isci: uplevel request infrastructure
[deliverable/linux.git] / drivers / scsi / isci / request.c
CommitLineData
6f231dda
DW
1/*
2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
4 *
5 * GPL LICENSE SUMMARY
6 *
7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
23 *
24 * BSD LICENSE
25 *
26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27 * All rights reserved.
28 *
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
31 * are met:
32 *
33 * * Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * * Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in
37 * the documentation and/or other materials provided with the
38 * distribution.
39 * * Neither the name of Intel Corporation nor the names of its
40 * contributors may be used to endorse or promote products derived
41 * from this software without specific prior written permission.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54 */
55
56#include "isci.h"
6f231dda
DW
57#include "scic_port.h"
58#include "task.h"
59#include "request.h"
60#include "sata.h"
61#include "scu_completion_codes.h"
2ec53eb4 62#include "sas.h"
6f231dda 63
f1f52e75
DW
64/**
65 * This method returns the sgl element pair for the specificed sgl_pair index.
66 * @sci_req: This parameter specifies the IO request for which to retrieve
67 * the Scatter-Gather List element pair.
68 * @sgl_pair_index: This parameter specifies the index into the SGL element
69 * pair to be retrieved.
70 *
71 * This method returns a pointer to an struct scu_sgl_element_pair.
72 */
73static struct scu_sgl_element_pair *scic_sds_request_get_sgl_element_pair(
74 struct scic_sds_request *sci_req,
75 u32 sgl_pair_index
76 ) {
77 struct scu_task_context *task_context;
78
79 task_context = (struct scu_task_context *)sci_req->task_context_buffer;
80
81 if (sgl_pair_index == 0) {
82 return &task_context->sgl_pair_ab;
83 } else if (sgl_pair_index == 1) {
84 return &task_context->sgl_pair_cd;
85 }
6f231dda 86
f1f52e75 87 return &sci_req->sg_table[sgl_pair_index - 2];
6f231dda
DW
88}
89
f1f52e75
DW
90/**
91 * This function will build the SGL list for an IO request.
92 * @sci_req: This parameter specifies the IO request for which to build
93 * the Scatter-Gather List.
94 *
95 */
96void scic_sds_request_build_sgl(struct scic_sds_request *sds_request)
6f231dda 97{
f1f52e75
DW
98 struct isci_request *isci_request = sci_req_to_ireq(sds_request);
99 struct isci_host *isci_host = isci_request->isci_host;
100 struct sas_task *task = isci_request_access_task(isci_request);
101 struct scatterlist *sg = NULL;
102 dma_addr_t dma_addr;
103 u32 sg_idx = 0;
104 struct scu_sgl_element_pair *scu_sg = NULL;
105 struct scu_sgl_element_pair *prev_sg = NULL;
106
107 if (task->num_scatter > 0) {
108 sg = task->scatter;
109
110 while (sg) {
111 scu_sg = scic_sds_request_get_sgl_element_pair(
112 sds_request,
113 sg_idx);
114
115 SCU_SGL_COPY(scu_sg->A, sg);
116
117 sg = sg_next(sg);
118
119 if (sg) {
120 SCU_SGL_COPY(scu_sg->B, sg);
121 sg = sg_next(sg);
122 } else
123 SCU_SGL_ZERO(scu_sg->B);
124
125 if (prev_sg) {
126 dma_addr =
127 scic_io_request_get_dma_addr(
128 sds_request,
129 scu_sg);
130
131 prev_sg->next_pair_upper =
132 upper_32_bits(dma_addr);
133 prev_sg->next_pair_lower =
134 lower_32_bits(dma_addr);
135 }
136
137 prev_sg = scu_sg;
138 sg_idx++;
139 }
140 } else { /* handle when no sg */
141 scu_sg = scic_sds_request_get_sgl_element_pair(sds_request,
142 sg_idx);
6f231dda 143
f1f52e75
DW
144 dma_addr = dma_map_single(&isci_host->pdev->dev,
145 task->scatter,
146 task->total_xfer_len,
147 task->data_dir);
6f231dda 148
f1f52e75 149 isci_request->zero_scatter_daddr = dma_addr;
6f231dda 150
f1f52e75
DW
151 scu_sg->A.length = task->total_xfer_len;
152 scu_sg->A.address_upper = upper_32_bits(dma_addr);
153 scu_sg->A.address_lower = lower_32_bits(dma_addr);
154 }
6f231dda 155
f1f52e75
DW
156 if (scu_sg) {
157 scu_sg->next_pair_upper = 0;
158 scu_sg->next_pair_lower = 0;
6f231dda 159 }
f1f52e75 160}
6f231dda 161
f1f52e75
DW
162static void scic_sds_ssp_io_request_assign_buffers(struct scic_sds_request *sci_req)
163{
164 if (sci_req->was_tag_assigned_by_user == false)
165 sci_req->task_context_buffer = &sci_req->tc;
6f231dda
DW
166}
167
f1f52e75 168static void scic_sds_io_request_build_ssp_command_iu(struct scic_sds_request *sci_req)
6f231dda 169{
f1f52e75
DW
170 struct ssp_cmd_iu *cmd_iu;
171 struct isci_request *ireq = sci_req_to_ireq(sci_req);
2ec53eb4 172 struct sas_task *task = isci_request_access_task(ireq);
6f231dda 173
f1f52e75 174 cmd_iu = &sci_req->ssp.cmd;
6f231dda 175
f1f52e75
DW
176 memcpy(cmd_iu->LUN, task->ssp_task.LUN, 8);
177 cmd_iu->add_cdb_len = 0;
178 cmd_iu->_r_a = 0;
179 cmd_iu->_r_b = 0;
180 cmd_iu->en_fburst = 0; /* unsupported */
181 cmd_iu->task_prio = task->ssp_task.task_prio;
182 cmd_iu->task_attr = task->ssp_task.task_attr;
183 cmd_iu->_r_c = 0;
6f231dda 184
f1f52e75
DW
185 sci_swab32_cpy(&cmd_iu->cdb, task->ssp_task.cdb,
186 sizeof(task->ssp_task.cdb) / sizeof(u32));
187}
6f231dda 188
f1f52e75
DW
189static void scic_sds_task_request_build_ssp_task_iu(struct scic_sds_request *sci_req)
190{
191 struct ssp_task_iu *task_iu;
192 struct isci_request *ireq = sci_req_to_ireq(sci_req);
193 struct sas_task *task = isci_request_access_task(ireq);
194 struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
6f231dda 195
f1f52e75
DW
196 task_iu = &sci_req->ssp.tmf;
197
198 memset(task_iu, 0, sizeof(struct ssp_task_iu));
199
200 memcpy(task_iu->LUN, task->ssp_task.LUN, 8);
201
202 task_iu->task_func = isci_tmf->tmf_code;
203 task_iu->task_tag =
204 (ireq->ttype == tmf_task) ?
205 isci_tmf->io_tag :
206 SCI_CONTROLLER_INVALID_IO_TAG;
6f231dda
DW
207}
208
209/**
f1f52e75
DW
210 * This method is will fill in the SCU Task Context for any type of SSP request.
211 * @sci_req:
212 * @task_context:
6f231dda 213 *
6f231dda 214 */
f1f52e75
DW
215static void scu_ssp_reqeust_construct_task_context(
216 struct scic_sds_request *sds_request,
217 struct scu_task_context *task_context)
6f231dda 218{
f1f52e75
DW
219 dma_addr_t dma_addr;
220 struct scic_sds_controller *controller;
221 struct scic_sds_remote_device *target_device;
222 struct scic_sds_port *target_port;
223
224 controller = scic_sds_request_get_controller(sds_request);
225 target_device = scic_sds_request_get_device(sds_request);
226 target_port = scic_sds_request_get_port(sds_request);
227
228 /* Fill in the TC with the its required data */
229 task_context->abort = 0;
230 task_context->priority = 0;
231 task_context->initiator_request = 1;
232 task_context->connection_rate = target_device->connection_rate;
233 task_context->protocol_engine_index =
234 scic_sds_controller_get_protocol_engine_group(controller);
235 task_context->logical_port_index =
236 scic_sds_port_get_index(target_port);
237 task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SSP;
238 task_context->valid = SCU_TASK_CONTEXT_VALID;
239 task_context->context_type = SCU_TASK_CONTEXT_TYPE;
240
241 task_context->remote_node_index =
242 scic_sds_remote_device_get_index(sds_request->target_device);
243 task_context->command_code = 0;
244
245 task_context->link_layer_control = 0;
246 task_context->do_not_dma_ssp_good_response = 1;
247 task_context->strict_ordering = 0;
248 task_context->control_frame = 0;
249 task_context->timeout_enable = 0;
250 task_context->block_guard_enable = 0;
251
252 task_context->address_modifier = 0;
253
254 /* task_context->type.ssp.tag = sci_req->io_tag; */
255 task_context->task_phase = 0x01;
256
257 if (sds_request->was_tag_assigned_by_user) {
258 /*
259 * Build the task context now since we have already read
260 * the data
261 */
262 sds_request->post_context =
263 (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
264 (scic_sds_controller_get_protocol_engine_group(
265 controller) <<
266 SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
267 (scic_sds_port_get_index(target_port) <<
268 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
269 scic_sds_io_tag_get_index(sds_request->io_tag));
270 } else {
271 /*
272 * Build the task context now since we have already read
273 * the data
274 *
275 * I/O tag index is not assigned because we have to wait
276 * until we get a TCi
277 */
278 sds_request->post_context =
279 (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
280 (scic_sds_controller_get_protocol_engine_group(
281 owning_controller) <<
282 SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
283 (scic_sds_port_get_index(target_port) <<
284 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT));
285 }
6f231dda 286
f1f52e75
DW
287 /*
288 * Copy the physical address for the command buffer to the
289 * SCU Task Context
290 */
291 dma_addr = scic_io_request_get_dma_addr(sds_request,
292 &sds_request->ssp.cmd);
6f231dda 293
f1f52e75
DW
294 task_context->command_iu_upper = upper_32_bits(dma_addr);
295 task_context->command_iu_lower = lower_32_bits(dma_addr);
296
297 /*
298 * Copy the physical address for the response buffer to the
299 * SCU Task Context
6f231dda 300 */
f1f52e75
DW
301 dma_addr = scic_io_request_get_dma_addr(sds_request,
302 &sds_request->ssp.rsp);
6f231dda 303
f1f52e75
DW
304 task_context->response_iu_upper = upper_32_bits(dma_addr);
305 task_context->response_iu_lower = lower_32_bits(dma_addr);
306}
6f231dda 307
f1f52e75
DW
308/**
309 * This method is will fill in the SCU Task Context for a SSP IO request.
310 * @sci_req:
311 *
312 */
313static void scu_ssp_io_request_construct_task_context(
314 struct scic_sds_request *sci_req,
315 enum dma_data_direction dir,
316 u32 len)
317{
318 struct scu_task_context *task_context;
6f231dda 319
f1f52e75 320 task_context = scic_sds_request_get_task_context(sci_req);
6f231dda 321
f1f52e75 322 scu_ssp_reqeust_construct_task_context(sci_req, task_context);
6f231dda 323
f1f52e75
DW
324 task_context->ssp_command_iu_length =
325 sizeof(struct ssp_cmd_iu) / sizeof(u32);
326 task_context->type.ssp.frame_type = SSP_COMMAND;
327
328 switch (dir) {
329 case DMA_FROM_DEVICE:
330 case DMA_NONE:
331 default:
332 task_context->task_type = SCU_TASK_TYPE_IOREAD;
a1a113b0 333 break;
f1f52e75
DW
334 case DMA_TO_DEVICE:
335 task_context->task_type = SCU_TASK_TYPE_IOWRITE;
a1a113b0 336 break;
6f231dda
DW
337 }
338
f1f52e75
DW
339 task_context->transfer_length_bytes = len;
340
341 if (task_context->transfer_length_bytes > 0)
342 scic_sds_request_build_sgl(sci_req);
6f231dda
DW
343}
344
f1f52e75
DW
345static void scic_sds_ssp_task_request_assign_buffers(struct scic_sds_request *sci_req)
346{
347 if (sci_req->was_tag_assigned_by_user == false)
348 sci_req->task_context_buffer = &sci_req->tc;
349}
6f231dda
DW
350
351/**
f1f52e75
DW
352 * This method will fill in the SCU Task Context for a SSP Task request. The
353 * following important settings are utilized: -# priority ==
354 * SCU_TASK_PRIORITY_HIGH. This ensures that the task request is issued
355 * ahead of other task destined for the same Remote Node. -# task_type ==
356 * SCU_TASK_TYPE_IOREAD. This simply indicates that a normal request type
357 * (i.e. non-raw frame) is being utilized to perform task management. -#
358 * control_frame == 1. This ensures that the proper endianess is set so
359 * that the bytes are transmitted in the right order for a task frame.
