hpsa: correct ioaccel2 sg chain len
[deliverable/linux.git] / drivers / scsi / hpsa.c
CommitLineData
edd16368
SC
1/*
2 * Disk Array driver for HP Smart Array SAS controllers
1358f6dc
DB
3 * Copyright 2014-2015 PMC-Sierra, Inc.
4 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
edd16368
SC
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
13 * NON INFRINGEMENT. See the GNU General Public License for more details.
14 *
1358f6dc 15 * Questions/Comments/Bugfixes to storagedev@pmcs.com
edd16368
SC
16 *
17 */
18
19#include <linux/module.h>
20#include <linux/interrupt.h>
21#include <linux/types.h>
22#include <linux/pci.h>
e5a44df8 23#include <linux/pci-aspm.h>
edd16368
SC
24#include <linux/kernel.h>
25#include <linux/slab.h>
26#include <linux/delay.h>
27#include <linux/fs.h>
28#include <linux/timer.h>
edd16368
SC
29#include <linux/init.h>
30#include <linux/spinlock.h>
edd16368
SC
31#include <linux/compat.h>
32#include <linux/blktrace_api.h>
33#include <linux/uaccess.h>
34#include <linux/io.h>
35#include <linux/dma-mapping.h>
36#include <linux/completion.h>
37#include <linux/moduleparam.h>
38#include <scsi/scsi.h>
39#include <scsi/scsi_cmnd.h>
40#include <scsi/scsi_device.h>
41#include <scsi/scsi_host.h>
667e23d4 42#include <scsi/scsi_tcq.h>
9437ac43 43#include <scsi/scsi_eh.h>
73153fe5 44#include <scsi/scsi_dbg.h>
edd16368
SC
45#include <linux/cciss_ioctl.h>
46#include <linux/string.h>
47#include <linux/bitmap.h>
60063497 48#include <linux/atomic.h>
a0c12413 49#include <linux/jiffies.h>
42a91641 50#include <linux/percpu-defs.h>
094963da 51#include <linux/percpu.h>
2b08b3e9 52#include <asm/unaligned.h>
283b4a9b 53#include <asm/div64.h>
edd16368
SC
54#include "hpsa_cmd.h"
55#include "hpsa.h"
56
57/* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
f532a3f9 58#define HPSA_DRIVER_VERSION "3.4.10-0"
edd16368 59#define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
f79cfec6 60#define HPSA "hpsa"
edd16368 61
007e7aa9
RE
62/* How long to wait for CISS doorbell communication */
63#define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
64#define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
65#define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
66#define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
edd16368
SC
67#define MAX_IOCTL_CONFIG_WAIT 1000
68
69/*define how many times we will try a command because of bus resets */
70#define MAX_CMD_RETRIES 3
71
72/* Embedded module documentation macros - see modules.h */
73MODULE_AUTHOR("Hewlett-Packard Company");
74MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
75 HPSA_DRIVER_VERSION);
76MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
77MODULE_VERSION(HPSA_DRIVER_VERSION);
78MODULE_LICENSE("GPL");
79
80static int hpsa_allow_any;
81module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
82MODULE_PARM_DESC(hpsa_allow_any,
83 "Allow hpsa driver to access unknown HP Smart Array hardware");
02ec19c8
SC
84static int hpsa_simple_mode;
85module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
86MODULE_PARM_DESC(hpsa_simple_mode,
87 "Use 'simple mode' rather than 'performant mode'");
edd16368
SC
88
89/* define the PCI info for the cards we can control */
90static const struct pci_device_id hpsa_pci_device_id[] = {
edd16368
SC
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
163dbcd8
MM
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
f8b01eb9 98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
9143a961 99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
fe0c9610
MM
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924},
fe0c9610
MM
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926},
111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928},
97b9f53d
MM
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929},
113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD},
114 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE},
115 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF},
116 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0},
117 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1},
118 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2},
119 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3},
120 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4},
121 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5},
3b7a45e5 122 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6},
97b9f53d
MM
123 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7},
124 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8},
125 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9},
3b7a45e5
JH
126 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA},
127 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB},
128 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC},
129 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD},
130 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE},
fdfa4b6d 131 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
cbb47dcb
DB
132 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
133 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
134 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
135 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
136 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
8e616a5e
SC
137 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
138 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
139 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
140 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
141 {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
7c03b870 142 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
6798cc0a 143 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
edd16368
SC
144 {0,}
145};
146
147MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
148
149/* board_id = Subsystem Device ID & Vendor ID
150 * product = Marketing Name for the board
151 * access = Address of the struct of function pointers
152 */
153static struct board_type products[] = {
edd16368
SC
154 {0x3241103C, "Smart Array P212", &SA5_access},
155 {0x3243103C, "Smart Array P410", &SA5_access},
156 {0x3245103C, "Smart Array P410i", &SA5_access},
157 {0x3247103C, "Smart Array P411", &SA5_access},
158 {0x3249103C, "Smart Array P812", &SA5_access},
163dbcd8
MM
159 {0x324A103C, "Smart Array P712m", &SA5_access},
160 {0x324B103C, "Smart Array P711m", &SA5_access},
7d2cce58 161 {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
fe0c9610
MM
162 {0x3350103C, "Smart Array P222", &SA5_access},
163 {0x3351103C, "Smart Array P420", &SA5_access},
164 {0x3352103C, "Smart Array P421", &SA5_access},
165 {0x3353103C, "Smart Array P822", &SA5_access},
166 {0x3354103C, "Smart Array P420i", &SA5_access},
167 {0x3355103C, "Smart Array P220i", &SA5_access},
168 {0x3356103C, "Smart Array P721m", &SA5_access},
1fd6c8e3
MM
169 {0x1921103C, "Smart Array P830i", &SA5_access},
170 {0x1922103C, "Smart Array P430", &SA5_access},
171 {0x1923103C, "Smart Array P431", &SA5_access},
172 {0x1924103C, "Smart Array P830", &SA5_access},
173 {0x1926103C, "Smart Array P731m", &SA5_access},
174 {0x1928103C, "Smart Array P230i", &SA5_access},
175 {0x1929103C, "Smart Array P530", &SA5_access},
27fb8137
DB
176 {0x21BD103C, "Smart Array P244br", &SA5_access},
177 {0x21BE103C, "Smart Array P741m", &SA5_access},
178 {0x21BF103C, "Smart HBA H240ar", &SA5_access},
179 {0x21C0103C, "Smart Array P440ar", &SA5_access},
c8ae0ab1 180 {0x21C1103C, "Smart Array P840ar", &SA5_access},
27fb8137
DB
181 {0x21C2103C, "Smart Array P440", &SA5_access},
182 {0x21C3103C, "Smart Array P441", &SA5_access},
97b9f53d 183 {0x21C4103C, "Smart Array", &SA5_access},
27fb8137
DB
184 {0x21C5103C, "Smart Array P841", &SA5_access},
185 {0x21C6103C, "Smart HBA H244br", &SA5_access},
186 {0x21C7103C, "Smart HBA H240", &SA5_access},
187 {0x21C8103C, "Smart HBA H241", &SA5_access},
97b9f53d 188 {0x21C9103C, "Smart Array", &SA5_access},
27fb8137
DB
189 {0x21CA103C, "Smart Array P246br", &SA5_access},
190 {0x21CB103C, "Smart Array P840", &SA5_access},
3b7a45e5
JH
191 {0x21CC103C, "Smart Array", &SA5_access},
192 {0x21CD103C, "Smart Array", &SA5_access},
27fb8137 193 {0x21CE103C, "Smart HBA", &SA5_access},
fdfa4b6d 194 {0x05809005, "SmartHBA-SA", &SA5_access},
cbb47dcb
DB
195 {0x05819005, "SmartHBA-SA 8i", &SA5_access},
196 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
197 {0x05839005, "SmartHBA-SA 8e", &SA5_access},
198 {0x05849005, "SmartHBA-SA 16i", &SA5_access},
199 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
8e616a5e
SC
200 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
201 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
202 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
203 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
204 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
edd16368
SC
205 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
206};
207
a58e7e53
WS
208#define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
209static const struct scsi_cmnd hpsa_cmd_busy;
210#define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
211static const struct scsi_cmnd hpsa_cmd_idle;
edd16368
SC
212static int number_of_controllers;
213
10f66018
SC
214static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
215static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
42a91641 216static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
edd16368
SC
217
218#ifdef CONFIG_COMPAT
42a91641
DB
219static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
220 void __user *arg);
edd16368
SC
221#endif
222
223static void cmd_free(struct ctlr_info *h, struct CommandList *c);
edd16368 224static struct CommandList *cmd_alloc(struct ctlr_info *h);
73153fe5
WS
225static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
226static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
227 struct scsi_cmnd *scmd);
a2dac136 228static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
b7bb24eb 229 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
edd16368 230 int cmd_type);
2c143342 231static void hpsa_free_cmd_pool(struct ctlr_info *h);
b7bb24eb 232#define VPD_PAGE (1 << 8)
b48d9804 233#define HPSA_SIMPLE_ERROR_BITS 0x03
edd16368 234
f281233d 235static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
a08a8471
SC
236static void hpsa_scan_start(struct Scsi_Host *);
237static int hpsa_scan_finished(struct Scsi_Host *sh,
238 unsigned long elapsed_time);
7c0a0229 239static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
edd16368
SC
240
241static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
75167d2c 242static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
edd16368 243static int hpsa_slave_alloc(struct scsi_device *sdev);
41ce4c35 244static int hpsa_slave_configure(struct scsi_device *sdev);
edd16368
SC
245static void hpsa_slave_destroy(struct scsi_device *sdev);
246
8aa60681 247static void hpsa_update_scsi_devices(struct ctlr_info *h);
edd16368
SC
248static int check_for_unit_attention(struct ctlr_info *h,
249 struct CommandList *c);
250static void check_ioctl_unit_attention(struct ctlr_info *h,
251 struct CommandList *c);
303932fd
DB
252/* performant mode helper functions */
253static void calc_bucket_map(int *bucket, int num_buckets,
2b08b3e9 254 int nsgs, int min_blocks, u32 *bucket_map);
105a3dbc
RE
255static void hpsa_free_performant_mode(struct ctlr_info *h);
256static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
254f796b 257static inline u32 next_command(struct ctlr_info *h, u8 q);
6f039790
GKH
258static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
259 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
260 u64 *cfg_offset);
261static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
262 unsigned long *memory_bar);
263static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
264static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
265 int wait_for_ready);
75167d2c 266static inline void finish_cmd(struct CommandList *c);
c706a795 267static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
fe5389c8
SC
268#define BOARD_NOT_READY 0
269#define BOARD_READY 1
23100dd9 270static void hpsa_drain_accel_commands(struct ctlr_info *h);
76438d08 271static void hpsa_flush_cache(struct ctlr_info *h);
c349775e
ST
272static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
273 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
03383736 274 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
080ef1cc 275static void hpsa_command_resubmit_worker(struct work_struct *work);
25163bd5
WS
276static u32 lockup_detected(struct ctlr_info *h);
277static int detect_controller_lockup(struct ctlr_info *h);
8270b862 278static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device);
edd16368 279
edd16368
SC
280static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
281{
282 unsigned long *priv = shost_priv(sdev->host);
283 return (struct ctlr_info *) *priv;
284}
285
a23513e8
SC
286static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
287{
288 unsigned long *priv = shost_priv(sh);
289 return (struct ctlr_info *) *priv;
290}
291
a58e7e53
WS
292static inline bool hpsa_is_cmd_idle(struct CommandList *c)
293{
294 return c->scsi_cmd == SCSI_CMD_IDLE;
295}
296
d604f533
WS
297static inline bool hpsa_is_pending_event(struct CommandList *c)
298{
299 return c->abort_pending || c->reset_pending;
300}
301
9437ac43
SC
302/* extract sense key, asc, and ascq from sense data. -1 means invalid. */
303static void decode_sense_data(const u8 *sense_data, int sense_data_len,
304 u8 *sense_key, u8 *asc, u8 *ascq)
305{
306 struct scsi_sense_hdr sshdr;
307 bool rc;
308
309 *sense_key = -1;
310 *asc = -1;
311 *ascq = -1;
312
313 if (sense_data_len < 1)
314 return;
315
316 rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
317 if (rc) {
318 *sense_key = sshdr.sense_key;
319 *asc = sshdr.asc;
320 *ascq = sshdr.ascq;
321 }
322}
323
edd16368
SC
324static int check_for_unit_attention(struct ctlr_info *h,
325 struct CommandList *c)
326{
9437ac43
SC
327 u8 sense_key, asc, ascq;
328 int sense_len;
329
330 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
331 sense_len = sizeof(c->err_info->SenseInfo);
332 else
333 sense_len = c->err_info->SenseLen;
334
335 decode_sense_data(c->err_info->SenseInfo, sense_len,
336 &sense_key, &asc, &ascq);
81c27557 337 if (sense_key != UNIT_ATTENTION || asc == 0xff)
edd16368
SC
338 return 0;
339
9437ac43 340 switch (asc) {
edd16368 341 case STATE_CHANGED:
9437ac43 342 dev_warn(&h->pdev->dev,
2946e82b
RE
343 "%s: a state change detected, command retried\n",
344 h->devname);
edd16368
SC
345 break;
346 case LUN_FAILED:
7f73695a 347 dev_warn(&h->pdev->dev,
2946e82b 348 "%s: LUN failure detected\n", h->devname);
edd16368
SC
349 break;
350 case REPORT_LUNS_CHANGED:
7f73695a 351 dev_warn(&h->pdev->dev,
2946e82b 352 "%s: report LUN data changed\n", h->devname);
edd16368 353 /*
4f4eb9f1
ST
354 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
355 * target (array) devices.
edd16368
SC
356 */
357 break;
358 case POWER_OR_RESET:
2946e82b
RE
359 dev_warn(&h->pdev->dev,
360 "%s: a power on or device reset detected\n",
361 h->devname);
edd16368
SC
362 break;
363 case UNIT_ATTENTION_CLEARED:
2946e82b
RE
364 dev_warn(&h->pdev->dev,
365 "%s: unit attention cleared by another initiator\n",
366 h->devname);
edd16368
SC
367 break;
368 default:
2946e82b
RE
369 dev_warn(&h->pdev->dev,
370 "%s: unknown unit attention detected\n",
371 h->devname);
edd16368
SC
372 break;
373 }
374 return 1;
375}
376
852af20a
MB
377static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
378{
379 if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
380 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
381 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
382 return 0;
383 dev_warn(&h->pdev->dev, HPSA "device busy");
384 return 1;
385}
386
e985c58f
SC
387static u32 lockup_detected(struct ctlr_info *h);
388static ssize_t host_show_lockup_detected(struct device *dev,
389 struct device_attribute *attr, char *buf)
390{
391 int ld;
392 struct ctlr_info *h;
393 struct Scsi_Host *shost = class_to_shost(dev);
394
395 h = shost_to_hba(shost);
396 ld = lockup_detected(h);
397
398 return sprintf(buf, "ld=%d\n", ld);
399}
400
da0697bd
ST
401static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
402 struct device_attribute *attr,
403 const char *buf, size_t count)
404{
405 int status, len;
406 struct ctlr_info *h;
407 struct Scsi_Host *shost = class_to_shost(dev);
408 char tmpbuf[10];
409
410 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
411 return -EACCES;
412 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
413 strncpy(tmpbuf, buf, len);
414 tmpbuf[len] = '\0';
415 if (sscanf(tmpbuf, "%d", &status) != 1)
416 return -EINVAL;
417 h = shost_to_hba(shost);
418 h->acciopath_status = !!status;
419 dev_warn(&h->pdev->dev,
420 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
421 h->acciopath_status ? "enabled" : "disabled");
422 return count;
423}
424
2ba8bfc8
SC
425static ssize_t host_store_raid_offload_debug(struct device *dev,
426 struct device_attribute *attr,
427 const char *buf, size_t count)
428{
429 int debug_level, len;
430 struct ctlr_info *h;
431 struct Scsi_Host *shost = class_to_shost(dev);
432 char tmpbuf[10];
433
434 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
435 return -EACCES;
436 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
437 strncpy(tmpbuf, buf, len);
438 tmpbuf[len] = '\0';
439 if (sscanf(tmpbuf, "%d", &debug_level) != 1)
440 return -EINVAL;
441 if (debug_level < 0)
442 debug_level = 0;
443 h = shost_to_hba(shost);
444 h->raid_offload_debug = debug_level;
445 dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
446 h->raid_offload_debug);
447 return count;
448}
449
edd16368
SC
450static ssize_t host_store_rescan(struct device *dev,
451 struct device_attribute *attr,
452 const char *buf, size_t count)
453{
454 struct ctlr_info *h;
455 struct Scsi_Host *shost = class_to_shost(dev);
a23513e8 456 h = shost_to_hba(shost);
31468401 457 hpsa_scan_start(h->scsi_host);
edd16368
SC
458 return count;
459}
460
d28ce020
SC
461static ssize_t host_show_firmware_revision(struct device *dev,
462 struct device_attribute *attr, char *buf)
463{
464 struct ctlr_info *h;
465 struct Scsi_Host *shost = class_to_shost(dev);
466 unsigned char *fwrev;
467
468 h = shost_to_hba(shost);
469 if (!h->hba_inquiry_data)
470 return 0;
471 fwrev = &h->hba_inquiry_data[32];
472 return snprintf(buf, 20, "%c%c%c%c\n",
473 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
474}
475
94a13649
SC
476static ssize_t host_show_commands_outstanding(struct device *dev,
477 struct device_attribute *attr, char *buf)
478{
479 struct Scsi_Host *shost = class_to_shost(dev);
480 struct ctlr_info *h = shost_to_hba(shost);
481
0cbf768e
SC
482 return snprintf(buf, 20, "%d\n",
483 atomic_read(&h->commands_outstanding));
94a13649
SC
484}
485
745a7a25
SC
486static ssize_t host_show_transport_mode(struct device *dev,
487 struct device_attribute *attr, char *buf)
488{
489 struct ctlr_info *h;
490 struct Scsi_Host *shost = class_to_shost(dev);
491
492 h = shost_to_hba(shost);
493 return snprintf(buf, 20, "%s\n",
960a30e7 494 h->transMethod & CFGTBL_Trans_Performant ?
745a7a25
SC
495 "performant" : "simple");
496}
497
da0697bd
ST
498static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
499 struct device_attribute *attr, char *buf)
500{
501 struct ctlr_info *h;
502 struct Scsi_Host *shost = class_to_shost(dev);
503
504 h = shost_to_hba(shost);
505 return snprintf(buf, 30, "HP SSD Smart Path %s\n",
506 (h->acciopath_status == 1) ? "enabled" : "disabled");
507}
508
46380786 509/* List of controllers which cannot be hard reset on kexec with reset_devices */
941b1cda
SC
510static u32 unresettable_controller[] = {
511 0x324a103C, /* Smart Array P712m */
9b5c48c2 512 0x324b103C, /* Smart Array P711m */
941b1cda
SC
513 0x3223103C, /* Smart Array P800 */
514 0x3234103C, /* Smart Array P400 */
515 0x3235103C, /* Smart Array P400i */
516 0x3211103C, /* Smart Array E200i */
517 0x3212103C, /* Smart Array E200 */
518 0x3213103C, /* Smart Array E200i */
519 0x3214103C, /* Smart Array E200i */
520 0x3215103C, /* Smart Array E200i */
521 0x3237103C, /* Smart Array E500 */
522 0x323D103C, /* Smart Array P700m */
7af0abbc 523 0x40800E11, /* Smart Array 5i */
941b1cda
SC
524 0x409C0E11, /* Smart Array 6400 */
525 0x409D0E11, /* Smart Array 6400 EM */
5a4f934e
TH
526 0x40700E11, /* Smart Array 5300 */
527 0x40820E11, /* Smart Array 532 */
528 0x40830E11, /* Smart Array 5312 */
529 0x409A0E11, /* Smart Array 641 */
530 0x409B0E11, /* Smart Array 642 */
531 0x40910E11, /* Smart Array 6i */
941b1cda
SC
532};
533
46380786
SC
534/* List of controllers which cannot even be soft reset */
535static u32 soft_unresettable_controller[] = {
7af0abbc 536 0x40800E11, /* Smart Array 5i */
5a4f934e
TH
537 0x40700E11, /* Smart Array 5300 */
538 0x40820E11, /* Smart Array 532 */
539 0x40830E11, /* Smart Array 5312 */
540 0x409A0E11, /* Smart Array 641 */
541 0x409B0E11, /* Smart Array 642 */
542 0x40910E11, /* Smart Array 6i */
46380786
SC
543 /* Exclude 640x boards. These are two pci devices in one slot
544 * which share a battery backed cache module. One controls the
545 * cache, the other accesses the cache through the one that controls
546 * it. If we reset the one controlling the cache, the other will
547 * likely not be happy. Just forbid resetting this conjoined mess.
548 * The 640x isn't really supported by hpsa anyway.
549 */
550 0x409C0E11, /* Smart Array 6400 */
551 0x409D0E11, /* Smart Array 6400 EM */
552};
553
9b5c48c2
SC
554static u32 needs_abort_tags_swizzled[] = {
555 0x323D103C, /* Smart Array P700m */
556 0x324a103C, /* Smart Array P712m */
557 0x324b103C, /* SmartArray P711m */
558};
559
560static int board_id_in_array(u32 a[], int nelems, u32 board_id)
941b1cda
SC
561{
562 int i;
563
9b5c48c2
SC
564 for (i = 0; i < nelems; i++)
565 if (a[i] == board_id)
566 return 1;
567 return 0;
46380786
SC
568}
569
9b5c48c2 570static int ctlr_is_hard_resettable(u32 board_id)
46380786 571{
9b5c48c2
SC
572 return !board_id_in_array(unresettable_controller,
573 ARRAY_SIZE(unresettable_controller), board_id);
574}
46380786 575
9b5c48c2
SC
576static int ctlr_is_soft_resettable(u32 board_id)
577{
578 return !board_id_in_array(soft_unresettable_controller,
579 ARRAY_SIZE(soft_unresettable_controller), board_id);
941b1cda
SC
580}
581
46380786
SC
582static int ctlr_is_resettable(u32 board_id)
583{
584 return ctlr_is_hard_resettable(board_id) ||
585 ctlr_is_soft_resettable(board_id);
586}
587
9b5c48c2
SC
588static int ctlr_needs_abort_tags_swizzled(u32 board_id)
589{
590 return board_id_in_array(needs_abort_tags_swizzled,
591 ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
592}
593
941b1cda
SC
594static ssize_t host_show_resettable(struct device *dev,
595 struct device_attribute *attr, char *buf)
596{
597 struct ctlr_info *h;
598 struct Scsi_Host *shost = class_to_shost(dev);
599
600 h = shost_to_hba(shost);
46380786 601 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
941b1cda
SC
602}
603
edd16368
SC
604static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
605{
606 return (scsi3addr[3] & 0xC0) == 0x40;
607}
608
f2ef0ce7
RE
609static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
610 "1(+0)ADM", "UNKNOWN"
edd16368 611};
6b80b18f
ST
612#define HPSA_RAID_0 0
613#define HPSA_RAID_4 1
614#define HPSA_RAID_1 2 /* also used for RAID 10 */
615#define HPSA_RAID_5 3 /* also used for RAID 50 */
616#define HPSA_RAID_51 4
617#define HPSA_RAID_6 5 /* also used for RAID 60 */
618#define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
edd16368
SC
619#define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
620
621static ssize_t raid_level_show(struct device *dev,
622 struct device_attribute *attr, char *buf)
623{
624 ssize_t l = 0;
82a72c0a 625 unsigned char rlevel;
edd16368
SC
626 struct ctlr_info *h;
627 struct scsi_device *sdev;
628 struct hpsa_scsi_dev_t *hdev;
629 unsigned long flags;
630
631 sdev = to_scsi_device(dev);
632 h = sdev_to_hba(sdev);
633 spin_lock_irqsave(&h->lock, flags);
634 hdev = sdev->hostdata;
635 if (!hdev) {
636 spin_unlock_irqrestore(&h->lock, flags);
637 return -ENODEV;
638 }
639
640 /* Is this even a logical drive? */
641 if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
642 spin_unlock_irqrestore(&h->lock, flags);
643 l = snprintf(buf, PAGE_SIZE, "N/A\n");
644 return l;
645 }
646
647 rlevel = hdev->raid_level;
648 spin_unlock_irqrestore(&h->lock, flags);
82a72c0a 649 if (rlevel > RAID_UNKNOWN)
edd16368
SC
650 rlevel = RAID_UNKNOWN;
651 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
652 return l;
653}
654
655static ssize_t lunid_show(struct device *dev,
656 struct device_attribute *attr, char *buf)
657{
658 struct ctlr_info *h;
659 struct scsi_device *sdev;
660 struct hpsa_scsi_dev_t *hdev;
661 unsigned long flags;
662 unsigned char lunid[8];
663
664 sdev = to_scsi_device(dev);
665 h = sdev_to_hba(sdev);
666 spin_lock_irqsave(&h->lock, flags);
667 hdev = sdev->hostdata;
668 if (!hdev) {
669 spin_unlock_irqrestore(&h->lock, flags);
670 return -ENODEV;
671 }
672 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
673 spin_unlock_irqrestore(&h->lock, flags);
674 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
675 lunid[0], lunid[1], lunid[2], lunid[3],
676 lunid[4], lunid[5], lunid[6], lunid[7]);
677}
678
679static ssize_t unique_id_show(struct device *dev,
680 struct device_attribute *attr, char *buf)
681{
682 struct ctlr_info *h;
683 struct scsi_device *sdev;
684 struct hpsa_scsi_dev_t *hdev;
685 unsigned long flags;
686 unsigned char sn[16];
687
688 sdev = to_scsi_device(dev);
689 h = sdev_to_hba(sdev);
690 spin_lock_irqsave(&h->lock, flags);
691 hdev = sdev->hostdata;
692 if (!hdev) {
693 spin_unlock_irqrestore(&h->lock, flags);
694 return -ENODEV;
695 }
696 memcpy(sn, hdev->device_id, sizeof(sn));
697 spin_unlock_irqrestore(&h->lock, flags);
698 return snprintf(buf, 16 * 2 + 2,
699 "%02X%02X%02X%02X%02X%02X%02X%02X"
700 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
701 sn[0], sn[1], sn[2], sn[3],
702 sn[4], sn[5], sn[6], sn[7],
703 sn[8], sn[9], sn[10], sn[11],
704 sn[12], sn[13], sn[14], sn[15]);
705}
706
c1988684
ST
707static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
708 struct device_attribute *attr, char *buf)
709{
710 struct ctlr_info *h;
711 struct scsi_device *sdev;
712 struct hpsa_scsi_dev_t *hdev;
713 unsigned long flags;
714 int offload_enabled;
715
716 sdev = to_scsi_device(dev);
717 h = sdev_to_hba(sdev);
718 spin_lock_irqsave(&h->lock, flags);
719 hdev = sdev->hostdata;
720 if (!hdev) {
721 spin_unlock_irqrestore(&h->lock, flags);
722 return -ENODEV;
723 }
724 offload_enabled = hdev->offload_enabled;
725 spin_unlock_irqrestore(&h->lock, flags);
726 return snprintf(buf, 20, "%d\n", offload_enabled);
727}
728
8270b862
JH
729#define MAX_PATHS 8
730#define PATH_STRING_LEN 50
731
732static ssize_t path_info_show(struct device *dev,
733 struct device_attribute *attr, char *buf)
734{
735 struct ctlr_info *h;
736 struct scsi_device *sdev;
737 struct hpsa_scsi_dev_t *hdev;
738 unsigned long flags;
739 int i;
740 int output_len = 0;
741 u8 box;
742 u8 bay;
743 u8 path_map_index = 0;
744 char *active;
745 unsigned char phys_connector[2];
746 unsigned char path[MAX_PATHS][PATH_STRING_LEN];
747
748 memset(path, 0, MAX_PATHS * PATH_STRING_LEN);
749 sdev = to_scsi_device(dev);
750 h = sdev_to_hba(sdev);
751 spin_lock_irqsave(&h->devlock, flags);
752 hdev = sdev->hostdata;
753 if (!hdev) {
754 spin_unlock_irqrestore(&h->devlock, flags);
755 return -ENODEV;
756 }
757
758 bay = hdev->bay;
759 for (i = 0; i < MAX_PATHS; i++) {
760 path_map_index = 1<<i;
761 if (i == hdev->active_path_index)
762 active = "Active";
763 else if (hdev->path_map & path_map_index)
764 active = "Inactive";
765 else
766 continue;
767
768 output_len = snprintf(path[i],
769 PATH_STRING_LEN, "[%d:%d:%d:%d] %20.20s ",
770 h->scsi_host->host_no,
771 hdev->bus, hdev->target, hdev->lun,
772 scsi_device_type(hdev->devtype));
773
774 if (is_ext_target(h, hdev) ||
775 (hdev->devtype == TYPE_RAID) ||
776 is_logical_dev_addr_mode(hdev->scsi3addr)) {
777 output_len += snprintf(path[i] + output_len,
778 PATH_STRING_LEN, "%s\n",
779 active);
780 continue;
781 }
782
783 box = hdev->box[i];
784 memcpy(&phys_connector, &hdev->phys_connector[i],
785 sizeof(phys_connector));
786 if (phys_connector[0] < '0')
787 phys_connector[0] = '0';
788 if (phys_connector[1] < '0')
789 phys_connector[1] = '0';
790 if (hdev->phys_connector[i] > 0)
791 output_len += snprintf(path[i] + output_len,
792 PATH_STRING_LEN,
793 "PORT: %.2s ",
794 phys_connector);
b9092b79
KB
795 if (hdev->devtype == TYPE_DISK &&
796 hdev->expose_state != HPSA_DO_NOT_EXPOSE) {
8270b862
JH
797 if (box == 0 || box == 0xFF) {
798 output_len += snprintf(path[i] + output_len,
799 PATH_STRING_LEN,
800 "BAY: %hhu %s\n",
801 bay, active);
802 } else {
803 output_len += snprintf(path[i] + output_len,
804 PATH_STRING_LEN,
805 "BOX: %hhu BAY: %hhu %s\n",
806 box, bay, active);
807 }
808 } else if (box != 0 && box != 0xFF) {
809 output_len += snprintf(path[i] + output_len,
810 PATH_STRING_LEN, "BOX: %hhu %s\n",
811 box, active);
812 } else
813 output_len += snprintf(path[i] + output_len,
814 PATH_STRING_LEN, "%s\n", active);
815 }
816
817 spin_unlock_irqrestore(&h->devlock, flags);
818 return snprintf(buf, output_len+1, "%s%s%s%s%s%s%s%s",
819 path[0], path[1], path[2], path[3],
820 path[4], path[5], path[6], path[7]);
821}
822
3f5eac3a
SC
823static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
824static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
825static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
826static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
c1988684
ST
827static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
828 host_show_hp_ssd_smart_path_enabled, NULL);
8270b862 829static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
da0697bd
ST
830static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
831 host_show_hp_ssd_smart_path_status,
832 host_store_hp_ssd_smart_path_status);
2ba8bfc8
SC
833static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
834 host_store_raid_offload_debug);
3f5eac3a
SC
835static DEVICE_ATTR(firmware_revision, S_IRUGO,
836 host_show_firmware_revision, NULL);
837static DEVICE_ATTR(commands_outstanding, S_IRUGO,
838 host_show_commands_outstanding, NULL);
839static DEVICE_ATTR(transport_mode, S_IRUGO,
840 host_show_transport_mode, NULL);
941b1cda
SC
841static DEVICE_ATTR(resettable, S_IRUGO,
842 host_show_resettable, NULL);
e985c58f
SC
843static DEVICE_ATTR(lockup_detected, S_IRUGO,
844 host_show_lockup_detected, NULL);
3f5eac3a
SC
845
846static struct device_attribute *hpsa_sdev_attrs[] = {
847 &dev_attr_raid_level,
848 &dev_attr_lunid,
849 &dev_attr_unique_id,
c1988684 850 &dev_attr_hp_ssd_smart_path_enabled,
8270b862 851 &dev_attr_path_info,
e985c58f 852 &dev_attr_lockup_detected,
3f5eac3a
SC
853 NULL,
854};
855
856static struct device_attribute *hpsa_shost_attrs[] = {
857 &dev_attr_rescan,
858 &dev_attr_firmware_revision,
859 &dev_attr_commands_outstanding,
860 &dev_attr_transport_mode,
941b1cda 861 &dev_attr_resettable,
da0697bd 862 &dev_attr_hp_ssd_smart_path_status,
2ba8bfc8 863 &dev_attr_raid_offload_debug,
3f5eac3a
SC
864 NULL,
865};
866
41ce4c35
SC
867#define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_ABORTS + \
868 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
869
3f5eac3a
SC
870static struct scsi_host_template hpsa_driver_template = {
871 .module = THIS_MODULE,
f79cfec6
SC
872 .name = HPSA,
873 .proc_name = HPSA,
3f5eac3a
SC
874 .queuecommand = hpsa_scsi_queue_command,
875 .scan_start = hpsa_scan_start,
876 .scan_finished = hpsa_scan_finished,
7c0a0229 877 .change_queue_depth = hpsa_change_queue_depth,
3f5eac3a
SC
878 .this_id = -1,
879 .use_clustering = ENABLE_CLUSTERING,
75167d2c 880 .eh_abort_handler = hpsa_eh_abort_handler,
3f5eac3a
SC
881 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
882 .ioctl = hpsa_ioctl,
883 .slave_alloc = hpsa_slave_alloc,
41ce4c35 884 .slave_configure = hpsa_slave_configure,
3f5eac3a
SC
885 .slave_destroy = hpsa_slave_destroy,
886#ifdef CONFIG_COMPAT
887 .compat_ioctl = hpsa_compat_ioctl,
888#endif
889 .sdev_attrs = hpsa_sdev_attrs,
890 .shost_attrs = hpsa_shost_attrs,
c0d6a4d1 891 .max_sectors = 8192,
54b2b50c 892 .no_write_same = 1,
3f5eac3a
SC
893};
894
254f796b 895static inline u32 next_command(struct ctlr_info *h, u8 q)
3f5eac3a
SC
896{
897 u32 a;
072b0518 898 struct reply_queue_buffer *rq = &h->reply_queue[q];
3f5eac3a 899
e1f7de0c
MG
900 if (h->transMethod & CFGTBL_Trans_io_accel1)
901 return h->access.command_completed(h, q);
902
3f5eac3a 903 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
254f796b 904 return h->access.command_completed(h, q);
3f5eac3a 905
254f796b
MG
906 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
907 a = rq->head[rq->current_entry];
908 rq->current_entry++;
0cbf768e 909 atomic_dec(&h->commands_outstanding);
3f5eac3a
SC
910 } else {
911 a = FIFO_EMPTY;
912 }
913 /* Check for wraparound */
254f796b
MG
914 if (rq->current_entry == h->max_commands) {
915 rq->current_entry = 0;
916 rq->wraparound ^= 1;
3f5eac3a
SC
917 }
918 return a;
919}
920
c349775e
ST
921/*
922 * There are some special bits in the bus address of the
923 * command that we have to set for the controller to know
924 * how to process the command:
925 *
926 * Normal performant mode:
927 * bit 0: 1 means performant mode, 0 means simple mode.
928 * bits 1-3 = block fetch table entry
929 * bits 4-6 = command type (== 0)
930 *
931 * ioaccel1 mode:
932 * bit 0 = "performant mode" bit.
933 * bits 1-3 = block fetch table entry
934 * bits 4-6 = command type (== 110)
935 * (command type is needed because ioaccel1 mode
936 * commands are submitted through the same register as normal
937 * mode commands, so this is how the controller knows whether
938 * the command is normal mode or ioaccel1 mode.)
939 *
940 * ioaccel2 mode:
941 * bit 0 = "performant mode" bit.
942 * bits 1-4 = block fetch table entry (note extra bit)
943 * bits 4-6 = not needed, because ioaccel2 mode has
944 * a separate special register for submitting commands.
945 */
946
25163bd5
WS
947/*
948 * set_performant_mode: Modify the tag for cciss performant
3f5eac3a
SC
949 * set bit 0 for pull model, bits 3-1 for block fetch
950 * register number
951 */
25163bd5
WS
952#define DEFAULT_REPLY_QUEUE (-1)
953static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
954 int reply_queue)
3f5eac3a 955{
254f796b 956 if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
3f5eac3a 957 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
25163bd5
WS
958 if (unlikely(!h->msix_vector))
959 return;
960 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
254f796b 961 c->Header.ReplyQueue =
804a5cb5 962 raw_smp_processor_id() % h->nreply_queues;
25163bd5
WS
963 else
964 c->Header.ReplyQueue = reply_queue % h->nreply_queues;
254f796b 965 }
3f5eac3a
SC
966}
967
c349775e 968static void set_ioaccel1_performant_mode(struct ctlr_info *h,
25163bd5
WS
969 struct CommandList *c,
970 int reply_queue)
c349775e
ST
971{
972 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
973
25163bd5
WS
974 /*
975 * Tell the controller to post the reply to the queue for this
c349775e
ST
976 * processor. This seems to give the best I/O throughput.
977 */
25163bd5
WS
978 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
979 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
980 else
981 cp->ReplyQueue = reply_queue % h->nreply_queues;
982 /*
983 * Set the bits in the address sent down to include:
c349775e
ST
984 * - performant mode bit (bit 0)
985 * - pull count (bits 1-3)
986 * - command type (bits 4-6)
987 */
988 c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
989 IOACCEL1_BUSADDR_CMDTYPE;
990}
991
8be986cc
SC
992static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
993 struct CommandList *c,
994 int reply_queue)
995{
996 struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
997 &h->ioaccel2_cmd_pool[c->cmdindex];
998
999 /* Tell the controller to post the reply to the queue for this
1000 * processor. This seems to give the best I/O throughput.
1001 */
1002 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1003 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1004 else
1005 cp->reply_queue = reply_queue % h->nreply_queues;
1006 /* Set the bits in the address sent down to include:
1007 * - performant mode bit not used in ioaccel mode 2
1008 * - pull count (bits 0-3)
1009 * - command type isn't needed for ioaccel2
1010 */
1011 c->busaddr |= h->ioaccel2_blockFetchTable[0];
1012}
1013
c349775e 1014static void set_ioaccel2_performant_mode(struct ctlr_info *h,
25163bd5
WS
1015 struct CommandList *c,
1016 int reply_queue)
c349775e
ST
1017{
1018 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1019
25163bd5
WS
1020 /*
1021 * Tell the controller to post the reply to the queue for this
c349775e
ST
1022 * processor. This seems to give the best I/O throughput.
1023 */
25163bd5
WS
1024 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1025 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1026 else
1027 cp->reply_queue = reply_queue % h->nreply_queues;
1028 /*
1029 * Set the bits in the address sent down to include:
c349775e
ST
1030 * - performant mode bit not used in ioaccel mode 2
1031 * - pull count (bits 0-3)
1032 * - command type isn't needed for ioaccel2
1033 */
1034 c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1035}
1036
e85c5974
SC
1037static int is_firmware_flash_cmd(u8 *cdb)
1038{
1039 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1040}
1041
1042/*
1043 * During firmware flash, the heartbeat register may not update as frequently
1044 * as it should. So we dial down lockup detection during firmware flash. and
1045 * dial it back up when firmware flash completes.
1046 */
1047#define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1048#define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1049static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1050 struct CommandList *c)
1051{
1052 if (!is_firmware_flash_cmd(c->Request.CDB))
1053 return;
1054 atomic_inc(&h->firmware_flash_in_progress);
1055 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1056}
1057
1058static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1059 struct CommandList *c)
1060{
1061 if (is_firmware_flash_cmd(c->Request.CDB) &&
1062 atomic_dec_and_test(&h->firmware_flash_in_progress))
1063 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1064}
1065
25163bd5
WS
1066static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1067 struct CommandList *c, int reply_queue)
3f5eac3a 1068{
c05e8866
SC
1069 dial_down_lockup_detection_during_fw_flash(h, c);
1070 atomic_inc(&h->commands_outstanding);
c349775e
ST
1071 switch (c->cmd_type) {
1072 case CMD_IOACCEL1:
25163bd5 1073 set_ioaccel1_performant_mode(h, c, reply_queue);
c05e8866 1074 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
c349775e
ST
1075 break;
1076 case CMD_IOACCEL2:
25163bd5 1077 set_ioaccel2_performant_mode(h, c, reply_queue);
c05e8866 1078 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
c349775e 1079 break;
8be986cc
SC
1080 case IOACCEL2_TMF:
1081 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1082 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1083 break;
c349775e 1084 default:
25163bd5 1085 set_performant_mode(h, c, reply_queue);
c05e8866 1086 h->access.submit_command(h, c);
c349775e 1087 }
3f5eac3a
SC
1088}
1089
a58e7e53 1090static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
25163bd5 1091{
d604f533 1092 if (unlikely(hpsa_is_pending_event(c)))
a58e7e53
WS
1093 return finish_cmd(c);
1094
25163bd5
WS
1095 __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1096}
1097
3f5eac3a
SC
1098static inline int is_hba_lunid(unsigned char scsi3addr[])
1099{
1100 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1101}
1102
1103static inline int is_scsi_rev_5(struct ctlr_info *h)
1104{
1105 if (!h->hba_inquiry_data)
1106 return 0;
1107 if ((h->hba_inquiry_data[2] & 0x07) == 5)
1108 return 1;
1109 return 0;
1110}
1111
edd16368
SC
1112static int hpsa_find_target_lun(struct ctlr_info *h,
1113 unsigned char scsi3addr[], int bus, int *target, int *lun)
1114{
1115 /* finds an unused bus, target, lun for a new physical device
1116 * assumes h->devlock is held
1117 */
1118 int i, found = 0;
cfe5badc 1119 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
edd16368 1120
263d9401 1121 bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
edd16368
SC
1122
1123 for (i = 0; i < h->ndevices; i++) {
1124 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
263d9401 1125 __set_bit(h->dev[i]->target, lun_taken);
edd16368
SC
1126 }
1127
263d9401
AM
1128 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1129 if (i < HPSA_MAX_DEVICES) {
1130 /* *bus = 1; */
1131 *target = i;
1132 *lun = 0;
1133 found = 1;
edd16368
SC
1134 }
1135 return !found;
1136}
1137
1d33d85d 1138static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
0d96ef5f
WS
1139 struct hpsa_scsi_dev_t *dev, char *description)
1140{
9975ec9d
DB
1141 if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1142 return;
1143
0d96ef5f
WS
1144 dev_printk(level, &h->pdev->dev,
1145 "scsi %d:%d:%d:%d: %s %s %.8s %.16s RAID-%s SSDSmartPathCap%c En%c Exp=%d\n",
1146 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1147 description,
1148 scsi_device_type(dev->devtype),
1149 dev->vendor,
1150 dev->model,
1151 dev->raid_level > RAID_UNKNOWN ?
