[64];
2182
2183 /*
2184 * Reset device if necessary
2185 */
2186 if (reset) {
2187 rv = csio_do_reset(hw, true);
2188 if (rv != 0)
2189 goto bye;
2190 }
2191
2192 /*
2193 * If we have a configuration file in host ,
2194 * then use that. Otherwise, use the configuration file stored
2195 * in the HW flash ...
2196 */
2197 spin_unlock_irq(&hw->lock);
2198 rv = csio_hw_flash_config(hw, fw_cfg_param, path);
2199 spin_lock_irq(&hw->lock);
2200 if (rv != 0) {
2201 if (rv == -ENOENT) {
2202 /*
2203 * config file was not found. Use default
2204 * config file from flash.
2205 */
2206 mtype = FW_MEMTYPE_CF_FLASH;
2207 maddr = csio_hw_flash_cfg_addr(hw);
2208 using_flash = 1;
2209 } else {
2210 /*
2211 * we revert back to the hardwired config if
2212 * flashing failed.
2213 */
2214 goto bye;
2215 }
2216 } else {
2217 mtype = FW_PARAMS_PARAM_Y_GET(*fw_cfg_param);
2218 maddr = FW_PARAMS_PARAM_Z_GET(*fw_cfg_param) << 16;
2219 using_flash = 0;
2220 }
2221
2222 hw->cfg_store = (uint8_t)mtype;
2223
2224 /*
2225 * Issue a Capability Configuration command to the firmware to get it
2226 * to parse the Configuration File.
2227 */
2228 rv = csio_hw_fw_config_file(hw, mtype, maddr, &finiver,
2229 &finicsum, &cfcsum);
2230 if (rv != 0)
2231 goto bye;
2232
2233 hw->cfg_finiver = finiver;
2234 hw->cfg_finicsum = finicsum;
2235 hw->cfg_cfcsum = cfcsum;
2236 hw->cfg_csum_status = true;
2237
2238 if (finicsum != cfcsum) {
2239 csio_warn(hw,
2240 "Config File checksum mismatch: csum=%#x, computed=%#x\n",
2241 finicsum, cfcsum);
2242
2243 hw->cfg_csum_status = false;
2244 }
2245
2246 /*
2247 * Note that we're operating with parameters
2248 * not supplied by the driver, rather than from hard-wired
2249 * initialization constants buried in the driver.
2250 */
2251 hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
2252
2253 /* device parameters */
2254 rv = csio_get_device_params(hw);
2255 if (rv != 0)
2256 goto bye;
2257
2258 /* Configure SGE */
2259 csio_wr_sge_init(hw);
2260
2261 /*
2262 * And finally tell the firmware to initialize itself using the
2263 * parameters from the Configuration File.
2264 */
2265 /* Post event to notify completion of configuration */
2266 csio_post_event(&hw->sm, CSIO_HWE_INIT);
2267
2268 csio_info(hw,
2269 "Firmware Configuration File %s, version %#x, computed checksum %#x\n",
2270 (using_flash ? "in device FLASH" : path), finiver, cfcsum);
2271
2272 return 0;
2273
2274 /*
2275 * Something bad happened. Return the error ...
2276 */
2277bye:
2278 hw->flags &= ~CSIO_HWF_USING_SOFT_PARAMS;
2279 csio_dbg(hw, "Configuration file error %d\n", rv);
2280 return rv;
2281}
2282
2283/*
2284 * Attempt to initialize the adapter via hard-coded, driver supplied
2285 * parameters ...
2286 */
2287static int
2288csio_hw_no_fwconfig(struct csio_hw *hw, int reset)
2289{
2290 int rv;
2291 /*
2292 * Reset device if necessary
2293 */
2294 if (reset) {
2295 rv = csio_do_reset(hw, true);
2296 if (rv != 0)
2297 goto out;
2298 }
2299
2300 /* Get and set device capabilities */
2301 rv = csio_config_device_caps(hw);
2302 if (rv != 0)
2303 goto out;
2304
2305 /* Config Global RSS command */
2306 rv = csio_config_global_rss(hw);
2307 if (rv != 0)
2308 goto out;
2309
2310 /* Configure PF/VF capabilities of device */
2311 rv = csio_config_pfvf(hw);
2312 if (rv != 0)
2313 goto out;
2314
2315 /* device parameters */
2316 rv = csio_get_device_params(hw);
2317 if (rv != 0)
2318 goto out;
2319
2320 /* Configure SGE */
2321 csio_wr_sge_init(hw);
2322
2323 /* Post event to notify completion of configuration */
2324 csio_post_event(&hw->sm, CSIO_HWE_INIT);
2325
2326out:
2327 return rv;
2328}
2329
2330/*
2331 * Returns -EINVAL if attempts to flash the firmware failed
2332 * else returns 0,
2333 * if flashing was not attempted because the card had the
2334 * latest firmware ECANCELED is returned
2335 */
2336static int
2337csio_hw_flash_fw(struct csio_hw *hw)
2338{
2339 int ret = -ECANCELED;
2340 const struct firmware *fw;
2341 const struct fw_hdr *hdr;
2342 u32 fw_ver;
2343 struct pci_dev *pci_dev = hw->pdev;
2344 struct device *dev = &pci_dev->dev ;
2345
2346 if (request_firmware(&fw, CSIO_FW_FNAME, dev) < 0) {
2347 csio_err(hw, "could not find firmware image " CSIO_FW_FNAME
2348 ",err: %d\n", ret);
2349 return -EINVAL;
2350 }
2351
2352 hdr = (const struct fw_hdr *)fw->data;
2353 fw_ver = ntohl(hdr->fw_ver);
2354 if (FW_HDR_FW_VER_MAJOR_GET(fw_ver) != FW_VERSION_MAJOR)
2355 return -EINVAL; /* wrong major version, won't do */
2356
2357 /*
2358 * If the flash FW is unusable or we found something newer, load it.
2359 */
2360 if (FW_HDR_FW_VER_MAJOR_GET(hw->fwrev) != FW_VERSION_MAJOR ||
2361 fw_ver > hw->fwrev) {
2362 ret = csio_hw_fw_upgrade(hw, hw->pfn, fw->data, fw->size,
2363 /*force=*/false);
2364 if (!ret)
2365 csio_info(hw, "firmware upgraded to version %pI4 from "
2366 CSIO_FW_FNAME "\n", &hdr->fw_ver);
2367 else
2368 csio_err(hw, "firmware upgrade failed! err=%d\n", ret);
2369 }
2370
2371 release_firmware(fw);
2372
2373 return ret;
2374}
2375
2376
2377/*
2378 * csio_hw_configure - Configure HW
2379 * @hw - HW module
2380 *
2381 */
2382static void
2383csio_hw_configure(struct csio_hw *hw)
2384{
2385 int reset = 1;
2386 int rv;
2387 u32 param[1];
2388
2389 rv = csio_hw_dev_ready(hw);
2390 if (rv != 0) {
2391 CSIO_INC_STATS(hw, n_err_fatal);
2392 csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2393 goto out;
2394 }
2395
2396 /* HW version */
2397 hw->chip_ver = (char)csio_rd_reg32(hw, PL_REV);
2398
2399 /* Needed for FW download */
2400 rv = csio_hw_get_flash_params(hw);
2401 if (rv != 0) {
2402 csio_err(hw, "Failed to get serial flash params rv:%d\n", rv);
2403 csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2404 goto out;
2405 }
2406
2407 /* Set pci completion timeout value to 4 seconds. */
2408 csio_set_pcie_completion_timeout(hw, 0xd);
2409
2410 csio_hw_set_mem_win(hw);
2411
2412 rv = csio_hw_get_fw_version(hw, &hw->fwrev);
2413 if (rv != 0)
2414 goto out;
2415
2416 csio_hw_print_fw_version(hw, "Firmware revision");
2417
2418 rv = csio_do_hello(hw, &hw->fw_state);
2419 if (rv != 0) {
2420 CSIO_INC_STATS(hw, n_err_fatal);
2421 csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2422 goto out;
2423 }
2424
2425 /* Read vpd */
2426 rv = csio_hw_get_vpd_params(hw, &hw->vpd);
2427 if (rv != 0)
2428 goto out;
2429
2430 if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2431 rv = csio_hw_check_fw_version(hw);
2432 if (rv == -EINVAL) {
2433
2434 /* Do firmware update */
2435 spin_unlock_irq(&hw->lock);
2436 rv = csio_hw_flash_fw(hw);
2437 spin_lock_irq(&hw->lock);
2438
2439 if (rv == 0) {
2440 reset = 0;
2441 /*
2442 * Note that the chip was reset as part of the
2443 * firmware upgrade so we don't reset it again
2444 * below and grab the new firmware version.
2445 */
2446 rv = csio_hw_check_fw_version(hw);
2447 }
2448 }
2449 /*
2450 * If the firmware doesn't support Configuration
2451 * Files, use the old Driver-based, hard-wired
2452 * initialization. Otherwise, try using the
2453 * Configuration File support and fall back to the
2454 * Driver-based initialization if there's no
2455 * Configuration File found.