360 * @sci_req: This parameter specifies the task request object being
361 * constructed.
6f231dda 362 *
6f231dda 363 */
f1f52e75
DW
364static void scu_ssp_task_request_construct_task_context(
365 struct scic_sds_request *sci_req)
6f231dda 366{
f1f52e75 367 struct scu_task_context *task_context;
6f231dda 368
f1f52e75 369 task_context = scic_sds_request_get_task_context(sci_req);
6f231dda 370
f1f52e75 371 scu_ssp_reqeust_construct_task_context(sci_req, task_context);
6f231dda 372
f1f52e75
DW
373 task_context->control_frame = 1;
374 task_context->priority = SCU_TASK_PRIORITY_HIGH;
375 task_context->task_type = SCU_TASK_TYPE_RAW_FRAME;
376 task_context->transfer_length_bytes = 0;
377 task_context->type.ssp.frame_type = SSP_TASK;
378 task_context->ssp_command_iu_length =
379 sizeof(struct ssp_task_iu) / sizeof(u32);
6f231dda
DW
380}
381
6f231dda 382
f1f52e75
DW
383/**
384 * This method constructs the SSP Command IU data for this ssp passthrough
385 * comand request object.
386 * @sci_req: This parameter specifies the request object for which the SSP
387 * command information unit is being built.
388 *
389 * enum sci_status, returns invalid parameter is cdb > 16
390 */
6f231dda 391
6f231dda
DW
392
393/**
f1f52e75
DW
394 * This method constructs the SATA request object.
395 * @sci_req:
396 * @sat_protocol:
397 * @transfer_length:
398 * @data_direction:
399 * @copy_rx_frame:
6f231dda 400 *
f1f52e75 401 * enum sci_status
6f231dda 402 */
f1f52e75
DW
403static enum sci_status
404scic_io_request_construct_sata(struct scic_sds_request *sci_req,
405 u32 len,
406 enum dma_data_direction dir,
407 bool copy)
6f231dda 408{
f1f52e75
DW
409 enum sci_status status = SCI_SUCCESS;
410 struct isci_request *ireq = sci_req_to_ireq(sci_req);
411 struct sas_task *task = isci_request_access_task(ireq);
6f231dda 412
f1f52e75
DW
413 /* check for management protocols */
414 if (ireq->ttype == tmf_task) {
415 struct isci_tmf *tmf = isci_request_access_tmf(ireq);
6f231dda 416
f1f52e75
DW
417 if (tmf->tmf_code == isci_tmf_sata_srst_high ||
418 tmf->tmf_code == isci_tmf_sata_srst_low)
419 return scic_sds_stp_soft_reset_request_construct(sci_req);
420 else {
421 dev_err(scic_to_dev(sci_req->owning_controller),
422 "%s: Request 0x%p received un-handled SAT "
423 "management protocol 0x%x.\n",
424 __func__, sci_req, tmf->tmf_code);
425
426 return SCI_FAILURE;
427 }
6f231dda 428 }
6f231dda 429
f1f52e75
DW
430 if (!sas_protocol_ata(task->task_proto)) {
431 dev_err(scic_to_dev(sci_req->owning_controller),
432 "%s: Non-ATA protocol in SATA path: 0x%x\n",
433 __func__,
434 task->task_proto);
435 return SCI_FAILURE;
436
437 }
438
439 /* non data */
440 if (task->data_dir == DMA_NONE)
441 return scic_sds_stp_non_data_request_construct(sci_req);
442
443 /* NCQ */
444 if (task->ata_task.use_ncq)
445 return scic_sds_stp_ncq_request_construct(sci_req, len, dir);
446
447 /* DMA */
448 if (task->ata_task.dma_xfer)
449 return scic_sds_stp_udma_request_construct(sci_req, len, dir);
450 else /* PIO */
451 return scic_sds_stp_pio_request_construct(sci_req, copy);
452
453 return status;
454}
455
456static enum sci_status scic_io_request_construct_basic_ssp(struct scic_sds_request *sci_req)
6f231dda 457{
f1f52e75
DW
458 struct isci_request *ireq = sci_req_to_ireq(sci_req);
459 struct sas_task *task = isci_request_access_task(ireq);
6f231dda 460
f1f52e75 461 sci_req->protocol = SCIC_SSP_PROTOCOL;
6f231dda 462
f1f52e75
DW
463 scu_ssp_io_request_construct_task_context(sci_req,
464 task->data_dir,
465 task->total_xfer_len);
6f231dda 466
f1f52e75 467 scic_sds_io_request_build_ssp_command_iu(sci_req);
6f231dda 468
f1f52e75
DW
469 sci_base_state_machine_change_state(
470 &sci_req->state_machine,
471 SCI_BASE_REQUEST_STATE_CONSTRUCTED);
ce4f75de 472
f1f52e75
DW
473 return SCI_SUCCESS;
474}
6f231dda 475
f1f52e75
DW
476enum sci_status scic_task_request_construct_ssp(
477 struct scic_sds_request *sci_req)
478{
479 /* Construct the SSP Task SCU Task Context */
480 scu_ssp_task_request_construct_task_context(sci_req);
6f231dda 481
f1f52e75
DW
482 /* Fill in the SSP Task IU */
483 scic_sds_task_request_build_ssp_task_iu(sci_req);
c4b9e24c 484
f1f52e75
DW
485 sci_base_state_machine_change_state(&sci_req->state_machine,
486 SCI_BASE_REQUEST_STATE_CONSTRUCTED);
67ea838d 487
f1f52e75
DW
488 return SCI_SUCCESS;
489}
67ea838d 490
67ea838d 491
f1f52e75
DW
492static enum sci_status scic_io_request_construct_basic_sata(struct scic_sds_request *sci_req)
493{
494 enum sci_status status;
495 struct scic_sds_stp_request *stp_req;
496 bool copy = false;
497 struct isci_request *isci_request = sci_req_to_ireq(sci_req);
498 struct sas_task *task = isci_request_access_task(isci_request);
6f231dda 499
f1f52e75
DW
500 stp_req = &sci_req->stp.req;
501 sci_req->protocol = SCIC_STP_PROTOCOL;
6f231dda 502
f1f52e75
DW
503 copy = (task->data_dir == DMA_NONE) ? false : true;
504
505 status = scic_io_request_construct_sata(sci_req,
506 task->total_xfer_len,
507 task->data_dir,
508 copy);
509
510 if (status == SCI_SUCCESS)
511 sci_base_state_machine_change_state(&sci_req->state_machine,
512 SCI_BASE_REQUEST_STATE_CONSTRUCTED);
513
514 return status;
6f231dda
DW
515}
516
517
f1f52e75
DW
518enum sci_status scic_task_request_construct_sata(struct scic_sds_request *sci_req)
519{
520 enum sci_status status = SCI_SUCCESS;
521 struct isci_request *ireq = sci_req_to_ireq(sci_req);
522
523 /* check for management protocols */
524 if (ireq->ttype == tmf_task) {
525 struct isci_tmf *tmf = isci_request_access_tmf(ireq);
526
527 if (tmf->tmf_code == isci_tmf_sata_srst_high ||
528 tmf->tmf_code == isci_tmf_sata_srst_low) {
529 status = scic_sds_stp_soft_reset_request_construct(sci_req);
530 } else {
531 dev_err(scic_to_dev(sci_req->owning_controller),
532 "%s: Request 0x%p received un-handled SAT "
533 "Protocol 0x%x.\n",
534 __func__, sci_req, tmf->tmf_code);
535
536 return SCI_FAILURE;
537 }
538 }
539
540 if (status == SCI_SUCCESS)
541 sci_base_state_machine_change_state(
542 &sci_req->state_machine,
543 SCI_BASE_REQUEST_STATE_CONSTRUCTED);
544
545 return status;
546}
547
6f231dda 548/**
f1f52e75
DW
549 * sci_req_tx_bytes - bytes transferred when reply underruns request
550 * @sci_req: request that was terminated early
6f231dda 551 */
f1f52e75
DW
552#define SCU_TASK_CONTEXT_SRAM 0x200000
553static u32 sci_req_tx_bytes(struct scic_sds_request *sci_req)
6f231dda 554{
f1f52e75
DW
555 struct scic_sds_controller *scic = sci_req->owning_controller;
556 u32 ret_val = 0;
557
558 if (readl(&scic->smu_registers->address_modifier) == 0) {
559 void __iomem *scu_reg_base = scic->scu_registers;
560
561 /* get the bytes of data from the Address == BAR1 + 20002Ch + (256*TCi) where
562 * BAR1 is the scu_registers
563 * 0x20002C = 0x200000 + 0x2c
564 * = start of task context SRAM + offset of (type.ssp.data_offset)
565 * TCi is the io_tag of struct scic_sds_request
566 */
567 ret_val = readl(scu_reg_base +
568 (SCU_TASK_CONTEXT_SRAM + offsetof(struct scu_task_context, type.ssp.data_offset)) +
569 ((sizeof(struct scu_task_context)) * scic_sds_io_tag_get_index(sci_req->io_tag)));
570 }
571
572 return ret_val;
573}
574
575enum sci_status
576scic_sds_request_start(struct scic_sds_request *request)
577{
578 if (request->device_sequence !=
579 scic_sds_remote_device_get_sequence(request->target_device))
580 return SCI_FAILURE;
581
582 if (request->state_handlers->start_handler)
583 return request->state_handlers->start_handler(request);
584
585 dev_warn(scic_to_dev(request->owning_controller),
586 "%s: SCIC IO Request requested to start while in wrong "
587 "state %d\n",
588 __func__,
589 sci_base_state_machine_get_state(&request->state_machine));
590
591 return SCI_FAILURE_INVALID_STATE;
592}
593
594enum sci_status
595scic_sds_io_request_terminate(struct scic_sds_request *request)
596{
597 if (request->state_handlers->abort_handler)
598 return request->state_handlers->abort_handler(request);
599
600 dev_warn(scic_to_dev(request->owning_controller),
601 "%s: SCIC IO Request requested to abort while in wrong "
602 "state %d\n",
6f231dda 603 __func__,
f1f52e75 604 sci_base_state_machine_get_state(&request->state_machine));
6f231dda 605
f1f52e75
DW
606 return SCI_FAILURE_INVALID_STATE;
607}
6f231dda 608
f1f52e75
DW
609enum sci_status scic_sds_io_request_event_handler(
610 struct scic_sds_request *request,
611 u32 event_code)
612{
613 if (request->state_handlers->event_handler)
614 return request->state_handlers->event_handler(request, event_code);
615
616 dev_warn(scic_to_dev(request->owning_controller),
617 "%s: SCIC IO Request given event code notification %x while "
618 "in wrong state %d\n",
619 __func__,
620 event_code,
621 sci_base_state_machine_get_state(&request->state_machine));
622
623 return SCI_FAILURE_INVALID_STATE;
6f231dda
DW
624}
625
626/**
6f231dda 627 *
f1f52e75
DW
628 * @sci_req: The SCIC_SDS_IO_REQUEST_T object for which the start
629 * operation is to be executed.
630 * @frame_index: The frame index returned by the hardware for the reqeust
631 * object.
632 *
633 * This method invokes the core state frame handler for the
634 * SCIC_SDS_IO_REQUEST_T object. enum sci_status
6f231dda 635 */
f1f52e75
DW
636enum sci_status scic_sds_io_request_frame_handler(
637 struct scic_sds_request *request,
638 u32 frame_index)
6f231dda 639{
f1f52e75
DW
640 if (request->state_handlers->frame_handler)
641 return request->state_handlers->frame_handler(request, frame_index);
642
643 dev_warn(scic_to_dev(request->owning_controller),
644 "%s: SCIC IO Request given unexpected frame %x while in "
645 "state %d\n",
646 __func__,
647 frame_index,
648 sci_base_state_machine_get_state(&request->state_machine));
649
650 scic_sds_controller_release_frame(request->owning_controller, frame_index);
651 return SCI_FAILURE_INVALID_STATE;
6f231dda
DW
652}
653
f1f52e75
DW
654/*
655 * This function copies response data for requests returning response data
656 * instead of sense data.
657 * @sci_req: This parameter specifies the request object for which to copy
658 * the response data.
