isci: additional state machine cleanup
[deliverable/linux.git] / drivers / scsi / isci / host.c
CommitLineData
6f231dda
DW
1/*
2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
4 *
5 * GPL LICENSE SUMMARY
6 *
7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
23 *
24 * BSD LICENSE
25 *
26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27 * All rights reserved.
28 *
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
31 * are met:
32 *
33 * * Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * * Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in
37 * the documentation and/or other materials provided with the
38 * distribution.
39 * * Neither the name of Intel Corporation nor the names of its
40 * contributors may be used to endorse or promote products derived
41 * from this software without specific prior written permission.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54 */
cc9203bf
DW
55#include <linux/device.h>
56#include <scsi/sas.h>
57#include "host.h"
6f231dda 58#include "isci.h"
6f231dda 59#include "port.h"
6f231dda 60#include "host.h"
d044af17 61#include "probe_roms.h"
cc9203bf
DW
62#include "remote_device.h"
63#include "request.h"
cc9203bf
DW
64#include "scu_completion_codes.h"
65#include "scu_event_codes.h"
63a3a15f 66#include "registers.h"
cc9203bf
DW
67#include "scu_remote_node_context.h"
68#include "scu_task_context.h"
69#include "scu_unsolicited_frame.h"
6f231dda 70
cc9203bf
DW
71#define SCU_CONTEXT_RAM_INIT_STALL_TIME 200
72
73/**
74 * smu_dcc_get_max_ports() -
75 *
76 * This macro returns the maximum number of logical ports supported by the
77 * hardware. The caller passes in the value read from the device context
78 * capacity register and this macro will mash and shift the value appropriately.
79 */
80#define smu_dcc_get_max_ports(dcc_value) \
81 (\
82 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
83 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
84 )
85
86/**
87 * smu_dcc_get_max_task_context() -
88 *
89 * This macro returns the maximum number of task contexts supported by the
90 * hardware. The caller passes in the value read from the device context
91 * capacity register and this macro will mash and shift the value appropriately.
92 */
93#define smu_dcc_get_max_task_context(dcc_value) \
94 (\
95 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
96 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
97 )
98
99/**
100 * smu_dcc_get_max_remote_node_context() -
101 *
102 * This macro returns the maximum number of remote node contexts supported by
103 * the hardware. The caller passes in the value read from the device context
104 * capacity register and this macro will mash and shift the value appropriately.
105 */
106#define smu_dcc_get_max_remote_node_context(dcc_value) \
107 (\
108 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
109 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
110 )
111
112
cc9203bf
DW
113#define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT 100
114
115/**
116 *
117 *
118 * The number of milliseconds to wait while a given phy is consuming power
119 * before allowing another set of phys to consume power. Ultimately, this will
120 * be specified by OEM parameter.
121 */
122#define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500
123
124/**
125 * NORMALIZE_PUT_POINTER() -
126 *
127 * This macro will normalize the completion queue put pointer so its value can
128 * be used as an array inde
129 */
130#define NORMALIZE_PUT_POINTER(x) \
131 ((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)
132
133
134/**
135 * NORMALIZE_EVENT_POINTER() -
136 *
137 * This macro will normalize the completion queue event entry so its value can
138 * be used as an index.
139 */
140#define NORMALIZE_EVENT_POINTER(x) \
141 (\
142 ((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
143 >> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \
144 )
145
146/**
147 * INCREMENT_COMPLETION_QUEUE_GET() -
148 *
149 * This macro will increment the controllers completion queue index value and
150 * possibly toggle the cycle bit if the completion queue index wraps back to 0.
151 */
152#define INCREMENT_COMPLETION_QUEUE_GET(controller, index, cycle) \
153 INCREMENT_QUEUE_GET(\
154 (index), \
155 (cycle), \
156 (controller)->completion_queue_entries, \
157 SMU_CQGR_CYCLE_BIT \
158 )
159
160/**
161 * INCREMENT_EVENT_QUEUE_GET() -
162 *
163 * This macro will increment the controllers event queue index value and
164 * possibly toggle the event cycle bit if the event queue index wraps back to 0.
165 */
166#define INCREMENT_EVENT_QUEUE_GET(controller, index, cycle) \
167 INCREMENT_QUEUE_GET(\
168 (index), \
169 (cycle), \
170 (controller)->completion_event_entries, \
171 SMU_CQGR_EVENT_CYCLE_BIT \
172 )
173
174
175/**
176 * NORMALIZE_GET_POINTER() -
177 *
178 * This macro will normalize the completion queue get pointer so its value can
179 * be used as an index into an array
180 */
181#define NORMALIZE_GET_POINTER(x) \
182 ((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)
183
184/**
185 * NORMALIZE_GET_POINTER_CYCLE_BIT() -
186 *
187 * This macro will normalize the completion queue cycle pointer so it matches
188 * the completion queue cycle bit
189 */
190#define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
191 ((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))
192
193/**
194 * COMPLETION_QUEUE_CYCLE_BIT() -
195 *
196 * This macro will return the cycle bit of the completion queue entry
197 */
198#define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)
199
12ef6544
EN
200/* Init the state machine and call the state entry function (if any) */
201void sci_init_sm(struct sci_base_state_machine *sm,
202 const struct sci_base_state *state_table, u32 initial_state)
203{
204 sci_state_transition_t handler;
205
206 sm->initial_state_id = initial_state;
207 sm->previous_state_id = initial_state;
208 sm->current_state_id = initial_state;
209 sm->state_table = state_table;
210
211 handler = sm->state_table[initial_state].enter_state;
212 if (handler)
213 handler(sm);
214}
215
216/* Call the state exit fn, update the current state, call the state entry fn */
217void sci_change_state(struct sci_base_state_machine *sm, u32 next_state)
218{
219 sci_state_transition_t handler;
220
221 handler = sm->state_table[sm->current_state_id].exit_state;
222 if (handler)
223 handler(sm);
224
225 sm->previous_state_id = sm->current_state_id;
226 sm->current_state_id = next_state;
227
228 handler = sm->state_table[sm->current_state_id].enter_state;
229 if (handler)
230 handler(sm);
231}
232
cc9203bf
DW
233static bool scic_sds_controller_completion_queue_has_entries(
234 struct scic_sds_controller *scic)
235{
236 u32 get_value = scic->completion_queue_get;
237 u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK;
238
239 if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) ==
240 COMPLETION_QUEUE_CYCLE_BIT(scic->completion_queue[get_index]))
241 return true;
242
243 return false;
244}
245
246static bool scic_sds_controller_isr(struct scic_sds_controller *scic)
247{
248 if (scic_sds_controller_completion_queue_has_entries(scic)) {
249 return true;
250 } else {
251 /*
252 * we have a spurious interrupt it could be that we have already
253 * emptied the completion queue from a previous interrupt */
254 writel(SMU_ISR_COMPLETION, &scic->smu_registers->interrupt_status);
255
256 /*
257 * There is a race in the hardware that could cause us not to be notified
258 * of an interrupt completion if we do not take this step. We will mask
259 * then unmask the interrupts so if there is another interrupt pending
260 * the clearing of the interrupt source we get the next interrupt message. */
261 writel(0xFF000000, &scic->smu_registers->interrupt_mask);
262 writel(0, &scic->smu_registers->interrupt_mask);
263 }
264
265 return false;
266}
267
c7ef4031 268irqreturn_t isci_msix_isr(int vec, void *data)
6f231dda 269{
c7ef4031 270 struct isci_host *ihost = data;
c7ef4031 271
cc3dbd0a 272 if (scic_sds_controller_isr(&ihost->sci))
0cf89d1d 273 tasklet_schedule(&ihost->completion_tasklet);
6f231dda 274
c7ef4031 275 return IRQ_HANDLED;
6f231dda
DW
276}
277
cc9203bf
DW
278static bool scic_sds_controller_error_isr(struct scic_sds_controller *scic)
279{
280 u32 interrupt_status;
281
282 interrupt_status =
283 readl(&scic->smu_registers->interrupt_status);
284 interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);
285
286 if (interrupt_status != 0) {
287 /*
288 * There is an error interrupt pending so let it through and handle
289 * in the callback */
290 return true;
291 }
292
293 /*
294 * There is a race in the hardware that could cause us not to be notified
295 * of an interrupt completion if we do not take this step. We will mask
296 * then unmask the error interrupts so if there was another interrupt
297 * pending we will be notified.
298 * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
299 writel(0xff, &scic->smu_registers->interrupt_mask);
300 writel(0, &scic->smu_registers->interrupt_mask);
301
302 return false;
303}
304
305static void scic_sds_controller_task_completion(struct scic_sds_controller *scic,
306 u32 completion_entry)
307{
308 u32 index;
309 struct scic_sds_request *io_request;
310
311 index = SCU_GET_COMPLETION_INDEX(completion_entry);
312 io_request = scic->io_request_table[index];
313
314 /* Make sure that we really want to process this IO request */
315 if (
316 (io_request != NULL)
317 && (io_request->io_tag != SCI_CONTROLLER_INVALID_IO_TAG)
318 && (
319 scic_sds_io_tag_get_sequence(io_request->io_tag)
320 == scic->io_request_sequence[index]
321 )
322 ) {
323 /* Yep this is a valid io request pass it along to the io request handler */
324 scic_sds_io_request_tc_completion(io_request, completion_entry);
325 }
326}
327
328static void scic_sds_controller_sdma_completion(struct scic_sds_controller *scic,
329 u32 completion_entry)
330{
331 u32 index;
332 struct scic_sds_request *io_request;
333 struct scic_sds_remote_device *device;
334
335 index = SCU_GET_COMPLETION_INDEX(completion_entry);
336
337 switch (scu_get_command_request_type(completion_entry)) {
338 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC:
339 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC:
340 io_request = scic->io_request_table[index];
341 dev_warn(scic_to_dev(scic),
342 "%s: SCIC SDS Completion type SDMA %x for io request "
343 "%p\n",
344 __func__,
345 completion_entry,
346 io_request);
347 /* @todo For a post TC operation we need to fail the IO
348 * request
349 */
350 break;
351
352 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC:
353 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC:
354 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC:
355 device = scic->device_table[index];
356 dev_warn(scic_to_dev(scic),
357 "%s: SCIC SDS Completion type SDMA %x for remote "
358 "device %p\n",
359 __func__,
360 completion_entry,
361 device);
362 /* @todo For a port RNC operation we need to fail the
363 * device
364 */
365 break;
366
367 default:
368 dev_warn(scic_to_dev(scic),
369 "%s: SCIC SDS Completion unknown SDMA completion "
370 "type %x\n",
371 __func__,
372 completion_entry);
373 break;
374
375 }
376}
377
378static void scic_sds_controller_unsolicited_frame(struct scic_sds_controller *scic,
379 u32 completion_entry)
380{
381 u32 index;
382 u32 frame_index;
383
384 struct isci_host *ihost = scic_to_ihost(scic);
385 struct scu_unsolicited_frame_header *frame_header;
386 struct scic_sds_phy *phy;
387 struct scic_sds_remote_device *device;
388
389 enum sci_status result = SCI_FAILURE;
390
391 frame_index = SCU_GET_FRAME_INDEX(completion_entry);
392
393 frame_header = scic->uf_control.buffers.array[frame_index].header;
394 scic->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE;
395
396 if (SCU_GET_FRAME_ERROR(completion_entry)) {
397 /*
398 * / @todo If the IAF frame or SIGNATURE FIS frame has an error will
399 * / this cause a problem? We expect the phy initialization will
400 * / fail if there is an error in the frame. */
401 scic_sds_controller_release_frame(scic, frame_index);
402 return;
403 }
404
405 if (frame_header->is_address_frame) {
406 index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry);
407 phy = &ihost->phys[index].sci;
408 result = scic_sds_phy_frame_handler(phy, frame_index);
409 } else {
410
411 index = SCU_GET_COMPLETION_INDEX(completion_entry);
412
413 if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
414 /*
415 * This is a signature fis or a frame from a direct attached SATA
416 * device that has not yet been created. In either case forwared
417 * the frame to the PE and let it take care of the frame data. */
418 index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry);
419 phy = &ihost->phys[index].sci;
420 result = scic_sds_phy_frame_handler(phy, frame_index);
421 } else {
422 if (index < scic->remote_node_entries)
423 device = scic->device_table[index];
424 else
425 device = NULL;
426
427 if (device != NULL)
428 result = scic_sds_remote_device_frame_handler(device, frame_index);
429 else
430 scic_sds_controller_release_frame(scic, frame_index);
431 }
432 }
433
434 if (result != SCI_SUCCESS) {
435 /*
436 * / @todo Is there any reason to report some additional error message
437 * / when we get this failure notifiction? */
438 }
439}
440
441static void scic_sds_controller_event_completion(struct scic_sds_controller *scic,
442 u32 completion_entry)
443{
444 struct isci_host *ihost = scic_to_ihost(scic);
445 struct scic_sds_request *io_request;
446 struct scic_sds_remote_device *device;
447 struct scic_sds_phy *phy;
448 u32 index;
449
450 index = SCU_GET_COMPLETION_INDEX(completion_entry);
451
452 switch (scu_get_event_type(completion_entry)) {
453 case SCU_EVENT_TYPE_SMU_COMMAND_ERROR:
454 /* / @todo The driver did something wrong and we need to fix the condtion. */
455 dev_err(scic_to_dev(scic),
456 "%s: SCIC Controller 0x%p received SMU command error "
457 "0x%x\n",
458 __func__,
459 scic,
460 completion_entry);
461 break;
462
463 case SCU_EVENT_TYPE_SMU_PCQ_ERROR:
464 case SCU_EVENT_TYPE_SMU_ERROR:
465 case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR:
466 /*
467 * / @todo This is a hardware failure and its likely that we want to
468 * / reset the controller. */
469 dev_err(scic_to_dev(scic),
470 "%s: SCIC Controller 0x%p received fatal controller "
471 "event 0x%x\n",
472 __func__,
473 scic,
474 completion_entry);
475 break;
476
477 case SCU_EVENT_TYPE_TRANSPORT_ERROR:
478 io_request = scic->io_request_table[index];
479 scic_sds_io_request_event_handler(io_request, completion_entry);
480 break;
481
482 case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT:
483 switch (scu_get_event_specifier(completion_entry)) {
484 case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE:
485 case SCU_EVENT_SPECIFIC_TASK_TIMEOUT:
486 io_request = scic->io_request_table[index];
487 if (io_request != NULL)
488 scic_sds_io_request_event_handler(io_request, completion_entry);
489 else
490 dev_warn(scic_to_dev(scic),
491 "%s: SCIC Controller 0x%p received "
492 "event 0x%x for io request object "
493 "that doesnt exist.\n",
494 __func__,
495 scic,
496 completion_entry);