2456 */
2457 if (csio_hw_check_fwconfig(hw, param) == 0) {
2458 rv = csio_hw_use_fwconfig(hw, reset, param);
2459 if (rv == -ENOENT)
2460 goto out;
2461 if (rv != 0) {
2462 csio_info(hw,
2463 "No Configuration File present "
2464 "on adapter. Using hard-wired "
2465 "configuration parameters.\n");
2466 rv = csio_hw_no_fwconfig(hw, reset);
2467 }
2468 } else {
2469 rv = csio_hw_no_fwconfig(hw, reset);
2470 }
2471
2472 if (rv != 0)
2473 goto out;
2474
2475 } else {
2476 if (hw->fw_state == CSIO_DEV_STATE_INIT) {
2477
2478 /* device parameters */
2479 rv = csio_get_device_params(hw);
2480 if (rv != 0)
2481 goto out;
2482
2483 /* Get device capabilities */
2484 rv = csio_config_device_caps(hw);
2485 if (rv != 0)
2486 goto out;
2487
2488 /* Configure SGE */
2489 csio_wr_sge_init(hw);
2490
2491 /* Post event to notify completion of configuration */
2492 csio_post_event(&hw->sm, CSIO_HWE_INIT);
2493 goto out;
2494 }
2495 } /* if not master */
2496
2497out:
2498 return;
2499}
2500
2501/*
2502 * csio_hw_initialize - Initialize HW
2503 * @hw - HW module
2504 *
2505 */
2506static void
2507csio_hw_initialize(struct csio_hw *hw)
2508{
2509 struct csio_mb *mbp;
2510 enum fw_retval retval;
2511 int rv;
2512 int i;
2513
2514 if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2515 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
2516 if (!mbp)
2517 goto out;
2518
2519 csio_mb_initialize(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
2520
2521 if (csio_mb_issue(hw, mbp)) {
2522 csio_err(hw, "Issue of FW_INITIALIZE_CMD failed!\n");
2523 goto free_and_out;
2524 }
2525
2526 retval = csio_mb_fw_retval(mbp);
2527 if (retval != FW_SUCCESS) {
2528 csio_err(hw, "FW_INITIALIZE_CMD returned 0x%x!\n",
2529 retval);
2530 goto free_and_out;
2531 }
2532
2533 mempool_free(mbp, hw->mb_mempool);
2534 }
2535
2536 rv = csio_get_fcoe_resinfo(hw);
2537 if (rv != 0) {
2538 csio_err(hw, "Failed to read fcoe resource info: %d\n", rv);
2539 goto out;
2540 }
2541
2542 spin_unlock_irq(&hw->lock);
2543 rv = csio_config_queues(hw);
2544 spin_lock_irq(&hw->lock);
2545
2546 if (rv != 0) {
2547 csio_err(hw, "Config of queues failed!: %d\n", rv);
2548 goto out;
2549 }
2550
2551 for (i = 0; i < hw->num_pports; i++)
2552 hw->pport[i].mod_type = FW_PORT_MOD_TYPE_NA;
2553
2554 if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2555 rv = csio_enable_ports(hw);
2556 if (rv != 0) {
2557 csio_err(hw, "Failed to enable ports: %d\n", rv);
2558 goto out;
2559 }
2560 }
2561
2562 csio_post_event(&hw->sm, CSIO_HWE_INIT_DONE);
2563 return;
2564
2565free_and_out:
2566 mempool_free(mbp, hw->mb_mempool);
2567out:
2568 return;
2569}
2570
2571#define PF_INTR_MASK (PFSW | PFCIM)
2572
2573/*
2574 * csio_hw_intr_enable - Enable HW interrupts
2575 * @hw: Pointer to HW module.
2576 *
2577 * Enable interrupts in HW registers.
2578 */
2579static void
2580csio_hw_intr_enable(struct csio_hw *hw)
2581{
2582 uint16_t vec = (uint16_t)csio_get_mb_intr_idx(csio_hw_to_mbm(hw));
2583 uint32_t pf = SOURCEPF_GET(csio_rd_reg32(hw, PL_WHOAMI));
2584 uint32_t pl = csio_rd_reg32(hw, PL_INT_ENABLE);
2585
2586 /*
2587 * Set aivec for MSI/MSIX. PCIE_PF_CFG.INTXType is set up
2588 * by FW, so do nothing for INTX.
2589 */
2590 if (hw->intr_mode == CSIO_IM_MSIX)
2591 csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG),
2592 AIVEC(AIVEC_MASK), vec);
2593 else if (hw->intr_mode == CSIO_IM_MSI)
2594 csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG),
2595 AIVEC(AIVEC_MASK), 0);
2596
2597 csio_wr_reg32(hw, PF_INTR_MASK, MYPF_REG(PL_PF_INT_ENABLE));
2598
2599 /* Turn on MB interrupts - this will internally flush PIO as well */
2600 csio_mb_intr_enable(hw);
2601
2602 /* These are common registers - only a master can modify them */
2603 if (csio_is_hw_master(hw)) {
2604 /*
2605 * Disable the Serial FLASH interrupt, if enabled!
2606 */
2607 pl &= (~SF);
2608 csio_wr_reg32(hw, pl, PL_INT_ENABLE);
2609
2610 csio_wr_reg32(hw, ERR_CPL_EXCEED_IQE_SIZE |
2611 EGRESS_SIZE_ERR | ERR_INVALID_CIDX_INC |
2612 ERR_CPL_OPCODE_0 | ERR_DROPPED_DB |
2613 ERR_DATA_CPL_ON_HIGH_QID1 |
2614 ERR_DATA_CPL_ON_HIGH_QID0 | ERR_BAD_DB_PIDX3 |
2615 ERR_BAD_DB_PIDX2 | ERR_BAD_DB_PIDX1 |
2616 ERR_BAD_DB_PIDX0 | ERR_ING_CTXT_PRIO |
2617 ERR_EGR_CTXT_PRIO | INGRESS_SIZE_ERR,
2618 SGE_INT_ENABLE3);
2619 csio_set_reg_field(hw, PL_INT_MAP0, 0, 1 << pf);
2620 }
2621
2622 hw->flags |= CSIO_HWF_HW_INTR_ENABLED;
2623
2624}
2625
2626/*
2627 * csio_hw_intr_disable - Disable HW interrupts
2628 * @hw: Pointer to HW module.
2629 *
2630 * Turn off Mailbox and PCI_PF_CFG interrupts.
2631 */
2632void
2633csio_hw_intr_disable(struct csio_hw *hw)
2634{
2635 uint32_t pf = SOURCEPF_GET(csio_rd_reg32(hw, PL_WHOAMI));
2636
2637 if (!(hw->flags & CSIO_HWF_HW_INTR_ENABLED))
2638 return;
2639
2640 hw->flags &= ~CSIO_HWF_HW_INTR_ENABLED;
2641
2642 csio_wr_reg32(hw, 0, MYPF_REG(PL_PF_INT_ENABLE));
2643 if (csio_is_hw_master(hw))
2644 csio_set_reg_field(hw, PL_INT_MAP0, 1 << pf, 0);
2645
2646 /* Turn off MB interrupts */
2647 csio_mb_intr_disable(hw);
2648
2649}
2650
2651static void
2652csio_hw_fatal_err(struct csio_hw *hw)
2653{
2654 csio_set_reg_field(hw, SGE_CONTROL, GLOBALENABLE, 0);
2655 csio_hw_intr_disable(hw);
2656
2657 /* Do not reset HW, we may need FW state for debugging */
2658 csio_fatal(hw, "HW Fatal error encountered!\n");
2659}
2660
2661/*****************************************************************************/
2662/* START: HW SM */
2663/*****************************************************************************/
2664/*
2665 * csio_hws_uninit - Uninit state
2666 * @hw - HW module
2667 * @evt - Event
2668 *
2669 */
2670static void
2671csio_hws_uninit(struct csio_hw *hw, enum csio_hw_ev evt)
2672{
2673 hw->prev_evt = hw->cur_evt;
2674 hw->cur_evt = evt;
2675 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2676
2677 switch (evt) {
2678 case CSIO_HWE_CFG:
2679 csio_set_state(&hw->sm, csio_hws_configuring);
2680 csio_hw_configure(hw);
2681 break;
2682
2683 default:
2684 CSIO_INC_STATS(hw, n_evt_unexp);
2685 break;
2686 }
2687}
2688
2689/*
2690 * csio_hws_configuring - Configuring state
2691 * @hw - HW module
2692 * @evt - Event
2693 *
2694 */
2695static void
2696csio_hws_configuring(struct csio_hw *hw, enum csio_hw_ev evt)
2697{
2698 hw->prev_evt = hw->cur_evt;
2699 hw->cur_evt = evt;
2700 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2701
2702 switch (evt) {
2703 case CSIO_HWE_INIT:
2704 csio_set_state(&hw->sm, csio_hws_initializing);
2705 csio_hw_initialize(hw);
2706 break;
2707
2708 case CSIO_HWE_INIT_DONE:
2709 csio_set_state(&hw->sm, csio_hws_ready);
2710 /* Fan out event to all lnode SMs */
2711 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
2712 break;
2713
2714 case CSIO_HWE_FATAL:
2715 csio_set_state(&hw->sm, csio_hws_uninit);
2716 break;
2717
2718 case CSIO_HWE_PCI_REMOVE:
2719 csio_do_bye(hw);
2720 break;
2721 default:
2722 CSIO_INC_STATS(hw, n_evt_unexp);
2723 break;
2724 }
2725}
2726
2727/*
2728 * csio_hws_initializing - Initialiazing state
2729 * @hw - HW module
2730 * @evt - Event
2731 *
2732 */
2733static void
2734csio_hws_initializing(struct csio_hw *hw, enum csio_hw_ev evt)
2735{
2736 hw->prev_evt = hw->cur_evt;
2737 hw->cur_evt = evt;
2738 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2739
2740 switch (evt) {
2741 case CSIO_HWE_INIT_DONE:
2742 csio_set_state(&hw->sm, csio_hws_ready);
2743
2744 /* Fan out event to all lnode SMs */
2745 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
2746
2747 /* Enable interrupts */
2748 csio_hw_intr_enable(hw);
