[libata irq-pio] reorganize "buf + offset" in ata_pio_sector()
[deliverable/linux.git] / drivers / scsi / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
35#include <linux/config.h>
36#include <linux/kernel.h>
37#include <linux/module.h>
38#include <linux/pci.h>
39#include <linux/init.h>
40#include <linux/list.h>
41#include <linux/mm.h>
42#include <linux/highmem.h>
43#include <linux/spinlock.h>
44#include <linux/blkdev.h>
45#include <linux/delay.h>
46#include <linux/timer.h>
47#include <linux/interrupt.h>
48#include <linux/completion.h>
49#include <linux/suspend.h>
50#include <linux/workqueue.h>
67846b30 51#include <linux/jiffies.h>
1da177e4
LT
52#include <scsi/scsi.h>
53#include "scsi.h"
54#include "scsi_priv.h"
55#include <scsi/scsi_host.h>
56#include <linux/libata.h>
57#include <asm/io.h>
58#include <asm/semaphore.h>
59#include <asm/byteorder.h>
60
61#include "libata.h"
62
63static unsigned int ata_busy_sleep (struct ata_port *ap,
64 unsigned long tmout_pat,
65 unsigned long tmout);
8bf62ece 66static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev);
1da177e4
LT
67static void ata_set_mode(struct ata_port *ap);
68static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev);
69static unsigned int ata_get_mode_mask(struct ata_port *ap, int shift);
70static int fgb(u32 bitmap);
71static int ata_choose_xfer_mode(struct ata_port *ap,
72 u8 *xfer_mode_out,
73 unsigned int *xfer_shift_out);
1da177e4
LT
74static void __ata_qc_complete(struct ata_queued_cmd *qc);
75
76static unsigned int ata_unique_id = 1;
77static struct workqueue_struct *ata_wq;
78
1623c81e
JG
79int atapi_enabled = 0;
80module_param(atapi_enabled, int, 0444);
81MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
82
1da177e4
LT
83MODULE_AUTHOR("Jeff Garzik");
84MODULE_DESCRIPTION("Library module for ATA devices");
85MODULE_LICENSE("GPL");
86MODULE_VERSION(DRV_VERSION);
87
88/**
89 * ata_tf_load - send taskfile registers to host controller
90 * @ap: Port to which output is sent
91 * @tf: ATA taskfile register set
92 *
93 * Outputs ATA taskfile to standard ATA host controller.
94 *
95 * LOCKING:
96 * Inherited from caller.
97 */
98
99static void ata_tf_load_pio(struct ata_port *ap, struct ata_taskfile *tf)
100{
101 struct ata_ioports *ioaddr = &ap->ioaddr;
102 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
103
104 if (tf->ctl != ap->last_ctl) {
105 outb(tf->ctl, ioaddr->ctl_addr);
106 ap->last_ctl = tf->ctl;
107 ata_wait_idle(ap);
108 }
109
110 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
111 outb(tf->hob_feature, ioaddr->feature_addr);
112 outb(tf->hob_nsect, ioaddr->nsect_addr);
113 outb(tf->hob_lbal, ioaddr->lbal_addr);
114 outb(tf->hob_lbam, ioaddr->lbam_addr);
115 outb(tf->hob_lbah, ioaddr->lbah_addr);
116 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
117 tf->hob_feature,
118 tf->hob_nsect,
119 tf->hob_lbal,
120 tf->hob_lbam,
121 tf->hob_lbah);
122 }
123
124 if (is_addr) {
125 outb(tf->feature, ioaddr->feature_addr);
126 outb(tf->nsect, ioaddr->nsect_addr);
127 outb(tf->lbal, ioaddr->lbal_addr);
128 outb(tf->lbam, ioaddr->lbam_addr);
129 outb(tf->lbah, ioaddr->lbah_addr);
130 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
131 tf->feature,
132 tf->nsect,
133 tf->lbal,
134 tf->lbam,
135 tf->lbah);
136 }
137
138 if (tf->flags & ATA_TFLAG_DEVICE) {
139 outb(tf->device, ioaddr->device_addr);
140 VPRINTK("device 0x%X\n", tf->device);
141 }
142
143 ata_wait_idle(ap);
144}
145
146/**
147 * ata_tf_load_mmio - send taskfile registers to host controller
148 * @ap: Port to which output is sent
149 * @tf: ATA taskfile register set
150 *
151 * Outputs ATA taskfile to standard ATA host controller using MMIO.
152 *
153 * LOCKING:
154 * Inherited from caller.
155 */
156
157static void ata_tf_load_mmio(struct ata_port *ap, struct ata_taskfile *tf)
158{
159 struct ata_ioports *ioaddr = &ap->ioaddr;
160 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
161
162 if (tf->ctl != ap->last_ctl) {
163 writeb(tf->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
164 ap->last_ctl = tf->ctl;
165 ata_wait_idle(ap);
166 }
167
168 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
169 writeb(tf->hob_feature, (void __iomem *) ioaddr->feature_addr);
170 writeb(tf->hob_nsect, (void __iomem *) ioaddr->nsect_addr);
171 writeb(tf->hob_lbal, (void __iomem *) ioaddr->lbal_addr);
172 writeb(tf->hob_lbam, (void __iomem *) ioaddr->lbam_addr);
173 writeb(tf->hob_lbah, (void __iomem *) ioaddr->lbah_addr);
174 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
175 tf->hob_feature,
176 tf->hob_nsect,
177 tf->hob_lbal,
178 tf->hob_lbam,
179 tf->hob_lbah);
180 }
181
182 if (is_addr) {
183 writeb(tf->feature, (void __iomem *) ioaddr->feature_addr);
184 writeb(tf->nsect, (void __iomem *) ioaddr->nsect_addr);
185 writeb(tf->lbal, (void __iomem *) ioaddr->lbal_addr);
186 writeb(tf->lbam, (void __iomem *) ioaddr->lbam_addr);
187 writeb(tf->lbah, (void __iomem *) ioaddr->lbah_addr);
188 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
189 tf->feature,
190 tf->nsect,
191 tf->lbal,
192 tf->lbam,
193 tf->lbah);
194 }
195
196 if (tf->flags & ATA_TFLAG_DEVICE) {
197 writeb(tf->device, (void __iomem *) ioaddr->device_addr);
198 VPRINTK("device 0x%X\n", tf->device);
199 }
200
201 ata_wait_idle(ap);
202}
203
0baab86b
EF
204
205/**
206 * ata_tf_load - send taskfile registers to host controller
207 * @ap: Port to which output is sent
208 * @tf: ATA taskfile register set
209 *
210 * Outputs ATA taskfile to standard ATA host controller using MMIO
211 * or PIO as indicated by the ATA_FLAG_MMIO flag.
212 * Writes the control, feature, nsect, lbal, lbam, and lbah registers.
213 * Optionally (ATA_TFLAG_LBA48) writes hob_feature, hob_nsect,
214 * hob_lbal, hob_lbam, and hob_lbah.
215 *
216 * This function waits for idle (!BUSY and !DRQ) after writing
217 * registers. If the control register has a new value, this
218 * function also waits for idle after writing control and before
219 * writing the remaining registers.
220 *
221 * May be used as the tf_load() entry in ata_port_operations.
222 *
223 * LOCKING:
224 * Inherited from caller.
225 */
1da177e4
LT
226void ata_tf_load(struct ata_port *ap, struct ata_taskfile *tf)
227{
228 if (ap->flags & ATA_FLAG_MMIO)
229 ata_tf_load_mmio(ap, tf);
230 else
231 ata_tf_load_pio(ap, tf);
232}
233
234/**
0baab86b 235 * ata_exec_command_pio - issue ATA command to host controller
1da177e4
LT
236 * @ap: port to which command is being issued
237 * @tf: ATA taskfile register set
238 *
0baab86b 239 * Issues PIO write to ATA command register, with proper
1da177e4
LT
240 * synchronization with interrupt handler / other threads.
241 *
242 * LOCKING:
243 * spin_lock_irqsave(host_set lock)
244 */
245
246static void ata_exec_command_pio(struct ata_port *ap, struct ata_taskfile *tf)
247{
248 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
249
250 outb(tf->command, ap->ioaddr.command_addr);
251 ata_pause(ap);
252}
253
254
255/**
256 * ata_exec_command_mmio - issue ATA command to host controller
257 * @ap: port to which command is being issued
258 * @tf: ATA taskfile register set
259 *
260 * Issues MMIO write to ATA command register, with proper
261 * synchronization with interrupt handler / other threads.
262 *
263 * LOCKING:
264 * spin_lock_irqsave(host_set lock)
265 */
266
267static void ata_exec_command_mmio(struct ata_port *ap, struct ata_taskfile *tf)
268{
269 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
270
271 writeb(tf->command, (void __iomem *) ap->ioaddr.command_addr);
272 ata_pause(ap);
273}
274
0baab86b
EF
275
276/**
277 * ata_exec_command - issue ATA command to host controller
278 * @ap: port to which command is being issued
279 * @tf: ATA taskfile register set
280 *
281 * Issues PIO/MMIO write to ATA command register, with proper
282 * synchronization with interrupt handler / other threads.
283 *
284 * LOCKING:
285 * spin_lock_irqsave(host_set lock)
286 */
1da177e4
LT
287void ata_exec_command(struct ata_port *ap, struct ata_taskfile *tf)
288{
289 if (ap->flags & ATA_FLAG_MMIO)
290 ata_exec_command_mmio(ap, tf);
291 else
292 ata_exec_command_pio(ap, tf);
293}
294
295/**
296 * ata_exec - issue ATA command to host controller
297 * @ap: port to which command is being issued
298 * @tf: ATA taskfile register set
299 *
300 * Issues PIO/MMIO write to ATA command register, with proper
301 * synchronization with interrupt handler / other threads.