497
498 break;
499
500 case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT:
501 device = scic->device_table[index];
502 if (device != NULL)
503 scic_sds_remote_device_event_handler(device, completion_entry);
504 else
505 dev_warn(scic_to_dev(scic),
506 "%s: SCIC Controller 0x%p received "
507 "event 0x%x for remote device object "
508 "that doesnt exist.\n",
509 __func__,
510 scic,
511 completion_entry);
512
513 break;
514 }
515 break;
516
517 case SCU_EVENT_TYPE_BROADCAST_CHANGE:
518 /*
519 * direct the broadcast change event to the phy first and then let
520 * the phy redirect the broadcast change to the port object */
521 case SCU_EVENT_TYPE_ERR_CNT_EVENT:
522 /*
523 * direct error counter event to the phy object since that is where
524 * we get the event notification. This is a type 4 event. */
525 case SCU_EVENT_TYPE_OSSP_EVENT:
526 index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry);
527 phy = &ihost->phys[index].sci;
528 scic_sds_phy_event_handler(phy, completion_entry);
529 break;
530
531 case SCU_EVENT_TYPE_RNC_SUSPEND_TX:
532 case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX:
533 case SCU_EVENT_TYPE_RNC_OPS_MISC:
534 if (index < scic->remote_node_entries) {
535 device = scic->device_table[index];
536
537 if (device != NULL)
538 scic_sds_remote_device_event_handler(device, completion_entry);
539 } else
540 dev_err(scic_to_dev(scic),
541 "%s: SCIC Controller 0x%p received event 0x%x "
542 "for remote device object 0x%0x that doesnt "
543 "exist.\n",
544 __func__,
545 scic,
546 completion_entry,
547 index);
548
549 break;
550
551 default:
552 dev_warn(scic_to_dev(scic),
553 "%s: SCIC Controller received unknown event code %x\n",
554 __func__,
555 completion_entry);
556 break;
557 }
558}
559
560
561
562static void scic_sds_controller_process_completions(struct scic_sds_controller *scic)
563{
564 u32 completion_count = 0;
565 u32 completion_entry;
566 u32 get_index;
567 u32 get_cycle;
568 u32 event_index;
569 u32 event_cycle;
570
571 dev_dbg(scic_to_dev(scic),
572 "%s: completion queue begining get:0x%08x\n",
573 __func__,
574 scic->completion_queue_get);
575
576 /* Get the component parts of the completion queue */
577 get_index = NORMALIZE_GET_POINTER(scic->completion_queue_get);
578 get_cycle = SMU_CQGR_CYCLE_BIT & scic->completion_queue_get;
579
580 event_index = NORMALIZE_EVENT_POINTER(scic->completion_queue_get);
581 event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & scic->completion_queue_get;
582
583 while (
584 NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle)
585 == COMPLETION_QUEUE_CYCLE_BIT(scic->completion_queue[get_index])
586 ) {
587 completion_count++;
588
589 completion_entry = scic->completion_queue[get_index];
590 INCREMENT_COMPLETION_QUEUE_GET(scic, get_index, get_cycle);
591
592 dev_dbg(scic_to_dev(scic),
593 "%s: completion queue entry:0x%08x\n",
594 __func__,
595 completion_entry);
596
597 switch (SCU_GET_COMPLETION_TYPE(completion_entry)) {
598 case SCU_COMPLETION_TYPE_TASK:
599 scic_sds_controller_task_completion(scic, completion_entry);
600 break;
601
602 case SCU_COMPLETION_TYPE_SDMA:
603 scic_sds_controller_sdma_completion(scic, completion_entry);
604 break;
605
606 case SCU_COMPLETION_TYPE_UFI:
607 scic_sds_controller_unsolicited_frame(scic, completion_entry);
608 break;
609
610 case SCU_COMPLETION_TYPE_EVENT:
611 INCREMENT_EVENT_QUEUE_GET(scic, event_index, event_cycle);
612 scic_sds_controller_event_completion(scic, completion_entry);
613 break;
614
615 case SCU_COMPLETION_TYPE_NOTIFY:
616 /*
617 * Presently we do the same thing with a notify event that we do with the
618 * other event codes. */
619 INCREMENT_EVENT_QUEUE_GET(scic, event_index, event_cycle);
620 scic_sds_controller_event_completion(scic, completion_entry);
621 break;
622
623 default:
624 dev_warn(scic_to_dev(scic),
625 "%s: SCIC Controller received unknown "
626 "completion type %x\n",
627 __func__,
628 completion_entry);
629 break;
630 }
631 }
632
633 /* Update the get register if we completed one or more entries */
634 if (completion_count > 0) {
635 scic->completion_queue_get =
636 SMU_CQGR_GEN_BIT(ENABLE) |
637 SMU_CQGR_GEN_BIT(EVENT_ENABLE) |
638 event_cycle |
639 SMU_CQGR_GEN_VAL(EVENT_POINTER, event_index) |
640 get_cycle |
641 SMU_CQGR_GEN_VAL(POINTER, get_index);
642
643 writel(scic->completion_queue_get,
644 &scic->smu_registers->completion_queue_get);
645
646 }
647
648 dev_dbg(scic_to_dev(scic),
649 "%s: completion queue ending get:0x%08x\n",
650 __func__,
651 scic->completion_queue_get);
652
653}
654
655static void scic_sds_controller_error_handler(struct scic_sds_controller *scic)
656{
657 u32 interrupt_status;
658
659 interrupt_status =
660 readl(&scic->smu_registers->interrupt_status);
661
662 if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) &&
663 scic_sds_controller_completion_queue_has_entries(scic)) {
664
665 scic_sds_controller_process_completions(scic);
666 writel(SMU_ISR_QUEUE_SUSPEND, &scic->smu_registers->interrupt_status);
667 } else {
668 dev_err(scic_to_dev(scic), "%s: status: %#x\n", __func__,
669 interrupt_status);
670
e301370a 671 sci_change_state(&scic->sm, SCIC_FAILED);
cc9203bf
DW
672
673 return;
674 }
675
676 /* If we dont process any completions I am not sure that we want to do this.
677 * We are in the middle of a hardware fault and should probably be reset.
678 */
679 writel(0, &scic->smu_registers->interrupt_mask);
680}
681
c7ef4031 682irqreturn_t isci_intx_isr(int vec, void *data)
6f231dda 683{
6f231dda 684 irqreturn_t ret = IRQ_NONE;
31e824ed 685 struct isci_host *ihost = data;
cc3dbd0a 686 struct scic_sds_controller *scic = &ihost->sci;
c7ef4031 687
31e824ed
DW
688 if (scic_sds_controller_isr(scic)) {
689 writel(SMU_ISR_COMPLETION, &scic->smu_registers->interrupt_status);
690 tasklet_schedule(&ihost->completion_tasklet);
691 ret = IRQ_HANDLED;
692 } else if (scic_sds_controller_error_isr(scic)) {
693 spin_lock(&ihost->scic_lock);
694 scic_sds_controller_error_handler(scic);
695 spin_unlock(&ihost->scic_lock);
696 ret = IRQ_HANDLED;
6f231dda 697 }
92f4f0f5 698
6f231dda
DW
699 return ret;
700}
701
92f4f0f5
DW
702irqreturn_t isci_error_isr(int vec, void *data)
703{
704 struct isci_host *ihost = data;
92f4f0f5 705
cc3dbd0a
AW
706 if (scic_sds_controller_error_isr(&ihost->sci))
707 scic_sds_controller_error_handler(&ihost->sci);
92f4f0f5
DW
708
709 return IRQ_HANDLED;
710}
6f231dda
DW
711
712/**
713 * isci_host_start_complete() - This function is called by the core library,
714 * through the ISCI Module, to indicate controller start status.
715 * @isci_host: This parameter specifies the ISCI host object
716 * @completion_status: This parameter specifies the completion status from the
717 * core library.
718 *
719 */
cc9203bf 720static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status)
6f231dda 721{
0cf89d1d
DW
722 if (completion_status != SCI_SUCCESS)
723 dev_info(&ihost->pdev->dev,
724 "controller start timed out, continuing...\n");
725 isci_host_change_state(ihost, isci_ready);
726 clear_bit(IHOST_START_PENDING, &ihost->flags);
727 wake_up(&ihost->eventq);
6f231dda
DW
728}
729
c7ef4031 730int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time)
6f231dda 731{
4393aa4e 732 struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
6f231dda 733
77950f51 734 if (test_bit(IHOST_START_PENDING, &ihost->flags))
6f231dda 735 return 0;
6f231dda 736
77950f51
EN
737 /* todo: use sas_flush_discovery once it is upstream */
738 scsi_flush_work(shost);
739
740 scsi_flush_work(shost);
6f231dda 741
0cf89d1d
DW
742 dev_dbg(&ihost->pdev->dev,
743 "%s: ihost->status = %d, time = %ld\n",
744 __func__, isci_host_get_state(ihost), time);
6f231dda 745
6f231dda
DW
746 return 1;
747
748}
749
cc9203bf
DW
750/**
751 * scic_controller_get_suggested_start_timeout() - This method returns the
752 * suggested scic_controller_start() timeout amount. The user is free to
753 * use any timeout value, but this method provides the suggested minimum
754 * start timeout value. The returned value is based upon empirical
755 * information determined as a result of interoperability testing.
756 * @controller: the handle to the controller object for which to return the
757 * suggested start timeout.
758 *
759 * This method returns the number of milliseconds for the suggested start
760 * operation timeout.
761 */
762static u32 scic_controller_get_suggested_start_timeout(
763 struct scic_sds_controller *sc)
764{
765 /* Validate the user supplied parameters. */
766 if (sc == NULL)
767 return 0;
768
769 /*
770 * The suggested minimum timeout value for a controller start operation:
771 *
772 * Signature FIS Timeout
773 * + Phy Start Timeout
774 * + Number of Phy Spin Up Intervals
775 * ---------------------------------
776 * Number of milliseconds for the controller start operation.
777 *
778 * NOTE: The number of phy spin up intervals will be equivalent
779 * to the number of phys divided by the number phys allowed
780 * per interval - 1 (once OEM parameters are supported).
781 * Currently we assume only 1 phy per interval. */
782
783 return SCIC_SDS_SIGNATURE_FIS_TIMEOUT
784 + SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
785 + ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
786}
787
788static void scic_controller_enable_interrupts(
789 struct scic_sds_controller *scic)
790{
791 BUG_ON(scic->smu_registers == NULL);
792 writel(0, &scic->smu_registers->interrupt_mask);
793}
794
795void scic_controller_disable_interrupts(
796 struct scic_sds_controller *scic)
797{
798 BUG_ON(scic->smu_registers == NULL);
799 writel(0xffffffff, &scic->smu_registers->interrupt_mask);
800}
801
802static void scic_sds_controller_enable_port_task_scheduler(
803 struct scic_sds_controller *scic)
804{
805 u32 port_task_scheduler_value;
806
807 port_task_scheduler_value =
808 readl(&scic->scu_registers->peg0.ptsg.control);
809 port_task_scheduler_value |=
810 (SCU_PTSGCR_GEN_BIT(ETM_ENABLE) |
811 SCU_PTSGCR_GEN_BIT(PTSG_ENABLE));
812 writel(port_task_scheduler_value,
813 &scic->scu_registers->peg0.ptsg.control);
814}
815
816static void scic_sds_controller_assign_task_entries(struct scic_sds_controller *scic)
817{
818 u32 task_assignment;
819
820 /*
821 * Assign all the TCs to function 0
822 * TODO: Do we actually need to read this register to write it back?
823 */
824
825 task_assignment =
826 readl(&scic->smu_registers->task_context_assignment[0]);
827
828 task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) |
829 (SMU_TCA_GEN_VAL(ENDING, scic->task_context_entries - 1)) |
830 (SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE));
831
832 writel(task_assignment,
833 &scic->smu_registers->task_context_assignment[0]);
834
835}
836
837static void scic_sds_controller_initialize_completion_queue(struct scic_sds_controller *scic)
838{
839 u32 index;
840 u32 completion_queue_control_value;
841 u32 completion_queue_get_value;
842 u32 completion_queue_put_value;
843
844 scic->completion_queue_get = 0;
845
846 completion_queue_control_value = (
847 SMU_CQC_QUEUE_LIMIT_SET(scic->completion_queue_entries - 1)
848 | SMU_CQC_EVENT_LIMIT_SET(scic->completion_event_entries - 1)
849 );
850
851 writel(completion_queue_control_value,
852 &scic->smu_registers->completion_queue_control);
853
854
855 /* Set the completion queue get pointer and enable the queue */
856 completion_queue_get_value = (
857 (SMU_CQGR_GEN_VAL(POINTER, 0))
858 | (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0))
859 | (SMU_CQGR_GEN_BIT(ENABLE))
860 | (SMU_CQGR_GEN_BIT(EVENT_ENABLE))
861 );
862
863 writel(completion_queue_get_value,
864 &scic->smu_registers->completion_queue_get);
865
866 /* Set the completion queue put pointer */
867 completion_queue_put_value = (
868 (SMU_CQPR_GEN_VAL(POINTER, 0))
869 | (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0))
870 );
871
872 writel(completion_queue_put_value,
873 &scic->smu_registers->completion_queue_put);
874
875 /* Initialize the cycle bit of the completion queue entries */
876 for (index = 0; index < scic->completion_queue_entries; index++) {
877 /*
878 * If get.cycle_bit != completion_queue.cycle_bit
879 * its not a valid completion queue entry
880 * so at system start all entries are invalid */
881 scic->completion_queue[index] = 0x80000000;
882 }
883}
884
885static void scic_sds_controller_initialize_unsolicited_frame_queue(struct scic_sds_controller *scic)
886{
887 u32 frame_queue_control_value;
888 u32 frame_queue_get_value;
889 u32 frame_queue_put_value;
890
891 /* Write the queue size */
892 frame_queue_control_value =
893 SCU_UFQC_GEN_VAL(QUEUE_SIZE,
894 scic->uf_control.address_table.count);
895
896 writel(frame_queue_control_value,
897 &scic->scu_registers->sdma.unsolicited_frame_queue_control);
898
899 /* Setup the get pointer for the unsolicited frame queue */
900 frame_queue_get_value = (
901 SCU_UFQGP_GEN_VAL(POINTER, 0)
902 | SCU_UFQGP_GEN_BIT(ENABLE_BIT)
903 );
904
905 writel(frame_queue_get_value,
906 &scic->scu_registers->sdma.unsolicited_frame_get_pointer);
907 /* Setup the put pointer for the unsolicited frame queue */
908 frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0);
909 writel(frame_queue_put_value,
910 &scic->scu_registers->sdma.unsolicited_frame_put_pointer);
911}
912
913/**
914 * This method will attempt to transition into the ready state for the
915 * controller and indicate that the controller start operation has completed
916 * if all criteria are met.
917 * @scic: This parameter indicates the controller object for which
918 * to transition to ready.
919 * @status: This parameter indicates the status value to be pass into the call
920 * to scic_cb_controller_start_complete().
921 *
922 * none.
923 */
924static void scic_sds_controller_transition_to_ready(
925 struct scic_sds_controller *scic,
926 enum sci_status status)
927{
928 struct isci_host *ihost = scic_to_ihost(scic);
929
e301370a 930 if (scic->sm.current_state_id == SCIC_STARTING) {
cc9203bf
DW
931 /*
932 * We move into the ready state, because some of the phys/ports
933 * may be up and operational.
934 */
e301370a 935 sci_change_state(&scic->sm, SCIC_READY);
cc9203bf
DW
936
937 isci_host_start_complete(ihost, status);
938 }
939}
940
4a33c525
AG
941static bool is_phy_starting(struct scic_sds_phy *sci_phy)
942{
943 enum scic_sds_phy_states state;
944
e301370a 945 state = sci_phy->sm.current_state_id;
4a33c525 946 switch (state) {
e301370a
EN
947 case SCI_PHY_STARTING:
948 case SCI_PHY_SUB_INITIAL:
949 case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
950 case SCI_PHY_SUB_AWAIT_IAF_UF:
951 case SCI_PHY_SUB_AWAIT_SAS_POWER:
952 case SCI_PHY_SUB_AWAIT_SATA_POWER:
953 case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
954 case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
955 case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
956 case SCI_PHY_SUB_FINAL:
4a33c525
AG
957 return true;
958 default:
959 return false;
960 }
961}
962
cc9203bf
DW
963/**
964 * scic_sds_controller_start_next_phy - start phy
965 * @scic: controller
966 *
967 * If all the phys have been started, then attempt to transition the
968 * controller to the READY state and inform the user
969 * (scic_cb_controller_start_complete()).