2749 break;
2750
2751 case CSIO_HWE_FATAL:
2752 csio_set_state(&hw->sm, csio_hws_uninit);
2753 break;
2754
2755 case CSIO_HWE_PCI_REMOVE:
2756 csio_do_bye(hw);
2757 break;
2758
2759 default:
2760 CSIO_INC_STATS(hw, n_evt_unexp);
2761 break;
2762 }
2763}
2764
2765/*
2766 * csio_hws_ready - Ready state
2767 * @hw - HW module
2768 * @evt - Event
2769 *
2770 */
2771static void
2772csio_hws_ready(struct csio_hw *hw, enum csio_hw_ev evt)
2773{
2774 /* Remember the event */
2775 hw->evtflag = evt;
2776
2777 hw->prev_evt = hw->cur_evt;
2778 hw->cur_evt = evt;
2779 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2780
2781 switch (evt) {
2782 case CSIO_HWE_HBA_RESET:
2783 case CSIO_HWE_FW_DLOAD:
2784 case CSIO_HWE_SUSPEND:
2785 case CSIO_HWE_PCI_REMOVE:
2786 case CSIO_HWE_PCIERR_DETECTED:
2787 csio_set_state(&hw->sm, csio_hws_quiescing);
2788 /* cleanup all outstanding cmds */
2789 if (evt == CSIO_HWE_HBA_RESET ||
2790 evt == CSIO_HWE_PCIERR_DETECTED)
2791 csio_scsim_cleanup_io(csio_hw_to_scsim(hw), false);
2792 else
2793 csio_scsim_cleanup_io(csio_hw_to_scsim(hw), true);
2794
2795 csio_hw_intr_disable(hw);
2796 csio_hw_mbm_cleanup(hw);
2797 csio_evtq_stop(hw);
2798 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWSTOP);
2799 csio_evtq_flush(hw);
2800 csio_mgmtm_cleanup(csio_hw_to_mgmtm(hw));
2801 csio_post_event(&hw->sm, CSIO_HWE_QUIESCED);
2802 break;
2803
2804 case CSIO_HWE_FATAL:
2805 csio_set_state(&hw->sm, csio_hws_uninit);
2806 break;
2807
2808 default:
2809 CSIO_INC_STATS(hw, n_evt_unexp);
2810 break;
2811 }
2812}
2813
2814/*
2815 * csio_hws_quiescing - Quiescing state
2816 * @hw - HW module
2817 * @evt - Event
2818 *
2819 */
2820static void
2821csio_hws_quiescing(struct csio_hw *hw, enum csio_hw_ev evt)
2822{
2823 hw->prev_evt = hw->cur_evt;
2824 hw->cur_evt = evt;
2825 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2826
2827 switch (evt) {
2828 case CSIO_HWE_QUIESCED:
2829 switch (hw->evtflag) {
2830 case CSIO_HWE_FW_DLOAD:
2831 csio_set_state(&hw->sm, csio_hws_resetting);
2832 /* Download firmware */
2833 /* Fall through */
2834
2835 case CSIO_HWE_HBA_RESET:
2836 csio_set_state(&hw->sm, csio_hws_resetting);
2837 /* Start reset of the HBA */
2838 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWRESET);
2839 csio_wr_destroy_queues(hw, false);
2840 csio_do_reset(hw, false);
2841 csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET_DONE);
2842 break;
2843
2844 case CSIO_HWE_PCI_REMOVE:
2845 csio_set_state(&hw->sm, csio_hws_removing);
2846 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREMOVE);
2847 csio_wr_destroy_queues(hw, true);
2848 /* Now send the bye command */
2849 csio_do_bye(hw);
2850 break;
2851
2852 case CSIO_HWE_SUSPEND:
2853 csio_set_state(&hw->sm, csio_hws_quiesced);
2854 break;
2855
2856 case CSIO_HWE_PCIERR_DETECTED:
2857 csio_set_state(&hw->sm, csio_hws_pcierr);
2858 csio_wr_destroy_queues(hw, false);
2859 break;
2860
2861 default:
2862 CSIO_INC_STATS(hw, n_evt_unexp);
2863 break;
2864
2865 }
2866 break;
2867
2868 default:
2869 CSIO_INC_STATS(hw, n_evt_unexp);
2870 break;
2871 }
2872}
2873
2874/*
2875 * csio_hws_quiesced - Quiesced state
2876 * @hw - HW module
2877 * @evt - Event
2878 *
2879 */
2880static void
2881csio_hws_quiesced(struct csio_hw *hw, enum csio_hw_ev evt)
2882{
2883 hw->prev_evt = hw->cur_evt;
2884 hw->cur_evt = evt;
2885 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2886
2887 switch (evt) {
2888 case CSIO_HWE_RESUME:
2889 csio_set_state(&hw->sm, csio_hws_configuring);
2890 csio_hw_configure(hw);
2891 break;
2892
2893 default:
2894 CSIO_INC_STATS(hw, n_evt_unexp);
2895 break;
2896 }
2897}
2898
2899/*
2900 * csio_hws_resetting - HW Resetting state
2901 * @hw - HW module
2902 * @evt - Event
2903 *
2904 */
2905static void
2906csio_hws_resetting(struct csio_hw *hw, enum csio_hw_ev evt)
2907{
2908 hw->prev_evt = hw->cur_evt;
2909 hw->cur_evt = evt;
2910 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2911
2912 switch (evt) {
2913 case CSIO_HWE_HBA_RESET_DONE:
2914 csio_evtq_start(hw);
2915 csio_set_state(&hw->sm, csio_hws_configuring);
2916 csio_hw_configure(hw);
2917 break;
2918
2919 default:
2920 CSIO_INC_STATS(hw, n_evt_unexp);
2921 break;
2922 }
2923}
2924
2925/*
2926 * csio_hws_removing - PCI Hotplug removing state
2927 * @hw - HW module
2928 * @evt - Event
2929 *
2930 */
2931static void
2932csio_hws_removing(struct csio_hw *hw, enum csio_hw_ev evt)
2933{
2934 hw->prev_evt = hw->cur_evt;
2935 hw->cur_evt = evt;
2936 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2937
2938 switch (evt) {
2939 case CSIO_HWE_HBA_RESET:
2940 if (!csio_is_hw_master(hw))
2941 break;
2942 /*
2943 * The BYE should have alerady been issued, so we cant
2944 * use the mailbox interface. Hence we use the PL_RST
2945 * register directly.
2946 */
2947 csio_err(hw, "Resetting HW and waiting 2 seconds...\n");
2948 csio_wr_reg32(hw, PIORSTMODE | PIORST, PL_RST);
2949 mdelay(2000);
2950 break;
2951
2952 /* Should never receive any new events */
2953 default:
2954 CSIO_INC_STATS(hw, n_evt_unexp);
2955 break;
2956
2957 }
2958}
2959
2960/*
2961 * csio_hws_pcierr - PCI Error state
2962 * @hw - HW module
2963 * @evt - Event
2964 *
2965 */
2966static void
2967csio_hws_pcierr(struct csio_hw *hw, enum csio_hw_ev evt)
2968{
2969 hw->prev_evt = hw->cur_evt;
2970 hw->cur_evt = evt;
2971 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2972
2973 switch (evt) {
2974 case CSIO_HWE_PCIERR_SLOT_RESET:
2975 csio_evtq_start(hw);
2976 csio_set_state(&hw->sm, csio_hws_configuring);
2977 csio_hw_configure(hw);
2978 break;
2979
2980 default:
2981 CSIO_INC_STATS(hw, n_evt_unexp);
2982 break;
2983 }
2984}
2985
2986/*****************************************************************************/
2987/* END: HW SM */
2988/*****************************************************************************/
2989
2990/* Slow path handlers */
2991struct intr_info {
2992 unsigned int mask; /* bits to check in interrupt status */
2993 const char *msg; /* message to print or NULL */
2994 short stat_idx; /* stat counter to increment or -1 */
2995 unsigned short fatal; /* whether the condition reported is fatal */
2996};
2997
2998/*
2999 * csio_handle_intr_status - table driven interrupt handler
3000 * @hw: HW instance
3001 * @reg: the interrupt status register to process
3002 * @acts: table of interrupt actions
3003 *
3004 * A table driven interrupt handler that applies a set of masks to an
3005 * interrupt status word and performs the corresponding actions if the
3006 * interrupts described by the mask have occured. The actions include
3007 * optionally emitting a warning or alert message. The table is terminated
3008 * by an entry specifying mask 0. Returns the number of fatal interrupt
3009 * conditions.
3010 */
3011static int
3012csio_handle_intr_status(struct csio_hw *hw, unsigned int reg,
3013 const struct intr_info *acts)
3014{
3015 int fatal = 0;
3016 unsigned int mask = 0;
3017 unsigned int status = csio_rd_reg32(hw, reg);
3018
3019 for ( ; acts->mask; ++acts) {
3020 if (!(status & acts->mask))
3021 continue;
3022 if (acts->fatal) {
3023 fatal++;
3024 csio_fatal(hw, "Fatal %s (0x%x)\n",
3025 acts->msg, status & acts->mask);
3026 } else if (acts->msg)
3027 csio_info(hw, "%s (0x%x)\n",
3028 acts->msg, status & acts->mask);
3029 mask |= acts->mask;
3030 }
3031 status &= mask;
3032 if (status) /* clear processed interrupts */
3033 csio_wr_reg32(hw, status, reg);
3034 return fatal;
3035}
3036
3037/*
3038 * Interrupt handler for the PCIE module.