6f231dda 659 */
f1f52e75 660void scic_sds_io_request_copy_response(struct scic_sds_request *sci_req)
6f231dda 661{
f1f52e75
DW
662 void *resp_buf;
663 u32 len;
664 struct ssp_response_iu *ssp_response;
665 struct isci_request *ireq = sci_req_to_ireq(sci_req);
666 struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
6f231dda 667
f1f52e75 668 ssp_response = &sci_req->ssp.rsp;
6f231dda 669
f1f52e75 670 resp_buf = &isci_tmf->resp.resp_iu;
6f231dda 671
f1f52e75
DW
672 len = min_t(u32,
673 SSP_RESP_IU_MAX_SIZE,
674 be32_to_cpu(ssp_response->response_data_len));
6f231dda 675
f1f52e75
DW
676 memcpy(resp_buf, ssp_response->resp_data, len);
677}
6f231dda 678
f1f52e75
DW
679/*
680 * This method implements the action taken when a constructed
681 * SCIC_SDS_IO_REQUEST_T object receives a scic_sds_request_start() request.
682 * This method will, if necessary, allocate a TCi for the io request object and
683 * then will, if necessary, copy the constructed TC data into the actual TC
684 * buffer. If everything is successful the post context field is updated with
685 * the TCi so the controller can post the request to the hardware. enum sci_status
686 * SCI_SUCCESS SCI_FAILURE_INSUFFICIENT_RESOURCES
687 */
688static enum sci_status scic_sds_request_constructed_state_start_handler(
689 struct scic_sds_request *request)
690{
691 struct scu_task_context *task_context;
6f231dda 692
f1f52e75
DW
693 if (request->io_tag == SCI_CONTROLLER_INVALID_IO_TAG) {
694 request->io_tag =
695 scic_controller_allocate_io_tag(request->owning_controller);
696 }
6f231dda 697
f1f52e75
DW
698 /* Record the IO Tag in the request */
699 if (request->io_tag != SCI_CONTROLLER_INVALID_IO_TAG) {
700 task_context = request->task_context_buffer;
6f231dda 701
f1f52e75 702 task_context->task_index = scic_sds_io_tag_get_index(request->io_tag);
6f231dda 703
f1f52e75
DW
704 switch (task_context->protocol_type) {
705 case SCU_TASK_CONTEXT_PROTOCOL_SMP:
706 case SCU_TASK_CONTEXT_PROTOCOL_SSP:
707 /* SSP/SMP Frame */
708 task_context->type.ssp.tag = request->io_tag;
709 task_context->type.ssp.target_port_transfer_tag = 0xFFFF;
710 break;
6f231dda 711
f1f52e75
DW
712 case SCU_TASK_CONTEXT_PROTOCOL_STP:
713 /*
714 * STP/SATA Frame
715 * task_context->type.stp.ncq_tag = request->ncq_tag; */
716 break;
6f231dda 717
f1f52e75
DW
718 case SCU_TASK_CONTEXT_PROTOCOL_NONE:
719 /* / @todo When do we set no protocol type? */
720 break;
6f231dda 721
f1f52e75
DW
722 default:
723 /* This should never happen since we build the IO requests */
724 break;
725 }
6f231dda 726
f1f52e75
DW
727 /*
728 * Check to see if we need to copy the task context buffer
729 * or have been building into the task context buffer */
730 if (request->was_tag_assigned_by_user == false) {
731 scic_sds_controller_copy_task_context(
732 request->owning_controller, request);
733 }
6f231dda 734
f1f52e75
DW
735 /* Add to the post_context the io tag value */
736 request->post_context |= scic_sds_io_tag_get_index(request->io_tag);
6f231dda 737
f1f52e75
DW
738 /* Everything is good go ahead and change state */
739 sci_base_state_machine_change_state(&request->state_machine,
740 SCI_BASE_REQUEST_STATE_STARTED);
6f231dda 741
f1f52e75
DW
742 return SCI_SUCCESS;
743 }
6f231dda 744
f1f52e75
DW
745 return SCI_FAILURE_INSUFFICIENT_RESOURCES;
746}
6f231dda 747
f1f52e75
DW
748/*
749 * This method implements the action to be taken when an SCIC_SDS_IO_REQUEST_T
750 * object receives a scic_sds_request_terminate() request. Since the request
751 * has not yet been posted to the hardware the request transitions to the
752 * completed state. enum sci_status SCI_SUCCESS
753 */
754static enum sci_status scic_sds_request_constructed_state_abort_handler(
755 struct scic_sds_request *request)
756{
757 /*
758 * This request has been terminated by the user make sure that the correct
759 * status code is returned */
760 scic_sds_request_set_status(request,
761 SCU_TASK_DONE_TASK_ABORT,
762 SCI_FAILURE_IO_TERMINATED);
763
764 sci_base_state_machine_change_state(&request->state_machine,
765 SCI_BASE_REQUEST_STATE_COMPLETED);
766 return SCI_SUCCESS;
767}
6f231dda 768
f1f52e75
DW
769/*
770 * *****************************************************************************
771 * * STARTED STATE HANDLERS
772 * ***************************************************************************** */
6f231dda 773
f1f52e75
DW
774/*
775 * This method implements the action to be taken when an SCIC_SDS_IO_REQUEST_T
776 * object receives a scic_sds_request_terminate() request. Since the request
777 * has been posted to the hardware the io request state is changed to the
778 * aborting state. enum sci_status SCI_SUCCESS
779 */
780enum sci_status scic_sds_request_started_state_abort_handler(
781 struct scic_sds_request *request)
782{
783 if (request->has_started_substate_machine)
784 sci_base_state_machine_stop(&request->started_substate_machine);
6f231dda 785
f1f52e75
DW
786 sci_base_state_machine_change_state(&request->state_machine,
787 SCI_BASE_REQUEST_STATE_ABORTING);
788 return SCI_SUCCESS;
789}
6f231dda 790
f1f52e75
DW
791/*
792 * scic_sds_request_started_state_tc_completion_handler() - This method process
793 * TC (task context) completions for normal IO request (i.e. Task/Abort
794 * Completions of type 0). This method will update the
795 * SCIC_SDS_IO_REQUEST_T::status field.
796 * @sci_req: This parameter specifies the request for which a completion
797 * occurred.
798 * @completion_code: This parameter specifies the completion code received from
799 * the SCU.
800 *
801 */
802static enum sci_status
803scic_sds_request_started_state_tc_completion_handler(struct scic_sds_request *sci_req,
804 u32 completion_code)
805{
806 u8 datapres;
807 struct ssp_response_iu *resp_iu;
6f231dda 808
f1f52e75
DW
809 /*
810 * TODO: Any SDMA return code of other than 0 is bad
811 * decode 0x003C0000 to determine SDMA status
812 */
813 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
814 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
815 scic_sds_request_set_status(sci_req,
816 SCU_TASK_DONE_GOOD,
817 SCI_SUCCESS);
6f231dda
DW
818 break;
819
f1f52e75
DW
820 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EARLY_RESP):
821 {
822 /*
823 * There are times when the SCU hardware will return an early
824 * response because the io request specified more data than is
825 * returned by the target device (mode pages, inquiry data,
826 * etc.). We must check the response stats to see if this is
827 * truly a failed request or a good request that just got
828 * completed early.
829 */
830 struct ssp_response_iu *resp = &sci_req->ssp.rsp;
831 ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
832
833 sci_swab32_cpy(&sci_req->ssp.rsp,
834 &sci_req->ssp.rsp,
835 word_cnt);
836
837 if (resp->status == 0) {
838 scic_sds_request_set_status(
839 sci_req,
840 SCU_TASK_DONE_GOOD,
841 SCI_SUCCESS_IO_DONE_EARLY);
842 } else {
843 scic_sds_request_set_status(
844 sci_req,
845 SCU_TASK_DONE_CHECK_RESPONSE,
846 SCI_FAILURE_IO_RESPONSE_VALID);
847 }
848 }
849 break;
6f231dda 850
f1f52e75
DW
851 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CHECK_RESPONSE):
852 {
853 ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
6f231dda 854
f1f52e75
DW
855 sci_swab32_cpy(&sci_req->ssp.rsp,
856 &sci_req->ssp.rsp,
857 word_cnt);
6f231dda 858
f1f52e75
DW
859 scic_sds_request_set_status(sci_req,
860 SCU_TASK_DONE_CHECK_RESPONSE,
861 SCI_FAILURE_IO_RESPONSE_VALID);
6f231dda 862 break;
f1f52e75 863 }
6f231dda 864
f1f52e75
DW
865 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RESP_LEN_ERR):
866 /*
867 * / @todo With TASK_DONE_RESP_LEN_ERR is the response frame
868 * guaranteed to be received before this completion status is
869 * posted?
870 */
871 resp_iu = &sci_req->ssp.rsp;
872 datapres = resp_iu->datapres;
873
874 if ((datapres == 0x01) || (datapres == 0x02)) {
875 scic_sds_request_set_status(
876 sci_req,
877 SCU_TASK_DONE_CHECK_RESPONSE,
878 SCI_FAILURE_IO_RESPONSE_VALID);
879 } else
880 scic_sds_request_set_status(
881 sci_req, SCU_TASK_DONE_GOOD, SCI_SUCCESS);
6f231dda
DW
882 break;
883
f1f52e75
DW
884 /* only stp device gets suspended. */
885 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
886 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_PERR):
887 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_ERR):
888 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_DATA_LEN_ERR):
889 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_ABORT_ERR):
890 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_WD_LEN):
891 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_MAX_PLD_ERR):
892 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_RESP):
893 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_SDBFIS):
894 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
895 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDB_ERR):
896 if (sci_req->protocol == SCIC_STP_PROTOCOL) {
897 scic_sds_request_set_status(
898 sci_req,
899 SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
900 SCU_COMPLETION_TL_STATUS_SHIFT,
901 SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED);
902 } else {
903 scic_sds_request_set_status(
904 sci_req,
905 SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
906 SCU_COMPLETION_TL_STATUS_SHIFT,
907 SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR);
908 }
6f231dda
DW
909 break;
910
f1f52e75
DW
911 /* both stp/ssp device gets suspended */
912 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LF_ERR):
913 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_WRONG_DESTINATION):
914 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1):
915 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2):
916 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3):
917 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_BAD_DESTINATION):
918 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_ZONE_VIOLATION):
919 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY):
920 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED):
921 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED):
922 scic_sds_request_set_status(
923 sci_req,
924 SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
925 SCU_COMPLETION_TL_STATUS_SHIFT,
926 SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED);
6f231dda
DW
927 break;
928
f1f52e75
DW
929 /* neither ssp nor stp gets suspended. */
930 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_CMD_ERR):
931 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_XR):
932 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_IU_LEN_ERR):
933 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDMA_ERR):
934 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OFFSET_ERR):
935 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EXCESS_DATA):
936 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
937 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
938 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
939 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
940 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_DATA):
941 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OPEN_FAIL):
942 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_VIIT_ENTRY_NV):
943 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_IIT_ENTRY_NV):
944 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RNCNV_OUTBOUND):
6f231dda 945 default:
f1f52e75
DW
946 scic_sds_request_set_status(
947 sci_req,
948 SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
949 SCU_COMPLETION_TL_STATUS_SHIFT,
950 SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR);
6f231dda
DW
951 break;
952 }
f1f52e75
DW
953
954 /*
955 * TODO: This is probably wrong for ACK/NAK timeout conditions
956 */
957
958 /* In all cases we will treat this as the completion of the IO req. */