970 */
971static enum sci_status scic_sds_controller_start_next_phy(struct scic_sds_controller *scic)
972{
973 struct isci_host *ihost = scic_to_ihost(scic);
974 struct scic_sds_oem_params *oem = &scic->oem_parameters.sds1;
975 struct scic_sds_phy *sci_phy;
976 enum sci_status status;
977
978 status = SCI_SUCCESS;
979
980 if (scic->phy_startup_timer_pending)
981 return status;
982
983 if (scic->next_phy_to_start >= SCI_MAX_PHYS) {
984 bool is_controller_start_complete = true;
985 u32 state;
986 u8 index;
987
988 for (index = 0; index < SCI_MAX_PHYS; index++) {
989 sci_phy = &ihost->phys[index].sci;
e301370a 990 state = sci_phy->sm.current_state_id;
cc9203bf 991
4f20ef4f 992 if (!phy_get_non_dummy_port(sci_phy))
cc9203bf
DW
993 continue;
994
995 /* The controller start operation is complete iff:
996 * - all links have been given an opportunity to start
997 * - have no indication of a connected device
998 * - have an indication of a connected device and it has
999 * finished the link training process.
1000 */
e301370a
EN
1001 if ((sci_phy->is_in_link_training == false && state == SCI_PHY_INITIAL) ||
1002 (sci_phy->is_in_link_training == false && state == SCI_PHY_STOPPED) ||
1003 (sci_phy->is_in_link_training == true && is_phy_starting(sci_phy))) {
cc9203bf
DW
1004 is_controller_start_complete = false;
1005 break;
1006 }
1007 }
1008
1009 /*
1010 * The controller has successfully finished the start process.
1011 * Inform the SCI Core user and transition to the READY state. */
1012 if (is_controller_start_complete == true) {
1013 scic_sds_controller_transition_to_ready(scic, SCI_SUCCESS);
bb3dbdf6
EN
1014 sci_del_timer(&scic->phy_timer);
1015 scic->phy_startup_timer_pending = false;
cc9203bf
DW
1016 }
1017 } else {
1018 sci_phy = &ihost->phys[scic->next_phy_to_start].sci;
1019
1020 if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
4f20ef4f 1021 if (phy_get_non_dummy_port(sci_phy) == NULL) {
cc9203bf
DW
1022 scic->next_phy_to_start++;
1023
1024 /* Caution recursion ahead be forwarned
1025 *
1026 * The PHY was never added to a PORT in MPC mode
1027 * so start the next phy in sequence This phy
1028 * will never go link up and will not draw power
1029 * the OEM parameters either configured the phy
1030 * incorrectly for the PORT or it was never
1031 * assigned to a PORT
1032 */
1033 return scic_sds_controller_start_next_phy(scic);
1034 }
1035 }
1036
1037 status = scic_sds_phy_start(sci_phy);
1038
1039 if (status == SCI_SUCCESS) {
bb3dbdf6
EN
1040 sci_mod_timer(&scic->phy_timer,
1041 SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT);
1042 scic->phy_startup_timer_pending = true;
cc9203bf
DW
1043 } else {
1044 dev_warn(scic_to_dev(scic),
1045 "%s: Controller stop operation failed "
1046 "to stop phy %d because of status "
1047 "%d.\n",
1048 __func__,
1049 ihost->phys[scic->next_phy_to_start].sci.phy_index,
1050 status);
1051 }
1052
1053 scic->next_phy_to_start++;
1054 }
1055
1056 return status;
1057}
1058
bb3dbdf6 1059static void phy_startup_timeout(unsigned long data)
cc9203bf 1060{
bb3dbdf6
EN
1061 struct sci_timer *tmr = (struct sci_timer *)data;
1062 struct scic_sds_controller *scic = container_of(tmr, typeof(*scic), phy_timer);
1063 struct isci_host *ihost = scic_to_ihost(scic);
1064 unsigned long flags;
cc9203bf
DW
1065 enum sci_status status;
1066
bb3dbdf6
EN
1067 spin_lock_irqsave(&ihost->scic_lock, flags);
1068
1069 if (tmr->cancel)
1070 goto done;
1071
cc9203bf 1072 scic->phy_startup_timer_pending = false;
bb3dbdf6
EN
1073
1074 do {
cc9203bf 1075 status = scic_sds_controller_start_next_phy(scic);
bb3dbdf6
EN
1076 } while (status != SCI_SUCCESS);
1077
1078done:
1079 spin_unlock_irqrestore(&ihost->scic_lock, flags);
cc9203bf
DW
1080}
1081
1082static enum sci_status scic_controller_start(struct scic_sds_controller *scic,
1083 u32 timeout)
1084{
1085 struct isci_host *ihost = scic_to_ihost(scic);
1086 enum sci_status result;
1087 u16 index;
1088
e301370a 1089 if (scic->sm.current_state_id != SCIC_INITIALIZED) {
cc9203bf
DW
1090 dev_warn(scic_to_dev(scic),
1091 "SCIC Controller start operation requested in "
1092 "invalid state\n");
1093 return SCI_FAILURE_INVALID_STATE;
1094 }
1095
1096 /* Build the TCi free pool */
1097 sci_pool_initialize(scic->tci_pool);
1098 for (index = 0; index < scic->task_context_entries; index++)
1099 sci_pool_put(scic->tci_pool, index);
1100
1101 /* Build the RNi free pool */
1102 scic_sds_remote_node_table_initialize(
1103 &scic->available_remote_nodes,
1104 scic->remote_node_entries);
1105
1106 /*
1107 * Before anything else lets make sure we will not be
1108 * interrupted by the hardware.
1109 */
1110 scic_controller_disable_interrupts(scic);
1111
1112 /* Enable the port task scheduler */
1113 scic_sds_controller_enable_port_task_scheduler(scic);
1114
1115 /* Assign all the task entries to scic physical function */
1116 scic_sds_controller_assign_task_entries(scic);
1117
1118 /* Now initialize the completion queue */
1119 scic_sds_controller_initialize_completion_queue(scic);
1120
1121 /* Initialize the unsolicited frame queue for use */
1122 scic_sds_controller_initialize_unsolicited_frame_queue(scic);
1123
1124 /* Start all of the ports on this controller */
1125 for (index = 0; index < scic->logical_port_entries; index++) {
1126 struct scic_sds_port *sci_port = &ihost->ports[index].sci;
1127
d76f71d9 1128 result = scic_sds_port_start(sci_port);
cc9203bf
DW
1129 if (result)
1130 return result;
1131 }
1132
1133 scic_sds_controller_start_next_phy(scic);
1134
6cb5853d 1135 sci_mod_timer(&scic->timer, timeout);
cc9203bf 1136
e301370a 1137 sci_change_state(&scic->sm, SCIC_STARTING);
cc9203bf
DW
1138
1139 return SCI_SUCCESS;
1140}
1141
6f231dda
DW
1142void isci_host_scan_start(struct Scsi_Host *shost)
1143{
4393aa4e 1144 struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
cc3dbd0a 1145 unsigned long tmo = scic_controller_get_suggested_start_timeout(&ihost->sci);
6f231dda 1146
0cf89d1d 1147 set_bit(IHOST_START_PENDING, &ihost->flags);
77950f51
EN
1148
1149 spin_lock_irq(&ihost->scic_lock);
cc3dbd0a
AW
1150 scic_controller_start(&ihost->sci, tmo);
1151 scic_controller_enable_interrupts(&ihost->sci);
77950f51 1152 spin_unlock_irq(&ihost->scic_lock);
6f231dda
DW
1153}
1154
cc9203bf 1155static void isci_host_stop_complete(struct isci_host *ihost, enum sci_status completion_status)
6f231dda 1156{
0cf89d1d 1157 isci_host_change_state(ihost, isci_stopped);
cc3dbd0a 1158 scic_controller_disable_interrupts(&ihost->sci);
0cf89d1d
DW
1159 clear_bit(IHOST_STOP_PENDING, &ihost->flags);
1160 wake_up(&ihost->eventq);
6f231dda
DW
1161}
1162
cc9203bf
DW
1163static void scic_sds_controller_completion_handler(struct scic_sds_controller *scic)
1164{
1165 /* Empty out the completion queue */
1166 if (scic_sds_controller_completion_queue_has_entries(scic))
1167 scic_sds_controller_process_completions(scic);
1168
1169 /* Clear the interrupt and enable all interrupts again */
1170 writel(SMU_ISR_COMPLETION, &scic->smu_registers->interrupt_status);
1171 /* Could we write the value of SMU_ISR_COMPLETION? */
1172 writel(0xFF000000, &scic->smu_registers->interrupt_mask);
1173 writel(0, &scic->smu_registers->interrupt_mask);
1174}
1175
6f231dda
DW
1176/**
1177 * isci_host_completion_routine() - This function is the delayed service
1178 * routine that calls the sci core library's completion handler. It's
1179 * scheduled as a tasklet from the interrupt service routine when interrupts
1180 * in use, or set as the timeout function in polled mode.
1181 * @data: This parameter specifies the ISCI host object
1182 *
1183 */
1184static void isci_host_completion_routine(unsigned long data)
1185{
1186 struct isci_host *isci_host = (struct isci_host *)data;
11b00c19
JS
1187 struct list_head completed_request_list;
1188 struct list_head errored_request_list;
1189 struct list_head *current_position;
1190 struct list_head *next_position;
6f231dda
DW
1191 struct isci_request *request;
1192 struct isci_request *next_request;
11b00c19 1193 struct sas_task *task;
6f231dda
DW
1194
1195 INIT_LIST_HEAD(&completed_request_list);
11b00c19 1196 INIT_LIST_HEAD(&errored_request_list);
6f231dda
DW
1197
1198 spin_lock_irq(&isci_host->scic_lock);
1199
cc3dbd0a 1200 scic_sds_controller_completion_handler(&isci_host->sci);
c7ef4031 1201
6f231dda 1202 /* Take the lists of completed I/Os from the host. */
11b00c19 1203
6f231dda
DW
1204 list_splice_init(&isci_host->requests_to_complete,
1205 &completed_request_list);
1206
11b00c19
JS
1207 /* Take the list of errored I/Os from the host. */
1208 list_splice_init(&isci_host->requests_to_errorback,
1209 &errored_request_list);
6f231dda
DW
1210
1211 spin_unlock_irq(&isci_host->scic_lock);
1212
1213 /* Process any completions in the lists. */
1214 list_for_each_safe(current_position, next_position,
1215 &completed_request_list) {
1216
1217 request = list_entry(current_position, struct isci_request,
1218 completed_node);
1219 task = isci_request_access_task(request);
1220
1221 /* Normal notification (task_done) */
1222 dev_dbg(&isci_host->pdev->dev,
1223 "%s: Normal - request/task = %p/%p\n",
1224 __func__,
1225 request,
1226 task);
1227
11b00c19
JS
1228 /* Return the task to libsas */
1229 if (task != NULL) {
1230
1231 task->lldd_task = NULL;
1232 if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
6f231dda 1233
11b00c19
JS
1234 /* If the task is already in the abort path,
1235 * the task_done callback cannot be called.
1236 */
1237 task->task_done(task);
1238 }
1239 }
6f231dda
DW
1240 /* Free the request object. */
1241 isci_request_free(isci_host, request);
1242 }
11b00c19 1243 list_for_each_entry_safe(request, next_request, &errored_request_list,
6f231dda
DW
1244 completed_node) {
1245
1246 task = isci_request_access_task(request);
1247
1248 /* Use sas_task_abort */
1249 dev_warn(&isci_host->pdev->dev,
1250 "%s: Error - request/task = %p/%p\n",
1251 __func__,
1252 request,
1253 task);
1254
11b00c19
JS
1255 if (task != NULL) {
1256
1257 /* Put the task into the abort path if it's not there
1258 * already.
1259 */
1260 if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED))
1261 sas_task_abort(task);
1262
1263 } else {
1264 /* This is a case where the request has completed with a
1265 * status such that it needed further target servicing,
1266 * but the sas_task reference has already been removed
1267 * from the request. Since it was errored, it was not
1268 * being aborted, so there is nothing to do except free
1269 * it.
1270 */
1271
1272 spin_lock_irq(&isci_host->scic_lock);
1273 /* Remove the request from the remote device's list
1274 * of pending requests.
1275 */
1276 list_del_init(&request->dev_node);
1277 spin_unlock_irq(&isci_host->scic_lock);
1278
1279 /* Free the request object. */
1280 isci_request_free(isci_host, request);
1281 }
6f231dda
DW
1282 }
1283
1284}
1285
cc9203bf
DW
1286/**
1287 * scic_controller_stop() - This method will stop an individual controller
1288 * object.This method will invoke the associated user callback upon
1289 * completion. The completion callback is called when the following
1290 * conditions are met: -# the method return status is SCI_SUCCESS. -# the
1291 * controller has been quiesced. This method will ensure that all IO
1292 * requests are quiesced, phys are stopped, and all additional operation by
1293 * the hardware is halted.
1294 * @controller: the handle to the controller object to stop.
1295 * @timeout: This parameter specifies the number of milliseconds in which the
1296 * stop operation should complete.
1297 *
1298 * The controller must be in the STARTED or STOPPED state. Indicate if the
1299 * controller stop method succeeded or failed in some way. SCI_SUCCESS if the
1300 * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
1301 * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
1302 * controller is not either in the STARTED or STOPPED states.
1303 */
1304static enum sci_status scic_controller_stop(struct scic_sds_controller *scic,
1305 u32 timeout)
6f231dda 1306{
e301370a 1307 if (scic->sm.current_state_id != SCIC_READY) {
cc9203bf
DW
1308 dev_warn(scic_to_dev(scic),
1309 "SCIC Controller stop operation requested in "
1310 "invalid state\n");
1311 return SCI_FAILURE_INVALID_STATE;
1312 }
6f231dda 1313
6cb5853d 1314 sci_mod_timer(&scic->timer, timeout);
e301370a 1315 sci_change_state(&scic->sm, SCIC_STOPPING);
cc9203bf
DW
1316 return SCI_SUCCESS;
1317}
1318
1319/**
1320 * scic_controller_reset() - This method will reset the supplied core
1321 * controller regardless of the state of said controller. This operation is
1322 * considered destructive. In other words, all current operations are wiped
1323 * out. No IO completions for outstanding devices occur. Outstanding IO
1324 * requests are not aborted or completed at the actual remote device.
1325 * @controller: the handle to the controller object to reset.
1326 *
1327 * Indicate if the controller reset method succeeded or failed in some way.
1328 * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
1329 * the controller reset operation is unable to complete.
1330 */
1331static enum sci_status scic_controller_reset(struct scic_sds_controller *scic)
1332{
e301370a
EN
1333 switch (scic->sm.current_state_id) {
1334 case SCIC_RESET:
1335 case SCIC_READY:
1336 case SCIC_STOPPED:
1337 case SCIC_FAILED:
cc9203bf
DW
1338 /*
1339 * The reset operation is not a graceful cleanup, just
1340 * perform the state transition.