3039 */
3040static void
3041csio_pcie_intr_handler(struct csio_hw *hw)
3042{
3043 static struct intr_info sysbus_intr_info[] = {
3044 { RNPP, "RXNP array parity error", -1, 1 },
3045 { RPCP, "RXPC array parity error", -1, 1 },
3046 { RCIP, "RXCIF array parity error", -1, 1 },
3047 { RCCP, "Rx completions control array parity error", -1, 1 },
3048 { RFTP, "RXFT array parity error", -1, 1 },
3049 { 0, NULL, 0, 0 }
3050 };
3051 static struct intr_info pcie_port_intr_info[] = {
3052 { TPCP, "TXPC array parity error", -1, 1 },
3053 { TNPP, "TXNP array parity error", -1, 1 },
3054 { TFTP, "TXFT array parity error", -1, 1 },
3055 { TCAP, "TXCA array parity error", -1, 1 },
3056 { TCIP, "TXCIF array parity error", -1, 1 },
3057 { RCAP, "RXCA array parity error", -1, 1 },
3058 { OTDD, "outbound request TLP discarded", -1, 1 },
3059 { RDPE, "Rx data parity error", -1, 1 },
3060 { TDUE, "Tx uncorrectable data error", -1, 1 },
3061 { 0, NULL, 0, 0 }
3062 };
3063 static struct intr_info pcie_intr_info[] = {
3064 { MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
3065 { MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
3066 { MSIDATAPERR, "MSI data parity error", -1, 1 },
3067 { MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
3068 { MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
3069 { MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
3070 { MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
3071 { PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
3072 { PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
3073 { TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
3074 { CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
3075 { CREQPERR, "PCI CMD channel request parity error", -1, 1 },
3076 { CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
3077 { DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
3078 { DREQPERR, "PCI DMA channel request parity error", -1, 1 },
3079 { DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
3080 { HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
3081 { HREQPERR, "PCI HMA channel request parity error", -1, 1 },
3082 { HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
3083 { CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
3084 { FIDPERR, "PCI FID parity error", -1, 1 },
3085 { INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
3086 { MATAGPERR, "PCI MA tag parity error", -1, 1 },
3087 { PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
3088 { RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
3089 { RXWRPERR, "PCI Rx write parity error", -1, 1 },
3090 { RPLPERR, "PCI replay buffer parity error", -1, 1 },
3091 { PCIESINT, "PCI core secondary fault", -1, 1 },
3092 { PCIEPINT, "PCI core primary fault", -1, 1 },
3093 { UNXSPLCPLERR, "PCI unexpected split completion error", -1,
3094 0 },
3095 { 0, NULL, 0, 0 }
3096 };
3097
3098 int fat;
3099
3100 fat = csio_handle_intr_status(hw,
3101 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
3102 sysbus_intr_info) +
3103 csio_handle_intr_status(hw,
3104 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
3105 pcie_port_intr_info) +
3106 csio_handle_intr_status(hw, PCIE_INT_CAUSE, pcie_intr_info);
3107 if (fat)
3108 csio_hw_fatal_err(hw);
3109}
3110
3111/*
3112 * TP interrupt handler.
3113 */
3114static void csio_tp_intr_handler(struct csio_hw *hw)
3115{
3116 static struct intr_info tp_intr_info[] = {
3117 { 0x3fffffff, "TP parity error", -1, 1 },
3118 { FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
3119 { 0, NULL, 0, 0 }
3120 };
3121
3122 if (csio_handle_intr_status(hw, TP_INT_CAUSE, tp_intr_info))
3123 csio_hw_fatal_err(hw);
3124}
3125
3126/*
3127 * SGE interrupt handler.
3128 */
3129static void csio_sge_intr_handler(struct csio_hw *hw)
3130{
3131 uint64_t v;
3132
3133 static struct intr_info sge_intr_info[] = {
3134 { ERR_CPL_EXCEED_IQE_SIZE,
3135 "SGE received CPL exceeding IQE size", -1, 1 },
3136 { ERR_INVALID_CIDX_INC,
3137 "SGE GTS CIDX increment too large", -1, 0 },
3138 { ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
3139 { ERR_DROPPED_DB, "SGE doorbell dropped", -1, 0 },
3140 { ERR_DATA_CPL_ON_HIGH_QID1 | ERR_DATA_CPL_ON_HIGH_QID0,
3141 "SGE IQID > 1023 received CPL for FL", -1, 0 },
3142 { ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
3143 0 },
3144 { ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
3145 0 },
3146 { ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
3147 0 },
3148 { ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
3149 0 },
3150 { ERR_ING_CTXT_PRIO,
3151 "SGE too many priority ingress contexts", -1, 0 },
3152 { ERR_EGR_CTXT_PRIO,
3153 "SGE too many priority egress contexts", -1, 0 },
3154 { INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
3155 { EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
3156 { 0, NULL, 0, 0 }
3157 };
3158
3159 v = (uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE1) |
3160 ((uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE2) << 32);
3161 if (v) {
3162 csio_fatal(hw, "SGE parity error (%#llx)\n",
3163 (unsigned long long)v);
3164 csio_wr_reg32(hw, (uint32_t)(v & 0xFFFFFFFF),
3165 SGE_INT_CAUSE1);
3166 csio_wr_reg32(hw, (uint32_t)(v >> 32), SGE_INT_CAUSE2);
3167 }
3168
3169 v |= csio_handle_intr_status(hw, SGE_INT_CAUSE3, sge_intr_info);
3170
3171 if (csio_handle_intr_status(hw, SGE_INT_CAUSE3, sge_intr_info) ||
3172 v != 0)
3173 csio_hw_fatal_err(hw);
3174}
3175
3176#define CIM_OBQ_INTR (OBQULP0PARERR | OBQULP1PARERR | OBQULP2PARERR |\
3177 OBQULP3PARERR | OBQSGEPARERR | OBQNCSIPARERR)
3178#define CIM_IBQ_INTR (IBQTP0PARERR | IBQTP1PARERR | IBQULPPARERR |\
3179 IBQSGEHIPARERR | IBQSGELOPARERR | IBQNCSIPARERR)
3180
3181/*
3182 * CIM interrupt handler.
3183 */
3184static void csio_cim_intr_handler(struct csio_hw *hw)
3185{
3186 static struct intr_info cim_intr_info[] = {
3187 { PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
3188 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
3189 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
3190 { MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
3191 { MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
3192 { TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
3193 { TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
3194 { 0, NULL, 0, 0 }
3195 };
3196 static struct intr_info cim_upintr_info[] = {
3197 { RSVDSPACEINT, "CIM reserved space access", -1, 1 },
3198 { ILLTRANSINT, "CIM illegal transaction", -1, 1 },
3199 { ILLWRINT, "CIM illegal write", -1, 1 },
3200 { ILLRDINT, "CIM illegal read", -1, 1 },
3201 { ILLRDBEINT, "CIM illegal read BE", -1, 1 },
3202 { ILLWRBEINT, "CIM illegal write BE", -1, 1 },
3203 { SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
3204 { SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
3205 { BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
3206 { SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
3207 { SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
3208 { BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
3209 { SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
3210 { SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
3211 { BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
3212 { BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
3213 { SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
3214 { SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
3215 { BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
3216 { BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
3217 { SGLRDPLINT , "CIM single read from PL space", -1, 1 },
3218 { SGLWRPLINT , "CIM single write to PL space", -1, 1 },
3219 { BLKRDPLINT , "CIM block read from PL space", -1, 1 },
3220 { BLKWRPLINT , "CIM block write to PL space", -1, 1 },
3221 { REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
3222 { RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
3223 { TIMEOUTINT , "CIM PIF timeout", -1, 1 },
3224 { TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
3225 { 0, NULL, 0, 0 }
3226 };
3227
3228 int fat;
3229
3230 fat = csio_handle_intr_status(hw, CIM_HOST_INT_CAUSE,
3231 cim_intr_info) +
3232 csio_handle_intr_status(hw, CIM_HOST_UPACC_INT_CAUSE,
3233 cim_upintr_info);
3234 if (fat)
3235 csio_hw_fatal_err(hw);
3236}
3237
3238/*
3239 * ULP RX interrupt handler.
3240 */
3241static void csio_ulprx_intr_handler(struct csio_hw *hw)
3242{
3243 static struct intr_info ulprx_intr_info[] = {
3244 { 0x1800000, "ULPRX context error", -1, 1 },
3245 { 0x7fffff, "ULPRX parity error", -1, 1 },
3246 { 0, NULL, 0, 0 }
3247 };
3248
3249 if (csio_handle_intr_status(hw, ULP_RX_INT_CAUSE, ulprx_intr_info))
3250 csio_hw_fatal_err(hw);
3251}
3252
3253/*
3254 * ULP TX interrupt handler.
3255 */
3256static void csio_ulptx_intr_handler(struct csio_hw *hw)
3257{
3258 static struct intr_info ulptx_intr_info[] = {
3259 { PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
3260 0 },
3261 { PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
3262 0 },
3263 { PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
3264 0 },
3265 { PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
3266 0 },
3267 { 0xfffffff, "ULPTX parity error", -1, 1 },
3268 { 0, NULL, 0, 0 }
3269 };
3270
3271 if (csio_handle_intr_status(hw, ULP_TX_INT_CAUSE, ulptx_intr_info))
3272 csio_hw_fatal_err(hw);
3273}
3274
3275/*
3276 * PM TX interrupt handler.
3277 */
3278static void csio_pmtx_intr_handler(struct csio_hw *hw)
3279{
3280 static struct intr_info pmtx_intr_info[] = {
3281 { PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
3282 { PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
3283 { PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
3284 { ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
3285 { 0xffffff0, "PMTX framing error", -1, 1 },
3286 { OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
3287 { DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1,
3288 1 },
3289 { ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
3290 { C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
3291 { 0, NULL, 0, 0 }
3292 };
3293
3294 if (csio_handle_intr_status(hw, PM_TX_INT_CAUSE, pmtx_intr_info))
3295 csio_hw_fatal_err(hw);
3296}
3297
3298/*
3299 * PM RX interrupt handler.
3300 */
3301static void csio_pmrx_intr_handler(struct csio_hw *hw)
3302{
3303 static struct intr_info pmrx_intr_info[] = {
3304 { ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
3305 { 0x3ffff0, "PMRX framing error", -1, 1 },
3306 { OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
3307 { DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1,
3308 1 },
3309 { IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
3310 { E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
3311 { 0, NULL, 0, 0 }
3312 };
3313
3314 if (csio_handle_intr_status(hw, PM_RX_INT_CAUSE, pmrx_intr_info))
3315 csio_hw_fatal_err(hw);
3316}
3317
3318/*
3319 * CPL switch interrupt handler.
3320 */
3321static void csio_cplsw_intr_handler(struct csio_hw *hw)
3322{
3323 static struct intr_info cplsw_intr_info[] = {
3324 { CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
3325 { CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
3326 { TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
3327 { SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
3328 { CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
3329 { ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
3330 { 0, NULL, 0, 0 }
3331 };
3332
3333 if (csio_handle_intr_status(hw, CPL_INTR_CAUSE, cplsw_intr_info))
3334 csio_hw_fatal_err(hw);
3335}
3336
3337/*
3338 * LE interrupt handler.