959 sci_base_state_machine_change_state(
960 &sci_req->state_machine,
961 SCI_BASE_REQUEST_STATE_COMPLETED);
962 return SCI_SUCCESS;
6f231dda
DW
963}
964
f1f52e75
DW
965enum sci_status
966scic_sds_io_request_tc_completion(struct scic_sds_request *request, u32 completion_code)
6f231dda 967{
f1f52e75
DW
968 if (request->state_machine.current_state_id == SCI_BASE_REQUEST_STATE_STARTED &&
969 request->has_started_substate_machine == false)
970 return scic_sds_request_started_state_tc_completion_handler(request, completion_code);
971 else if (request->state_handlers->tc_completion_handler)
972 return request->state_handlers->tc_completion_handler(request, completion_code);
973
974 dev_warn(scic_to_dev(request->owning_controller),
975 "%s: SCIC IO Request given task completion notification %x "
976 "while in wrong state %d\n",
977 __func__,
978 completion_code,
979 sci_base_state_machine_get_state(&request->state_machine));
6f231dda 980
f1f52e75 981 return SCI_FAILURE_INVALID_STATE;
6f231dda 982
f1f52e75 983}
6f231dda 984
f1f52e75
DW
985/*
986 * This method implements the action to be taken when an SCIC_SDS_IO_REQUEST_T
987 * object receives a scic_sds_request_frame_handler() request. This method
988 * first determines the frame type received. If this is a response frame then
989 * the response data is copied to the io request response buffer for processing
990 * at completion time. If the frame type is not a response buffer an error is
991 * logged. enum sci_status SCI_SUCCESS SCI_FAILURE_INVALID_PARAMETER_VALUE
992 */
993static enum sci_status
994scic_sds_request_started_state_frame_handler(struct scic_sds_request *sci_req,
995 u32 frame_index)
996{
997 enum sci_status status;
998 u32 *frame_header;
999 struct ssp_frame_hdr ssp_hdr;
1000 ssize_t word_cnt;
1001
1002 status = scic_sds_unsolicited_frame_control_get_header(
1003 &(scic_sds_request_get_controller(sci_req)->uf_control),
1004 frame_index,
1005 (void **)&frame_header);
1006
1007 word_cnt = sizeof(struct ssp_frame_hdr) / sizeof(u32);
1008 sci_swab32_cpy(&ssp_hdr, frame_header, word_cnt);
1009
1010 if (ssp_hdr.frame_type == SSP_RESPONSE) {
1011 struct ssp_response_iu *resp_iu;
1012 ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1013
1014 status = scic_sds_unsolicited_frame_control_get_buffer(
1015 &(scic_sds_request_get_controller(sci_req)->uf_control),
1016 frame_index,
1017 (void **)&resp_iu);
1018
1019 sci_swab32_cpy(&sci_req->ssp.rsp,
1020 resp_iu, word_cnt);
1021
1022 resp_iu = &sci_req->ssp.rsp;
1023
1024 if ((resp_iu->datapres == 0x01) ||
1025 (resp_iu->datapres == 0x02)) {
1026 scic_sds_request_set_status(
1027 sci_req,
1028 SCU_TASK_DONE_CHECK_RESPONSE,
1029 SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR);
1030 } else
1031 scic_sds_request_set_status(
1032 sci_req, SCU_TASK_DONE_GOOD, SCI_SUCCESS);
1033 } else {
1034 /* This was not a response frame why did it get forwarded? */
1035 dev_err(scic_to_dev(sci_req->owning_controller),
1036 "%s: SCIC IO Request 0x%p received unexpected "
1037 "frame %d type 0x%02x\n",
6f231dda 1038 __func__,
f1f52e75
DW
1039 sci_req,
1040 frame_index,
1041 ssp_hdr.frame_type);
1042 }
ec6c9638 1043
f1f52e75
DW
1044 /*
1045 * In any case we are done with this frame buffer return it to the
1046 * controller
1047 */
1048 scic_sds_controller_release_frame(
1049 sci_req->owning_controller, frame_index);
6f231dda 1050
f1f52e75
DW
1051 return SCI_SUCCESS;
1052}
a5fde225 1053
f1f52e75
DW
1054/*
1055 * *****************************************************************************
1056 * * COMPLETED STATE HANDLERS
1057 * ***************************************************************************** */
a5fde225 1058
a5fde225 1059
f1f52e75
DW
1060/*
1061 * This method implements the action to be taken when an SCIC_SDS_IO_REQUEST_T
1062 * object receives a scic_sds_request_complete() request. This method frees up
1063 * any io request resources that have been allocated and transitions the
1064 * request to its final state. Consider stopping the state machine instead of
1065 * transitioning to the final state? enum sci_status SCI_SUCCESS
1066 */
1067static enum sci_status scic_sds_request_completed_state_complete_handler(
1068 struct scic_sds_request *request)
1069{
1070 if (request->was_tag_assigned_by_user != true) {
1071 scic_controller_free_io_tag(
1072 request->owning_controller, request->io_tag);
1073 }
6f231dda 1074
f1f52e75
DW
1075 if (request->saved_rx_frame_index != SCU_INVALID_FRAME_INDEX) {
1076 scic_sds_controller_release_frame(
1077 request->owning_controller, request->saved_rx_frame_index);
1078 }
6f231dda 1079
f1f52e75
DW
1080 sci_base_state_machine_change_state(&request->state_machine,
1081 SCI_BASE_REQUEST_STATE_FINAL);
1082 return SCI_SUCCESS;
1083}
6f231dda 1084
f1f52e75
DW
1085/*
1086 * *****************************************************************************
1087 * * ABORTING STATE HANDLERS
1088 * ***************************************************************************** */
1089
1090/*
1091 * This method implements the action to be taken when an SCIC_SDS_IO_REQUEST_T
1092 * object receives a scic_sds_request_terminate() request. This method is the
1093 * io request aborting state abort handlers. On receipt of a multiple
1094 * terminate requests the io request will transition to the completed state.
1095 * This should not happen in normal operation. enum sci_status SCI_SUCCESS
1096 */
1097static enum sci_status scic_sds_request_aborting_state_abort_handler(
1098 struct scic_sds_request *request)
1099{
1100 sci_base_state_machine_change_state(&request->state_machine,
1101 SCI_BASE_REQUEST_STATE_COMPLETED);
1102 return SCI_SUCCESS;
1103}
1104
1105/*
1106 * This method implements the action to be taken when an SCIC_SDS_IO_REQUEST_T
1107 * object receives a scic_sds_request_task_completion() request. This method
1108 * decodes the completion type waiting for the abort task complete
1109 * notification. When the abort task complete is received the io request
1110 * transitions to the completed state. enum sci_status SCI_SUCCESS
1111 */
1112static enum sci_status scic_sds_request_aborting_state_tc_completion_handler(
1113 struct scic_sds_request *sci_req,
1114 u32 completion_code)
1115{
1116 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1117 case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT):
1118 case (SCU_TASK_DONE_TASK_ABORT << SCU_COMPLETION_TL_STATUS_SHIFT):
1119 scic_sds_request_set_status(
1120 sci_req, SCU_TASK_DONE_TASK_ABORT, SCI_FAILURE_IO_TERMINATED
1121 );
1122
1123 sci_base_state_machine_change_state(&sci_req->state_machine,
1124 SCI_BASE_REQUEST_STATE_COMPLETED);
1125 break;
1126
1127 default:
1128 /*
1129 * Unless we get some strange error wait for the task abort to complete
1130 * TODO: Should there be a state change for this completion? */
6f231dda
DW
1131 break;
1132 }
f1f52e75
DW
1133
1134 return SCI_SUCCESS;
1135}
1136
1137/*
1138 * This method implements the action to be taken when an SCIC_SDS_IO_REQUEST_T
1139 * object receives a scic_sds_request_frame_handler() request. This method
1140 * discards the unsolicited frame since we are waiting for the abort task
1141 * completion. enum sci_status SCI_SUCCESS
1142 */
1143static enum sci_status scic_sds_request_aborting_state_frame_handler(
1144 struct scic_sds_request *sci_req,
1145 u32 frame_index)
1146{
1147 /* TODO: Is it even possible to get an unsolicited frame in the aborting state? */
1148
1149 scic_sds_controller_release_frame(
1150 sci_req->owning_controller, frame_index);
1151
1152 return SCI_SUCCESS;
6f231dda
DW
1153}
1154
f1f52e75
DW
1155static const struct scic_sds_io_request_state_handler scic_sds_request_state_handler_table[] = {
1156 [SCI_BASE_REQUEST_STATE_INITIAL] = {
1157 },
1158 [SCI_BASE_REQUEST_STATE_CONSTRUCTED] = {
1159 .start_handler = scic_sds_request_constructed_state_start_handler,
1160 .abort_handler = scic_sds_request_constructed_state_abort_handler,
1161 },
1162 [SCI_BASE_REQUEST_STATE_STARTED] = {
1163 .abort_handler = scic_sds_request_started_state_abort_handler,
1164 .tc_completion_handler = scic_sds_request_started_state_tc_completion_handler,
1165 .frame_handler = scic_sds_request_started_state_frame_handler,
1166 },
1167 [SCI_BASE_REQUEST_STATE_COMPLETED] = {
1168 .complete_handler = scic_sds_request_completed_state_complete_handler,
1169 },
1170 [SCI_BASE_REQUEST_STATE_ABORTING] = {
1171 .abort_handler = scic_sds_request_aborting_state_abort_handler,
1172 .tc_completion_handler = scic_sds_request_aborting_state_tc_completion_handler,
1173 .frame_handler = scic_sds_request_aborting_state_frame_handler,
1174 },
1175 [SCI_BASE_REQUEST_STATE_FINAL] = {
1176 },
1177};
1178
1179
6f231dda 1180/**
f1f52e75
DW
1181 * isci_request_process_response_iu() - This function sets the status and
1182 * response iu, in the task struct, from the request object for the upper
1183 * layer driver.
1184 * @sas_task: This parameter is the task struct from the upper layer driver.
1185 * @resp_iu: This parameter points to the response iu of the completed request.
1186 * @dev: This parameter specifies the linux device struct.
6f231dda
DW
1187 *
1188 * none.
1189 */
f1f52e75
DW
1190static void isci_request_process_response_iu(
1191 struct sas_task *task,
1192 struct ssp_response_iu *resp_iu,
1193 struct device *dev)
6f231dda 1194{
f1f52e75
DW
1195 dev_dbg(dev,
1196 "%s: resp_iu = %p "
1197 "resp_iu->status = 0x%x,\nresp_iu->datapres = %d "
1198 "resp_iu->response_data_len = %x, "
1199 "resp_iu->sense_data_len = %x\nrepsonse data: ",
6f231dda 1200 __func__,
f1f52e75
DW
1201 resp_iu,
1202 resp_iu->status,
1203 resp_iu->datapres,
1204 resp_iu->response_data_len,
1205 resp_iu->sense_data_len);
6f231dda 1206
f1f52e75 1207 task->task_status.stat = resp_iu->status;
6f231dda 1208
f1f52e75
DW
1209 /* libsas updates the task status fields based on the response iu. */
1210 sas_ssp_task_response(dev, task, resp_iu);
1211}
6f231dda 1212
f1f52e75
DW
1213/**
1214 * isci_request_set_open_reject_status() - This function prepares the I/O
1215 * completion for OPEN_REJECT conditions.
1216 * @request: This parameter is the completed isci_request object.
1217 * @response_ptr: This parameter specifies the service response for the I/O.
1218 * @status_ptr: This parameter specifies the exec status for the I/O.
1219 * @complete_to_host_ptr: This parameter specifies the action to be taken by
1220 * the LLDD with respect to completing this request or forcing an abort
1221 * condition on the I/O.
1222 * @open_rej_reason: This parameter specifies the encoded reason for the
1223 * abandon-class reject.
1224 *
1225 * none.
1226 */
1227static void isci_request_set_open_reject_status(
1228 struct isci_request *request,
1229 struct sas_task *task,
1230 enum service_response *response_ptr,
1231 enum exec_status *status_ptr,
1232 enum isci_completion_selection *complete_to_host_ptr,
1233 enum sas_open_rej_reason open_rej_reason)
1234{
1235 /* Task in the target is done. */
1236 request->complete_in_target = true;
1237 *response_ptr = SAS_TASK_UNDELIVERED;
1238 *status_ptr = SAS_OPEN_REJECT;
1239 *complete_to_host_ptr = isci_perform_normal_io_completion;
1240 task->task_status.open_rej_reason = open_rej_reason;
1241}
6f231dda 1242
f1f52e75
DW
1243/**
1244 * isci_request_handle_controller_specific_errors() - This function decodes
1245 * controller-specific I/O completion error conditions.
1246 * @request: This parameter is the completed isci_request object.
1247 * @response_ptr: This parameter specifies the service response for the I/O.
1248 * @status_ptr: This parameter specifies the exec status for the I/O.
1249 * @complete_to_host_ptr: This parameter specifies the action to be taken by
1250 * the LLDD with respect to completing this request or forcing an abort
1251 * condition on the I/O.
1252 *
1253 * none.