1341 */
e301370a 1342 sci_change_state(&scic->sm, SCIC_RESETTING);
cc9203bf
DW
1343 return SCI_SUCCESS;
1344 default:
1345 dev_warn(scic_to_dev(scic),
1346 "SCIC Controller reset operation requested in "
1347 "invalid state\n");
1348 return SCI_FAILURE_INVALID_STATE;
1349 }
1350}
1351
1352void isci_host_deinit(struct isci_host *ihost)
1353{
1354 int i;
1355
1356 isci_host_change_state(ihost, isci_stopping);
6f231dda 1357 for (i = 0; i < SCI_MAX_PORTS; i++) {
e531381e 1358 struct isci_port *iport = &ihost->ports[i];
0cf89d1d
DW
1359 struct isci_remote_device *idev, *d;
1360
e531381e 1361 list_for_each_entry_safe(idev, d, &iport->remote_dev_list, node) {
0cf89d1d 1362 isci_remote_device_change_state(idev, isci_stopping);
6ad31fec 1363 isci_remote_device_stop(ihost, idev);
6f231dda
DW
1364 }
1365 }
1366
0cf89d1d 1367 set_bit(IHOST_STOP_PENDING, &ihost->flags);
7c40a803
DW
1368
1369 spin_lock_irq(&ihost->scic_lock);
cc3dbd0a 1370 scic_controller_stop(&ihost->sci, SCIC_CONTROLLER_STOP_TIMEOUT);
7c40a803
DW
1371 spin_unlock_irq(&ihost->scic_lock);
1372
0cf89d1d 1373 wait_for_stop(ihost);
cc3dbd0a 1374 scic_controller_reset(&ihost->sci);
5553ba2b
EN
1375
1376 /* Cancel any/all outstanding port timers */
1377 for (i = 0; i < ihost->sci.logical_port_entries; i++) {
1378 struct scic_sds_port *sci_port = &ihost->ports[i].sci;
1379 del_timer_sync(&sci_port->timer.timer);
1380 }
1381
a628d478
EN
1382 /* Cancel any/all outstanding phy timers */
1383 for (i = 0; i < SCI_MAX_PHYS; i++) {
1384 struct scic_sds_phy *sci_phy = &ihost->phys[i].sci;
1385 del_timer_sync(&sci_phy->sata_timer.timer);
1386 }
1387
ac0eeb4f
EN
1388 del_timer_sync(&ihost->sci.port_agent.timer.timer);
1389
0473661a
EN
1390 del_timer_sync(&ihost->sci.power_control.timer.timer);
1391
6cb5853d
EN
1392 del_timer_sync(&ihost->sci.timer.timer);
1393
bb3dbdf6 1394 del_timer_sync(&ihost->sci.phy_timer.timer);
6f231dda
DW
1395}
1396
6f231dda
DW
1397static void __iomem *scu_base(struct isci_host *isci_host)
1398{
1399 struct pci_dev *pdev = isci_host->pdev;
1400 int id = isci_host->id;
1401
1402 return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id;
1403}
1404
1405static void __iomem *smu_base(struct isci_host *isci_host)
1406{
1407 struct pci_dev *pdev = isci_host->pdev;
1408 int id = isci_host->id;
1409
1410 return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id;
1411}
1412
b5f18a20
DJ
1413static void isci_user_parameters_get(
1414 struct isci_host *isci_host,
1415 union scic_user_parameters *scic_user_params)
1416{
1417 struct scic_sds_user_parameters *u = &scic_user_params->sds1;
1418 int i;
1419
1420 for (i = 0; i < SCI_MAX_PHYS; i++) {
1421 struct sci_phy_user_params *u_phy = &u->phys[i];
1422
1423 u_phy->max_speed_generation = phy_gen;
1424
1425 /* we are not exporting these for now */
1426 u_phy->align_insertion_frequency = 0x7f;
1427 u_phy->in_connection_align_insertion_frequency = 0xff;
1428 u_phy->notify_enable_spin_up_insertion_frequency = 0x33;
1429 }
1430
1431 u->stp_inactivity_timeout = stp_inactive_to;
1432 u->ssp_inactivity_timeout = ssp_inactive_to;
1433 u->stp_max_occupancy_timeout = stp_max_occ_to;
1434 u->ssp_max_occupancy_timeout = ssp_max_occ_to;
1435 u->no_outbound_task_timeout = no_outbound_task_to;
1436 u->max_number_concurrent_device_spin_up = max_concurr_spinup;
1437}
1438
9269e0e8 1439static void scic_sds_controller_initial_state_enter(struct sci_base_state_machine *sm)
cc9203bf 1440{
e301370a 1441 struct scic_sds_controller *scic = container_of(sm, typeof(*scic), sm);
cc9203bf 1442
e301370a 1443 sci_change_state(&scic->sm, SCIC_RESET);
cc9203bf
DW
1444}
1445
9269e0e8 1446static inline void scic_sds_controller_starting_state_exit(struct sci_base_state_machine *sm)
cc9203bf 1447{
e301370a 1448 struct scic_sds_controller *scic = container_of(sm, typeof(*scic), sm);
cc9203bf 1449
6cb5853d 1450 sci_del_timer(&scic->timer);
cc9203bf
DW
1451}
1452
1453#define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
1454#define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
1455#define INTERRUPT_COALESCE_TIMEOUT_MAX_US 2700000
1456#define INTERRUPT_COALESCE_NUMBER_MAX 256
1457#define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN 7
1458#define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX 28
1459
1460/**
1461 * scic_controller_set_interrupt_coalescence() - This method allows the user to
1462 * configure the interrupt coalescence.
1463 * @controller: This parameter represents the handle to the controller object
1464 * for which its interrupt coalesce register is overridden.
1465 * @coalesce_number: Used to control the number of entries in the Completion
1466 * Queue before an interrupt is generated. If the number of entries exceed
1467 * this number, an interrupt will be generated. The valid range of the input
1468 * is [0, 256]. A setting of 0 results in coalescing being disabled.
1469 * @coalesce_timeout: Timeout value in microseconds. The valid range of the
1470 * input is [0, 2700000] . A setting of 0 is allowed and results in no
1471 * interrupt coalescing timeout.
1472 *
1473 * Indicate if the user successfully set the interrupt coalesce parameters.
1474 * SCI_SUCCESS The user successfully updated the interrutp coalescence.
1475 * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
1476 */
1477static enum sci_status scic_controller_set_interrupt_coalescence(
1478 struct scic_sds_controller *scic_controller,
1479 u32 coalesce_number,
1480 u32 coalesce_timeout)
1481{
1482 u8 timeout_encode = 0;
1483 u32 min = 0;
1484 u32 max = 0;
1485
1486 /* Check if the input parameters fall in the range. */
1487 if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX)
1488 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1489
1490 /*
1491 * Defined encoding for interrupt coalescing timeout:
1492 * Value Min Max Units
1493 * ----- --- --- -----
1494 * 0 - - Disabled
1495 * 1 13.3 20.0 ns
1496 * 2 26.7 40.0
1497 * 3 53.3 80.0
1498 * 4 106.7 160.0
1499 * 5 213.3 320.0
1500 * 6 426.7 640.0
1501 * 7 853.3 1280.0
1502 * 8 1.7 2.6 us
1503 * 9 3.4 5.1
1504 * 10 6.8 10.2
1505 * 11 13.7 20.5
1506 * 12 27.3 41.0
1507 * 13 54.6 81.9
1508 * 14 109.2 163.8
1509 * 15 218.5 327.7
1510 * 16 436.9 655.4
1511 * 17 873.8 1310.7
1512 * 18 1.7 2.6 ms
1513 * 19 3.5 5.2
1514 * 20 7.0 10.5
1515 * 21 14.0 21.0
1516 * 22 28.0 41.9
1517 * 23 55.9 83.9
1518 * 24 111.8 167.8
1519 * 25 223.7 335.5
1520 * 26 447.4 671.1
1521 * 27 894.8 1342.2
1522 * 28 1.8 2.7 s
1523 * Others Undefined */
1524
1525 /*
1526 * Use the table above to decide the encode of interrupt coalescing timeout
1527 * value for register writing. */
1528 if (coalesce_timeout == 0)
1529 timeout_encode = 0;
1530 else{
1531 /* make the timeout value in unit of (10 ns). */
1532 coalesce_timeout = coalesce_timeout * 100;
1533 min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10;
1534 max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10;
1535
1536 /* get the encode of timeout for register writing. */
1537 for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN;
1538 timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX;
1539 timeout_encode++) {
1540 if (min <= coalesce_timeout && max > coalesce_timeout)
1541 break;
1542 else if (coalesce_timeout >= max && coalesce_timeout < min * 2
1543 && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) {
1544 if ((coalesce_timeout - max) < (2 * min - coalesce_timeout))
1545 break;
1546 else{
1547 timeout_encode++;
1548 break;
1549 }
1550 } else {
1551 max = max * 2;
1552 min = min * 2;
1553 }
1554 }
1555
1556 if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1)
1557 /* the value is out of range. */
1558 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1559 }
1560
1561 writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) |
1562 SMU_ICC_GEN_VAL(TIMER, timeout_encode),
1563 &scic_controller->smu_registers->interrupt_coalesce_control);
1564
1565
1566 scic_controller->interrupt_coalesce_number = (u16)coalesce_number;
1567 scic_controller->interrupt_coalesce_timeout = coalesce_timeout / 100;
1568
1569 return SCI_SUCCESS;
1570}
1571
1572
9269e0e8 1573static void scic_sds_controller_ready_state_enter(struct sci_base_state_machine *sm)
cc9203bf 1574{
e301370a 1575 struct scic_sds_controller *scic = container_of(sm, typeof(*scic), sm);
cc9203bf
DW
1576
1577 /* set the default interrupt coalescence number and timeout value. */
1578 scic_controller_set_interrupt_coalescence(scic, 0x10, 250);
1579}
1580
9269e0e8 1581static void scic_sds_controller_ready_state_exit(struct sci_base_state_machine *sm)
cc9203bf 1582{
e301370a 1583 struct scic_sds_controller *scic = container_of(sm, typeof(*scic), sm);
cc9203bf
DW
1584
1585 /* disable interrupt coalescence. */
1586 scic_controller_set_interrupt_coalescence(scic, 0, 0);
1587}
1588
1589static enum sci_status scic_sds_controller_stop_phys(struct scic_sds_controller *scic)
1590{
1591 u32 index;
1592 enum sci_status status;
1593 enum sci_status phy_status;
1594 struct isci_host *ihost = scic_to_ihost(scic);
1595
1596 status = SCI_SUCCESS;
1597
1598 for (index = 0; index < SCI_MAX_PHYS; index++) {
1599 phy_status = scic_sds_phy_stop(&ihost->phys[index].sci);
1600
1601 if (phy_status != SCI_SUCCESS &&
1602 phy_status != SCI_FAILURE_INVALID_STATE) {
1603 status = SCI_FAILURE;
1604
1605 dev_warn(scic_to_dev(scic),
1606 "%s: Controller stop operation failed to stop "
1607 "phy %d because of status %d.\n",
1608 __func__,
1609 ihost->phys[index].sci.phy_index, phy_status);
1610 }
1611 }
1612
1613 return status;
1614}
1615
1616static enum sci_status scic_sds_controller_stop_ports(struct scic_sds_controller *scic)
1617{
1618 u32 index;
1619 enum sci_status port_status;
1620 enum sci_status status = SCI_SUCCESS;
1621 struct isci_host *ihost = scic_to_ihost(scic);
1622
1623 for (index = 0; index < scic->logical_port_entries; index++) {
1624 struct scic_sds_port *sci_port = &ihost->ports[index].sci;
cc9203bf 1625
8bc80d30 1626 port_status = scic_sds_port_stop(sci_port);
cc9203bf
DW
1627
1628 if ((port_status != SCI_SUCCESS) &&
1629 (port_status != SCI_FAILURE_INVALID_STATE)) {
1630 status = SCI_FAILURE;
1631
1632 dev_warn(scic_to_dev(scic),
1633 "%s: Controller stop operation failed to "
1634 "stop port %d because of status %d.\n",
1635 __func__,
1636 sci_port->logical_port_index,
1637 port_status);
1638 }
1639 }
1640
1641 return status;
1642}
1643
1644static enum sci_status scic_sds_controller_stop_devices(struct scic_sds_controller *scic)
1645{
1646 u32 index;
1647 enum sci_status status;
1648 enum sci_status device_status;
1649
1650 status = SCI_SUCCESS;
1651
1652 for (index = 0; index < scic->remote_node_entries; index++) {
1653 if (scic->device_table[index] != NULL) {
1654 /* / @todo What timeout value do we want to provide to this request? */
1655 device_status = scic_remote_device_stop(scic->device_table[index], 0);
1656
1657 if ((device_status != SCI_SUCCESS) &&
1658 (device_status != SCI_FAILURE_INVALID_STATE)) {
1659 dev_warn(scic_to_dev(scic),
1660 "%s: Controller stop operation failed "
1661 "to stop device 0x%p because of "
1662 "status %d.\n",
1663 __func__,
1664 scic->device_table[index], device_status);
1665 }
1666 }
1667 }
1668
1669 return status;
1670}
1671
9269e0e8 1672static void scic_sds_controller_stopping_state_enter(struct sci_base_state_machine *sm)
cc9203bf 1673{
e301370a 1674 struct scic_sds_controller *scic = container_of(sm, typeof(*scic), sm);
cc9203bf
DW
1675
1676 /* Stop all of the components for this controller */
1677 scic_sds_controller_stop_phys(scic);
1678 scic_sds_controller_stop_ports(scic);
1679 scic_sds_controller_stop_devices(scic);
1680}
1681
9269e0e8 1682static void scic_sds_controller_stopping_state_exit(struct sci_base_state_machine *sm)
cc9203bf 1683{
e301370a 1684 struct scic_sds_controller *scic = container_of(sm, typeof(*scic), sm);
cc9203bf 1685
6cb5853d 1686 sci_del_timer(&scic->timer);
cc9203bf
DW
1687}
1688
1689
1690/**
1691 * scic_sds_controller_reset_hardware() -
1692 *
1693 * This method will reset the controller hardware.