302 *
303 * LOCKING:
304 * Obtains host_set lock.
305 */
306
307static inline void ata_exec(struct ata_port *ap, struct ata_taskfile *tf)
308{
309 unsigned long flags;
310
311 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
312 spin_lock_irqsave(&ap->host_set->lock, flags);
313 ap->ops->exec_command(ap, tf);
314 spin_unlock_irqrestore(&ap->host_set->lock, flags);
315}
316
317/**
318 * ata_tf_to_host - issue ATA taskfile to host controller
319 * @ap: port to which command is being issued
320 * @tf: ATA taskfile register set
321 *
322 * Issues ATA taskfile register set to ATA host controller,
323 * with proper synchronization with interrupt handler and
324 * other threads.
325 *
326 * LOCKING:
327 * Obtains host_set lock.
328 */
329
330static void ata_tf_to_host(struct ata_port *ap, struct ata_taskfile *tf)
331{
332 ap->ops->tf_load(ap, tf);
333
334 ata_exec(ap, tf);
335}
336
337/**
338 * ata_tf_to_host_nolock - issue ATA taskfile to host controller
339 * @ap: port to which command is being issued
340 * @tf: ATA taskfile register set
341 *
342 * Issues ATA taskfile register set to ATA host controller,
343 * with proper synchronization with interrupt handler and
344 * other threads.
345 *
346 * LOCKING:
347 * spin_lock_irqsave(host_set lock)
348 */
349
350void ata_tf_to_host_nolock(struct ata_port *ap, struct ata_taskfile *tf)
351{
352 ap->ops->tf_load(ap, tf);
353 ap->ops->exec_command(ap, tf);
354}
355
356/**
0baab86b 357 * ata_tf_read_pio - input device's ATA taskfile shadow registers
1da177e4
LT
358 * @ap: Port from which input is read
359 * @tf: ATA taskfile register set for storing input
360 *
361 * Reads ATA taskfile registers for currently-selected device
362 * into @tf.
363 *
364 * LOCKING:
365 * Inherited from caller.
366 */
367
368static void ata_tf_read_pio(struct ata_port *ap, struct ata_taskfile *tf)
369{
370 struct ata_ioports *ioaddr = &ap->ioaddr;
371
372 tf->nsect = inb(ioaddr->nsect_addr);
373 tf->lbal = inb(ioaddr->lbal_addr);
374 tf->lbam = inb(ioaddr->lbam_addr);
375 tf->lbah = inb(ioaddr->lbah_addr);
376 tf->device = inb(ioaddr->device_addr);
377
378 if (tf->flags & ATA_TFLAG_LBA48) {
379 outb(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
380 tf->hob_feature = inb(ioaddr->error_addr);
381 tf->hob_nsect = inb(ioaddr->nsect_addr);
382 tf->hob_lbal = inb(ioaddr->lbal_addr);
383 tf->hob_lbam = inb(ioaddr->lbam_addr);
384 tf->hob_lbah = inb(ioaddr->lbah_addr);
385 }
386}
387
388/**
389 * ata_tf_read_mmio - input device's ATA taskfile shadow registers
390 * @ap: Port from which input is read
391 * @tf: ATA taskfile register set for storing input
392 *
393 * Reads ATA taskfile registers for currently-selected device
394 * into @tf via MMIO.
395 *
396 * LOCKING:
397 * Inherited from caller.
398 */
399
400static void ata_tf_read_mmio(struct ata_port *ap, struct ata_taskfile *tf)
401{
402 struct ata_ioports *ioaddr = &ap->ioaddr;
403
404 tf->nsect = readb((void __iomem *)ioaddr->nsect_addr);
405 tf->lbal = readb((void __iomem *)ioaddr->lbal_addr);
406 tf->lbam = readb((void __iomem *)ioaddr->lbam_addr);
407 tf->lbah = readb((void __iomem *)ioaddr->lbah_addr);
408 tf->device = readb((void __iomem *)ioaddr->device_addr);
409
410 if (tf->flags & ATA_TFLAG_LBA48) {
411 writeb(tf->ctl | ATA_HOB, (void __iomem *) ap->ioaddr.ctl_addr);
412 tf->hob_feature = readb((void __iomem *)ioaddr->error_addr);
413 tf->hob_nsect = readb((void __iomem *)ioaddr->nsect_addr);
414 tf->hob_lbal = readb((void __iomem *)ioaddr->lbal_addr);
415 tf->hob_lbam = readb((void __iomem *)ioaddr->lbam_addr);
416 tf->hob_lbah = readb((void __iomem *)ioaddr->lbah_addr);
417 }
418}
419
0baab86b
EF
420
421/**
422 * ata_tf_read - input device's ATA taskfile shadow registers
423 * @ap: Port from which input is read
424 * @tf: ATA taskfile register set for storing input
425 *
426 * Reads ATA taskfile registers for currently-selected device
427 * into @tf.
428 *
429 * Reads nsect, lbal, lbam, lbah, and device. If ATA_TFLAG_LBA48
430 * is set, also reads the hob registers.
431 *
432 * May be used as the tf_read() entry in ata_port_operations.
433 *
434 * LOCKING:
435 * Inherited from caller.
436 */
1da177e4
LT
437void ata_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
438{
439 if (ap->flags & ATA_FLAG_MMIO)
440 ata_tf_read_mmio(ap, tf);
441 else
442 ata_tf_read_pio(ap, tf);
443}
444
445/**
446 * ata_check_status_pio - Read device status reg & clear interrupt
447 * @ap: port where the device is
448 *
449 * Reads ATA taskfile status register for currently-selected device
0baab86b 450 * and return its value. This also clears pending interrupts
1da177e4
LT
451 * from this device
452 *
453 * LOCKING:
454 * Inherited from caller.
455 */
456static u8 ata_check_status_pio(struct ata_port *ap)
457{
458 return inb(ap->ioaddr.status_addr);
459}
460
461/**
462 * ata_check_status_mmio - Read device status reg & clear interrupt
463 * @ap: port where the device is
464 *
465 * Reads ATA taskfile status register for currently-selected device
0baab86b 466 * via MMIO and return its value. This also clears pending interrupts
1da177e4
LT
467 * from this device
468 *
469 * LOCKING:
470 * Inherited from caller.
471 */
472static u8 ata_check_status_mmio(struct ata_port *ap)
473{
474 return readb((void __iomem *) ap->ioaddr.status_addr);
475}
476
0baab86b
EF
477
478/**
479 * ata_check_status - Read device status reg & clear interrupt
480 * @ap: port where the device is
481 *
482 * Reads ATA taskfile status register for currently-selected device
483 * and return its value. This also clears pending interrupts
484 * from this device
485 *
486 * May be used as the check_status() entry in ata_port_operations.
487 *
488 * LOCKING:
489 * Inherited from caller.
490 */
1da177e4
LT
491u8 ata_check_status(struct ata_port *ap)
492{
493 if (ap->flags & ATA_FLAG_MMIO)
494 return ata_check_status_mmio(ap);
495 return ata_check_status_pio(ap);
496}
497
0baab86b
EF
498
499/**
500 * ata_altstatus - Read device alternate status reg
501 * @ap: port where the device is
502 *
503 * Reads ATA taskfile alternate status register for
504 * currently-selected device and return its value.
505 *
506 * Note: may NOT be used as the check_altstatus() entry in
507 * ata_port_operations.
508 *
509 * LOCKING:
510 * Inherited from caller.
511 */
1da177e4
LT
512u8 ata_altstatus(struct ata_port *ap)
513{
514 if (ap->ops->check_altstatus)
515 return ap->ops->check_altstatus(ap);
516
517 if (ap->flags & ATA_FLAG_MMIO)
518 return readb((void __iomem *)ap->ioaddr.altstatus_addr);
519 return inb(ap->ioaddr.altstatus_addr);
520}
521
0baab86b
EF
522
523/**
524 * ata_chk_err - Read device error reg
525 * @ap: port where the device is
526 *
527 * Reads ATA taskfile error register for
528 * currently-selected device and return its value.
529 *
530 * Note: may NOT be used as the check_err() entry in
531 * ata_port_operations.
532 *
533 * LOCKING:
534 * Inherited from caller.
535 */
1da177e4
LT
536u8 ata_chk_err(struct ata_port *ap)
537{
538 if (ap->ops->check_err)
539 return ap->ops->check_err(ap);
540
541 if (ap->flags & ATA_FLAG_MMIO) {
542 return readb((void __iomem *) ap->ioaddr.error_addr);
543 }
544 return inb(ap->ioaddr.error_addr);
545}
546
547/**
548 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
549 * @tf: Taskfile to convert
550 * @fis: Buffer into which data will output
551 * @pmp: Port multiplier port
552 *
553 * Converts a standard ATA taskfile to a Serial ATA
554 * FIS structure (Register - Host to Device).
555 *
556 * LOCKING:
557 * Inherited from caller.
558 */
559
560void ata_tf_to_fis(struct ata_taskfile *tf, u8 *fis, u8 pmp)
561{
562 fis[0] = 0x27; /* Register - Host to Device FIS */
563 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
564 bit 7 indicates Command FIS */
565 fis[2] = tf->command;
566 fis[3] = tf->feature;
567
568 fis[4] = tf->lbal;
569 fis[5] = tf->lbam;
570 fis[6] = tf->lbah;
571 fis[7] = tf->device;
572
573 fis[8] = tf->hob_lbal;
574 fis[9] = tf->hob_lbam;
575 fis[10] = tf->hob_lbah;
576 fis[11] = tf->hob_feature;
577
578 fis[12] = tf->nsect;
579 fis[13] = tf->hob_nsect;
580 fis[14] = 0;
581 fis[15] = tf->ctl;
582
583 fis[16] = 0;
584 fis[17] = 0;
585 fis[18] = 0;
586 fis[19] = 0;
587}
588
589/**
590 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
591 * @fis: Buffer from which data will be input
592 * @tf: Taskfile to output
593 *
594 * Converts a standard ATA taskfile to a Serial ATA
595 * FIS structure (Register - Host to Device).