3339 */
3340static void csio_le_intr_handler(struct csio_hw *hw)
3341{
3342 static struct intr_info le_intr_info[] = {
3343 { LIPMISS, "LE LIP miss", -1, 0 },
3344 { LIP0, "LE 0 LIP error", -1, 0 },
3345 { PARITYERR, "LE parity error", -1, 1 },
3346 { UNKNOWNCMD, "LE unknown command", -1, 1 },
3347 { REQQPARERR, "LE request queue parity error", -1, 1 },
3348 { 0, NULL, 0, 0 }
3349 };
3350
3351 if (csio_handle_intr_status(hw, LE_DB_INT_CAUSE, le_intr_info))
3352 csio_hw_fatal_err(hw);
3353}
3354
3355/*
3356 * MPS interrupt handler.
3357 */
3358static void csio_mps_intr_handler(struct csio_hw *hw)
3359{
3360 static struct intr_info mps_rx_intr_info[] = {
3361 { 0xffffff, "MPS Rx parity error", -1, 1 },
3362 { 0, NULL, 0, 0 }
3363 };
3364 static struct intr_info mps_tx_intr_info[] = {
3365 { TPFIFO, "MPS Tx TP FIFO parity error", -1, 1 },
3366 { NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
3367 { TXDATAFIFO, "MPS Tx data FIFO parity error", -1, 1 },
3368 { TXDESCFIFO, "MPS Tx desc FIFO parity error", -1, 1 },
3369 { BUBBLE, "MPS Tx underflow", -1, 1 },
3370 { SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
3371 { FRMERR, "MPS Tx framing error", -1, 1 },
3372 { 0, NULL, 0, 0 }
3373 };
3374 static struct intr_info mps_trc_intr_info[] = {
3375 { FILTMEM, "MPS TRC filter parity error", -1, 1 },
3376 { PKTFIFO, "MPS TRC packet FIFO parity error", -1, 1 },
3377 { MISCPERR, "MPS TRC misc parity error", -1, 1 },
3378 { 0, NULL, 0, 0 }
3379 };
3380 static struct intr_info mps_stat_sram_intr_info[] = {
3381 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
3382 { 0, NULL, 0, 0 }
3383 };
3384 static struct intr_info mps_stat_tx_intr_info[] = {
3385 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
3386 { 0, NULL, 0, 0 }
3387 };
3388 static struct intr_info mps_stat_rx_intr_info[] = {
3389 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
3390 { 0, NULL, 0, 0 }
3391 };
3392 static struct intr_info mps_cls_intr_info[] = {
3393 { MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
3394 { MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
3395 { HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
3396 { 0, NULL, 0, 0 }
3397 };
3398
3399 int fat;
3400
3401 fat = csio_handle_intr_status(hw, MPS_RX_PERR_INT_CAUSE,
3402 mps_rx_intr_info) +
3403 csio_handle_intr_status(hw, MPS_TX_INT_CAUSE,
3404 mps_tx_intr_info) +
3405 csio_handle_intr_status(hw, MPS_TRC_INT_CAUSE,
3406 mps_trc_intr_info) +
3407 csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_SRAM,
3408 mps_stat_sram_intr_info) +
3409 csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
3410 mps_stat_tx_intr_info) +
3411 csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
3412 mps_stat_rx_intr_info) +
3413 csio_handle_intr_status(hw, MPS_CLS_INT_CAUSE,
3414 mps_cls_intr_info);
3415
3416 csio_wr_reg32(hw, 0, MPS_INT_CAUSE);
3417 csio_rd_reg32(hw, MPS_INT_CAUSE); /* flush */
3418 if (fat)
3419 csio_hw_fatal_err(hw);
3420}
3421
3422#define MEM_INT_MASK (PERR_INT_CAUSE | ECC_CE_INT_CAUSE | ECC_UE_INT_CAUSE)
3423
3424/*
3425 * EDC/MC interrupt handler.
3426 */
3427static void csio_mem_intr_handler(struct csio_hw *hw, int idx)
3428{
3429 static const char name[3][5] = { "EDC0", "EDC1", "MC" };
3430
3431 unsigned int addr, cnt_addr, v;
3432
3433 if (idx <= MEM_EDC1) {
3434 addr = EDC_REG(EDC_INT_CAUSE, idx);
3435 cnt_addr = EDC_REG(EDC_ECC_STATUS, idx);
3436 } else {
3437 addr = MC_INT_CAUSE;
3438 cnt_addr = MC_ECC_STATUS;
3439 }
3440
3441 v = csio_rd_reg32(hw, addr) & MEM_INT_MASK;
3442 if (v & PERR_INT_CAUSE)
3443 csio_fatal(hw, "%s FIFO parity error\n", name[idx]);
3444 if (v & ECC_CE_INT_CAUSE) {
3445 uint32_t cnt = ECC_CECNT_GET(csio_rd_reg32(hw, cnt_addr));
3446
3447 csio_wr_reg32(hw, ECC_CECNT_MASK, cnt_addr);
3448 csio_warn(hw, "%u %s correctable ECC data error%s\n",
3449 cnt, name[idx], cnt > 1 ? "s" : "");
3450 }
3451 if (v & ECC_UE_INT_CAUSE)
3452 csio_fatal(hw, "%s uncorrectable ECC data error\n", name[idx]);
3453
3454 csio_wr_reg32(hw, v, addr);
3455 if (v & (PERR_INT_CAUSE | ECC_UE_INT_CAUSE))
3456 csio_hw_fatal_err(hw);
3457}
3458
3459/*
3460 * MA interrupt handler.
3461 */
3462static void csio_ma_intr_handler(struct csio_hw *hw)
3463{
3464 uint32_t v, status = csio_rd_reg32(hw, MA_INT_CAUSE);
3465
3466 if (status & MEM_PERR_INT_CAUSE)
3467 csio_fatal(hw, "MA parity error, parity status %#x\n",
3468 csio_rd_reg32(hw, MA_PARITY_ERROR_STATUS));
3469 if (status & MEM_WRAP_INT_CAUSE) {
3470 v = csio_rd_reg32(hw, MA_INT_WRAP_STATUS);
3471 csio_fatal(hw,
3472 "MA address wrap-around error by client %u to address %#x\n",
3473 MEM_WRAP_CLIENT_NUM_GET(v), MEM_WRAP_ADDRESS_GET(v) << 4);
3474 }
3475 csio_wr_reg32(hw, status, MA_INT_CAUSE);
3476 csio_hw_fatal_err(hw);
3477}
3478
3479/*
3480 * SMB interrupt handler.
3481 */
3482static void csio_smb_intr_handler(struct csio_hw *hw)
3483{
3484 static struct intr_info smb_intr_info[] = {
3485 { MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
3486 { MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
3487 { SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
3488 { 0, NULL, 0, 0 }
3489 };
3490
3491 if (csio_handle_intr_status(hw, SMB_INT_CAUSE, smb_intr_info))
3492 csio_hw_fatal_err(hw);
3493}
3494
3495/*
3496 * NC-SI interrupt handler.
3497 */
3498static void csio_ncsi_intr_handler(struct csio_hw *hw)
3499{
3500 static struct intr_info ncsi_intr_info[] = {
3501 { CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
3502 { MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
3503 { TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
3504 { RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
3505 { 0, NULL, 0, 0 }
3506 };
3507
3508 if (csio_handle_intr_status(hw, NCSI_INT_CAUSE, ncsi_intr_info))
3509 csio_hw_fatal_err(hw);
3510}
3511
3512/*
3513 * XGMAC interrupt handler.
3514 */
3515static void csio_xgmac_intr_handler(struct csio_hw *hw, int port)
3516{
3517 uint32_t v = csio_rd_reg32(hw, PORT_REG(port, XGMAC_PORT_INT_CAUSE));
3518
3519 v &= TXFIFO_PRTY_ERR | RXFIFO_PRTY_ERR;
3520 if (!v)
3521 return;
3522
3523 if (v & TXFIFO_PRTY_ERR)
3524 csio_fatal(hw, "XGMAC %d Tx FIFO parity error\n", port);
3525 if (v & RXFIFO_PRTY_ERR)
3526 csio_fatal(hw, "XGMAC %d Rx FIFO parity error\n", port);
3527 csio_wr_reg32(hw, v, PORT_REG(port, XGMAC_PORT_INT_CAUSE));
3528 csio_hw_fatal_err(hw);
3529}
3530
3531/*
3532 * PL interrupt handler.
3533 */
3534static void csio_pl_intr_handler(struct csio_hw *hw)
3535{
3536 static struct intr_info pl_intr_info[] = {
3537 { FATALPERR, "T4 fatal parity error", -1, 1 },
3538 { PERRVFID, "PL VFID_MAP parity error", -1, 1 },
3539 { 0, NULL, 0, 0 }
3540 };
3541
3542 if (csio_handle_intr_status(hw, PL_PL_INT_CAUSE, pl_intr_info))
3543 csio_hw_fatal_err(hw);
3544}
3545
3546/*
3547 * csio_hw_slow_intr_handler - control path interrupt handler
3548 * @hw: HW module
3549 *
3550 * Interrupt handler for non-data global interrupt events, e.g., errors.
3551 * The designation 'slow' is because it involves register reads, while
3552 * data interrupts typically don't involve any MMIOs.