1694 */
1695static void scic_sds_controller_reset_hardware(struct scic_sds_controller *scic)
1696{
1697 /* Disable interrupts so we dont take any spurious interrupts */
1698 scic_controller_disable_interrupts(scic);
1699
1700 /* Reset the SCU */
1701 writel(0xFFFFFFFF, &scic->smu_registers->soft_reset_control);
1702
1703 /* Delay for 1ms to before clearing the CQP and UFQPR. */
1704 udelay(1000);
1705
1706 /* The write to the CQGR clears the CQP */
1707 writel(0x00000000, &scic->smu_registers->completion_queue_get);
1708
1709 /* The write to the UFQGP clears the UFQPR */
1710 writel(0, &scic->scu_registers->sdma.unsolicited_frame_get_pointer);
1711}
1712
9269e0e8 1713static void scic_sds_controller_resetting_state_enter(struct sci_base_state_machine *sm)
cc9203bf 1714{
e301370a 1715 struct scic_sds_controller *scic = container_of(sm, typeof(*scic), sm);
cc9203bf
DW
1716
1717 scic_sds_controller_reset_hardware(scic);
e301370a 1718 sci_change_state(&scic->sm, SCIC_RESET);
cc9203bf
DW
1719}
1720
1721static const struct sci_base_state scic_sds_controller_state_table[] = {
e301370a 1722 [SCIC_INITIAL] = {
cc9203bf
DW
1723 .enter_state = scic_sds_controller_initial_state_enter,
1724 },
e301370a
EN
1725 [SCIC_RESET] = {},
1726 [SCIC_INITIALIZING] = {},
1727 [SCIC_INITIALIZED] = {},
1728 [SCIC_STARTING] = {
cc9203bf
DW
1729 .exit_state = scic_sds_controller_starting_state_exit,
1730 },
e301370a 1731 [SCIC_READY] = {
cc9203bf
DW
1732 .enter_state = scic_sds_controller_ready_state_enter,
1733 .exit_state = scic_sds_controller_ready_state_exit,
1734 },
e301370a 1735 [SCIC_RESETTING] = {
cc9203bf
DW
1736 .enter_state = scic_sds_controller_resetting_state_enter,
1737 },
e301370a 1738 [SCIC_STOPPING] = {
cc9203bf
DW
1739 .enter_state = scic_sds_controller_stopping_state_enter,
1740 .exit_state = scic_sds_controller_stopping_state_exit,
1741 },
e301370a
EN
1742 [SCIC_STOPPED] = {},
1743 [SCIC_FAILED] = {}
cc9203bf
DW
1744};
1745
1746static void scic_sds_controller_set_default_config_parameters(struct scic_sds_controller *scic)
1747{
1748 /* these defaults are overridden by the platform / firmware */
1749 struct isci_host *ihost = scic_to_ihost(scic);
1750 u16 index;
1751
1752 /* Default to APC mode. */
1753 scic->oem_parameters.sds1.controller.mode_type = SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE;
1754
1755 /* Default to APC mode. */
1756 scic->oem_parameters.sds1.controller.max_concurrent_dev_spin_up = 1;
1757
1758 /* Default to no SSC operation. */
1759 scic->oem_parameters.sds1.controller.do_enable_ssc = false;
1760
1761 /* Initialize all of the port parameter information to narrow ports. */
1762 for (index = 0; index < SCI_MAX_PORTS; index++) {
1763 scic->oem_parameters.sds1.ports[index].phy_mask = 0;
1764 }
1765
1766 /* Initialize all of the phy parameter information. */
1767 for (index = 0; index < SCI_MAX_PHYS; index++) {
1768 /* Default to 6G (i.e. Gen 3) for now. */
1769 scic->user_parameters.sds1.phys[index].max_speed_generation = 3;
1770
1771 /* the frequencies cannot be 0 */
1772 scic->user_parameters.sds1.phys[index].align_insertion_frequency = 0x7f;
1773 scic->user_parameters.sds1.phys[index].in_connection_align_insertion_frequency = 0xff;
1774 scic->user_parameters.sds1.phys[index].notify_enable_spin_up_insertion_frequency = 0x33;
1775
1776 /*
1777 * Previous Vitesse based expanders had a arbitration issue that
1778 * is worked around by having the upper 32-bits of SAS address
1779 * with a value greater then the Vitesse company identifier.
1780 * Hence, usage of 0x5FCFFFFF. */
1781 scic->oem_parameters.sds1.phys[index].sas_address.low = 0x1 + ihost->id;
1782 scic->oem_parameters.sds1.phys[index].sas_address.high = 0x5FCFFFFF;
1783 }
1784
1785 scic->user_parameters.sds1.stp_inactivity_timeout = 5;
1786 scic->user_parameters.sds1.ssp_inactivity_timeout = 5;
1787 scic->user_parameters.sds1.stp_max_occupancy_timeout = 5;
1788 scic->user_parameters.sds1.ssp_max_occupancy_timeout = 20;
1789 scic->user_parameters.sds1.no_outbound_task_timeout = 20;
1790}
1791
6cb5853d
EN
1792static void controller_timeout(unsigned long data)
1793{
1794 struct sci_timer *tmr = (struct sci_timer *)data;
1795 struct scic_sds_controller *scic = container_of(tmr, typeof(*scic), timer);
1796 struct isci_host *ihost = scic_to_ihost(scic);
e301370a 1797 struct sci_base_state_machine *sm = &scic->sm;
6cb5853d
EN
1798 unsigned long flags;
1799
1800 spin_lock_irqsave(&ihost->scic_lock, flags);
1801
1802 if (tmr->cancel)
1803 goto done;
1804
e301370a 1805 if (sm->current_state_id == SCIC_STARTING)
6cb5853d 1806 scic_sds_controller_transition_to_ready(scic, SCI_FAILURE_TIMEOUT);
e301370a
EN
1807 else if (sm->current_state_id == SCIC_STOPPING) {
1808 sci_change_state(sm, SCIC_FAILED);
6cb5853d
EN
1809 isci_host_stop_complete(ihost, SCI_FAILURE_TIMEOUT);
1810 } else /* / @todo Now what do we want to do in this case? */
1811 dev_err(scic_to_dev(scic),
1812 "%s: Controller timer fired when controller was not "
1813 "in a state being timed.\n",
1814 __func__);
cc9203bf 1815
6cb5853d
EN
1816done:
1817 spin_unlock_irqrestore(&ihost->scic_lock, flags);
1818}
cc9203bf
DW
1819
1820/**
1821 * scic_controller_construct() - This method will attempt to construct a
1822 * controller object utilizing the supplied parameter information.
1823 * @c: This parameter specifies the controller to be constructed.
1824 * @scu_base: mapped base address of the scu registers
1825 * @smu_base: mapped base address of the smu registers
1826 *
1827 * Indicate if the controller was successfully constructed or if it failed in
1828 * some way. SCI_SUCCESS This value is returned if the controller was
1829 * successfully constructed. SCI_WARNING_TIMER_CONFLICT This value is returned
1830 * if the interrupt coalescence timer may cause SAS compliance issues for SMP
1831 * Target mode response processing. SCI_FAILURE_UNSUPPORTED_CONTROLLER_TYPE
1832 * This value is returned if the controller does not support the supplied type.
1833 * SCI_FAILURE_UNSUPPORTED_INIT_DATA_VERSION This value is returned if the
1834 * controller does not support the supplied initialization data version.
1835 */
1836static enum sci_status scic_controller_construct(struct scic_sds_controller *scic,
1837 void __iomem *scu_base,
1838 void __iomem *smu_base)
1839{
1840 struct isci_host *ihost = scic_to_ihost(scic);
1841 u8 i;
1842
12ef6544 1843 sci_init_sm(&scic->sm, scic_sds_controller_state_table, SCIC_INITIAL);
cc9203bf
DW
1844
1845 scic->scu_registers = scu_base;
1846 scic->smu_registers = smu_base;
1847
1848 scic_sds_port_configuration_agent_construct(&scic->port_agent);
1849
1850 /* Construct the ports for this controller */
1851 for (i = 0; i < SCI_MAX_PORTS; i++)
1852 scic_sds_port_construct(&ihost->ports[i].sci, i, scic);
1853 scic_sds_port_construct(&ihost->ports[i].sci, SCIC_SDS_DUMMY_PORT, scic);
1854
1855 /* Construct the phys for this controller */
1856 for (i = 0; i < SCI_MAX_PHYS; i++) {
1857 /* Add all the PHYs to the dummy port */
1858 scic_sds_phy_construct(&ihost->phys[i].sci,
1859 &ihost->ports[SCI_MAX_PORTS].sci, i);
1860 }
1861
1862 scic->invalid_phy_mask = 0;
1863
6cb5853d
EN
1864 sci_init_timer(&scic->timer, controller_timeout);
1865
cc9203bf
DW
1866 /* Set the default maximum values */
1867 scic->completion_event_entries = SCU_EVENT_COUNT;
1868 scic->completion_queue_entries = SCU_COMPLETION_QUEUE_COUNT;
1869 scic->remote_node_entries = SCI_MAX_REMOTE_DEVICES;
1870 scic->logical_port_entries = SCI_MAX_PORTS;
1871 scic->task_context_entries = SCU_IO_REQUEST_COUNT;
1872 scic->uf_control.buffers.count = SCU_UNSOLICITED_FRAME_COUNT;
1873 scic->uf_control.address_table.count = SCU_UNSOLICITED_FRAME_COUNT;
1874
1875 /* Initialize the User and OEM parameters to default values. */
1876 scic_sds_controller_set_default_config_parameters(scic);
1877
1878 return scic_controller_reset(scic);
1879}
1880
1881int scic_oem_parameters_validate(struct scic_sds_oem_params *oem)
1882{
1883 int i;
1884
1885 for (i = 0; i < SCI_MAX_PORTS; i++)
1886 if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX)
1887 return -EINVAL;
1888
1889 for (i = 0; i < SCI_MAX_PHYS; i++)
1890 if (oem->phys[i].sas_address.high == 0 &&
1891 oem->phys[i].sas_address.low == 0)
1892 return -EINVAL;
1893
1894 if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) {
1895 for (i = 0; i < SCI_MAX_PHYS; i++)
1896 if (oem->ports[i].phy_mask != 0)
1897 return -EINVAL;
1898 } else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
1899 u8 phy_mask = 0;
1900
1901 for (i = 0; i < SCI_MAX_PHYS; i++)
1902 phy_mask |= oem->ports[i].phy_mask;
1903
1904 if (phy_mask == 0)
1905 return -EINVAL;
1906 } else
1907 return -EINVAL;
1908
1909 if (oem->controller.max_concurrent_dev_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT)
1910 return -EINVAL;
1911
1912 return 0;
1913}
1914
1915static enum sci_status scic_oem_parameters_set(struct scic_sds_controller *scic,
1916 union scic_oem_parameters *scic_parms)
1917{
e301370a 1918 u32 state = scic->sm.current_state_id;
cc9203bf 1919
e301370a
EN
1920 if (state == SCIC_RESET ||
1921 state == SCIC_INITIALIZING ||
1922 state == SCIC_INITIALIZED) {
cc9203bf
DW
1923
1924 if (scic_oem_parameters_validate(&scic_parms->sds1))
1925 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1926 scic->oem_parameters.sds1 = scic_parms->sds1;
1927
1928 return SCI_SUCCESS;
1929 }
1930
1931 return SCI_FAILURE_INVALID_STATE;
1932}
1933
1934void scic_oem_parameters_get(
1935 struct scic_sds_controller *scic,
1936 union scic_oem_parameters *scic_parms)
1937{
1938 memcpy(scic_parms, (&scic->oem_parameters), sizeof(*scic_parms));
1939}
1940
0473661a 1941static void power_control_timeout(unsigned long data)
cc9203bf 1942{
0473661a
EN
1943 struct sci_timer *tmr = (struct sci_timer *)data;
1944 struct scic_sds_controller *scic = container_of(tmr, typeof(*scic), power_control.timer);
1945 struct isci_host *ihost = scic_to_ihost(scic);
1946 struct scic_sds_phy *sci_phy;
1947 unsigned long flags;
1948 u8 i;
cc9203bf 1949
0473661a 1950 spin_lock_irqsave(&ihost->scic_lock, flags);
cc9203bf 1951
0473661a
EN
1952 if (tmr->cancel)
1953 goto done;
1954
1955 scic->power_control.phys_granted_power = 0;
1956
1957 if (scic->power_control.phys_waiting == 0) {
cc9203bf 1958 scic->power_control.timer_started = false;
0473661a 1959 goto done;
cc9203bf 1960 }
cc9203bf 1961
0473661a 1962 for (i = 0; i < SCI_MAX_PHYS; i++) {
cc9203bf 1963
0473661a
EN
1964 if (scic->power_control.phys_waiting == 0)
1965 break;
cc9203bf 1966
0473661a
EN
1967 sci_phy = scic->power_control.requesters[i];
1968 if (sci_phy == NULL)
1969 continue;
cc9203bf 1970
0473661a
EN
1971 if (scic->power_control.phys_granted_power >=
1972 scic->oem_parameters.sds1.controller.max_concurrent_dev_spin_up)
1973 break;
cc9203bf 1974
0473661a
EN
1975 scic->power_control.requesters[i] = NULL;
1976 scic->power_control.phys_waiting--;
1977 scic->power_control.phys_granted_power++;
1978 scic_sds_phy_consume_power_handler(sci_phy);
cc9203bf 1979 }
0473661a
EN
1980
1981 /*
1982 * It doesn't matter if the power list is empty, we need to start the
1983 * timer in case another phy becomes ready.
1984 */
1985 sci_mod_timer(tmr, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1986 scic->power_control.timer_started = true;
1987
1988done:
1989 spin_unlock_irqrestore(&ihost->scic_lock, flags);
cc9203bf
DW
1990}
1991
1992/**
1993 * This method inserts the phy in the stagger spinup control queue.
1994 * @scic:
1995 *
1996 *
1997 */
1998void scic_sds_controller_power_control_queue_insert(
1999 struct scic_sds_controller *scic,
2000 struct scic_sds_phy *sci_phy)
2001{
2002 BUG_ON(sci_phy == NULL);
2003
2004 if (scic->power_control.phys_granted_power <
2005 scic->oem_parameters.sds1.controller.max_concurrent_dev_spin_up) {
2006 scic->power_control.phys_granted_power++;
2007 scic_sds_phy_consume_power_handler(sci_phy);
2008
2009 /*
2010 * stop and start the power_control timer. When the timer fires, the
2011 * no_of_phys_granted_power will be set to 0
2012 */
0473661a
EN
2013 if (scic->power_control.timer_started)
2014 sci_del_timer(&scic->power_control.timer);
2015
2016 sci_mod_timer(&scic->power_control.timer,
2017 SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
2018 scic->power_control.timer_started = true;
2019
cc9203bf
DW
2020 } else {
2021 /* Add the phy in the waiting list */
2022 scic->power_control.requesters[sci_phy->phy_index] = sci_phy;
2023 scic->power_control.phys_waiting++;
2024 }
2025}
2026
2027/**
2028 * This method removes the phy from the stagger spinup control queue.