1254 */
1255static void isci_request_handle_controller_specific_errors(
1256 struct isci_remote_device *isci_device,
1257 struct isci_request *request,
1258 struct sas_task *task,
1259 enum service_response *response_ptr,
1260 enum exec_status *status_ptr,
1261 enum isci_completion_selection *complete_to_host_ptr)
1262{
1263 unsigned int cstatus;
6f231dda 1264
f1f52e75 1265 cstatus = request->sci.scu_status;
a5fde225 1266
f1f52e75
DW
1267 dev_dbg(&request->isci_host->pdev->dev,
1268 "%s: %p SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR "
1269 "- controller status = 0x%x\n",
1270 __func__, request, cstatus);
6f231dda 1271
f1f52e75
DW
1272 /* Decode the controller-specific errors; most
1273 * important is to recognize those conditions in which
1274 * the target may still have a task outstanding that
1275 * must be aborted.
1276 *
1277 * Note that there are SCU completion codes being
1278 * named in the decode below for which SCIC has already
1279 * done work to handle them in a way other than as
1280 * a controller-specific completion code; these are left
1281 * in the decode below for completeness sake.
1282 */
1283 switch (cstatus) {
1284 case SCU_TASK_DONE_DMASETUP_DIRERR:
1285 /* Also SCU_TASK_DONE_SMP_FRM_TYPE_ERR: */
1286 case SCU_TASK_DONE_XFERCNT_ERR:
1287 /* Also SCU_TASK_DONE_SMP_UFI_ERR: */
1288 if (task->task_proto == SAS_PROTOCOL_SMP) {
1289 /* SCU_TASK_DONE_SMP_UFI_ERR == Task Done. */
1290 *response_ptr = SAS_TASK_COMPLETE;
6f231dda 1291
f1f52e75
DW
1292 /* See if the device has been/is being stopped. Note
1293 * that we ignore the quiesce state, since we are
6f231dda
DW
1294 * concerned about the actual device state.
1295 */
f1f52e75
DW
1296 if ((isci_device->status == isci_stopping) ||
1297 (isci_device->status == isci_stopped))
1298 *status_ptr = SAS_DEVICE_UNKNOWN;
1299 else
1300 *status_ptr = SAS_ABORTED_TASK;
6f231dda 1301
f1f52e75 1302 request->complete_in_target = true;
6f231dda 1303
f1f52e75
DW
1304 *complete_to_host_ptr =
1305 isci_perform_normal_io_completion;
1306 } else {
1307 /* Task in the target is not done. */
1308 *response_ptr = SAS_TASK_UNDELIVERED;
a5fde225 1309
f1f52e75
DW
1310 if ((isci_device->status == isci_stopping) ||
1311 (isci_device->status == isci_stopped))
1312 *status_ptr = SAS_DEVICE_UNKNOWN;
1313 else
1314 *status_ptr = SAM_STAT_TASK_ABORTED;
6f231dda 1315
f1f52e75 1316 request->complete_in_target = false;
6f231dda 1317
f1f52e75
DW
1318 *complete_to_host_ptr =
1319 isci_perform_error_io_completion;
1320 }
1321
1322 break;
1323
1324 case SCU_TASK_DONE_CRC_ERR:
1325 case SCU_TASK_DONE_NAK_CMD_ERR:
1326 case SCU_TASK_DONE_EXCESS_DATA:
1327 case SCU_TASK_DONE_UNEXP_FIS:
1328 /* Also SCU_TASK_DONE_UNEXP_RESP: */
1329 case SCU_TASK_DONE_VIIT_ENTRY_NV: /* TODO - conditions? */
1330 case SCU_TASK_DONE_IIT_ENTRY_NV: /* TODO - conditions? */
1331 case SCU_TASK_DONE_RNCNV_OUTBOUND: /* TODO - conditions? */
1332 /* These are conditions in which the target
1333 * has completed the task, so that no cleanup
1334 * is necessary.
6f231dda 1335 */
f1f52e75 1336 *response_ptr = SAS_TASK_COMPLETE;
6f231dda
DW
1337
1338 /* See if the device has been/is being stopped. Note
1339 * that we ignore the quiesce state, since we are
1340 * concerned about the actual device state.
1341 */
1342 if ((isci_device->status == isci_stopping) ||
1343 (isci_device->status == isci_stopped))
f1f52e75 1344 *status_ptr = SAS_DEVICE_UNKNOWN;
6f231dda 1345 else
f1f52e75 1346 *status_ptr = SAS_ABORTED_TASK;
6f231dda 1347
f1f52e75 1348 request->complete_in_target = true;
a5fde225 1349
f1f52e75 1350 *complete_to_host_ptr = isci_perform_normal_io_completion;
6f231dda
DW
1351 break;
1352
6f231dda 1353
f1f52e75
DW
1354 /* Note that the only open reject completion codes seen here will be
1355 * abandon-class codes; all others are automatically retried in the SCU.
1356 */
1357 case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
a5fde225 1358
f1f52e75
DW
1359 isci_request_set_open_reject_status(
1360 request, task, response_ptr, status_ptr,
1361 complete_to_host_ptr, SAS_OREJ_WRONG_DEST);
1362 break;
a5fde225 1363
f1f52e75 1364 case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
6f231dda 1365
f1f52e75
DW
1366 /* Note - the return of AB0 will change when
1367 * libsas implements detection of zone violations.
1368 */
1369 isci_request_set_open_reject_status(
1370 request, task, response_ptr, status_ptr,
1371 complete_to_host_ptr, SAS_OREJ_RESV_AB0);
1372 break;
6f231dda 1373
f1f52e75 1374 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
6f231dda 1375
f1f52e75
DW
1376 isci_request_set_open_reject_status(
1377 request, task, response_ptr, status_ptr,
1378 complete_to_host_ptr, SAS_OREJ_RESV_AB1);
1379 break;
6f231dda 1380
f1f52e75 1381 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
6f231dda 1382
f1f52e75
DW
1383 isci_request_set_open_reject_status(
1384 request, task, response_ptr, status_ptr,
1385 complete_to_host_ptr, SAS_OREJ_RESV_AB2);
1386 break;
6f231dda 1387
f1f52e75 1388 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
6f231dda 1389
f1f52e75
DW
1390 isci_request_set_open_reject_status(
1391 request, task, response_ptr, status_ptr,
1392 complete_to_host_ptr, SAS_OREJ_RESV_AB3);
1393 break;
6f231dda 1394
f1f52e75 1395 case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
6f231dda 1396
f1f52e75
DW
1397 isci_request_set_open_reject_status(
1398 request, task, response_ptr, status_ptr,
1399 complete_to_host_ptr, SAS_OREJ_BAD_DEST);
1400 break;
6f231dda 1401
f1f52e75 1402 case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
6f231dda 1403
f1f52e75
DW
1404 isci_request_set_open_reject_status(
1405 request, task, response_ptr, status_ptr,
1406 complete_to_host_ptr, SAS_OREJ_STP_NORES);
1407 break;
6f231dda 1408
f1f52e75 1409 case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
6f231dda 1410
f1f52e75
DW
1411 isci_request_set_open_reject_status(
1412 request, task, response_ptr, status_ptr,
1413 complete_to_host_ptr, SAS_OREJ_EPROTO);
1414 break;
6f231dda 1415
f1f52e75 1416 case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
6f231dda 1417
f1f52e75
DW
1418 isci_request_set_open_reject_status(
1419 request, task, response_ptr, status_ptr,
1420 complete_to_host_ptr, SAS_OREJ_CONN_RATE);
1421 break;
6f231dda 1422
f1f52e75
DW
1423 case SCU_TASK_DONE_LL_R_ERR:
1424 /* Also SCU_TASK_DONE_ACK_NAK_TO: */
1425 case SCU_TASK_DONE_LL_PERR:
1426 case SCU_TASK_DONE_LL_SY_TERM:
1427 /* Also SCU_TASK_DONE_NAK_ERR:*/
1428 case SCU_TASK_DONE_LL_LF_TERM:
1429 /* Also SCU_TASK_DONE_DATA_LEN_ERR: */
1430 case SCU_TASK_DONE_LL_ABORT_ERR:
1431 case SCU_TASK_DONE_SEQ_INV_TYPE:
1432 /* Also SCU_TASK_DONE_UNEXP_XR: */
1433 case SCU_TASK_DONE_XR_IU_LEN_ERR:
1434 case SCU_TASK_DONE_INV_FIS_LEN:
1435 /* Also SCU_TASK_DONE_XR_WD_LEN: */
1436 case SCU_TASK_DONE_SDMA_ERR:
1437 case SCU_TASK_DONE_OFFSET_ERR:
1438 case SCU_TASK_DONE_MAX_PLD_ERR:
1439 case SCU_TASK_DONE_LF_ERR:
1440 case SCU_TASK_DONE_SMP_RESP_TO_ERR: /* Escalate to dev reset? */
1441 case SCU_TASK_DONE_SMP_LL_RX_ERR:
1442 case SCU_TASK_DONE_UNEXP_DATA:
1443 case SCU_TASK_DONE_UNEXP_SDBFIS:
1444 case SCU_TASK_DONE_REG_ERR:
1445 case SCU_TASK_DONE_SDB_ERR:
1446 case SCU_TASK_DONE_TASK_ABORT:
1447 default:
1448 /* Task in the target is not done. */
1449 *response_ptr = SAS_TASK_UNDELIVERED;
1450 *status_ptr = SAM_STAT_TASK_ABORTED;
1451 request->complete_in_target = false;
6f231dda 1452
f1f52e75
DW
1453 *complete_to_host_ptr = isci_perform_error_io_completion;
1454 break;
1455 }
1456}
6f231dda 1457
f1f52e75
DW
1458/**
1459 * isci_task_save_for_upper_layer_completion() - This function saves the
1460 * request for later completion to the upper layer driver.
1461 * @host: This parameter is a pointer to the host on which the the request
1462 * should be queued (either as an error or success).
1463 * @request: This parameter is the completed request.
1464 * @response: This parameter is the response code for the completed task.
1465 * @status: This parameter is the status code for the completed task.
1466 *
1467 * none.
1468 */
1469static void isci_task_save_for_upper_layer_completion(
1470 struct isci_host *host,
1471 struct isci_request *request,
1472 enum service_response response,
1473 enum exec_status status,
1474 enum isci_completion_selection task_notification_selection)
1475{
1476 struct sas_task *task = isci_request_access_task(request);
6f231dda 1477
f1f52e75
DW
1478 task_notification_selection
1479 = isci_task_set_completion_status(task, response, status,
1480 task_notification_selection);
6f231dda 1481
f1f52e75
DW
1482 /* Tasks aborted specifically by a call to the lldd_abort_task
1483 * function should not be completed to the host in the regular path.
1484 */
1485 switch (task_notification_selection) {
6f231dda 1486
f1f52e75 1487 case isci_perform_normal_io_completion:
6f231dda 1488
f1f52e75
DW
1489 /* Normal notification (task_done) */
1490 dev_dbg(&host->pdev->dev,
1491 "%s: Normal - task = %p, response=%d (%d), status=%d (%d)\n",
1492 __func__,
1493 task,
1494 task->task_status.resp, response,
1495 task->task_status.stat, status);
1496 /* Add to the completed list. */
1497 list_add(&request->completed_node,
1498 &host->requests_to_complete);
6f231dda 1499
f1f52e75
DW
1500 /* Take the request off the device's pending request list. */
1501 list_del_init(&request->dev_node);
1502 break;
6f231dda 1503
f1f52e75
DW
1504 case isci_perform_aborted_io_completion:
1505 /* No notification to libsas because this request is
1506 * already in the abort path.
1507 */
1508 dev_warn(&host->pdev->dev,
1509 "%s: Aborted - task = %p, response=%d (%d), status=%d (%d)\n",
1510 __func__,
1511 task,
1512 task->task_status.resp, response,
1513 task->task_status.stat, status);
6f231dda 1514
f1f52e75
DW
1515 /* Wake up whatever process was waiting for this
1516 * request to complete.
1517 */
1518 WARN_ON(request->io_request_completion == NULL);
6f231dda 1519
f1f52e75
DW
1520 if (request->io_request_completion != NULL) {
1521
1522 /* Signal whoever is waiting that this
1523 * request is complete.