1152 "RAID-?" : raid_label[dev->raid_level],
1153 dev->offload_config ? '+' : '-',
1154 dev->offload_enabled ? '+' : '-',
1155 dev->expose_state);
1156}
1157
edd16368 1158/* Add an entry into h->dev[] array. */
8aa60681 1159static int hpsa_scsi_add_entry(struct ctlr_info *h,
edd16368
SC
1160 struct hpsa_scsi_dev_t *device,
1161 struct hpsa_scsi_dev_t *added[], int *nadded)
1162{
1163 /* assumes h->devlock is held */
1164 int n = h->ndevices;
1165 int i;
1166 unsigned char addr1[8], addr2[8];
1167 struct hpsa_scsi_dev_t *sd;
1168
cfe5badc 1169 if (n >= HPSA_MAX_DEVICES) {
edd16368
SC
1170 dev_err(&h->pdev->dev, "too many devices, some will be "
1171 "inaccessible.\n");
1172 return -1;
1173 }
1174
1175 /* physical devices do not have lun or target assigned until now. */
1176 if (device->lun != -1)
1177 /* Logical device, lun is already assigned. */
1178 goto lun_assigned;
1179
1180 /* If this device a non-zero lun of a multi-lun device
1181 * byte 4 of the 8-byte LUN addr will contain the logical
2b08b3e9 1182 * unit no, zero otherwise.
edd16368
SC
1183 */
1184 if (device->scsi3addr[4] == 0) {
1185 /* This is not a non-zero lun of a multi-lun device */
1186 if (hpsa_find_target_lun(h, device->scsi3addr,
1187 device->bus, &device->target, &device->lun) != 0)
1188 return -1;
1189 goto lun_assigned;
1190 }
1191
1192 /* This is a non-zero lun of a multi-lun device.
1193 * Search through our list and find the device which
9a4178b7 1194 * has the same 8 byte LUN address, excepting byte 4 and 5.
edd16368
SC
1195 * Assign the same bus and target for this new LUN.
1196 * Use the logical unit number from the firmware.
1197 */
1198 memcpy(addr1, device->scsi3addr, 8);
1199 addr1[4] = 0;
9a4178b7 1200 addr1[5] = 0;
edd16368
SC
1201 for (i = 0; i < n; i++) {
1202 sd = h->dev[i];
1203 memcpy(addr2, sd->scsi3addr, 8);
1204 addr2[4] = 0;
9a4178b7 1205 addr2[5] = 0;
1206 /* differ only in byte 4 and 5? */
edd16368
SC
1207 if (memcmp(addr1, addr2, 8) == 0) {
1208 device->bus = sd->bus;
1209 device->target = sd->target;
1210 device->lun = device->scsi3addr[4];
1211 break;
1212 }
1213 }
1214 if (device->lun == -1) {
1215 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1216 " suspect firmware bug or unsupported hardware "
1217 "configuration.\n");
1218 return -1;
1219 }
1220
1221lun_assigned:
1222
1223 h->dev[n] = device;
1224 h->ndevices++;
1225 added[*nadded] = device;
1226 (*nadded)++;
0d96ef5f
WS
1227 hpsa_show_dev_msg(KERN_INFO, h, device,
1228 device->expose_state & HPSA_SCSI_ADD ? "added" : "masked");
a473d86c
RE
1229 device->offload_to_be_enabled = device->offload_enabled;
1230 device->offload_enabled = 0;
edd16368
SC
1231 return 0;
1232}
1233
bd9244f7 1234/* Update an entry in h->dev[] array. */
8aa60681 1235static void hpsa_scsi_update_entry(struct ctlr_info *h,
bd9244f7
ST
1236 int entry, struct hpsa_scsi_dev_t *new_entry)
1237{
a473d86c 1238 int offload_enabled;
bd9244f7
ST
1239 /* assumes h->devlock is held */
1240 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1241
1242 /* Raid level changed. */
1243 h->dev[entry]->raid_level = new_entry->raid_level;
250fb125 1244
03383736
DB
1245 /* Raid offload parameters changed. Careful about the ordering. */
1246 if (new_entry->offload_config && new_entry->offload_enabled) {
1247 /*
1248 * if drive is newly offload_enabled, we want to copy the
1249 * raid map data first. If previously offload_enabled and
1250 * offload_config were set, raid map data had better be
1251 * the same as it was before. if raid map data is changed
1252 * then it had better be the case that
1253 * h->dev[entry]->offload_enabled is currently 0.
1254 */
1255 h->dev[entry]->raid_map = new_entry->raid_map;
1256 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
03383736 1257 }
a3144e0b
JH
1258 if (new_entry->hba_ioaccel_enabled) {
1259 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1260 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1261 }
1262 h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
250fb125 1263 h->dev[entry]->offload_config = new_entry->offload_config;
9fb0de2d 1264 h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
03383736 1265 h->dev[entry]->queue_depth = new_entry->queue_depth;
250fb125 1266
41ce4c35
SC
1267 /*
1268 * We can turn off ioaccel offload now, but need to delay turning
1269 * it on until we can update h->dev[entry]->phys_disk[], but we
1270 * can't do that until all the devices are updated.
1271 */
1272 h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1273 if (!new_entry->offload_enabled)
1274 h->dev[entry]->offload_enabled = 0;
1275
a473d86c
RE
1276 offload_enabled = h->dev[entry]->offload_enabled;
1277 h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
0d96ef5f 1278 hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
a473d86c 1279 h->dev[entry]->offload_enabled = offload_enabled;
bd9244f7
ST
1280}
1281
2a8ccf31 1282/* Replace an entry from h->dev[] array. */
8aa60681 1283static void hpsa_scsi_replace_entry(struct ctlr_info *h,
2a8ccf31
SC
1284 int entry, struct hpsa_scsi_dev_t *new_entry,
1285 struct hpsa_scsi_dev_t *added[], int *nadded,
1286 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1287{
1288 /* assumes h->devlock is held */
cfe5badc 1289 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
2a8ccf31
SC
1290 removed[*nremoved] = h->dev[entry];
1291 (*nremoved)++;
01350d05
SC
1292
1293 /*
1294 * New physical devices won't have target/lun assigned yet
1295 * so we need to preserve the values in the slot we are replacing.
1296 */
1297 if (new_entry->target == -1) {
1298 new_entry->target = h->dev[entry]->target;
1299 new_entry->lun = h->dev[entry]->lun;
1300 }
1301
2a8ccf31
SC
1302 h->dev[entry] = new_entry;
1303 added[*nadded] = new_entry;
1304 (*nadded)++;
0d96ef5f 1305 hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
a473d86c
RE
1306 new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1307 new_entry->offload_enabled = 0;
2a8ccf31
SC
1308}
1309
edd16368 1310/* Remove an entry from h->dev[] array. */
8aa60681 1311static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
edd16368
SC
1312 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1313{
1314 /* assumes h->devlock is held */
1315 int i;
1316 struct hpsa_scsi_dev_t *sd;
1317
cfe5badc 1318 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
edd16368
SC
1319
1320 sd = h->dev[entry];
1321 removed[*nremoved] = h->dev[entry];
1322 (*nremoved)++;
1323
1324 for (i = entry; i < h->ndevices-1; i++)
1325 h->dev[i] = h->dev[i+1];
1326 h->ndevices--;
0d96ef5f 1327 hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
edd16368
SC
1328}
1329
1330#define SCSI3ADDR_EQ(a, b) ( \
1331 (a)[7] == (b)[7] && \
1332 (a)[6] == (b)[6] && \
1333 (a)[5] == (b)[5] && \
1334 (a)[4] == (b)[4] && \
1335 (a)[3] == (b)[3] && \
1336 (a)[2] == (b)[2] && \
1337 (a)[1] == (b)[1] && \
1338 (a)[0] == (b)[0])
1339
1340static void fixup_botched_add(struct ctlr_info *h,
1341 struct hpsa_scsi_dev_t *added)
1342{
1343 /* called when scsi_add_device fails in order to re-adjust
1344 * h->dev[] to match the mid layer's view.
1345 */
1346 unsigned long flags;
1347 int i, j;
1348
1349 spin_lock_irqsave(&h->lock, flags);
1350 for (i = 0; i < h->ndevices; i++) {
1351 if (h->dev[i] == added) {
1352 for (j = i; j < h->ndevices-1; j++)
1353 h->dev[j] = h->dev[j+1];
1354 h->ndevices--;
1355 break;
1356 }
1357 }
1358 spin_unlock_irqrestore(&h->lock, flags);
1359 kfree(added);
1360}
1361
1362static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1363 struct hpsa_scsi_dev_t *dev2)
1364{
edd16368
SC
1365 /* we compare everything except lun and target as these
1366 * are not yet assigned. Compare parts likely
1367 * to differ first
1368 */
1369 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1370 sizeof(dev1->scsi3addr)) != 0)
1371 return 0;
1372 if (memcmp(dev1->device_id, dev2->device_id,
1373 sizeof(dev1->device_id)) != 0)
1374 return 0;
1375 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1376 return 0;
1377 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1378 return 0;
edd16368
SC
1379 if (dev1->devtype != dev2->devtype)
1380 return 0;
edd16368
SC
1381 if (dev1->bus != dev2->bus)
1382 return 0;
1383 return 1;
1384}
1385
bd9244f7
ST
1386static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1387 struct hpsa_scsi_dev_t *dev2)
1388{
1389 /* Device attributes that can change, but don't mean
1390 * that the device is a different device, nor that the OS
1391 * needs to be told anything about the change.
1392 */
1393 if (dev1->raid_level != dev2->raid_level)
1394 return 1;
250fb125
SC
1395 if (dev1->offload_config != dev2->offload_config)
1396 return 1;
1397 if (dev1->offload_enabled != dev2->offload_enabled)
1398 return 1;
93849508
DB
1399 if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1400 if (dev1->queue_depth != dev2->queue_depth)
1401 return 1;
bd9244f7
ST
1402 return 0;
1403}
1404
edd16368
SC
1405/* Find needle in haystack. If exact match found, return DEVICE_SAME,
1406 * and return needle location in *index. If scsi3addr matches, but not
1407 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
bd9244f7
ST
1408 * location in *index.
1409 * In the case of a minor device attribute change, such as RAID level, just
1410 * return DEVICE_UPDATED, along with the updated device's location in index.
1411 * If needle not found, return DEVICE_NOT_FOUND.
edd16368
SC
1412 */
1413static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1414 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1415 int *index)
1416{
1417 int i;
1418#define DEVICE_NOT_FOUND 0
1419#define DEVICE_CHANGED 1
1420#define DEVICE_SAME 2
bd9244f7 1421#define DEVICE_UPDATED 3
1d33d85d
DB
1422 if (needle == NULL)
1423 return DEVICE_NOT_FOUND;
1424
edd16368 1425 for (i = 0; i < haystack_size; i++) {
23231048
SC
1426 if (haystack[i] == NULL) /* previously removed. */
1427 continue;
edd16368
SC
1428 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1429 *index = i;
bd9244f7
ST
1430 if (device_is_the_same(needle, haystack[i])) {
1431 if (device_updated(needle, haystack[i]))
1432 return DEVICE_UPDATED;
edd16368 1433 return DEVICE_SAME;
bd9244f7 1434 } else {
9846590e
SC
1435 /* Keep offline devices offline */
1436 if (needle->volume_offline)
1437 return DEVICE_NOT_FOUND;
edd16368 1438 return DEVICE_CHANGED;
bd9244f7 1439 }
edd16368
SC
1440 }
1441 }
1442 *index = -1;
1443 return DEVICE_NOT_FOUND;
1444}
1445
9846590e
SC
1446static void hpsa_monitor_offline_device(struct ctlr_info *h,
1447 unsigned char scsi3addr[])
1448{
1449 struct offline_device_entry *device;
1450 unsigned long flags;
1451
1452 /* Check to see if device is already on the list */
1453 spin_lock_irqsave(&h->offline_device_lock, flags);
1454 list_for_each_entry(device, &h->offline_device_list, offline_list) {
1455 if (memcmp(device->scsi3addr, scsi3addr,
1456 sizeof(device->scsi3addr)) == 0) {
1457 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1458 return;
1459 }
1460 }
1461 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1462
1463 /* Device is not on the list, add it. */
1464 device = kmalloc(sizeof(*device), GFP_KERNEL);
1465 if (!device) {
1466 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1467 return;
1468 }
1469 memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1470 spin_lock_irqsave(&h->offline_device_lock, flags);
1471 list_add_tail(&device->offline_list, &h->offline_device_list);
1472 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1473}
1474
1475/* Print a message explaining various offline volume states */
1476static void hpsa_show_volume_status(struct ctlr_info *h,
1477 struct hpsa_scsi_dev_t *sd)
1478{
1479 if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1480 dev_info(&h->pdev->dev,
1481 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1482 h->scsi_host->host_no,
1483 sd->bus, sd->target, sd->lun);
1484 switch (sd->volume_offline) {
1485 case HPSA_LV_OK:
1486 break;
1487 case HPSA_LV_UNDERGOING_ERASE:
1488 dev_info(&h->pdev->dev,
1489 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1490 h->scsi_host->host_no,
1491 sd->bus, sd->target, sd->lun);
1492 break;
5ca01204
SB
1493 case HPSA_LV_NOT_AVAILABLE:
1494 dev_info(&h->pdev->dev,
1495 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1496 h->scsi_host->host_no,
1497 sd->bus, sd->target, sd->lun);
1498 break;
9846590e
SC
1499 case HPSA_LV_UNDERGOING_RPI:
1500 dev_info(&h->pdev->dev,
5ca01204 1501 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
9846590e
SC
1502 h->scsi_host->host_no,
1503 sd->bus, sd->target, sd->lun);
1504 break;
1505 case HPSA_LV_PENDING_RPI:
1506 dev_info(&h->pdev->dev,
5ca01204
SB
1507 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1508 h->scsi_host->host_no,
1509 sd->bus, sd->target, sd->lun);
9846590e
SC
1510 break;
1511 case HPSA_LV_ENCRYPTED_NO_KEY:
1512 dev_info(&h->pdev->dev,
1513 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1514 h->scsi_host->host_no,
1515 sd->bus, sd->target, sd->lun);
1516 break;
1517 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1518 dev_info(&h->pdev->dev,
1519 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1520 h->scsi_host->host_no,
1521 sd->bus, sd->target, sd->lun);
1522 break;
1523 case HPSA_LV_UNDERGOING_ENCRYPTION:
1524 dev_info(&h->pdev->dev,
1525 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1526 h->scsi_host->host_no,
1527 sd->bus, sd->target, sd->lun);
1528 break;
1529 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1530 dev_info(&h->pdev->dev,
1531 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1532 h->scsi_host->host_no,
1533 sd->bus, sd->target, sd->lun);
1534 break;
1535 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1536 dev_info(&h->pdev->dev,
1537 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1538 h->scsi_host->host_no,
1539 sd->bus, sd->target, sd->lun);
1540 break;
1541 case HPSA_LV_PENDING_ENCRYPTION:
1542 dev_info(&h->pdev->dev,
1543 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1544 h->scsi_host->host_no,
1545 sd->bus, sd->target, sd->lun);
1546 break;
1547 case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1548 dev_info(&h->pdev->dev,
1549 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1550 h->scsi_host->host_no,
1551 sd->bus, sd->target, sd->lun);
1552 break;
1553 }
1554}
1555
03383736
DB
1556/*
1557 * Figure the list of physical drive pointers for a logical drive with
1558 * raid offload configured.
1559 */
1560static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1561 struct hpsa_scsi_dev_t *dev[], int ndevices,
1562 struct hpsa_scsi_dev_t *logical_drive)
1563{
1564 struct raid_map_data *map = &logical_drive->raid_map;
1565 struct raid_map_disk_data *dd = &map->data[0];
1566 int i, j;
1567 int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1568 le16_to_cpu(map->metadata_disks_per_row);
1569 int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1570 le16_to_cpu(map->layout_map_count) *
1571 total_disks_per_row;
1572 int nphys_disk = le16_to_cpu(map->layout_map_count) *
1573 total_disks_per_row;
1574 int qdepth;
1575
1576 if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1577 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1578
d604f533
WS
1579 logical_drive->nphysical_disks = nraid_map_entries;
1580
03383736
DB
1581 qdepth = 0;
1582 for (i = 0; i < nraid_map_entries; i++) {
1583 logical_drive->phys_disk[i] = NULL;
1584 if (!logical_drive->offload_config)
1585 continue;
1586 for (j = 0; j < ndevices; j++) {
1d33d85d
DB
1587 if (dev[j] == NULL)
1588 continue;
03383736
DB
1589 if (dev[j]->devtype != TYPE_DISK)
1590 continue;
1591 if (is_logical_dev_addr_mode(dev[j]->scsi3addr))
1592 continue;
1593 if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1594 continue;
1595
1596 logical_drive->phys_disk[i] = dev[j];
1597 if (i < nphys_disk)
1598 qdepth = min(h->nr_cmds, qdepth +
1599 logical_drive->phys_disk[i]->queue_depth);
1600 break;
1601 }
1602
1603 /*
1604 * This can happen if a physical drive is removed and
1605 * the logical drive is degraded. In that case, the RAID
1606 * map data will refer to a physical disk which isn't actually
1607 * present. And in that case offload_enabled should already
1608 * be 0, but we'll turn it off here just in case
1609 */
1610 if (!logical_drive->phys_disk[i]) {
1611 logical_drive->offload_enabled = 0;
41ce4c35
SC
1612 logical_drive->offload_to_be_enabled = 0;
1613 logical_drive->queue_depth = 8;
03383736
DB
1614 }
1615 }
1616 if (nraid_map_entries)
1617 /*
1618 * This is correct for reads, too high for full stripe writes,
1619 * way too high for partial stripe writes
1620 */
1621 logical_drive->queue_depth = qdepth;
1622 else
1623 logical_drive->queue_depth = h->nr_cmds;
1624}
1625
1626static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1627 struct hpsa_scsi_dev_t *dev[], int ndevices)
1628{
1629 int i;
1630
1631 for (i = 0; i < ndevices; i++) {
1d33d85d
DB
1632 if (dev[i] == NULL)
1633 continue;
03383736
DB
1634 if (dev[i]->devtype != TYPE_DISK)
1635 continue;
1636 if (!is_logical_dev_addr_mode(dev[i]->scsi3addr))
1637 continue;
41ce4c35
SC
1638
1639 /*
1640 * If offload is currently enabled, the RAID map and
1641 * phys_disk[] assignment *better* not be changing
1642 * and since it isn't changing, we do not need to
1643 * update it.
1644 */
1645 if (dev[i]->offload_enabled)
1646 continue;
1647
03383736
DB
1648 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1649 }
1650}
1651
8aa60681 1652static void adjust_hpsa_scsi_table(struct ctlr_info *h,
edd16368
SC
1653 struct hpsa_scsi_dev_t *sd[], int nsds)
1654{
1655 /* sd contains scsi3 addresses and devtypes, and inquiry
1656 * data. This function takes what's in sd to be the current
1657 * reality and updates h->dev[] to reflect that reality.
1658 */
1659 int i, entry, device_change, changes = 0;
1660 struct hpsa_scsi_dev_t *csd;
1661 unsigned long flags;
1662 struct hpsa_scsi_dev_t **added, **removed;
1663 int nadded, nremoved;
1664 struct Scsi_Host *sh = NULL;
1665
da03ded0
DB
1666 /*
1667 * A reset can cause a device status to change
1668 * re-schedule the scan to see what happened.
1669 */
1670 if (h->reset_in_progress) {
1671 h->drv_req_rescan = 1;
1672 return;
1673 }
1674
cfe5badc
ST
1675 added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1676 removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
edd16368
SC
1677
1678 if (!added || !removed) {
1679 dev_warn(&h->pdev->dev, "out of memory in "
1680 "adjust_hpsa_scsi_table\n");
1681 goto free_and_out;
1682 }
1683
1684 spin_lock_irqsave(&h->devlock, flags);
1685
1686 /* find any devices in h->dev[] that are not in
1687 * sd[] and remove them from h->dev[], and for any
1688 * devices which have changed, remove the old device
1689 * info and add the new device info.
bd9244f7
ST
1690 * If minor device attributes change, just update
1691 * the existing device structure.
edd16368
SC
1692 */
1693 i = 0;
1694 nremoved = 0;
1695 nadded = 0;
1696 while (i < h->ndevices) {
1697 csd = h->dev[i];
1698 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1699 if (device_change == DEVICE_NOT_FOUND) {
1700 changes++;
8aa60681 1701 hpsa_scsi_remove_entry(h, i, removed, &nremoved);
edd16368
SC
1702 continue; /* remove ^^^, hence i not incremented */
1703 } else if (device_change == DEVICE_CHANGED) {
1704 changes++;
8aa60681 1705 hpsa_scsi_replace_entry(h, i, sd[entry],
2a8ccf31 1706 added, &nadded, removed, &nremoved);
c7f172dc
SC
1707 /* Set it to NULL to prevent it from being freed
1708 * at the bottom of hpsa_update_scsi_devices()
1709 */
1710 sd[entry] = NULL;
bd9244f7 1711 } else if (device_change == DEVICE_UPDATED) {
8aa60681 1712 hpsa_scsi_update_entry(h, i, sd[entry]);
edd16368
SC
1713 }
1714 i++;
1715 }
1716
1717 /* Now, make sure every device listed in sd[] is also
1718 * listed in h->dev[], adding them if they aren't found
1719 */
1720
1721 for (i = 0; i < nsds; i++) {
1722 if (!sd[i]) /* if already added above. */
1723 continue;
9846590e
SC
1724
1725 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1726 * as the SCSI mid-layer does not handle such devices well.
1727 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1728 * at 160Hz, and prevents the system from coming up.
1729 */
1730 if (sd[i]->volume_offline) {
1731 hpsa_show_volume_status(h, sd[i]);
0d96ef5f 1732 hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
9846590e
SC
1733 continue;
1734 }
1735
edd16368
SC
1736 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1737 h->ndevices, &entry);
1738 if (device_change == DEVICE_NOT_FOUND) {
1739 changes++;
8aa60681 1740 if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
edd16368
SC
1741 break;
1742 sd[i] = NULL; /* prevent from being freed later. */
1743 } else if (device_change == DEVICE_CHANGED) {
1744 /* should never happen... */
1745 changes++;
1746 dev_warn(&h->pdev->dev,
1747 "device unexpectedly changed.\n");
1748 /* but if it does happen, we just ignore that device */
1749 }
1750 }
41ce4c35
SC
1751 hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1752
1753 /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1754 * any logical drives that need it enabled.
1755 */
1d33d85d
DB
1756 for (i = 0; i < h->ndevices; i++) {
1757 if (h->dev[i] == NULL)
1758 continue;
41ce4c35 1759 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1d33d85d 1760 }
41ce4c35 1761
edd16368
SC
1762 spin_unlock_irqrestore(&h->devlock, flags);
1763
9846590e
SC
1764 /* Monitor devices which are in one of several NOT READY states to be
1765 * brought online later. This must be done without holding h->devlock,
1766 * so don't touch h->dev[]
1767 */
1768 for (i = 0; i < nsds; i++) {
1769 if (!sd[i]) /* if already added above. */
1770 continue;
1771 if (sd[i]->volume_offline)
1772 hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1773 }
1774
edd16368
SC
1775 /* Don't notify scsi mid layer of any changes the first time through
1776 * (or if there are no changes) scsi_scan_host will do it later the
1777 * first time through.
1778 */
8aa60681 1779 if (!changes)
edd16368
SC
1780 goto free_and_out;
1781
1782 sh = h->scsi_host;
da03ded0
DB
1783 if (sh == NULL) {
1784 dev_warn(&h->pdev->dev, "%s: scsi_host is null\n", __func__);
1785 goto free_and_out;
1786 }
edd16368
SC
1787 /* Notify scsi mid layer of any removed devices */
1788 for (i = 0; i < nremoved; i++) {
1d33d85d
DB
1789 if (removed[i] == NULL)
1790 continue;
41ce4c35
SC
1791 if (removed[i]->expose_state & HPSA_SCSI_ADD) {
1792 struct scsi_device *sdev =
1793 scsi_device_lookup(sh, removed[i]->bus,
1794 removed[i]->target, removed[i]->lun);
1795 if (sdev != NULL) {
1796 scsi_remove_device(sdev);
1797 scsi_device_put(sdev);
1798 } else {
1799 /*
1800 * We don't expect to get here.
1801 * future cmds to this device will get selection
1802 * timeout as if the device was gone.
1803 */
0d96ef5f
WS
1804 hpsa_show_dev_msg(KERN_WARNING, h, removed[i],
1805 "didn't find device for removal.");
41ce4c35 1806 }
edd16368
SC
1807 }
1808 kfree(removed[i]);
1809 removed[i] = NULL;
1810 }
1811
1812 /* Notify scsi mid layer of any added devices */
1813 for (i = 0; i < nadded; i++) {
1d33d85d
DB
1814 if (added[i] == NULL)
1815 continue;
41ce4c35
SC
1816 if (!(added[i]->expose_state & HPSA_SCSI_ADD))
1817 continue;
edd16368
SC
1818 if (scsi_add_device(sh, added[i]->bus,
1819 added[i]->target, added[i]->lun) == 0)
1820 continue;
1d33d85d 1821 dev_warn(&h->pdev->dev, "addition failed, device not added.");
edd16368
SC
1822 /* now we have to remove it from h->dev,
1823 * since it didn't get added to scsi mid layer
1824 */
1825 fixup_botched_add(h, added[i]);
853633e8 1826 h->drv_req_rescan = 1;
edd16368
SC
1827 }
1828
1829free_and_out:
1830 kfree(added);
1831 kfree(removed);
edd16368
SC
1832}
1833
1834/*
9e03aa2f 1835 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
edd16368
SC
1836 * Assume's h->devlock is held.
1837 */
1838static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1839 int bus, int target, int lun)
1840{
1841 int i;
1842 struct hpsa_scsi_dev_t *sd;
1843
1844 for (i = 0; i < h->ndevices; i++) {
1845 sd = h->dev[i];
1846 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1847 return sd;
1848 }
1849 return NULL;
1850}
1851
edd16368
SC
1852static int hpsa_slave_alloc(struct scsi_device *sdev)
1853{
1854 struct hpsa_scsi_dev_t *sd;
1855 unsigned long flags;
1856 struct ctlr_info *h;
1857
1858 h = sdev_to_hba(sdev);
1859 spin_lock_irqsave(&h->devlock, flags);
1860 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1861 sdev_id(sdev), sdev->lun);
41ce4c35 1862 if (likely(sd)) {
03383736 1863 atomic_set(&sd->ioaccel_cmds_out, 0);
41ce4c35
SC
1864 sdev->hostdata = (sd->expose_state & HPSA_SCSI_ADD) ? sd : NULL;
1865 } else
1866 sdev->hostdata = NULL;
edd16368
SC
1867 spin_unlock_irqrestore(&h->devlock, flags);
1868 return 0;
1869}
1870
41ce4c35
SC
1871/* configure scsi device based on internal per-device structure */
1872static int hpsa_slave_configure(struct scsi_device *sdev)
1873{
1874 struct hpsa_scsi_dev_t *sd;
1875 int queue_depth;
1876
1877 sd = sdev->hostdata;
1878 sdev->no_uld_attach = !sd || !(sd->expose_state & HPSA_ULD_ATTACH);
1879
1880 if (sd)
1881 queue_depth = sd->queue_depth != 0 ?
1882 sd->queue_depth : sdev->host->can_queue;
1883 else
1884 queue_depth = sdev->host->can_queue;
1885
1886 scsi_change_queue_depth(sdev, queue_depth);
1887
1888 return 0;
1889}
1890
edd16368
SC
1891static void hpsa_slave_destroy(struct scsi_device *sdev)
1892{
bcc44255 1893 /* nothing to do. */
edd16368
SC
1894}
1895
d9a729f3
WS
1896static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1897{
1898 int i;
1899
1900 if (!h->ioaccel2_cmd_sg_list)
1901 return;
1902 for (i = 0; i < h->nr_cmds; i++) {
1903 kfree(h->ioaccel2_cmd_sg_list[i]);
1904 h->ioaccel2_cmd_sg_list[i] = NULL;
1905 }
1906 kfree(h->ioaccel2_cmd_sg_list);
1907 h->ioaccel2_cmd_sg_list = NULL;
1908}
1909
1910static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1911{
1912 int i;
1913
1914 if (h->chainsize <= 0)
1915 return 0;
1916
1917 h->ioaccel2_cmd_sg_list =
1918 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
1919 GFP_KERNEL);
1920 if (!h->ioaccel2_cmd_sg_list)
1921 return -ENOMEM;
1922 for (i = 0; i < h->nr_cmds; i++) {
1923 h->ioaccel2_cmd_sg_list[i] =
1924 kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
1925 h->maxsgentries, GFP_KERNEL);
1926 if (!h->ioaccel2_cmd_sg_list[i])
1927 goto clean;
1928 }
1929 return 0;
1930
1931clean:
1932 hpsa_free_ioaccel2_sg_chain_blocks(h);
1933 return -ENOMEM;
1934}
1935
33a2ffce
SC
1936static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1937{
1938 int i;
1939
1940 if (!h->cmd_sg_list)
1941 return;
1942 for (i = 0; i < h->nr_cmds; i++) {
1943 kfree(h->cmd_sg_list[i]);
1944 h->cmd_sg_list[i] = NULL;
1945 }
1946 kfree(h->cmd_sg_list);
1947 h->cmd_sg_list = NULL;
1948}
1949
105a3dbc 1950static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
33a2ffce
SC
1951{
1952 int i;
1953
1954 if (h->chainsize <= 0)
1955 return 0;
1956
1957 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1958 GFP_KERNEL);
3d4e6af8
RE
1959 if (!h->cmd_sg_list) {
1960 dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
33a2ffce 1961 return -ENOMEM;
3d4e6af8 1962 }
33a2ffce
SC
1963 for (i = 0; i < h->nr_cmds; i++) {
1964 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1965 h->chainsize, GFP_KERNEL);
3d4e6af8
RE
1966 if (!h->cmd_sg_list[i]) {
1967 dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
33a2ffce 1968 goto clean;
3d4e6af8 1969 }
33a2ffce
SC
1970 }
1971 return 0;
1972
1973clean:
1974 hpsa_free_sg_chain_blocks(h);
1975 return -ENOMEM;
1976}
1977
d9a729f3
WS
1978static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
1979 struct io_accel2_cmd *cp, struct CommandList *c)
1980{
1981 struct ioaccel2_sg_element *chain_block;
1982 u64 temp64;
1983 u32 chain_size;
1984
1985 chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
a736e9b6 1986 chain_size = le32_to_cpu(cp->sg[0].length);
d9a729f3
WS
1987 temp64 = pci_map_single(h->pdev, chain_block, chain_size,
1988 PCI_DMA_TODEVICE);
1989 if (dma_mapping_error(&h->pdev->dev, temp64)) {
1990 /* prevent subsequent unmapping */
1991 cp->sg->address = 0;
1992 return -1;
1993 }
1994 cp->sg->address = cpu_to_le64(temp64);
1995 return 0;
1996}
1997
1998static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
1999 struct io_accel2_cmd *cp)
2000{
2001 struct ioaccel2_sg_element *chain_sg;
2002 u64 temp64;
2003 u32 chain_size;
2004
2005 chain_sg = cp->sg;
2006 temp64 = le64_to_cpu(chain_sg->address);
a736e9b6 2007 chain_size = le32_to_cpu(cp->sg[0].length);
d9a729f3
WS
2008 pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2009}
2010
e2bea6df 2011static int hpsa_map_sg_chain_block(struct ctlr_info *h,
33a2ffce
SC
2012 struct CommandList *c)
2013{
2014 struct SGDescriptor *chain_sg, *chain_block;
2015 u64 temp64;
50a0decf 2016 u32 chain_len;
33a2ffce
SC
2017
2018 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2019 chain_block = h->cmd_sg_list[c->cmdindex];
50a0decf
SC
2020 chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2021 chain_len = sizeof(*chain_sg) *
2b08b3e9 2022 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
50a0decf
SC
2023 chain_sg->Len = cpu_to_le32(chain_len);
2024 temp64 = pci_map_single(h->pdev, chain_block, chain_len,
33a2ffce 2025 PCI_DMA_TODEVICE);
e2bea6df
SC
2026 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2027 /* prevent subsequent unmapping */
50a0decf 2028 chain_sg->Addr = cpu_to_le64(0);
e2bea6df
SC
2029 return -1;
2030 }
50a0decf 2031 chain_sg->Addr = cpu_to_le64(temp64);
e2bea6df 2032 return 0;
33a2ffce
SC
2033}
2034
2035static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2036 struct CommandList *c)
2037{
2038 struct SGDescriptor *chain_sg;
33a2ffce 2039
50a0decf 2040 if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
33a2ffce
SC
2041 return;
2042
2043 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
50a0decf
SC
2044 pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2045 le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
33a2ffce
SC
2046}
2047
a09c1441
ST
2048
2049/* Decode the various types of errors on ioaccel2 path.
2050 * Return 1 for any error that should generate a RAID path retry.
2051 * Return 0 for errors that don't require a RAID path retry.
2052 */
2053static int handle_ioaccel_mode2_error(struct ctlr_info *h,
c349775e
ST
2054 struct CommandList *c,
2055 struct scsi_cmnd *cmd,
2056 struct io_accel2_cmd *c2)
2057{
2058 int data_len;
a09c1441 2059 int retry = 0;
c40820d5 2060 u32 ioaccel2_resid = 0;
c349775e
ST
2061
2062 switch (c2->error_data.serv_response) {
2063 case IOACCEL2_SERV_RESPONSE_COMPLETE:
2064 switch (c2->error_data.status) {
2065 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2066 break;
2067 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
ee6b1889 2068 cmd->result |= SAM_STAT_CHECK_CONDITION;
c349775e 2069 if (c2->error_data.data_present !=
ee6b1889
SC
2070 IOACCEL2_SENSE_DATA_PRESENT) {
2071 memset(cmd->sense_buffer, 0,
2072 SCSI_SENSE_BUFFERSIZE);
c349775e 2073 break;
ee6b1889 2074 }
c349775e
ST
2075 /* copy the sense data */
2076 data_len = c2->error_data.sense_data_len;
2077 if (data_len > SCSI_SENSE_BUFFERSIZE)
2078 data_len = SCSI_SENSE_BUFFERSIZE;
2079 if (data_len > sizeof(c2->error_data.sense_data_buff))
2080 data_len =
2081 sizeof(c2->error_data.sense_data_buff);
2082 memcpy(cmd->sense_buffer,
2083 c2->error_data.sense_data_buff, data_len);
a09c1441 2084 retry = 1;
c349775e
ST
2085 break;
2086 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
a09c1441 2087 retry = 1;
c349775e
ST
2088 break;
2089 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
a09c1441 2090 retry = 1;
c349775e
ST
2091 break;
2092 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
4a8da22b 2093 retry = 1;
c349775e
ST
2094 break;
2095 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
a09c1441 2096 retry = 1;
c349775e
ST
2097 break;
2098 default:
a09c1441 2099 retry = 1;
c349775e
ST
2100 break;
2101 }
2102 break;
2103 case IOACCEL2_SERV_RESPONSE_FAILURE:
c40820d5
JH
2104 switch (c2->error_data.status) {
2105 case IOACCEL2_STATUS_SR_IO_ERROR:
2106 case IOACCEL2_STATUS_SR_IO_ABORTED:
2107 case IOACCEL2_STATUS_SR_OVERRUN:
2108 retry = 1;
2109 break;
2110 case IOACCEL2_STATUS_SR_UNDERRUN:
2111 cmd->result = (DID_OK << 16); /* host byte */
2112 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2113 ioaccel2_resid = get_unaligned_le32(
2114 &c2->error_data.resid_cnt[0]);
2115 scsi_set_resid(cmd, ioaccel2_resid);
2116 break;
2117 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2118 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2119 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2120 /* We will get an event from ctlr to trigger rescan */
2121 retry = 1;
2122 break;
2123 default:
2124 retry = 1;
c40820d5 2125 }
c349775e
ST
2126 break;
2127 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2128 break;
2129 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2130 break;
2131 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
a09c1441 2132 retry = 1;
c349775e
ST
2133 break;
2134 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
c349775e
ST
2135 break;
2136 default:
a09c1441 2137 retry = 1;
c349775e
ST
2138 break;
2139 }
a09c1441
ST
2140
2141 return retry; /* retry on raid path? */
c349775e
ST
2142}
2143
a58e7e53
WS
2144static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2145 struct CommandList *c)
2146{
d604f533
WS
2147 bool do_wake = false;
2148
a58e7e53
WS
2149 /*
2150 * Prevent the following race in the abort handler:
2151 *
2152 * 1. LLD is requested to abort a SCSI command
2153 * 2. The SCSI command completes
2154 * 3. The struct CommandList associated with step 2 is made available
2155 * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2156 * 5. Abort handler follows scsi_cmnd->host_scribble and
2157 * finds struct CommandList and tries to aborts it
2158 * Now we have aborted the wrong command.
2159 *
d604f533
WS
2160 * Reset c->scsi_cmd here so that the abort or reset handler will know
2161 * this command has completed. Then, check to see if the handler is
a58e7e53
WS
2162 * waiting for this command, and, if so, wake it.
2163 */
2164 c->scsi_cmd = SCSI_CMD_IDLE;
d604f533 2165 mb(); /* Declare command idle before checking for pending events. */
a58e7e53 2166 if (c->abort_pending) {
d604f533 2167 do_wake = true;
a58e7e53 2168 c->abort_pending = false;
a58e7e53 2169 }
d604f533
WS
2170 if (c->reset_pending) {
2171 unsigned long flags;
2172 struct hpsa_scsi_dev_t *dev;
2173
2174 /*
2175 * There appears to be a reset pending; lock the lock and
2176 * reconfirm. If so, then decrement the count of outstanding
2177 * commands and wake the reset command if this is the last one.
2178 */
2179 spin_lock_irqsave(&h->lock, flags);
2180 dev = c->reset_pending; /* Re-fetch under the lock. */
2181 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2182 do_wake = true;
2183 c->reset_pending = NULL;
2184 spin_unlock_irqrestore(&h->lock, flags);
2185 }
2186
2187 if (do_wake)
2188 wake_up_all(&h->event_sync_wait_queue);
a58e7e53
WS
2189}
2190
73153fe5
WS
2191static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2192 struct CommandList *c)
2193{
2194 hpsa_cmd_resolve_events(h, c);
2195 cmd_tagged_free(h, c);
2196}
2197
8a0ff92c
WS
2198static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2199 struct CommandList *c, struct scsi_cmnd *cmd)
2200{
73153fe5 2201 hpsa_cmd_resolve_and_free(h, c);
8a0ff92c
WS
2202 cmd->scsi_done(cmd);
2203}
2204
2205static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2206{
2207 INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2208 queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2209}
2210
a58e7e53
WS
2211static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2212{
2213 cmd->result = DID_ABORT << 16;
2214}
2215
2216static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2217 struct scsi_cmnd *cmd)
2218{
2219 hpsa_set_scsi_cmd_aborted(cmd);
2220 dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2221 c->Request.CDB, c->err_info->ScsiStatus);
73153fe5 2222 hpsa_cmd_resolve_and_free(h, c);
a58e7e53
WS
2223}
2224
c349775e
ST
2225static void process_ioaccel2_completion(struct ctlr_info *h,
2226 struct CommandList *c, struct scsi_cmnd *cmd,
2227 struct hpsa_scsi_dev_t *dev)
2228{
2229 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2230
2231 /* check for good status */
2232 if (likely(c2->error_data.serv_response == 0 &&
8a0ff92c
WS
2233 c2->error_data.status == 0))
2234 return hpsa_cmd_free_and_done(h, c, cmd);
c349775e 2235
8a0ff92c
WS
2236 /*
2237 * Any RAID offload error results in retry which will use
c349775e
ST
2238 * the normal I/O path so the controller can handle whatever's
2239 * wrong.
2240 */
2241 if (is_logical_dev_addr_mode(dev->scsi3addr) &&
2242 c2->error_data.serv_response ==
2243 IOACCEL2_SERV_RESPONSE_FAILURE) {
080ef1cc
DB
2244 if (c2->error_data.status ==
2245 IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
2246 dev->offload_enabled = 0;
8a0ff92c
WS
2247
2248 return hpsa_retry_cmd(h, c);
a09c1441 2249 }
080ef1cc
DB
2250
2251 if (handle_ioaccel_mode2_error(h, c, cmd, c2))
8a0ff92c 2252 return hpsa_retry_cmd(h, c);
080ef1cc 2253
8a0ff92c 2254 return hpsa_cmd_free_and_done(h, c, cmd);
c349775e
ST
2255}
2256
9437ac43
SC
2257/* Returns 0 on success, < 0 otherwise. */
2258static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2259 struct CommandList *cp)
2260{
2261 u8 tmf_status = cp->err_info->ScsiStatus;
2262
2263 switch (tmf_status) {
2264 case CISS_TMF_COMPLETE:
2265 /*
2266 * CISS_TMF_COMPLETE never happens, instead,
2267 * ei->CommandStatus == 0 for this case.
2268 */
2269 case CISS_TMF_SUCCESS:
2270 return 0;
2271 case CISS_TMF_INVALID_FRAME:
2272 case CISS_TMF_NOT_SUPPORTED:
2273 case CISS_TMF_FAILED:
2274 case CISS_TMF_WRONG_LUN:
2275 case CISS_TMF_OVERLAPPED_TAG:
2276 break;
2277 default:
2278 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2279 tmf_status);
2280 break;
2281 }
2282 return -tmf_status;
2283}
2284
1fb011fb 2285static void complete_scsi_command(struct CommandList *cp)
edd16368
SC
2286{
2287 struct scsi_cmnd *cmd;
2288 struct ctlr_info *h;
2289 struct ErrorInfo *ei;
283b4a9b 2290 struct hpsa_scsi_dev_t *dev;
d9a729f3 2291 struct io_accel2_cmd *c2;
edd16368 2292
9437ac43
SC
2293 u8 sense_key;
2294 u8 asc; /* additional sense code */
2295 u8 ascq; /* additional sense code qualifier */
db111e18 2296 unsigned long sense_data_size;
edd16368
SC
2297
2298 ei = cp->err_info;
7fa3030c 2299 cmd = cp->scsi_cmd;
edd16368 2300 h = cp->h;
283b4a9b 2301 dev = cmd->device->hostdata;
d9a729f3 2302 c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
edd16368
SC
2303
2304 scsi_dma_unmap(cmd); /* undo the DMA mappings */
e1f7de0c 2305 if ((cp->cmd_type == CMD_SCSI) &&
2b08b3e9 2306 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
33a2ffce 2307 hpsa_unmap_sg_chain_block(h, cp);
edd16368 2308
d9a729f3
WS
2309 if ((cp->cmd_type == CMD_IOACCEL2) &&
2310 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2311 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2312
edd16368
SC
2313 cmd->result = (DID_OK << 16); /* host byte */
2314 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
c349775e 2315
03383736
DB
2316 if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
2317 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2318
25163bd5
WS
2319 /*
2320 * We check for lockup status here as it may be set for
2321 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2322 * fail_all_oustanding_cmds()
2323 */
2324 if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2325 /* DID_NO_CONNECT will prevent a retry */
2326 cmd->result = DID_NO_CONNECT << 16;
8a0ff92c 2327 return hpsa_cmd_free_and_done(h, cp, cmd);
25163bd5
WS
2328 }
2329
d604f533
WS
2330 if ((unlikely(hpsa_is_pending_event(cp)))) {
2331 if (cp->reset_pending)
2332 return hpsa_cmd_resolve_and_free(h, cp);
2333 if (cp->abort_pending)
2334 return hpsa_cmd_abort_and_free(h, cp, cmd);
2335 }
2336
c349775e
ST
2337 if (cp->cmd_type == CMD_IOACCEL2)
2338 return process_ioaccel2_completion(h, cp, cmd, dev);
2339
6aa4c361 2340 scsi_set_resid(cmd, ei->ResidualCnt);
8a0ff92c
WS
2341 if (ei->CommandStatus == 0)
2342 return hpsa_cmd_free_and_done(h, cp, cmd);
6aa4c361 2343
e1f7de0c
MG
2344 /* For I/O accelerator commands, copy over some fields to the normal
2345 * CISS header used below for error handling.