2029 * @scic:
2030 *
2031 *
2032 */
2033void scic_sds_controller_power_control_queue_remove(
2034 struct scic_sds_controller *scic,
2035 struct scic_sds_phy *sci_phy)
2036{
2037 BUG_ON(sci_phy == NULL);
2038
2039 if (scic->power_control.requesters[sci_phy->phy_index] != NULL) {
2040 scic->power_control.phys_waiting--;
2041 }
2042
2043 scic->power_control.requesters[sci_phy->phy_index] = NULL;
2044}
2045
2046#define AFE_REGISTER_WRITE_DELAY 10
2047
2048/* Initialize the AFE for this phy index. We need to read the AFE setup from
2049 * the OEM parameters
2050 */
2051static void scic_sds_controller_afe_initialization(struct scic_sds_controller *scic)
2052{
2053 const struct scic_sds_oem_params *oem = &scic->oem_parameters.sds1;
2054 u32 afe_status;
2055 u32 phy_id;
2056
2057 /* Clear DFX Status registers */
2058 writel(0x0081000f, &scic->scu_registers->afe.afe_dfx_master_control0);
2059 udelay(AFE_REGISTER_WRITE_DELAY);
2060
2061 if (is_b0()) {
2062 /* PM Rx Equalization Save, PM SPhy Rx Acknowledgement
2063 * Timer, PM Stagger Timer */
2064 writel(0x0007BFFF, &scic->scu_registers->afe.afe_pmsn_master_control2);
2065 udelay(AFE_REGISTER_WRITE_DELAY);
2066 }
2067
2068 /* Configure bias currents to normal */
2069 if (is_a0())
2070 writel(0x00005500, &scic->scu_registers->afe.afe_bias_control);
2071 else if (is_a2())
2072 writel(0x00005A00, &scic->scu_registers->afe.afe_bias_control);
2073 else if (is_b0())
2074 writel(0x00005F00, &scic->scu_registers->afe.afe_bias_control);
2075
2076 udelay(AFE_REGISTER_WRITE_DELAY);
2077
2078 /* Enable PLL */
2079 if (is_b0())
2080 writel(0x80040A08, &scic->scu_registers->afe.afe_pll_control0);
2081 else
2082 writel(0x80040908, &scic->scu_registers->afe.afe_pll_control0);
2083
2084 udelay(AFE_REGISTER_WRITE_DELAY);
2085
2086 /* Wait for the PLL to lock */
2087 do {
2088 afe_status = readl(&scic->scu_registers->afe.afe_common_block_status);
2089 udelay(AFE_REGISTER_WRITE_DELAY);
2090 } while ((afe_status & 0x00001000) == 0);
2091
2092 if (is_a0() || is_a2()) {
2093 /* Shorten SAS SNW lock time (RxLock timer value from 76 us to 50 us) */
2094 writel(0x7bcc96ad, &scic->scu_registers->afe.afe_pmsn_master_control0);
2095 udelay(AFE_REGISTER_WRITE_DELAY);
2096 }
2097
2098 for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) {
2099 const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id];
2100
2101 if (is_b0()) {
2102 /* Configure transmitter SSC parameters */
2103 writel(0x00030000, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_ssc_control);
2104 udelay(AFE_REGISTER_WRITE_DELAY);
2105 } else {
2106 /*
2107 * All defaults, except the Receive Word Alignament/Comma Detect
2108 * Enable....(0xe800) */
2109 writel(0x00004512, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
2110 udelay(AFE_REGISTER_WRITE_DELAY);
2111
2112 writel(0x0050100F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control1);
2113 udelay(AFE_REGISTER_WRITE_DELAY);
2114 }
2115
2116 /*
2117 * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
2118 * & increase TX int & ext bias 20%....(0xe85c) */
2119 if (is_a0())
2120 writel(0x000003D4, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
2121 else if (is_a2())
2122 writel(0x000003F0, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
2123 else {
2124 /* Power down TX and RX (PWRDNTX and PWRDNRX) */
2125 writel(0x000003d7, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
2126 udelay(AFE_REGISTER_WRITE_DELAY);
2127
2128 /*
2129 * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
2130 * & increase TX int & ext bias 20%....(0xe85c) */
2131 writel(0x000003d4, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
2132 }
2133 udelay(AFE_REGISTER_WRITE_DELAY);
2134
2135 if (is_a0() || is_a2()) {
2136 /* Enable TX equalization (0xe824) */
2137 writel(0x00040000, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
2138 udelay(AFE_REGISTER_WRITE_DELAY);
2139 }
2140
2141 /*
2142 * RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0, TPD=0x0(TX Power On),
2143 * RDD=0x0(RX Detect Enabled) ....(0xe800) */
2144 writel(0x00004100, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
2145 udelay(AFE_REGISTER_WRITE_DELAY);
2146
2147 /* Leave DFE/FFE on */
2148 if (is_a0())
2149 writel(0x3F09983F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
2150 else if (is_a2())
2151 writel(0x3F11103F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
2152 else {
2153 writel(0x3F11103F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
2154 udelay(AFE_REGISTER_WRITE_DELAY);
2155 /* Enable TX equalization (0xe824) */
2156 writel(0x00040000, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
2157 }
2158 udelay(AFE_REGISTER_WRITE_DELAY);
2159
2160 writel(oem_phy->afe_tx_amp_control0,
2161 &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control0);
2162 udelay(AFE_REGISTER_WRITE_DELAY);
2163
2164 writel(oem_phy->afe_tx_amp_control1,
2165 &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control1);
2166 udelay(AFE_REGISTER_WRITE_DELAY);
2167
2168 writel(oem_phy->afe_tx_amp_control2,
2169 &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control2);
2170 udelay(AFE_REGISTER_WRITE_DELAY);
2171
2172 writel(oem_phy->afe_tx_amp_control3,
2173 &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control3);
2174 udelay(AFE_REGISTER_WRITE_DELAY);
2175 }
2176
2177 /* Transfer control to the PEs */
2178 writel(0x00010f00, &scic->scu_registers->afe.afe_dfx_master_control0);
2179 udelay(AFE_REGISTER_WRITE_DELAY);
2180}
2181
2182static enum sci_status scic_controller_set_mode(struct scic_sds_controller *scic,
2183 enum sci_controller_mode operating_mode)
2184{
2185 enum sci_status status = SCI_SUCCESS;
2186
e301370a
EN
2187 if ((scic->sm.current_state_id == SCIC_INITIALIZING) ||
2188 (scic->sm.current_state_id == SCIC_INITIALIZED)) {
cc9203bf
DW
2189 switch (operating_mode) {
2190 case SCI_MODE_SPEED:
2191 scic->remote_node_entries = SCI_MAX_REMOTE_DEVICES;
2192 scic->task_context_entries = SCU_IO_REQUEST_COUNT;
2193 scic->uf_control.buffers.count =
2194 SCU_UNSOLICITED_FRAME_COUNT;
2195 scic->completion_event_entries = SCU_EVENT_COUNT;
2196 scic->completion_queue_entries =
2197 SCU_COMPLETION_QUEUE_COUNT;
2198 break;
2199
2200 case SCI_MODE_SIZE:
2201 scic->remote_node_entries = SCI_MIN_REMOTE_DEVICES;
2202 scic->task_context_entries = SCI_MIN_IO_REQUESTS;
2203 scic->uf_control.buffers.count =
2204 SCU_MIN_UNSOLICITED_FRAMES;
2205 scic->completion_event_entries = SCU_MIN_EVENTS;
2206 scic->completion_queue_entries =
2207 SCU_MIN_COMPLETION_QUEUE_ENTRIES;
2208 break;
2209
2210 default:
2211 status = SCI_FAILURE_INVALID_PARAMETER_VALUE;
2212 break;
2213 }
2214 } else
2215 status = SCI_FAILURE_INVALID_STATE;
2216
2217 return status;
2218}
2219
2220static void scic_sds_controller_initialize_power_control(struct scic_sds_controller *scic)
2221{
0473661a 2222 sci_init_timer(&scic->power_control.timer, power_control_timeout);
cc9203bf
DW
2223
2224 memset(scic->power_control.requesters, 0,
2225 sizeof(scic->power_control.requesters));
2226
2227 scic->power_control.phys_waiting = 0;
2228 scic->power_control.phys_granted_power = 0;
2229}
2230
2231static enum sci_status scic_controller_initialize(struct scic_sds_controller *scic)
2232{
e301370a 2233 struct sci_base_state_machine *sm = &scic->sm;
cc9203bf
DW
2234 enum sci_status result = SCI_SUCCESS;
2235 struct isci_host *ihost = scic_to_ihost(scic);
2236 u32 index, state;
2237
e301370a 2238 if (scic->sm.current_state_id != SCIC_RESET) {
cc9203bf
DW
2239 dev_warn(scic_to_dev(scic),
2240 "SCIC Controller initialize operation requested "
2241 "in invalid state\n");
2242 return SCI_FAILURE_INVALID_STATE;
2243 }
2244
e301370a 2245 sci_change_state(sm, SCIC_INITIALIZING);
cc9203bf 2246
bb3dbdf6
EN
2247 sci_init_timer(&scic->phy_timer, phy_startup_timeout);
2248
2249 scic->next_phy_to_start = 0;
2250 scic->phy_startup_timer_pending = false;
cc9203bf
DW
2251
2252 scic_sds_controller_initialize_power_control(scic);
2253
2254 /*
2255 * There is nothing to do here for B0 since we do not have to
2256 * program the AFE registers.
2257 * / @todo The AFE settings are supposed to be correct for the B0 but
2258 * / presently they seem to be wrong. */
2259 scic_sds_controller_afe_initialization(scic);
2260
2261 if (result == SCI_SUCCESS) {
2262 u32 status;
2263 u32 terminate_loop;
2264
2265 /* Take the hardware out of reset */
2266 writel(0, &scic->smu_registers->soft_reset_control);
2267
2268 /*
2269 * / @todo Provide meaningfull error code for hardware failure
2270 * result = SCI_FAILURE_CONTROLLER_HARDWARE; */
2271 result = SCI_FAILURE;
2272 terminate_loop = 100;
2273
2274 while (terminate_loop-- && (result != SCI_SUCCESS)) {
2275 /* Loop until the hardware reports success */
2276 udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME);
2277 status = readl(&scic->smu_registers->control_status);
2278
2279 if ((status & SCU_RAM_INIT_COMPLETED) ==
2280 SCU_RAM_INIT_COMPLETED)
2281 result = SCI_SUCCESS;
2282 }
2283 }
2284
2285 if (result == SCI_SUCCESS) {
2286 u32 max_supported_ports;
2287 u32 max_supported_devices;
2288 u32 max_supported_io_requests;
2289 u32 device_context_capacity;
2290
2291 /*
2292 * Determine what are the actaul device capacities that the
2293 * hardware will support */
2294 device_context_capacity =
2295 readl(&scic->smu_registers->device_context_capacity);
2296
2297
2298 max_supported_ports = smu_dcc_get_max_ports(device_context_capacity);
2299 max_supported_devices = smu_dcc_get_max_remote_node_context(device_context_capacity);
2300 max_supported_io_requests = smu_dcc_get_max_task_context(device_context_capacity);
2301
2302 /*
2303 * Make all PEs that are unassigned match up with the
2304 * logical ports
2305 */
2306 for (index = 0; index < max_supported_ports; index++) {
2307 struct scu_port_task_scheduler_group_registers __iomem
2308 *ptsg = &scic->scu_registers->peg0.ptsg;
2309
2310 writel(index, &ptsg->protocol_engine[index]);
2311 }
2312
2313 /* Record the smaller of the two capacity values */
2314 scic->logical_port_entries =
2315 min(max_supported_ports, scic->logical_port_entries);
2316
2317 scic->task_context_entries =
2318 min(max_supported_io_requests,
2319 scic->task_context_entries);
2320
2321 scic->remote_node_entries =
2322 min(max_supported_devices, scic->remote_node_entries);
2323
2324 /*
2325 * Now that we have the correct hardware reported minimum values
2326 * build the MDL for the controller. Default to a performance
2327 * configuration.
2328 */
2329 scic_controller_set_mode(scic, SCI_MODE_SPEED);
2330 }
2331
2332 /* Initialize hardware PCI Relaxed ordering in DMA engines */
2333 if (result == SCI_SUCCESS) {
2334 u32 dma_configuration;
2335
2336 /* Configure the payload DMA */
2337 dma_configuration =
2338 readl(&scic->scu_registers->sdma.pdma_configuration);
2339 dma_configuration |=
2340 SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2341 writel(dma_configuration,
2342 &scic->scu_registers->sdma.pdma_configuration);
2343
2344 /* Configure the control DMA */
2345 dma_configuration =
2346 readl(&scic->scu_registers->sdma.cdma_configuration);
2347 dma_configuration |=
2348 SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2349 writel(dma_configuration,
2350 &scic->scu_registers->sdma.cdma_configuration);
2351 }
2352
2353 /*
2354 * Initialize the PHYs before the PORTs because the PHY registers
2355 * are accessed during the port initialization.
2356 */
2357 if (result == SCI_SUCCESS) {
2358 /* Initialize the phys */
2359 for (index = 0;
2360 (result == SCI_SUCCESS) && (index < SCI_MAX_PHYS);
2361 index++) {
2362 result = scic_sds_phy_initialize(
2363 &ihost->phys[index].sci,
2364 &scic->scu_registers->peg0.pe[index].tl,
2365 &scic->scu_registers->peg0.pe[index].ll);
2366 }
2367 }
2368
2369 if (result == SCI_SUCCESS) {
2370 /* Initialize the logical ports */
2371 for (index = 0;
2372 (index < scic->logical_port_entries) &&
2373 (result == SCI_SUCCESS);
2374 index++) {
2375 result = scic_sds_port_initialize(
2376 &ihost->ports[index].sci,
2377 &scic->scu_registers->peg0.ptsg.port[index],
2378 &scic->scu_registers->peg0.ptsg.protocol_engine,
2379 &scic->scu_registers->peg0.viit[index]);
2380 }
2381 }
2382
2383 if (result == SCI_SUCCESS)
2384 result = scic_sds_port_configuration_agent_initialize(
2385 scic,
2386 &scic->port_agent);
2387
2388 /* Advance the controller state machine */
2389 if (result == SCI_SUCCESS)
e301370a 2390 state = SCIC_INITIALIZED;
cc9203bf 2391 else
e301370a
EN
2392 state = SCIC_FAILED;
2393 sci_change_state(sm, state);
cc9203bf
DW
2394
2395 return result;
2396}
2397
2398static enum sci_status scic_user_parameters_set(
2399 struct scic_sds_controller *scic,
2400 union scic_user_parameters *scic_parms)
2401{
e301370a 2402 u32 state = scic->sm.current_state_id;
cc9203bf 2403
e301370a
EN
2404 if (state == SCIC_RESET ||
2405 state == SCIC_INITIALIZING ||
2406 state == SCIC_INITIALIZED) {
cc9203bf
DW
2407 u16 index;
2408
2409 /*
2410 * Validate the user parameters. If they are not legal, then
2411 * return a failure.
2412 */
2413 for (index = 0; index < SCI_MAX_PHYS; index++) {
2414 struct sci_phy_user_params *user_phy;
2415
2416 user_phy = &scic_parms->sds1.phys[index];
2417
2418 if (!((user_phy->max_speed_generation <=
2419 SCIC_SDS_PARM_MAX_SPEED) &&
2420 (user_phy->max_speed_generation >
2421 SCIC_SDS_PARM_NO_SPEED)))
2422 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2423
2424 if (user_phy->in_connection_align_insertion_frequency <
2425 3)
2426 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2427
2428 if ((user_phy->in_connection_align_insertion_frequency <
2429 3) ||
2430 (user_phy->align_insertion_frequency == 0) ||
2431 (user_phy->
2432 notify_enable_spin_up_insertion_frequency ==
2433 0))
2434 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2435 }
2436
2437 if ((scic_parms->sds1.stp_inactivity_timeout == 0) ||
2438 (scic_parms->sds1.ssp_inactivity_timeout == 0) ||
2439 (scic_parms->sds1.stp_max_occupancy_timeout == 0) ||
2440 (scic_parms->sds1.ssp_max_occupancy_timeout == 0) ||
2441 (scic_parms->sds1.no_outbound_task_timeout == 0))
2442 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2443
2444 memcpy(&scic->user_parameters, scic_parms, sizeof(*scic_parms));
2445
2446 return SCI_SUCCESS;
2447 }
2448
2449 return SCI_FAILURE_INVALID_STATE;
2450}
2451
2452static int scic_controller_mem_init(struct scic_sds_controller *scic)
2453{
2454 struct device *dev = scic_to_dev(scic);
2455 dma_addr_t dma_handle;
2456 enum sci_status result;
2457
2458 scic->completion_queue = dmam_alloc_coherent(dev,
2459 scic->completion_queue_entries * sizeof(u32),
2460 &dma_handle, GFP_KERNEL);
2461 if (!scic->completion_queue)
2462 return -ENOMEM;
2463
2464 writel(lower_32_bits(dma_handle),
2465 &scic->smu_registers->completion_queue_lower);
2466 writel(upper_32_bits(dma_handle),
2467 &scic->smu_registers->completion_queue_upper);
2468
2469 scic->remote_node_context_table = dmam_alloc_coherent(dev,
2470 scic->remote_node_entries *
2471 sizeof(union scu_remote_node_context),
2472 &dma_handle, GFP_KERNEL);
2473 if (!scic->remote_node_context_table)
2474 return -ENOMEM;
2475
2476 writel(lower_32_bits(dma_handle),
2477 &scic->smu_registers->remote_node_context_lower);
2478 writel(upper_32_bits(dma_handle),
2479 &scic->smu_registers->remote_node_context_upper);
2480
2481 scic->task_context_table = dmam_alloc_coherent(dev,
2482 scic->task_context_entries *
2483 sizeof(struct scu_task_context),
2484 &dma_handle, GFP_KERNEL);
2485 if (!scic->task_context_table)
2486 return -ENOMEM;
2487
2488 writel(lower_32_bits(dma_handle),
2489 &scic->smu_registers->host_task_table_lower);
2490 writel(upper_32_bits(dma_handle),
2491 &scic->smu_registers->host_task_table_upper);
2492
2493 result = scic_sds_unsolicited_frame_control_construct(scic);
2494 if (result)
2495 return result;
2496
2497 /*
2498 * Inform the silicon as to the location of the UF headers and
2499 * address table.