1524 */
1525 complete(request->io_request_completion);
1526 }
1527 break;
1528
1529 case isci_perform_error_io_completion:
1530 /* Use sas_task_abort */
1531 dev_warn(&host->pdev->dev,
1532 "%s: Error - task = %p, response=%d (%d), status=%d (%d)\n",
1533 __func__,
1534 task,
1535 task->task_status.resp, response,
1536 task->task_status.stat, status);
1537 /* Add to the aborted list. */
1538 list_add(&request->completed_node,
1539 &host->requests_to_errorback);
1540 break;
1541
1542 default:
1543 dev_warn(&host->pdev->dev,
1544 "%s: Unknown - task = %p, response=%d (%d), status=%d (%d)\n",
1545 __func__,
1546 task,
1547 task->task_status.resp, response,
1548 task->task_status.stat, status);
1549
1550 /* Add to the error to libsas list. */
1551 list_add(&request->completed_node,
1552 &host->requests_to_errorback);
1553 break;
1554 }
1555}
1556
1557static void isci_request_io_request_complete(struct isci_host *isci_host,
1558 struct isci_request *request,
1559 enum sci_io_status completion_status)
1560{
1561 struct sas_task *task = isci_request_access_task(request);
1562 struct ssp_response_iu *resp_iu;
1563 void *resp_buf;
1564 unsigned long task_flags;
1565 struct isci_remote_device *isci_device = request->isci_device;
1566 enum service_response response = SAS_TASK_UNDELIVERED;
1567 enum exec_status status = SAS_ABORTED_TASK;
1568 enum isci_request_status request_status;
1569 enum isci_completion_selection complete_to_host
1570 = isci_perform_normal_io_completion;
1571
1572 dev_dbg(&isci_host->pdev->dev,
1573 "%s: request = %p, task = %p,\n"
1574 "task->data_dir = %d completion_status = 0x%x\n",
1575 __func__,
1576 request,
1577 task,
1578 task->data_dir,
1579 completion_status);
1580
1581 spin_lock(&request->state_lock);
1582 request_status = isci_request_get_state(request);
1583
1584 /* Decode the request status. Note that if the request has been
1585 * aborted by a task management function, we don't care
1586 * what the status is.
1587 */
1588 switch (request_status) {
1589
1590 case aborted:
1591 /* "aborted" indicates that the request was aborted by a task
1592 * management function, since once a task management request is
1593 * perfomed by the device, the request only completes because
1594 * of the subsequent driver terminate.
1595 *
1596 * Aborted also means an external thread is explicitly managing
1597 * this request, so that we do not complete it up the stack.
1598 *
1599 * The target is still there (since the TMF was successful).
1600 */
1601 request->complete_in_target = true;
1602 response = SAS_TASK_COMPLETE;
1603
1604 /* See if the device has been/is being stopped. Note
1605 * that we ignore the quiesce state, since we are
1606 * concerned about the actual device state.
1607 */
1608 if ((isci_device->status == isci_stopping)
1609 || (isci_device->status == isci_stopped)
1610 )
1611 status = SAS_DEVICE_UNKNOWN;
1612 else
1613 status = SAS_ABORTED_TASK;
1614
1615 complete_to_host = isci_perform_aborted_io_completion;
1616 /* This was an aborted request. */
1617
1618 spin_unlock(&request->state_lock);
1619 break;
1620
1621 case aborting:
1622 /* aborting means that the task management function tried and
1623 * failed to abort the request. We need to note the request
1624 * as SAS_TASK_UNDELIVERED, so that the scsi mid layer marks the
1625 * target as down.
1626 *
1627 * Aborting also means an external thread is explicitly managing
1628 * this request, so that we do not complete it up the stack.
1629 */
1630 request->complete_in_target = true;
1631 response = SAS_TASK_UNDELIVERED;
1632
1633 if ((isci_device->status == isci_stopping) ||
1634 (isci_device->status == isci_stopped))
1635 /* The device has been /is being stopped. Note that
1636 * we ignore the quiesce state, since we are
1637 * concerned about the actual device state.
1638 */
1639 status = SAS_DEVICE_UNKNOWN;
1640 else
1641 status = SAS_PHY_DOWN;
1642
1643 complete_to_host = isci_perform_aborted_io_completion;
1644
1645 /* This was an aborted request. */
1646
1647 spin_unlock(&request->state_lock);
1648 break;
1649
1650 case terminating:
1651
1652 /* This was an terminated request. This happens when
1653 * the I/O is being terminated because of an action on
1654 * the device (reset, tear down, etc.), and the I/O needs
1655 * to be completed up the stack.
1656 */
1657 request->complete_in_target = true;
1658 response = SAS_TASK_UNDELIVERED;
1659
1660 /* See if the device has been/is being stopped. Note
1661 * that we ignore the quiesce state, since we are
1662 * concerned about the actual device state.
1663 */
1664 if ((isci_device->status == isci_stopping) ||
1665 (isci_device->status == isci_stopped))
1666 status = SAS_DEVICE_UNKNOWN;
1667 else
1668 status = SAS_ABORTED_TASK;
1669
1670 complete_to_host = isci_perform_aborted_io_completion;
1671
1672 /* This was a terminated request. */
1673
1674 spin_unlock(&request->state_lock);
1675 break;
1676
1677 default:
1678
1679 /* The request is done from an SCU HW perspective. */
1680 request->status = completed;
1681
1682 spin_unlock(&request->state_lock);
1683
1684 /* This is an active request being completed from the core. */
1685 switch (completion_status) {
1686
1687 case SCI_IO_FAILURE_RESPONSE_VALID:
1688 dev_dbg(&isci_host->pdev->dev,
1689 "%s: SCI_IO_FAILURE_RESPONSE_VALID (%p/%p)\n",
1690 __func__,
1691 request,
1692 task);
1693
1694 if (sas_protocol_ata(task->task_proto)) {
1695 resp_buf = &request->sci.stp.rsp;
1696 isci_request_process_stp_response(task,
1697 resp_buf);
1698 } else if (SAS_PROTOCOL_SSP == task->task_proto) {
1699
1700 /* crack the iu response buffer. */
1701 resp_iu = &request->sci.ssp.rsp;
1702 isci_request_process_response_iu(task, resp_iu,
1703 &isci_host->pdev->dev);
1704
1705 } else if (SAS_PROTOCOL_SMP == task->task_proto) {
1706
1707 dev_err(&isci_host->pdev->dev,
1708 "%s: SCI_IO_FAILURE_RESPONSE_VALID: "
1709 "SAS_PROTOCOL_SMP protocol\n",
1710 __func__);
1711
1712 } else
1713 dev_err(&isci_host->pdev->dev,
1714 "%s: unknown protocol\n", __func__);
1715
1716 /* use the task status set in the task struct by the
1717 * isci_request_process_response_iu call.
1718 */
1719 request->complete_in_target = true;
1720 response = task->task_status.resp;
1721 status = task->task_status.stat;
1722 break;
1723
1724 case SCI_IO_SUCCESS:
1725 case SCI_IO_SUCCESS_IO_DONE_EARLY:
1726
1727 response = SAS_TASK_COMPLETE;
1728 status = SAM_STAT_GOOD;
1729 request->complete_in_target = true;
1730
1731 if (task->task_proto == SAS_PROTOCOL_SMP) {
1732 void *rsp = &request->sci.smp.rsp;
1733
1734 dev_dbg(&isci_host->pdev->dev,
1735 "%s: SMP protocol completion\n",
1736 __func__);
1737
1738 sg_copy_from_buffer(
1739 &task->smp_task.smp_resp, 1,
1740 rsp, sizeof(struct smp_resp));
1741 } else if (completion_status
1742 == SCI_IO_SUCCESS_IO_DONE_EARLY) {
1743
1744 /* This was an SSP / STP / SATA transfer.
1745 * There is a possibility that less data than
1746 * the maximum was transferred.
1747 */
1748 u32 transferred_length = sci_req_tx_bytes(&request->sci);
1749
1750 task->task_status.residual
1751 = task->total_xfer_len - transferred_length;
1752
1753 /* If there were residual bytes, call this an
1754 * underrun.
1755 */
1756 if (task->task_status.residual != 0)
1757 status = SAS_DATA_UNDERRUN;
1758
1759 dev_dbg(&isci_host->pdev->dev,
1760 "%s: SCI_IO_SUCCESS_IO_DONE_EARLY %d\n",
1761 __func__,
1762 status);
1763
1764 } else
1765 dev_dbg(&isci_host->pdev->dev,
1766 "%s: SCI_IO_SUCCESS\n",
1767 __func__);
1768
1769 break;
1770
1771 case SCI_IO_FAILURE_TERMINATED:
1772 dev_dbg(&isci_host->pdev->dev,
1773 "%s: SCI_IO_FAILURE_TERMINATED (%p/%p)\n",
1774 __func__,
1775 request,
1776 task);
1777
1778 /* The request was terminated explicitly. No handling
1779 * is needed in the SCSI error handler path.
1780 */
1781 request->complete_in_target = true;
1782 response = SAS_TASK_UNDELIVERED;
1783
1784 /* See if the device has been/is being stopped. Note
1785 * that we ignore the quiesce state, since we are
1786 * concerned about the actual device state.
1787 */
1788 if ((isci_device->status == isci_stopping) ||
1789 (isci_device->status == isci_stopped))
1790 status = SAS_DEVICE_UNKNOWN;
1791 else
1792 status = SAS_ABORTED_TASK;
1793
1794 complete_to_host = isci_perform_normal_io_completion;
1795 break;
1796
1797 case SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR:
1798
1799 isci_request_handle_controller_specific_errors(
1800 isci_device, request, task, &response, &status,
1801 &complete_to_host);
1802
1803 break;
1804
1805 case SCI_IO_FAILURE_REMOTE_DEVICE_RESET_REQUIRED:
1806 /* This is a special case, in that the I/O completion
1807 * is telling us that the device needs a reset.
1808 * In order for the device reset condition to be
1809 * noticed, the I/O has to be handled in the error
1810 * handler. Set the reset flag and cause the
1811 * SCSI error thread to be scheduled.
1812 */
1813 spin_lock_irqsave(&task->task_state_lock, task_flags);
1814 task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
6f231dda
DW
1815 spin_unlock_irqrestore(&task->task_state_lock, task_flags);
1816
f1f52e75
DW
1817 /* Fail the I/O. */
1818 response = SAS_TASK_UNDELIVERED;
1819 status = SAM_STAT_TASK_ABORTED;
1820
1821 complete_to_host = isci_perform_error_io_completion;
1822 request->complete_in_target = false;
1823 break;
1824
1825 default:
1826 /* Catch any otherwise unhandled error codes here. */
1827 dev_warn(&isci_host->pdev->dev,
1828 "%s: invalid completion code: 0x%x - "
1829 "isci_request = %p\n",
1830 __func__, completion_status, request);
1831
1832 response = SAS_TASK_UNDELIVERED;
1833
1834 /* See if the device has been/is being stopped. Note
1835 * that we ignore the quiesce state, since we are
1836 * concerned about the actual device state.
1837 */
1838 if ((isci_device->status == isci_stopping) ||
1839 (isci_device->status == isci_stopped))
1840 status = SAS_DEVICE_UNKNOWN;
1841 else
1842 status = SAS_ABORTED_TASK;
1843
1844 complete_to_host = isci_perform_error_io_completion;
1845 request->complete_in_target = false;
1846 break;
1847 }
1848 break;
1849 }
1850
1851 isci_request_unmap_sgl(request, isci_host->pdev);
1852
1853 /* Put the completed request on the correct list */
1854 isci_task_save_for_upper_layer_completion(isci_host, request, response,
1855 status, complete_to_host
1856 );
1857
1858 /* complete the io request to the core. */
1859 scic_controller_complete_io(&isci_host->sci,
1860 &isci_device->sci,
1861 &request->sci);
1862 /* set terminated handle so it cannot be completed or
1863 * terminated again, and to cause any calls into abort
1864 * task to recognize the already completed case.
1865 */
1866 request->terminated = true;
1867
1868 isci_host_can_dequeue(isci_host, 1);
1869}
1870
1871/**
1872 * scic_sds_request_initial_state_enter() -
1873 * @object: This parameter specifies the base object for which the state
1874 * transition is occurring.
1875 *
1876 * This method implements the actions taken when entering the
1877 * SCI_BASE_REQUEST_STATE_INITIAL state. This state is entered when the initial
1878 * base request is constructed. Entry into the initial state sets all handlers
1879 * for the io request object to their default handlers. none
1880 */
1881static void scic_sds_request_initial_state_enter(void *object)
1882{
1883 struct scic_sds_request *sci_req = object;
1884
1885 SET_STATE_HANDLER(
1886 sci_req,
1887 scic_sds_request_state_handler_table,
1888 SCI_BASE_REQUEST_STATE_INITIAL
1889 );
1890}
1891
1892/**
1893 * scic_sds_request_constructed_state_enter() -
1894 * @object: The io request object that is to enter the constructed state.