2346 */
2347 if (cp->cmd_type == CMD_IOACCEL1) {
2348 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2b08b3e9
DB
2349 cp->Header.SGList = scsi_sg_count(cmd);
2350 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2351 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2352 IOACCEL1_IOFLAGS_CDBLEN_MASK;
50a0decf 2353 cp->Header.tag = c->tag;
e1f7de0c
MG
2354 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2355 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
283b4a9b
SC
2356
2357 /* Any RAID offload error results in retry which will use
2358 * the normal I/O path so the controller can handle whatever's
2359 * wrong.
2360 */
2361 if (is_logical_dev_addr_mode(dev->scsi3addr)) {
2362 if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2363 dev->offload_enabled = 0;
d604f533 2364 return hpsa_retry_cmd(h, cp);
283b4a9b 2365 }
e1f7de0c
MG
2366 }
2367
edd16368
SC
2368 /* an error has occurred */
2369 switch (ei->CommandStatus) {
2370
2371 case CMD_TARGET_STATUS:
9437ac43
SC
2372 cmd->result |= ei->ScsiStatus;
2373 /* copy the sense data */
2374 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2375 sense_data_size = SCSI_SENSE_BUFFERSIZE;
2376 else
2377 sense_data_size = sizeof(ei->SenseInfo);
2378 if (ei->SenseLen < sense_data_size)
2379 sense_data_size = ei->SenseLen;
2380 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2381 if (ei->ScsiStatus)
2382 decode_sense_data(ei->SenseInfo, sense_data_size,
2383 &sense_key, &asc, &ascq);
edd16368 2384 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1d3b3609 2385 if (sense_key == ABORTED_COMMAND) {
2e311fba 2386 cmd->result |= DID_SOFT_ERROR << 16;
1d3b3609
MG
2387 break;
2388 }
edd16368
SC
2389 break;
2390 }
edd16368
SC
2391 /* Problem was not a check condition
2392 * Pass it up to the upper layers...
2393 */
2394 if (ei->ScsiStatus) {
2395 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2396 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2397 "Returning result: 0x%x\n",
2398 cp, ei->ScsiStatus,
2399 sense_key, asc, ascq,
2400 cmd->result);
2401 } else { /* scsi status is zero??? How??? */
2402 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2403 "Returning no connection.\n", cp),
2404
2405 /* Ordinarily, this case should never happen,
2406 * but there is a bug in some released firmware
2407 * revisions that allows it to happen if, for
2408 * example, a 4100 backplane loses power and
2409 * the tape drive is in it. We assume that
2410 * it's a fatal error of some kind because we
2411 * can't show that it wasn't. We will make it
2412 * look like selection timeout since that is
2413 * the most common reason for this to occur,
2414 * and it's severe enough.
2415 */
2416
2417 cmd->result = DID_NO_CONNECT << 16;
2418 }
2419 break;
2420
2421 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2422 break;
2423 case CMD_DATA_OVERRUN:
f42e81e1
SC
2424 dev_warn(&h->pdev->dev,
2425 "CDB %16phN data overrun\n", cp->Request.CDB);
edd16368
SC
2426 break;
2427 case CMD_INVALID: {
2428 /* print_bytes(cp, sizeof(*cp), 1, 0);
2429 print_cmd(cp); */
2430 /* We get CMD_INVALID if you address a non-existent device
2431 * instead of a selection timeout (no response). You will
2432 * see this if you yank out a drive, then try to access it.
2433 * This is kind of a shame because it means that any other
2434 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2435 * missing target. */
2436 cmd->result = DID_NO_CONNECT << 16;
2437 }
2438 break;
2439 case CMD_PROTOCOL_ERR:
256d0eaa 2440 cmd->result = DID_ERROR << 16;
f42e81e1
SC
2441 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2442 cp->Request.CDB);
edd16368
SC
2443 break;
2444 case CMD_HARDWARE_ERR:
2445 cmd->result = DID_ERROR << 16;
f42e81e1
SC
2446 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2447 cp->Request.CDB);
edd16368
SC
2448 break;
2449 case CMD_CONNECTION_LOST:
2450 cmd->result = DID_ERROR << 16;
f42e81e1
SC
2451 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2452 cp->Request.CDB);
edd16368
SC
2453 break;
2454 case CMD_ABORTED:
a58e7e53
WS
2455 /* Return now to avoid calling scsi_done(). */
2456 return hpsa_cmd_abort_and_free(h, cp, cmd);
edd16368
SC
2457 case CMD_ABORT_FAILED:
2458 cmd->result = DID_ERROR << 16;
f42e81e1
SC
2459 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2460 cp->Request.CDB);
edd16368
SC
2461 break;
2462 case CMD_UNSOLICITED_ABORT:
f6e76055 2463 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
f42e81e1
SC
2464 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2465 cp->Request.CDB);
edd16368
SC
2466 break;
2467 case CMD_TIMEOUT:
2468 cmd->result = DID_TIME_OUT << 16;
f42e81e1
SC
2469 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2470 cp->Request.CDB);
edd16368 2471 break;
1d5e2ed0
SC
2472 case CMD_UNABORTABLE:
2473 cmd->result = DID_ERROR << 16;
2474 dev_warn(&h->pdev->dev, "Command unabortable\n");
2475 break;
9437ac43
SC
2476 case CMD_TMF_STATUS:
2477 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2478 cmd->result = DID_ERROR << 16;
2479 break;
283b4a9b
SC
2480 case CMD_IOACCEL_DISABLED:
2481 /* This only handles the direct pass-through case since RAID
2482 * offload is handled above. Just attempt a retry.
2483 */
2484 cmd->result = DID_SOFT_ERROR << 16;
2485 dev_warn(&h->pdev->dev,
2486 "cp %p had HP SSD Smart Path error\n", cp);
2487 break;
edd16368
SC
2488 default:
2489 cmd->result = DID_ERROR << 16;
2490 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2491 cp, ei->CommandStatus);
2492 }
8a0ff92c
WS
2493
2494 return hpsa_cmd_free_and_done(h, cp, cmd);
edd16368
SC
2495}
2496
edd16368
SC
2497static void hpsa_pci_unmap(struct pci_dev *pdev,
2498 struct CommandList *c, int sg_used, int data_direction)
2499{
2500 int i;
edd16368 2501
50a0decf
SC
2502 for (i = 0; i < sg_used; i++)
2503 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2504 le32_to_cpu(c->SG[i].Len),
2505 data_direction);
edd16368
SC
2506}
2507
a2dac136 2508static int hpsa_map_one(struct pci_dev *pdev,
edd16368
SC
2509 struct CommandList *cp,
2510 unsigned char *buf,
2511 size_t buflen,
2512 int data_direction)
2513{
01a02ffc 2514 u64 addr64;
edd16368
SC
2515
2516 if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2517 cp->Header.SGList = 0;
50a0decf 2518 cp->Header.SGTotal = cpu_to_le16(0);
a2dac136 2519 return 0;
edd16368
SC
2520 }
2521
50a0decf 2522 addr64 = pci_map_single(pdev, buf, buflen, data_direction);
eceaae18 2523 if (dma_mapping_error(&pdev->dev, addr64)) {
a2dac136 2524 /* Prevent subsequent unmap of something never mapped */
eceaae18 2525 cp->Header.SGList = 0;
50a0decf 2526 cp->Header.SGTotal = cpu_to_le16(0);
a2dac136 2527 return -1;
eceaae18 2528 }
50a0decf
SC
2529 cp->SG[0].Addr = cpu_to_le64(addr64);
2530 cp->SG[0].Len = cpu_to_le32(buflen);
2531 cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2532 cp->Header.SGList = 1; /* no. SGs contig in this cmd */
2533 cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
a2dac136 2534 return 0;
edd16368
SC
2535}
2536
25163bd5
WS
2537#define NO_TIMEOUT ((unsigned long) -1)
2538#define DEFAULT_TIMEOUT 30000 /* milliseconds */
2539static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2540 struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
edd16368
SC
2541{
2542 DECLARE_COMPLETION_ONSTACK(wait);
2543
2544 c->waiting = &wait;
25163bd5
WS
2545 __enqueue_cmd_and_start_io(h, c, reply_queue);
2546 if (timeout_msecs == NO_TIMEOUT) {
2547 /* TODO: get rid of this no-timeout thing */
2548 wait_for_completion_io(&wait);
2549 return IO_OK;
2550 }
2551 if (!wait_for_completion_io_timeout(&wait,
2552 msecs_to_jiffies(timeout_msecs))) {
2553 dev_warn(&h->pdev->dev, "Command timed out.\n");
2554 return -ETIMEDOUT;
2555 }
2556 return IO_OK;
2557}
2558
2559static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2560 int reply_queue, unsigned long timeout_msecs)
2561{
2562 if (unlikely(lockup_detected(h))) {
2563 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2564 return IO_OK;
2565 }
2566 return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
edd16368
SC
2567}
2568
094963da
SC
2569static u32 lockup_detected(struct ctlr_info *h)
2570{
2571 int cpu;
2572 u32 rc, *lockup_detected;
2573
2574 cpu = get_cpu();
2575 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2576 rc = *lockup_detected;
2577 put_cpu();
2578 return rc;
2579}
2580
9c2fc160 2581#define MAX_DRIVER_CMD_RETRIES 25
25163bd5
WS
2582static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2583 struct CommandList *c, int data_direction, unsigned long timeout_msecs)
edd16368 2584{
9c2fc160 2585 int backoff_time = 10, retry_count = 0;
25163bd5 2586 int rc;
edd16368
SC
2587
2588 do {
7630abd0 2589 memset(c->err_info, 0, sizeof(*c->err_info));
25163bd5
WS
2590 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2591 timeout_msecs);
2592 if (rc)
2593 break;
edd16368 2594 retry_count++;
9c2fc160
SC
2595 if (retry_count > 3) {
2596 msleep(backoff_time);
2597 if (backoff_time < 1000)
2598 backoff_time *= 2;
2599 }
852af20a 2600 } while ((check_for_unit_attention(h, c) ||
9c2fc160
SC
2601 check_for_busy(h, c)) &&
2602 retry_count <= MAX_DRIVER_CMD_RETRIES);
edd16368 2603 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
25163bd5
WS
2604 if (retry_count > MAX_DRIVER_CMD_RETRIES)
2605 rc = -EIO;
2606 return rc;
edd16368
SC
2607}
2608
d1e8beac
SC
2609static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2610 struct CommandList *c)
edd16368 2611{
d1e8beac
SC
2612 const u8 *cdb = c->Request.CDB;
2613 const u8 *lun = c->Header.LUN.LunAddrBytes;
2614
2615 dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2616 " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2617 txt, lun[0], lun[1], lun[2], lun[3],
2618 lun[4], lun[5], lun[6], lun[7],
2619 cdb[0], cdb[1], cdb[2], cdb[3],
2620 cdb[4], cdb[5], cdb[6], cdb[7],
2621 cdb[8], cdb[9], cdb[10], cdb[11],
2622 cdb[12], cdb[13], cdb[14], cdb[15]);
2623}
2624
2625static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2626 struct CommandList *cp)
2627{
2628 const struct ErrorInfo *ei = cp->err_info;
edd16368 2629 struct device *d = &cp->h->pdev->dev;
9437ac43
SC
2630 u8 sense_key, asc, ascq;
2631 int sense_len;
edd16368 2632
edd16368
SC
2633 switch (ei->CommandStatus) {
2634 case CMD_TARGET_STATUS:
9437ac43
SC
2635 if (ei->SenseLen > sizeof(ei->SenseInfo))
2636 sense_len = sizeof(ei->SenseInfo);
2637 else
2638 sense_len = ei->SenseLen;
2639 decode_sense_data(ei->SenseInfo, sense_len,
2640 &sense_key, &asc, &ascq);
d1e8beac
SC
2641 hpsa_print_cmd(h, "SCSI status", cp);
2642 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
9437ac43
SC
2643 dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2644 sense_key, asc, ascq);
d1e8beac 2645 else
9437ac43 2646 dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
edd16368
SC
2647 if (ei->ScsiStatus == 0)
2648 dev_warn(d, "SCSI status is abnormally zero. "
2649 "(probably indicates selection timeout "
2650 "reported incorrectly due to a known "
2651 "firmware bug, circa July, 2001.)\n");
2652 break;
2653 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
edd16368
SC
2654 break;
2655 case CMD_DATA_OVERRUN:
d1e8beac 2656 hpsa_print_cmd(h, "overrun condition", cp);
edd16368
SC
2657 break;
2658 case CMD_INVALID: {
2659 /* controller unfortunately reports SCSI passthru's
2660 * to non-existent targets as invalid commands.
2661 */
d1e8beac
SC
2662 hpsa_print_cmd(h, "invalid command", cp);
2663 dev_warn(d, "probably means device no longer present\n");
edd16368
SC
2664 }
2665 break;
2666 case CMD_PROTOCOL_ERR:
d1e8beac 2667 hpsa_print_cmd(h, "protocol error", cp);
edd16368
SC
2668 break;
2669 case CMD_HARDWARE_ERR:
d1e8beac 2670 hpsa_print_cmd(h, "hardware error", cp);
edd16368
SC
2671 break;
2672 case CMD_CONNECTION_LOST:
d1e8beac 2673 hpsa_print_cmd(h, "connection lost", cp);
edd16368
SC
2674 break;
2675 case CMD_ABORTED:
d1e8beac 2676 hpsa_print_cmd(h, "aborted", cp);
edd16368
SC
2677 break;
2678 case CMD_ABORT_FAILED:
d1e8beac 2679 hpsa_print_cmd(h, "abort failed", cp);
edd16368
SC
2680 break;
2681 case CMD_UNSOLICITED_ABORT:
d1e8beac 2682 hpsa_print_cmd(h, "unsolicited abort", cp);
edd16368
SC
2683 break;
2684 case CMD_TIMEOUT:
d1e8beac 2685 hpsa_print_cmd(h, "timed out", cp);
edd16368 2686 break;
1d5e2ed0 2687 case CMD_UNABORTABLE:
d1e8beac 2688 hpsa_print_cmd(h, "unabortable", cp);
1d5e2ed0 2689 break;
25163bd5
WS
2690 case CMD_CTLR_LOCKUP:
2691 hpsa_print_cmd(h, "controller lockup detected", cp);
2692 break;
edd16368 2693 default:
d1e8beac
SC
2694 hpsa_print_cmd(h, "unknown status", cp);
2695 dev_warn(d, "Unknown command status %x\n",
edd16368
SC
2696 ei->CommandStatus);
2697 }
2698}
2699
2700static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
b7bb24eb 2701 u16 page, unsigned char *buf,
edd16368
SC
2702 unsigned char bufsize)
2703{
2704 int rc = IO_OK;
2705 struct CommandList *c;
2706 struct ErrorInfo *ei;
2707
45fcb86e 2708 c = cmd_alloc(h);
edd16368 2709
a2dac136
SC
2710 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2711 page, scsi3addr, TYPE_CMD)) {
2712 rc = -1;
2713 goto out;
2714 }
25163bd5
WS
2715 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2716 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2717 if (rc)
2718 goto out;
edd16368
SC
2719 ei = c->err_info;
2720 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
d1e8beac 2721 hpsa_scsi_interpret_error(h, c);
edd16368
SC
2722 rc = -1;
2723 }
a2dac136 2724out:
45fcb86e 2725 cmd_free(h, c);
edd16368
SC
2726 return rc;
2727}
2728
bf711ac6 2729static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
25163bd5 2730 u8 reset_type, int reply_queue)
edd16368
SC
2731{
2732 int rc = IO_OK;
2733 struct CommandList *c;
2734 struct ErrorInfo *ei;
2735
45fcb86e 2736 c = cmd_alloc(h);
edd16368 2737
edd16368 2738
a2dac136 2739 /* fill_cmd can't fail here, no data buffer to map. */
0b9b7b6e 2740 (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
bf711ac6 2741 scsi3addr, TYPE_MSG);
25163bd5
WS
2742 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2743 if (rc) {
2744 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2745 goto out;
2746 }
edd16368
SC
2747 /* no unmap needed here because no data xfer. */
2748
2749 ei = c->err_info;
2750 if (ei->CommandStatus != 0) {
d1e8beac 2751 hpsa_scsi_interpret_error(h, c);
edd16368
SC
2752 rc = -1;
2753 }
25163bd5 2754out:
45fcb86e 2755 cmd_free(h, c);
edd16368
SC
2756 return rc;
2757}
2758
d604f533
WS
2759static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2760 struct hpsa_scsi_dev_t *dev,
2761 unsigned char *scsi3addr)
2762{
2763 int i;
2764 bool match = false;
2765 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2766 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2767
2768 if (hpsa_is_cmd_idle(c))
2769 return false;
2770
2771 switch (c->cmd_type) {
2772 case CMD_SCSI:
2773 case CMD_IOCTL_PEND:
2774 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2775 sizeof(c->Header.LUN.LunAddrBytes));
2776 break;
2777
2778 case CMD_IOACCEL1:
2779 case CMD_IOACCEL2:
2780 if (c->phys_disk == dev) {
2781 /* HBA mode match */
2782 match = true;
2783 } else {
2784 /* Possible RAID mode -- check each phys dev. */
2785 /* FIXME: Do we need to take out a lock here? If
2786 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2787 * instead. */
2788 for (i = 0; i < dev->nphysical_disks && !match; i++) {
2789 /* FIXME: an alternate test might be
2790 *
2791 * match = dev->phys_disk[i]->ioaccel_handle
2792 * == c2->scsi_nexus; */
2793 match = dev->phys_disk[i] == c->phys_disk;
2794 }
2795 }
2796 break;
2797
2798 case IOACCEL2_TMF:
2799 for (i = 0; i < dev->nphysical_disks && !match; i++) {
2800 match = dev->phys_disk[i]->ioaccel_handle ==
2801 le32_to_cpu(ac->it_nexus);
2802 }
2803 break;
2804
2805 case 0: /* The command is in the middle of being initialized. */
2806 match = false;
2807 break;
2808
2809 default:
2810 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
2811 c->cmd_type);
2812 BUG();
2813 }
2814
2815 return match;
2816}
2817
2818static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
2819 unsigned char *scsi3addr, u8 reset_type, int reply_queue)
2820{
2821 int i;
2822 int rc = 0;
2823
2824 /* We can really only handle one reset at a time */
2825 if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
2826 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
2827 return -EINTR;
2828 }
2829
2830 BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
2831
2832 for (i = 0; i < h->nr_cmds; i++) {
2833 struct CommandList *c = h->cmd_pool + i;
2834 int refcount = atomic_inc_return(&c->refcount);
2835
2836 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
2837 unsigned long flags;
2838
2839 /*
2840 * Mark the target command as having a reset pending,
2841 * then lock a lock so that the command cannot complete
2842 * while we're considering it. If the command is not
2843 * idle then count it; otherwise revoke the event.
2844 */
2845 c->reset_pending = dev;
2846 spin_lock_irqsave(&h->lock, flags); /* Implied MB */
2847 if (!hpsa_is_cmd_idle(c))
2848 atomic_inc(&dev->reset_cmds_out);
2849 else
2850 c->reset_pending = NULL;
2851 spin_unlock_irqrestore(&h->lock, flags);
2852 }
2853
2854 cmd_free(h, c);
2855 }
2856
2857 rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
2858 if (!rc)
2859 wait_event(h->event_sync_wait_queue,
2860 atomic_read(&dev->reset_cmds_out) == 0 ||
2861 lockup_detected(h));
2862
2863 if (unlikely(lockup_detected(h))) {
77678d3a
DB
2864 dev_warn(&h->pdev->dev,
2865 "Controller lockup detected during reset wait\n");
2866 rc = -ENODEV;
2867 }
d604f533
WS
2868
2869 if (unlikely(rc))
2870 atomic_set(&dev->reset_cmds_out, 0);
2871
2872 mutex_unlock(&h->reset_mutex);
2873 return rc;
2874}
2875
edd16368
SC
2876static void hpsa_get_raid_level(struct ctlr_info *h,
2877 unsigned char *scsi3addr, unsigned char *raid_level)
2878{
2879 int rc;
2880 unsigned char *buf;
2881
2882 *raid_level = RAID_UNKNOWN;
2883 buf = kzalloc(64, GFP_KERNEL);
2884 if (!buf)
2885 return;
b7bb24eb 2886 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
edd16368
SC
2887 if (rc == 0)
2888 *raid_level = buf[8];
2889 if (*raid_level > RAID_UNKNOWN)
2890 *raid_level = RAID_UNKNOWN;
2891 kfree(buf);
2892 return;
2893}
2894
283b4a9b
SC
2895#define HPSA_MAP_DEBUG
2896#ifdef HPSA_MAP_DEBUG
2897static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2898 struct raid_map_data *map_buff)
2899{
2900 struct raid_map_disk_data *dd = &map_buff->data[0];
2901 int map, row, col;
2902 u16 map_cnt, row_cnt, disks_per_row;
2903
2904 if (rc != 0)
2905 return;
2906
2ba8bfc8
SC
2907 /* Show details only if debugging has been activated. */
2908 if (h->raid_offload_debug < 2)
2909 return;
2910
283b4a9b
SC
2911 dev_info(&h->pdev->dev, "structure_size = %u\n",
2912 le32_to_cpu(map_buff->structure_size));
2913 dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
2914 le32_to_cpu(map_buff->volume_blk_size));
2915 dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
2916 le64_to_cpu(map_buff->volume_blk_cnt));
2917 dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
2918 map_buff->phys_blk_shift);
2919 dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
2920 map_buff->parity_rotation_shift);
2921 dev_info(&h->pdev->dev, "strip_size = %u\n",
2922 le16_to_cpu(map_buff->strip_size));
2923 dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
2924 le64_to_cpu(map_buff->disk_starting_blk));
2925 dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
2926 le64_to_cpu(map_buff->disk_blk_cnt));
2927 dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
2928 le16_to_cpu(map_buff->data_disks_per_row));
2929 dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
2930 le16_to_cpu(map_buff->metadata_disks_per_row));
2931 dev_info(&h->pdev->dev, "row_cnt = %u\n",
2932 le16_to_cpu(map_buff->row_cnt));
2933 dev_info(&h->pdev->dev, "layout_map_count = %u\n",
2934 le16_to_cpu(map_buff->layout_map_count));
2b08b3e9 2935 dev_info(&h->pdev->dev, "flags = 0x%x\n",
dd0e19f3 2936 le16_to_cpu(map_buff->flags));
2b08b3e9
DB
2937 dev_info(&h->pdev->dev, "encrypytion = %s\n",
2938 le16_to_cpu(map_buff->flags) &
2939 RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF");
dd0e19f3
ST
2940 dev_info(&h->pdev->dev, "dekindex = %u\n",
2941 le16_to_cpu(map_buff->dekindex));
283b4a9b
SC
2942 map_cnt = le16_to_cpu(map_buff->layout_map_count);
2943 for (map = 0; map < map_cnt; map++) {
2944 dev_info(&h->pdev->dev, "Map%u:\n", map);
2945 row_cnt = le16_to_cpu(map_buff->row_cnt);
2946 for (row = 0; row < row_cnt; row++) {
2947 dev_info(&h->pdev->dev, " Row%u:\n", row);
2948 disks_per_row =
2949 le16_to_cpu(map_buff->data_disks_per_row);
2950 for (col = 0; col < disks_per_row; col++, dd++)
2951 dev_info(&h->pdev->dev,
2952 " D%02u: h=0x%04x xor=%u,%u\n",
2953 col, dd->ioaccel_handle,
2954 dd->xor_mult[0], dd->xor_mult[1]);
2955 disks_per_row =
2956 le16_to_cpu(map_buff->metadata_disks_per_row);
2957 for (col = 0; col < disks_per_row; col++, dd++)
2958 dev_info(&h->pdev->dev,
2959 " M%02u: h=0x%04x xor=%u,%u\n",
2960 col, dd->ioaccel_handle,
2961 dd->xor_mult[0], dd->xor_mult[1]);
2962 }
2963 }
2964}
2965#else
2966static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
2967 __attribute__((unused)) int rc,
2968 __attribute__((unused)) struct raid_map_data *map_buff)
2969{
2970}
2971#endif
2972
2973static int hpsa_get_raid_map(struct ctlr_info *h,
2974 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2975{
2976 int rc = 0;
2977 struct CommandList *c;
2978 struct ErrorInfo *ei;
2979
45fcb86e 2980 c = cmd_alloc(h);
bf43caf3 2981
283b4a9b
SC
2982 if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
2983 sizeof(this_device->raid_map), 0,
2984 scsi3addr, TYPE_CMD)) {
2dd02d74
RE
2985 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
2986 cmd_free(h, c);
2987 return -1;
283b4a9b 2988 }
25163bd5
WS
2989 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2990 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2991 if (rc)
2992 goto out;
283b4a9b
SC
2993 ei = c->err_info;
2994 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
d1e8beac 2995 hpsa_scsi_interpret_error(h, c);
25163bd5
WS
2996 rc = -1;
2997 goto out;
283b4a9b 2998 }
45fcb86e 2999 cmd_free(h, c);
283b4a9b
SC
3000
3001 /* @todo in the future, dynamically allocate RAID map memory */
3002 if (le32_to_cpu(this_device->raid_map.structure_size) >
3003 sizeof(this_device->raid_map)) {
3004 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3005 rc = -1;
3006 }
3007 hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3008 return rc;
25163bd5
WS
3009out:
3010 cmd_free(h, c);
3011 return rc;
283b4a9b
SC
3012}
3013
03383736
DB
3014static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3015 unsigned char scsi3addr[], u16 bmic_device_index,
3016 struct bmic_identify_physical_device *buf, size_t bufsize)
3017{
3018 int rc = IO_OK;
3019 struct CommandList *c;
3020 struct ErrorInfo *ei;
3021
3022 c = cmd_alloc(h);
3023 rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3024 0, RAID_CTLR_LUNID, TYPE_CMD);
3025 if (rc)
3026 goto out;
3027
3028 c->Request.CDB[2] = bmic_device_index & 0xff;
3029 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3030
25163bd5
WS
3031 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3032 NO_TIMEOUT);
03383736
DB
3033 ei = c->err_info;
3034 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3035 hpsa_scsi_interpret_error(h, c);
3036 rc = -1;
3037 }
3038out:
3039 cmd_free(h, c);
3040 return rc;
3041}
3042
1b70150a
SC
3043static int hpsa_vpd_page_supported(struct ctlr_info *h,
3044 unsigned char scsi3addr[], u8 page)
3045{
3046 int rc;
3047 int i;
3048 int pages;
3049 unsigned char *buf, bufsize;
3050
3051 buf = kzalloc(256, GFP_KERNEL);
3052 if (!buf)
3053 return 0;
3054
3055 /* Get the size of the page list first */
3056 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3057 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3058 buf, HPSA_VPD_HEADER_SZ);
3059 if (rc != 0)
3060 goto exit_unsupported;
3061 pages = buf[3];
3062 if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3063 bufsize = pages + HPSA_VPD_HEADER_SZ;
3064 else
3065 bufsize = 255;
3066
3067 /* Get the whole VPD page list */
3068 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3069 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3070 buf, bufsize);
3071 if (rc != 0)
3072 goto exit_unsupported;
3073
3074 pages = buf[3];
3075 for (i = 1; i <= pages; i++)
3076 if (buf[3 + i] == page)
3077 goto exit_supported;
3078exit_unsupported:
3079 kfree(buf);
3080 return 0;
3081exit_supported:
3082 kfree(buf);
3083 return 1;
3084}
3085
283b4a9b
SC
3086static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3087 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3088{
3089 int rc;
3090 unsigned char *buf;
3091 u8 ioaccel_status;
3092
3093 this_device->offload_config = 0;
3094 this_device->offload_enabled = 0;
41ce4c35 3095 this_device->offload_to_be_enabled = 0;
283b4a9b
SC
3096
3097 buf = kzalloc(64, GFP_KERNEL);
3098 if (!buf)
3099 return;
1b70150a
SC
3100 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3101 goto out;
283b4a9b 3102 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
b7bb24eb 3103 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
283b4a9b
SC
3104 if (rc != 0)
3105 goto out;
3106
3107#define IOACCEL_STATUS_BYTE 4
3108#define OFFLOAD_CONFIGURED_BIT 0x01
3109#define OFFLOAD_ENABLED_BIT 0x02
3110 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3111 this_device->offload_config =
3112 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3113 if (this_device->offload_config) {
3114 this_device->offload_enabled =
3115 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3116 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3117 this_device->offload_enabled = 0;
3118 }
41ce4c35 3119 this_device->offload_to_be_enabled = this_device->offload_enabled;
283b4a9b
SC
3120out:
3121 kfree(buf);
3122 return;
3123}
3124
edd16368
SC
3125/* Get the device id from inquiry page 0x83 */
3126static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3127 unsigned char *device_id, int buflen)
3128{
3129 int rc;
3130 unsigned char *buf;
3131
3132 if (buflen > 16)
3133 buflen = 16;
3134 buf = kzalloc(64, GFP_KERNEL);
3135 if (!buf)
a84d794d 3136 return -ENOMEM;
b7bb24eb 3137 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
edd16368
SC
3138 if (rc == 0)
3139 memcpy(device_id, &buf[8], buflen);
3140 kfree(buf);
3141 return rc != 0;
3142}
3143
3144static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
03383736 3145 void *buf, int bufsize,
edd16368
SC
3146 int extended_response)
3147{
3148 int rc = IO_OK;
3149 struct CommandList *c;
3150 unsigned char scsi3addr[8];
3151 struct ErrorInfo *ei;
3152
45fcb86e 3153 c = cmd_alloc(h);
bf43caf3 3154
e89c0ae7
SC
3155 /* address the controller */
3156 memset(scsi3addr, 0, sizeof(scsi3addr));
a2dac136
SC
3157 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3158 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3159 rc = -1;
3160 goto out;
3161 }
edd16368
SC
3162 if (extended_response)
3163 c->Request.CDB[1] = extended_response;
25163bd5
WS
3164 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3165 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3166 if (rc)
3167 goto out;
edd16368
SC
3168 ei = c->err_info;
3169 if (ei->CommandStatus != 0 &&
3170 ei->CommandStatus != CMD_DATA_UNDERRUN) {
d1e8beac 3171 hpsa_scsi_interpret_error(h, c);
edd16368 3172 rc = -1;
283b4a9b 3173 } else {
03383736
DB
3174 struct ReportLUNdata *rld = buf;
3175
3176 if (rld->extended_response_flag != extended_response) {
283b4a9b
SC
3177 dev_err(&h->pdev->dev,
3178 "report luns requested format %u, got %u\n",
3179 extended_response,
03383736 3180 rld->extended_response_flag);
283b4a9b
SC
3181 rc = -1;
3182 }
edd16368 3183 }
a2dac136 3184out:
45fcb86e 3185 cmd_free(h, c);
edd16368
SC
3186 return rc;
3187}
3188
3189static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
03383736 3190 struct ReportExtendedLUNdata *buf, int bufsize)
edd16368 3191{
03383736
DB
3192 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3193 HPSA_REPORT_PHYS_EXTENDED);
edd16368
SC
3194}
3195
3196static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3197 struct ReportLUNdata *buf, int bufsize)
3198{
3199 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3200}
3201
3202static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3203 int bus, int target, int lun)
3204{
3205 device->bus = bus;
3206 device->target = target;
3207 device->lun = lun;
3208}
3209
9846590e
SC
3210/* Use VPD inquiry to get details of volume status */
3211static int hpsa_get_volume_status(struct ctlr_info *h,
3212 unsigned char scsi3addr[])
3213{
3214 int rc;
3215 int status;
3216 int size;
3217 unsigned char *buf;
3218
3219 buf = kzalloc(64, GFP_KERNEL);
3220 if (!buf)
3221 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3222
3223 /* Does controller have VPD for logical volume status? */
24a4b078 3224 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
9846590e 3225 goto exit_failed;
9846590e
SC
3226
3227 /* Get the size of the VPD return buffer */
3228 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3229 buf, HPSA_VPD_HEADER_SZ);
24a4b078 3230 if (rc != 0)
9846590e 3231 goto exit_failed;
9846590e
SC
3232 size = buf[3];
3233
3234 /* Now get the whole VPD buffer */
3235 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3236 buf, size + HPSA_VPD_HEADER_SZ);
24a4b078 3237 if (rc != 0)
9846590e 3238 goto exit_failed;
9846590e
SC
3239 status = buf[4]; /* status byte */
3240
3241 kfree(buf);
3242 return status;
3243exit_failed:
3244 kfree(buf);
3245 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3246}
3247
3248/* Determine offline status of a volume.
3249 * Return either:
3250 * 0 (not offline)
67955ba3 3251 * 0xff (offline for unknown reasons)
9846590e
SC
3252 * # (integer code indicating one of several NOT READY states
3253 * describing why a volume is to be kept offline)
3254 */
67955ba3 3255static int hpsa_volume_offline(struct ctlr_info *h,
9846590e
SC
3256 unsigned char scsi3addr[])
3257{
3258 struct CommandList *c;
9437ac43
SC
3259 unsigned char *sense;
3260 u8 sense_key, asc, ascq;
3261 int sense_len;
25163bd5 3262 int rc, ldstat = 0;
9846590e
SC
3263 u16 cmd_status;
3264 u8 scsi_status;
3265#define ASC_LUN_NOT_READY 0x04
3266#define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3267#define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3268
3269 c = cmd_alloc(h);
bf43caf3 3270
9846590e 3271 (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
25163bd5
WS
3272 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3273 if (rc) {
3274 cmd_free(h, c);
3275 return 0;
3276 }
9846590e 3277 sense = c->err_info->SenseInfo;
9437ac43
SC
3278 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3279 sense_len = sizeof(c->err_info->SenseInfo);
3280 else
3281 sense_len = c->err_info->SenseLen;
3282 decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
9846590e
SC
3283 cmd_status = c->err_info->CommandStatus;
3284 scsi_status = c->err_info->ScsiStatus;
3285 cmd_free(h, c);
3286 /* Is the volume 'not ready'? */
3287 if (cmd_status != CMD_TARGET_STATUS ||
3288 scsi_status != SAM_STAT_CHECK_CONDITION ||
3289 sense_key != NOT_READY ||
3290 asc != ASC_LUN_NOT_READY) {
3291 return 0;
3292 }
3293
3294 /* Determine the reason for not ready state */
3295 ldstat = hpsa_get_volume_status(h, scsi3addr);
3296
3297 /* Keep volume offline in certain cases: */
3298 switch (ldstat) {
3299 case HPSA_LV_UNDERGOING_ERASE:
5ca01204 3300 case HPSA_LV_NOT_AVAILABLE:
9846590e
SC
3301 case HPSA_LV_UNDERGOING_RPI:
3302 case HPSA_LV_PENDING_RPI:
3303 case HPSA_LV_ENCRYPTED_NO_KEY:
3304 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3305 case HPSA_LV_UNDERGOING_ENCRYPTION:
3306 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3307 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3308 return ldstat;
3309 case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3310 /* If VPD status page isn't available,
3311 * use ASC/ASCQ to determine state
3312 */
3313 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3314 (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3315 return ldstat;
3316 break;
3317 default:
3318 break;
3319 }
3320 return 0;
3321}
3322
9b5c48c2
SC
3323/*
3324 * Find out if a logical device supports aborts by simply trying one.
3325 * Smart Array may claim not to support aborts on logical drives, but
3326 * if a MSA2000 * is connected, the drives on that will be presented
3327 * by the Smart Array as logical drives, and aborts may be sent to
3328 * those devices successfully. So the simplest way to find out is
3329 * to simply try an abort and see how the device responds.
3330 */
3331static int hpsa_device_supports_aborts(struct ctlr_info *h,
3332 unsigned char *scsi3addr)
3333{
3334 struct CommandList *c;
3335 struct ErrorInfo *ei;
3336 int rc = 0;
3337
3338 u64 tag = (u64) -1; /* bogus tag */
3339
3340 /* Assume that physical devices support aborts */
3341 if (!is_logical_dev_addr_mode(scsi3addr))
3342 return 1;
3343
3344 c = cmd_alloc(h);
bf43caf3 3345
9b5c48c2
SC
3346 (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3347 (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3348 /* no unmap needed here because no data xfer. */
3349 ei = c->err_info;
3350 switch (ei->CommandStatus) {
3351 case CMD_INVALID:
3352 rc = 0;
3353 break;
3354 case CMD_UNABORTABLE:
3355 case CMD_ABORT_FAILED:
3356 rc = 1;
3357 break;
9437ac43
SC
3358 case CMD_TMF_STATUS:
3359 rc = hpsa_evaluate_tmf_status(h, c);
3360 break;
9b5c48c2
SC
3361 default:
3362 rc = 0;
3363 break;
3364 }
3365 cmd_free(h, c);
3366 return rc;
3367}
3368
edd16368 3369static int hpsa_update_device_info(struct ctlr_info *h,
0b0e1d6c
SC
3370 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3371 unsigned char *is_OBDR_device)
edd16368 3372{
0b0e1d6c
SC
3373
3374#define OBDR_SIG_OFFSET 43
3375#define OBDR_TAPE_SIG "$DR-10"
3376#define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3377#define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3378
ea6d3bc3 3379 unsigned char *inq_buff;
0b0e1d6c 3380 unsigned char *obdr_sig;
683fc444 3381 int rc = 0;
edd16368 3382
ea6d3bc3 3383 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
683fc444
DB
3384 if (!inq_buff) {
3385 rc = -ENOMEM;
edd16368 3386 goto bail_out;
683fc444 3387 }
edd16368 3388
edd16368
SC
3389 /* Do an inquiry to the device to see what it is. */
3390 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3391 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3392 /* Inquiry failed (msg printed already) */
3393 dev_err(&h->pdev->dev,
3394 "hpsa_update_device_info: inquiry failed\n");
683fc444 3395 rc = -EIO;
edd16368
SC
3396 goto bail_out;
3397 }
3398
edd16368
SC
3399 this_device->devtype = (inq_buff[0] & 0x1f);
3400 memcpy(this_device->scsi3addr, scsi3addr, 8);
3401 memcpy(this_device->vendor, &inq_buff[8],
3402 sizeof(this_device->vendor));
3403 memcpy(this_device->model, &inq_buff[16],
3404 sizeof(this_device->model));
edd16368
SC
3405 memset(this_device->device_id, 0,
3406 sizeof(this_device->device_id));
3407 hpsa_get_device_id(h, scsi3addr, this_device->device_id,
3408 sizeof(this_device->device_id));
3409
3410 if (this_device->devtype == TYPE_DISK &&
283b4a9b 3411 is_logical_dev_addr_mode(scsi3addr)) {
67955ba3
SC
3412 int volume_offline;
3413
edd16368 3414 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
283b4a9b
SC
3415 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3416 hpsa_get_ioaccel_status(h, scsi3addr, this_device);
67955ba3
SC
3417 volume_offline = hpsa_volume_offline(h, scsi3addr);
3418 if (volume_offline < 0 || volume_offline > 0xff)
3419 volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
3420 this_device->volume_offline = volume_offline & 0xff;
283b4a9b 3421 } else {
edd16368 3422 this_device->raid_level = RAID_UNKNOWN;
283b4a9b
SC
3423 this_device->offload_config = 0;
3424 this_device->offload_enabled = 0;
41ce4c35 3425 this_device->offload_to_be_enabled = 0;
a3144e0b 3426 this_device->hba_ioaccel_enabled = 0;
9846590e 3427 this_device->volume_offline = 0;
03383736 3428 this_device->queue_depth = h->nr_cmds;
283b4a9b 3429 }
edd16368 3430
0b0e1d6c
SC
3431 if (is_OBDR_device) {
3432 /* See if this is a One-Button-Disaster-Recovery device
3433 * by looking for "$DR-10" at offset 43 in inquiry data.
3434 */
3435 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3436 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3437 strncmp(obdr_sig, OBDR_TAPE_SIG,
3438 OBDR_SIG_LEN) == 0);
3439 }
edd16368
SC
3440 kfree(inq_buff);
3441 return 0;
3442
3443bail_out:
3444 kfree(inq_buff);
683fc444 3445 return rc;
edd16368
SC
3446}
3447
9b5c48c2
SC
3448static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3449 struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3450{
3451 unsigned long flags;
3452 int rc, entry;
3453 /*
3454 * See if this device supports aborts. If we already know
3455 * the device, we already know if it supports aborts, otherwise
3456 * we have to find out if it supports aborts by trying one.
3457 */
3458 spin_lock_irqsave(&h->devlock, flags);
3459 rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3460 if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3461 entry >= 0 && entry < h->ndevices) {
3462 dev->supports_aborts = h->dev[entry]->supports_aborts;
3463 spin_unlock_irqrestore(&h->devlock, flags);
3464 } else {
3465 spin_unlock_irqrestore(&h->devlock, flags);
3466 dev->supports_aborts =
3467 hpsa_device_supports_aborts(h, scsi3addr);
3468 if (dev->supports_aborts < 0)
3469 dev->supports_aborts = 0;
3470 }
3471}
3472
4f4eb9f1 3473static unsigned char *ext_target_model[] = {
edd16368
SC
3474 "MSA2012",
3475 "MSA2024",
3476 "MSA2312",
3477 "MSA2324",
fda38518 3478 "P2000 G3 SAS",
e06c8e5c 3479 "MSA 2040 SAS",
edd16368
SC
3480 NULL,
3481};
3482
4f4eb9f1 3483static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
edd16368
SC
3484{
3485 int i;
3486
4f4eb9f1
ST
3487 for (i = 0; ext_target_model[i]; i++)
3488 if (strncmp(device->model, ext_target_model[i],
3489 strlen(ext_target_model[i])) == 0)
edd16368
SC
3490 return 1;
3491 return 0;
3492}
3493
3494/* Helper function to assign bus, target, lun mapping of devices.
4f4eb9f1 3495 * Puts non-external target logical volumes on bus 0, external target logical
edd16368
SC
3496 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
3497 * Logical drive target and lun are assigned at this time, but
3498 * physical device lun and target assignment are deferred (assigned
3499 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3500 */
3501static void figure_bus_target_lun(struct ctlr_info *h,
1f310bde 3502 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
edd16368 3503{
1f310bde
SC
3504 u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
3505
3506 if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3507 /* physical device, target and lun filled in later */
edd16368 3508 if (is_hba_lunid(lunaddrbytes))
1f310bde 3509 hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
edd16368 3510 else
1f310bde
SC
3511 /* defer target, lun assignment for physical devices */
3512 hpsa_set_bus_target_lun(device, 2, -1, -1);
3513 return;
3514 }
3515 /* It's a logical device */
4f4eb9f1
ST
3516 if (is_ext_target(h, device)) {
3517 /* external target way, put logicals on bus 1
1f310bde
SC
3518 * and match target/lun numbers box
3519 * reports, other smart array, bus 0, target 0, match lunid
3520 */
3521 hpsa_set_bus_target_lun(device,
3522 1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
3523 return;
edd16368 3524 }
1f310bde 3525 hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
edd16368
SC
3526}
3527
3528/*
3529 * If there is no lun 0 on a target, linux won't find any devices.