596 *
597 * LOCKING:
598 * Inherited from caller.
599 */
600
601void ata_tf_from_fis(u8 *fis, struct ata_taskfile *tf)
602{
603 tf->command = fis[2]; /* status */
604 tf->feature = fis[3]; /* error */
605
606 tf->lbal = fis[4];
607 tf->lbam = fis[5];
608 tf->lbah = fis[6];
609 tf->device = fis[7];
610
611 tf->hob_lbal = fis[8];
612 tf->hob_lbam = fis[9];
613 tf->hob_lbah = fis[10];
614
615 tf->nsect = fis[12];
616 tf->hob_nsect = fis[13];
617}
618
619/**
620 * ata_prot_to_cmd - determine which read/write opcodes to use
621 * @protocol: ATA_PROT_xxx taskfile protocol
622 * @lba48: true is lba48 is present
623 *
624 * Given necessary input, determine which read/write commands
625 * to use to transfer data.
626 *
627 * LOCKING:
628 * None.
629 */
630static int ata_prot_to_cmd(int protocol, int lba48)
631{
632 int rcmd = 0, wcmd = 0;
633
634 switch (protocol) {
635 case ATA_PROT_PIO:
636 if (lba48) {
637 rcmd = ATA_CMD_PIO_READ_EXT;
638 wcmd = ATA_CMD_PIO_WRITE_EXT;
639 } else {
640 rcmd = ATA_CMD_PIO_READ;
641 wcmd = ATA_CMD_PIO_WRITE;
642 }
643 break;
644
645 case ATA_PROT_DMA:
646 if (lba48) {
647 rcmd = ATA_CMD_READ_EXT;
648 wcmd = ATA_CMD_WRITE_EXT;
649 } else {
650 rcmd = ATA_CMD_READ;
651 wcmd = ATA_CMD_WRITE;
652 }
653 break;
654
655 default:
656 return -1;
657 }
658
659 return rcmd | (wcmd << 8);
660}
661
662/**
663 * ata_dev_set_protocol - set taskfile protocol and r/w commands
664 * @dev: device to examine and configure
665 *
666 * Examine the device configuration, after we have
667 * read the identify-device page and configured the
668 * data transfer mode. Set internal state related to
669 * the ATA taskfile protocol (pio, pio mult, dma, etc.)
670 * and calculate the proper read/write commands to use.
671 *
672 * LOCKING:
673 * caller.
674 */
675static void ata_dev_set_protocol(struct ata_device *dev)
676{
677 int pio = (dev->flags & ATA_DFLAG_PIO);
678 int lba48 = (dev->flags & ATA_DFLAG_LBA48);
679 int proto, cmd;
680
681 if (pio)
682 proto = dev->xfer_protocol = ATA_PROT_PIO;
683 else
684 proto = dev->xfer_protocol = ATA_PROT_DMA;
685
686 cmd = ata_prot_to_cmd(proto, lba48);
687 if (cmd < 0)
688 BUG();
689
690 dev->read_cmd = cmd & 0xff;
691 dev->write_cmd = (cmd >> 8) & 0xff;
692}
693
694static const char * xfer_mode_str[] = {
695 "UDMA/16",
696 "UDMA/25",
697 "UDMA/33",
698 "UDMA/44",
699 "UDMA/66",
700 "UDMA/100",
701 "UDMA/133",
702 "UDMA7",
703 "MWDMA0",
704 "MWDMA1",
705 "MWDMA2",
706 "PIO0",
707 "PIO1",
708 "PIO2",
709 "PIO3",
710 "PIO4",
711};
712
713/**
714 * ata_udma_string - convert UDMA bit offset to string
715 * @mask: mask of bits supported; only highest bit counts.
716 *
717 * Determine string which represents the highest speed
718 * (highest bit in @udma_mask).
719 *
720 * LOCKING:
721 * None.
722 *
723 * RETURNS:
724 * Constant C string representing highest speed listed in
725 * @udma_mask, or the constant C string "<n/a>".
726 */
727
728static const char *ata_mode_string(unsigned int mask)
729{
730 int i;
731
732 for (i = 7; i >= 0; i--)
733 if (mask & (1 << i))
734 goto out;
735 for (i = ATA_SHIFT_MWDMA + 2; i >= ATA_SHIFT_MWDMA; i--)
736 if (mask & (1 << i))
737 goto out;
738 for (i = ATA_SHIFT_PIO + 4; i >= ATA_SHIFT_PIO; i--)
739 if (mask & (1 << i))
740 goto out;
741
742 return "<n/a>";
743
744out:
745 return xfer_mode_str[i];
746}
747
748/**
749 * ata_pio_devchk - PATA device presence detection
750 * @ap: ATA channel to examine
751 * @device: Device to examine (starting at zero)
752 *
753 * This technique was originally described in
754 * Hale Landis's ATADRVR (www.ata-atapi.com), and
755 * later found its way into the ATA/ATAPI spec.
756 *
757 * Write a pattern to the ATA shadow registers,
758 * and if a device is present, it will respond by
759 * correctly storing and echoing back the
760 * ATA shadow register contents.
761 *
762 * LOCKING:
763 * caller.
764 */
765
766static unsigned int ata_pio_devchk(struct ata_port *ap,
767 unsigned int device)
768{
769 struct ata_ioports *ioaddr = &ap->ioaddr;
770 u8 nsect, lbal;
771
772 ap->ops->dev_select(ap, device);
773
774 outb(0x55, ioaddr->nsect_addr);
775 outb(0xaa, ioaddr->lbal_addr);
776
777 outb(0xaa, ioaddr->nsect_addr);
778 outb(0x55, ioaddr->lbal_addr);
779
780 outb(0x55, ioaddr->nsect_addr);
781 outb(0xaa, ioaddr->lbal_addr);
782
783 nsect = inb(ioaddr->nsect_addr);
784 lbal = inb(ioaddr->lbal_addr);
785
786 if ((nsect == 0x55) && (lbal == 0xaa))
787 return 1; /* we found a device */
788
789 return 0; /* nothing found */
790}
791
792/**
793 * ata_mmio_devchk - PATA device presence detection
794 * @ap: ATA channel to examine
795 * @device: Device to examine (starting at zero)
796 *
797 * This technique was originally described in
798 * Hale Landis's ATADRVR (www.ata-atapi.com), and
799 * later found its way into the ATA/ATAPI spec.
800 *
801 * Write a pattern to the ATA shadow registers,
802 * and if a device is present, it will respond by
803 * correctly storing and echoing back the
804 * ATA shadow register contents.
805 *
806 * LOCKING:
807 * caller.
808 */
809
810static unsigned int ata_mmio_devchk(struct ata_port *ap,
811 unsigned int device)
812{
813 struct ata_ioports *ioaddr = &ap->ioaddr;
814 u8 nsect, lbal;
815
816 ap->ops->dev_select(ap, device);
817
818 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
819 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
820
821 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
822 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
823
824 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
825 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
826
827 nsect = readb((void __iomem *) ioaddr->nsect_addr);
828 lbal = readb((void __iomem *) ioaddr->lbal_addr);
829
830 if ((nsect == 0x55) && (lbal == 0xaa))
831 return 1; /* we found a device */
832
833 return 0; /* nothing found */
834}
835
836/**
837 * ata_devchk - PATA device presence detection
838 * @ap: ATA channel to examine
839 * @device: Device to examine (starting at zero)
840 *
841 * Dispatch ATA device presence detection, depending
842 * on whether we are using PIO or MMIO to talk to the
843 * ATA shadow registers.
844 *
845 * LOCKING:
846 * caller.
847 */
848
849static unsigned int ata_devchk(struct ata_port *ap,
850 unsigned int device)
851{
852 if (ap->flags & ATA_FLAG_MMIO)
853 return ata_mmio_devchk(ap, device);
854 return ata_pio_devchk(ap, device);
855}
856
857/**
858 * ata_dev_classify - determine device type based on ATA-spec signature
859 * @tf: ATA taskfile register set for device to be identified
860 *
861 * Determine from taskfile register contents whether a device is
862 * ATA or ATAPI, as per "Signature and persistence" section
863 * of ATA/PI spec (volume 1, sect 5.14).
864 *
865 * LOCKING:
866 * None.
867 *
868 * RETURNS:
869 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
870 * the event of failure.
871 */
872
873unsigned int ata_dev_classify(struct ata_taskfile *tf)
874{
875 /* Apple's open source Darwin code hints that some devices only
876 * put a proper signature into the LBA mid/high registers,
877 * So, we only check those. It's sufficient for uniqueness.
878 */
879
880 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
881 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
882 DPRINTK("found ATA device by sig\n");
883 return ATA_DEV_ATA;
884 }
885
886 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
887 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
888 DPRINTK("found ATAPI device by sig\n");
889 return ATA_DEV_ATAPI;
890 }
891
892 DPRINTK("unknown device\n");
893 return ATA_DEV_UNKNOWN;
894}
895
896/**
897 * ata_dev_try_classify - Parse returned ATA device signature
898 * @ap: ATA channel to examine
899 * @device: Device to examine (starting at zero)
900 *
901 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
902 * an ATA/ATAPI-defined set of values is placed in the ATA
903 * shadow registers, indicating the results of device detection
904 * and diagnostics.