2500 */
2501 writel(lower_32_bits(scic->uf_control.headers.physical_address),
2502 &scic->scu_registers->sdma.uf_header_base_address_lower);
2503 writel(upper_32_bits(scic->uf_control.headers.physical_address),
2504 &scic->scu_registers->sdma.uf_header_base_address_upper);
2505
2506 writel(lower_32_bits(scic->uf_control.address_table.physical_address),
2507 &scic->scu_registers->sdma.uf_address_table_lower);
2508 writel(upper_32_bits(scic->uf_control.address_table.physical_address),
2509 &scic->scu_registers->sdma.uf_address_table_upper);
2510
2511 return 0;
2512}
2513
6f231dda
DW
2514int isci_host_init(struct isci_host *isci_host)
2515{
d9c37390 2516 int err = 0, i;
6f231dda 2517 enum sci_status status;
4711ba10 2518 union scic_oem_parameters oem;
6f231dda 2519 union scic_user_parameters scic_user_params;
d044af17 2520 struct isci_pci_info *pci_info = to_pci_info(isci_host->pdev);
6f231dda 2521
6f231dda
DW
2522 spin_lock_init(&isci_host->state_lock);
2523 spin_lock_init(&isci_host->scic_lock);
2524 spin_lock_init(&isci_host->queue_lock);
0cf89d1d 2525 init_waitqueue_head(&isci_host->eventq);
6f231dda
DW
2526
2527 isci_host_change_state(isci_host, isci_starting);
2528 isci_host->can_queue = ISCI_CAN_QUEUE_VAL;
2529
cc3dbd0a 2530 status = scic_controller_construct(&isci_host->sci, scu_base(isci_host),
6f231dda
DW
2531 smu_base(isci_host));
2532
2533 if (status != SCI_SUCCESS) {
2534 dev_err(&isci_host->pdev->dev,
2535 "%s: scic_controller_construct failed - status = %x\n",
2536 __func__,
2537 status);
858d4aa7 2538 return -ENODEV;
6f231dda
DW
2539 }
2540
2541 isci_host->sas_ha.dev = &isci_host->pdev->dev;
2542 isci_host->sas_ha.lldd_ha = isci_host;
2543
d044af17
DW
2544 /*
2545 * grab initial values stored in the controller object for OEM and USER
2546 * parameters
2547 */
b5f18a20 2548 isci_user_parameters_get(isci_host, &scic_user_params);
cc3dbd0a 2549 status = scic_user_parameters_set(&isci_host->sci,
d044af17
DW
2550 &scic_user_params);
2551 if (status != SCI_SUCCESS) {
2552 dev_warn(&isci_host->pdev->dev,
2553 "%s: scic_user_parameters_set failed\n",
2554 __func__);
2555 return -ENODEV;
2556 }
2557
cc3dbd0a 2558 scic_oem_parameters_get(&isci_host->sci, &oem);
6f231dda 2559
d044af17
DW
2560 /* grab any OEM parameters specified in orom */
2561 if (pci_info->orom) {
4711ba10 2562 status = isci_parse_oem_parameters(&oem,
d044af17
DW
2563 pci_info->orom,
2564 isci_host->id);
6f231dda
DW
2565 if (status != SCI_SUCCESS) {
2566 dev_warn(&isci_host->pdev->dev,
2567 "parsing firmware oem parameters failed\n");
858d4aa7 2568 return -EINVAL;
6f231dda 2569 }
4711ba10
DW
2570 }
2571
cc3dbd0a 2572 status = scic_oem_parameters_set(&isci_host->sci, &oem);
4711ba10
DW
2573 if (status != SCI_SUCCESS) {
2574 dev_warn(&isci_host->pdev->dev,
2575 "%s: scic_oem_parameters_set failed\n",
2576 __func__);
2577 return -ENODEV;
6f231dda
DW
2578 }
2579
7c40a803
DW
2580 tasklet_init(&isci_host->completion_tasklet,
2581 isci_host_completion_routine, (unsigned long)isci_host);
2582
7c40a803 2583 INIT_LIST_HEAD(&isci_host->requests_to_complete);
11b00c19 2584 INIT_LIST_HEAD(&isci_host->requests_to_errorback);
7c40a803
DW
2585
2586 spin_lock_irq(&isci_host->scic_lock);
cc3dbd0a 2587 status = scic_controller_initialize(&isci_host->sci);
7c40a803 2588 spin_unlock_irq(&isci_host->scic_lock);
6f231dda
DW
2589 if (status != SCI_SUCCESS) {
2590 dev_warn(&isci_host->pdev->dev,
2591 "%s: scic_controller_initialize failed -"
2592 " status = 0x%x\n",
2593 __func__, status);
858d4aa7 2594 return -ENODEV;
6f231dda
DW
2595 }
2596
cc3dbd0a 2597 err = scic_controller_mem_init(&isci_host->sci);
6f231dda 2598 if (err)
858d4aa7 2599 return err;
6f231dda 2600
6f231dda 2601 isci_host->dma_pool = dmam_pool_create(DRV_NAME, &isci_host->pdev->dev,
67ea838d 2602 sizeof(struct isci_request),
6f231dda
DW
2603 SLAB_HWCACHE_ALIGN, 0);
2604
858d4aa7
DJ
2605 if (!isci_host->dma_pool)
2606 return -ENOMEM;
6f231dda 2607
d9c37390 2608 for (i = 0; i < SCI_MAX_PORTS; i++)
e531381e 2609 isci_port_init(&isci_host->ports[i], isci_host, i);
6f231dda 2610
d9c37390
DW
2611 for (i = 0; i < SCI_MAX_PHYS; i++)
2612 isci_phy_init(&isci_host->phys[i], isci_host, i);
2613
2614 for (i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) {
57f20f4e 2615 struct isci_remote_device *idev = &isci_host->devices[i];
d9c37390
DW
2616
2617 INIT_LIST_HEAD(&idev->reqs_in_process);
2618 INIT_LIST_HEAD(&idev->node);
2619 spin_lock_init(&idev->state_lock);
2620 }
6f231dda 2621
858d4aa7 2622 return 0;
6f231dda 2623}
cc9203bf
DW
2624
2625void scic_sds_controller_link_up(struct scic_sds_controller *scic,
2626 struct scic_sds_port *port, struct scic_sds_phy *phy)
2627{
e301370a
EN
2628 switch (scic->sm.current_state_id) {
2629 case SCIC_STARTING:
bb3dbdf6
EN
2630 sci_del_timer(&scic->phy_timer);
2631 scic->phy_startup_timer_pending = false;
cc9203bf
DW
2632 scic->port_agent.link_up_handler(scic, &scic->port_agent,
2633 port, phy);
2634 scic_sds_controller_start_next_phy(scic);
2635 break;
e301370a 2636 case SCIC_READY:
cc9203bf
DW
2637 scic->port_agent.link_up_handler(scic, &scic->port_agent,
2638 port, phy);
2639 break;
2640 default:
2641 dev_dbg(scic_to_dev(scic),
2642 "%s: SCIC Controller linkup event from phy %d in "
2643 "unexpected state %d\n", __func__, phy->phy_index,
e301370a 2644 scic->sm.current_state_id);
cc9203bf
DW
2645 }
2646}
2647
2648void scic_sds_controller_link_down(struct scic_sds_controller *scic,
2649 struct scic_sds_port *port, struct scic_sds_phy *phy)
2650{
e301370a
EN
2651 switch (scic->sm.current_state_id) {
2652 case SCIC_STARTING:
2653 case SCIC_READY:
cc9203bf
DW
2654 scic->port_agent.link_down_handler(scic, &scic->port_agent,
2655 port, phy);
2656 break;
2657 default:
2658 dev_dbg(scic_to_dev(scic),
2659 "%s: SCIC Controller linkdown event from phy %d in "
2660 "unexpected state %d\n",
2661 __func__,
2662 phy->phy_index,
e301370a 2663 scic->sm.current_state_id);
cc9203bf
DW
2664 }
2665}
2666
2667/**
2668 * This is a helper method to determine if any remote devices on this
2669 * controller are still in the stopping state.
2670 *
2671 */
2672static bool scic_sds_controller_has_remote_devices_stopping(
2673 struct scic_sds_controller *controller)
2674{
2675 u32 index;
2676
2677 for (index = 0; index < controller->remote_node_entries; index++) {
2678 if ((controller->device_table[index] != NULL) &&
e301370a 2679 (controller->device_table[index]->sm.current_state_id == SCI_DEV_STOPPING))
cc9203bf
DW
2680 return true;
2681 }
2682
2683 return false;
2684}
2685
2686/**
2687 * This method is called by the remote device to inform the controller
2688 * object that the remote device has stopped.
2689 */
2690void scic_sds_controller_remote_device_stopped(struct scic_sds_controller *scic,
2691 struct scic_sds_remote_device *sci_dev)
2692{
e301370a 2693 if (scic->sm.current_state_id != SCIC_STOPPING) {
cc9203bf
DW
2694 dev_dbg(scic_to_dev(scic),
2695 "SCIC Controller 0x%p remote device stopped event "
2696 "from device 0x%p in unexpected state %d\n",
2697 scic, sci_dev,
e301370a 2698 scic->sm.current_state_id);
cc9203bf
DW
2699 return;
2700 }
2701
2702 if (!scic_sds_controller_has_remote_devices_stopping(scic)) {
e301370a 2703 sci_change_state(&scic->sm, SCIC_STOPPED);
cc9203bf
DW
2704 }
2705}
2706
2707/**
2708 * This method will write to the SCU PCP register the request value. The method
2709 * is used to suspend/resume ports, devices, and phys.
2710 * @scic:
2711 *
2712 *
2713 */
2714void scic_sds_controller_post_request(
2715 struct scic_sds_controller *scic,
2716 u32 request)
2717{
2718 dev_dbg(scic_to_dev(scic),
2719 "%s: SCIC Controller 0x%p post request 0x%08x\n",
2720 __func__,
2721 scic,
2722 request);
2723
2724 writel(request, &scic->smu_registers->post_context_port);
2725}
2726
2727/**
2728 * This method will copy the soft copy of the task context into the physical
2729 * memory accessible by the controller.
2730 * @scic: This parameter specifies the controller for which to copy
2731 * the task context.
2732 * @sci_req: This parameter specifies the request for which the task
2733 * context is being copied.
2734 *
2735 * After this call is made the SCIC_SDS_IO_REQUEST object will always point to
2736 * the physical memory version of the task context. Thus, all subsequent
2737 * updates to the task context are performed in the TC table (i.e. DMAable
2738 * memory). none
2739 */
2740void scic_sds_controller_copy_task_context(
2741 struct scic_sds_controller *scic,
2742 struct scic_sds_request *sci_req)
2743{
2744 struct scu_task_context *task_context_buffer;
2745
2746 task_context_buffer = scic_sds_controller_get_task_context_buffer(
2747 scic, sci_req->io_tag);
2748
2749 memcpy(task_context_buffer,
2750 sci_req->task_context_buffer,
2751 offsetof(struct scu_task_context, sgl_snapshot_ac));
2752
2753 /*
2754 * Now that the soft copy of the TC has been copied into the TC
2755 * table accessible by the silicon. Thus, any further changes to
2756 * the TC (e.g. TC termination) occur in the appropriate location. */
2757 sci_req->task_context_buffer = task_context_buffer;
2758}
2759
2760/**
2761 * This method returns the task context buffer for the given io tag.
2762 * @scic:
2763 * @io_tag:
2764 *
2765 * struct scu_task_context*
2766 */
2767struct scu_task_context *scic_sds_controller_get_task_context_buffer(
2768 struct scic_sds_controller *scic,
2769 u16 io_tag
2770 ) {
2771 u16 task_index = scic_sds_io_tag_get_index(io_tag);
2772
2773 if (task_index < scic->task_context_entries) {
2774 return &scic->task_context_table[task_index];
2775 }
2776
2777 return NULL;
2778}
2779
2780struct scic_sds_request *scic_request_by_tag(struct scic_sds_controller *scic,
2781 u16 io_tag)
2782{
2783 u16 task_index;
2784 u16 task_sequence;
2785
2786 task_index = scic_sds_io_tag_get_index(io_tag);
2787
2788 if (task_index < scic->task_context_entries) {
2789 if (scic->io_request_table[task_index] != NULL) {
2790 task_sequence = scic_sds_io_tag_get_sequence(io_tag);
2791
2792 if (task_sequence == scic->io_request_sequence[task_index]) {
2793 return scic->io_request_table[task_index];
2794 }
2795 }
2796 }
2797
2798 return NULL;
2799}
2800
2801/**
2802 * This method allocates remote node index and the reserves the remote node
2803 * context space for use. This method can fail if there are no more remote
2804 * node index available.
2805 * @scic: This is the controller object which contains the set of
2806 * free remote node ids
2807 * @sci_dev: This is the device object which is requesting the a remote node
2808 * id
2809 * @node_id: This is the remote node id that is assinged to the device if one
2810 * is available
2811 *
2812 * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
2813 * node index available.
2814 */
2815enum sci_status scic_sds_controller_allocate_remote_node_context(
2816 struct scic_sds_controller *scic,
2817 struct scic_sds_remote_device *sci_dev,
2818 u16 *node_id)
2819{
2820 u16 node_index;
2821 u32 remote_node_count = scic_sds_remote_device_node_count(sci_dev);
2822
2823 node_index = scic_sds_remote_node_table_allocate_remote_node(
2824 &scic->available_remote_nodes, remote_node_count
2825 );
2826
2827 if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
2828 scic->device_table[node_index] = sci_dev;
2829
2830 *node_id = node_index;
2831
2832 return SCI_SUCCESS;
2833 }
2834
2835 return SCI_FAILURE_INSUFFICIENT_RESOURCES;
2836}
2837
2838/**
2839 * This method frees the remote node index back to the available pool. Once
2840 * this is done the remote node context buffer is no longer valid and can
2841 * not be used.
2842 * @scic:
2843 * @sci_dev:
2844 * @node_id:
2845 *
2846 */
2847void scic_sds_controller_free_remote_node_context(
2848 struct scic_sds_controller *scic,
2849 struct scic_sds_remote_device *sci_dev,
2850 u16 node_id)
2851{
2852 u32 remote_node_count = scic_sds_remote_device_node_count(sci_dev);
2853
2854 if (scic->device_table[node_id] == sci_dev) {
2855 scic->device_table[node_id] = NULL;
2856
2857 scic_sds_remote_node_table_release_remote_node_index(
2858 &scic->available_remote_nodes, remote_node_count, node_id
2859 );
2860 }
2861}
2862
2863/**
2864 * This method returns the union scu_remote_node_context for the specified remote
2865 * node id.
2866 * @scic:
2867 * @node_id:
2868 *
2869 * union scu_remote_node_context*
2870 */
2871union scu_remote_node_context *scic_sds_controller_get_remote_node_context_buffer(
2872 struct scic_sds_controller *scic,
2873 u16 node_id
2874 ) {
2875 if (
2876 (node_id < scic->remote_node_entries)
2877 && (scic->device_table[node_id] != NULL)
2878 ) {
2879 return &scic->remote_node_context_table[node_id];
2880 }
2881
2882 return NULL;
2883}
2884
2885/**
2886 *
2887 * @resposne_buffer: This is the buffer into which the D2H register FIS will be
2888 * constructed.