1895 *
1896 * This method implements the actions taken when entering the
1897 * SCI_BASE_REQUEST_STATE_CONSTRUCTED state. The method sets the state handlers
1898 * for the the constructed state. none
1899 */
1900static void scic_sds_request_constructed_state_enter(void *object)
1901{
1902 struct scic_sds_request *sci_req = object;
1903
1904 SET_STATE_HANDLER(
1905 sci_req,
1906 scic_sds_request_state_handler_table,
1907 SCI_BASE_REQUEST_STATE_CONSTRUCTED
1908 );
1909}
1910
1911/**
1912 * scic_sds_request_started_state_enter() -
1913 * @object: This parameter specifies the base object for which the state
1914 * transition is occurring. This is cast into a SCIC_SDS_IO_REQUEST object.
1915 *
1916 * This method implements the actions taken when entering the
1917 * SCI_BASE_REQUEST_STATE_STARTED state. If the io request object type is a
1918 * SCSI Task request we must enter the started substate machine. none
1919 */
1920static void scic_sds_request_started_state_enter(void *object)
1921{
1922 struct scic_sds_request *sci_req = object;
1923
1924 SET_STATE_HANDLER(
1925 sci_req,
1926 scic_sds_request_state_handler_table,
1927 SCI_BASE_REQUEST_STATE_STARTED
1928 );
1929
1930 /*
1931 * Most of the request state machines have a started substate machine so
1932 * start its execution on the entry to the started state. */
1933 if (sci_req->has_started_substate_machine == true)
1934 sci_base_state_machine_start(&sci_req->started_substate_machine);
1935}
1936
1937/**
1938 * scic_sds_request_started_state_exit() -
1939 * @object: This parameter specifies the base object for which the state
1940 * transition is occurring. This object is cast into a SCIC_SDS_IO_REQUEST
1941 * object.
1942 *
1943 * This method implements the actions taken when exiting the
1944 * SCI_BASE_REQUEST_STATE_STARTED state. For task requests the action will be
1945 * to stop the started substate machine. none
1946 */
1947static void scic_sds_request_started_state_exit(void *object)
1948{
1949 struct scic_sds_request *sci_req = object;
1950
1951 if (sci_req->has_started_substate_machine == true)
1952 sci_base_state_machine_stop(&sci_req->started_substate_machine);
1953}
1954
1955/**
1956 * scic_sds_request_completed_state_enter() -
1957 * @object: This parameter specifies the base object for which the state
1958 * transition is occurring. This object is cast into a SCIC_SDS_IO_REQUEST
1959 * object.
1960 *
1961 * This method implements the actions taken when entering the
1962 * SCI_BASE_REQUEST_STATE_COMPLETED state. This state is entered when the
1963 * SCIC_SDS_IO_REQUEST has completed. The method will decode the request
1964 * completion status and convert it to an enum sci_status to return in the
1965 * completion callback function. none
1966 */
1967static void scic_sds_request_completed_state_enter(void *object)
1968{
1969 struct scic_sds_request *sci_req = object;
1970 struct scic_sds_controller *scic =
1971 scic_sds_request_get_controller(sci_req);
1972 struct isci_host *ihost = scic_to_ihost(scic);
1973 struct isci_request *ireq = sci_req_to_ireq(sci_req);
1974
1975 SET_STATE_HANDLER(sci_req,
1976 scic_sds_request_state_handler_table,
1977 SCI_BASE_REQUEST_STATE_COMPLETED);
1978
1979 /* Tell the SCI_USER that the IO request is complete */
1980 if (sci_req->is_task_management_request == false)
1981 isci_request_io_request_complete(ihost, ireq,
1982 sci_req->sci_status);
1983 else
1984 isci_task_request_complete(ihost, ireq, sci_req->sci_status);
1985}
1986
1987/**
1988 * scic_sds_request_aborting_state_enter() -
1989 * @object: This parameter specifies the base object for which the state
1990 * transition is occurring. This object is cast into a SCIC_SDS_IO_REQUEST
1991 * object.
1992 *
1993 * This method implements the actions taken when entering the
1994 * SCI_BASE_REQUEST_STATE_ABORTING state. none
1995 */
1996static void scic_sds_request_aborting_state_enter(void *object)
1997{
1998 struct scic_sds_request *sci_req = object;
1999
2000 /* Setting the abort bit in the Task Context is required by the silicon. */
2001 sci_req->task_context_buffer->abort = 1;
2002
2003 SET_STATE_HANDLER(
2004 sci_req,
2005 scic_sds_request_state_handler_table,
2006 SCI_BASE_REQUEST_STATE_ABORTING
2007 );
2008}
2009
2010/**
2011 * scic_sds_request_final_state_enter() -
2012 * @object: This parameter specifies the base object for which the state
2013 * transition is occurring. This is cast into a SCIC_SDS_IO_REQUEST object.
2014 *
2015 * This method implements the actions taken when entering the
2016 * SCI_BASE_REQUEST_STATE_FINAL state. The only action required is to put the
2017 * state handlers in place. none
2018 */
2019static void scic_sds_request_final_state_enter(void *object)
2020{
2021 struct scic_sds_request *sci_req = object;
2022
2023 SET_STATE_HANDLER(
2024 sci_req,
2025 scic_sds_request_state_handler_table,
2026 SCI_BASE_REQUEST_STATE_FINAL
2027 );
2028}
2029
2030static const struct sci_base_state scic_sds_request_state_table[] = {
2031 [SCI_BASE_REQUEST_STATE_INITIAL] = {
2032 .enter_state = scic_sds_request_initial_state_enter,
2033 },
2034 [SCI_BASE_REQUEST_STATE_CONSTRUCTED] = {
2035 .enter_state = scic_sds_request_constructed_state_enter,
2036 },
2037 [SCI_BASE_REQUEST_STATE_STARTED] = {
2038 .enter_state = scic_sds_request_started_state_enter,
2039 .exit_state = scic_sds_request_started_state_exit
2040 },
2041 [SCI_BASE_REQUEST_STATE_COMPLETED] = {
2042 .enter_state = scic_sds_request_completed_state_enter,
2043 },
2044 [SCI_BASE_REQUEST_STATE_ABORTING] = {
2045 .enter_state = scic_sds_request_aborting_state_enter,
2046 },
2047 [SCI_BASE_REQUEST_STATE_FINAL] = {
2048 .enter_state = scic_sds_request_final_state_enter,
2049 },
2050};
2051
2052static void scic_sds_general_request_construct(struct scic_sds_controller *scic,
2053 struct scic_sds_remote_device *sci_dev,
2054 u16 io_tag, struct scic_sds_request *sci_req)
2055{
2056 sci_base_state_machine_construct(&sci_req->state_machine, sci_req,
2057 scic_sds_request_state_table, SCI_BASE_REQUEST_STATE_INITIAL);
2058 sci_base_state_machine_start(&sci_req->state_machine);
2059
2060 sci_req->io_tag = io_tag;
2061 sci_req->owning_controller = scic;
2062 sci_req->target_device = sci_dev;
2063 sci_req->has_started_substate_machine = false;
2064 sci_req->protocol = SCIC_NO_PROTOCOL;
2065 sci_req->saved_rx_frame_index = SCU_INVALID_FRAME_INDEX;
2066 sci_req->device_sequence = scic_sds_remote_device_get_sequence(sci_dev);
2067
2068 sci_req->sci_status = SCI_SUCCESS;
2069 sci_req->scu_status = 0;
2070 sci_req->post_context = 0xFFFFFFFF;
2071
2072 sci_req->is_task_management_request = false;
2073
2074 if (io_tag == SCI_CONTROLLER_INVALID_IO_TAG) {
2075 sci_req->was_tag_assigned_by_user = false;
2076 sci_req->task_context_buffer = NULL;
2077 } else {
2078 sci_req->was_tag_assigned_by_user = true;
2079
2080 sci_req->task_context_buffer =
2081 scic_sds_controller_get_task_context_buffer(scic, io_tag);
2082 }
2083}
2084
2085static enum sci_status
2086scic_io_request_construct(struct scic_sds_controller *scic,
2087 struct scic_sds_remote_device *sci_dev,
2088 u16 io_tag, struct scic_sds_request *sci_req)
2089{
2090 struct domain_device *dev = sci_dev_to_domain(sci_dev);
2091 enum sci_status status = SCI_SUCCESS;
2092
2093 /* Build the common part of the request */
2094 scic_sds_general_request_construct(scic, sci_dev, io_tag, sci_req);
2095
2096 if (sci_dev->rnc.remote_node_index ==
2097 SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX)
2098 return SCI_FAILURE_INVALID_REMOTE_DEVICE;
2099
2100 if (dev->dev_type == SAS_END_DEV)
2101 scic_sds_ssp_io_request_assign_buffers(sci_req);
2102 else if ((dev->dev_type == SATA_DEV) ||
2103 (dev->tproto & SAS_PROTOCOL_STP)) {
2104 scic_sds_stp_request_assign_buffers(sci_req);
2105 memset(&sci_req->stp.cmd, 0, sizeof(sci_req->stp.cmd));
2106 } else if (dev_is_expander(dev)) {
2107 scic_sds_smp_request_assign_buffers(sci_req);
2108 memset(&sci_req->smp.cmd, 0, sizeof(sci_req->smp.cmd));
2109 } else
2110 status = SCI_FAILURE_UNSUPPORTED_PROTOCOL;
2111
2112 if (status == SCI_SUCCESS) {
2113 memset(sci_req->task_context_buffer, 0,
2114 offsetof(struct scu_task_context, sgl_pair_ab));
2115 }
2116
2117 return status;
2118}
2119
2120enum sci_status scic_task_request_construct(struct scic_sds_controller *scic,
2121 struct scic_sds_remote_device *sci_dev,
2122 u16 io_tag, struct scic_sds_request *sci_req)
2123{
2124 struct domain_device *dev = sci_dev_to_domain(sci_dev);
2125 enum sci_status status = SCI_SUCCESS;
2126
2127 /* Build the common part of the request */
2128 scic_sds_general_request_construct(scic, sci_dev, io_tag, sci_req);
2129
2130 if (dev->dev_type == SAS_END_DEV) {
2131 scic_sds_ssp_task_request_assign_buffers(sci_req);
2132
2133 sci_req->has_started_substate_machine = true;
2134
2135 /* Construct the started sub-state machine. */
2136 sci_base_state_machine_construct(
2137 &sci_req->started_substate_machine,
2138 sci_req,
2139 scic_sds_io_request_started_task_mgmt_substate_table,
2140 SCIC_SDS_IO_REQUEST_STARTED_TASK_MGMT_SUBSTATE_AWAIT_TC_COMPLETION
2141 );
2142 } else if (dev->dev_type == SATA_DEV || (dev->tproto & SAS_PROTOCOL_STP))
2143 scic_sds_stp_request_assign_buffers(sci_req);
2144 else
2145 status = SCI_FAILURE_UNSUPPORTED_PROTOCOL;
2146
2147 if (status == SCI_SUCCESS) {
2148 sci_req->is_task_management_request = true;
2149 memset(sci_req->task_context_buffer, 0, sizeof(struct scu_task_context));
2150 }
2151
2152 return status;
2153}
2154
2155static enum sci_status isci_request_ssp_request_construct(
2156 struct isci_request *request)
2157{
2158 enum sci_status status;
2159
2160 dev_dbg(&request->isci_host->pdev->dev,
2161 "%s: request = %p\n",
2162 __func__,
2163 request);
2164 status = scic_io_request_construct_basic_ssp(&request->sci);
2165 return status;
2166}
2167
2168static enum sci_status isci_request_stp_request_construct(
2169 struct isci_request *request)
2170{
2171 struct sas_task *task = isci_request_access_task(request);
2172 enum sci_status status;
2173 struct host_to_dev_fis *register_fis;
2174
2175 dev_dbg(&request->isci_host->pdev->dev,
2176 "%s: request = %p\n",
2177 __func__,
2178 request);
2179
2180 /* Get the host_to_dev_fis from the core and copy
2181 * the fis from the task into it.
2182 */
2183 register_fis = isci_sata_task_to_fis_copy(task);
2184
2185 status = scic_io_request_construct_basic_sata(&request->sci);
2186
2187 /* Set the ncq tag in the fis, from the queue
2188 * command in the task.
2189 */
2190 if (isci_sata_is_task_ncq(task)) {
2191
2192 isci_sata_set_ncq_tag(
2193 register_fis,
2194 task
2195 );
2196 }
2197
2198 return status;
2199}
2200
2201/*
2202 * isci_smp_request_build() - This function builds the smp request.
2203 * @ireq: This parameter points to the isci_request allocated in the
2204 * request construct function.