905 *
906 * Select the ATA device, and read the values from the ATA shadow
907 * registers. Then parse according to the Error register value,
908 * and the spec-defined values examined by ata_dev_classify().
909 *
910 * LOCKING:
911 * caller.
912 */
913
914static u8 ata_dev_try_classify(struct ata_port *ap, unsigned int device)
915{
916 struct ata_device *dev = &ap->device[device];
917 struct ata_taskfile tf;
918 unsigned int class;
919 u8 err;
920
921 ap->ops->dev_select(ap, device);
922
923 memset(&tf, 0, sizeof(tf));
924
925 err = ata_chk_err(ap);
926 ap->ops->tf_read(ap, &tf);
927
928 dev->class = ATA_DEV_NONE;
929
930 /* see if device passed diags */
931 if (err == 1)
932 /* do nothing */ ;
933 else if ((device == 0) && (err == 0x81))
934 /* do nothing */ ;
935 else
936 return err;
937
938 /* determine if device if ATA or ATAPI */
939 class = ata_dev_classify(&tf);
940 if (class == ATA_DEV_UNKNOWN)
941 return err;
942 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
943 return err;
944
945 dev->class = class;
946
947 return err;
948}
949
950/**
951 * ata_dev_id_string - Convert IDENTIFY DEVICE page into string
952 * @id: IDENTIFY DEVICE results we will examine
953 * @s: string into which data is output
954 * @ofs: offset into identify device page
955 * @len: length of string to return. must be an even number.
956 *
957 * The strings in the IDENTIFY DEVICE page are broken up into
958 * 16-bit chunks. Run through the string, and output each
959 * 8-bit chunk linearly, regardless of platform.
960 *
961 * LOCKING:
962 * caller.
963 */
964
965void ata_dev_id_string(u16 *id, unsigned char *s,
966 unsigned int ofs, unsigned int len)
967{
968 unsigned int c;
969
970 while (len > 0) {
971 c = id[ofs] >> 8;
972 *s = c;
973 s++;
974
975 c = id[ofs] & 0xff;
976 *s = c;
977 s++;
978
979 ofs++;
980 len -= 2;
981 }
982}
983
0baab86b
EF
984
985/**
986 * ata_noop_dev_select - Select device 0/1 on ATA bus
987 * @ap: ATA channel to manipulate
988 * @device: ATA device (numbered from zero) to select
989 *
990 * This function performs no actual function.
991 *
992 * May be used as the dev_select() entry in ata_port_operations.
993 *
994 * LOCKING:
995 * caller.
996 */
1da177e4
LT
997void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
998{
999}
1000
0baab86b 1001
1da177e4
LT
1002/**
1003 * ata_std_dev_select - Select device 0/1 on ATA bus
1004 * @ap: ATA channel to manipulate
1005 * @device: ATA device (numbered from zero) to select
1006 *
1007 * Use the method defined in the ATA specification to
1008 * make either device 0, or device 1, active on the
0baab86b
EF
1009 * ATA channel. Works with both PIO and MMIO.
1010 *
1011 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
1012 *
1013 * LOCKING:
1014 * caller.
1015 */
1016
1017void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1018{
1019 u8 tmp;
1020
1021 if (device == 0)
1022 tmp = ATA_DEVICE_OBS;
1023 else
1024 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1025
1026 if (ap->flags & ATA_FLAG_MMIO) {
1027 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
1028 } else {
1029 outb(tmp, ap->ioaddr.device_addr);
1030 }
1031 ata_pause(ap); /* needed; also flushes, for mmio */
1032}
1033
1034/**
1035 * ata_dev_select - Select device 0/1 on ATA bus
1036 * @ap: ATA channel to manipulate
1037 * @device: ATA device (numbered from zero) to select
1038 * @wait: non-zero to wait for Status register BSY bit to clear
1039 * @can_sleep: non-zero if context allows sleeping
1040 *
1041 * Use the method defined in the ATA specification to
1042 * make either device 0, or device 1, active on the
1043 * ATA channel.
1044 *
1045 * This is a high-level version of ata_std_dev_select(),
1046 * which additionally provides the services of inserting
1047 * the proper pauses and status polling, where needed.
1048 *
1049 * LOCKING:
1050 * caller.
1051 */
1052
1053void ata_dev_select(struct ata_port *ap, unsigned int device,
1054 unsigned int wait, unsigned int can_sleep)
1055{
1056 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
1057 ap->id, device, wait);
1058
1059 if (wait)
1060 ata_wait_idle(ap);
1061
1062 ap->ops->dev_select(ap, device);
1063
1064 if (wait) {
1065 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1066 msleep(150);
1067 ata_wait_idle(ap);
1068 }
1069}
1070
1071/**
1072 * ata_dump_id - IDENTIFY DEVICE info debugging output
1073 * @dev: Device whose IDENTIFY DEVICE page we will dump
1074 *
1075 * Dump selected 16-bit words from a detected device's
1076 * IDENTIFY PAGE page.
1077 *
1078 * LOCKING:
1079 * caller.
1080 */
1081
1082static inline void ata_dump_id(struct ata_device *dev)
1083{
1084 DPRINTK("49==0x%04x "
1085 "53==0x%04x "
1086 "63==0x%04x "
1087 "64==0x%04x "
1088 "75==0x%04x \n",
1089 dev->id[49],
1090 dev->id[53],
1091 dev->id[63],
1092 dev->id[64],
1093 dev->id[75]);
1094 DPRINTK("80==0x%04x "
1095 "81==0x%04x "
1096 "82==0x%04x "
1097 "83==0x%04x "
1098 "84==0x%04x \n",
1099 dev->id[80],
1100 dev->id[81],
1101 dev->id[82],
1102 dev->id[83],
1103 dev->id[84]);
1104 DPRINTK("88==0x%04x "
1105 "93==0x%04x\n",
1106 dev->id[88],
1107 dev->id[93]);
1108}
1109
1110/**
1111 * ata_dev_identify - obtain IDENTIFY x DEVICE page
1112 * @ap: port on which device we wish to probe resides
1113 * @device: device bus address, starting at zero
1114 *
1115 * Following bus reset, we issue the IDENTIFY [PACKET] DEVICE
1116 * command, and read back the 512-byte device information page.
1117 * The device information page is fed to us via the standard
1118 * PIO-IN protocol, but we hand-code it here. (TODO: investigate
1119 * using standard PIO-IN paths)
1120 *
1121 * After reading the device information page, we use several
1122 * bits of information from it to initialize data structures
1123 * that will be used during the lifetime of the ata_device.
1124 * Other data from the info page is used to disqualify certain
1125 * older ATA devices we do not wish to support.
1126 *
1127 * LOCKING:
1128 * Inherited from caller. Some functions called by this function
1129 * obtain the host_set lock.
1130 */
1131
1132static void ata_dev_identify(struct ata_port *ap, unsigned int device)
1133{
1134 struct ata_device *dev = &ap->device[device];
8bf62ece 1135 unsigned int major_version;
1da177e4
LT
1136 u16 tmp;
1137 unsigned long xfer_modes;
1138 u8 status;
1139 unsigned int using_edd;
1140 DECLARE_COMPLETION(wait);
1141 struct ata_queued_cmd *qc;
1142 unsigned long flags;
1143 int rc;
1144
1145 if (!ata_dev_present(dev)) {
1146 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1147 ap->id, device);
1148 return;
1149 }
1150
1151 if (ap->flags & (ATA_FLAG_SRST | ATA_FLAG_SATA_RESET))
1152 using_edd = 0;
1153 else
1154 using_edd = 1;
1155
1156 DPRINTK("ENTER, host %u, dev %u\n", ap->id, device);
1157
1158 assert (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ATAPI ||
1159 dev->class == ATA_DEV_NONE);
1160
1161 ata_dev_select(ap, device, 1, 1); /* select device 0/1 */
1162
1163 qc = ata_qc_new_init(ap, dev);
1164 BUG_ON(qc == NULL);
1165
1166 ata_sg_init_one(qc, dev->id, sizeof(dev->id));
1167 qc->dma_dir = DMA_FROM_DEVICE;
1168 qc->tf.protocol = ATA_PROT_PIO;
1169 qc->nsect = 1;
1170
1171retry:
1172 if (dev->class == ATA_DEV_ATA) {
1173 qc->tf.command = ATA_CMD_ID_ATA;
1174 DPRINTK("do ATA identify\n");
1175 } else {
1176 qc->tf.command = ATA_CMD_ID_ATAPI;
1177 DPRINTK("do ATAPI identify\n");
1178 }
1179
1180 qc->waiting = &wait;
1181 qc->complete_fn = ata_qc_complete_noop;
1182
1183 spin_lock_irqsave(&ap->host_set->lock, flags);
1184 rc = ata_qc_issue(qc);
1185 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1186
1187 if (rc)
1188 goto err_out;
1189 else
1190 wait_for_completion(&wait);
1191
1192 status = ata_chk_status(ap);
1193 if (status & ATA_ERR) {
1194 /*
1195 * arg! EDD works for all test cases, but seems to return
1196 * the ATA signature for some ATAPI devices. Until the
1197 * reason for this is found and fixed, we fix up the mess
1198 * here. If IDENTIFY DEVICE returns command aborted
1199 * (as ATAPI devices do), then we issue an
1200 * IDENTIFY PACKET DEVICE.
1201 *
1202 * ATA software reset (SRST, the default) does not appear
1203 * to have this problem.