3553 */
3554int
3555csio_hw_slow_intr_handler(struct csio_hw *hw)
3556{
3557 uint32_t cause = csio_rd_reg32(hw, PL_INT_CAUSE);
3558
3559 if (!(cause & CSIO_GLBL_INTR_MASK)) {
3560 CSIO_INC_STATS(hw, n_plint_unexp);
3561 return 0;
3562 }
3563
3564 csio_dbg(hw, "Slow interrupt! cause: 0x%x\n", cause);
3565
3566 CSIO_INC_STATS(hw, n_plint_cnt);
3567
3568 if (cause & CIM)
3569 csio_cim_intr_handler(hw);
3570
3571 if (cause & MPS)
3572 csio_mps_intr_handler(hw);
3573
3574 if (cause & NCSI)
3575 csio_ncsi_intr_handler(hw);
3576
3577 if (cause & PL)
3578 csio_pl_intr_handler(hw);
3579
3580 if (cause & SMB)
3581 csio_smb_intr_handler(hw);
3582
3583 if (cause & XGMAC0)
3584 csio_xgmac_intr_handler(hw, 0);
3585
3586 if (cause & XGMAC1)
3587 csio_xgmac_intr_handler(hw, 1);
3588
3589 if (cause & XGMAC_KR0)
3590 csio_xgmac_intr_handler(hw, 2);
3591
3592 if (cause & XGMAC_KR1)
3593 csio_xgmac_intr_handler(hw, 3);
3594
3595 if (cause & PCIE)
3596 csio_pcie_intr_handler(hw);
3597
3598 if (cause & MC)
3599 csio_mem_intr_handler(hw, MEM_MC);
3600
3601 if (cause & EDC0)
3602 csio_mem_intr_handler(hw, MEM_EDC0);
3603
3604 if (cause & EDC1)
3605 csio_mem_intr_handler(hw, MEM_EDC1);
3606
3607 if (cause & LE)
3608 csio_le_intr_handler(hw);
3609
3610 if (cause & TP)
3611 csio_tp_intr_handler(hw);
3612
3613 if (cause & MA)
3614 csio_ma_intr_handler(hw);
3615
3616 if (cause & PM_TX)
3617 csio_pmtx_intr_handler(hw);
3618
3619 if (cause & PM_RX)
3620 csio_pmrx_intr_handler(hw);
3621
3622 if (cause & ULP_RX)
3623 csio_ulprx_intr_handler(hw);
3624
3625 if (cause & CPL_SWITCH)
3626 csio_cplsw_intr_handler(hw);
3627
3628 if (cause & SGE)
3629 csio_sge_intr_handler(hw);
3630
3631 if (cause & ULP_TX)
3632 csio_ulptx_intr_handler(hw);
3633
3634 /* Clear the interrupts just processed for which we are the master. */
3635 csio_wr_reg32(hw, cause & CSIO_GLBL_INTR_MASK, PL_INT_CAUSE);
3636 csio_rd_reg32(hw, PL_INT_CAUSE); /* flush */
3637
3638 return 1;
3639}
3640
3641/*****************************************************************************
3642 * HW <--> mailbox interfacing routines.
3643 ****************************************************************************/
3644/*
3645 * csio_mberr_worker - Worker thread (dpc) for mailbox/error completions
3646 *
3647 * @data: Private data pointer.
3648 *
3649 * Called from worker thread context.
3650 */
3651static void
3652csio_mberr_worker(void *data)
3653{
3654 struct csio_hw *hw = (struct csio_hw *)data;
3655 struct csio_mbm *mbm = &hw->mbm;
3656 LIST_HEAD(cbfn_q);
3657 struct csio_mb *mbp_next;
3658 int rv;
3659
3660 del_timer_sync(&mbm->timer);
3661
3662 spin_lock_irq(&hw->lock);
3663 if (list_empty(&mbm->cbfn_q)) {
3664 spin_unlock_irq(&hw->lock);
3665 return;
3666 }
3667
3668 list_splice_tail_init(&mbm->cbfn_q, &cbfn_q);
3669 mbm->stats.n_cbfnq = 0;
3670
3671 /* Try to start waiting mailboxes */
3672 if (!list_empty(&mbm->req_q)) {
3673 mbp_next = list_first_entry(&mbm->req_q, struct csio_mb, list);
3674 list_del_init(&mbp_next->list);
3675
3676 rv = csio_mb_issue(hw, mbp_next);
3677 if (rv != 0)
3678 list_add_tail(&mbp_next->list, &mbm->req_q);
3679 else
3680 CSIO_DEC_STATS(mbm, n_activeq);
3681 }
3682 spin_unlock_irq(&hw->lock);
3683
3684 /* Now callback completions */
3685 csio_mb_completions(hw, &cbfn_q);
3686}
3687
3688/*
3689 * csio_hw_mb_timer - Top-level Mailbox timeout handler.
3690 *
3691 * @data: private data pointer
3692 *
3693 **/
3694static void
3695csio_hw_mb_timer(uintptr_t data)
3696{
3697 struct csio_hw *hw = (struct csio_hw *)data;
3698 struct csio_mb *mbp = NULL;
3699
3700 spin_lock_irq(&hw->lock);
3701 mbp = csio_mb_tmo_handler(hw);
3702 spin_unlock_irq(&hw->lock);
3703
3704 /* Call back the function for the timed-out Mailbox */
3705 if (mbp)
3706 mbp->mb_cbfn(hw, mbp);
3707
3708}
3709
3710/*
3711 * csio_hw_mbm_cleanup - Cleanup Mailbox module.
3712 * @hw: HW module
3713 *
3714 * Called with lock held, should exit with lock held.
3715 * Cancels outstanding mailboxes (waiting, in-flight) and gathers them
3716 * into a local queue. Drops lock and calls the completions. Holds
3717 * lock and returns.
3718 */
3719static void
3720csio_hw_mbm_cleanup(struct csio_hw *hw)
3721{
3722 LIST_HEAD(cbfn_q);
3723
3724 csio_mb_cancel_all(hw, &cbfn_q);
3725
3726 spin_unlock_irq(&hw->lock);
3727 csio_mb_completions(hw, &cbfn_q);
3728 spin_lock_irq(&hw->lock);
3729}
3730
3731/*****************************************************************************
3732 * Event handling
3733 ****************************************************************************/
3734int
3735csio_enqueue_evt(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
3736 uint16_t len)
3737{
3738 struct csio_evt_msg *evt_entry = NULL;
3739
3740 if (type >= CSIO_EVT_MAX)
3741 return -EINVAL;
3742
3743 if (len > CSIO_EVT_MSG_SIZE)
3744 return -EINVAL;
3745
3746 if (hw->flags & CSIO_HWF_FWEVT_STOP)
3747 return -EINVAL;
3748
3749 if (list_empty(&hw->evt_free_q)) {
3750 csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
3751 type, len);
3752 return -ENOMEM;
3753 }
3754
3755 evt_entry = list_first_entry(&hw->evt_free_q,
3756 struct csio_evt_msg, list);
3757 list_del_init(&evt_entry->list);
3758
3759 /* copy event msg and queue the event */
3760 evt_entry->type = type;
3761 memcpy((void *)evt_entry->data, evt_msg, len);
3762 list_add_tail(&evt_entry->list, &hw->evt_active_q);
3763
3764 CSIO_DEC_STATS(hw, n_evt_freeq);
3765 CSIO_INC_STATS(hw, n_evt_activeq);
3766
3767 return 0;
3768}
3769
3770static int
3771csio_enqueue_evt_lock(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
3772 uint16_t len, bool msg_sg)
3773{
3774 struct csio_evt_msg *evt_entry = NULL;
3775 struct csio_fl_dma_buf *fl_sg;
3776 uint32_t off = 0;
3777 unsigned long flags;
3778 int n, ret = 0;
3779
3780 if (type >= CSIO_EVT_MAX)
3781 return -EINVAL;
3782
3783 if (len > CSIO_EVT_MSG_SIZE)
3784 return -EINVAL;
3785
3786 spin_lock_irqsave(&hw->lock, flags);
3787 if (hw->flags & CSIO_HWF_FWEVT_STOP) {
3788 ret = -EINVAL;
3789 goto out;
3790 }
3791
3792 if (list_empty(&hw->evt_free_q)) {
3793 csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
3794 type, len);
3795 ret = -ENOMEM;
3796 goto out;
3797 }
3798
3799 evt_entry = list_first_entry(&hw->evt_free_q,
3800 struct csio_evt_msg, list);
3801 list_del_init(&evt_entry->list);
3802
3803 /* copy event msg and queue the event */
3804 evt_entry->type = type;
3805
3806 /* If Payload in SG list*/
3807 if (msg_sg) {
3808 fl_sg = (struct csio_fl_dma_buf *) evt_msg;
3809 for (n = 0; (n < CSIO_MAX_FLBUF_PER_IQWR && off < len); n++) {
3810 memcpy((void *)((uintptr_t)evt_entry->data + off),
3811 fl_sg->flbufs[n].vaddr,
3812 fl_sg->flbufs[n].len);
3813 off += fl_sg->flbufs[n].len;
3814 }
3815 } else
3816 memcpy((void *)evt_entry->data, evt_msg, len);
3817
3818 list_add_tail(&evt_entry->list, &hw->evt_active_q);
3819 CSIO_DEC_STATS(hw, n_evt_freeq);
3820 CSIO_INC_STATS(hw, n_evt_activeq);
3821out:
3822 spin_unlock_irqrestore(&hw->lock, flags);
3823 return ret;
3824}
3825
3826static void
3827csio_free_evt(struct csio_hw *hw, struct csio_evt_msg *evt_entry)
3828{
3829 if (evt_entry) {
3830 spin_lock_irq(&hw->lock);
3831 list_del_init(&evt_entry->list);
3832 list_add_tail(&evt_entry->list, &hw->evt_free_q);
3833 CSIO_DEC_STATS(hw, n_evt_activeq);
3834 CSIO_INC_STATS(hw, n_evt_freeq);
3835 spin_unlock_irq(&hw->lock);
3836 }
3837}
3838
3839void
3840csio_evtq_flush(struct csio_hw *hw)
3841{
3842 uint32_t count;
3843 count = 30;
3844 while (hw->flags & CSIO_HWF_FWEVT_PENDING && count--) {
3845 spin_unlock_irq(&hw->lock);
3846 msleep(2000);
3847 spin_lock_irq(&hw->lock);
3848 }
3849
3850 CSIO_DB_ASSERT(!(hw->flags & CSIO_HWF_FWEVT_PENDING));
3851}
3852
3853static void
3854csio_evtq_stop(struct csio_hw *hw)
3855{
3856 hw->flags |= CSIO_HWF_FWEVT_STOP;
3857}
3858
3859static void