4f4eb9f1 3530 * For the external targets (arrays), we have to manually detect the enclosure
edd16368
SC
3531 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
3532 * it for some reason. *tmpdevice is the target we're adding,
3533 * this_device is a pointer into the current element of currentsd[]
3534 * that we're building up in update_scsi_devices(), below.
3535 * lunzerobits is a bitmap that tracks which targets already have a
3536 * lun 0 assigned.
3537 * Returns 1 if an enclosure was added, 0 if not.
3538 */
4f4eb9f1 3539static int add_ext_target_dev(struct ctlr_info *h,
edd16368 3540 struct hpsa_scsi_dev_t *tmpdevice,
01a02ffc 3541 struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
4f4eb9f1 3542 unsigned long lunzerobits[], int *n_ext_target_devs)
edd16368
SC
3543{
3544 unsigned char scsi3addr[8];
3545
1f310bde 3546 if (test_bit(tmpdevice->target, lunzerobits))
edd16368
SC
3547 return 0; /* There is already a lun 0 on this target. */
3548
3549 if (!is_logical_dev_addr_mode(lunaddrbytes))
3550 return 0; /* It's the logical targets that may lack lun 0. */
3551
4f4eb9f1
ST
3552 if (!is_ext_target(h, tmpdevice))
3553 return 0; /* Only external target devices have this problem. */
edd16368 3554
1f310bde 3555 if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
edd16368
SC
3556 return 0;
3557
c4f8a299 3558 memset(scsi3addr, 0, 8);
1f310bde 3559 scsi3addr[3] = tmpdevice->target;
edd16368
SC
3560 if (is_hba_lunid(scsi3addr))
3561 return 0; /* Don't add the RAID controller here. */
3562
339b2b14
SC
3563 if (is_scsi_rev_5(h))
3564 return 0; /* p1210m doesn't need to do this. */
3565
4f4eb9f1 3566 if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
aca4a520
ST
3567 dev_warn(&h->pdev->dev, "Maximum number of external "
3568 "target devices exceeded. Check your hardware "
edd16368
SC
3569 "configuration.");
3570 return 0;
3571 }
3572
0b0e1d6c 3573 if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
edd16368 3574 return 0;
4f4eb9f1 3575 (*n_ext_target_devs)++;
1f310bde
SC
3576 hpsa_set_bus_target_lun(this_device,
3577 tmpdevice->bus, tmpdevice->target, 0);
9b5c48c2 3578 hpsa_update_device_supports_aborts(h, this_device, scsi3addr);
1f310bde 3579 set_bit(tmpdevice->target, lunzerobits);
edd16368
SC
3580 return 1;
3581}
3582
54b6e9e9
ST
3583/*
3584 * Get address of physical disk used for an ioaccel2 mode command:
3585 * 1. Extract ioaccel2 handle from the command.
3586 * 2. Find a matching ioaccel2 handle from list of physical disks.
3587 * 3. Return:
3588 * 1 and set scsi3addr to address of matching physical
3589 * 0 if no matching physical disk was found.
3590 */
3591static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3592 struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3593{
41ce4c35
SC
3594 struct io_accel2_cmd *c2 =
3595 &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3596 unsigned long flags;
54b6e9e9 3597 int i;
54b6e9e9 3598
41ce4c35
SC
3599 spin_lock_irqsave(&h->devlock, flags);
3600 for (i = 0; i < h->ndevices; i++)
3601 if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
3602 memcpy(scsi3addr, h->dev[i]->scsi3addr,
3603 sizeof(h->dev[i]->scsi3addr));
3604 spin_unlock_irqrestore(&h->devlock, flags);
3605 return 1;
3606 }
3607 spin_unlock_irqrestore(&h->devlock, flags);
3608 return 0;
54b6e9e9 3609}
41ce4c35 3610
edd16368
SC
3611/*
3612 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
3613 * logdev. The number of luns in physdev and logdev are returned in
3614 * *nphysicals and *nlogicals, respectively.
3615 * Returns 0 on success, -1 otherwise.
3616 */
3617static int hpsa_gather_lun_info(struct ctlr_info *h,
03383736 3618 struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
01a02ffc 3619 struct ReportLUNdata *logdev, u32 *nlogicals)
edd16368 3620{
03383736 3621 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
edd16368
SC
3622 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3623 return -1;
3624 }
03383736 3625 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
edd16368 3626 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
03383736
DB
3627 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3628 HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
edd16368
SC
3629 *nphysicals = HPSA_MAX_PHYS_LUN;
3630 }
03383736 3631 if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
edd16368
SC
3632 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3633 return -1;
3634 }
6df1e954 3635 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
edd16368
SC
3636 /* Reject Logicals in excess of our max capability. */
3637 if (*nlogicals > HPSA_MAX_LUN) {
3638 dev_warn(&h->pdev->dev,
3639 "maximum logical LUNs (%d) exceeded. "
3640 "%d LUNs ignored.\n", HPSA_MAX_LUN,
3641 *nlogicals - HPSA_MAX_LUN);
3642 *nlogicals = HPSA_MAX_LUN;
3643 }
3644 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3645 dev_warn(&h->pdev->dev,
3646 "maximum logical + physical LUNs (%d) exceeded. "
3647 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3648 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3649 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
3650 }
3651 return 0;
3652}
3653
42a91641
DB
3654static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
3655 int i, int nphysicals, int nlogicals,
a93aa1fe 3656 struct ReportExtendedLUNdata *physdev_list,
339b2b14
SC
3657 struct ReportLUNdata *logdev_list)
3658{
3659 /* Helper function, figure out where the LUN ID info is coming from
3660 * given index i, lists of physical and logical devices, where in
3661 * the list the raid controller is supposed to appear (first or last)
3662 */
3663
3664 int logicals_start = nphysicals + (raid_ctlr_position == 0);
3665 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
3666
3667 if (i == raid_ctlr_position)
3668 return RAID_CTLR_LUNID;
3669
3670 if (i < logicals_start)
d5b5d964
SC
3671 return &physdev_list->LUN[i -
3672 (raid_ctlr_position == 0)].lunid[0];
339b2b14
SC
3673
3674 if (i < last_device)
3675 return &logdev_list->LUN[i - nphysicals -
3676 (raid_ctlr_position == 0)][0];
3677 BUG();
3678 return NULL;
3679}
3680
03383736
DB
3681/* get physical drive ioaccel handle and queue depth */
3682static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
3683 struct hpsa_scsi_dev_t *dev,
f2039b03 3684 struct ReportExtendedLUNdata *rlep, int rle_index,
03383736
DB
3685 struct bmic_identify_physical_device *id_phys)
3686{
3687 int rc;
f2039b03 3688 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
03383736
DB
3689
3690 dev->ioaccel_handle = rle->ioaccel_handle;
f2039b03 3691 if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
a3144e0b 3692 dev->hba_ioaccel_enabled = 1;
03383736 3693 memset(id_phys, 0, sizeof(*id_phys));
f2039b03
DB
3694 rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
3695 GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
03383736
DB
3696 sizeof(*id_phys));
3697 if (!rc)
3698 /* Reserve space for FW operations */
3699#define DRIVE_CMDS_RESERVED_FOR_FW 2
3700#define DRIVE_QUEUE_DEPTH 7
3701 dev->queue_depth =
3702 le16_to_cpu(id_phys->current_queue_depth_limit) -
3703 DRIVE_CMDS_RESERVED_FOR_FW;
3704 else
3705 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
03383736
DB
3706}
3707
8270b862 3708static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
f2039b03 3709 struct ReportExtendedLUNdata *rlep, int rle_index,
8270b862
JH
3710 struct bmic_identify_physical_device *id_phys)
3711{
f2039b03
DB
3712 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3713
3714 if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
8270b862
JH
3715 this_device->hba_ioaccel_enabled = 1;
3716
3717 memcpy(&this_device->active_path_index,
3718 &id_phys->active_path_number,
3719 sizeof(this_device->active_path_index));
3720 memcpy(&this_device->path_map,
3721 &id_phys->redundant_path_present_map,
3722 sizeof(this_device->path_map));
3723 memcpy(&this_device->box,
3724 &id_phys->alternate_paths_phys_box_on_port,
3725 sizeof(this_device->box));
3726 memcpy(&this_device->phys_connector,
3727 &id_phys->alternate_paths_phys_connector,
3728 sizeof(this_device->phys_connector));
3729 memcpy(&this_device->bay,
3730 &id_phys->phys_bay_in_box,
3731 sizeof(this_device->bay));
3732}
3733
8aa60681 3734static void hpsa_update_scsi_devices(struct ctlr_info *h)
edd16368
SC
3735{
3736 /* the idea here is we could get notified
3737 * that some devices have changed, so we do a report
3738 * physical luns and report logical luns cmd, and adjust
3739 * our list of devices accordingly.
3740 *
3741 * The scsi3addr's of devices won't change so long as the
3742 * adapter is not reset. That means we can rescan and
3743 * tell which devices we already know about, vs. new
3744 * devices, vs. disappearing devices.
3745 */
a93aa1fe 3746 struct ReportExtendedLUNdata *physdev_list = NULL;
edd16368 3747 struct ReportLUNdata *logdev_list = NULL;
03383736 3748 struct bmic_identify_physical_device *id_phys = NULL;
01a02ffc
SC
3749 u32 nphysicals = 0;
3750 u32 nlogicals = 0;
3751 u32 ndev_allocated = 0;
edd16368
SC
3752 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
3753 int ncurrent = 0;
4f4eb9f1 3754 int i, n_ext_target_devs, ndevs_to_allocate;
339b2b14 3755 int raid_ctlr_position;
aca4a520 3756 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
edd16368 3757
cfe5badc 3758 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
92084715
SC
3759 physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
3760 logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
edd16368 3761 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
03383736 3762 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
edd16368 3763
03383736
DB
3764 if (!currentsd || !physdev_list || !logdev_list ||
3765 !tmpdevice || !id_phys) {
edd16368
SC
3766 dev_err(&h->pdev->dev, "out of memory\n");
3767 goto out;
3768 }
3769 memset(lunzerobits, 0, sizeof(lunzerobits));
3770
853633e8
DB
3771 h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
3772
03383736 3773 if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
853633e8
DB
3774 logdev_list, &nlogicals)) {
3775 h->drv_req_rescan = 1;
edd16368 3776 goto out;
853633e8 3777 }
edd16368 3778
aca4a520
ST
3779 /* We might see up to the maximum number of logical and physical disks
3780 * plus external target devices, and a device for the local RAID
3781 * controller.
edd16368 3782 */
aca4a520 3783 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
edd16368
SC
3784
3785 /* Allocate the per device structures */
3786 for (i = 0; i < ndevs_to_allocate; i++) {
b7ec021f
ST
3787 if (i >= HPSA_MAX_DEVICES) {
3788 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
3789 " %d devices ignored.\n", HPSA_MAX_DEVICES,
3790 ndevs_to_allocate - HPSA_MAX_DEVICES);
3791 break;
3792 }
3793
edd16368
SC
3794 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
3795 if (!currentsd[i]) {
3796 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
3797 __FILE__, __LINE__);
853633e8 3798 h->drv_req_rescan = 1;
edd16368
SC
3799 goto out;
3800 }
3801 ndev_allocated++;
3802 }
3803
8645291b 3804 if (is_scsi_rev_5(h))
339b2b14
SC
3805 raid_ctlr_position = 0;
3806 else
3807 raid_ctlr_position = nphysicals + nlogicals;
3808
edd16368 3809 /* adjust our table of devices */
4f4eb9f1 3810 n_ext_target_devs = 0;
edd16368 3811 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
0b0e1d6c 3812 u8 *lunaddrbytes, is_OBDR = 0;
683fc444 3813 int rc = 0;
f2039b03 3814 int phys_dev_index = i - (raid_ctlr_position == 0);
edd16368
SC
3815
3816 /* Figure out where the LUN ID info is coming from */
339b2b14
SC
3817 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
3818 i, nphysicals, nlogicals, physdev_list, logdev_list);
41ce4c35
SC
3819
3820 /* skip masked non-disk devices */
3821 if (MASKED_DEVICE(lunaddrbytes))
3822 if (i < nphysicals + (raid_ctlr_position == 0) &&
f2039b03
DB
3823 (physdev_list->
3824 LUN[phys_dev_index].device_flags & 0x01))
41ce4c35 3825 continue;
edd16368
SC
3826
3827 /* Get device type, vendor, model, device id */
683fc444
DB
3828 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
3829 &is_OBDR);
3830 if (rc == -ENOMEM) {
3831 dev_warn(&h->pdev->dev,
3832 "Out of memory, rescan deferred.\n");
853633e8 3833 h->drv_req_rescan = 1;
683fc444 3834 goto out;
853633e8 3835 }
683fc444
DB
3836 if (rc) {
3837 dev_warn(&h->pdev->dev,
3838 "Inquiry failed, skipping device.\n");
3839 continue;
3840 }
3841
1f310bde 3842 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
9b5c48c2 3843 hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
edd16368
SC
3844 this_device = currentsd[ncurrent];
3845
3846 /*
4f4eb9f1 3847 * For external target devices, we have to insert a LUN 0 which
edd16368
SC
3848 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
3849 * is nonetheless an enclosure device there. We have to
3850 * present that otherwise linux won't find anything if
3851 * there is no lun 0.
3852 */
4f4eb9f1 3853 if (add_ext_target_dev(h, tmpdevice, this_device,
1f310bde 3854 lunaddrbytes, lunzerobits,
4f4eb9f1 3855 &n_ext_target_devs)) {
edd16368
SC
3856 ncurrent++;
3857 this_device = currentsd[ncurrent];
3858 }
3859
3860 *this_device = *tmpdevice;
edd16368 3861
41ce4c35
SC
3862 /* do not expose masked devices */
3863 if (MASKED_DEVICE(lunaddrbytes) &&
3864 i < nphysicals + (raid_ctlr_position == 0)) {
41ce4c35
SC
3865 this_device->expose_state = HPSA_DO_NOT_EXPOSE;
3866 } else {
3867 this_device->expose_state =
3868 HPSA_SG_ATTACH | HPSA_ULD_ATTACH;
3869 }
3870
edd16368 3871 switch (this_device->devtype) {
0b0e1d6c 3872 case TYPE_ROM:
edd16368
SC
3873 /* We don't *really* support actual CD-ROM devices,
3874 * just "One Button Disaster Recovery" tape drive
3875 * which temporarily pretends to be a CD-ROM drive.
3876 * So we check that the device is really an OBDR tape
3877 * device by checking for "$DR-10" in bytes 43-48 of
3878 * the inquiry data.
3879 */
0b0e1d6c
SC
3880 if (is_OBDR)
3881 ncurrent++;
edd16368
SC
3882 break;
3883 case TYPE_DISK:
b9092b79
KB
3884 if (i < nphysicals + (raid_ctlr_position == 0)) {
3885 /* The disk is in HBA mode. */
3886 /* Never use RAID mapper in HBA mode. */
ecf418d1 3887 this_device->offload_enabled = 0;
b9092b79 3888 hpsa_get_ioaccel_drive_info(h, this_device,
f2039b03
DB
3889 physdev_list, phys_dev_index, id_phys);
3890 hpsa_get_path_info(this_device,
3891 physdev_list, phys_dev_index, id_phys);
b9092b79 3892 }
ecf418d1 3893 ncurrent++;
edd16368
SC
3894 break;
3895 case TYPE_TAPE:
3896 case TYPE_MEDIUM_CHANGER:
41ce4c35 3897 case TYPE_ENCLOSURE:
b9092b79 3898 ncurrent++;
41ce4c35 3899 break;
edd16368
SC
3900 case TYPE_RAID:
3901 /* Only present the Smartarray HBA as a RAID controller.
3902 * If it's a RAID controller other than the HBA itself
3903 * (an external RAID controller, MSA500 or similar)
3904 * don't present it.
3905 */
3906 if (!is_hba_lunid(lunaddrbytes))
3907 break;
3908 ncurrent++;
3909 break;
3910 default:
3911 break;
3912 }
cfe5badc 3913 if (ncurrent >= HPSA_MAX_DEVICES)
edd16368
SC
3914 break;
3915 }
8aa60681 3916 adjust_hpsa_scsi_table(h, currentsd, ncurrent);
edd16368
SC
3917out:
3918 kfree(tmpdevice);
3919 for (i = 0; i < ndev_allocated; i++)
3920 kfree(currentsd[i]);
3921 kfree(currentsd);
edd16368
SC
3922 kfree(physdev_list);
3923 kfree(logdev_list);
03383736 3924 kfree(id_phys);
edd16368
SC
3925}
3926
ec5cbf04
WS
3927static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
3928 struct scatterlist *sg)
3929{
3930 u64 addr64 = (u64) sg_dma_address(sg);
3931 unsigned int len = sg_dma_len(sg);
3932
3933 desc->Addr = cpu_to_le64(addr64);
3934 desc->Len = cpu_to_le32(len);
3935 desc->Ext = 0;
3936}
3937
c7ee65b3
WS
3938/*
3939 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
edd16368
SC
3940 * dma mapping and fills in the scatter gather entries of the
3941 * hpsa command, cp.
3942 */
33a2ffce 3943static int hpsa_scatter_gather(struct ctlr_info *h,
edd16368
SC
3944 struct CommandList *cp,
3945 struct scsi_cmnd *cmd)
3946{
edd16368 3947 struct scatterlist *sg;
b3a7ba7c 3948 int use_sg, i, sg_limit, chained, last_sg;
33a2ffce 3949 struct SGDescriptor *curr_sg;
edd16368 3950
33a2ffce 3951 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
edd16368
SC
3952
3953 use_sg = scsi_dma_map(cmd);
3954 if (use_sg < 0)
3955 return use_sg;
3956
3957 if (!use_sg)
3958 goto sglist_finished;
3959
b3a7ba7c
WS
3960 /*
3961 * If the number of entries is greater than the max for a single list,
3962 * then we have a chained list; we will set up all but one entry in the
3963 * first list (the last entry is saved for link information);
3964 * otherwise, we don't have a chained list and we'll set up at each of
3965 * the entries in the one list.
3966 */
33a2ffce 3967 curr_sg = cp->SG;
b3a7ba7c
WS
3968 chained = use_sg > h->max_cmd_sg_entries;
3969 sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
3970 last_sg = scsi_sg_count(cmd) - 1;
3971 scsi_for_each_sg(cmd, sg, sg_limit, i) {
ec5cbf04 3972 hpsa_set_sg_descriptor(curr_sg, sg);
33a2ffce
SC
3973 curr_sg++;
3974 }
ec5cbf04 3975
b3a7ba7c
WS
3976 if (chained) {
3977 /*
3978 * Continue with the chained list. Set curr_sg to the chained
3979 * list. Modify the limit to the total count less the entries
3980 * we've already set up. Resume the scan at the list entry
3981 * where the previous loop left off.
3982 */
3983 curr_sg = h->cmd_sg_list[cp->cmdindex];
3984 sg_limit = use_sg - sg_limit;
3985 for_each_sg(sg, sg, sg_limit, i) {
3986 hpsa_set_sg_descriptor(curr_sg, sg);
3987 curr_sg++;
3988 }
3989 }
3990
ec5cbf04 3991 /* Back the pointer up to the last entry and mark it as "last". */
b3a7ba7c 3992 (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
33a2ffce
SC
3993
3994 if (use_sg + chained > h->maxSG)
3995 h->maxSG = use_sg + chained;
3996
3997 if (chained) {
3998 cp->Header.SGList = h->max_cmd_sg_entries;
50a0decf 3999 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
e2bea6df
SC
4000 if (hpsa_map_sg_chain_block(h, cp)) {
4001 scsi_dma_unmap(cmd);
4002 return -1;
4003 }
33a2ffce 4004 return 0;
edd16368
SC
4005 }
4006
4007sglist_finished:
4008
01a02ffc 4009 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
c7ee65b3 4010 cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
edd16368
SC
4011 return 0;
4012}
4013
283b4a9b
SC
4014#define IO_ACCEL_INELIGIBLE (1)
4015static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4016{
4017 int is_write = 0;
4018 u32 block;
4019 u32 block_cnt;
4020
4021 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4022 switch (cdb[0]) {
4023 case WRITE_6:
4024 case WRITE_12:
4025 is_write = 1;
4026 case READ_6:
4027 case READ_12:
4028 if (*cdb_len == 6) {
c8a6c9a6 4029 block = get_unaligned_be16(&cdb[2]);
283b4a9b 4030 block_cnt = cdb[4];
c8a6c9a6
DB
4031 if (block_cnt == 0)
4032 block_cnt = 256;
283b4a9b
SC
4033 } else {
4034 BUG_ON(*cdb_len != 12);
c8a6c9a6
DB
4035 block = get_unaligned_be32(&cdb[2]);
4036 block_cnt = get_unaligned_be32(&cdb[6]);
283b4a9b
SC
4037 }
4038 if (block_cnt > 0xffff)
4039 return IO_ACCEL_INELIGIBLE;
4040
4041 cdb[0] = is_write ? WRITE_10 : READ_10;
4042 cdb[1] = 0;
4043 cdb[2] = (u8) (block >> 24);
4044 cdb[3] = (u8) (block >> 16);
4045 cdb[4] = (u8) (block >> 8);
4046 cdb[5] = (u8) (block);
4047 cdb[6] = 0;
4048 cdb[7] = (u8) (block_cnt >> 8);
4049 cdb[8] = (u8) (block_cnt);
4050 cdb[9] = 0;
4051 *cdb_len = 10;
4052 break;
4053 }
4054 return 0;
4055}
4056
c349775e 4057static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
283b4a9b 4058 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
03383736 4059 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
e1f7de0c
MG
4060{
4061 struct scsi_cmnd *cmd = c->scsi_cmd;
e1f7de0c
MG
4062 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4063 unsigned int len;
4064 unsigned int total_len = 0;
4065 struct scatterlist *sg;
4066 u64 addr64;
4067 int use_sg, i;
4068 struct SGDescriptor *curr_sg;
4069 u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4070
283b4a9b 4071 /* TODO: implement chaining support */
03383736
DB
4072 if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4073 atomic_dec(&phys_disk->ioaccel_cmds_out);
283b4a9b 4074 return IO_ACCEL_INELIGIBLE;
03383736 4075 }
283b4a9b 4076
e1f7de0c
MG
4077 BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4078
03383736
DB
4079 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4080 atomic_dec(&phys_disk->ioaccel_cmds_out);
283b4a9b 4081 return IO_ACCEL_INELIGIBLE;
03383736 4082 }
283b4a9b 4083
e1f7de0c
MG
4084 c->cmd_type = CMD_IOACCEL1;
4085
4086 /* Adjust the DMA address to point to the accelerated command buffer */
4087 c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4088 (c->cmdindex * sizeof(*cp));
4089 BUG_ON(c->busaddr & 0x0000007F);
4090
4091 use_sg = scsi_dma_map(cmd);
03383736
DB
4092 if (use_sg < 0) {
4093 atomic_dec(&phys_disk->ioaccel_cmds_out);
e1f7de0c 4094 return use_sg;
03383736 4095 }
e1f7de0c
MG
4096
4097 if (use_sg) {
4098 curr_sg = cp->SG;
4099 scsi_for_each_sg(cmd, sg, use_sg, i) {
4100 addr64 = (u64) sg_dma_address(sg);
4101 len = sg_dma_len(sg);
4102 total_len += len;
50a0decf
SC
4103 curr_sg->Addr = cpu_to_le64(addr64);
4104 curr_sg->Len = cpu_to_le32(len);
4105 curr_sg->Ext = cpu_to_le32(0);
e1f7de0c
MG
4106 curr_sg++;
4107 }
50a0decf 4108 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
e1f7de0c
MG
4109
4110 switch (cmd->sc_data_direction) {
4111 case DMA_TO_DEVICE:
4112 control |= IOACCEL1_CONTROL_DATA_OUT;
4113 break;
4114 case DMA_FROM_DEVICE:
4115 control |= IOACCEL1_CONTROL_DATA_IN;
4116 break;
4117 case DMA_NONE:
4118 control |= IOACCEL1_CONTROL_NODATAXFER;
4119 break;
4120 default:
4121 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4122 cmd->sc_data_direction);
4123 BUG();
4124 break;
4125 }
4126 } else {
4127 control |= IOACCEL1_CONTROL_NODATAXFER;
4128 }
4129
c349775e 4130 c->Header.SGList = use_sg;
e1f7de0c 4131 /* Fill out the command structure to submit */
2b08b3e9
DB
4132 cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4133 cp->transfer_len = cpu_to_le32(total_len);
4134 cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4135 (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4136 cp->control = cpu_to_le32(control);
283b4a9b
SC
4137 memcpy(cp->CDB, cdb, cdb_len);
4138 memcpy(cp->CISS_LUN, scsi3addr, 8);
c349775e 4139 /* Tag was already set at init time. */
283b4a9b 4140 enqueue_cmd_and_start_io(h, c);
e1f7de0c
MG
4141 return 0;
4142}
edd16368 4143
283b4a9b
SC
4144/*
4145 * Queue a command directly to a device behind the controller using the
4146 * I/O accelerator path.
4147 */
4148static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4149 struct CommandList *c)
4150{
4151 struct scsi_cmnd *cmd = c->scsi_cmd;
4152 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4153
03383736
DB
4154 c->phys_disk = dev;
4155
283b4a9b 4156 return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
03383736 4157 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
283b4a9b
SC
4158}
4159
dd0e19f3
ST
4160/*
4161 * Set encryption parameters for the ioaccel2 request
4162 */
4163static void set_encrypt_ioaccel2(struct ctlr_info *h,
4164 struct CommandList *c, struct io_accel2_cmd *cp)
4165{
4166 struct scsi_cmnd *cmd = c->scsi_cmd;
4167 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4168 struct raid_map_data *map = &dev->raid_map;
4169 u64 first_block;
4170
dd0e19f3 4171 /* Are we doing encryption on this device */
2b08b3e9 4172 if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
dd0e19f3
ST
4173 return;
4174 /* Set the data encryption key index. */
4175 cp->dekindex = map->dekindex;
4176
4177 /* Set the encryption enable flag, encoded into direction field. */
4178 cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4179
4180 /* Set encryption tweak values based on logical block address
4181 * If block size is 512, tweak value is LBA.
4182 * For other block sizes, tweak is (LBA * block size)/ 512)
4183 */
4184 switch (cmd->cmnd[0]) {
4185 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4186 case WRITE_6:
4187 case READ_6:
2b08b3e9 4188 first_block = get_unaligned_be16(&cmd->cmnd[2]);
dd0e19f3
ST
4189 break;
4190 case WRITE_10:
4191 case READ_10:
dd0e19f3
ST
4192 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4193 case WRITE_12:
4194 case READ_12:
2b08b3e9 4195 first_block = get_unaligned_be32(&cmd->cmnd[2]);
dd0e19f3
ST
4196 break;
4197 case WRITE_16:
4198 case READ_16:
2b08b3e9 4199 first_block = get_unaligned_be64(&cmd->cmnd[2]);
dd0e19f3
ST
4200 break;
4201 default:
4202 dev_err(&h->pdev->dev,
2b08b3e9
DB
4203 "ERROR: %s: size (0x%x) not supported for encryption\n",
4204 __func__, cmd->cmnd[0]);
dd0e19f3
ST
4205 BUG();
4206 break;
4207 }
2b08b3e9
DB
4208
4209 if (le32_to_cpu(map->volume_blk_size) != 512)
4210 first_block = first_block *
4211 le32_to_cpu(map->volume_blk_size)/512;
4212
4213 cp->tweak_lower = cpu_to_le32(first_block);
4214 cp->tweak_upper = cpu_to_le32(first_block >> 32);
dd0e19f3
ST
4215}
4216
c349775e
ST
4217static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4218 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
03383736 4219 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
c349775e
ST
4220{
4221 struct scsi_cmnd *cmd = c->scsi_cmd;
4222 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4223 struct ioaccel2_sg_element *curr_sg;
4224 int use_sg, i;
4225 struct scatterlist *sg;
4226 u64 addr64;
4227 u32 len;
4228 u32 total_len = 0;
4229
d9a729f3 4230 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
c349775e 4231
03383736
DB
4232 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4233 atomic_dec(&phys_disk->ioaccel_cmds_out);
c349775e 4234 return IO_ACCEL_INELIGIBLE;
03383736
DB
4235 }
4236
c349775e
ST
4237 c->cmd_type = CMD_IOACCEL2;
4238 /* Adjust the DMA address to point to the accelerated command buffer */
4239 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4240 (c->cmdindex * sizeof(*cp));
4241 BUG_ON(c->busaddr & 0x0000007F);
4242
4243 memset(cp, 0, sizeof(*cp));
4244 cp->IU_type = IOACCEL2_IU_TYPE;
4245
4246 use_sg = scsi_dma_map(cmd);
03383736
DB
4247 if (use_sg < 0) {
4248 atomic_dec(&phys_disk->ioaccel_cmds_out);
c349775e 4249 return use_sg;
03383736 4250 }
c349775e
ST
4251
4252 if (use_sg) {
c349775e 4253 curr_sg = cp->sg;
d9a729f3
WS
4254 if (use_sg > h->ioaccel_maxsg) {
4255 addr64 = le64_to_cpu(
4256 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4257 curr_sg->address = cpu_to_le64(addr64);
4258 curr_sg->length = 0;
4259 curr_sg->reserved[0] = 0;
4260 curr_sg->reserved[1] = 0;
4261 curr_sg->reserved[2] = 0;
4262 curr_sg->chain_indicator = 0x80;
4263
4264 curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4265 }
c349775e
ST
4266 scsi_for_each_sg(cmd, sg, use_sg, i) {
4267 addr64 = (u64) sg_dma_address(sg);
4268 len = sg_dma_len(sg);
4269 total_len += len;
4270 curr_sg->address = cpu_to_le64(addr64);
4271 curr_sg->length = cpu_to_le32(len);
4272 curr_sg->reserved[0] = 0;
4273 curr_sg->reserved[1] = 0;
4274 curr_sg->reserved[2] = 0;
4275 curr_sg->chain_indicator = 0;
4276 curr_sg++;
4277 }
4278
4279 switch (cmd->sc_data_direction) {
4280 case DMA_TO_DEVICE:
dd0e19f3
ST
4281 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4282 cp->direction |= IOACCEL2_DIR_DATA_OUT;
c349775e
ST
4283 break;
4284 case DMA_FROM_DEVICE:
dd0e19f3
ST
4285 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4286 cp->direction |= IOACCEL2_DIR_DATA_IN;
c349775e
ST
4287 break;
4288 case DMA_NONE:
dd0e19f3
ST
4289 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4290 cp->direction |= IOACCEL2_DIR_NO_DATA;
c349775e
ST
4291 break;
4292 default:
4293 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4294 cmd->sc_data_direction);
4295 BUG();
4296 break;
4297 }
4298 } else {
dd0e19f3
ST
4299 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4300 cp->direction |= IOACCEL2_DIR_NO_DATA;
c349775e 4301 }
dd0e19f3
ST
4302
4303 /* Set encryption parameters, if necessary */
4304 set_encrypt_ioaccel2(h, c, cp);
4305
2b08b3e9 4306 cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
f2405db8 4307 cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
c349775e 4308 memcpy(cp->cdb, cdb, sizeof(cp->cdb));
c349775e 4309
c349775e
ST
4310 cp->data_len = cpu_to_le32(total_len);
4311 cp->err_ptr = cpu_to_le64(c->busaddr +
4312 offsetof(struct io_accel2_cmd, error_data));
50a0decf 4313 cp->err_len = cpu_to_le32(sizeof(cp->error_data));
c349775e 4314
d9a729f3
WS
4315 /* fill in sg elements */
4316 if (use_sg > h->ioaccel_maxsg) {
4317 cp->sg_count = 1;
a736e9b6 4318 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
d9a729f3
WS
4319 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4320 atomic_dec(&phys_disk->ioaccel_cmds_out);
4321 scsi_dma_unmap(cmd);
4322 return -1;
4323 }
4324 } else
4325 cp->sg_count = (u8) use_sg;
4326
c349775e
ST
4327 enqueue_cmd_and_start_io(h, c);
4328 return 0;
4329}
4330
4331/*
4332 * Queue a command to the correct I/O accelerator path.
4333 */
4334static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4335 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
03383736 4336 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
c349775e 4337{
03383736
DB
4338 /* Try to honor the device's queue depth */
4339 if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4340 phys_disk->queue_depth) {
4341 atomic_dec(&phys_disk->ioaccel_cmds_out);
4342 return IO_ACCEL_INELIGIBLE;
4343 }
c349775e
ST
4344 if (h->transMethod & CFGTBL_Trans_io_accel1)
4345 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
03383736
DB
4346 cdb, cdb_len, scsi3addr,
4347 phys_disk);
c349775e
ST
4348 else
4349 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
03383736
DB
4350 cdb, cdb_len, scsi3addr,
4351 phys_disk);
c349775e
ST
4352}
4353
6b80b18f
ST
4354static void raid_map_helper(struct raid_map_data *map,
4355 int offload_to_mirror, u32 *map_index, u32 *current_group)
4356{
4357 if (offload_to_mirror == 0) {
4358 /* use physical disk in the first mirrored group. */
2b08b3e9 4359 *map_index %= le16_to_cpu(map->data_disks_per_row);
6b80b18f
ST
4360 return;
4361 }
4362 do {
4363 /* determine mirror group that *map_index indicates */
2b08b3e9
DB
4364 *current_group = *map_index /
4365 le16_to_cpu(map->data_disks_per_row);
6b80b18f
ST
4366 if (offload_to_mirror == *current_group)
4367 continue;
2b08b3e9 4368 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
6b80b18f 4369 /* select map index from next group */
2b08b3e9 4370 *map_index += le16_to_cpu(map->data_disks_per_row);
6b80b18f
ST
4371 (*current_group)++;
4372 } else {
4373 /* select map index from first group */
2b08b3e9 4374 *map_index %= le16_to_cpu(map->data_disks_per_row);
6b80b18f
ST
4375 *current_group = 0;
4376 }
4377 } while (offload_to_mirror != *current_group);
4378}
4379
283b4a9b
SC
4380/*
4381 * Attempt to perform offload RAID mapping for a logical volume I/O.
4382 */
4383static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4384 struct CommandList *c)
4385{
4386 struct scsi_cmnd *cmd = c->scsi_cmd;
4387 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4388 struct raid_map_data *map = &dev->raid_map;
4389 struct raid_map_disk_data *dd = &map->data[0];
4390 int is_write = 0;
4391 u32 map_index;
4392 u64 first_block, last_block;
4393 u32 block_cnt;
4394 u32 blocks_per_row;
4395 u64 first_row, last_row;
4396 u32 first_row_offset, last_row_offset;
4397 u32 first_column, last_column;
6b80b18f
ST
4398 u64 r0_first_row, r0_last_row;
4399 u32 r5or6_blocks_per_row;
4400 u64 r5or6_first_row, r5or6_last_row;
4401 u32 r5or6_first_row_offset, r5or6_last_row_offset;
4402 u32 r5or6_first_column, r5or6_last_column;
4403 u32 total_disks_per_row;
4404 u32 stripesize;
4405 u32 first_group, last_group, current_group;
283b4a9b
SC
4406 u32 map_row;
4407 u32 disk_handle;
4408 u64 disk_block;
4409 u32 disk_block_cnt;
4410 u8 cdb[16];
4411 u8 cdb_len;
2b08b3e9 4412 u16 strip_size;
283b4a9b
SC
4413#if BITS_PER_LONG == 32
4414 u64 tmpdiv;
4415#endif
6b80b18f 4416 int offload_to_mirror;
283b4a9b 4417
283b4a9b
SC
4418 /* check for valid opcode, get LBA and block count */
4419 switch (cmd->cmnd[0]) {
4420 case WRITE_6:
4421 is_write = 1;
4422 case READ_6:
c8a6c9a6 4423 first_block = get_unaligned_be16(&cmd->cmnd[2]);
283b4a9b 4424 block_cnt = cmd->cmnd[4];
3fa89a04
SC
4425 if (block_cnt == 0)
4426 block_cnt = 256;
283b4a9b
SC
4427 break;
4428 case WRITE_10:
4429 is_write = 1;
4430 case READ_10:
4431 first_block =
4432 (((u64) cmd->cmnd[2]) << 24) |
4433 (((u64) cmd->cmnd[3]) << 16) |
4434 (((u64) cmd->cmnd[4]) << 8) |
4435 cmd->cmnd[5];
4436 block_cnt =
4437 (((u32) cmd->cmnd[7]) << 8) |
4438 cmd->cmnd[8];
4439 break;
4440 case WRITE_12:
4441 is_write = 1;
4442 case READ_12:
4443 first_block =
4444 (((u64) cmd->cmnd[2]) << 24) |
4445 (((u64) cmd->cmnd[3]) << 16) |
4446 (((u64) cmd->cmnd[4]) << 8) |
4447 cmd->cmnd[5];
4448 block_cnt =
4449 (((u32) cmd->cmnd[6]) << 24) |
4450 (((u32) cmd->cmnd[7]) << 16) |
4451 (((u32) cmd->cmnd[8]) << 8) |
4452 cmd->cmnd[9];
4453 break;
4454 case WRITE_16:
4455 is_write = 1;
4456 case READ_16:
4457 first_block =
4458 (((u64) cmd->cmnd[2]) << 56) |
4459 (((u64) cmd->cmnd[3]) << 48) |
4460 (((u64) cmd->cmnd[4]) << 40) |
4461 (((u64) cmd->cmnd[5]) << 32) |
4462 (((u64) cmd->cmnd[6]) << 24) |
4463 (((u64) cmd->cmnd[7]) << 16) |
4464 (((u64) cmd->cmnd[8]) << 8) |
4465 cmd->cmnd[9];
4466 block_cnt =
4467 (((u32) cmd->cmnd[10]) << 24) |
4468 (((u32) cmd->cmnd[11]) << 16) |
4469 (((u32) cmd->cmnd[12]) << 8) |
4470 cmd->cmnd[13];
4471 break;
4472 default:
4473 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
4474 }
283b4a9b
SC
4475 last_block = first_block + block_cnt - 1;
4476
4477 /* check for write to non-RAID-0 */
4478 if (is_write && dev->raid_level != 0)
4479 return IO_ACCEL_INELIGIBLE;
4480
4481 /* check for invalid block or wraparound */
2b08b3e9
DB
4482 if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
4483 last_block < first_block)
283b4a9b
SC
4484 return IO_ACCEL_INELIGIBLE;
4485
4486 /* calculate stripe information for the request */
2b08b3e9
DB
4487 blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
4488 le16_to_cpu(map->strip_size);
4489 strip_size = le16_to_cpu(map->strip_size);
283b4a9b
SC
4490#if BITS_PER_LONG == 32
4491 tmpdiv = first_block;
4492 (void) do_div(tmpdiv, blocks_per_row);
4493 first_row = tmpdiv;
4494 tmpdiv = last_block;
4495 (void) do_div(tmpdiv, blocks_per_row);
4496 last_row = tmpdiv;
4497 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4498 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4499 tmpdiv = first_row_offset;
2b08b3e9 4500 (void) do_div(tmpdiv, strip_size);
283b4a9b
SC
4501 first_column = tmpdiv;
4502 tmpdiv = last_row_offset;
2b08b3e9 4503 (void) do_div(tmpdiv, strip_size);
283b4a9b
SC
4504 last_column = tmpdiv;
4505#else
4506 first_row = first_block / blocks_per_row;
4507 last_row = last_block / blocks_per_row;
4508 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4509 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
2b08b3e9
DB
4510 first_column = first_row_offset / strip_size;
4511 last_column = last_row_offset / strip_size;
283b4a9b
SC
4512#endif
4513
4514 /* if this isn't a single row/column then give to the controller */
4515 if ((first_row != last_row) || (first_column != last_column))
4516 return IO_ACCEL_INELIGIBLE;
4517
4518 /* proceeding with driver mapping */
2b08b3e9
DB
4519 total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
4520 le16_to_cpu(map->metadata_disks_per_row);
283b4a9b 4521 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
2b08b3e9 4522 le16_to_cpu(map->row_cnt);
6b80b18f
ST
4523 map_index = (map_row * total_disks_per_row) + first_column;
4524
4525 switch (dev->raid_level) {
4526 case HPSA_RAID_0:
4527 break; /* nothing special to do */
4528 case HPSA_RAID_1:
4529 /* Handles load balance across RAID 1 members.
4530 * (2-drive R1 and R10 with even # of drives.)
4531 * Appropriate for SSDs, not optimal for HDDs
283b4a9b 4532 */
2b08b3e9 4533 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
283b4a9b 4534 if (dev->offload_to_mirror)
2b08b3e9 4535 map_index += le16_to_cpu(map->data_disks_per_row);
283b4a9b 4536 dev->offload_to_mirror = !dev->offload_to_mirror;
6b80b18f
ST
4537 break;
4538 case HPSA_RAID_ADM:
4539 /* Handles N-way mirrors (R1-ADM)
4540 * and R10 with # of drives divisible by 3.)
4541 */
2b08b3e9 4542 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
6b80b18f
ST
4543
4544 offload_to_mirror = dev->offload_to_mirror;
4545 raid_map_helper(map, offload_to_mirror,
4546 &map_index, &current_group);
4547 /* set mirror group to use next time */
4548 offload_to_mirror =
2b08b3e9
DB
4549 (offload_to_mirror >=
4550 le16_to_cpu(map->layout_map_count) - 1)
6b80b18f 4551 ? 0 : offload_to_mirror + 1;
6b80b18f
ST
4552 dev->offload_to_mirror = offload_to_mirror;
4553 /* Avoid direct use of dev->offload_to_mirror within this
4554 * function since multiple threads might simultaneously
4555 * increment it beyond the range of dev->layout_map_count -1.