1204 */
1205 if ((using_edd) && (qc->tf.command == ATA_CMD_ID_ATA)) {
1206 u8 err = ata_chk_err(ap);
1207 if (err & ATA_ABORTED) {
1208 dev->class = ATA_DEV_ATAPI;
1209 qc->cursg = 0;
1210 qc->cursg_ofs = 0;
1211 qc->cursect = 0;
1212 qc->nsect = 1;
1213 goto retry;
1214 }
1215 }
1216 goto err_out;
1217 }
1218
1219 swap_buf_le16(dev->id, ATA_ID_WORDS);
1220
1221 /* print device capabilities */
1222 printk(KERN_DEBUG "ata%u: dev %u cfg "
1223 "49:%04x 82:%04x 83:%04x 84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1224 ap->id, device, dev->id[49],
1225 dev->id[82], dev->id[83], dev->id[84],
1226 dev->id[85], dev->id[86], dev->id[87],
1227 dev->id[88]);
1228
1229 /*
1230 * common ATA, ATAPI feature tests
1231 */
1232
8bf62ece
AL
1233 /* we require DMA support (bits 8 of word 49) */
1234 if (!ata_id_has_dma(dev->id)) {
1235 printk(KERN_DEBUG "ata%u: no dma\n", ap->id);
1da177e4
LT
1236 goto err_out_nosup;
1237 }
1238
1239 /* quick-n-dirty find max transfer mode; for printk only */
1240 xfer_modes = dev->id[ATA_ID_UDMA_MODES];
1241 if (!xfer_modes)
1242 xfer_modes = (dev->id[ATA_ID_MWDMA_MODES]) << ATA_SHIFT_MWDMA;
1243 if (!xfer_modes) {
1244 xfer_modes = (dev->id[ATA_ID_PIO_MODES]) << (ATA_SHIFT_PIO + 3);
1245 xfer_modes |= (0x7 << ATA_SHIFT_PIO);
1246 }
1247
1248 ata_dump_id(dev);
1249
1250 /* ATA-specific feature tests */
1251 if (dev->class == ATA_DEV_ATA) {
1252 if (!ata_id_is_ata(dev->id)) /* sanity check */
1253 goto err_out_nosup;
1254
8bf62ece 1255 /* get major version */
1da177e4 1256 tmp = dev->id[ATA_ID_MAJOR_VER];
8bf62ece
AL
1257 for (major_version = 14; major_version >= 1; major_version--)
1258 if (tmp & (1 << major_version))
1da177e4
LT
1259 break;
1260
8bf62ece
AL
1261 /*
1262 * The exact sequence expected by certain pre-ATA4 drives is:
1263 * SRST RESET
1264 * IDENTIFY
1265 * INITIALIZE DEVICE PARAMETERS
1266 * anything else..
1267 * Some drives were very specific about that exact sequence.
1268 */
1269 if (major_version < 4 || (!ata_id_has_lba(dev->id)))
1270 ata_dev_init_params(ap, dev);
1271
1272 if (ata_id_has_lba(dev->id)) {
1273 dev->flags |= ATA_DFLAG_LBA;
1274
1275 if (ata_id_has_lba48(dev->id)) {
1276 dev->flags |= ATA_DFLAG_LBA48;
1277 dev->n_sectors = ata_id_u64(dev->id, 100);
1278 } else {
1279 dev->n_sectors = ata_id_u32(dev->id, 60);
1280 }
1281
1282 /* print device info to dmesg */
1283 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors:%s\n",
1284 ap->id, device,
1285 major_version,
1286 ata_mode_string(xfer_modes),
1287 (unsigned long long)dev->n_sectors,
1288 dev->flags & ATA_DFLAG_LBA48 ? " LBA48" : " LBA");
1289 } else {
1290 /* CHS */
1291
1292 /* Default translation */
1293 dev->cylinders = dev->id[1];
1294 dev->heads = dev->id[3];
1295 dev->sectors = dev->id[6];
1296 dev->n_sectors = dev->cylinders * dev->heads * dev->sectors;
1297
1298 if (ata_id_current_chs_valid(dev->id)) {
1299 /* Current CHS translation is valid. */
1300 dev->cylinders = dev->id[54];
1301 dev->heads = dev->id[55];
1302 dev->sectors = dev->id[56];
1303
1304 dev->n_sectors = ata_id_u32(dev->id, 57);
1305 }
1306
1307 /* print device info to dmesg */
1308 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors: CHS %d/%d/%d\n",
1309 ap->id, device,
1310 major_version,
1311 ata_mode_string(xfer_modes),
1312 (unsigned long long)dev->n_sectors,
1313 (int)dev->cylinders, (int)dev->heads, (int)dev->sectors);
1da177e4 1314
1da177e4
LT
1315 }
1316
1317 ap->host->max_cmd_len = 16;
1da177e4
LT
1318 }
1319
1320 /* ATAPI-specific feature tests */
1321 else {
1322 if (ata_id_is_ata(dev->id)) /* sanity check */
1323 goto err_out_nosup;
1324
1325 rc = atapi_cdb_len(dev->id);
1326 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1327 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1328 goto err_out_nosup;
1329 }
1330 ap->cdb_len = (unsigned int) rc;
1331 ap->host->max_cmd_len = (unsigned char) ap->cdb_len;
1332
312f7da2
AL
1333 if (ata_id_cdb_intr(dev->id))
1334 dev->flags |= ATA_DFLAG_CDB_INTR;
1335
1da177e4
LT
1336 /* print device info to dmesg */
1337 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1338 ap->id, device,
1339 ata_mode_string(xfer_modes));
1340 }
1341
1342 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1343 return;
1344
1345err_out_nosup:
1346 printk(KERN_WARNING "ata%u: dev %u not supported, ignoring\n",
1347 ap->id, device);
1348err_out:
1349 dev->class++; /* converts ATA_DEV_xxx into ATA_DEV_xxx_UNSUP */
1350 DPRINTK("EXIT, err\n");
1351}
1352
6f2f3812
BC
1353
1354static inline u8 ata_dev_knobble(struct ata_port *ap)
1355{
1356 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(ap->device->id)));
1357}
1358
1359/**
1360 * ata_dev_config - Run device specific handlers and check for
1361 * SATA->PATA bridges
8a60a071 1362 * @ap: Bus
6f2f3812
BC
1363 * @i: Device
1364 *
1365 * LOCKING:
1366 */
8a60a071 1367
6f2f3812
BC
1368void ata_dev_config(struct ata_port *ap, unsigned int i)
1369{
1370 /* limit bridge transfers to udma5, 200 sectors */
1371 if (ata_dev_knobble(ap)) {
1372 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1373 ap->id, ap->device->devno);
1374 ap->udma_mask &= ATA_UDMA5;
1375 ap->host->max_sectors = ATA_MAX_SECTORS;
1376 ap->host->hostt->max_sectors = ATA_MAX_SECTORS;
1377 ap->device->flags |= ATA_DFLAG_LOCK_SECTORS;
1378 }
1379
1380 if (ap->ops->dev_config)
1381 ap->ops->dev_config(ap, &ap->device[i]);
1382}
1383
1da177e4
LT
1384/**
1385 * ata_bus_probe - Reset and probe ATA bus
1386 * @ap: Bus to probe
1387 *
0cba632b
JG
1388 * Master ATA bus probing function. Initiates a hardware-dependent
1389 * bus reset, then attempts to identify any devices found on
1390 * the bus.
1391 *
1da177e4 1392 * LOCKING:
0cba632b 1393 * PCI/etc. bus probe sem.
1da177e4
LT
1394 *
1395 * RETURNS:
1396 * Zero on success, non-zero on error.
1397 */
1398
1399static int ata_bus_probe(struct ata_port *ap)
1400{
1401 unsigned int i, found = 0;
1402
1403 ap->ops->phy_reset(ap);
1404 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1405 goto err_out;
1406
1407 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1408 ata_dev_identify(ap, i);
1409 if (ata_dev_present(&ap->device[i])) {
1410 found = 1;
6f2f3812 1411 ata_dev_config(ap,i);
1da177e4
LT
1412 }
1413 }
1414
1415 if ((!found) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1416 goto err_out_disable;
1417
1418 ata_set_mode(ap);
1419 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1420 goto err_out_disable;
1421
1422 return 0;
1423
1424err_out_disable:
1425 ap->ops->port_disable(ap);
1426err_out:
1427 return -1;
1428}
1429
1430/**
0cba632b
JG
1431 * ata_port_probe - Mark port as enabled
1432 * @ap: Port for which we indicate enablement
1da177e4 1433 *
0cba632b
JG
1434 * Modify @ap data structure such that the system
1435 * thinks that the entire port is enabled.
1436 *
1437 * LOCKING: host_set lock, or some other form of
1438 * serialization.
1da177e4
LT
1439 */
1440
1441void ata_port_probe(struct ata_port *ap)
1442{
1443 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1444}
1445
1446/**
780a87f7
JG
1447 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1448 * @ap: SATA port associated with target SATA PHY.
1da177e4 1449 *
780a87f7
JG
1450 * This function issues commands to standard SATA Sxxx
1451 * PHY registers, to wake up the phy (and device), and
1452 * clear any reset condition.
1da177e4
LT
1453 *
1454 * LOCKING:
0cba632b 1455 * PCI/etc. bus probe sem.