2205 *
2206 * SCI_SUCCESS on successfull completion, or specific failure code.
2207 */
2208static enum sci_status isci_smp_request_build(struct isci_request *ireq)
2209{
2210 enum sci_status status = SCI_FAILURE;
2211 struct sas_task *task = isci_request_access_task(ireq);
2212 struct scic_sds_request *sci_req = &ireq->sci;
2213
2214 dev_dbg(&ireq->isci_host->pdev->dev,
2215 "%s: request = %p\n", __func__, ireq);
2216
2217 dev_dbg(&ireq->isci_host->pdev->dev,
2218 "%s: smp_req len = %d\n",
2219 __func__,
2220 task->smp_task.smp_req.length);
2221
2222 /* copy the smp_command to the address; */
2223 sg_copy_to_buffer(&task->smp_task.smp_req, 1,
2224 &sci_req->smp.cmd,
2225 sizeof(struct smp_req));
2226
2227 status = scic_io_request_construct_smp(sci_req);
2228 if (status != SCI_SUCCESS)
2229 dev_warn(&ireq->isci_host->pdev->dev,
2230 "%s: failed with status = %d\n",
2231 __func__,
2232 status);
2233
2234 return status;
2235}
2236
2237/**
2238 * isci_io_request_build() - This function builds the io request object.
2239 * @isci_host: This parameter specifies the ISCI host object
2240 * @request: This parameter points to the isci_request object allocated in the
2241 * request construct function.
2242 * @sci_device: This parameter is the handle for the sci core's remote device
2243 * object that is the destination for this request.
2244 *
2245 * SCI_SUCCESS on successfull completion, or specific failure code.
2246 */
2247static enum sci_status isci_io_request_build(
2248 struct isci_host *isci_host,
2249 struct isci_request *request,
2250 struct isci_remote_device *isci_device)
2251{
2252 enum sci_status status = SCI_SUCCESS;
2253 struct sas_task *task = isci_request_access_task(request);
2254 struct scic_sds_remote_device *sci_device = &isci_device->sci;
2255
2256 dev_dbg(&isci_host->pdev->dev,
2257 "%s: isci_device = 0x%p; request = %p, "
2258 "num_scatter = %d\n",
2259 __func__,
2260 isci_device,
2261 request,
2262 task->num_scatter);
2263
2264 /* map the sgl addresses, if present.
2265 * libata does the mapping for sata devices
2266 * before we get the request.
2267 */
2268 if (task->num_scatter &&
2269 !sas_protocol_ata(task->task_proto) &&
2270 !(SAS_PROTOCOL_SMP & task->task_proto)) {
2271
2272 request->num_sg_entries = dma_map_sg(
2273 &isci_host->pdev->dev,
2274 task->scatter,
2275 task->num_scatter,
2276 task->data_dir
2277 );
2278
2279 if (request->num_sg_entries == 0)
2280 return SCI_FAILURE_INSUFFICIENT_RESOURCES;
2281 }
2282
2283 /* build the common request object. For now,
2284 * we will let the core allocate the IO tag.
2285 */
2286 status = scic_io_request_construct(&isci_host->sci, sci_device,
2287 SCI_CONTROLLER_INVALID_IO_TAG,
2288 &request->sci);
2289
2290 if (status != SCI_SUCCESS) {
2291 dev_warn(&isci_host->pdev->dev,
2292 "%s: failed request construct\n",
2293 __func__);
2294 return SCI_FAILURE;
2295 }
2296
2297 switch (task->task_proto) {
2298 case SAS_PROTOCOL_SMP:
2299 status = isci_smp_request_build(request);
2300 break;
2301 case SAS_PROTOCOL_SSP:
2302 status = isci_request_ssp_request_construct(request);
2303 break;
2304 case SAS_PROTOCOL_SATA:
2305 case SAS_PROTOCOL_STP:
2306 case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
2307 status = isci_request_stp_request_construct(request);
2308 break;
2309 default:
2310 dev_warn(&isci_host->pdev->dev,
2311 "%s: unknown protocol\n", __func__);
2312 return SCI_FAILURE;
2313 }
2314
2315 return SCI_SUCCESS;
2316}
2317
2318/**
2319 * isci_request_alloc_core() - This function gets the request object from the
2320 * isci_host dma cache.
2321 * @isci_host: This parameter specifies the ISCI host object
2322 * @isci_request: This parameter will contain the pointer to the new
2323 * isci_request object.
2324 * @isci_device: This parameter is the pointer to the isci remote device object
2325 * that is the destination for this request.
2326 * @gfp_flags: This parameter specifies the os allocation flags.
2327 *
2328 * SCI_SUCCESS on successfull completion, or specific failure code.
2329 */
2330static int isci_request_alloc_core(
2331 struct isci_host *isci_host,
2332 struct isci_request **isci_request,
2333 struct isci_remote_device *isci_device,
2334 gfp_t gfp_flags)
2335{
2336 int ret = 0;
2337 dma_addr_t handle;
2338 struct isci_request *request;
2339
aa145102 2340
f1f52e75
DW
2341 /* get pointer to dma memory. This actually points
2342 * to both the isci_remote_device object and the
2343 * sci object. The isci object is at the beginning
2344 * of the memory allocated here.
2345 */
2346 request = dma_pool_alloc(isci_host->dma_pool, gfp_flags, &handle);
2347 if (!request) {
2348 dev_warn(&isci_host->pdev->dev,
2349 "%s: dma_pool_alloc returned NULL\n", __func__);
2350 return -ENOMEM;
2351 }
6f231dda 2352
f1f52e75
DW
2353 /* initialize the request object. */
2354 spin_lock_init(&request->state_lock);
2355 request->request_daddr = handle;
2356 request->isci_host = isci_host;
2357 request->isci_device = isci_device;
2358 request->io_request_completion = NULL;
2359 request->terminated = false;
6f231dda 2360
f1f52e75 2361 request->num_sg_entries = 0;
6f231dda 2362
f1f52e75 2363 request->complete_in_target = false;
6f231dda 2364
f1f52e75
DW
2365 INIT_LIST_HEAD(&request->completed_node);
2366 INIT_LIST_HEAD(&request->dev_node);
2367
2368 *isci_request = request;
2369 isci_request_change_state(request, allocated);
2370
2371 return ret;
2372}
2373
2374static int isci_request_alloc_io(
2375 struct isci_host *isci_host,
2376 struct sas_task *task,
2377 struct isci_request **isci_request,
2378 struct isci_remote_device *isci_device,
2379 gfp_t gfp_flags)
2380{
2381 int retval = isci_request_alloc_core(isci_host, isci_request,
2382 isci_device, gfp_flags);
2383
2384 if (!retval) {
2385 (*isci_request)->ttype_ptr.io_task_ptr = task;
2386 (*isci_request)->ttype = io_task;
2387
2388 task->lldd_task = *isci_request;
6f231dda 2389 }
f1f52e75
DW
2390 return retval;
2391}
6f231dda 2392
f1f52e75
DW
2393/**
2394 * isci_request_alloc_tmf() - This function gets the request object from the
2395 * isci_host dma cache and initializes the relevant fields as a sas_task.
2396 * @isci_host: This parameter specifies the ISCI host object
2397 * @sas_task: This parameter is the task struct from the upper layer driver.
2398 * @isci_request: This parameter will contain the pointer to the new
2399 * isci_request object.
2400 * @isci_device: This parameter is the pointer to the isci remote device object
2401 * that is the destination for this request.
2402 * @gfp_flags: This parameter specifies the os allocation flags.
2403 *
2404 * SCI_SUCCESS on successfull completion, or specific failure code.
2405 */
2406int isci_request_alloc_tmf(
2407 struct isci_host *isci_host,
2408 struct isci_tmf *isci_tmf,
2409 struct isci_request **isci_request,
2410 struct isci_remote_device *isci_device,
2411 gfp_t gfp_flags)
2412{
2413 int retval = isci_request_alloc_core(isci_host, isci_request,
2414 isci_device, gfp_flags);
6f231dda 2415
f1f52e75 2416 if (!retval) {
6f231dda 2417
f1f52e75
DW
2418 (*isci_request)->ttype_ptr.tmf_task_ptr = isci_tmf;
2419 (*isci_request)->ttype = tmf_task;
2420 }
2421 return retval;
2422}
2423
2424/**
2425 * isci_request_execute() - This function allocates the isci_request object,
2426 * all fills in some common fields.
2427 * @isci_host: This parameter specifies the ISCI host object
2428 * @sas_task: This parameter is the task struct from the upper layer driver.
2429 * @isci_request: This parameter will contain the pointer to the new
2430 * isci_request object.
2431 * @gfp_flags: This parameter specifies the os allocation flags.
2432 *
2433 * SCI_SUCCESS on successfull completion, or specific failure code.
2434 */
2435int isci_request_execute(
2436 struct isci_host *isci_host,
2437 struct sas_task *task,
2438 struct isci_request **isci_request,
2439 gfp_t gfp_flags)
2440{
2441 int ret = 0;
2442 struct scic_sds_remote_device *sci_device;
2443 enum sci_status status = SCI_FAILURE_UNSUPPORTED_PROTOCOL;
2444 struct isci_remote_device *isci_device;
2445 struct isci_request *request;
2446 unsigned long flags;
2447
2448 isci_device = task->dev->lldd_dev;
2449 sci_device = &isci_device->sci;
2450
2451 /* do common allocation and init of request object. */
2452 ret = isci_request_alloc_io(
2453 isci_host,
2454 task,
2455 &request,
2456 isci_device,
2457 gfp_flags
2458 );
2459
2460 if (ret)
2461 goto out;
2462
2463 status = isci_io_request_build(isci_host, request, isci_device);
2464 if (status != SCI_SUCCESS) {
2465 dev_warn(&isci_host->pdev->dev,
2466 "%s: request_construct failed - status = 0x%x\n",
2467 __func__,
2468 status);
2469 goto out;
2470 }
2471
2472 spin_lock_irqsave(&isci_host->scic_lock, flags);
2473
2474 /* send the request, let the core assign the IO TAG. */
2475 status = scic_controller_start_io(&isci_host->sci, sci_device,
2476 &request->sci,
2477 SCI_CONTROLLER_INVALID_IO_TAG);
2478 if (status != SCI_SUCCESS &&
2479 status != SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
2480 dev_warn(&isci_host->pdev->dev,
2481 "%s: failed request start (0x%x)\n",
2482 __func__, status);
2483 spin_unlock_irqrestore(&isci_host->scic_lock, flags);
2484 goto out;
2485 }
2486
2487 /* Either I/O started OK, or the core has signaled that
2488 * the device needs a target reset.
2489 *
2490 * In either case, hold onto the I/O for later.
2491 *
2492 * Update it's status and add it to the list in the
2493 * remote device object.
6f231dda 2494 */
f1f52e75
DW
2495 isci_request_change_state(request, started);
2496 list_add(&request->dev_node, &isci_device->reqs_in_process);
6f231dda 2497
f1f52e75
DW
2498 if (status == SCI_SUCCESS) {
2499 /* Save the tag for possible task mgmt later. */
2500 request->io_tag = request->sci.io_tag;
2501 } else {
2502 /* The request did not really start in the
2503 * hardware, so clear the request handle
2504 * here so no terminations will be done.
2505 */
2506 request->terminated = true;
2507 }
2508 spin_unlock_irqrestore(&isci_host->scic_lock, flags);
2509
2510 if (status ==
2511 SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
2512 /* Signal libsas that we need the SCSI error
2513 * handler thread to work on this I/O and that
2514 * we want a device reset.
2515 */
2516 spin_lock_irqsave(&task->task_state_lock, flags);
2517 task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
2518 spin_unlock_irqrestore(&task->task_state_lock, flags);
2519
2520 /* Cause this task to be scheduled in the SCSI error
2521 * handler thread.
2522 */
2523 isci_execpath_callback(isci_host, task,
2524 sas_task_abort);
2525
2526 /* Change the status, since we are holding
2527 * the I/O until it is managed by the SCSI
2528 * error handler.
2529 */
2530 status = SCI_SUCCESS;
2531 }
2532
2533 out:
2534 if (status != SCI_SUCCESS) {
2535 /* release dma memory on failure. */
2536 isci_request_free(isci_host, request);
2537 request = NULL;
2538 ret = SCI_FAILURE;
2539 }
2540
2541 *isci_request = request;
2542 return ret;
6f231dda 2543}
f1f52e75
DW
2544
2545
2546
This page took 0.227894 seconds and 5 git commands to generate.