2889 * @frame_header: This is the frame header returned by the hardware.
2890 * @frame_buffer: This is the frame buffer returned by the hardware.
2891 *
2892 * This method will combind the frame header and frame buffer to create a SATA
2893 * D2H register FIS none
2894 */
2895void scic_sds_controller_copy_sata_response(
2896 void *response_buffer,
2897 void *frame_header,
2898 void *frame_buffer)
2899{
2900 memcpy(response_buffer, frame_header, sizeof(u32));
2901
2902 memcpy(response_buffer + sizeof(u32),
2903 frame_buffer,
2904 sizeof(struct dev_to_host_fis) - sizeof(u32));
2905}
2906
2907/**
2908 * This method releases the frame once this is done the frame is available for
2909 * re-use by the hardware. The data contained in the frame header and frame
2910 * buffer is no longer valid. The UF queue get pointer is only updated if UF
2911 * control indicates this is appropriate.
2912 * @scic:
2913 * @frame_index:
2914 *
2915 */
2916void scic_sds_controller_release_frame(
2917 struct scic_sds_controller *scic,
2918 u32 frame_index)
2919{
2920 if (scic_sds_unsolicited_frame_control_release_frame(
2921 &scic->uf_control, frame_index) == true)
2922 writel(scic->uf_control.get,
2923 &scic->scu_registers->sdma.unsolicited_frame_get_pointer);
2924}
2925
2926/**
2927 * scic_controller_start_io() - This method is called by the SCI user to
2928 * send/start an IO request. If the method invocation is successful, then
2929 * the IO request has been queued to the hardware for processing.
2930 * @controller: the handle to the controller object for which to start an IO
2931 * request.
2932 * @remote_device: the handle to the remote device object for which to start an
2933 * IO request.
2934 * @io_request: the handle to the io request object to start.
2935 * @io_tag: This parameter specifies a previously allocated IO tag that the
2936 * user desires to be utilized for this request. This parameter is optional.
2937 * The user is allowed to supply SCI_CONTROLLER_INVALID_IO_TAG as the value
2938 * for this parameter.
2939 *
2940 * - IO tags are a protected resource. It is incumbent upon the SCI Core user
2941 * to ensure that each of the methods that may allocate or free available IO
2942 * tags are handled in a mutually exclusive manner. This method is one of said
2943 * methods requiring proper critical code section protection (e.g. semaphore,
2944 * spin-lock, etc.). - For SATA, the user is required to manage NCQ tags. As a
2945 * result, it is expected the user will have set the NCQ tag field in the host
2946 * to device register FIS prior to calling this method. There is also a
2947 * requirement for the user to call scic_stp_io_set_ncq_tag() prior to invoking
2948 * the scic_controller_start_io() method. scic_controller_allocate_tag() for
2949 * more information on allocating a tag. Indicate if the controller
2950 * successfully started the IO request. SCI_SUCCESS if the IO request was
2951 * successfully started. Determine the failure situations and return values.
2952 */
2953enum sci_status scic_controller_start_io(
2954 struct scic_sds_controller *scic,
2955 struct scic_sds_remote_device *rdev,
2956 struct scic_sds_request *req,
2957 u16 io_tag)
2958{
2959 enum sci_status status;
2960
e301370a 2961 if (scic->sm.current_state_id != SCIC_READY) {
cc9203bf
DW
2962 dev_warn(scic_to_dev(scic), "invalid state to start I/O");
2963 return SCI_FAILURE_INVALID_STATE;
2964 }
2965
2966 status = scic_sds_remote_device_start_io(scic, rdev, req);
2967 if (status != SCI_SUCCESS)
2968 return status;
2969
2970 scic->io_request_table[scic_sds_io_tag_get_index(req->io_tag)] = req;
2971 scic_sds_controller_post_request(scic, scic_sds_request_get_post_context(req));
2972 return SCI_SUCCESS;
2973}
2974
2975/**
2976 * scic_controller_terminate_request() - This method is called by the SCI Core
2977 * user to terminate an ongoing (i.e. started) core IO request. This does
2978 * not abort the IO request at the target, but rather removes the IO request
2979 * from the host controller.
2980 * @controller: the handle to the controller object for which to terminate a
2981 * request.
2982 * @remote_device: the handle to the remote device object for which to
2983 * terminate a request.
2984 * @request: the handle to the io or task management request object to
2985 * terminate.
2986 *
2987 * Indicate if the controller successfully began the terminate process for the
2988 * IO request. SCI_SUCCESS if the terminate process was successfully started
2989 * for the request. Determine the failure situations and return values.
2990 */
2991enum sci_status scic_controller_terminate_request(
2992 struct scic_sds_controller *scic,
2993 struct scic_sds_remote_device *rdev,
2994 struct scic_sds_request *req)
2995{
2996 enum sci_status status;
2997
e301370a 2998 if (scic->sm.current_state_id != SCIC_READY) {
cc9203bf
DW
2999 dev_warn(scic_to_dev(scic),
3000 "invalid state to terminate request\n");
3001 return SCI_FAILURE_INVALID_STATE;
3002 }
3003
3004 status = scic_sds_io_request_terminate(req);
3005 if (status != SCI_SUCCESS)
3006 return status;
3007
3008 /*
3009 * Utilize the original post context command and or in the POST_TC_ABORT
3010 * request sub-type.
3011 */
3012 scic_sds_controller_post_request(scic,
3013 scic_sds_request_get_post_context(req) |
3014 SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT);
3015 return SCI_SUCCESS;
3016}
3017
3018/**
3019 * scic_controller_complete_io() - This method will perform core specific
3020 * completion operations for an IO request. After this method is invoked,
3021 * the user should consider the IO request as invalid until it is properly
3022 * reused (i.e. re-constructed).
3023 * @controller: The handle to the controller object for which to complete the
3024 * IO request.
3025 * @remote_device: The handle to the remote device object for which to complete
3026 * the IO request.
3027 * @io_request: the handle to the io request object to complete.
3028 *
3029 * - IO tags are a protected resource. It is incumbent upon the SCI Core user
3030 * to ensure that each of the methods that may allocate or free available IO
3031 * tags are handled in a mutually exclusive manner. This method is one of said
3032 * methods requiring proper critical code section protection (e.g. semaphore,
3033 * spin-lock, etc.). - If the IO tag for a request was allocated, by the SCI
3034 * Core user, using the scic_controller_allocate_io_tag() method, then it is
3035 * the responsibility of the caller to invoke the scic_controller_free_io_tag()
3036 * method to free the tag (i.e. this method will not free the IO tag). Indicate
3037 * if the controller successfully completed the IO request. SCI_SUCCESS if the
3038 * completion process was successful.
3039 */
3040enum sci_status scic_controller_complete_io(
3041 struct scic_sds_controller *scic,
3042 struct scic_sds_remote_device *rdev,
3043 struct scic_sds_request *request)
3044{
3045 enum sci_status status;
3046 u16 index;
3047
e301370a
EN
3048 switch (scic->sm.current_state_id) {
3049 case SCIC_STOPPING:
cc9203bf
DW
3050 /* XXX: Implement this function */
3051 return SCI_FAILURE;
e301370a 3052 case SCIC_READY:
cc9203bf
DW
3053 status = scic_sds_remote_device_complete_io(scic, rdev, request);
3054 if (status != SCI_SUCCESS)
3055 return status;
3056
3057 index = scic_sds_io_tag_get_index(request->io_tag);
3058 scic->io_request_table[index] = NULL;
3059 return SCI_SUCCESS;
3060 default:
3061 dev_warn(scic_to_dev(scic), "invalid state to complete I/O");
3062 return SCI_FAILURE_INVALID_STATE;
3063 }
3064
3065}
3066
3067enum sci_status scic_controller_continue_io(struct scic_sds_request *sci_req)
3068{
3069 struct scic_sds_controller *scic = sci_req->owning_controller;
3070
e301370a 3071 if (scic->sm.current_state_id != SCIC_READY) {
cc9203bf
DW
3072 dev_warn(scic_to_dev(scic), "invalid state to continue I/O");
3073 return SCI_FAILURE_INVALID_STATE;
3074 }
3075
3076 scic->io_request_table[scic_sds_io_tag_get_index(sci_req->io_tag)] = sci_req;
3077 scic_sds_controller_post_request(scic, scic_sds_request_get_post_context(sci_req));
3078 return SCI_SUCCESS;
3079}
3080
3081/**
3082 * scic_controller_start_task() - This method is called by the SCIC user to
3083 * send/start a framework task management request.
3084 * @controller: the handle to the controller object for which to start the task
3085 * management request.
3086 * @remote_device: the handle to the remote device object for which to start
3087 * the task management request.
3088 * @task_request: the handle to the task request object to start.
3089 * @io_tag: This parameter specifies a previously allocated IO tag that the
3090 * user desires to be utilized for this request. Note this not the io_tag
3091 * of the request being managed. It is to be utilized for the task request
3092 * itself. This parameter is optional. The user is allowed to supply
3093 * SCI_CONTROLLER_INVALID_IO_TAG as the value for this parameter.
3094 *
3095 * - IO tags are a protected resource. It is incumbent upon the SCI Core user
3096 * to ensure that each of the methods that may allocate or free available IO
3097 * tags are handled in a mutually exclusive manner. This method is one of said
3098 * methods requiring proper critical code section protection (e.g. semaphore,
3099 * spin-lock, etc.). - The user must synchronize this task with completion
3100 * queue processing. If they are not synchronized then it is possible for the
3101 * io requests that are being managed by the task request can complete before
3102 * starting the task request. scic_controller_allocate_tag() for more
3103 * information on allocating a tag. Indicate if the controller successfully
3104 * started the IO request. SCI_TASK_SUCCESS if the task request was
3105 * successfully started. SCI_TASK_FAILURE_REQUIRES_SCSI_ABORT This value is
3106 * returned if there is/are task(s) outstanding that require termination or
3107 * completion before this request can succeed.
3108 */
3109enum sci_task_status scic_controller_start_task(
3110 struct scic_sds_controller *scic,
3111 struct scic_sds_remote_device *rdev,
3112 struct scic_sds_request *req,
3113 u16 task_tag)
3114{
3115 enum sci_status status;
3116
e301370a 3117 if (scic->sm.current_state_id != SCIC_READY) {
cc9203bf
DW
3118 dev_warn(scic_to_dev(scic),
3119 "%s: SCIC Controller starting task from invalid "
3120 "state\n",
3121 __func__);
3122 return SCI_TASK_FAILURE_INVALID_STATE;
3123 }
3124
3125 status = scic_sds_remote_device_start_task(scic, rdev, req);
3126 switch (status) {
3127 case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS:
3128 scic->io_request_table[scic_sds_io_tag_get_index(req->io_tag)] = req;
3129
3130 /*
3131 * We will let framework know this task request started successfully,
3132 * although core is still woring on starting the request (to post tc when
3133 * RNC is resumed.)
3134 */
3135 return SCI_SUCCESS;
3136 case SCI_SUCCESS:
3137 scic->io_request_table[scic_sds_io_tag_get_index(req->io_tag)] = req;
3138
3139 scic_sds_controller_post_request(scic,
3140 scic_sds_request_get_post_context(req));
3141 break;
3142 default:
3143 break;
3144 }
3145
3146 return status;
3147}
3148
3149/**
3150 * scic_controller_allocate_io_tag() - This method will allocate a tag from the
3151 * pool of free IO tags. Direct allocation of IO tags by the SCI Core user
3152 * is optional. The scic_controller_start_io() method will allocate an IO
3153 * tag if this method is not utilized and the tag is not supplied to the IO
3154 * construct routine. Direct allocation of IO tags may provide additional
3155 * performance improvements in environments capable of supporting this usage
3156 * model. Additionally, direct allocation of IO tags also provides
3157 * additional flexibility to the SCI Core user. Specifically, the user may
3158 * retain IO tags across the lives of multiple IO requests.
3159 * @controller: the handle to the controller object for which to allocate the
3160 * tag.
3161 *
3162 * IO tags are a protected resource. It is incumbent upon the SCI Core user to
3163 * ensure that each of the methods that may allocate or free available IO tags
3164 * are handled in a mutually exclusive manner. This method is one of said
3165 * methods requiring proper critical code section protection (e.g. semaphore,
3166 * spin-lock, etc.). An unsigned integer representing an available IO tag.
3167 * SCI_CONTROLLER_INVALID_IO_TAG This value is returned if there are no
3168 * currently available tags to be allocated. All return other values indicate a
3169 * legitimate tag.
3170 */
3171u16 scic_controller_allocate_io_tag(
3172 struct scic_sds_controller *scic)
3173{
3174 u16 task_context;
3175 u16 sequence_count;
3176
3177 if (!sci_pool_empty(scic->tci_pool)) {
3178 sci_pool_get(scic->tci_pool, task_context);
3179
3180 sequence_count = scic->io_request_sequence[task_context];
3181
3182 return scic_sds_io_tag_construct(sequence_count, task_context);
3183 }
3184
3185 return SCI_CONTROLLER_INVALID_IO_TAG;
3186}
3187
3188/**
3189 * scic_controller_free_io_tag() - This method will free an IO tag to the pool
3190 * of free IO tags. This method provides the SCI Core user more flexibility
3191 * with regards to IO tags. The user may desire to keep an IO tag after an
3192 * IO request has completed, because they plan on re-using the tag for a
3193 * subsequent IO request. This method is only legal if the tag was
3194 * allocated via scic_controller_allocate_io_tag().
3195 * @controller: This parameter specifies the handle to the controller object
3196 * for which to free/return the tag.
3197 * @io_tag: This parameter represents the tag to be freed to the pool of
3198 * available tags.
3199 *
3200 * - IO tags are a protected resource. It is incumbent upon the SCI Core user
3201 * to ensure that each of the methods that may allocate or free available IO
3202 * tags are handled in a mutually exclusive manner. This method is one of said
3203 * methods requiring proper critical code section protection (e.g. semaphore,
3204 * spin-lock, etc.). - If the IO tag for a request was allocated, by the SCI
3205 * Core user, using the scic_controller_allocate_io_tag() method, then it is
3206 * the responsibility of the caller to invoke this method to free the tag. This
3207 * method returns an indication of whether the tag was successfully put back
3208 * (freed) to the pool of available tags. SCI_SUCCESS This return value
3209 * indicates the tag was successfully placed into the pool of available IO
3210 * tags. SCI_FAILURE_INVALID_IO_TAG This value is returned if the supplied tag
3211 * is not a valid IO tag value.
3212 */
3213enum sci_status scic_controller_free_io_tag(
3214 struct scic_sds_controller *scic,
3215 u16 io_tag)
3216{
3217 u16 sequence;
3218 u16 index;
3219
3220 BUG_ON(io_tag == SCI_CONTROLLER_INVALID_IO_TAG);
3221
3222 sequence = scic_sds_io_tag_get_sequence(io_tag);
3223 index = scic_sds_io_tag_get_index(io_tag);
3224
3225 if (!sci_pool_full(scic->tci_pool)) {
3226 if (sequence == scic->io_request_sequence[index]) {
3227 scic_sds_io_sequence_increment(
3228 scic->io_request_sequence[index]);
3229
3230 sci_pool_put(scic->tci_pool, index);
3231
3232 return SCI_SUCCESS;
3233 }
3234 }
3235
3236 return SCI_FAILURE_INVALID_IO_TAG;
3237}
3238
3239
This page took 0.235281 seconds and 5 git commands to generate.