1da177e4
LT
1456 *
1457 */
1458void __sata_phy_reset(struct ata_port *ap)
1459{
1460 u32 sstatus;
1461 unsigned long timeout = jiffies + (HZ * 5);
1462
1463 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e
BR
1464 /* issue phy wake/reset */
1465 scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1466 /* Couldn't find anything in SATA I/II specs, but
1467 * AHCI-1.1 10.4.2 says at least 1 ms. */
1468 mdelay(1);
1da177e4 1469 }
cdcca89e 1470 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1da177e4
LT
1471
1472 /* wait for phy to become ready, if necessary */
1473 do {
1474 msleep(200);
1475 sstatus = scr_read(ap, SCR_STATUS);
1476 if ((sstatus & 0xf) != 1)
1477 break;
1478 } while (time_before(jiffies, timeout));
1479
1480 /* TODO: phy layer with polling, timeouts, etc. */
1481 if (sata_dev_present(ap))
1482 ata_port_probe(ap);
1483 else {
1484 sstatus = scr_read(ap, SCR_STATUS);
1485 printk(KERN_INFO "ata%u: no device found (phy stat %08x)\n",
1486 ap->id, sstatus);
1487 ata_port_disable(ap);
1488 }
1489
1490 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1491 return;
1492
1493 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1494 ata_port_disable(ap);
1495 return;
1496 }
1497
1498 ap->cbl = ATA_CBL_SATA;
1499}
1500
1501/**
780a87f7
JG
1502 * sata_phy_reset - Reset SATA bus.
1503 * @ap: SATA port associated with target SATA PHY.
1da177e4 1504 *
780a87f7
JG
1505 * This function resets the SATA bus, and then probes
1506 * the bus for devices.
1da177e4
LT
1507 *
1508 * LOCKING:
0cba632b 1509 * PCI/etc. bus probe sem.
1da177e4
LT
1510 *
1511 */
1512void sata_phy_reset(struct ata_port *ap)
1513{
1514 __sata_phy_reset(ap);
1515 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1516 return;
1517 ata_bus_reset(ap);
1518}
1519
1520/**
780a87f7
JG
1521 * ata_port_disable - Disable port.
1522 * @ap: Port to be disabled.
1da177e4 1523 *
780a87f7
JG
1524 * Modify @ap data structure such that the system
1525 * thinks that the entire port is disabled, and should
1526 * never attempt to probe or communicate with devices
1527 * on this port.
1528 *
1529 * LOCKING: host_set lock, or some other form of
1530 * serialization.
1da177e4
LT
1531 */
1532
1533void ata_port_disable(struct ata_port *ap)
1534{
1535 ap->device[0].class = ATA_DEV_NONE;
1536 ap->device[1].class = ATA_DEV_NONE;
1537 ap->flags |= ATA_FLAG_PORT_DISABLED;
1538}
1539
1540static struct {
1541 unsigned int shift;
1542 u8 base;
1543} xfer_mode_classes[] = {
1544 { ATA_SHIFT_UDMA, XFER_UDMA_0 },
1545 { ATA_SHIFT_MWDMA, XFER_MW_DMA_0 },
1546 { ATA_SHIFT_PIO, XFER_PIO_0 },
1547};
1548
1549static inline u8 base_from_shift(unsigned int shift)
1550{
1551 int i;
1552
1553 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++)
1554 if (xfer_mode_classes[i].shift == shift)
1555 return xfer_mode_classes[i].base;
1556
1557 return 0xff;
1558}
1559
1560static void ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1561{
1562 int ofs, idx;
1563 u8 base;
1564
1565 if (!ata_dev_present(dev) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1566 return;
1567
1568 if (dev->xfer_shift == ATA_SHIFT_PIO)
1569 dev->flags |= ATA_DFLAG_PIO;
1570
1571 ata_dev_set_xfermode(ap, dev);
1572
1573 base = base_from_shift(dev->xfer_shift);
1574 ofs = dev->xfer_mode - base;
1575 idx = ofs + dev->xfer_shift;
1576 WARN_ON(idx >= ARRAY_SIZE(xfer_mode_str));
1577
1578 DPRINTK("idx=%d xfer_shift=%u, xfer_mode=0x%x, base=0x%x, offset=%d\n",
1579 idx, dev->xfer_shift, (int)dev->xfer_mode, (int)base, ofs);
1580
1581 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1582 ap->id, dev->devno, xfer_mode_str[idx]);
1583}
1584
1585static int ata_host_set_pio(struct ata_port *ap)
1586{
1587 unsigned int mask;
1588 int x, i;
1589 u8 base, xfer_mode;
1590
1591 mask = ata_get_mode_mask(ap, ATA_SHIFT_PIO);
1592 x = fgb(mask);
1593 if (x < 0) {
1594 printk(KERN_WARNING "ata%u: no PIO support\n", ap->id);
1595 return -1;
1596 }
1597
1598 base = base_from_shift(ATA_SHIFT_PIO);
1599 xfer_mode = base + x;
1600
1601 DPRINTK("base 0x%x xfer_mode 0x%x mask 0x%x x %d\n",
1602 (int)base, (int)xfer_mode, mask, x);
1603
1604 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1605 struct ata_device *dev = &ap->device[i];
1606 if (ata_dev_present(dev)) {
1607 dev->pio_mode = xfer_mode;
1608 dev->xfer_mode = xfer_mode;
1609 dev->xfer_shift = ATA_SHIFT_PIO;
1610 if (ap->ops->set_piomode)
1611 ap->ops->set_piomode(ap, dev);
1612 }
1613 }
1614
1615 return 0;
1616}
1617
1618static void ata_host_set_dma(struct ata_port *ap, u8 xfer_mode,
1619 unsigned int xfer_shift)
1620{
1621 int i;
1622
1623 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1624 struct ata_device *dev = &ap->device[i];
1625 if (ata_dev_present(dev)) {
1626 dev->dma_mode = xfer_mode;
1627 dev->xfer_mode = xfer_mode;
1628 dev->xfer_shift = xfer_shift;
1629 if (ap->ops->set_dmamode)
1630 ap->ops->set_dmamode(ap, dev);
1631 }
1632 }
1633}
1634
1635/**
1636 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1637 * @ap: port on which timings will be programmed
1638 *
780a87f7
JG
1639 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1640 *
1da177e4 1641 * LOCKING:
0cba632b 1642 * PCI/etc. bus probe sem.
1da177e4
LT
1643 *
1644 */
1645static void ata_set_mode(struct ata_port *ap)
1646{
1647 unsigned int i, xfer_shift;
1648 u8 xfer_mode;
1649 int rc;
1650
1651 /* step 1: always set host PIO timings */
1652 rc = ata_host_set_pio(ap);
1653 if (rc)
1654 goto err_out;
1655
1656 /* step 2: choose the best data xfer mode */
1657 xfer_mode = xfer_shift = 0;
1658 rc = ata_choose_xfer_mode(ap, &xfer_mode, &xfer_shift);
1659 if (rc)
1660 goto err_out;
1661
1662 /* step 3: if that xfer mode isn't PIO, set host DMA timings */
1663 if (xfer_shift != ATA_SHIFT_PIO)
1664 ata_host_set_dma(ap, xfer_mode, xfer_shift);
1665
1666 /* step 4: update devices' xfer mode */
1667 ata_dev_set_mode(ap, &ap->device[0]);
1668 ata_dev_set_mode(ap, &ap->device[1]);
1669
1670 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1671 return;
1672
1673 if (ap->ops->post_set_mode)
1674 ap->ops->post_set_mode(ap);
1675
1676 for (i = 0; i < 2; i++) {
1677 struct ata_device *dev = &ap->device[i];
1678 ata_dev_set_protocol(dev);
1679 }
1680
1681 return;
1682
1683err_out:
1684 ata_port_disable(ap);
1685}
1686
1687/**
1688 * ata_busy_sleep - sleep until BSY clears, or timeout
1689 * @ap: port containing status register to be polled
1690 * @tmout_pat: impatience timeout
1691 * @tmout: overall timeout
1692 *
780a87f7
JG
1693 * Sleep until ATA Status register bit BSY clears,
1694 * or a timeout occurs.
1695 *
1696 * LOCKING: None.
1da177e4
LT
1697 *
1698 */
1699
1700static unsigned int ata_busy_sleep (struct ata_port *ap,
1701 unsigned long tmout_pat,
1702 unsigned long tmout)
1703{
1704 unsigned long timer_start, timeout;
1705 u8 status;
1706
1707 status = ata_busy_wait(ap, ATA_BUSY, 300);
1708 timer_start = jiffies;
1709 timeout = timer_start + tmout_pat;
1710 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1711 msleep(50);
1712 status = ata_busy_wait(ap, ATA_BUSY, 3);
1713 }
1714
1715 if (status & ATA_BUSY)
1716 printk(KERN_WARNING "ata%u is slow to respond, "
1717 "please be patient\n", ap->id);
1718
1719 timeout = timer_start + tmout;
1720 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1721 msleep(50);
1722 status = ata_chk_status(ap);
1723 }
1724
1725 if (status & ATA_BUSY) {
1726 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
1727 ap->id, tmout / HZ);
1728 return 1;
1729 }
1730
1731 return 0;
1732}
1733
1734static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
1735{
1736 struct ata_ioports *ioaddr = &ap->ioaddr;
1737 unsigned int dev0 = devmask & (1 << 0);
1738 unsigned int dev1 = devmask & (1 << 1);
1739 unsigned long timeout;
1740
1741 /* if device 0 was found in ata_devchk, wait for its
1742 * BSY bit to clear
1743 */
1744 if (dev0)
1745 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1746
1747 /* if device 1 was found in ata_devchk, wait for
1748 * register access, then wait for BSY to clear
1749 */
1750 timeout = jiffies + ATA_TMOUT_BOOT;
1751 while (dev1) {
1752 u8 nsect, lbal;
1753
1754 ap->ops->dev_select(ap, 1);
1755 if (ap->flags & ATA_FLAG_MMIO) {
1756 nsect = readb((void __iomem *) ioaddr->nsect_addr);
1757 lbal = readb((void __iomem *) ioaddr->lbal_addr);
1758 } else {
1759 nsect = inb(ioaddr->nsect_addr);
1760 lbal = inb(ioaddr->lbal_addr);
1761 }
1762 if ((nsect == 1) && (lbal == 1))
1763 break;
1764 if (time_after(jiffies, timeout)) {
1765 dev1 = 0;
1766 break;
1767 }
1768 msleep(50); /* give drive a breather */
1769 }
1770 if (dev1)
1771 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1772
1773 /* is all this really necessary? */
1774 ap->ops->dev_select(ap, 0);
1775 if (dev1)
1776 ap->ops->dev_select(ap, 1);
1777 if (dev0)
1778 ap->ops->dev_select(ap, 0);
1779}
1780
1781/**
0cba632b
JG
1782 * ata_bus_edd - Issue EXECUTE DEVICE DIAGNOSTIC command.