3860csio_evtq_start(struct csio_hw *hw)
3861{
3862 hw->flags &= ~CSIO_HWF_FWEVT_STOP;
3863}
3864
3865static void
3866csio_evtq_cleanup(struct csio_hw *hw)
3867{
3868 struct list_head *evt_entry, *next_entry;
3869
3870 /* Release outstanding events from activeq to freeq*/
3871 if (!list_empty(&hw->evt_active_q))
3872 list_splice_tail_init(&hw->evt_active_q, &hw->evt_free_q);
3873
3874 hw->stats.n_evt_activeq = 0;
3875 hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
3876
3877 /* Freeup event entry */
3878 list_for_each_safe(evt_entry, next_entry, &hw->evt_free_q) {
3879 kfree(evt_entry);
3880 CSIO_DEC_STATS(hw, n_evt_freeq);
3881 }
3882
3883 hw->stats.n_evt_freeq = 0;
3884}
3885
3886
3887static void
3888csio_process_fwevtq_entry(struct csio_hw *hw, void *wr, uint32_t len,
3889 struct csio_fl_dma_buf *flb, void *priv)
3890{
3891 __u8 op;
3892 __be64 *data;
3893 void *msg = NULL;
3894 uint32_t msg_len = 0;
3895 bool msg_sg = 0;
3896
3897 op = ((struct rss_header *) wr)->opcode;
3898 if (op == CPL_FW6_PLD) {
3899 CSIO_INC_STATS(hw, n_cpl_fw6_pld);
3900 if (!flb || !flb->totlen) {
3901 CSIO_INC_STATS(hw, n_cpl_unexp);
3902 return;
3903 }
3904
3905 msg = (void *) flb;
3906 msg_len = flb->totlen;
3907 msg_sg = 1;
3908
3909 data = (__be64 *) msg;
3910 } else if (op == CPL_FW6_MSG || op == CPL_FW4_MSG) {
3911
3912 CSIO_INC_STATS(hw, n_cpl_fw6_msg);
3913 /* skip RSS header */
3914 msg = (void *)((uintptr_t)wr + sizeof(__be64));
3915 msg_len = (op == CPL_FW6_MSG) ? sizeof(struct cpl_fw6_msg) :
3916 sizeof(struct cpl_fw4_msg);
3917
3918 data = (__be64 *) msg;
3919 } else {
3920 csio_warn(hw, "unexpected CPL %#x on FW event queue\n", op);
3921 CSIO_INC_STATS(hw, n_cpl_unexp);
3922 return;
3923 }
3924
3925 /*
3926 * Enqueue event to EventQ. Events processing happens
3927 * in Event worker thread context
3928 */
3929 if (csio_enqueue_evt_lock(hw, CSIO_EVT_FW, msg,
3930 (uint16_t)msg_len, msg_sg))
3931 CSIO_INC_STATS(hw, n_evt_drop);
3932}
3933
3934void
3935csio_evtq_worker(struct work_struct *work)
3936{
3937 struct csio_hw *hw = container_of(work, struct csio_hw, evtq_work);
3938 struct list_head *evt_entry, *next_entry;
3939 LIST_HEAD(evt_q);
3940 struct csio_evt_msg *evt_msg;
3941 struct cpl_fw6_msg *msg;
3942 struct csio_rnode *rn;
3943 int rv = 0;
3944 uint8_t evtq_stop = 0;
3945
3946 csio_dbg(hw, "event worker thread active evts#%d\n",
3947 hw->stats.n_evt_activeq);
3948
3949 spin_lock_irq(&hw->lock);
3950 while (!list_empty(&hw->evt_active_q)) {
3951 list_splice_tail_init(&hw->evt_active_q, &evt_q);
3952 spin_unlock_irq(&hw->lock);
3953
3954 list_for_each_safe(evt_entry, next_entry, &evt_q) {
3955 evt_msg = (struct csio_evt_msg *) evt_entry;
3956
3957 /* Drop events if queue is STOPPED */
3958 spin_lock_irq(&hw->lock);
3959 if (hw->flags & CSIO_HWF_FWEVT_STOP)
3960 evtq_stop = 1;
3961 spin_unlock_irq(&hw->lock);
3962 if (evtq_stop) {
3963 CSIO_INC_STATS(hw, n_evt_drop);
3964 goto free_evt;
3965 }
3966
3967 switch (evt_msg->type) {
3968 case CSIO_EVT_FW:
3969 msg = (struct cpl_fw6_msg *)(evt_msg->data);
3970
3971 if ((msg->opcode == CPL_FW6_MSG ||
3972 msg->opcode == CPL_FW4_MSG) &&
3973 !msg->type) {
3974 rv = csio_mb_fwevt_handler(hw,
3975 msg->data);
3976 if (!rv)
3977 break;
3978 /* Handle any remaining fw events */
3979 csio_fcoe_fwevt_handler(hw,
3980 msg->opcode, msg->data);
3981 } else if (msg->opcode == CPL_FW6_PLD) {
3982
3983 csio_fcoe_fwevt_handler(hw,
3984 msg->opcode, msg->data);
3985 } else {
3986 csio_warn(hw,
3987 "Unhandled FW msg op %x type %x\n",
3988 msg->opcode, msg->type);
3989 CSIO_INC_STATS(hw, n_evt_drop);
3990 }
3991 break;
3992
3993 case CSIO_EVT_MBX:
3994 csio_mberr_worker(hw);
3995 break;
3996
3997 case CSIO_EVT_DEV_LOSS:
3998 memcpy(&rn, evt_msg->data, sizeof(rn));
3999 csio_rnode_devloss_handler(rn);
4000 break;
4001
4002 default:
4003 csio_warn(hw, "Unhandled event %x on evtq\n",
4004 evt_msg->type);
4005 CSIO_INC_STATS(hw, n_evt_unexp);
4006 break;
4007 }
4008free_evt:
4009 csio_free_evt(hw, evt_msg);
4010 }
4011
4012 spin_lock_irq(&hw->lock);
4013 }
4014 hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
4015 spin_unlock_irq(&hw->lock);
4016}
4017
4018int
4019csio_fwevtq_handler(struct csio_hw *hw)
4020{
4021 int rv;
4022
4023 if (csio_q_iqid(hw, hw->fwevt_iq_idx) == CSIO_MAX_QID) {
4024 CSIO_INC_STATS(hw, n_int_stray);
4025 return -EINVAL;
4026 }
4027
4028 rv = csio_wr_process_iq_idx(hw, hw->fwevt_iq_idx,
4029 csio_process_fwevtq_entry, NULL);
4030 return rv;
4031}
4032
4033/****************************************************************************
4034 * Entry points
4035 ****************************************************************************/
4036
4037/* Management module */
4038/*
4039 * csio_mgmt_req_lookup - Lookup the given IO req exist in Active Q.
4040 * mgmt - mgmt module
4041 * @io_req - io request
4042 *
4043 * Return - 0:if given IO Req exists in active Q.
4044 * -EINVAL :if lookup fails.
4045 */
4046int
4047csio_mgmt_req_lookup(struct csio_mgmtm *mgmtm, struct csio_ioreq *io_req)
4048{
4049 struct list_head *tmp;
4050
4051 /* Lookup ioreq in the ACTIVEQ */
4052 list_for_each(tmp, &mgmtm->active_q) {
4053 if (io_req == (struct csio_ioreq *)tmp)
4054 return 0;
4055 }
4056 return -EINVAL;
4057}
4058
4059#define ECM_MIN_TMO 1000 /* Minimum timeout value for req */
4060
4061/*
4062 * csio_mgmts_tmo_handler - MGMT IO Timeout handler.
4063 * @data - Event data.
4064 *
4065 * Return - none.
4066 */
4067static void
4068csio_mgmt_tmo_handler(uintptr_t data)
4069{
4070 struct csio_mgmtm *mgmtm = (struct csio_mgmtm *) data;
4071 struct list_head *tmp;
4072 struct csio_ioreq *io_req;
4073
4074 csio_dbg(mgmtm->hw, "Mgmt timer invoked!\n");
4075
4076 spin_lock_irq(&mgmtm->hw->lock);
4077
4078 list_for_each(tmp, &mgmtm->active_q) {
4079 io_req = (struct csio_ioreq *) tmp;
4080 io_req->tmo -= min_t(uint32_t, io_req->tmo, ECM_MIN_TMO);
4081
4082 if (!io_req->tmo) {
4083 /* Dequeue the request from retry Q. */
4084 tmp = csio_list_prev(tmp);
4085 list_del_init(&io_req->sm.sm_list);
4086 if (io_req->io_cbfn) {
4087 /* io_req will be freed by completion handler */
4088 io_req->wr_status = -ETIMEDOUT;
4089 io_req->io_cbfn(mgmtm->hw, io_req);
4090 } else {
4091 CSIO_DB_ASSERT(0);
4092 }
4093 }
4094 }
4095
4096 /* If retry queue is not empty, re-arm timer */
4097 if (!list_empty(&mgmtm->active_q))
4098 mod_timer(&mgmtm->mgmt_timer,
4099 jiffies + msecs_to_jiffies(ECM_MIN_TMO));
4100 spin_unlock_irq(&mgmtm->hw->lock);
4101}
4102
4103static void
4104csio_mgmtm_cleanup(struct csio_mgmtm *mgmtm)
4105{
4106 struct csio_hw *hw = mgmtm->hw;
4107 struct csio_ioreq *io_req;
4108 struct list_head *tmp;
4109 uint32_t count;
4110
4111 count = 30;
4112 /* Wait for all outstanding req to complete gracefully */
4113 while ((!list_empty(&mgmtm->active_q)) && count--) {
4114 spin_unlock_irq(&hw->lock);
4115 msleep(2000);
4116 spin_lock_irq(&hw->lock);
4117 }
4118
4119 /* release outstanding req from ACTIVEQ */
4120 list_for_each(tmp, &mgmtm->active_q) {
4121 io_req = (struct csio_ioreq *) tmp;
4122 tmp = csio_list_prev(tmp);
4123 list_del_init(&io_req->sm.sm_list);
4124 mgmtm->stats.n_active--;
4125 if (io_req->io_cbfn) {
4126 /* io_req will be freed by completion handler */
4127 io_req->wr_status = -ETIMEDOUT;
4128 io_req->io_cbfn(mgmtm->hw, io_req);
4129 }
4130 }
4131}
4132
4133/*
4134 * csio_mgmt_init - Mgmt module init entry point
4135 * @mgmtsm - mgmt module
4136 * @hw - HW module
4137 *
4138 * Initialize mgmt timer, resource wait queue, active queue,
4139 * completion q. Allocate Egress and Ingress
4140 * WR queues and save off the queue index returned by the WR
4141 * module for future use. Allocate and save off mgmt reqs in the
4142 * mgmt_req_freelist for future use. Make sure their SM is initialized
4143 * to uninit state.