4556 */
4557 break;
4558 case HPSA_RAID_5:
4559 case HPSA_RAID_6:
2b08b3e9 4560 if (le16_to_cpu(map->layout_map_count) <= 1)
6b80b18f
ST
4561 break;
4562
4563 /* Verify first and last block are in same RAID group */
4564 r5or6_blocks_per_row =
2b08b3e9
DB
4565 le16_to_cpu(map->strip_size) *
4566 le16_to_cpu(map->data_disks_per_row);
6b80b18f 4567 BUG_ON(r5or6_blocks_per_row == 0);
2b08b3e9
DB
4568 stripesize = r5or6_blocks_per_row *
4569 le16_to_cpu(map->layout_map_count);
6b80b18f
ST
4570#if BITS_PER_LONG == 32
4571 tmpdiv = first_block;
4572 first_group = do_div(tmpdiv, stripesize);
4573 tmpdiv = first_group;
4574 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4575 first_group = tmpdiv;
4576 tmpdiv = last_block;
4577 last_group = do_div(tmpdiv, stripesize);
4578 tmpdiv = last_group;
4579 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4580 last_group = tmpdiv;
4581#else
4582 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
4583 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
6b80b18f 4584#endif
000ff7c2 4585 if (first_group != last_group)
6b80b18f
ST
4586 return IO_ACCEL_INELIGIBLE;
4587
4588 /* Verify request is in a single row of RAID 5/6 */
4589#if BITS_PER_LONG == 32
4590 tmpdiv = first_block;
4591 (void) do_div(tmpdiv, stripesize);
4592 first_row = r5or6_first_row = r0_first_row = tmpdiv;
4593 tmpdiv = last_block;
4594 (void) do_div(tmpdiv, stripesize);
4595 r5or6_last_row = r0_last_row = tmpdiv;
4596#else
4597 first_row = r5or6_first_row = r0_first_row =
4598 first_block / stripesize;
4599 r5or6_last_row = r0_last_row = last_block / stripesize;
4600#endif
4601 if (r5or6_first_row != r5or6_last_row)
4602 return IO_ACCEL_INELIGIBLE;
4603
4604
4605 /* Verify request is in a single column */
4606#if BITS_PER_LONG == 32
4607 tmpdiv = first_block;
4608 first_row_offset = do_div(tmpdiv, stripesize);
4609 tmpdiv = first_row_offset;
4610 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
4611 r5or6_first_row_offset = first_row_offset;
4612 tmpdiv = last_block;
4613 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
4614 tmpdiv = r5or6_last_row_offset;
4615 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
4616 tmpdiv = r5or6_first_row_offset;
4617 (void) do_div(tmpdiv, map->strip_size);
4618 first_column = r5or6_first_column = tmpdiv;
4619 tmpdiv = r5or6_last_row_offset;
4620 (void) do_div(tmpdiv, map->strip_size);
4621 r5or6_last_column = tmpdiv;
4622#else
4623 first_row_offset = r5or6_first_row_offset =
4624 (u32)((first_block % stripesize) %
4625 r5or6_blocks_per_row);
4626
4627 r5or6_last_row_offset =
4628 (u32)((last_block % stripesize) %
4629 r5or6_blocks_per_row);
4630
4631 first_column = r5or6_first_column =
2b08b3e9 4632 r5or6_first_row_offset / le16_to_cpu(map->strip_size);
6b80b18f 4633 r5or6_last_column =
2b08b3e9 4634 r5or6_last_row_offset / le16_to_cpu(map->strip_size);
6b80b18f
ST
4635#endif
4636 if (r5or6_first_column != r5or6_last_column)
4637 return IO_ACCEL_INELIGIBLE;
4638
4639 /* Request is eligible */
4640 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
2b08b3e9 4641 le16_to_cpu(map->row_cnt);
6b80b18f
ST
4642
4643 map_index = (first_group *
2b08b3e9 4644 (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
6b80b18f
ST
4645 (map_row * total_disks_per_row) + first_column;
4646 break;
4647 default:
4648 return IO_ACCEL_INELIGIBLE;
283b4a9b 4649 }
6b80b18f 4650
07543e0c
SC
4651 if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
4652 return IO_ACCEL_INELIGIBLE;
4653
03383736
DB
4654 c->phys_disk = dev->phys_disk[map_index];
4655
283b4a9b 4656 disk_handle = dd[map_index].ioaccel_handle;
2b08b3e9
DB
4657 disk_block = le64_to_cpu(map->disk_starting_blk) +
4658 first_row * le16_to_cpu(map->strip_size) +
4659 (first_row_offset - first_column *
4660 le16_to_cpu(map->strip_size));
283b4a9b
SC
4661 disk_block_cnt = block_cnt;
4662
4663 /* handle differing logical/physical block sizes */
4664 if (map->phys_blk_shift) {
4665 disk_block <<= map->phys_blk_shift;
4666 disk_block_cnt <<= map->phys_blk_shift;
4667 }
4668 BUG_ON(disk_block_cnt > 0xffff);
4669
4670 /* build the new CDB for the physical disk I/O */
4671 if (disk_block > 0xffffffff) {
4672 cdb[0] = is_write ? WRITE_16 : READ_16;
4673 cdb[1] = 0;
4674 cdb[2] = (u8) (disk_block >> 56);
4675 cdb[3] = (u8) (disk_block >> 48);
4676 cdb[4] = (u8) (disk_block >> 40);
4677 cdb[5] = (u8) (disk_block >> 32);
4678 cdb[6] = (u8) (disk_block >> 24);
4679 cdb[7] = (u8) (disk_block >> 16);
4680 cdb[8] = (u8) (disk_block >> 8);
4681 cdb[9] = (u8) (disk_block);
4682 cdb[10] = (u8) (disk_block_cnt >> 24);
4683 cdb[11] = (u8) (disk_block_cnt >> 16);
4684 cdb[12] = (u8) (disk_block_cnt >> 8);
4685 cdb[13] = (u8) (disk_block_cnt);
4686 cdb[14] = 0;
4687 cdb[15] = 0;
4688 cdb_len = 16;
4689 } else {
4690 cdb[0] = is_write ? WRITE_10 : READ_10;
4691 cdb[1] = 0;
4692 cdb[2] = (u8) (disk_block >> 24);
4693 cdb[3] = (u8) (disk_block >> 16);
4694 cdb[4] = (u8) (disk_block >> 8);
4695 cdb[5] = (u8) (disk_block);
4696 cdb[6] = 0;
4697 cdb[7] = (u8) (disk_block_cnt >> 8);
4698 cdb[8] = (u8) (disk_block_cnt);
4699 cdb[9] = 0;
4700 cdb_len = 10;
4701 }
4702 return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
03383736
DB
4703 dev->scsi3addr,
4704 dev->phys_disk[map_index]);
283b4a9b
SC
4705}
4706
25163bd5
WS
4707/*
4708 * Submit commands down the "normal" RAID stack path
4709 * All callers to hpsa_ciss_submit must check lockup_detected
4710 * beforehand, before (opt.) and after calling cmd_alloc
4711 */
574f05d3
SC
4712static int hpsa_ciss_submit(struct ctlr_info *h,
4713 struct CommandList *c, struct scsi_cmnd *cmd,
4714 unsigned char scsi3addr[])
edd16368 4715{
edd16368 4716 cmd->host_scribble = (unsigned char *) c;
edd16368
SC
4717 c->cmd_type = CMD_SCSI;
4718 c->scsi_cmd = cmd;
4719 c->Header.ReplyQueue = 0; /* unused in simple mode */
4720 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
f2405db8 4721 c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
edd16368
SC
4722
4723 /* Fill in the request block... */
4724
4725 c->Request.Timeout = 0;
edd16368
SC
4726 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
4727 c->Request.CDBLen = cmd->cmd_len;
4728 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
edd16368
SC
4729 switch (cmd->sc_data_direction) {
4730 case DMA_TO_DEVICE:
a505b86f
SC
4731 c->Request.type_attr_dir =
4732 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
edd16368
SC
4733 break;
4734 case DMA_FROM_DEVICE:
a505b86f
SC
4735 c->Request.type_attr_dir =
4736 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
edd16368
SC
4737 break;
4738 case DMA_NONE:
a505b86f
SC
4739 c->Request.type_attr_dir =
4740 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
edd16368
SC
4741 break;
4742 case DMA_BIDIRECTIONAL:
4743 /* This can happen if a buggy application does a scsi passthru
4744 * and sets both inlen and outlen to non-zero. ( see
4745 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
4746 */
4747
a505b86f
SC
4748 c->Request.type_attr_dir =
4749 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
edd16368
SC
4750 /* This is technically wrong, and hpsa controllers should
4751 * reject it with CMD_INVALID, which is the most correct
4752 * response, but non-fibre backends appear to let it
4753 * slide by, and give the same results as if this field
4754 * were set correctly. Either way is acceptable for
4755 * our purposes here.
4756 */
4757
4758 break;
4759
4760 default:
4761 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4762 cmd->sc_data_direction);
4763 BUG();
4764 break;
4765 }
4766
33a2ffce 4767 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
73153fe5 4768 hpsa_cmd_resolve_and_free(h, c);
edd16368
SC
4769 return SCSI_MLQUEUE_HOST_BUSY;
4770 }
4771 enqueue_cmd_and_start_io(h, c);
4772 /* the cmd'll come back via intr handler in complete_scsi_command() */
4773 return 0;
4774}
4775
360c73bd
SC
4776static void hpsa_cmd_init(struct ctlr_info *h, int index,
4777 struct CommandList *c)
4778{
4779 dma_addr_t cmd_dma_handle, err_dma_handle;
4780
4781 /* Zero out all of commandlist except the last field, refcount */
4782 memset(c, 0, offsetof(struct CommandList, refcount));
4783 c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
4784 cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
4785 c->err_info = h->errinfo_pool + index;
4786 memset(c->err_info, 0, sizeof(*c->err_info));
4787 err_dma_handle = h->errinfo_pool_dhandle
4788 + index * sizeof(*c->err_info);
4789 c->cmdindex = index;
4790 c->busaddr = (u32) cmd_dma_handle;
4791 c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
4792 c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
4793 c->h = h;
a58e7e53 4794 c->scsi_cmd = SCSI_CMD_IDLE;
360c73bd
SC
4795}
4796
4797static void hpsa_preinitialize_commands(struct ctlr_info *h)
4798{
4799 int i;
4800
4801 for (i = 0; i < h->nr_cmds; i++) {
4802 struct CommandList *c = h->cmd_pool + i;
4803
4804 hpsa_cmd_init(h, i, c);
4805 atomic_set(&c->refcount, 0);
4806 }
4807}
4808
4809static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
4810 struct CommandList *c)
4811{
4812 dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
4813
73153fe5
WS
4814 BUG_ON(c->cmdindex != index);
4815
360c73bd
SC
4816 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
4817 memset(c->err_info, 0, sizeof(*c->err_info));
4818 c->busaddr = (u32) cmd_dma_handle;
4819}
4820
592a0ad5
WS
4821static int hpsa_ioaccel_submit(struct ctlr_info *h,
4822 struct CommandList *c, struct scsi_cmnd *cmd,
4823 unsigned char *scsi3addr)
4824{
4825 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4826 int rc = IO_ACCEL_INELIGIBLE;
4827
4828 cmd->host_scribble = (unsigned char *) c;
4829
4830 if (dev->offload_enabled) {
4831 hpsa_cmd_init(h, c->cmdindex, c);
4832 c->cmd_type = CMD_SCSI;
4833 c->scsi_cmd = cmd;
4834 rc = hpsa_scsi_ioaccel_raid_map(h, c);
4835 if (rc < 0) /* scsi_dma_map failed. */
4836 rc = SCSI_MLQUEUE_HOST_BUSY;
a3144e0b 4837 } else if (dev->hba_ioaccel_enabled) {
592a0ad5
WS
4838 hpsa_cmd_init(h, c->cmdindex, c);
4839 c->cmd_type = CMD_SCSI;
4840 c->scsi_cmd = cmd;
4841 rc = hpsa_scsi_ioaccel_direct_map(h, c);
4842 if (rc < 0) /* scsi_dma_map failed. */
4843 rc = SCSI_MLQUEUE_HOST_BUSY;
4844 }
4845 return rc;
4846}
4847
080ef1cc
DB
4848static void hpsa_command_resubmit_worker(struct work_struct *work)
4849{
4850 struct scsi_cmnd *cmd;
4851 struct hpsa_scsi_dev_t *dev;
8a0ff92c 4852 struct CommandList *c = container_of(work, struct CommandList, work);
080ef1cc
DB
4853
4854 cmd = c->scsi_cmd;
4855 dev = cmd->device->hostdata;
4856 if (!dev) {
4857 cmd->result = DID_NO_CONNECT << 16;
8a0ff92c 4858 return hpsa_cmd_free_and_done(c->h, c, cmd);
080ef1cc 4859 }
d604f533
WS
4860 if (c->reset_pending)
4861 return hpsa_cmd_resolve_and_free(c->h, c);
a58e7e53
WS
4862 if (c->abort_pending)
4863 return hpsa_cmd_abort_and_free(c->h, c, cmd);
592a0ad5
WS
4864 if (c->cmd_type == CMD_IOACCEL2) {
4865 struct ctlr_info *h = c->h;
4866 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
4867 int rc;
4868
4869 if (c2->error_data.serv_response ==
4870 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
4871 rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
4872 if (rc == 0)
4873 return;
4874 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
4875 /*
4876 * If we get here, it means dma mapping failed.
4877 * Try again via scsi mid layer, which will
4878 * then get SCSI_MLQUEUE_HOST_BUSY.
4879 */
4880 cmd->result = DID_IMM_RETRY << 16;
8a0ff92c 4881 return hpsa_cmd_free_and_done(h, c, cmd);
592a0ad5
WS
4882 }
4883 /* else, fall thru and resubmit down CISS path */
4884 }
4885 }
360c73bd 4886 hpsa_cmd_partial_init(c->h, c->cmdindex, c);
080ef1cc
DB
4887 if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
4888 /*
4889 * If we get here, it means dma mapping failed. Try
4890 * again via scsi mid layer, which will then get
4891 * SCSI_MLQUEUE_HOST_BUSY.
592a0ad5
WS
4892 *
4893 * hpsa_ciss_submit will have already freed c
4894 * if it encountered a dma mapping failure.
080ef1cc
DB
4895 */
4896 cmd->result = DID_IMM_RETRY << 16;
4897 cmd->scsi_done(cmd);
4898 }
4899}
4900
574f05d3
SC
4901/* Running in struct Scsi_Host->host_lock less mode */
4902static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
4903{
4904 struct ctlr_info *h;
4905 struct hpsa_scsi_dev_t *dev;
4906 unsigned char scsi3addr[8];
4907 struct CommandList *c;
4908 int rc = 0;
4909
4910 /* Get the ptr to our adapter structure out of cmd->host. */
4911 h = sdev_to_hba(cmd->device);
73153fe5
WS
4912
4913 BUG_ON(cmd->request->tag < 0);
4914
574f05d3
SC
4915 dev = cmd->device->hostdata;
4916 if (!dev) {
4917 cmd->result = DID_NO_CONNECT << 16;
4918 cmd->scsi_done(cmd);
4919 return 0;
4920 }
574f05d3 4921
73153fe5 4922 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
bf43caf3 4923
407863cb 4924 if (unlikely(lockup_detected(h))) {
25163bd5 4925 cmd->result = DID_NO_CONNECT << 16;
407863cb
SC
4926 cmd->scsi_done(cmd);
4927 return 0;
4928 }
73153fe5 4929 c = cmd_tagged_alloc(h, cmd);
574f05d3 4930
407863cb
SC
4931 /*
4932 * Call alternate submit routine for I/O accelerated commands.
574f05d3
SC
4933 * Retries always go down the normal I/O path.
4934 */
4935 if (likely(cmd->retries == 0 &&
4936 cmd->request->cmd_type == REQ_TYPE_FS &&
4937 h->acciopath_status)) {
592a0ad5
WS
4938 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
4939 if (rc == 0)
4940 return 0;
4941 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
73153fe5 4942 hpsa_cmd_resolve_and_free(h, c);
592a0ad5 4943 return SCSI_MLQUEUE_HOST_BUSY;
574f05d3
SC
4944 }
4945 }
4946 return hpsa_ciss_submit(h, c, cmd, scsi3addr);
4947}
4948
8ebc9248 4949static void hpsa_scan_complete(struct ctlr_info *h)
5f389360
SC
4950{
4951 unsigned long flags;
4952
8ebc9248
WS
4953 spin_lock_irqsave(&h->scan_lock, flags);
4954 h->scan_finished = 1;
4955 wake_up_all(&h->scan_wait_queue);
4956 spin_unlock_irqrestore(&h->scan_lock, flags);
5f389360
SC
4957}
4958
a08a8471
SC
4959static void hpsa_scan_start(struct Scsi_Host *sh)
4960{
4961 struct ctlr_info *h = shost_to_hba(sh);
4962 unsigned long flags;
4963
8ebc9248
WS
4964 /*
4965 * Don't let rescans be initiated on a controller known to be locked
4966 * up. If the controller locks up *during* a rescan, that thread is
4967 * probably hosed, but at least we can prevent new rescan threads from
4968 * piling up on a locked up controller.
4969 */
4970 if (unlikely(lockup_detected(h)))
4971 return hpsa_scan_complete(h);
5f389360 4972
a08a8471
SC
4973 /* wait until any scan already in progress is finished. */
4974 while (1) {
4975 spin_lock_irqsave(&h->scan_lock, flags);
4976 if (h->scan_finished)
4977 break;
4978 spin_unlock_irqrestore(&h->scan_lock, flags);
4979 wait_event(h->scan_wait_queue, h->scan_finished);
4980 /* Note: We don't need to worry about a race between this
4981 * thread and driver unload because the midlayer will
4982 * have incremented the reference count, so unload won't
4983 * happen if we're in here.
4984 */
4985 }
4986 h->scan_finished = 0; /* mark scan as in progress */
4987 spin_unlock_irqrestore(&h->scan_lock, flags);
4988
8ebc9248
WS
4989 if (unlikely(lockup_detected(h)))
4990 return hpsa_scan_complete(h);
5f389360 4991
8aa60681 4992 hpsa_update_scsi_devices(h);
a08a8471 4993
8ebc9248 4994 hpsa_scan_complete(h);
a08a8471
SC
4995}
4996
7c0a0229
DB
4997static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
4998{
03383736
DB
4999 struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5000
5001 if (!logical_drive)
5002 return -ENODEV;
7c0a0229
DB
5003
5004 if (qdepth < 1)
5005 qdepth = 1;
03383736
DB
5006 else if (qdepth > logical_drive->queue_depth)
5007 qdepth = logical_drive->queue_depth;
5008
5009 return scsi_change_queue_depth(sdev, qdepth);
7c0a0229
DB
5010}
5011
a08a8471
SC
5012static int hpsa_scan_finished(struct Scsi_Host *sh,
5013 unsigned long elapsed_time)
5014{
5015 struct ctlr_info *h = shost_to_hba(sh);
5016 unsigned long flags;
5017 int finished;
5018
5019 spin_lock_irqsave(&h->scan_lock, flags);
5020 finished = h->scan_finished;
5021 spin_unlock_irqrestore(&h->scan_lock, flags);
5022 return finished;
5023}
5024
2946e82b 5025static int hpsa_scsi_host_alloc(struct ctlr_info *h)
edd16368 5026{
b705690d
SC
5027 struct Scsi_Host *sh;
5028 int error;
edd16368 5029
b705690d 5030 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
2946e82b
RE
5031 if (sh == NULL) {
5032 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5033 return -ENOMEM;
5034 }
b705690d
SC
5035
5036 sh->io_port = 0;
5037 sh->n_io_port = 0;
5038 sh->this_id = -1;
5039 sh->max_channel = 3;
5040 sh->max_cmd_len = MAX_COMMAND_SIZE;
5041 sh->max_lun = HPSA_MAX_LUN;
5042 sh->max_id = HPSA_MAX_LUN;
41ce4c35 5043 sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
03383736 5044 sh->cmd_per_lun = sh->can_queue;
b705690d 5045 sh->sg_tablesize = h->maxsgentries;
b705690d
SC
5046 sh->hostdata[0] = (unsigned long) h;
5047 sh->irq = h->intr[h->intr_mode];
5048 sh->unique_id = sh->irq;
73153fe5
WS
5049 error = scsi_init_shared_tag_map(sh, sh->can_queue);
5050 if (error) {
5051 dev_err(&h->pdev->dev,
5052 "%s: scsi_init_shared_tag_map failed for controller %d\n",
5053 __func__, h->ctlr);
2946e82b
RE
5054 scsi_host_put(sh);
5055 return error;
73153fe5 5056 }
2946e82b 5057 h->scsi_host = sh;
b705690d 5058 return 0;
2946e82b 5059}
b705690d 5060
2946e82b
RE
5061static int hpsa_scsi_add_host(struct ctlr_info *h)
5062{
5063 int rv;
5064
5065 rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5066 if (rv) {
5067 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5068 return rv;
5069 }
5070 scsi_scan_host(h->scsi_host);
5071 return 0;
edd16368
SC
5072}
5073
73153fe5
WS
5074/*
5075 * The block layer has already gone to the trouble of picking out a unique,
5076 * small-integer tag for this request. We use an offset from that value as
5077 * an index to select our command block. (The offset allows us to reserve the
5078 * low-numbered entries for our own uses.)
5079 */
5080static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5081{
5082 int idx = scmd->request->tag;
5083
5084 if (idx < 0)
5085 return idx;
5086
5087 /* Offset to leave space for internal cmds. */
5088 return idx += HPSA_NRESERVED_CMDS;
5089}
5090
b69324ff
WS
5091/*
5092 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5093 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5094 */
5095static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5096 struct CommandList *c, unsigned char lunaddr[],
5097 int reply_queue)
5098{
5099 int rc;
5100
5101 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5102 (void) fill_cmd(c, TEST_UNIT_READY, h,
5103 NULL, 0, 0, lunaddr, TYPE_CMD);
5104 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5105 if (rc)
5106 return rc;
5107 /* no unmap needed here because no data xfer. */
5108
5109 /* Check if the unit is already ready. */
5110 if (c->err_info->CommandStatus == CMD_SUCCESS)
5111 return 0;
5112
5113 /*
5114 * The first command sent after reset will receive "unit attention" to
5115 * indicate that the LUN has been reset...this is actually what we're
5116 * looking for (but, success is good too).
5117 */
5118 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5119 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5120 (c->err_info->SenseInfo[2] == NO_SENSE ||
5121 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5122 return 0;
5123
5124 return 1;
5125}
5126
5127/*
5128 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5129 * returns zero when the unit is ready, and non-zero when giving up.
5130 */
5131static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5132 struct CommandList *c,
5133 unsigned char lunaddr[], int reply_queue)
edd16368 5134{
8919358e 5135 int rc;
edd16368
SC
5136 int count = 0;
5137 int waittime = 1; /* seconds */
edd16368
SC
5138
5139 /* Send test unit ready until device ready, or give up. */
b69324ff 5140 for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
edd16368 5141
b69324ff
WS
5142 /*
5143 * Wait for a bit. do this first, because if we send
edd16368
SC
5144 * the TUR right away, the reset will just abort it.
5145 */
5146 msleep(1000 * waittime);
b69324ff
WS
5147
5148 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5149 if (!rc)
5150 break;
edd16368
SC
5151
5152 /* Increase wait time with each try, up to a point. */
5153 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
b69324ff 5154 waittime *= 2;
edd16368 5155
b69324ff
WS
5156 dev_warn(&h->pdev->dev,
5157 "waiting %d secs for device to become ready.\n",
5158 waittime);
5159 }
edd16368 5160
b69324ff
WS
5161 return rc;
5162}
edd16368 5163
b69324ff
WS
5164static int wait_for_device_to_become_ready(struct ctlr_info *h,
5165 unsigned char lunaddr[],
5166 int reply_queue)
5167{
5168 int first_queue;
5169 int last_queue;
5170 int rq;
5171 int rc = 0;
5172 struct CommandList *c;
5173
5174 c = cmd_alloc(h);
5175
5176 /*
5177 * If no specific reply queue was requested, then send the TUR
5178 * repeatedly, requesting a reply on each reply queue; otherwise execute
5179 * the loop exactly once using only the specified queue.
5180 */
5181 if (reply_queue == DEFAULT_REPLY_QUEUE) {
5182 first_queue = 0;
5183 last_queue = h->nreply_queues - 1;
5184 } else {
5185 first_queue = reply_queue;
5186 last_queue = reply_queue;
5187 }
5188
5189 for (rq = first_queue; rq <= last_queue; rq++) {
5190 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5191 if (rc)
edd16368 5192 break;
edd16368
SC
5193 }
5194
5195 if (rc)
5196 dev_warn(&h->pdev->dev, "giving up on device.\n");
5197 else
5198 dev_warn(&h->pdev->dev, "device is ready.\n");
5199
45fcb86e 5200 cmd_free(h, c);
edd16368
SC
5201 return rc;
5202}
5203
5204/* Need at least one of these error handlers to keep ../scsi/hosts.c from
5205 * complaining. Doing a host- or bus-reset can't do anything good here.
5206 */
5207static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5208{
5209 int rc;
5210 struct ctlr_info *h;
5211 struct hpsa_scsi_dev_t *dev;
0b9b7b6e 5212 u8 reset_type;
2dc127bb 5213 char msg[48];
edd16368
SC
5214
5215 /* find the controller to which the command to be aborted was sent */
5216 h = sdev_to_hba(scsicmd->device);
5217 if (h == NULL) /* paranoia */
5218 return FAILED;
e345893b
DB
5219
5220 if (lockup_detected(h))
5221 return FAILED;
5222
edd16368
SC
5223 dev = scsicmd->device->hostdata;
5224 if (!dev) {
d604f533 5225 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
edd16368
SC
5226 return FAILED;
5227 }
25163bd5
WS
5228
5229 /* if controller locked up, we can guarantee command won't complete */
5230 if (lockup_detected(h)) {
2dc127bb
DC
5231 snprintf(msg, sizeof(msg),
5232 "cmd %d RESET FAILED, lockup detected",
5233 hpsa_get_cmd_index(scsicmd));
73153fe5 5234 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
25163bd5
WS
5235 return FAILED;
5236 }
5237
5238 /* this reset request might be the result of a lockup; check */
5239 if (detect_controller_lockup(h)) {
2dc127bb
DC
5240 snprintf(msg, sizeof(msg),
5241 "cmd %d RESET FAILED, new lockup detected",
5242 hpsa_get_cmd_index(scsicmd));
73153fe5 5243 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
25163bd5
WS
5244 return FAILED;
5245 }
5246
d604f533
WS
5247 /* Do not attempt on controller */
5248 if (is_hba_lunid(dev->scsi3addr))
5249 return SUCCESS;
5250
0b9b7b6e
ST
5251 if (is_logical_dev_addr_mode(dev->scsi3addr))
5252 reset_type = HPSA_DEVICE_RESET_MSG;
5253 else
5254 reset_type = HPSA_PHYS_TARGET_RESET;
5255
5256 sprintf(msg, "resetting %s",
5257 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5258 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
25163bd5 5259
da03ded0
DB
5260 h->reset_in_progress = 1;
5261
edd16368 5262 /* send a reset to the SCSI LUN which the command was sent to */
0b9b7b6e 5263 rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
d604f533 5264 DEFAULT_REPLY_QUEUE);
0b9b7b6e
ST
5265 sprintf(msg, "reset %s %s",
5266 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5267 rc == 0 ? "completed successfully" : "failed");
d604f533 5268 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
da03ded0 5269 h->reset_in_progress = 0;
d604f533 5270 return rc == 0 ? SUCCESS : FAILED;
edd16368
SC
5271}
5272
6cba3f19
SC
5273static void swizzle_abort_tag(u8 *tag)
5274{
5275 u8 original_tag[8];
5276
5277 memcpy(original_tag, tag, 8);
5278 tag[0] = original_tag[3];
5279 tag[1] = original_tag[2];
5280 tag[2] = original_tag[1];
5281 tag[3] = original_tag[0];
5282 tag[4] = original_tag[7];
5283 tag[5] = original_tag[6];
5284 tag[6] = original_tag[5];
5285 tag[7] = original_tag[4];
5286}
5287
17eb87d2 5288static void hpsa_get_tag(struct ctlr_info *h,
2b08b3e9 5289 struct CommandList *c, __le32 *taglower, __le32 *tagupper)
17eb87d2 5290{
2b08b3e9 5291 u64 tag;
17eb87d2
ST
5292 if (c->cmd_type == CMD_IOACCEL1) {
5293 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5294 &h->ioaccel_cmd_pool[c->cmdindex];
2b08b3e9
DB
5295 tag = le64_to_cpu(cm1->tag);
5296 *tagupper = cpu_to_le32(tag >> 32);
5297 *taglower = cpu_to_le32(tag);
54b6e9e9
ST
5298 return;
5299 }
5300 if (c->cmd_type == CMD_IOACCEL2) {
5301 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5302 &h->ioaccel2_cmd_pool[c->cmdindex];
dd0e19f3
ST
5303 /* upper tag not used in ioaccel2 mode */
5304 memset(tagupper, 0, sizeof(*tagupper));
5305 *taglower = cm2->Tag;
54b6e9e9 5306 return;
17eb87d2 5307 }
2b08b3e9
DB
5308 tag = le64_to_cpu(c->Header.tag);
5309 *tagupper = cpu_to_le32(tag >> 32);
5310 *taglower = cpu_to_le32(tag);
17eb87d2
ST
5311}
5312
75167d2c 5313static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
9b5c48c2 5314 struct CommandList *abort, int reply_queue)
75167d2c
SC
5315{
5316 int rc = IO_OK;
5317 struct CommandList *c;
5318 struct ErrorInfo *ei;
2b08b3e9 5319 __le32 tagupper, taglower;
75167d2c 5320
45fcb86e 5321 c = cmd_alloc(h);
75167d2c 5322
a2dac136 5323 /* fill_cmd can't fail here, no buffer to map */
9b5c48c2 5324 (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
a2dac136 5325 0, 0, scsi3addr, TYPE_MSG);
9b5c48c2 5326 if (h->needs_abort_tags_swizzled)
6cba3f19 5327 swizzle_abort_tag(&c->Request.CDB[4]);
25163bd5 5328 (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
17eb87d2 5329 hpsa_get_tag(h, abort, &taglower, &tagupper);
25163bd5 5330 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
17eb87d2 5331 __func__, tagupper, taglower);
75167d2c
SC
5332 /* no unmap needed here because no data xfer. */
5333
5334 ei = c->err_info;
5335 switch (ei->CommandStatus) {
5336 case CMD_SUCCESS:
5337 break;
9437ac43
SC
5338 case CMD_TMF_STATUS:
5339 rc = hpsa_evaluate_tmf_status(h, c);
5340 break;
75167d2c
SC
5341 case CMD_UNABORTABLE: /* Very common, don't make noise. */
5342 rc = -1;
5343 break;
5344 default:
5345 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
17eb87d2 5346 __func__, tagupper, taglower);
d1e8beac 5347 hpsa_scsi_interpret_error(h, c);
75167d2c
SC
5348 rc = -1;
5349 break;
5350 }
45fcb86e 5351 cmd_free(h, c);
dd0e19f3
ST
5352 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5353 __func__, tagupper, taglower);
75167d2c
SC
5354 return rc;
5355}
5356
8be986cc
SC
5357static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5358 struct CommandList *command_to_abort, int reply_queue)
5359{
5360 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5361 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5362 struct io_accel2_cmd *c2a =
5363 &h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
a58e7e53 5364 struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
8be986cc
SC
5365 struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5366
5367 /*
5368 * We're overlaying struct hpsa_tmf_struct on top of something which
5369 * was allocated as a struct io_accel2_cmd, so we better be sure it
5370 * actually fits, and doesn't overrun the error info space.
5371 */
5372 BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5373 sizeof(struct io_accel2_cmd));
5374 BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5375 offsetof(struct hpsa_tmf_struct, error_len) +
5376 sizeof(ac->error_len));
5377
5378 c->cmd_type = IOACCEL2_TMF;
a58e7e53
WS
5379 c->scsi_cmd = SCSI_CMD_BUSY;
5380
8be986cc
SC
5381 /* Adjust the DMA address to point to the accelerated command buffer */
5382 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
5383 (c->cmdindex * sizeof(struct io_accel2_cmd));
5384 BUG_ON(c->busaddr & 0x0000007F);
5385
5386 memset(ac, 0, sizeof(*c2)); /* yes this is correct */
5387 ac->iu_type = IOACCEL2_IU_TMF_TYPE;
5388 ac->reply_queue = reply_queue;
5389 ac->tmf = IOACCEL2_TMF_ABORT;
5390 ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
5391 memset(ac->lun_id, 0, sizeof(ac->lun_id));
5392 ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5393 ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
5394 ac->error_ptr = cpu_to_le64(c->busaddr +
5395 offsetof(struct io_accel2_cmd, error_data));
5396 ac->error_len = cpu_to_le32(sizeof(c2->error_data));
5397}
5398
54b6e9e9
ST
5399/* ioaccel2 path firmware cannot handle abort task requests.
5400 * Change abort requests to physical target reset, and send to the
5401 * address of the physical disk used for the ioaccel 2 command.
5402 * Return 0 on success (IO_OK)
5403 * -1 on failure
5404 */
5405
5406static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
25163bd5 5407 unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
54b6e9e9
ST
5408{
5409 int rc = IO_OK;
5410 struct scsi_cmnd *scmd; /* scsi command within request being aborted */
5411 struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
5412 unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
5413 unsigned char *psa = &phys_scsi3addr[0];
5414
5415 /* Get a pointer to the hpsa logical device. */
7fa3030c 5416 scmd = abort->scsi_cmd;
54b6e9e9
ST
5417 dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
5418 if (dev == NULL) {
5419 dev_warn(&h->pdev->dev,
5420 "Cannot abort: no device pointer for command.\n");
5421 return -1; /* not abortable */
5422 }
5423
2ba8bfc8
SC
5424 if (h->raid_offload_debug > 0)
5425 dev_info(&h->pdev->dev,
0d96ef5f 5426 "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2ba8bfc8 5427 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
0d96ef5f 5428 "Reset as abort",
2ba8bfc8
SC
5429 scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
5430 scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
5431
54b6e9e9
ST
5432 if (!dev->offload_enabled) {
5433 dev_warn(&h->pdev->dev,
5434 "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
5435 return -1; /* not abortable */
5436 }
5437
5438 /* Incoming scsi3addr is logical addr. We need physical disk addr. */
5439 if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
5440 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
5441 return -1; /* not abortable */
5442 }
5443
5444 /* send the reset */
2ba8bfc8
SC
5445 if (h->raid_offload_debug > 0)
5446 dev_info(&h->pdev->dev,
5447 "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5448 psa[0], psa[1], psa[2], psa[3],
5449 psa[4], psa[5], psa[6], psa[7]);
d604f533 5450 rc = hpsa_do_reset(h, dev, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
54b6e9e9
ST
5451 if (rc != 0) {
5452 dev_warn(&h->pdev->dev,
5453 "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5454 psa[0], psa[1], psa[2], psa[3],
5455 psa[4], psa[5], psa[6], psa[7]);
5456 return rc; /* failed to reset */
5457 }
5458
5459 /* wait for device to recover */
b69324ff 5460 if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
54b6e9e9
ST
5461 dev_warn(&h->pdev->dev,
5462 "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5463 psa[0], psa[1], psa[2], psa[3],
5464 psa[4], psa[5], psa[6], psa[7]);
5465 return -1; /* failed to recover */
5466 }
5467
5468 /* device recovered */
5469 dev_info(&h->pdev->dev,
5470 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5471 psa[0], psa[1], psa[2], psa[3],
5472 psa[4], psa[5], psa[6], psa[7]);
5473
5474 return rc; /* success */
5475}
5476
8be986cc
SC
5477static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
5478 struct CommandList *abort, int reply_queue)
5479{
5480 int rc = IO_OK;
5481 struct CommandList *c;
5482 __le32 taglower, tagupper;
5483 struct hpsa_scsi_dev_t *dev;
5484 struct io_accel2_cmd *c2;
5485
5486 dev = abort->scsi_cmd->device->hostdata;
5487 if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
5488 return -1;
5489
5490 c = cmd_alloc(h);
5491 setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
5492 c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5493 (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5494 hpsa_get_tag(h, abort, &taglower, &tagupper);
5495 dev_dbg(&h->pdev->dev,
5496 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
5497 __func__, tagupper, taglower);
5498 /* no unmap needed here because no data xfer. */
5499
5500 dev_dbg(&h->pdev->dev,
5501 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
5502 __func__, tagupper, taglower, c2->error_data.serv_response);
5503 switch (c2->error_data.serv_response) {
5504 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
5505 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
5506 rc = 0;
5507 break;
5508 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
5509 case IOACCEL2_SERV_RESPONSE_FAILURE:
5510 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
5511 rc = -1;
5512 break;
5513 default:
5514 dev_warn(&h->pdev->dev,
5515 "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
5516 __func__, tagupper, taglower,
5517 c2->error_data.serv_response);
5518 rc = -1;
5519 }
5520 cmd_free(h, c);
5521 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
5522 tagupper, taglower);
5523 return rc;
5524}
5525
6cba3f19 5526static int hpsa_send_abort_both_ways(struct ctlr_info *h,
25163bd5 5527 unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
6cba3f19 5528{
8be986cc
SC
5529 /*
5530 * ioccelerator mode 2 commands should be aborted via the
54b6e9e9 5531 * accelerated path, since RAID path is unaware of these commands,
8be986cc
SC
5532 * but not all underlying firmware can handle abort TMF.
5533 * Change abort to physical device reset when abort TMF is unsupported.
54b6e9e9 5534 */
8be986cc
SC
5535 if (abort->cmd_type == CMD_IOACCEL2) {
5536 if (HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags)
5537 return hpsa_send_abort_ioaccel2(h, abort,
5538 reply_queue);
5539 else
5540 return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr,
25163bd5 5541 abort, reply_queue);
8be986cc 5542 }
9b5c48c2 5543 return hpsa_send_abort(h, scsi3addr, abort, reply_queue);
25163bd5 5544}
54b6e9e9 5545
25163bd5
WS
5546/* Find out which reply queue a command was meant to return on */
5547static int hpsa_extract_reply_queue(struct ctlr_info *h,
5548 struct CommandList *c)
5549{
5550 if (c->cmd_type == CMD_IOACCEL2)
5551 return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
5552 return c->Header.ReplyQueue;
6cba3f19
SC
5553}
5554
9b5c48c2
SC
5555/*
5556 * Limit concurrency of abort commands to prevent
5557 * over-subscription of commands
5558 */
5559static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
5560{
5561#define ABORT_CMD_WAIT_MSECS 5000
5562 return !wait_event_timeout(h->abort_cmd_wait_queue,
5563 atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
5564 msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
5565}
5566
75167d2c
SC
5567/* Send an abort for the specified command.
5568 * If the device and controller support it,
5569 * send a task abort request.
5570 */
5571static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
5572{
5573
a58e7e53 5574 int rc;
75167d2c
SC
5575 struct ctlr_info *h;
5576 struct hpsa_scsi_dev_t *dev;
5577 struct CommandList *abort; /* pointer to command to be aborted */
75167d2c
SC
5578 struct scsi_cmnd *as; /* ptr to scsi cmd inside aborted command. */
5579 char msg[256]; /* For debug messaging. */
5580 int ml = 0;
2b08b3e9 5581 __le32 tagupper, taglower;
25163bd5
WS
5582 int refcount, reply_queue;
5583
5584 if (sc == NULL)
5585 return FAILED;
75167d2c 5586
9b5c48c2
SC
5587 if (sc->device == NULL)
5588 return FAILED;
5589
75167d2c
SC
5590 /* Find the controller of the command to be aborted */
5591 h = sdev_to_hba(sc->device);
9b5c48c2 5592 if (h == NULL)
75167d2c
SC
5593 return FAILED;
5594
25163bd5
WS
5595 /* Find the device of the command to be aborted */
5596 dev = sc->device->hostdata;
5597 if (!dev) {
5598 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
5599 msg);
e345893b 5600 return FAILED;
25163bd5
WS
5601 }
5602
5603 /* If controller locked up, we can guarantee command won't complete */
5604 if (lockup_detected(h)) {
5605 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5606 "ABORT FAILED, lockup detected");
5607 return FAILED;
5608 }
5609
5610 /* This is a good time to check if controller lockup has occurred */
5611 if (detect_controller_lockup(h)) {
5612 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5613 "ABORT FAILED, new lockup detected");
5614 return FAILED;
5615 }
e345893b 5616
75167d2c
SC
5617 /* Check that controller supports some kind of task abort */
5618 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
5619 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
5620 return FAILED;
5621
5622 memset(msg, 0, sizeof(msg));
4b761557 5623 ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
75167d2c 5624 h->scsi_host->host_no, sc->device->channel,
0d96ef5f 5625 sc->device->id, sc->device->lun,
4b761557 5626 "Aborting command", sc);
75167d2c 5627
75167d2c
SC
5628 /* Get SCSI command to be aborted */
5629 abort = (struct CommandList *) sc->host_scribble;
5630 if (abort == NULL) {
281a7fd0
WS
5631 /* This can happen if the command already completed. */
5632 return SUCCESS;
5633 }
5634 refcount = atomic_inc_return(&abort->refcount);
5635 if (refcount == 1) { /* Command is done already. */
5636 cmd_free(h, abort);
5637 return SUCCESS;
75167d2c 5638 }
9b5c48c2
SC
5639
5640 /* Don't bother trying the abort if we know it won't work. */
5641 if (abort->cmd_type != CMD_IOACCEL2 &&
5642 abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
5643 cmd_free(h, abort);
5644 return FAILED;
5645 }
5646
a58e7e53
WS
5647 /*
5648 * Check that we're aborting the right command.
5649 * It's possible the CommandList already completed and got re-used.
5650 */
5651 if (abort->scsi_cmd != sc) {
5652 cmd_free(h, abort);
5653 return SUCCESS;
5654 }
5655
5656 abort->abort_pending = true;
17eb87d2 5657 hpsa_get_tag(h, abort, &taglower, &tagupper);
25163bd5 5658 reply_queue = hpsa_extract_reply_queue(h, abort);
17eb87d2 5659 ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
7fa3030c 5660 as = abort->scsi_cmd;
75167d2c 5661 if (as != NULL)
4b761557
RE
5662 ml += sprintf(msg+ml,
5663 "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
5664 as->cmd_len, as->cmnd[0], as->cmnd[1],
5665 as->serial_number);
5666 dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
0d96ef5f 5667 hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
4b761557 5668
75167d2c
SC
5669 /*
5670 * Command is in flight, or possibly already completed
5671 * by the firmware (but not to the scsi mid layer) but we can't
5672 * distinguish which. Send the abort down.
5673 */
9b5c48c2
SC
5674 if (wait_for_available_abort_cmd(h)) {
5675 dev_warn(&h->pdev->dev,
4b761557
RE
5676 "%s FAILED, timeout waiting for an abort command to become available.\n",
5677 msg);
9b5c48c2
SC
5678 cmd_free(h, abort);
5679 return FAILED;
5680 }
25163bd5 5681 rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort, reply_queue);
9b5c48c2
SC
5682 atomic_inc(&h->abort_cmds_available);
5683 wake_up_all(&h->abort_cmd_wait_queue);
75167d2c 5684 if (rc != 0) {
4b761557 5685 dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
0d96ef5f 5686 hpsa_show_dev_msg(KERN_WARNING, h, dev,
4b761557 5687 "FAILED to abort command");
281a7fd0 5688 cmd_free(h, abort);
75167d2c
SC
5689 return FAILED;
5690 }
4b761557 5691 dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
d604f533 5692 wait_event(h->event_sync_wait_queue,
a58e7e53 5693 abort->scsi_cmd != sc || lockup_detected(h));
281a7fd0 5694 cmd_free(h, abort);
a58e7e53 5695 return !lockup_detected(h) ? SUCCESS : FAILED;
75167d2c
SC
5696}
5697
73153fe5
WS
5698/*
5699 * For operations with an associated SCSI command, a command block is allocated
5700 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
5701 * block request tag as an index into a table of entries. cmd_tagged_free() is
5702 * the complement, although cmd_free() may be called instead.