1783 * @ap: Port to reset and probe
1784 *
1785 * Use the EXECUTE DEVICE DIAGNOSTIC command to reset and
1786 * probe the bus. Not often used these days.
1da177e4
LT
1787 *
1788 * LOCKING:
0cba632b 1789 * PCI/etc. bus probe sem.
1da177e4
LT
1790 *
1791 */
1792
1793static unsigned int ata_bus_edd(struct ata_port *ap)
1794{
1795 struct ata_taskfile tf;
1796
1797 /* set up execute-device-diag (bus reset) taskfile */
1798 /* also, take interrupts to a known state (disabled) */
1799 DPRINTK("execute-device-diag\n");
1800 ata_tf_init(ap, &tf, 0);
1801 tf.ctl |= ATA_NIEN;
1802 tf.command = ATA_CMD_EDD;
1803 tf.protocol = ATA_PROT_NODATA;
1804
1805 /* do bus reset */
1806 ata_tf_to_host(ap, &tf);
1807
1808 /* spec says at least 2ms. but who knows with those
1809 * crazy ATAPI devices...
1810 */
1811 msleep(150);
1812
1813 return ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1814}
1815
1816static unsigned int ata_bus_softreset(struct ata_port *ap,
1817 unsigned int devmask)
1818{
1819 struct ata_ioports *ioaddr = &ap->ioaddr;
1820
1821 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
1822
1823 /* software reset. causes dev0 to be selected */
1824 if (ap->flags & ATA_FLAG_MMIO) {
1825 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1826 udelay(20); /* FIXME: flush */
1827 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
1828 udelay(20); /* FIXME: flush */
1829 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1830 } else {
1831 outb(ap->ctl, ioaddr->ctl_addr);
1832 udelay(10);
1833 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1834 udelay(10);
1835 outb(ap->ctl, ioaddr->ctl_addr);
1836 }
1837
1838 /* spec mandates ">= 2ms" before checking status.
1839 * We wait 150ms, because that was the magic delay used for
1840 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
1841 * between when the ATA command register is written, and then
1842 * status is checked. Because waiting for "a while" before
1843 * checking status is fine, post SRST, we perform this magic
1844 * delay here as well.
1845 */
1846 msleep(150);
1847
1848 ata_bus_post_reset(ap, devmask);
1849
1850 return 0;
1851}
1852
1853/**
1854 * ata_bus_reset - reset host port and associated ATA channel
1855 * @ap: port to reset
1856 *
1857 * This is typically the first time we actually start issuing
1858 * commands to the ATA channel. We wait for BSY to clear, then
1859 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
1860 * result. Determine what devices, if any, are on the channel
1861 * by looking at the device 0/1 error register. Look at the signature
1862 * stored in each device's taskfile registers, to determine if
1863 * the device is ATA or ATAPI.
1864 *
1865 * LOCKING:
0cba632b
JG
1866 * PCI/etc. bus probe sem.
1867 * Obtains host_set lock.
1da177e4
LT
1868 *
1869 * SIDE EFFECTS:
1870 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
1871 */
1872
1873void ata_bus_reset(struct ata_port *ap)
1874{
1875 struct ata_ioports *ioaddr = &ap->ioaddr;
1876 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1877 u8 err;
1878 unsigned int dev0, dev1 = 0, rc = 0, devmask = 0;
1879
1880 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
1881
1882 /* determine if device 0/1 are present */
1883 if (ap->flags & ATA_FLAG_SATA_RESET)
1884 dev0 = 1;
1885 else {
1886 dev0 = ata_devchk(ap, 0);
1887 if (slave_possible)
1888 dev1 = ata_devchk(ap, 1);
1889 }
1890
1891 if (dev0)
1892 devmask |= (1 << 0);
1893 if (dev1)
1894 devmask |= (1 << 1);
1895
1896 /* select device 0 again */
1897 ap->ops->dev_select(ap, 0);
1898
1899 /* issue bus reset */
1900 if (ap->flags & ATA_FLAG_SRST)
1901 rc = ata_bus_softreset(ap, devmask);
1902 else if ((ap->flags & ATA_FLAG_SATA_RESET) == 0) {
1903 /* set up device control */
1904 if (ap->flags & ATA_FLAG_MMIO)
1905 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1906 else
1907 outb(ap->ctl, ioaddr->ctl_addr);
1908 rc = ata_bus_edd(ap);
1909 }
1910
1911 if (rc)
1912 goto err_out;
1913
1914 /*
1915 * determine by signature whether we have ATA or ATAPI devices
1916 */
1917 err = ata_dev_try_classify(ap, 0);
1918 if ((slave_possible) && (err != 0x81))
1919 ata_dev_try_classify(ap, 1);
1920
1921 /* re-enable interrupts */
1922 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
1923 ata_irq_on(ap);
1924
1925 /* is double-select really necessary? */
1926 if (ap->device[1].class != ATA_DEV_NONE)
1927 ap->ops->dev_select(ap, 1);
1928 if (ap->device[0].class != ATA_DEV_NONE)
1929 ap->ops->dev_select(ap, 0);
1930
1931 /* if no devices were detected, disable this port */
1932 if ((ap->device[0].class == ATA_DEV_NONE) &&
1933 (ap->device[1].class == ATA_DEV_NONE))
1934 goto err_out;
1935
1936 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
1937 /* set up device control for ATA_FLAG_SATA_RESET */
1938 if (ap->flags & ATA_FLAG_MMIO)
1939 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1940 else
1941 outb(ap->ctl, ioaddr->ctl_addr);
1942 }
1943
1944 DPRINTK("EXIT\n");
1945 return;
1946
1947err_out:
1948 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
1949 ap->ops->port_disable(ap);
1950
1951 DPRINTK("EXIT\n");
1952}
1953
1954static void ata_pr_blacklisted(struct ata_port *ap, struct ata_device *dev)
1955{
1956 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, disabling DMA\n",
1957 ap->id, dev->devno);
1958}
1959
1960static const char * ata_dma_blacklist [] = {
1961 "WDC AC11000H",
1962 "WDC AC22100H",
1963 "WDC AC32500H",
1964 "WDC AC33100H",
1965 "WDC AC31600H",
1966 "WDC AC32100H",
1967 "WDC AC23200L",
1968 "Compaq CRD-8241B",
1969 "CRD-8400B",
1970 "CRD-8480B",
1971 "CRD-8482B",
1972 "CRD-84",
1973 "SanDisk SDP3B",
1974 "SanDisk SDP3B-64",
1975 "SANYO CD-ROM CRD",
1976 "HITACHI CDR-8",
1977 "HITACHI CDR-8335",
1978 "HITACHI CDR-8435",
1979 "Toshiba CD-ROM XM-6202B",
e922256a 1980 "TOSHIBA CD-ROM XM-1702BC",
1da177e4
LT
1981 "CD-532E-A",
1982 "E-IDE CD-ROM CR-840",
1983 "CD-ROM Drive/F5A",
1984 "WPI CDD-820",
1985 "SAMSUNG CD-ROM SC-148C",
1986 "SAMSUNG CD-ROM SC",
1987 "SanDisk SDP3B-64",
1da177e4
LT
1988 "ATAPI CD-ROM DRIVE 40X MAXIMUM",
1989 "_NEC DV5800A",
1990};
1991
1992static int ata_dma_blacklisted(struct ata_port *ap, struct ata_device *dev)
1993{
1994 unsigned char model_num[40];
1995 char *s;
1996 unsigned int len;
1997 int i;
1998
1999 ata_dev_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2000 sizeof(model_num));
2001 s = &model_num[0];
2002 len = strnlen(s, sizeof(model_num));
2003
2004 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2005 while ((len > 0) && (s[len - 1] == ' ')) {
2006 len--;
2007 s[len] = 0;
2008 }
2009
2010 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i++)
2011 if (!strncmp(ata_dma_blacklist[i], s, len))
2012 return 1;
2013
2014 return 0;
2015}
2016
2017static unsigned int ata_get_mode_mask(struct ata_port *ap, int shift)
2018{
2019 struct ata_device *master, *slave;
2020 unsigned int mask;
2021
2022 master = &ap->device[0];
2023 slave = &ap->device[1];
2024
2025 assert (ata_dev_present(master) || ata_dev_present(slave));
2026
2027 if (shift == ATA_SHIFT_UDMA) {
2028 mask = ap->udma_mask;
2029 if (ata_dev_present(master)) {
2030 mask &= (master->id[ATA_ID_UDMA_MODES] & 0xff);
2031 if (ata_dma_blacklisted(ap, master)) {
2032 mask = 0;
2033 ata_pr_blacklisted(ap, master);
2034 }
2035 }
2036 if (ata_dev_present(slave)) {
2037 mask &= (slave->id[ATA_ID_UDMA_MODES] & 0xff);
2038 if (ata_dma_blacklisted(ap, slave)) {
2039 mask = 0;
2040 ata_pr_blacklisted(ap, slave);
2041 }
2042 }
2043 }
2044 else if (shift == ATA_SHIFT_MWDMA) {
2045 mask = ap->mwdma_mask;
2046 if (ata_dev_present(master)) {
2047 mask &= (master->id[ATA_ID_MWDMA_MODES] & 0x07);
2048 if (ata_dma_blacklisted(ap, master)) {
2049 mask = 0;
2050 ata_pr_blacklisted(ap, master);
2051 }
2052 }
2053 if (ata_dev_present(slave)) {
2054 mask &= (slave->id[ATA_ID_MWDMA_MODES] & 0x07);
2055 if (ata_dma_blacklisted(ap, slave)) {
2056 mask = 0;
2057 ata_pr_blacklisted(ap, slave);
2058 }
2059 }
2060 }
2061 else if (shift == ATA_SHIFT_PIO) {
2062 mask = ap->pio_mask;
2063 if (ata_dev_present(master)) {
2064 /* spec doesn't return explicit support for
2065 * PIO0-2, so we fake it
2066 */
2067 u16 tmp_mode = master->id[ATA_ID_PIO_MODES] & 0x03;
2068 tmp_mode <<= 3;
2069 tmp_mode |= 0x7;
2070 mask &= tmp_mode;
2071 }
2072 if (ata_dev_present(slave)) {
2073 /* spec doesn't return explicit support for
2074 * PIO0-2, so we fake it
2075 */
2076 u16 tmp_mode = slave->id[ATA_ID_PIO_MODES] & 0x03;
2077 tmp_mode <<= 3;
2078 tmp_mode |= 0x7;
2079 mask &= tmp_mode;
2080 }
2081 }
2082 else {
2083 mask = 0xffffffff; /* shut up compiler warning */
2084 BUG();
2085 }
2086
2087 return mask;
2088}
2089
2090/* find greatest bit */
2091static int fgb(u32 bitmap)
2092{
2093 unsigned int i;
2094 int x = -1;
2095
2096 for (i = 0; i < 32; i++)
2097 if (bitmap & (1 << i))
2098 x = i;
2099
2100 return x;
2101}
2102
2103/**
2104 * ata_choose_xfer_mode - attempt to find best transfer mode
2105 * @ap: Port for which an xfer mode will be selected
2106 * @xfer_mode_out: (output) SET FEATURES - XFER MODE code
2107 * @xfer_shift_out: (output) bit shift that selects this mode
2108 *
0cba632b
JG
2109 * Based on host and device capabilities, determine the
2110 * maximum transfer mode that is amenable to all.