4144 * Returns: 0 - on success
4145 * -ENOMEM - on error.
4146 */
4147static int
4148csio_mgmtm_init(struct csio_mgmtm *mgmtm, struct csio_hw *hw)
4149{
4150 struct timer_list *timer = &mgmtm->mgmt_timer;
4151
4152 init_timer(timer);
4153 timer->function = csio_mgmt_tmo_handler;
4154 timer->data = (unsigned long)mgmtm;
4155
4156 INIT_LIST_HEAD(&mgmtm->active_q);
4157 INIT_LIST_HEAD(&mgmtm->cbfn_q);
4158
4159 mgmtm->hw = hw;
4160 /*mgmtm->iq_idx = hw->fwevt_iq_idx;*/
4161
4162 return 0;
4163}
4164
4165/*
4166 * csio_mgmtm_exit - MGMT module exit entry point
4167 * @mgmtsm - mgmt module
4168 *
4169 * This function called during MGMT module uninit.
4170 * Stop timers, free ioreqs allocated.
4171 * Returns: None
4172 *
4173 */
4174static void
4175csio_mgmtm_exit(struct csio_mgmtm *mgmtm)
4176{
4177 del_timer_sync(&mgmtm->mgmt_timer);
4178}
4179
4180
4181/**
4182 * csio_hw_start - Kicks off the HW State machine
4183 * @hw: Pointer to HW module.
4184 *
4185 * It is assumed that the initialization is a synchronous operation.
4186 * So when we return afer posting the event, the HW SM should be in
4187 * the ready state, if there were no errors during init.
4188 */
4189int
4190csio_hw_start(struct csio_hw *hw)
4191{
4192 spin_lock_irq(&hw->lock);
4193 csio_post_event(&hw->sm, CSIO_HWE_CFG);
4194 spin_unlock_irq(&hw->lock);
4195
4196 if (csio_is_hw_ready(hw))
4197 return 0;
4198 else
4199 return -EINVAL;
4200}
4201
4202int
4203csio_hw_stop(struct csio_hw *hw)
4204{
4205 csio_post_event(&hw->sm, CSIO_HWE_PCI_REMOVE);
4206
4207 if (csio_is_hw_removing(hw))
4208 return 0;
4209 else
4210 return -EINVAL;
4211}
4212
4213/* Max reset retries */
4214#define CSIO_MAX_RESET_RETRIES 3
4215
4216/**
4217 * csio_hw_reset - Reset the hardware
4218 * @hw: HW module.
4219 *
4220 * Caller should hold lock across this function.
4221 */
4222int
4223csio_hw_reset(struct csio_hw *hw)
4224{
4225 if (!csio_is_hw_master(hw))
4226 return -EPERM;
4227
4228 if (hw->rst_retries >= CSIO_MAX_RESET_RETRIES) {
4229 csio_dbg(hw, "Max hw reset attempts reached..");
4230 return -EINVAL;
4231 }
4232
4233 hw->rst_retries++;
4234 csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET);
4235
4236 if (csio_is_hw_ready(hw)) {
4237 hw->rst_retries = 0;
4238 hw->stats.n_reset_start = jiffies_to_msecs(jiffies);
4239 return 0;
4240 } else
4241 return -EINVAL;
4242}
4243
4244/*
4245 * csio_hw_get_device_id - Caches the Adapter's vendor & device id.
4246 * @hw: HW module.
4247 */
4248static void
4249csio_hw_get_device_id(struct csio_hw *hw)
4250{
4251 /* Is the adapter device id cached already ?*/
4252 if (csio_is_dev_id_cached(hw))
4253 return;
4254
4255 /* Get the PCI vendor & device id */
4256 pci_read_config_word(hw->pdev, PCI_VENDOR_ID,
4257 &hw->params.pci.vendor_id);
4258 pci_read_config_word(hw->pdev, PCI_DEVICE_ID,
4259 &hw->params.pci.device_id);
4260
4261 csio_dev_id_cached(hw);
4262
4263} /* csio_hw_get_device_id */
4264
4265/*
4266 * csio_hw_set_description - Set the model, description of the hw.
4267 * @hw: HW module.
4268 * @ven_id: PCI Vendor ID
4269 * @dev_id: PCI Device ID
4270 */
4271static void
4272csio_hw_set_description(struct csio_hw *hw, uint16_t ven_id, uint16_t dev_id)
4273{
4274 uint32_t adap_type, prot_type;
4275
4276 if (ven_id == CSIO_VENDOR_ID) {
4277 prot_type = (dev_id & CSIO_ASIC_DEVID_PROTO_MASK);
4278 adap_type = (dev_id & CSIO_ASIC_DEVID_TYPE_MASK);
4279
4280 if (prot_type == CSIO_FPGA) {
4281 memcpy(hw->model_desc,
4282 csio_fcoe_adapters[13].description, 32);
4283 } else if (prot_type == CSIO_T4_FCOE_ASIC) {
4284 memcpy(hw->hw_ver,
4285 csio_fcoe_adapters[adap_type].model_no, 16);
4286 memcpy(hw->model_desc,
4287 csio_fcoe_adapters[adap_type].description, 32);
4288 } else {
4289 char tempName[32] = "Chelsio FCoE Controller";
4290 memcpy(hw->model_desc, tempName, 32);
4291
4292 CSIO_DB_ASSERT(0);
4293 }
4294 }
4295} /* csio_hw_set_description */
4296
4297/**
4298 * csio_hw_init - Initialize HW module.
4299 * @hw: Pointer to HW module.
4300 *
4301 * Initialize the members of the HW module.
4302 */
4303int
4304csio_hw_init(struct csio_hw *hw)
4305{
4306 int rv = -EINVAL;
4307 uint32_t i;
4308 uint16_t ven_id, dev_id;
4309 struct csio_evt_msg *evt_entry;
4310
4311 INIT_LIST_HEAD(&hw->sm.sm_list);
4312 csio_init_state(&hw->sm, csio_hws_uninit);
4313 spin_lock_init(&hw->lock);
4314 INIT_LIST_HEAD(&hw->sln_head);
4315
4316 /* Get the PCI vendor & device id */
4317 csio_hw_get_device_id(hw);
4318
4319 strcpy(hw->name, CSIO_HW_NAME);
4320
4321 /* Set the model & its description */
4322
4323 ven_id = hw->params.pci.vendor_id;
4324 dev_id = hw->params.pci.device_id;
4325
4326 csio_hw_set_description(hw, ven_id, dev_id);
4327
4328 /* Initialize default log level */
4329 hw->params.log_level = (uint32_t) csio_dbg_level;
4330
4331 csio_set_fwevt_intr_idx(hw, -1);
4332 csio_set_nondata_intr_idx(hw, -1);
4333
4334 /* Init all the modules: Mailbox, WorkRequest and Transport */
4335 if (csio_mbm_init(csio_hw_to_mbm(hw), hw, csio_hw_mb_timer))
4336 goto err;
4337
4338 rv = csio_wrm_init(csio_hw_to_wrm(hw), hw);
4339 if (rv)
4340 goto err_mbm_exit;
4341
4342 rv = csio_scsim_init(csio_hw_to_scsim(hw), hw);
4343 if (rv)
4344 goto err_wrm_exit;
4345
4346 rv = csio_mgmtm_init(csio_hw_to_mgmtm(hw), hw);
4347 if (rv)
4348 goto err_scsim_exit;
4349 /* Pre-allocate evtq and initialize them */
4350 INIT_LIST_HEAD(&hw->evt_active_q);
4351 INIT_LIST_HEAD(&hw->evt_free_q);
4352 for (i = 0; i < csio_evtq_sz; i++) {
4353
4354 evt_entry = kzalloc(sizeof(struct csio_evt_msg), GFP_KERNEL);
4355 if (!evt_entry) {
4356 csio_err(hw, "Failed to initialize eventq");
4357 goto err_evtq_cleanup;
4358 }
4359
4360 list_add_tail(&evt_entry->list, &hw->evt_free_q);
4361 CSIO_INC_STATS(hw, n_evt_freeq);
4362 }
4363
4364 hw->dev_num = dev_num;
4365 dev_num++;
4366
4367 return 0;
4368
4369err_evtq_cleanup:
4370 csio_evtq_cleanup(hw);
4371 csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
4372err_scsim_exit:
4373 csio_scsim_exit(csio_hw_to_scsim(hw));
4374err_wrm_exit:
4375 csio_wrm_exit(csio_hw_to_wrm(hw), hw);
4376err_mbm_exit:
4377 csio_mbm_exit(csio_hw_to_mbm(hw));
4378err:
4379 return rv;
4380}
4381
4382/**
4383 * csio_hw_exit - Un-initialize HW module.
4384 * @hw: Pointer to HW module.
4385 *
4386 */
4387void
4388csio_hw_exit(struct csio_hw *hw)
4389{
4390 csio_evtq_cleanup(hw);
4391 csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
4392 csio_scsim_exit(csio_hw_to_scsim(hw));
4393 csio_wrm_exit(csio_hw_to_wrm(hw), hw);
4394 csio_mbm_exit(csio_hw_to_mbm(hw));
4395}
This page took 0.200178 seconds and 5 git commands to generate.