5703 */
5704static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
5705 struct scsi_cmnd *scmd)
5706{
5707 int idx = hpsa_get_cmd_index(scmd);
5708 struct CommandList *c = h->cmd_pool + idx;
5709
5710 if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
5711 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
5712 idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
5713 /* The index value comes from the block layer, so if it's out of
5714 * bounds, it's probably not our bug.
5715 */
5716 BUG();
5717 }
5718
5719 atomic_inc(&c->refcount);
5720 if (unlikely(!hpsa_is_cmd_idle(c))) {
5721 /*
5722 * We expect that the SCSI layer will hand us a unique tag
5723 * value. Thus, there should never be a collision here between
5724 * two requests...because if the selected command isn't idle
5725 * then someone is going to be very disappointed.
5726 */
5727 dev_err(&h->pdev->dev,
5728 "tag collision (tag=%d) in cmd_tagged_alloc().\n",
5729 idx);
5730 if (c->scsi_cmd != NULL)
5731 scsi_print_command(c->scsi_cmd);
5732 scsi_print_command(scmd);
5733 }
5734
5735 hpsa_cmd_partial_init(h, idx, c);
5736 return c;
5737}
5738
5739static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
5740{
5741 /*
5742 * Release our reference to the block. We don't need to do anything
5743 * else to free it, because it is accessed by index. (There's no point
5744 * in checking the result of the decrement, since we cannot guarantee
5745 * that there isn't a concurrent abort which is also accessing it.)
5746 */
5747 (void)atomic_dec(&c->refcount);
5748}
5749
edd16368
SC
5750/*
5751 * For operations that cannot sleep, a command block is allocated at init,
5752 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
5753 * which ones are free or in use. Lock must be held when calling this.
5754 * cmd_free() is the complement.
bf43caf3
RE
5755 * This function never gives up and returns NULL. If it hangs,
5756 * another thread must call cmd_free() to free some tags.
edd16368 5757 */
281a7fd0 5758
edd16368
SC
5759static struct CommandList *cmd_alloc(struct ctlr_info *h)
5760{
5761 struct CommandList *c;
360c73bd 5762 int refcount, i;
73153fe5 5763 int offset = 0;
4c413128 5764
33811026
RE
5765 /*
5766 * There is some *extremely* small but non-zero chance that that
4c413128
SC
5767 * multiple threads could get in here, and one thread could
5768 * be scanning through the list of bits looking for a free
5769 * one, but the free ones are always behind him, and other
5770 * threads sneak in behind him and eat them before he can
5771 * get to them, so that while there is always a free one, a
5772 * very unlucky thread might be starved anyway, never able to
5773 * beat the other threads. In reality, this happens so
5774 * infrequently as to be indistinguishable from never.
73153fe5
WS
5775 *
5776 * Note that we start allocating commands before the SCSI host structure
5777 * is initialized. Since the search starts at bit zero, this
5778 * all works, since we have at least one command structure available;
5779 * however, it means that the structures with the low indexes have to be
5780 * reserved for driver-initiated requests, while requests from the block
5781 * layer will use the higher indexes.
4c413128 5782 */
edd16368 5783
281a7fd0 5784 for (;;) {
73153fe5
WS
5785 i = find_next_zero_bit(h->cmd_pool_bits,
5786 HPSA_NRESERVED_CMDS,
5787 offset);
5788 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
281a7fd0
WS
5789 offset = 0;
5790 continue;
5791 }
5792 c = h->cmd_pool + i;
5793 refcount = atomic_inc_return(&c->refcount);
5794 if (unlikely(refcount > 1)) {
5795 cmd_free(h, c); /* already in use */
73153fe5 5796 offset = (i + 1) % HPSA_NRESERVED_CMDS;
281a7fd0
WS
5797 continue;
5798 }
5799 set_bit(i & (BITS_PER_LONG - 1),
5800 h->cmd_pool_bits + (i / BITS_PER_LONG));
5801 break; /* it's ours now. */
5802 }
360c73bd 5803 hpsa_cmd_partial_init(h, i, c);
edd16368
SC
5804 return c;
5805}
5806
73153fe5
WS
5807/*
5808 * This is the complementary operation to cmd_alloc(). Note, however, in some
5809 * corner cases it may also be used to free blocks allocated by
5810 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
5811 * the clear-bit is harmless.
5812 */
edd16368
SC
5813static void cmd_free(struct ctlr_info *h, struct CommandList *c)
5814{
281a7fd0
WS
5815 if (atomic_dec_and_test(&c->refcount)) {
5816 int i;
edd16368 5817
281a7fd0
WS
5818 i = c - h->cmd_pool;
5819 clear_bit(i & (BITS_PER_LONG - 1),
5820 h->cmd_pool_bits + (i / BITS_PER_LONG));
5821 }
edd16368
SC
5822}
5823
edd16368
SC
5824#ifdef CONFIG_COMPAT
5825
42a91641
DB
5826static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
5827 void __user *arg)
edd16368
SC
5828{
5829 IOCTL32_Command_struct __user *arg32 =
5830 (IOCTL32_Command_struct __user *) arg;
5831 IOCTL_Command_struct arg64;
5832 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
5833 int err;
5834 u32 cp;
5835
938abd84 5836 memset(&arg64, 0, sizeof(arg64));
edd16368
SC
5837 err = 0;
5838 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
5839 sizeof(arg64.LUN_info));
5840 err |= copy_from_user(&arg64.Request, &arg32->Request,
5841 sizeof(arg64.Request));
5842 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
5843 sizeof(arg64.error_info));
5844 err |= get_user(arg64.buf_size, &arg32->buf_size);
5845 err |= get_user(cp, &arg32->buf);
5846 arg64.buf = compat_ptr(cp);
5847 err |= copy_to_user(p, &arg64, sizeof(arg64));
5848
5849 if (err)
5850 return -EFAULT;
5851
42a91641 5852 err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
edd16368
SC
5853 if (err)
5854 return err;
5855 err |= copy_in_user(&arg32->error_info, &p->error_info,
5856 sizeof(arg32->error_info));
5857 if (err)
5858 return -EFAULT;
5859 return err;
5860}
5861
5862static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
42a91641 5863 int cmd, void __user *arg)
edd16368
SC
5864{
5865 BIG_IOCTL32_Command_struct __user *arg32 =
5866 (BIG_IOCTL32_Command_struct __user *) arg;
5867 BIG_IOCTL_Command_struct arg64;
5868 BIG_IOCTL_Command_struct __user *p =
5869 compat_alloc_user_space(sizeof(arg64));
5870 int err;
5871 u32 cp;
5872
938abd84 5873 memset(&arg64, 0, sizeof(arg64));
edd16368
SC
5874 err = 0;
5875 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
5876 sizeof(arg64.LUN_info));
5877 err |= copy_from_user(&arg64.Request, &arg32->Request,
5878 sizeof(arg64.Request));
5879 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
5880 sizeof(arg64.error_info));
5881 err |= get_user(arg64.buf_size, &arg32->buf_size);
5882 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
5883 err |= get_user(cp, &arg32->buf);
5884 arg64.buf = compat_ptr(cp);
5885 err |= copy_to_user(p, &arg64, sizeof(arg64));
5886
5887 if (err)
5888 return -EFAULT;
5889
42a91641 5890 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
edd16368
SC
5891 if (err)
5892 return err;
5893 err |= copy_in_user(&arg32->error_info, &p->error_info,
5894 sizeof(arg32->error_info));
5895 if (err)
5896 return -EFAULT;
5897 return err;
5898}
71fe75a7 5899
42a91641 5900static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
71fe75a7
SC
5901{
5902 switch (cmd) {
5903 case CCISS_GETPCIINFO:
5904 case CCISS_GETINTINFO:
5905 case CCISS_SETINTINFO:
5906 case CCISS_GETNODENAME:
5907 case CCISS_SETNODENAME:
5908 case CCISS_GETHEARTBEAT:
5909 case CCISS_GETBUSTYPES:
5910 case CCISS_GETFIRMVER:
5911 case CCISS_GETDRIVVER:
5912 case CCISS_REVALIDVOLS:
5913 case CCISS_DEREGDISK:
5914 case CCISS_REGNEWDISK:
5915 case CCISS_REGNEWD:
5916 case CCISS_RESCANDISK:
5917 case CCISS_GETLUNINFO:
5918 return hpsa_ioctl(dev, cmd, arg);
5919
5920 case CCISS_PASSTHRU32:
5921 return hpsa_ioctl32_passthru(dev, cmd, arg);
5922 case CCISS_BIG_PASSTHRU32:
5923 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
5924
5925 default:
5926 return -ENOIOCTLCMD;
5927 }
5928}
edd16368
SC
5929#endif
5930
5931static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
5932{
5933 struct hpsa_pci_info pciinfo;
5934
5935 if (!argp)
5936 return -EINVAL;
5937 pciinfo.domain = pci_domain_nr(h->pdev->bus);
5938 pciinfo.bus = h->pdev->bus->number;
5939 pciinfo.dev_fn = h->pdev->devfn;
5940 pciinfo.board_id = h->board_id;
5941 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
5942 return -EFAULT;
5943 return 0;
5944}
5945
5946static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
5947{
5948 DriverVer_type DriverVer;
5949 unsigned char vmaj, vmin, vsubmin;
5950 int rc;
5951
5952 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
5953 &vmaj, &vmin, &vsubmin);
5954 if (rc != 3) {
5955 dev_info(&h->pdev->dev, "driver version string '%s' "
5956 "unrecognized.", HPSA_DRIVER_VERSION);
5957 vmaj = 0;
5958 vmin = 0;
5959 vsubmin = 0;
5960 }
5961 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
5962 if (!argp)
5963 return -EINVAL;
5964 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
5965 return -EFAULT;
5966 return 0;
5967}
5968
5969static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
5970{
5971 IOCTL_Command_struct iocommand;
5972 struct CommandList *c;
5973 char *buff = NULL;
50a0decf 5974 u64 temp64;
c1f63c8f 5975 int rc = 0;
edd16368
SC
5976
5977 if (!argp)
5978 return -EINVAL;
5979 if (!capable(CAP_SYS_RAWIO))
5980 return -EPERM;
5981 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
5982 return -EFAULT;
5983 if ((iocommand.buf_size < 1) &&
5984 (iocommand.Request.Type.Direction != XFER_NONE)) {
5985 return -EINVAL;
5986 }
5987 if (iocommand.buf_size > 0) {
5988 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
5989 if (buff == NULL)
2dd02d74 5990 return -ENOMEM;
9233fb10 5991 if (iocommand.Request.Type.Direction & XFER_WRITE) {
b03a7771
SC
5992 /* Copy the data into the buffer we created */
5993 if (copy_from_user(buff, iocommand.buf,
5994 iocommand.buf_size)) {
c1f63c8f
SC
5995 rc = -EFAULT;
5996 goto out_kfree;
b03a7771
SC
5997 }
5998 } else {
5999 memset(buff, 0, iocommand.buf_size);
edd16368 6000 }
b03a7771 6001 }
45fcb86e 6002 c = cmd_alloc(h);
bf43caf3 6003
edd16368
SC
6004 /* Fill in the command type */
6005 c->cmd_type = CMD_IOCTL_PEND;
a58e7e53 6006 c->scsi_cmd = SCSI_CMD_BUSY;
edd16368
SC
6007 /* Fill in Command Header */
6008 c->Header.ReplyQueue = 0; /* unused in simple mode */
6009 if (iocommand.buf_size > 0) { /* buffer to fill */
6010 c->Header.SGList = 1;
50a0decf 6011 c->Header.SGTotal = cpu_to_le16(1);
edd16368
SC
6012 } else { /* no buffers to fill */
6013 c->Header.SGList = 0;
50a0decf 6014 c->Header.SGTotal = cpu_to_le16(0);
edd16368
SC
6015 }
6016 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
edd16368
SC
6017
6018 /* Fill in Request block */
6019 memcpy(&c->Request, &iocommand.Request,
6020 sizeof(c->Request));
6021
6022 /* Fill in the scatter gather information */
6023 if (iocommand.buf_size > 0) {
50a0decf 6024 temp64 = pci_map_single(h->pdev, buff,
edd16368 6025 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
50a0decf
SC
6026 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6027 c->SG[0].Addr = cpu_to_le64(0);
6028 c->SG[0].Len = cpu_to_le32(0);
bcc48ffa
SC
6029 rc = -ENOMEM;
6030 goto out;
6031 }
50a0decf
SC
6032 c->SG[0].Addr = cpu_to_le64(temp64);
6033 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6034 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
edd16368 6035 }
25163bd5 6036 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
c2dd32e0
SC
6037 if (iocommand.buf_size > 0)
6038 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
edd16368 6039 check_ioctl_unit_attention(h, c);
25163bd5
WS
6040 if (rc) {
6041 rc = -EIO;
6042 goto out;
6043 }
edd16368
SC
6044
6045 /* Copy the error information out */
6046 memcpy(&iocommand.error_info, c->err_info,
6047 sizeof(iocommand.error_info));
6048 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
c1f63c8f
SC
6049 rc = -EFAULT;
6050 goto out;
edd16368 6051 }
9233fb10 6052 if ((iocommand.Request.Type.Direction & XFER_READ) &&
b03a7771 6053 iocommand.buf_size > 0) {
edd16368
SC
6054 /* Copy the data out of the buffer we created */
6055 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
c1f63c8f
SC
6056 rc = -EFAULT;
6057 goto out;
edd16368
SC
6058 }
6059 }
c1f63c8f 6060out:
45fcb86e 6061 cmd_free(h, c);
c1f63c8f
SC
6062out_kfree:
6063 kfree(buff);
6064 return rc;
edd16368
SC
6065}
6066
6067static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6068{
6069 BIG_IOCTL_Command_struct *ioc;
6070 struct CommandList *c;
6071 unsigned char **buff = NULL;
6072 int *buff_size = NULL;
50a0decf 6073 u64 temp64;
edd16368
SC
6074 BYTE sg_used = 0;
6075 int status = 0;
01a02ffc
SC
6076 u32 left;
6077 u32 sz;
edd16368
SC
6078 BYTE __user *data_ptr;
6079
6080 if (!argp)
6081 return -EINVAL;
6082 if (!capable(CAP_SYS_RAWIO))
6083 return -EPERM;
6084 ioc = (BIG_IOCTL_Command_struct *)
6085 kmalloc(sizeof(*ioc), GFP_KERNEL);
6086 if (!ioc) {
6087 status = -ENOMEM;
6088 goto cleanup1;
6089 }
6090 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6091 status = -EFAULT;
6092 goto cleanup1;
6093 }
6094 if ((ioc->buf_size < 1) &&
6095 (ioc->Request.Type.Direction != XFER_NONE)) {
6096 status = -EINVAL;
6097 goto cleanup1;
6098 }
6099 /* Check kmalloc limits using all SGs */
6100 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6101 status = -EINVAL;
6102 goto cleanup1;
6103 }
d66ae08b 6104 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
edd16368
SC
6105 status = -EINVAL;
6106 goto cleanup1;
6107 }
d66ae08b 6108 buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
edd16368
SC
6109 if (!buff) {
6110 status = -ENOMEM;
6111 goto cleanup1;
6112 }
d66ae08b 6113 buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
edd16368
SC
6114 if (!buff_size) {
6115 status = -ENOMEM;
6116 goto cleanup1;
6117 }
6118 left = ioc->buf_size;
6119 data_ptr = ioc->buf;
6120 while (left) {
6121 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6122 buff_size[sg_used] = sz;
6123 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6124 if (buff[sg_used] == NULL) {
6125 status = -ENOMEM;
6126 goto cleanup1;
6127 }
9233fb10 6128 if (ioc->Request.Type.Direction & XFER_WRITE) {
edd16368 6129 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
0758f4f7 6130 status = -EFAULT;
edd16368
SC
6131 goto cleanup1;
6132 }
6133 } else
6134 memset(buff[sg_used], 0, sz);
6135 left -= sz;
6136 data_ptr += sz;
6137 sg_used++;
6138 }
45fcb86e 6139 c = cmd_alloc(h);
bf43caf3 6140
edd16368 6141 c->cmd_type = CMD_IOCTL_PEND;
a58e7e53 6142 c->scsi_cmd = SCSI_CMD_BUSY;
edd16368 6143 c->Header.ReplyQueue = 0;
50a0decf
SC
6144 c->Header.SGList = (u8) sg_used;
6145 c->Header.SGTotal = cpu_to_le16(sg_used);
edd16368 6146 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
edd16368
SC
6147 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6148 if (ioc->buf_size > 0) {
6149 int i;
6150 for (i = 0; i < sg_used; i++) {
50a0decf 6151 temp64 = pci_map_single(h->pdev, buff[i],
edd16368 6152 buff_size[i], PCI_DMA_BIDIRECTIONAL);
50a0decf
SC
6153 if (dma_mapping_error(&h->pdev->dev,
6154 (dma_addr_t) temp64)) {
6155 c->SG[i].Addr = cpu_to_le64(0);
6156 c->SG[i].Len = cpu_to_le32(0);
bcc48ffa
SC
6157 hpsa_pci_unmap(h->pdev, c, i,
6158 PCI_DMA_BIDIRECTIONAL);
6159 status = -ENOMEM;
e2d4a1f6 6160 goto cleanup0;
bcc48ffa 6161 }
50a0decf
SC
6162 c->SG[i].Addr = cpu_to_le64(temp64);
6163 c->SG[i].Len = cpu_to_le32(buff_size[i]);
6164 c->SG[i].Ext = cpu_to_le32(0);
edd16368 6165 }
50a0decf 6166 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
edd16368 6167 }
25163bd5 6168 status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
b03a7771
SC
6169 if (sg_used)
6170 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
edd16368 6171 check_ioctl_unit_attention(h, c);
25163bd5
WS
6172 if (status) {
6173 status = -EIO;
6174 goto cleanup0;
6175 }
6176
edd16368
SC
6177 /* Copy the error information out */
6178 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6179 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
edd16368 6180 status = -EFAULT;
e2d4a1f6 6181 goto cleanup0;
edd16368 6182 }
9233fb10 6183 if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
2b08b3e9
DB
6184 int i;
6185
edd16368
SC
6186 /* Copy the data out of the buffer we created */
6187 BYTE __user *ptr = ioc->buf;
6188 for (i = 0; i < sg_used; i++) {
6189 if (copy_to_user(ptr, buff[i], buff_size[i])) {
edd16368 6190 status = -EFAULT;
e2d4a1f6 6191 goto cleanup0;
edd16368
SC
6192 }
6193 ptr += buff_size[i];
6194 }
6195 }
edd16368 6196 status = 0;
e2d4a1f6 6197cleanup0:
45fcb86e 6198 cmd_free(h, c);
edd16368
SC
6199cleanup1:
6200 if (buff) {
2b08b3e9
DB
6201 int i;
6202
edd16368
SC
6203 for (i = 0; i < sg_used; i++)
6204 kfree(buff[i]);
6205 kfree(buff);
6206 }
6207 kfree(buff_size);
6208 kfree(ioc);
6209 return status;
6210}
6211
6212static void check_ioctl_unit_attention(struct ctlr_info *h,
6213 struct CommandList *c)
6214{
6215 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6216 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6217 (void) check_for_unit_attention(h, c);
6218}
0390f0c0 6219
edd16368
SC
6220/*
6221 * ioctl
6222 */
42a91641 6223static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
edd16368
SC
6224{
6225 struct ctlr_info *h;
6226 void __user *argp = (void __user *)arg;
0390f0c0 6227 int rc;
edd16368
SC
6228
6229 h = sdev_to_hba(dev);
6230
6231 switch (cmd) {
6232 case CCISS_DEREGDISK:
6233 case CCISS_REGNEWDISK:
6234 case CCISS_REGNEWD:
a08a8471 6235 hpsa_scan_start(h->scsi_host);
edd16368
SC
6236 return 0;
6237 case CCISS_GETPCIINFO:
6238 return hpsa_getpciinfo_ioctl(h, argp);
6239 case CCISS_GETDRIVVER:
6240 return hpsa_getdrivver_ioctl(h, argp);
6241 case CCISS_PASSTHRU:
34f0c627 6242 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
0390f0c0
SC
6243 return -EAGAIN;
6244 rc = hpsa_passthru_ioctl(h, argp);
34f0c627 6245 atomic_inc(&h->passthru_cmds_avail);
0390f0c0 6246 return rc;
edd16368 6247 case CCISS_BIG_PASSTHRU:
34f0c627 6248 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
0390f0c0
SC
6249 return -EAGAIN;
6250 rc = hpsa_big_passthru_ioctl(h, argp);
34f0c627 6251 atomic_inc(&h->passthru_cmds_avail);
0390f0c0 6252 return rc;
edd16368
SC
6253 default:
6254 return -ENOTTY;
6255 }
6256}
6257
bf43caf3 6258static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6f039790 6259 u8 reset_type)
64670ac8
SC
6260{
6261 struct CommandList *c;
6262
6263 c = cmd_alloc(h);
bf43caf3 6264
a2dac136
SC
6265 /* fill_cmd can't fail here, no data buffer to map */
6266 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
64670ac8
SC
6267 RAID_CTLR_LUNID, TYPE_MSG);
6268 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6269 c->waiting = NULL;
6270 enqueue_cmd_and_start_io(h, c);
6271 /* Don't wait for completion, the reset won't complete. Don't free
6272 * the command either. This is the last command we will send before
6273 * re-initializing everything, so it doesn't matter and won't leak.
6274 */
bf43caf3 6275 return;
64670ac8
SC
6276}
6277
a2dac136 6278static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
b7bb24eb 6279 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
edd16368
SC
6280 int cmd_type)
6281{
6282 int pci_dir = XFER_NONE;
9b5c48c2 6283 u64 tag; /* for commands to be aborted */
edd16368
SC
6284
6285 c->cmd_type = CMD_IOCTL_PEND;
a58e7e53 6286 c->scsi_cmd = SCSI_CMD_BUSY;
edd16368
SC
6287 c->Header.ReplyQueue = 0;
6288 if (buff != NULL && size > 0) {
6289 c->Header.SGList = 1;
50a0decf 6290 c->Header.SGTotal = cpu_to_le16(1);
edd16368
SC
6291 } else {
6292 c->Header.SGList = 0;
50a0decf 6293 c->Header.SGTotal = cpu_to_le16(0);
edd16368 6294 }
edd16368
SC
6295 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6296
edd16368
SC
6297 if (cmd_type == TYPE_CMD) {
6298 switch (cmd) {
6299 case HPSA_INQUIRY:
6300 /* are we trying to read a vital product page */
b7bb24eb 6301 if (page_code & VPD_PAGE) {
edd16368 6302 c->Request.CDB[1] = 0x01;
b7bb24eb 6303 c->Request.CDB[2] = (page_code & 0xff);
edd16368
SC
6304 }
6305 c->Request.CDBLen = 6;
a505b86f
SC
6306 c->Request.type_attr_dir =
6307 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
edd16368
SC
6308 c->Request.Timeout = 0;
6309 c->Request.CDB[0] = HPSA_INQUIRY;
6310 c->Request.CDB[4] = size & 0xFF;
6311 break;
6312 case HPSA_REPORT_LOG:
6313 case HPSA_REPORT_PHYS:
6314 /* Talking to controller so It's a physical command
6315 mode = 00 target = 0. Nothing to write.
6316 */
6317 c->Request.CDBLen = 12;
a505b86f
SC
6318 c->Request.type_attr_dir =
6319 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
edd16368
SC
6320 c->Request.Timeout = 0;
6321 c->Request.CDB[0] = cmd;
6322 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6323 c->Request.CDB[7] = (size >> 16) & 0xFF;
6324 c->Request.CDB[8] = (size >> 8) & 0xFF;
6325 c->Request.CDB[9] = size & 0xFF;
6326 break;
edd16368
SC
6327 case HPSA_CACHE_FLUSH:
6328 c->Request.CDBLen = 12;
a505b86f
SC
6329 c->Request.type_attr_dir =
6330 TYPE_ATTR_DIR(cmd_type,
6331 ATTR_SIMPLE, XFER_WRITE);
edd16368
SC
6332 c->Request.Timeout = 0;
6333 c->Request.CDB[0] = BMIC_WRITE;
6334 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
bb158eab
SC
6335 c->Request.CDB[7] = (size >> 8) & 0xFF;
6336 c->Request.CDB[8] = size & 0xFF;
edd16368
SC
6337 break;
6338 case TEST_UNIT_READY:
6339 c->Request.CDBLen = 6;
a505b86f
SC
6340 c->Request.type_attr_dir =
6341 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
edd16368
SC
6342 c->Request.Timeout = 0;
6343 break;
283b4a9b
SC
6344 case HPSA_GET_RAID_MAP:
6345 c->Request.CDBLen = 12;
a505b86f
SC
6346 c->Request.type_attr_dir =
6347 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
283b4a9b
SC
6348 c->Request.Timeout = 0;
6349 c->Request.CDB[0] = HPSA_CISS_READ;
6350 c->Request.CDB[1] = cmd;
6351 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6352 c->Request.CDB[7] = (size >> 16) & 0xFF;
6353 c->Request.CDB[8] = (size >> 8) & 0xFF;
6354 c->Request.CDB[9] = size & 0xFF;
6355 break;
316b221a
SC
6356 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6357 c->Request.CDBLen = 10;
a505b86f
SC
6358 c->Request.type_attr_dir =
6359 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
316b221a
SC
6360 c->Request.Timeout = 0;
6361 c->Request.CDB[0] = BMIC_READ;
6362 c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6363 c->Request.CDB[7] = (size >> 16) & 0xFF;
6364 c->Request.CDB[8] = (size >> 8) & 0xFF;
6365 break;
03383736
DB
6366 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6367 c->Request.CDBLen = 10;
6368 c->Request.type_attr_dir =
6369 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6370 c->Request.Timeout = 0;
6371 c->Request.CDB[0] = BMIC_READ;
6372 c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6373 c->Request.CDB[7] = (size >> 16) & 0xFF;
6374 c->Request.CDB[8] = (size >> 8) & 0XFF;
6375 break;
edd16368
SC
6376 default:
6377 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6378 BUG();
a2dac136 6379 return -1;
edd16368
SC
6380 }
6381 } else if (cmd_type == TYPE_MSG) {
6382 switch (cmd) {
6383
0b9b7b6e
ST
6384 case HPSA_PHYS_TARGET_RESET:
6385 c->Request.CDBLen = 16;
6386 c->Request.type_attr_dir =
6387 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6388 c->Request.Timeout = 0; /* Don't time out */
6389 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6390 c->Request.CDB[0] = HPSA_RESET;
6391 c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6392 /* Physical target reset needs no control bytes 4-7*/
6393 c->Request.CDB[4] = 0x00;
6394 c->Request.CDB[5] = 0x00;
6395 c->Request.CDB[6] = 0x00;
6396 c->Request.CDB[7] = 0x00;
6397 break;
edd16368
SC
6398 case HPSA_DEVICE_RESET_MSG:
6399 c->Request.CDBLen = 16;
a505b86f
SC
6400 c->Request.type_attr_dir =
6401 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
edd16368 6402 c->Request.Timeout = 0; /* Don't time out */
64670ac8
SC
6403 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6404 c->Request.CDB[0] = cmd;
21e89afd 6405 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
edd16368
SC
6406 /* If bytes 4-7 are zero, it means reset the */
6407 /* LunID device */
6408 c->Request.CDB[4] = 0x00;
6409 c->Request.CDB[5] = 0x00;
6410 c->Request.CDB[6] = 0x00;
6411 c->Request.CDB[7] = 0x00;
75167d2c
SC
6412 break;
6413 case HPSA_ABORT_MSG:
9b5c48c2 6414 memcpy(&tag, buff, sizeof(tag));
2b08b3e9 6415 dev_dbg(&h->pdev->dev,
9b5c48c2
SC
6416 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
6417 tag, c->Header.tag);
75167d2c 6418 c->Request.CDBLen = 16;
a505b86f
SC
6419 c->Request.type_attr_dir =
6420 TYPE_ATTR_DIR(cmd_type,
6421 ATTR_SIMPLE, XFER_WRITE);
75167d2c
SC
6422 c->Request.Timeout = 0; /* Don't time out */
6423 c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
6424 c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
6425 c->Request.CDB[2] = 0x00; /* reserved */
6426 c->Request.CDB[3] = 0x00; /* reserved */
6427 /* Tag to abort goes in CDB[4]-CDB[11] */
9b5c48c2 6428 memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
75167d2c
SC
6429 c->Request.CDB[12] = 0x00; /* reserved */
6430 c->Request.CDB[13] = 0x00; /* reserved */
6431 c->Request.CDB[14] = 0x00; /* reserved */
6432 c->Request.CDB[15] = 0x00; /* reserved */
edd16368 6433 break;
edd16368
SC
6434 default:
6435 dev_warn(&h->pdev->dev, "unknown message type %d\n",
6436 cmd);
6437 BUG();
6438 }
6439 } else {
6440 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6441 BUG();
6442 }
6443
a505b86f 6444 switch (GET_DIR(c->Request.type_attr_dir)) {
edd16368
SC
6445 case XFER_READ:
6446 pci_dir = PCI_DMA_FROMDEVICE;
6447 break;
6448 case XFER_WRITE:
6449 pci_dir = PCI_DMA_TODEVICE;
6450 break;
6451 case XFER_NONE:
6452 pci_dir = PCI_DMA_NONE;
6453 break;
6454 default:
6455 pci_dir = PCI_DMA_BIDIRECTIONAL;
6456 }
a2dac136
SC
6457 if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6458 return -1;
6459 return 0;
edd16368
SC
6460}
6461
6462/*
6463 * Map (physical) PCI mem into (virtual) kernel space
6464 */
6465static void __iomem *remap_pci_mem(ulong base, ulong size)
6466{
6467 ulong page_base = ((ulong) base) & PAGE_MASK;
6468 ulong page_offs = ((ulong) base) - page_base;
088ba34c
SC
6469 void __iomem *page_remapped = ioremap_nocache(page_base,
6470 page_offs + size);
edd16368
SC
6471
6472 return page_remapped ? (page_remapped + page_offs) : NULL;
6473}
6474
254f796b 6475static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
edd16368 6476{
254f796b 6477 return h->access.command_completed(h, q);
edd16368
SC
6478}
6479
900c5440 6480static inline bool interrupt_pending(struct ctlr_info *h)
edd16368
SC
6481{
6482 return h->access.intr_pending(h);
6483}
6484
6485static inline long interrupt_not_for_us(struct ctlr_info *h)
6486{
10f66018
SC
6487 return (h->access.intr_pending(h) == 0) ||
6488 (h->interrupts_enabled == 0);
edd16368
SC
6489}
6490
01a02ffc
SC
6491static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6492 u32 raw_tag)
edd16368
SC
6493{
6494 if (unlikely(tag_index >= h->nr_cmds)) {
6495 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6496 return 1;
6497 }
6498 return 0;
6499}
6500
5a3d16f5 6501static inline void finish_cmd(struct CommandList *c)
edd16368 6502{
e85c5974 6503 dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
c349775e
ST
6504 if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6505 || c->cmd_type == CMD_IOACCEL2))
1fb011fb 6506 complete_scsi_command(c);
8be986cc 6507 else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
edd16368 6508 complete(c->waiting);
a104c99f
SC
6509}
6510
303932fd 6511/* process completion of an indexed ("direct lookup") command */
1d94f94d 6512static inline void process_indexed_cmd(struct ctlr_info *h,
303932fd
DB
6513 u32 raw_tag)
6514{
6515 u32 tag_index;
6516 struct CommandList *c;
6517
f2405db8 6518 tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
1d94f94d
SC
6519 if (!bad_tag(h, tag_index, raw_tag)) {
6520 c = h->cmd_pool + tag_index;
6521 finish_cmd(c);
6522 }
303932fd
DB
6523}
6524
64670ac8
SC
6525/* Some controllers, like p400, will give us one interrupt
6526 * after a soft reset, even if we turned interrupts off.
6527 * Only need to check for this in the hpsa_xxx_discard_completions
6528 * functions.
6529 */
6530static int ignore_bogus_interrupt(struct ctlr_info *h)
6531{
6532 if (likely(!reset_devices))
6533 return 0;
6534
6535 if (likely(h->interrupts_enabled))
6536 return 0;
6537
6538 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6539 "(known firmware bug.) Ignoring.\n");
6540
6541 return 1;
6542}
6543
254f796b
MG
6544/*
6545 * Convert &h->q[x] (passed to interrupt handlers) back to h.
6546 * Relies on (h-q[x] == x) being true for x such that
6547 * 0 <= x < MAX_REPLY_QUEUES.
6548 */
6549static struct ctlr_info *queue_to_hba(u8 *queue)
64670ac8 6550{
254f796b
MG
6551 return container_of((queue - *queue), struct ctlr_info, q[0]);
6552}
6553
6554static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6555{
6556 struct ctlr_info *h = queue_to_hba(queue);
6557 u8 q = *(u8 *) queue;
64670ac8
SC
6558 u32 raw_tag;
6559
6560 if (ignore_bogus_interrupt(h))
6561 return IRQ_NONE;
6562
6563 if (interrupt_not_for_us(h))
6564 return IRQ_NONE;
a0c12413 6565 h->last_intr_timestamp = get_jiffies_64();
64670ac8 6566 while (interrupt_pending(h)) {
254f796b 6567 raw_tag = get_next_completion(h, q);
64670ac8 6568 while (raw_tag != FIFO_EMPTY)
254f796b 6569 raw_tag = next_command(h, q);
64670ac8 6570 }
64670ac8
SC
6571 return IRQ_HANDLED;
6572}
6573
254f796b 6574static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
64670ac8 6575{
254f796b 6576 struct ctlr_info *h = queue_to_hba(queue);
64670ac8 6577 u32 raw_tag;
254f796b 6578 u8 q = *(u8 *) queue;
64670ac8
SC
6579
6580 if (ignore_bogus_interrupt(h))
6581 return IRQ_NONE;
6582
a0c12413 6583 h->last_intr_timestamp = get_jiffies_64();
254f796b 6584 raw_tag = get_next_completion(h, q);
64670ac8 6585 while (raw_tag != FIFO_EMPTY)
254f796b 6586 raw_tag = next_command(h, q);
64670ac8
SC
6587 return IRQ_HANDLED;
6588}
6589
254f796b 6590static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
edd16368 6591{
254f796b 6592 struct ctlr_info *h = queue_to_hba((u8 *) queue);
303932fd 6593 u32 raw_tag;
254f796b 6594 u8 q = *(u8 *) queue;
edd16368
SC
6595
6596 if (interrupt_not_for_us(h))
6597 return IRQ_NONE;
a0c12413 6598 h->last_intr_timestamp = get_jiffies_64();
10f66018 6599 while (interrupt_pending(h)) {
254f796b 6600 raw_tag = get_next_completion(h, q);
10f66018 6601 while (raw_tag != FIFO_EMPTY) {
f2405db8 6602 process_indexed_cmd(h, raw_tag);
254f796b 6603 raw_tag = next_command(h, q);
10f66018
SC
6604 }
6605 }
10f66018
SC
6606 return IRQ_HANDLED;
6607}
6608
254f796b 6609static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
10f66018 6610{
254f796b 6611 struct ctlr_info *h = queue_to_hba(queue);
10f66018 6612 u32 raw_tag;
254f796b 6613 u8 q = *(u8 *) queue;
10f66018 6614
a0c12413 6615 h->last_intr_timestamp = get_jiffies_64();
254f796b 6616 raw_tag = get_next_completion(h, q);
303932fd 6617 while (raw_tag != FIFO_EMPTY) {
f2405db8 6618 process_indexed_cmd(h, raw_tag);
254f796b 6619 raw_tag = next_command(h, q);
edd16368 6620 }
edd16368
SC
6621 return IRQ_HANDLED;
6622}
6623
a9a3a273
SC
6624/* Send a message CDB to the firmware. Careful, this only works
6625 * in simple mode, not performant mode due to the tag lookup.
6626 * We only ever use this immediately after a controller reset.
6627 */
6f039790
GKH
6628static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6629 unsigned char type)
edd16368
SC
6630{
6631 struct Command {
6632 struct CommandListHeader CommandHeader;
6633 struct RequestBlock Request;
6634 struct ErrDescriptor ErrorDescriptor;
6635 };
6636 struct Command *cmd;
6637 static const size_t cmd_sz = sizeof(*cmd) +
6638 sizeof(cmd->ErrorDescriptor);
6639 dma_addr_t paddr64;
2b08b3e9
DB
6640 __le32 paddr32;
6641 u32 tag;
edd16368
SC
6642 void __iomem *vaddr;
6643 int i, err;
6644
6645 vaddr = pci_ioremap_bar(pdev, 0);
6646 if (vaddr == NULL)
6647 return -ENOMEM;
6648
6649 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
6650 * CCISS commands, so they must be allocated from the lower 4GiB of
6651 * memory.
6652 */
6653 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
6654 if (err) {
6655 iounmap(vaddr);
1eaec8f3 6656 return err;
edd16368
SC
6657 }
6658
6659 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
6660 if (cmd == NULL) {
6661 iounmap(vaddr);
6662 return -ENOMEM;
6663 }
6664
6665 /* This must fit, because of the 32-bit consistent DMA mask. Also,
6666 * although there's no guarantee, we assume that the address is at
6667 * least 4-byte aligned (most likely, it's page-aligned).
6668 */
2b08b3e9 6669 paddr32 = cpu_to_le32(paddr64);
edd16368
SC
6670
6671 cmd->CommandHeader.ReplyQueue = 0;
6672 cmd->CommandHeader.SGList = 0;
50a0decf 6673 cmd->CommandHeader.SGTotal = cpu_to_le16(0);
2b08b3e9 6674 cmd->CommandHeader.tag = cpu_to_le64(paddr64);
edd16368
SC
6675 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
6676
6677 cmd->Request.CDBLen = 16;
a505b86f
SC
6678 cmd->Request.type_attr_dir =
6679 TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
edd16368
SC
6680 cmd->Request.Timeout = 0; /* Don't time out */
6681 cmd->Request.CDB[0] = opcode;
6682 cmd->Request.CDB[1] = type;
6683 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
50a0decf 6684 cmd->ErrorDescriptor.Addr =
2b08b3e9 6685 cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
50a0decf 6686 cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
edd16368 6687
2b08b3e9 6688 writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
edd16368
SC
6689
6690 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
6691 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
2b08b3e9 6692 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
edd16368
SC
6693 break;
6694 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
6695 }
6696
6697 iounmap(vaddr);
6698
6699 /* we leak the DMA buffer here ... no choice since the controller could
6700 * still complete the command.
6701 */
6702 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
6703 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
6704 opcode, type);
6705 return -ETIMEDOUT;
6706 }
6707
6708 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
6709
6710 if (tag & HPSA_ERROR_BIT) {
6711 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
6712 opcode, type);
6713 return -EIO;
6714 }
6715
6716 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
6717 opcode, type);
6718 return 0;
6719}
6720
edd16368
SC
6721#define hpsa_noop(p) hpsa_message(p, 3, 0)
6722
1df8552a 6723static int hpsa_controller_hard_reset(struct pci_dev *pdev,
42a91641 6724 void __iomem *vaddr, u32 use_doorbell)
1df8552a 6725{
1df8552a
SC
6726
6727 if (use_doorbell) {
6728 /* For everything after the P600, the PCI power state method
6729 * of resetting the controller doesn't work, so we have this
6730 * other way using the doorbell register.
6731 */
6732 dev_info(&pdev->dev, "using doorbell to reset controller\n");
cf0b08d0 6733 writel(use_doorbell, vaddr + SA5_DOORBELL);
85009239 6734
00701a96 6735 /* PMC hardware guys tell us we need a 10 second delay after
85009239
SC
6736 * doorbell reset and before any attempt to talk to the board
6737 * at all to ensure that this actually works and doesn't fall
6738 * over in some weird corner cases.
6739 */
00701a96 6740 msleep(10000);
1df8552a
SC
6741 } else { /* Try to do it the PCI power state way */
6742
6743 /* Quoting from the Open CISS Specification: "The Power
6744 * Management Control/Status Register (CSR) controls the power
6745 * state of the device. The normal operating state is D0,
6746 * CSR=00h. The software off state is D3, CSR=03h. To reset
6747 * the controller, place the interface device in D3 then to D0,
6748 * this causes a secondary PCI reset which will reset the
6749 * controller." */
2662cab8
DB
6750
6751 int rc = 0;
6752
1df8552a 6753 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
2662cab8 6754
1df8552a 6755 /* enter the D3hot power management state */
2662cab8
DB
6756 rc = pci_set_power_state(pdev, PCI_D3hot);
6757 if (rc)
6758 return rc;
1df8552a
SC
6759
6760 msleep(500);
6761
6762 /* enter the D0 power management state */
2662cab8
DB
6763 rc = pci_set_power_state(pdev, PCI_D0);
6764 if (rc)
6765 return rc;
c4853efe
MM
6766
6767 /*
6768 * The P600 requires a small delay when changing states.
6769 * Otherwise we may think the board did not reset and we bail.
6770 * This for kdump only and is particular to the P600.
6771 */
6772 msleep(500);
1df8552a
SC
6773 }
6774 return 0;
6775}
6776
6f039790 6777static void init_driver_version(char *driver_version, int len)
580ada3c
SC
6778{
6779 memset(driver_version, 0, len);
f79cfec6 6780 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
580ada3c
SC
6781}
6782
6f039790 6783static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
580ada3c
SC
6784{
6785 char *driver_version;
6786 int i, size = sizeof(cfgtable->driver_version);
6787
6788 driver_version = kmalloc(size, GFP_KERNEL);
6789 if (!driver_version)
6790 return -ENOMEM;
6791
6792 init_driver_version(driver_version, size);
6793 for (i = 0; i < size; i++)
6794 writeb(driver_version[i], &cfgtable->driver_version[i]);
6795 kfree(driver_version);
6796 return 0;
6797}
6798
6f039790
GKH
6799static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
6800 unsigned char *driver_ver)
580ada3c
SC
6801{
6802 int i;
6803
6804 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
6805 driver_ver[i] = readb(&cfgtable->driver_version[i]);
6806}
6807
6f039790 6808static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
580ada3c
SC
6809{
6810
6811 char *driver_ver, *old_driver_ver;
6812 int rc, size = sizeof(cfgtable->driver_version);
6813
6814 old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
6815 if (!old_driver_ver)
6816 return -ENOMEM;
6817 driver_ver = old_driver_ver + size;
6818
6819 /* After a reset, the 32 bytes of "driver version" in the cfgtable
6820 * should have been changed, otherwise we know the reset failed.
6821 */
6822 init_driver_version(old_driver_ver, size);
6823 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
6824 rc = !memcmp(driver_ver, old_driver_ver, size);
6825 kfree(old_driver_ver);
6826 return rc;
6827}
edd16368 6828/* This does a hard reset of the controller using PCI power management
1df8552a 6829 * states or the using the doorbell register.
edd16368 6830 */
6b6c1cd7 6831static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
edd16368 6832{
1df8552a
SC
6833 u64 cfg_offset;
6834 u32 cfg_base_addr;
6835 u64 cfg_base_addr_index;
6836 void __iomem *vaddr;
6837 unsigned long paddr;
580ada3c 6838 u32 misc_fw_support;
270d05de 6839 int rc;
1df8552a 6840 struct CfgTable __iomem *cfgtable;
cf0b08d0 6841 u32 use_doorbell;
270d05de 6842 u16 command_register;
edd16368 6843
1df8552a
SC
6844 /* For controllers as old as the P600, this is very nearly
6845 * the same thing as
edd16368
SC
6846 *
6847 * pci_save_state(pci_dev);
6848 * pci_set_power_state(pci_dev, PCI_D3hot);
6849 * pci_set_power_state(pci_dev, PCI_D0);
6850 * pci_restore_state(pci_dev);
6851 *
1df8552a
SC
6852 * For controllers newer than the P600, the pci power state
6853 * method of resetting doesn't work so we have another way
6854 * using the doorbell register.
edd16368 6855 */
18867659 6856
60f923b9
RE
6857 if (!ctlr_is_resettable(board_id)) {
6858 dev_warn(&pdev->dev, "Controller not resettable\n");
25c1e56a
SC
6859 return -ENODEV;
6860 }
46380786
SC
6861
6862 /* if controller is soft- but not hard resettable... */
6863 if (!ctlr_is_hard_resettable(board_id))
6864 return -ENOTSUPP; /* try soft reset later. */
18867659 6865
270d05de
SC
6866 /* Save the PCI command register */
6867 pci_read_config_word(pdev, 4, &command_register);
270d05de 6868 pci_save_state(pdev);
edd16368 6869
1df8552a
SC
6870 /* find the first memory BAR, so we can find the cfg table */
6871 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
6872 if (rc)
6873 return rc;
6874 vaddr = remap_pci_mem(paddr, 0x250);
6875 if (!vaddr)
6876 return -ENOMEM;
edd16368 6877
1df8552a
SC
6878 /* find cfgtable in order to check if reset via doorbell is supported */
6879 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
6880 &cfg_base_addr_index, &cfg_offset);
6881 if (rc)
6882 goto unmap_vaddr;
6883 cfgtable = remap_pci_mem(pci_resource_start(pdev,
6884 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
6885 if (!cfgtable) {
6886 rc = -ENOMEM;
6887 goto unmap_vaddr;
6888 }
580ada3c
SC
6889 rc = write_driver_ver_to_cfgtable(cfgtable);
6890 if (rc)
03741d95 6891 goto unmap_cfgtable;
edd16368 6892
cf0b08d0
SC
6893 /* If reset via doorbell register is supported, use that.
6894 * There are two such methods. Favor the newest method.
6895 */
1df8552a 6896 misc_fw_support = readl(&cfgtable->misc_fw_support);
cf0b08d0
SC
6897 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
6898 if (use_doorbell) {
6899 use_doorbell = DOORBELL_CTLR_RESET2;
6900 } else {
6901 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
6902 if (use_doorbell) {
050f7147
SC
6903 dev_warn(&pdev->dev,
6904 "Soft reset not supported. Firmware update is required.\n");
64670ac8 6905 rc = -ENOTSUPP; /* try soft reset */
cf0b08d0
SC
6906 goto unmap_cfgtable;
6907 }
6908 }
edd16368 6909
1df8552a
SC
6910 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
6911 if (rc)
6912 goto unmap_cfgtable;
edd16368 6913
270d05de 6914 pci_restore_state(pdev);
270d05de 6915 pci_write_config_word(pdev, 4, command_register);
edd16368 6916
1df8552a
SC
6917 /* Some devices (notably the HP Smart Array 5i Controller)
6918 need a little pause here */
6919 msleep(HPSA_POST_RESET_PAUSE_MSECS);
6920
fe5389c8
SC
6921 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
6922 if (rc) {
6923 dev_warn(&pdev->dev,
050f7147 6924 "Failed waiting for board to become ready after hard reset\n");
fe5389c8
SC
6925 goto unmap_cfgtable;
6926 }
fe5389c8 6927
580ada3c
SC
6928 rc = controller_reset_failed(vaddr);
6929 if (rc < 0)
6930 goto unmap_cfgtable;
6931 if (rc) {
64670ac8
SC
6932 dev_warn(&pdev->dev, "Unable to successfully reset "
6933 "controller. Will try soft reset.\n");
6934 rc = -ENOTSUPP;
580ada3c 6935 } else {
64670ac8 6936 dev_info(&pdev->dev, "board ready after hard reset.\n");
1df8552a
SC
6937 }
6938
6939unmap_cfgtable:
6940 iounmap(cfgtable);
6941
6942unmap_vaddr:
6943 iounmap(vaddr);
6944 return rc;
edd16368
SC
6945}
6946
6947/*
6948 * We cannot read the structure directly, for portability we must use
6949 * the io functions.
6950 * This is for debug only.
6951 */
42a91641 6952static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
edd16368 6953{
58f8665c 6954#ifdef HPSA_DEBUG
edd16368
SC
6955 int i;
6956 char temp_name[17];
6957
6958 dev_info(dev, "Controller Configuration information\n");
6959 dev_info(dev, "------------------------------------\n");
6960 for (i = 0; i < 4; i++)
6961 temp_name[i] = readb(&(tb->Signature[i]));
6962 temp_name[4] = '\0';
6963 dev_info(dev, " Signature = %s\n", temp_name);
6964 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
6965 dev_info(dev, " Transport methods supported = 0x%x\n",
6966 readl(&(tb->TransportSupport)));
6967 dev_info(dev, " Transport methods active = 0x%x\n",
6968 readl(&(tb->TransportActive)));
6969 dev_info(dev, " Requested transport Method = 0x%x\n",
6970 readl(&(tb->HostWrite.TransportRequest)));
6971 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
6972 readl(&(tb->HostWrite.CoalIntDelay)));
6973 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
6974 readl(&(tb->HostWrite.CoalIntCount)));
69d6e33d 6975 dev_info(dev, " Max outstanding commands = %d\n",
edd16368
SC
6976 readl(&(tb->CmdsOutMax)));
6977 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
6978 for (i = 0; i < 16; i++)
6979 temp_name[i] = readb(&(tb->ServerName[i]));
6980 temp_name[16] = '\0';
6981 dev_info(dev, " Server Name = %s\n", temp_name);
6982 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
6983 readl(&(tb->HeartBeat)));
edd16368 6984#endif /* HPSA_DEBUG */
58f8665c 6985}
edd16368
SC
6986
6987static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
6988{
6989 int i, offset, mem_type, bar_type;
6990
6991 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
6992 return 0;
6993 offset = 0;
6994 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
6995 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
6996 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
6997 offset += 4;
6998 else {
6999 mem_type = pci_resource_flags(pdev, i) &
7000 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7001 switch (mem_type) {
7002 case PCI_BASE_ADDRESS_MEM_TYPE_32:
7003 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7004 offset += 4; /* 32 bit */
7005 break;
7006 case PCI_BASE_ADDRESS_MEM_TYPE_64:
7007 offset += 8;
7008 break;
7009 default: /* reserved in PCI 2.2 */
7010 dev_warn(&pdev->dev,
7011 "base address is invalid\n");
7012 return -1;
7013 break;
7014 }
7015 }
7016 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7017 return i + 1;
7018 }
7019 return -1;
7020}
7021
cc64c817
RE
7022static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7023{
7024 if (h->msix_vector) {
7025 if (h->pdev->msix_enabled)
7026 pci_disable_msix(h->pdev);
105a3dbc 7027 h->msix_vector = 0;
cc64c817
RE
7028 } else if (h->msi_vector) {
7029 if (h->pdev->msi_enabled)
7030 pci_disable_msi(h->pdev);
105a3dbc 7031 h->msi_vector = 0;
cc64c817
RE
7032 }
7033}
7034
edd16368 7035/* If MSI/MSI-X is supported by the kernel we will try to enable it on
050f7147 7036 * controllers that are capable. If not, we use legacy INTx mode.
edd16368 7037 */
6f039790 7038static void hpsa_interrupt_mode(struct ctlr_info *h)
edd16368
SC
7039{
7040#ifdef CONFIG_PCI_MSI
254f796b
MG
7041 int err, i;
7042 struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
7043
7044 for (i = 0; i < MAX_REPLY_QUEUES; i++) {
7045 hpsa_msix_entries[i].vector = 0;
7046 hpsa_msix_entries[i].entry = i;
7047 }
edd16368
SC
7048
7049 /* Some boards advertise MSI but don't really support it */
6b3f4c52
SC
7050 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
7051 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
edd16368 7052 goto default_int_mode;
55c06c71 7053 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
050f7147 7054 dev_info(&h->pdev->dev, "MSI-X capable controller\n");
eee0f03a 7055 h->msix_vector = MAX_REPLY_QUEUES;
f89439bc
SC
7056 if (h->msix_vector > num_online_cpus())
7057 h->msix_vector = num_online_cpus();
18fce3c4
AG
7058 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
7059 1, h->msix_vector);
7060 if (err < 0) {
7061 dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
7062 h->msix_vector = 0;
7063 goto single_msi_mode;
7064 } else if (err < h->msix_vector) {
55c06c71 7065 dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
edd16368 7066 "available\n", err);
edd16368 7067 }
18fce3c4
AG
7068 h->msix_vector = err;
7069 for (i = 0; i < h->msix_vector; i++)
7070 h->intr[i] = hpsa_msix_entries[i].vector;
7071 return;
edd16368 7072 }
18fce3c4 7073single_msi_mode:
55c06c71 7074 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
050f7147 7075 dev_info(&h->pdev->dev, "MSI capable controller\n");
55c06c71 7076 if (!pci_enable_msi(h->pdev))
edd16368
SC
7077 h->msi_vector = 1;
7078 else
55c06c71 7079 dev_warn(&h->pdev->dev, "MSI init failed\n");
edd16368
SC
7080 }
7081default_int_mode:
7082#endif /* CONFIG_PCI_MSI */
7083 /* if we get here we're going to use the default interrupt mode */
a9a3a273 7084 h->intr[h->intr_mode] = h->pdev->irq;
edd16368
SC
7085}
7086
6f039790 7087static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
e5c880d1
SC
7088{
7089 int i;
7090 u32 subsystem_vendor_id, subsystem_device_id;
7091
7092 subsystem_vendor_id = pdev->subsystem_vendor;
7093 subsystem_device_id = pdev->subsystem_device;
7094 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7095 subsystem_vendor_id;
7096
7097 for (i = 0; i < ARRAY_SIZE(products); i++)
7098 if (*board_id == products[i].board_id)
7099 return i;
7100
6798cc0a
SC
7101 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7102 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7103 !hpsa_allow_any) {
e5c880d1
SC
7104 dev_warn(&pdev->dev, "unrecognized board ID: "
7105 "0x%08x, ignoring.\n", *board_id);
7106 return -ENODEV;
7107 }
7108 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7109}
7110
6f039790
GKH
7111static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7112 unsigned long *memory_bar)
3a7774ce
SC
7113{
7114 int i;
7115
7116 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
12d2cd47 7117 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3a7774ce 7118 /* addressing mode bits already removed */
12d2cd47
SC
7119 *memory_bar = pci_resource_start(pdev, i);
7120 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3a7774ce
SC
7121 *memory_bar);
7122 return 0;
7123 }
12d2cd47 7124 dev_warn(&pdev->dev, "no memory BAR found\n");
3a7774ce
SC
7125 return -ENODEV;
7126}
7127
6f039790
GKH
7128static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7129 int wait_for_ready)
2c4c8c8b 7130{
fe5389c8 7131 int i, iterations;
2c4c8c8b 7132 u32 scratchpad;
fe5389c8
SC
7133 if (wait_for_ready)
7134 iterations = HPSA_BOARD_READY_ITERATIONS;
7135 else
7136 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
2c4c8c8b 7137
fe5389c8
SC
7138 for (i = 0; i < iterations; i++) {
7139 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7140 if (wait_for_ready) {
7141 if (scratchpad == HPSA_FIRMWARE_READY)
7142 return 0;
7143 } else {
7144 if (scratchpad != HPSA_FIRMWARE_READY)
7145 return 0;
7146 }
2c4c8c8b
SC
7147 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7148 }
fe5389c8 7149 dev_warn(&pdev->dev, "board not ready, timed out.\n");
2c4c8c8b
SC
7150 return -ENODEV;
7151}
7152
6f039790
GKH
7153static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7154 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7155 u64 *cfg_offset)
a51fd47f
SC
7156{
7157 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7158 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7159 *cfg_base_addr &= (u32) 0x0000ffff;
7160 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7161 if (*cfg_base_addr_index == -1) {
7162 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7163 return -ENODEV;
7164 }
7165 return 0;
7166}
7167
195f2c65
RE
7168static void hpsa_free_cfgtables(struct ctlr_info *h)
7169{
105a3dbc 7170 if (h->transtable) {
195f2c65 7171 iounmap(h->transtable);
105a3dbc
RE
7172 h->transtable = NULL;
7173 }
7174 if (h->cfgtable) {
195f2c65 7175 iounmap(h->cfgtable);
105a3dbc
RE
7176 h->cfgtable = NULL;
7177 }
195f2c65
RE
7178}
7179
7180/* Find and map CISS config table and transfer table
7181+ * several items must be unmapped (freed) later
7182+ * */
6f039790 7183static int hpsa_find_cfgtables(struct ctlr_info *h)
edd16368 7184{
01a02ffc
SC
7185 u64 cfg_offset;
7186 u32 cfg_base_addr;
7187 u64 cfg_base_addr_index;
303932fd 7188 u32 trans_offset;
a51fd47f 7189 int rc;
77c4495c 7190
a51fd47f
SC
7191 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7192 &cfg_base_addr_index, &cfg_offset);
7193 if (rc)
7194 return rc;
77c4495c 7195 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
a51fd47f 7196 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
cd3c81c4
RE
7197 if (!h->cfgtable) {
7198 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
77c4495c 7199 return -ENOMEM;
cd3c81c4 7200 }
580ada3c
SC
7201 rc = write_driver_ver_to_cfgtable(h->cfgtable);
7202 if (rc)
7203 return rc;
77c4495c 7204 /* Find performant mode table. */
a51fd47f 7205 trans_offset = readl(&h->cfgtable->TransMethodOffset);
77c4495c
SC
7206 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7207 cfg_base_addr_index)+cfg_offset+trans_offset,
7208 sizeof(*h->transtable));
195f2c65
RE
7209 if (!h->transtable) {
7210 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7211 hpsa_free_cfgtables(h);
77c4495c 7212 return -ENOMEM;
195f2c65 7213 }
77c4495c
SC
7214 return 0;
7215}
7216
6f039790 7217static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
cba3d38b 7218{
41ce4c35
SC
7219#define MIN_MAX_COMMANDS 16
7220 BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7221
7222 h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
72ceeaec
SC
7223
7224 /* Limit commands in memory limited kdump scenario. */
7225 if (reset_devices && h->max_commands > 32)
7226 h->max_commands = 32;
7227
41ce4c35
SC
7228 if (h->max_commands < MIN_MAX_COMMANDS) {
7229 dev_warn(&h->pdev->dev,
7230 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7231 h->max_commands,
7232 MIN_MAX_COMMANDS);
7233 h->max_commands = MIN_MAX_COMMANDS;
cba3d38b
SC
7234 }
7235}
7236
c7ee65b3
WS
7237/* If the controller reports that the total max sg entries is greater than 512,
7238 * then we know that chained SG blocks work. (Original smart arrays did not
7239 * support chained SG blocks and would return zero for max sg entries.)
7240 */
7241static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7242{
7243 return h->maxsgentries > 512;
7244}
7245
b93d7536
SC
7246/* Interrogate the hardware for some limits:
7247 * max commands, max SG elements without chaining, and with chaining,
7248 * SG chain block size, etc.
7249 */
6f039790 7250static void hpsa_find_board_params(struct ctlr_info *h)
b93d7536 7251{
cba3d38b 7252 hpsa_get_max_perf_mode_cmds(h);
45fcb86e 7253 h->nr_cmds = h->max_commands;
b93d7536 7254 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
283b4a9b 7255 h->fw_support = readl(&(h->cfgtable->misc_fw_support));
c7ee65b3
WS
7256 if (hpsa_supports_chained_sg_blocks(h)) {
7257 /* Limit in-command s/g elements to 32 save dma'able memory. */
b93d7536 7258 h->max_cmd_sg_entries = 32;
1a63ea6f 7259 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
b93d7536
SC
7260 h->maxsgentries--; /* save one for chain pointer */
7261 } else {
c7ee65b3
WS
7262 /*
7263 * Original smart arrays supported at most 31 s/g entries
7264 * embedded inline in the command (trying to use more
7265 * would lock up the controller)
7266 */
7267 h->max_cmd_sg_entries = 31;
1a63ea6f 7268 h->maxsgentries = 31; /* default to traditional values */
c7ee65b3 7269 h->chainsize = 0;
b93d7536 7270 }
75167d2c
SC
7271
7272 /* Find out what task management functions are supported and cache */
7273 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
0e7a7fce
ST
7274 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7275 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7276 if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7277 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
8be986cc
SC
7278 if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7279 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
b93d7536
SC
7280}
7281
76c46e49
SC
7282static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7283{
0fc9fd40 7284 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
050f7147 7285 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
76c46e49
SC
7286 return false;
7287 }
7288 return true;
7289}
7290
97a5e98c 7291static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
f7c39101 7292{
97a5e98c 7293 u32 driver_support;
f7c39101 7294
97a5e98c 7295 driver_support = readl(&(h->cfgtable->driver_support));
0b9e7b74
AB
7296 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7297#ifdef CONFIG_X86
97a5e98c 7298 driver_support |= ENABLE_SCSI_PREFETCH;
f7c39101 7299#endif
28e13446
SC
7300 driver_support |= ENABLE_UNIT_ATTN;
7301 writel(driver_support, &(h->cfgtable->driver_support));
f7c39101
SC
7302}
7303
3d0eab67
SC
7304/* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
7305 * in a prefetch beyond physical memory.
7306 */
7307static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7308{
7309 u32 dma_prefetch;
7310
7311 if (h->board_id != 0x3225103C)
7312 return;
7313 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7314 dma_prefetch |= 0x8000;
7315 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7316}
7317
c706a795 7318static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
76438d08
SC
7319{
7320 int i;
7321 u32 doorbell_value;
7322 unsigned long flags;
7323 /* wait until the clear_event_notify bit 6 is cleared by controller. */
007e7aa9 7324 for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
76438d08
SC
7325 spin_lock_irqsave(&h->lock, flags);
7326 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7327 spin_unlock_irqrestore(&h->lock, flags);
7328 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
c706a795 7329 goto done;
76438d08 7330 /* delay and try again */
007e7aa9 7331 msleep(CLEAR_EVENT_WAIT_INTERVAL);
76438d08 7332 }
c706a795
RE
7333 return -ENODEV;
7334done:
7335 return 0;
76438d08
SC
7336}
7337
c706a795 7338static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
eb6b2ae9
SC
7339{
7340 int i;
6eaf46fd
SC
7341 u32 doorbell_value;
7342 unsigned long flags;
eb6b2ae9
SC
7343
7344 /* under certain very rare conditions, this can take awhile.
7345 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7346 * as we enter this code.)
7347 */
007e7aa9 7348 for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
25163bd5
WS
7349 if (h->remove_in_progress)
7350 goto done;
6eaf46fd
SC
7351 spin_lock_irqsave(&h->lock, flags);
7352 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7353 spin_unlock_irqrestore(&h->lock, flags);
382be668 7354 if (!(doorbell_value & CFGTBL_ChangeReq))
c706a795 7355 goto done;
eb6b2ae9 7356 /* delay and try again */
007e7aa9 7357 msleep(MODE_CHANGE_WAIT_INTERVAL);
eb6b2ae9 7358 }
c706a795
RE
7359 return -ENODEV;
7360done:
7361 return 0;
3f4336f3
SC
7362}
7363
c706a795 7364/* return -ENODEV or other reason on error, 0 on success */
6f039790 7365static int hpsa_enter_simple_mode(struct ctlr_info *h)
3f4336f3
SC
7366{
7367 u32 trans_support;
7368
7369 trans_support = readl(&(h->cfgtable->TransportSupport));
7370 if (!(trans_support & SIMPLE_MODE))
7371 return -ENOTSUPP;
7372
7373 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
283b4a9b 7374
3f4336f3
SC
7375 /* Update the field, and then ring the doorbell */
7376 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
b9af4937 7377 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
3f4336f3 7378 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
c706a795
RE
7379 if (hpsa_wait_for_mode_change_ack(h))
7380 goto error;
eb6b2ae9 7381 print_cfg_table(&h->pdev->dev, h->cfgtable);
283b4a9b
SC
7382 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7383 goto error;
960a30e7 7384 h->transMethod = CFGTBL_Trans_Simple;
eb6b2ae9 7385 return 0;
283b4a9b 7386error:
050f7147 7387 dev_err(&h->pdev->dev, "failed to enter simple mode\n");
283b4a9b 7388 return -ENODEV;
eb6b2ae9
SC
7389}
7390
195f2c65
RE
7391/* free items allocated or mapped by hpsa_pci_init */
7392static void hpsa_free_pci_init(struct ctlr_info *h)
7393{
7394 hpsa_free_cfgtables(h); /* pci_init 4 */
7395 iounmap(h->vaddr); /* pci_init 3 */
105a3dbc 7396 h->vaddr = NULL;
195f2c65 7397 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
943a7021
RE
7398 /*
7399 * call pci_disable_device before pci_release_regions per
7400 * Documentation/PCI/pci.txt
7401 */
195f2c65 7402 pci_disable_device(h->pdev); /* pci_init 1 */
943a7021 7403 pci_release_regions(h->pdev); /* pci_init 2 */
195f2c65
RE
7404}
7405
7406/* several items must be freed later */
6f039790 7407static int hpsa_pci_init(struct ctlr_info *h)
77c4495c 7408{
eb6b2ae9 7409 int prod_index, err;
edd16368 7410
e5c880d1
SC
7411 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
7412 if (prod_index < 0)
60f923b9 7413 return prod_index;
e5c880d1
SC
7414 h->product_name = products[prod_index].product_name;
7415 h->access = *(products[prod_index].access);
edd16368 7416
9b5c48c2
SC
7417 h->needs_abort_tags_swizzled =
7418 ctlr_needs_abort_tags_swizzled(h->board_id);
7419
e5a44df8
MG
7420 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7421 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7422
55c06c71 7423 err = pci_enable_device(h->pdev);
edd16368 7424 if (err) {
195f2c65 7425 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
943a7021 7426 pci_disable_device(h->pdev);
edd16368
SC
7427 return err;
7428 }
7429
f79cfec6 7430 err = pci_request_regions(h->pdev, HPSA);
edd16368 7431 if (err) {
55c06c71 7432 dev_err(&h->pdev->dev,
195f2c65 7433 "failed to obtain PCI resources\n");
943a7021
RE
7434 pci_disable_device(h->pdev);
7435 return err;
edd16368 7436 }
4fa604e1
RE
7437
7438 pci_set_master(h->pdev);
7439
6b3f4c52 7440 hpsa_interrupt_mode(h);
12d2cd47 7441 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3a7774ce 7442 if (err)
195f2c65 7443 goto clean2; /* intmode+region, pci */
edd16368 7444 h->vaddr = remap_pci_mem(h->paddr, 0x250);
204892e9 7445 if (!h->vaddr) {
195f2c65 7446 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
204892e9 7447 err = -ENOMEM;
195f2c65 7448 goto clean2; /* intmode+region, pci */
204892e9 7449 }
fe5389c8 7450 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
2c4c8c8b 7451 if (err)
195f2c65 7452 goto clean3; /* vaddr, intmode+region, pci */
77c4495c
SC
7453 err = hpsa_find_cfgtables(h);
7454 if (err)
195f2c65 7455 goto clean3; /* vaddr, intmode+region, pci */
b93d7536 7456 hpsa_find_board_params(h);
edd16368 7457
76c46e49 7458 if (!hpsa_CISS_signature_present(h)) {
edd16368 7459 err = -ENODEV;
195f2c65 7460 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
edd16368 7461 }
97a5e98c 7462 hpsa_set_driver_support_bits(h);
3d0eab67 7463 hpsa_p600_dma_prefetch_quirk(h);
eb6b2ae9
SC
7464 err = hpsa_enter_simple_mode(h);
7465 if (err)
195f2c65 7466 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
edd16368
SC
7467 return 0;
7468
195f2c65
RE
7469clean4: /* cfgtables, vaddr, intmode+region, pci */
7470 hpsa_free_cfgtables(h);
7471clean3: /* vaddr, intmode+region, pci */
7472 iounmap(h->vaddr);
105a3dbc 7473 h->vaddr = NULL;
195f2c65
RE
7474clean2: /* intmode+region, pci */
7475 hpsa_disable_interrupt_mode(h);
943a7021
RE
7476 /*
7477 * call pci_disable_device before pci_release_regions per
7478 * Documentation/PCI/pci.txt
7479 */
195f2c65 7480 pci_disable_device(h->pdev);
943a7021 7481 pci_release_regions(h->pdev);
edd16368
SC
7482 return err;
7483}
7484
6f039790 7485static void hpsa_hba_inquiry(struct ctlr_info *h)
339b2b14
SC
7486{
7487 int rc;
7488
7489#define HBA_INQUIRY_BYTE_COUNT 64
7490 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7491 if (!h->hba_inquiry_data)
7492 return;
7493 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7494 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7495 if (rc != 0) {
7496 kfree(h->hba_inquiry_data);
7497 h->hba_inquiry_data = NULL;
7498 }
7499}
7500
6b6c1cd7 7501static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
4c2a8c40 7502{
1df8552a 7503 int rc, i;
3b747298 7504 void __iomem *vaddr;
4c2a8c40
SC
7505
7506 if (!reset_devices)
7507 return 0;
7508
132aa220
TH
7509 /* kdump kernel is loading, we don't know in which state is
7510 * the pci interface. The dev->enable_cnt is equal zero
7511 * so we call enable+disable, wait a while and switch it on.
7512 */
7513 rc = pci_enable_device(pdev);
7514 if (rc) {
7515 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7516 return -ENODEV;
7517 }
7518 pci_disable_device(pdev);
7519 msleep(260); /* a randomly chosen number */
7520 rc = pci_enable_device(pdev);
7521 if (rc) {
7522 dev_warn(&pdev->dev, "failed to enable device.\n");
7523 return -ENODEV;
7524 }
4fa604e1 7525
859c75ab 7526 pci_set_master(pdev);
4fa604e1 7527
3b747298
TH
7528 vaddr = pci_ioremap_bar(pdev, 0);
7529 if (vaddr == NULL) {
7530 rc = -ENOMEM;
7531 goto out_disable;
7532 }
7533 writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7534 iounmap(vaddr);
7535
1df8552a 7536 /* Reset the controller with a PCI power-cycle or via doorbell */
6b6c1cd7 7537 rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
4c2a8c40 7538
1df8552a
SC
7539 /* -ENOTSUPP here means we cannot reset the controller
7540 * but it's already (and still) up and running in
18867659
SC
7541 * "performant mode". Or, it might be 640x, which can't reset
7542 * due to concerns about shared bbwc between 6402/6404 pair.
1df8552a 7543 */
adf1b3a3 7544 if (rc)
132aa220 7545 goto out_disable;
4c2a8c40
SC
7546
7547 /* Now try to get the controller to respond to a no-op */
1ba66c9c 7548 dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
4c2a8c40
SC
7549 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7550 if (hpsa_noop(pdev) == 0)
7551 break;
7552 else
7553 dev_warn(&pdev->dev, "no-op failed%s\n",
7554 (i < 11 ? "; re-trying" : ""));
7555 }
132aa220
TH
7556
7557out_disable:
7558
7559 pci_disable_device(pdev);
7560 return rc;
4c2a8c40
SC
7561}
7562
1fb7c98a
RE
7563static void hpsa_free_cmd_pool(struct ctlr_info *h)
7564{
7565 kfree(h->cmd_pool_bits);
105a3dbc
RE
7566 h->cmd_pool_bits = NULL;
7567 if (h->cmd_pool) {
1fb7c98a
RE
7568 pci_free_consistent(h->pdev,
7569 h->nr_cmds * sizeof(struct CommandList),
7570 h->cmd_pool,
7571 h->cmd_pool_dhandle);
105a3dbc
RE
7572 h->cmd_pool = NULL;
7573 h->cmd_pool_dhandle = 0;
7574 }
7575 if (h->errinfo_pool) {
1fb7c98a
RE
7576 pci_free_consistent(h->pdev,
7577 h->nr_cmds * sizeof(struct ErrorInfo),
7578 h->errinfo_pool,
7579 h->errinfo_pool_dhandle);
105a3dbc
RE
7580 h->errinfo_pool = NULL;
7581 h->errinfo_pool_dhandle = 0;
7582 }
1fb7c98a
RE
7583}
7584
d37ffbe4 7585static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
2e9d1b36
SC
7586{
7587 h->cmd_pool_bits = kzalloc(
7588 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7589 sizeof(unsigned long), GFP_KERNEL);
7590 h->cmd_pool = pci_alloc_consistent(h->pdev,
7591 h->nr_cmds * sizeof(*h->cmd_pool),
7592 &(h->cmd_pool_dhandle));
7593 h->errinfo_pool = pci_alloc_consistent(h->pdev,
7594 h->nr_cmds * sizeof(*h->errinfo_pool),
7595 &(h->errinfo_pool_dhandle));
7596 if ((h->cmd_pool_bits == NULL)
7597 || (h->cmd_pool == NULL)
7598 || (h->errinfo_pool == NULL)) {
7599 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
2c143342 7600 goto clean_up;
2e9d1b36 7601 }
360c73bd 7602 hpsa_preinitialize_commands(h);
2e9d1b36 7603 return 0;
2c143342
RE
7604clean_up:
7605 hpsa_free_cmd_pool(h);
7606 return -ENOMEM;
2e9d1b36
SC
7607}
7608
41b3cf08
SC
7609static void hpsa_irq_affinity_hints(struct ctlr_info *h)
7610{
ec429952 7611 int i, cpu;
41b3cf08
SC
7612
7613 cpu = cpumask_first(cpu_online_mask);
7614 for (i = 0; i < h->msix_vector; i++) {
ec429952 7615 irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
41b3cf08
SC
7616 cpu = cpumask_next(cpu, cpu_online_mask);
7617 }
7618}
7619
ec501a18
RE
7620/* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7621static void hpsa_free_irqs(struct ctlr_info *h)
7622{
7623 int i;
7624
7625 if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
7626 /* Single reply queue, only one irq to free */
7627 i = h->intr_mode;
7628 irq_set_affinity_hint(h->intr[i], NULL);
7629 free_irq(h->intr[i], &h->q[i]);
105a3dbc 7630 h->q[i] = 0;
ec501a18
RE
7631 return;
7632 }
7633
7634 for (i = 0; i < h->msix_vector; i++) {
7635 irq_set_affinity_hint(h->intr[i], NULL);
7636 free_irq(h->intr[i], &h->q[i]);
105a3dbc 7637 h->q[i] = 0;
ec501a18 7638 }
a4e17fc1
RE
7639 for (; i < MAX_REPLY_QUEUES; i++)
7640 h->q[i] = 0;
ec501a18
RE
7641}
7642
9ee61794
RE
7643/* returns 0 on success; cleans up and returns -Enn on error */
7644static int hpsa_request_irqs(struct ctlr_info *h,
0ae01a32
SC
7645 irqreturn_t (*msixhandler)(int, void *),
7646 irqreturn_t (*intxhandler)(int, void *))
7647{
254f796b 7648 int rc, i;
0ae01a32 7649
254f796b
MG
7650 /*
7651 * initialize h->q[x] = x so that interrupt handlers know which
7652 * queue to process.
7653 */
7654 for (i = 0; i < MAX_REPLY_QUEUES; i++)
7655 h->q[i] = (u8) i;
7656
eee0f03a 7657 if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
254f796b 7658 /* If performant mode and MSI-X, use multiple reply queues */
a4e17fc1 7659 for (i = 0; i < h->msix_vector; i++) {
8b47004a 7660 sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
254f796b 7661 rc = request_irq(h->intr[i], msixhandler,
8b47004a 7662 0, h->intrname[i],
254f796b 7663 &h->q[i]);
a4e17fc1
RE
7664 if (rc) {
7665 int j;
7666
7667 dev_err(&h->pdev->dev,
7668 "failed to get irq %d for %s\n",
7669 h->intr[i], h->devname);
7670 for (j = 0; j < i; j++) {
7671 free_irq(h->intr[j], &h->q[j]);
7672 h->q[j] = 0;
7673 }
7674 for (; j < MAX_REPLY_QUEUES; j++)
7675 h->q[j] = 0;
7676 return rc;
7677 }
7678 }
41b3cf08 7679 hpsa_irq_affinity_hints(h);
254f796b
MG
7680 } else {
7681 /* Use single reply pool */
eee0f03a 7682 if (h->msix_vector > 0 || h->msi_vector) {
8b47004a
RE
7683 if (h->msix_vector)
7684 sprintf(h->intrname[h->intr_mode],
7685 "%s-msix", h->devname);
7686 else
7687 sprintf(h->intrname[h->intr_mode],
7688 "%s-msi", h->devname);
254f796b 7689 rc = request_irq(h->intr[h->intr_mode],
8b47004a
RE
7690 msixhandler, 0,
7691 h->intrname[h->intr_mode],
254f796b
MG
7692 &h->q[h->intr_mode]);
7693 } else {
8b47004a
RE
7694 sprintf(h->intrname[h->intr_mode],
7695 "%s-intx", h->devname);
254f796b 7696 rc = request_irq(h->intr[h->intr_mode],
8b47004a
RE
7697 intxhandler, IRQF_SHARED,
7698 h->intrname[h->intr_mode],
254f796b
MG
7699 &h->q[h->intr_mode]);
7700 }
105a3dbc 7701 irq_set_affinity_hint(h->intr[h->intr_mode], NULL);
254f796b 7702 }
0ae01a32 7703 if (rc) {
195f2c65 7704 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
0ae01a32 7705 h->intr[h->intr_mode], h->devname);
195f2c65 7706 hpsa_free_irqs(h);
0ae01a32
SC
7707 return -ENODEV;
7708 }
7709 return 0;
7710}
7711
6f039790 7712static int hpsa_kdump_soft_reset(struct ctlr_info *h)
64670ac8 7713{
39c53f55 7714 int rc;
bf43caf3 7715 hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
64670ac8
SC
7716
7717 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
39c53f55
RE
7718 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
7719 if (rc) {
64670ac8 7720 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
39c53f55 7721 return rc;
64670ac8
SC
7722 }
7723
7724 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
39c53f55
RE
7725 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7726 if (rc) {
64670ac8
SC
7727 dev_warn(&h->pdev->dev, "Board failed to become ready "
7728 "after soft reset.\n");
39c53f55 7729 return rc;
64670ac8
SC
7730 }
7731
7732 return 0;
7733}
7734
072b0518
SC
7735static void hpsa_free_reply_queues(struct ctlr_info *h)
7736{
7737 int i;
7738
7739 for (i = 0; i < h->nreply_queues; i++) {
7740 if (!h->reply_queue[i].head)
7741 continue;
1fb7c98a
RE
7742 pci_free_consistent(h->pdev,
7743 h->reply_queue_size,
7744 h->reply_queue[i].head,
7745 h->reply_queue[i].busaddr);
072b0518
SC
7746 h->reply_queue[i].head = NULL;
7747 h->reply_queue[i].busaddr = 0;
7748 }
105a3dbc 7749 h->reply_queue_size = 0;
072b0518
SC
7750}
7751
0097f0f4
SC
7752static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
7753{
105a3dbc
RE
7754 hpsa_free_performant_mode(h); /* init_one 7 */
7755 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
7756 hpsa_free_cmd_pool(h); /* init_one 5 */
7757 hpsa_free_irqs(h); /* init_one 4 */
2946e82b
RE
7758 scsi_host_put(h->scsi_host); /* init_one 3 */
7759 h->scsi_host = NULL; /* init_one 3 */
7760 hpsa_free_pci_init(h); /* init_one 2_5 */
9ecd953a
RE
7761 free_percpu(h->lockup_detected); /* init_one 2 */
7762 h->lockup_detected = NULL; /* init_one 2 */
7763 if (h->resubmit_wq) {
7764 destroy_workqueue(h->resubmit_wq); /* init_one 1 */
7765 h->resubmit_wq = NULL;
7766 }
7767 if (h->rescan_ctlr_wq) {
7768 destroy_workqueue(h->rescan_ctlr_wq);
7769 h->rescan_ctlr_wq = NULL;
7770 }
105a3dbc 7771 kfree(h); /* init_one 1 */
64670ac8
SC
7772}
7773
a0c12413 7774/* Called when controller lockup detected. */
f2405db8 7775static void fail_all_outstanding_cmds(struct ctlr_info *h)
a0c12413 7776{
281a7fd0
WS
7777 int i, refcount;
7778 struct CommandList *c;
25163bd5 7779 int failcount = 0;
a0c12413 7780
080ef1cc 7781 flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
f2405db8 7782 for (i = 0; i < h->nr_cmds; i++) {
f2405db8 7783 c = h->cmd_pool + i;
281a7fd0
WS
7784 refcount = atomic_inc_return(&c->refcount);
7785 if (refcount > 1) {
25163bd5 7786 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
281a7fd0 7787 finish_cmd(c);
433b5f4d 7788 atomic_dec(&h->commands_outstanding);
25163bd5 7789 failcount++;
281a7fd0
WS
7790 }
7791 cmd_free(h, c);
a0c12413 7792 }
25163bd5
WS
7793 dev_warn(&h->pdev->dev,
7794 "failed %d commands in fail_all\n", failcount);
a0c12413
SC
7795}
7796
094963da
SC
7797static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
7798{
c8ed0010 7799 int cpu;
094963da 7800
c8ed0010 7801 for_each_online_cpu(cpu) {
094963da
SC
7802 u32 *lockup_detected;
7803 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
7804 *lockup_detected = value;
094963da
SC
7805 }
7806 wmb(); /* be sure the per-cpu variables are out to memory */
7807}
7808
a0c12413
SC
7809static void controller_lockup_detected(struct ctlr_info *h)
7810{
7811 unsigned long flags;
094963da 7812 u32 lockup_detected;
a0c12413 7813
a0c12413
SC
7814 h->access.set_intr_mask(h, HPSA_INTR_OFF);
7815 spin_lock_irqsave(&h->lock, flags);
094963da
SC
7816 lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
7817 if (!lockup_detected) {
7818 /* no heartbeat, but controller gave us a zero. */
7819 dev_warn(&h->pdev->dev,
25163bd5
WS
7820 "lockup detected after %d but scratchpad register is zero\n",
7821 h->heartbeat_sample_interval / HZ);
094963da
SC
7822 lockup_detected = 0xffffffff;
7823 }
7824 set_lockup_detected_for_all_cpus(h, lockup_detected);
a0c12413 7825 spin_unlock_irqrestore(&h->lock, flags);
25163bd5
WS
7826 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
7827 lockup_detected, h->heartbeat_sample_interval / HZ);
a0c12413 7828 pci_disable_device(h->pdev);
f2405db8 7829 fail_all_outstanding_cmds(h);
a0c12413
SC
7830}
7831
25163bd5 7832static int detect_controller_lockup(struct ctlr_info *h)
a0c12413
SC
7833{
7834 u64 now;
7835 u32 heartbeat;
7836 unsigned long flags;
7837
a0c12413
SC
7838 now = get_jiffies_64();
7839 /* If we've received an interrupt recently, we're ok. */
7840 if (time_after64(h->last_intr_timestamp +
e85c5974 7841 (h->heartbeat_sample_interval), now))
25163bd5 7842 return false;
a0c12413
SC
7843
7844 /*
7845 * If we've already checked the heartbeat recently, we're ok.
7846 * This could happen if someone sends us a signal. We
7847 * otherwise don't care about signals in this thread.
7848 */
7849 if (time_after64(h->last_heartbeat_timestamp +
e85c5974 7850 (h->heartbeat_sample_interval), now))
25163bd5 7851 return false;
a0c12413
SC
7852
7853 /* If heartbeat has not changed since we last looked, we're not ok. */
7854 spin_lock_irqsave(&h->lock, flags);
7855 heartbeat = readl(&h->cfgtable->HeartBeat);
7856 spin_unlock_irqrestore(&h->lock, flags);
7857 if (h->last_heartbeat == heartbeat) {
7858 controller_lockup_detected(h);
25163bd5 7859 return true;
a0c12413
SC
7860 }
7861
7862 /* We're ok. */
7863 h->last_heartbeat = heartbeat;
7864 h->last_heartbeat_timestamp = now;
25163bd5 7865 return false;
a0c12413
SC
7866}
7867
9846590e 7868static void hpsa_ack_ctlr_events(struct ctlr_info *h)
76438d08
SC
7869{
7870 int i;
7871 char *event_type;
7872
e4aa3e6a
SC
7873 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
7874 return;
7875
76438d08 7876 /* Ask the controller to clear the events we're handling. */
1f7cee8c
SC
7877 if ((h->transMethod & (CFGTBL_Trans_io_accel1
7878 | CFGTBL_Trans_io_accel2)) &&
76438d08
SC
7879 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
7880 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
7881
7882 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
7883 event_type = "state change";
7884 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
7885 event_type = "configuration change";
7886 /* Stop sending new RAID offload reqs via the IO accelerator */
7887 scsi_block_requests(h->scsi_host);
7888 for (i = 0; i < h->ndevices; i++)
7889 h->dev[i]->offload_enabled = 0;
23100dd9 7890 hpsa_drain_accel_commands(h);
76438d08
SC
7891 /* Set 'accelerator path config change' bit */
7892 dev_warn(&h->pdev->dev,
7893 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
7894 h->events, event_type);
7895 writel(h->events, &(h->cfgtable->clear_event_notify));
7896 /* Set the "clear event notify field update" bit 6 */
7897 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
7898 /* Wait until ctlr clears 'clear event notify field', bit 6 */
7899 hpsa_wait_for_clear_event_notify_ack(h);
7900 scsi_unblock_requests(h->scsi_host);
7901 } else {
7902 /* Acknowledge controller notification events. */
7903 writel(h->events, &(h->cfgtable->clear_event_notify));
7904 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
7905 hpsa_wait_for_clear_event_notify_ack(h);
7906#if 0
7907 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7908 hpsa_wait_for_mode_change_ack(h);
7909#endif
7910 }
9846590e 7911 return;
76438d08
SC
7912}
7913
7914/* Check a register on the controller to see if there are configuration
7915 * changes (added/changed/removed logical drives, etc.) which mean that
e863d68e
ST
7916 * we should rescan the controller for devices.
7917 * Also check flag for driver-initiated rescan.
76438d08 7918 */
9846590e 7919static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
76438d08 7920{
853633e8
DB
7921 if (h->drv_req_rescan) {
7922 h->drv_req_rescan = 0;
7923 return 1;
7924 }
7925
76438d08 7926 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
9846590e 7927 return 0;
76438d08
SC
7928
7929 h->events = readl(&(h->cfgtable->event_notify));
9846590e
SC
7930 return h->events & RESCAN_REQUIRED_EVENT_BITS;
7931}
76438d08 7932
9846590e
SC
7933/*
7934 * Check if any of the offline devices have become ready
7935 */
7936static int hpsa_offline_devices_ready(struct ctlr_info *h)
7937{
7938 unsigned long flags;
7939 struct offline_device_entry *d;
7940 struct list_head *this, *tmp;
7941
7942 spin_lock_irqsave(&h->offline_device_lock, flags);
7943 list_for_each_safe(this, tmp, &h->offline_device_list) {
7944 d = list_entry(this, struct offline_device_entry,
7945 offline_list);
7946 spin_unlock_irqrestore(&h->offline_device_lock, flags);
d1fea47c
SC
7947 if (!hpsa_volume_offline(h, d->scsi3addr)) {
7948 spin_lock_irqsave(&h->offline_device_lock, flags);
7949 list_del(&d->offline_list);
7950 spin_unlock_irqrestore(&h->offline_device_lock, flags);
9846590e 7951 return 1;
d1fea47c 7952 }
9846590e
SC
7953 spin_lock_irqsave(&h->offline_device_lock, flags);
7954 }
7955 spin_unlock_irqrestore(&h->offline_device_lock, flags);
7956 return 0;
76438d08
SC
7957}
7958
6636e7f4 7959static void hpsa_rescan_ctlr_worker(struct work_struct *work)
a0c12413
SC
7960{
7961 unsigned long flags;
8a98db73 7962 struct ctlr_info *h = container_of(to_delayed_work(work),
6636e7f4
DB
7963 struct ctlr_info, rescan_ctlr_work);
7964
7965
7966 if (h->remove_in_progress)
8a98db73 7967 return;
9846590e
SC
7968
7969 if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
7970 scsi_host_get(h->scsi_host);
9846590e
SC
7971 hpsa_ack_ctlr_events(h);
7972 hpsa_scan_start(h->scsi_host);
7973 scsi_host_put(h->scsi_host);
7974 }
8a98db73 7975 spin_lock_irqsave(&h->lock, flags);
6636e7f4
DB
7976 if (!h->remove_in_progress)
7977 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
7978 h->heartbeat_sample_interval);
7979 spin_unlock_irqrestore(&h->lock, flags);
7980}
7981
7982static void hpsa_monitor_ctlr_worker(struct work_struct *work)
7983{
7984 unsigned long flags;
7985 struct ctlr_info *h = container_of(to_delayed_work(work),
7986 struct ctlr_info, monitor_ctlr_work);
7987
7988 detect_controller_lockup(h);
7989 if (lockup_detected(h))
a0c12413 7990 return;
6636e7f4
DB
7991
7992 spin_lock_irqsave(&h->lock, flags);
7993 if (!h->remove_in_progress)
7994 schedule_delayed_work(&h->monitor_ctlr_work,
8a98db73
SC
7995 h->heartbeat_sample_interval);
7996 spin_unlock_irqrestore(&h->lock, flags);
a0c12413
SC
7997}
7998
6636e7f4
DB
7999static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8000 char *name)
8001{
8002 struct workqueue_struct *wq = NULL;
6636e7f4 8003
397ea9cb 8004 wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
6636e7f4
DB
8005 if (!wq)
8006 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8007
8008 return wq;
8009}
8010
6f039790 8011static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
edd16368 8012{
4c2a8c40 8013 int dac, rc;
edd16368 8014 struct ctlr_info *h;
64670ac8
SC
8015 int try_soft_reset = 0;
8016 unsigned long flags;
6b6c1cd7 8017 u32 board_id;
edd16368
SC
8018
8019 if (number_of_controllers == 0)
8020 printk(KERN_INFO DRIVER_NAME "\n");
edd16368 8021
6b6c1cd7
TH
8022 rc = hpsa_lookup_board_id(pdev, &board_id);
8023 if (rc < 0) {
8024 dev_warn(&pdev->dev, "Board ID not found\n");
8025 return rc;
8026 }
8027
8028 rc = hpsa_init_reset_devices(pdev, board_id);
64670ac8
SC
8029 if (rc) {
8030 if (rc != -ENOTSUPP)
8031 return rc;
8032 /* If the reset fails in a particular way (it has no way to do
8033 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8034 * a soft reset once we get the controller configured up to the
8035 * point that it can accept a command.
8036 */
8037 try_soft_reset = 1;
8038 rc = 0;
8039 }
8040
8041reinit_after_soft_reset:
edd16368 8042
303932fd
DB
8043 /* Command structures must be aligned on a 32-byte boundary because
8044 * the 5 lower bits of the address are used by the hardware. and by
8045 * the driver. See comments in hpsa.h for more info.
8046 */
303932fd 8047 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
edd16368 8048 h = kzalloc(sizeof(*h), GFP_KERNEL);
105a3dbc
RE
8049 if (!h) {
8050 dev_err(&pdev->dev, "Failed to allocate controller head\n");
ecd9aad4 8051 return -ENOMEM;
105a3dbc 8052 }
edd16368 8053
55c06c71 8054 h->pdev = pdev;
105a3dbc 8055
a9a3a273 8056 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
9846590e 8057 INIT_LIST_HEAD(&h->offline_device_list);
6eaf46fd 8058 spin_lock_init(&h->lock);
9846590e 8059 spin_lock_init(&h->offline_device_lock);
6eaf46fd 8060 spin_lock_init(&h->scan_lock);
34f0c627 8061 atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
9b5c48c2 8062 atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
094963da
SC
8063
8064 /* Allocate and clear per-cpu variable lockup_detected */
8065 h->lockup_detected = alloc_percpu(u32);
2a5ac326 8066 if (!h->lockup_detected) {
105a3dbc 8067 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
2a5ac326 8068 rc = -ENOMEM;
2efa5929 8069 goto clean1; /* aer/h */
2a5ac326 8070 }
094963da
SC
8071 set_lockup_detected_for_all_cpus(h, 0);
8072
55c06c71 8073 rc = hpsa_pci_init(h);
105a3dbc 8074 if (rc)
2946e82b
RE
8075 goto clean2; /* lu, aer/h */
8076
8077 /* relies on h-> settings made by hpsa_pci_init, including
8078 * interrupt_mode h->intr */
8079 rc = hpsa_scsi_host_alloc(h);
8080 if (rc)
8081 goto clean2_5; /* pci, lu, aer/h */
edd16368 8082
2946e82b 8083 sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
edd16368
SC
8084 h->ctlr = number_of_controllers;
8085 number_of_controllers++;
edd16368
SC
8086
8087 /* configure PCI DMA stuff */
ecd9aad4
SC
8088 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8089 if (rc == 0) {
edd16368 8090 dac = 1;
ecd9aad4
SC
8091 } else {
8092 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8093 if (rc == 0) {
8094 dac = 0;
8095 } else {
8096 dev_err(&pdev->dev, "no suitable DMA available\n");
2946e82b 8097 goto clean3; /* shost, pci, lu, aer/h */
ecd9aad4 8098 }
edd16368
SC
8099 }
8100
8101 /* make sure the board interrupts are off */
8102 h->access.set_intr_mask(h, HPSA_INTR_OFF);
10f66018 8103
105a3dbc
RE
8104 rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8105 if (rc)
2946e82b 8106 goto clean3; /* shost, pci, lu, aer/h */
d37ffbe4 8107 rc = hpsa_alloc_cmd_pool(h);
8947fd10 8108 if (rc)
2946e82b 8109 goto clean4; /* irq, shost, pci, lu, aer/h */
105a3dbc
RE
8110 rc = hpsa_alloc_sg_chain_blocks(h);
8111 if (rc)
2946e82b 8112 goto clean5; /* cmd, irq, shost, pci, lu, aer/h */
a08a8471 8113 init_waitqueue_head(&h->scan_wait_queue);
9b5c48c2 8114 init_waitqueue_head(&h->abort_cmd_wait_queue);
d604f533
WS
8115 init_waitqueue_head(&h->event_sync_wait_queue);
8116 mutex_init(&h->reset_mutex);
a08a8471 8117 h->scan_finished = 1; /* no scan currently in progress */
edd16368
SC
8118
8119 pci_set_drvdata(pdev, h);
9a41338e 8120 h->ndevices = 0;
2946e82b 8121
9a41338e 8122 spin_lock_init(&h->devlock);
105a3dbc
RE
8123 rc = hpsa_put_ctlr_into_performant_mode(h);
8124 if (rc)
2946e82b
RE
8125 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8126
8127 /* hook into SCSI subsystem */
8128 rc = hpsa_scsi_add_host(h);
8129 if (rc)
8130 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
2efa5929
RE
8131
8132 /* create the resubmit workqueue */
8133 h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8134 if (!h->rescan_ctlr_wq) {
8135 rc = -ENOMEM;
8136 goto clean7;
8137 }
8138
8139 h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8140 if (!h->resubmit_wq) {
8141 rc = -ENOMEM;
8142 goto clean7; /* aer/h */
8143 }
64670ac8 8144
105a3dbc
RE
8145 /*
8146 * At this point, the controller is ready to take commands.
64670ac8
SC
8147 * Now, if reset_devices and the hard reset didn't work, try
8148 * the soft reset and see if that works.
8149 */
8150 if (try_soft_reset) {
8151
8152 /* This is kind of gross. We may or may not get a completion
8153 * from the soft reset command, and if we do, then the value
8154 * from the fifo may or may not be valid. So, we wait 10 secs
8155 * after the reset throwing away any completions we get during
8156 * that time. Unregister the interrupt handler and register
8157 * fake ones to scoop up any residual completions.
8158 */
8159 spin_lock_irqsave(&h->lock, flags);
8160 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8161 spin_unlock_irqrestore(&h->lock, flags);
ec501a18 8162 hpsa_free_irqs(h);
9ee61794 8163 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
64670ac8
SC
8164 hpsa_intx_discard_completions);
8165 if (rc) {
9ee61794
RE
8166 dev_warn(&h->pdev->dev,
8167 "Failed to request_irq after soft reset.\n");
d498757c 8168 /*
b2ef480c
RE
8169 * cannot goto clean7 or free_irqs will be called
8170 * again. Instead, do its work
8171 */
8172 hpsa_free_performant_mode(h); /* clean7 */
8173 hpsa_free_sg_chain_blocks(h); /* clean6 */
8174 hpsa_free_cmd_pool(h); /* clean5 */
8175 /*
8176 * skip hpsa_free_irqs(h) clean4 since that
8177 * was just called before request_irqs failed
d498757c
RE
8178 */
8179 goto clean3;
64670ac8
SC
8180 }
8181
8182 rc = hpsa_kdump_soft_reset(h);
8183 if (rc)
8184 /* Neither hard nor soft reset worked, we're hosed. */
7ef7323f 8185 goto clean7;
64670ac8
SC
8186
8187 dev_info(&h->pdev->dev, "Board READY.\n");
8188 dev_info(&h->pdev->dev,
8189 "Waiting for stale completions to drain.\n");
8190 h->access.set_intr_mask(h, HPSA_INTR_ON);
8191 msleep(10000);
8192 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8193
8194 rc = controller_reset_failed(h->cfgtable);
8195 if (rc)
8196 dev_info(&h->pdev->dev,
8197 "Soft reset appears to have failed.\n");
8198
8199 /* since the controller's reset, we have to go back and re-init
8200 * everything. Easiest to just forget what we've done and do it
8201 * all over again.
8202 */
8203 hpsa_undo_allocations_after_kdump_soft_reset(h);
8204 try_soft_reset = 0;
8205 if (rc)
b2ef480c 8206 /* don't goto clean, we already unallocated */
64670ac8
SC
8207 return -ENODEV;
8208
8209 goto reinit_after_soft_reset;
8210 }
edd16368 8211
105a3dbc
RE
8212 /* Enable Accelerated IO path at driver layer */
8213 h->acciopath_status = 1;
da0697bd 8214
e863d68e 8215
edd16368
SC
8216 /* Turn the interrupts on so we can service requests */
8217 h->access.set_intr_mask(h, HPSA_INTR_ON);
8218
339b2b14 8219 hpsa_hba_inquiry(h);
8a98db73
SC
8220
8221 /* Monitor the controller for firmware lockups */
8222 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8223 INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8224 schedule_delayed_work(&h->monitor_ctlr_work,
8225 h->heartbeat_sample_interval);
6636e7f4
DB
8226 INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8227 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8228 h->heartbeat_sample_interval);
88bf6d62 8229 return 0;
edd16368 8230
2946e82b 8231clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
105a3dbc
RE
8232 hpsa_free_performant_mode(h);
8233 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8234clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
33a2ffce 8235 hpsa_free_sg_chain_blocks(h);
2946e82b 8236clean5: /* cmd, irq, shost, pci, lu, aer/h */
2e9d1b36 8237 hpsa_free_cmd_pool(h);
2946e82b 8238clean4: /* irq, shost, pci, lu, aer/h */
ec501a18 8239 hpsa_free_irqs(h);
2946e82b
RE
8240clean3: /* shost, pci, lu, aer/h */
8241 scsi_host_put(h->scsi_host);
8242 h->scsi_host = NULL;
8243clean2_5: /* pci, lu, aer/h */
195f2c65 8244 hpsa_free_pci_init(h);
2946e82b 8245clean2: /* lu, aer/h */
105a3dbc
RE
8246 if (h->lockup_detected) {
8247 free_percpu(h->lockup_detected);
8248 h->lockup_detected = NULL;
8249 }
8250clean1: /* wq/aer/h */
8251 if (h->resubmit_wq) {
080ef1cc 8252 destroy_workqueue(h->resubmit_wq);
105a3dbc
RE
8253 h->resubmit_wq = NULL;
8254 }
8255 if (h->rescan_ctlr_wq) {
6636e7f4 8256 destroy_workqueue(h->rescan_ctlr_wq);
105a3dbc
RE
8257 h->rescan_ctlr_wq = NULL;
8258 }
edd16368 8259 kfree(h);
ecd9aad4 8260 return rc;
edd16368
SC
8261}
8262
8263static void hpsa_flush_cache(struct ctlr_info *h)
8264{
8265 char *flush_buf;
8266 struct CommandList *c;
25163bd5 8267 int rc;
702890e3 8268
094963da 8269 if (unlikely(lockup_detected(h)))
702890e3 8270 return;
edd16368
SC
8271 flush_buf = kzalloc(4, GFP_KERNEL);
8272 if (!flush_buf)
8273 return;
8274
45fcb86e 8275 c = cmd_alloc(h);
bf43caf3 8276
a2dac136
SC
8277 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8278 RAID_CTLR_LUNID, TYPE_CMD)) {
8279 goto out;
8280 }
25163bd5
WS
8281 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8282 PCI_DMA_TODEVICE, NO_TIMEOUT);
8283 if (rc)
8284 goto out;
edd16368 8285 if (c->err_info->CommandStatus != 0)
a2dac136 8286out:
edd16368
SC
8287 dev_warn(&h->pdev->dev,
8288 "error flushing cache on controller\n");
45fcb86e 8289 cmd_free(h, c);
edd16368
SC
8290 kfree(flush_buf);
8291}
8292
8293static void hpsa_shutdown(struct pci_dev *pdev)
8294{
8295 struct ctlr_info *h;
8296
8297 h = pci_get_drvdata(pdev);
8298 /* Turn board interrupts off and send the flush cache command
8299 * sendcmd will turn off interrupt, and send the flush...
8300 * To write all data in the battery backed cache to disks
8301 */
8302 hpsa_flush_cache(h);
8303 h->access.set_intr_mask(h, HPSA_INTR_OFF);
105a3dbc 8304 hpsa_free_irqs(h); /* init_one 4 */
cc64c817 8305 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
edd16368
SC
8306}
8307
6f039790 8308static void hpsa_free_device_info(struct ctlr_info *h)
55e14e76
SC
8309{
8310 int i;
8311
105a3dbc 8312 for (i = 0; i < h->ndevices; i++) {
55e14e76 8313 kfree(h->dev[i]);
105a3dbc
RE
8314 h->dev[i] = NULL;
8315 }
55e14e76
SC
8316}
8317
6f039790 8318static void hpsa_remove_one(struct pci_dev *pdev)
edd16368
SC
8319{
8320 struct ctlr_info *h;
8a98db73 8321 unsigned long flags;
edd16368
SC
8322
8323 if (pci_get_drvdata(pdev) == NULL) {
a0c12413 8324 dev_err(&pdev->dev, "unable to remove device\n");
edd16368
SC
8325 return;
8326 }
8327 h = pci_get_drvdata(pdev);
8a98db73
SC
8328
8329 /* Get rid of any controller monitoring work items */
8330 spin_lock_irqsave(&h->lock, flags);
8331 h->remove_in_progress = 1;
8a98db73 8332 spin_unlock_irqrestore(&h->lock, flags);
6636e7f4
DB
8333 cancel_delayed_work_sync(&h->monitor_ctlr_work);
8334 cancel_delayed_work_sync(&h->rescan_ctlr_work);
8335 destroy_workqueue(h->rescan_ctlr_wq);
8336 destroy_workqueue(h->resubmit_wq);
cc64c817 8337
2d041306
DB
8338 /*
8339 * Call before disabling interrupts.
8340 * scsi_remove_host can trigger I/O operations especially
8341 * when multipath is enabled. There can be SYNCHRONIZE CACHE
8342 * operations which cannot complete and will hang the system.
8343 */
8344 if (h->scsi_host)
8345 scsi_remove_host(h->scsi_host); /* init_one 8 */
105a3dbc 8346 /* includes hpsa_free_irqs - init_one 4 */
195f2c65 8347 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
edd16368 8348 hpsa_shutdown(pdev);
cc64c817 8349
105a3dbc
RE
8350 hpsa_free_device_info(h); /* scan */
8351
2946e82b
RE
8352 kfree(h->hba_inquiry_data); /* init_one 10 */
8353 h->hba_inquiry_data = NULL; /* init_one 10 */
2946e82b 8354 hpsa_free_ioaccel2_sg_chain_blocks(h);
105a3dbc
RE
8355 hpsa_free_performant_mode(h); /* init_one 7 */
8356 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
8357 hpsa_free_cmd_pool(h); /* init_one 5 */
8358
8359 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
195f2c65 8360
2946e82b
RE
8361 scsi_host_put(h->scsi_host); /* init_one 3 */
8362 h->scsi_host = NULL; /* init_one 3 */
8363
195f2c65 8364 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
2946e82b 8365 hpsa_free_pci_init(h); /* init_one 2.5 */
195f2c65 8366
105a3dbc
RE
8367 free_percpu(h->lockup_detected); /* init_one 2 */
8368 h->lockup_detected = NULL; /* init_one 2 */
8369 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */
8370 kfree(h); /* init_one 1 */
edd16368
SC
8371}
8372
8373static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8374 __attribute__((unused)) pm_message_t state)
8375{
8376 return -ENOSYS;
8377}
8378
8379static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8380{
8381 return -ENOSYS;
8382}
8383
8384static struct pci_driver hpsa_pci_driver = {
f79cfec6 8385 .name = HPSA,
edd16368 8386 .probe = hpsa_init_one,
6f039790 8387 .remove = hpsa_remove_one,
edd16368
SC
8388 .id_table = hpsa_pci_device_id, /* id_table */
8389 .shutdown = hpsa_shutdown,
8390 .suspend = hpsa_suspend,
8391 .resume = hpsa_resume,
8392};
8393
303932fd
DB
8394/* Fill in bucket_map[], given nsgs (the max number of
8395 * scatter gather elements supported) and bucket[],
8396 * which is an array of 8 integers. The bucket[] array
8397 * contains 8 different DMA transfer sizes (in 16
8398 * byte increments) which the controller uses to fetch
8399 * commands. This function fills in bucket_map[], which
8400 * maps a given number of scatter gather elements to one of
8401 * the 8 DMA transfer sizes. The point of it is to allow the
8402 * controller to only do as much DMA as needed to fetch the
8403 * command, with the DMA transfer size encoded in the lower
8404 * bits of the command address.
8405 */
8406static void calc_bucket_map(int bucket[], int num_buckets,
2b08b3e9 8407 int nsgs, int min_blocks, u32 *bucket_map)
303932fd
DB
8408{
8409 int i, j, b, size;
8410
303932fd
DB
8411 /* Note, bucket_map must have nsgs+1 entries. */
8412 for (i = 0; i <= nsgs; i++) {
8413 /* Compute size of a command with i SG entries */
e1f7de0c 8414 size = i + min_blocks;
303932fd
DB
8415 b = num_buckets; /* Assume the biggest bucket */
8416 /* Find the bucket that is just big enough */
e1f7de0c 8417 for (j = 0; j < num_buckets; j++) {
303932fd
DB
8418 if (bucket[j] >= size) {
8419 b = j;
8420 break;
8421 }
8422 }
8423 /* for a command with i SG entries, use bucket b. */
8424 bucket_map[i] = b;
8425 }
8426}
8427
105a3dbc
RE
8428/*
8429 * return -ENODEV on err, 0 on success (or no action)
8430 * allocates numerous items that must be freed later
8431 */
c706a795 8432static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
303932fd 8433{
6c311b57
SC
8434 int i;
8435 unsigned long register_value;
e1f7de0c
MG
8436 unsigned long transMethod = CFGTBL_Trans_Performant |
8437 (trans_support & CFGTBL_Trans_use_short_tags) |
b9af4937
SC
8438 CFGTBL_Trans_enable_directed_msix |
8439 (trans_support & (CFGTBL_Trans_io_accel1 |
8440 CFGTBL_Trans_io_accel2));
e1f7de0c 8441 struct access_method access = SA5_performant_access;
def342bd
SC
8442
8443 /* This is a bit complicated. There are 8 registers on
8444 * the controller which we write to to tell it 8 different
8445 * sizes of commands which there may be. It's a way of
8446 * reducing the DMA done to fetch each command. Encoded into
8447 * each command's tag are 3 bits which communicate to the controller
8448 * which of the eight sizes that command fits within. The size of
8449 * each command depends on how many scatter gather entries there are.
8450 * Each SG entry requires 16 bytes. The eight registers are programmed
8451 * with the number of 16-byte blocks a command of that size requires.
8452 * The smallest command possible requires 5 such 16 byte blocks.
d66ae08b 8453 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
def342bd
SC
8454 * blocks. Note, this only extends to the SG entries contained
8455 * within the command block, and does not extend to chained blocks
8456 * of SG elements. bft[] contains the eight values we write to
8457 * the registers. They are not evenly distributed, but have more
8458 * sizes for small commands, and fewer sizes for larger commands.
8459 */
d66ae08b 8460 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
b9af4937
SC
8461#define MIN_IOACCEL2_BFT_ENTRY 5
8462#define HPSA_IOACCEL2_HEADER_SZ 4
8463 int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
8464 13, 14, 15, 16, 17, 18, 19,
8465 HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
8466 BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
8467 BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
8468 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
8469 16 * MIN_IOACCEL2_BFT_ENTRY);
8470 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
d66ae08b 8471 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
303932fd
DB
8472 /* 5 = 1 s/g entry or 4k
8473 * 6 = 2 s/g entry or 8k
8474 * 8 = 4 s/g entry or 16k
8475 * 10 = 6 s/g entry or 24k
8476 */
303932fd 8477
b3a52e79
SC
8478 /* If the controller supports either ioaccel method then
8479 * we can also use the RAID stack submit path that does not
8480 * perform the superfluous readl() after each command submission.
8481 */
8482 if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
8483 access = SA5_performant_access_no_read;
8484
303932fd 8485 /* Controller spec: zero out this buffer. */
072b0518
SC
8486 for (i = 0; i < h->nreply_queues; i++)
8487 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
303932fd 8488
d66ae08b
SC
8489 bft[7] = SG_ENTRIES_IN_CMD + 4;
8490 calc_bucket_map(bft, ARRAY_SIZE(bft),
e1f7de0c 8491 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
303932fd
DB
8492 for (i = 0; i < 8; i++)
8493 writel(bft[i], &h->transtable->BlockFetch[i]);
8494
8495 /* size of controller ring buffer */
8496 writel(h->max_commands, &h->transtable->RepQSize);
254f796b 8497 writel(h->nreply_queues, &h->transtable->RepQCount);
303932fd
DB
8498 writel(0, &h->transtable->RepQCtrAddrLow32);
8499 writel(0, &h->transtable->RepQCtrAddrHigh32);
254f796b
MG
8500
8501 for (i = 0; i < h->nreply_queues; i++) {
8502 writel(0, &h->transtable->RepQAddr[i].upper);
072b0518 8503 writel(h->reply_queue[i].busaddr,
254f796b
MG
8504 &h->transtable->RepQAddr[i].lower);
8505 }
8506
b9af4937 8507 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
e1f7de0c
MG
8508 writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
8509 /*
8510 * enable outbound interrupt coalescing in accelerator mode;
8511 */
8512 if (trans_support & CFGTBL_Trans_io_accel1) {
8513 access = SA5_ioaccel_mode1_access;
8514 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8515 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
c349775e
ST
8516 } else {
8517 if (trans_support & CFGTBL_Trans_io_accel2) {
8518 access = SA5_ioaccel_mode2_access;
8519 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8520 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8521 }
e1f7de0c 8522 }
303932fd 8523 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
c706a795
RE
8524 if (hpsa_wait_for_mode_change_ack(h)) {
8525 dev_err(&h->pdev->dev,
8526 "performant mode problem - doorbell timeout\n");
8527 return -ENODEV;
8528 }
303932fd
DB
8529 register_value = readl(&(h->cfgtable->TransportActive));
8530 if (!(register_value & CFGTBL_Trans_Performant)) {
050f7147
SC
8531 dev_err(&h->pdev->dev,
8532 "performant mode problem - transport not active\n");
c706a795 8533 return -ENODEV;
303932fd 8534 }
960a30e7 8535 /* Change the access methods to the performant access methods */
e1f7de0c
MG
8536 h->access = access;
8537 h->transMethod = transMethod;
8538
b9af4937
SC
8539 if (!((trans_support & CFGTBL_Trans_io_accel1) ||
8540 (trans_support & CFGTBL_Trans_io_accel2)))
c706a795 8541 return 0;
e1f7de0c 8542
b9af4937
SC
8543 if (trans_support & CFGTBL_Trans_io_accel1) {
8544 /* Set up I/O accelerator mode */
8545 for (i = 0; i < h->nreply_queues; i++) {
8546 writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
8547 h->reply_queue[i].current_entry =
8548 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
8549 }
8550 bft[7] = h->ioaccel_maxsg + 8;
8551 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
8552 h->ioaccel1_blockFetchTable);
e1f7de0c 8553
b9af4937 8554 /* initialize all reply queue entries to unused */
072b0518
SC
8555 for (i = 0; i < h->nreply_queues; i++)
8556 memset(h->reply_queue[i].head,
8557 (u8) IOACCEL_MODE1_REPLY_UNUSED,
8558 h->reply_queue_size);
e1f7de0c 8559
b9af4937
SC
8560 /* set all the constant fields in the accelerator command
8561 * frames once at init time to save CPU cycles later.
8562 */
8563 for (i = 0; i < h->nr_cmds; i++) {
8564 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
8565
8566 cp->function = IOACCEL1_FUNCTION_SCSIIO;
8567 cp->err_info = (u32) (h->errinfo_pool_dhandle +
8568 (i * sizeof(struct ErrorInfo)));
8569 cp->err_info_len = sizeof(struct ErrorInfo);
8570 cp->sgl_offset = IOACCEL1_SGLOFFSET;
2b08b3e9
DB
8571 cp->host_context_flags =
8572 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
b9af4937
SC
8573 cp->timeout_sec = 0;
8574 cp->ReplyQueue = 0;
50a0decf 8575 cp->tag =
f2405db8 8576 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
50a0decf
SC
8577 cp->host_addr =
8578 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
b9af4937 8579 (i * sizeof(struct io_accel1_cmd)));
b9af4937
SC
8580 }
8581 } else if (trans_support & CFGTBL_Trans_io_accel2) {
8582 u64 cfg_offset, cfg_base_addr_index;
8583 u32 bft2_offset, cfg_base_addr;
8584 int rc;
8585
8586 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
8587 &cfg_base_addr_index, &cfg_offset);
8588 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
8589 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
8590 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
8591 4, h->ioaccel2_blockFetchTable);
8592 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
8593 BUILD_BUG_ON(offsetof(struct CfgTable,
8594 io_accel_request_size_offset) != 0xb8);
8595 h->ioaccel2_bft2_regs =
8596 remap_pci_mem(pci_resource_start(h->pdev,
8597 cfg_base_addr_index) +
8598 cfg_offset + bft2_offset,
8599 ARRAY_SIZE(bft2) *
8600 sizeof(*h->ioaccel2_bft2_regs));
8601 for (i = 0; i < ARRAY_SIZE(bft2); i++)
8602 writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
e1f7de0c 8603 }
b9af4937 8604 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
c706a795
RE
8605 if (hpsa_wait_for_mode_change_ack(h)) {
8606 dev_err(&h->pdev->dev,
8607 "performant mode problem - enabling ioaccel mode\n");
8608 return -ENODEV;
8609 }
8610 return 0;
e1f7de0c
MG
8611}
8612
1fb7c98a
RE
8613/* Free ioaccel1 mode command blocks and block fetch table */
8614static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8615{
105a3dbc 8616 if (h->ioaccel_cmd_pool) {
1fb7c98a
RE
8617 pci_free_consistent(h->pdev,
8618 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
8619 h->ioaccel_cmd_pool,
8620 h->ioaccel_cmd_pool_dhandle);
105a3dbc
RE
8621 h->ioaccel_cmd_pool = NULL;
8622 h->ioaccel_cmd_pool_dhandle = 0;
8623 }
1fb7c98a 8624 kfree(h->ioaccel1_blockFetchTable);
105a3dbc 8625 h->ioaccel1_blockFetchTable = NULL;
1fb7c98a
RE
8626}
8627
d37ffbe4
RE
8628/* Allocate ioaccel1 mode command blocks and block fetch table */
8629static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
e1f7de0c 8630{
283b4a9b
SC
8631 h->ioaccel_maxsg =
8632 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
8633 if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
8634 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
8635
e1f7de0c
MG
8636 /* Command structures must be aligned on a 128-byte boundary
8637 * because the 7 lower bits of the address are used by the
8638 * hardware.
8639 */
e1f7de0c
MG
8640 BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
8641 IOACCEL1_COMMANDLIST_ALIGNMENT);
8642 h->ioaccel_cmd_pool =
8643 pci_alloc_consistent(h->pdev,
8644 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
8645 &(h->ioaccel_cmd_pool_dhandle));
8646
8647 h->ioaccel1_blockFetchTable =
283b4a9b 8648 kmalloc(((h->ioaccel_maxsg + 1) *
e1f7de0c
MG
8649 sizeof(u32)), GFP_KERNEL);
8650
8651 if ((h->ioaccel_cmd_pool == NULL) ||
8652 (h->ioaccel1_blockFetchTable == NULL))
8653 goto clean_up;
8654
8655 memset(h->ioaccel_cmd_pool, 0,
8656 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
8657 return 0;
8658
8659clean_up:
1fb7c98a 8660 hpsa_free_ioaccel1_cmd_and_bft(h);
2dd02d74 8661 return -ENOMEM;
6c311b57
SC
8662}
8663
1fb7c98a
RE
8664/* Free ioaccel2 mode command blocks and block fetch table */
8665static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
8666{
d9a729f3
WS
8667 hpsa_free_ioaccel2_sg_chain_blocks(h);
8668
105a3dbc 8669 if (h->ioaccel2_cmd_pool) {
1fb7c98a
RE
8670 pci_free_consistent(h->pdev,
8671 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
8672 h->ioaccel2_cmd_pool,
8673 h->ioaccel2_cmd_pool_dhandle);
105a3dbc
RE
8674 h->ioaccel2_cmd_pool = NULL;
8675 h->ioaccel2_cmd_pool_dhandle = 0;
8676 }
1fb7c98a 8677 kfree(h->ioaccel2_blockFetchTable);
105a3dbc 8678 h->ioaccel2_blockFetchTable = NULL;
1fb7c98a
RE
8679}
8680
d37ffbe4
RE
8681/* Allocate ioaccel2 mode command blocks and block fetch table */
8682static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
aca9012a 8683{
d9a729f3
WS
8684 int rc;
8685
aca9012a
SC
8686 /* Allocate ioaccel2 mode command blocks and block fetch table */
8687
8688 h->ioaccel_maxsg =
8689 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
8690 if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
8691 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
8692
aca9012a
SC
8693 BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
8694 IOACCEL2_COMMANDLIST_ALIGNMENT);
8695 h->ioaccel2_cmd_pool =
8696 pci_alloc_consistent(h->pdev,
8697 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
8698 &(h->ioaccel2_cmd_pool_dhandle));
8699
8700 h->ioaccel2_blockFetchTable =
8701 kmalloc(((h->ioaccel_maxsg + 1) *
8702 sizeof(u32)), GFP_KERNEL);
8703
8704 if ((h->ioaccel2_cmd_pool == NULL) ||
d9a729f3
WS
8705 (h->ioaccel2_blockFetchTable == NULL)) {
8706 rc = -ENOMEM;
8707 goto clean_up;
8708 }
8709
8710 rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
8711 if (rc)
aca9012a
SC
8712 goto clean_up;
8713
8714 memset(h->ioaccel2_cmd_pool, 0,
8715 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
8716 return 0;
8717
8718clean_up:
1fb7c98a 8719 hpsa_free_ioaccel2_cmd_and_bft(h);
d9a729f3 8720 return rc;
aca9012a
SC
8721}
8722
105a3dbc
RE
8723/* Free items allocated by hpsa_put_ctlr_into_performant_mode */
8724static void hpsa_free_performant_mode(struct ctlr_info *h)
8725{
8726 kfree(h->blockFetchTable);
8727 h->blockFetchTable = NULL;
8728 hpsa_free_reply_queues(h);
8729 hpsa_free_ioaccel1_cmd_and_bft(h);
8730 hpsa_free_ioaccel2_cmd_and_bft(h);
8731}
8732
8733/* return -ENODEV on error, 0 on success (or no action)
8734 * allocates numerous items that must be freed later
8735 */
8736static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
6c311b57
SC
8737{
8738 u32 trans_support;
e1f7de0c
MG
8739 unsigned long transMethod = CFGTBL_Trans_Performant |
8740 CFGTBL_Trans_use_short_tags;
105a3dbc 8741 int i, rc;
6c311b57 8742
02ec19c8 8743 if (hpsa_simple_mode)
105a3dbc 8744 return 0;
02ec19c8 8745
67c99a72 8746 trans_support = readl(&(h->cfgtable->TransportSupport));
8747 if (!(trans_support & PERFORMANT_MODE))
105a3dbc 8748 return 0;
67c99a72 8749
e1f7de0c
MG
8750 /* Check for I/O accelerator mode support */
8751 if (trans_support & CFGTBL_Trans_io_accel1) {
8752 transMethod |= CFGTBL_Trans_io_accel1 |
8753 CFGTBL_Trans_enable_directed_msix;
105a3dbc
RE
8754 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
8755 if (rc)
8756 return rc;
8757 } else if (trans_support & CFGTBL_Trans_io_accel2) {
8758 transMethod |= CFGTBL_Trans_io_accel2 |
aca9012a 8759 CFGTBL_Trans_enable_directed_msix;
105a3dbc
RE
8760 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
8761 if (rc)
8762 return rc;
e1f7de0c
MG
8763 }
8764
eee0f03a 8765 h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
cba3d38b 8766 hpsa_get_max_perf_mode_cmds(h);
6c311b57 8767 /* Performant mode ring buffer and supporting data structures */
072b0518 8768 h->reply_queue_size = h->max_commands * sizeof(u64);
6c311b57 8769
254f796b 8770 for (i = 0; i < h->nreply_queues; i++) {
072b0518
SC
8771 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
8772 h->reply_queue_size,
8773 &(h->reply_queue[i].busaddr));
105a3dbc
RE
8774 if (!h->reply_queue[i].head) {
8775 rc = -ENOMEM;
8776 goto clean1; /* rq, ioaccel */
8777 }
254f796b
MG
8778 h->reply_queue[i].size = h->max_commands;
8779 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */
8780 h->reply_queue[i].current_entry = 0;
8781 }
8782
6c311b57 8783 /* Need a block fetch table for performant mode */
d66ae08b 8784 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
6c311b57 8785 sizeof(u32)), GFP_KERNEL);
105a3dbc
RE
8786 if (!h->blockFetchTable) {
8787 rc = -ENOMEM;
8788 goto clean1; /* rq, ioaccel */
8789 }
6c311b57 8790
105a3dbc
RE
8791 rc = hpsa_enter_performant_mode(h, trans_support);
8792 if (rc)
8793 goto clean2; /* bft, rq, ioaccel */
8794 return 0;
303932fd 8795
105a3dbc 8796clean2: /* bft, rq, ioaccel */
303932fd 8797 kfree(h->blockFetchTable);
105a3dbc
RE
8798 h->blockFetchTable = NULL;
8799clean1: /* rq, ioaccel */
8800 hpsa_free_reply_queues(h);
8801 hpsa_free_ioaccel1_cmd_and_bft(h);
8802 hpsa_free_ioaccel2_cmd_and_bft(h);
8803 return rc;
303932fd
DB
8804}
8805
23100dd9 8806static int is_accelerated_cmd(struct CommandList *c)
76438d08 8807{
23100dd9
SC
8808 return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
8809}
8810
8811static void hpsa_drain_accel_commands(struct ctlr_info *h)
8812{
8813 struct CommandList *c = NULL;
f2405db8 8814 int i, accel_cmds_out;
281a7fd0 8815 int refcount;
76438d08 8816
f2405db8 8817 do { /* wait for all outstanding ioaccel commands to drain out */
23100dd9 8818 accel_cmds_out = 0;
f2405db8 8819 for (i = 0; i < h->nr_cmds; i++) {
f2405db8 8820 c = h->cmd_pool + i;
281a7fd0
WS
8821 refcount = atomic_inc_return(&c->refcount);
8822 if (refcount > 1) /* Command is allocated */
8823 accel_cmds_out += is_accelerated_cmd(c);
8824 cmd_free(h, c);
f2405db8 8825 }
23100dd9 8826 if (accel_cmds_out <= 0)
281a7fd0 8827 break;
76438d08
SC
8828 msleep(100);
8829 } while (1);
8830}
8831
edd16368
SC
8832/*
8833 * This is it. Register the PCI driver information for the cards we control
8834 * the OS will call our registered routines when it finds one of our cards.
8835 */
8836static int __init hpsa_init(void)
8837{
31468401 8838 return pci_register_driver(&hpsa_pci_driver);
edd16368
SC
8839}
8840
8841static void __exit hpsa_cleanup(void)
8842{
8843 pci_unregister_driver(&hpsa_pci_driver);
edd16368
SC
8844}
8845
e1f7de0c
MG
8846static void __attribute__((unused)) verify_offsets(void)
8847{
dd0e19f3
ST
8848#define VERIFY_OFFSET(member, offset) \
8849 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
8850
8851 VERIFY_OFFSET(structure_size, 0);
8852 VERIFY_OFFSET(volume_blk_size, 4);
8853 VERIFY_OFFSET(volume_blk_cnt, 8);
8854 VERIFY_OFFSET(phys_blk_shift, 16);
8855 VERIFY_OFFSET(parity_rotation_shift, 17);
8856 VERIFY_OFFSET(strip_size, 18);
8857 VERIFY_OFFSET(disk_starting_blk, 20);
8858 VERIFY_OFFSET(disk_blk_cnt, 28);
8859 VERIFY_OFFSET(data_disks_per_row, 36);
8860 VERIFY_OFFSET(metadata_disks_per_row, 38);
8861 VERIFY_OFFSET(row_cnt, 40);
8862 VERIFY_OFFSET(layout_map_count, 42);
8863 VERIFY_OFFSET(flags, 44);
8864 VERIFY_OFFSET(dekindex, 46);
8865 /* VERIFY_OFFSET(reserved, 48 */
8866 VERIFY_OFFSET(data, 64);
8867
8868#undef VERIFY_OFFSET
8869
b66cc250
MM
8870#define VERIFY_OFFSET(member, offset) \
8871 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
8872
8873 VERIFY_OFFSET(IU_type, 0);
8874 VERIFY_OFFSET(direction, 1);
8875 VERIFY_OFFSET(reply_queue, 2);
8876 /* VERIFY_OFFSET(reserved1, 3); */
8877 VERIFY_OFFSET(scsi_nexus, 4);
8878 VERIFY_OFFSET(Tag, 8);
8879 VERIFY_OFFSET(cdb, 16);
8880 VERIFY_OFFSET(cciss_lun, 32);
8881 VERIFY_OFFSET(data_len, 40);
8882 VERIFY_OFFSET(cmd_priority_task_attr, 44);
8883 VERIFY_OFFSET(sg_count, 45);
8884 /* VERIFY_OFFSET(reserved3 */
8885 VERIFY_OFFSET(err_ptr, 48);
8886 VERIFY_OFFSET(err_len, 56);
8887 /* VERIFY_OFFSET(reserved4 */
8888 VERIFY_OFFSET(sg, 64);
8889
8890#undef VERIFY_OFFSET
8891
e1f7de0c
MG
8892#define VERIFY_OFFSET(member, offset) \
8893 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
8894
8895 VERIFY_OFFSET(dev_handle, 0x00);
8896 VERIFY_OFFSET(reserved1, 0x02);
8897 VERIFY_OFFSET(function, 0x03);
8898 VERIFY_OFFSET(reserved2, 0x04);
8899 VERIFY_OFFSET(err_info, 0x0C);
8900 VERIFY_OFFSET(reserved3, 0x10);
8901 VERIFY_OFFSET(err_info_len, 0x12);
8902 VERIFY_OFFSET(reserved4, 0x13);
8903 VERIFY_OFFSET(sgl_offset, 0x14);
8904 VERIFY_OFFSET(reserved5, 0x15);
8905 VERIFY_OFFSET(transfer_len, 0x1C);
8906 VERIFY_OFFSET(reserved6, 0x20);
8907 VERIFY_OFFSET(io_flags, 0x24);
8908 VERIFY_OFFSET(reserved7, 0x26);
8909 VERIFY_OFFSET(LUN, 0x34);
8910 VERIFY_OFFSET(control, 0x3C);
8911 VERIFY_OFFSET(CDB, 0x40);
8912 VERIFY_OFFSET(reserved8, 0x50);
8913 VERIFY_OFFSET(host_context_flags, 0x60);
8914 VERIFY_OFFSET(timeout_sec, 0x62);
8915 VERIFY_OFFSET(ReplyQueue, 0x64);
8916 VERIFY_OFFSET(reserved9, 0x65);
50a0decf 8917 VERIFY_OFFSET(tag, 0x68);
e1f7de0c
MG
8918 VERIFY_OFFSET(host_addr, 0x70);
8919 VERIFY_OFFSET(CISS_LUN, 0x78);
8920 VERIFY_OFFSET(SG, 0x78 + 8);
8921#undef VERIFY_OFFSET
8922}
8923
edd16368
SC
8924module_init(hpsa_init);
8925module_exit(hpsa_cleanup);
This page took 1.104779 seconds and 5 git commands to generate.