2111 *
1da177e4 2112 * LOCKING:
0cba632b 2113 * PCI/etc. bus probe sem.
1da177e4
LT
2114 *
2115 * RETURNS:
2116 * Zero on success, negative on error.
2117 */
2118
2119static int ata_choose_xfer_mode(struct ata_port *ap,
2120 u8 *xfer_mode_out,
2121 unsigned int *xfer_shift_out)
2122{
2123 unsigned int mask, shift;
2124 int x, i;
2125
2126 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++) {
2127 shift = xfer_mode_classes[i].shift;
2128 mask = ata_get_mode_mask(ap, shift);
2129
2130 x = fgb(mask);
2131 if (x >= 0) {
2132 *xfer_mode_out = xfer_mode_classes[i].base + x;
2133 *xfer_shift_out = shift;
2134 return 0;
2135 }
2136 }
2137
2138 return -1;
2139}
2140
2141/**
2142 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2143 * @ap: Port associated with device @dev
2144 * @dev: Device to which command will be sent
2145 *
780a87f7
JG
2146 * Issue SET FEATURES - XFER MODE command to device @dev
2147 * on port @ap.
2148 *
1da177e4 2149 * LOCKING:
0cba632b 2150 * PCI/etc. bus probe sem.
1da177e4
LT
2151 */
2152
2153static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev)
2154{
2155 DECLARE_COMPLETION(wait);
2156 struct ata_queued_cmd *qc;
2157 int rc;
2158 unsigned long flags;
2159
2160 /* set up set-features taskfile */
2161 DPRINTK("set features - xfer mode\n");
2162
2163 qc = ata_qc_new_init(ap, dev);
2164 BUG_ON(qc == NULL);
2165
2166 qc->tf.command = ATA_CMD_SET_FEATURES;
2167 qc->tf.feature = SETFEATURES_XFER;
2168 qc->tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2169 qc->tf.protocol = ATA_PROT_NODATA;
2170 qc->tf.nsect = dev->xfer_mode;
2171
2172 qc->waiting = &wait;
2173 qc->complete_fn = ata_qc_complete_noop;
2174
2175 spin_lock_irqsave(&ap->host_set->lock, flags);
2176 rc = ata_qc_issue(qc);
2177 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2178
2179 if (rc)
2180 ata_port_disable(ap);
2181 else
2182 wait_for_completion(&wait);
2183
2184 DPRINTK("EXIT\n");
2185}
2186
8bf62ece
AL
2187/**
2188 * ata_dev_init_params - Issue INIT DEV PARAMS command
2189 * @ap: Port associated with device @dev
2190 * @dev: Device to which command will be sent
2191 *
2192 * LOCKING:
2193 */
2194
2195static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev)
2196{
2197 DECLARE_COMPLETION(wait);
2198 struct ata_queued_cmd *qc;
2199 int rc;
2200 unsigned long flags;
2201 u16 sectors = dev->id[6];
2202 u16 heads = dev->id[3];
2203
2204 /* Number of sectors per track 1-255. Number of heads 1-16 */
2205 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
2206 return;
2207
2208 /* set up init dev params taskfile */
2209 DPRINTK("init dev params \n");
2210
2211 qc = ata_qc_new_init(ap, dev);
2212 BUG_ON(qc == NULL);
2213
2214 qc->tf.command = ATA_CMD_INIT_DEV_PARAMS;
2215 qc->tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2216 qc->tf.protocol = ATA_PROT_NODATA;
2217 qc->tf.nsect = sectors;
2218 qc->tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
2219
2220 qc->waiting = &wait;
2221 qc->complete_fn = ata_qc_complete_noop;
2222
2223 spin_lock_irqsave(&ap->host_set->lock, flags);
2224 rc = ata_qc_issue(qc);
2225 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2226
2227 if (rc)
2228 ata_port_disable(ap);
2229 else
2230 wait_for_completion(&wait);
2231
2232 DPRINTK("EXIT\n");
2233}
2234
1da177e4 2235/**
0cba632b
JG
2236 * ata_sg_clean - Unmap DMA memory associated with command
2237 * @qc: Command containing DMA memory to be released
2238 *
2239 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
2240 *
2241 * LOCKING:
0cba632b 2242 * spin_lock_irqsave(host_set lock)
1da177e4
LT
2243 */
2244
2245static void ata_sg_clean(struct ata_queued_cmd *qc)
2246{
2247 struct ata_port *ap = qc->ap;
2248 struct scatterlist *sg = qc->sg;
2249 int dir = qc->dma_dir;
2250
2251 assert(qc->flags & ATA_QCFLAG_DMAMAP);
2252 assert(sg != NULL);
2253
2254 if (qc->flags & ATA_QCFLAG_SINGLE)
2255 assert(qc->n_elem == 1);
2256
2257 DPRINTK("unmapping %u sg elements\n", qc->n_elem);
2258
2259 if (qc->flags & ATA_QCFLAG_SG)
2260 dma_unmap_sg(ap->host_set->dev, sg, qc->n_elem, dir);
2261 else
2262 dma_unmap_single(ap->host_set->dev, sg_dma_address(&sg[0]),
2263 sg_dma_len(&sg[0]), dir);
2264
2265 qc->flags &= ~ATA_QCFLAG_DMAMAP;
2266 qc->sg = NULL;
2267}
2268
2269/**
2270 * ata_fill_sg - Fill PCI IDE PRD table
2271 * @qc: Metadata associated with taskfile to be transferred
2272 *
780a87f7
JG
2273 * Fill PCI IDE PRD (scatter-gather) table with segments
2274 * associated with the current disk command.
2275 *
1da177e4 2276 * LOCKING:
780a87f7 2277 * spin_lock_irqsave(host_set lock)
1da177e4
LT
2278 *
2279 */
2280static void ata_fill_sg(struct ata_queued_cmd *qc)
2281{
2282 struct scatterlist *sg = qc->sg;
2283 struct ata_port *ap = qc->ap;
2284 unsigned int idx, nelem;
2285
2286 assert(sg != NULL);
2287 assert(qc->n_elem > 0);
2288
2289 idx = 0;
2290 for (nelem = qc->n_elem; nelem; nelem--,sg++) {
2291 u32 addr, offset;
2292 u32 sg_len, len;
2293
2294 /* determine if physical DMA addr spans 64K boundary.
2295 * Note h/w doesn't support 64-bit, so we unconditionally
2296 * truncate dma_addr_t to u32.
2297 */
2298 addr = (u32) sg_dma_address(sg);
2299 sg_len = sg_dma_len(sg);
2300
2301 while (sg_len) {
2302 offset = addr & 0xffff;
2303 len = sg_len;
2304 if ((offset + sg_len) > 0x10000)
2305 len = 0x10000 - offset;
2306
2307 ap->prd[idx].addr = cpu_to_le32(addr);
2308 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2309 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
2310
2311 idx++;
2312 sg_len -= len;
2313 addr += len;
2314 }
2315 }
2316
2317 if (idx)
2318 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2319}
2320/**
2321 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2322 * @qc: Metadata associated with taskfile to check
2323 *
780a87f7
JG
2324 * Allow low-level driver to filter ATA PACKET commands, returning
2325 * a status indicating whether or not it is OK to use DMA for the
2326 * supplied PACKET command.
2327 *
1da177e4 2328 * LOCKING:
0cba632b
JG
2329 * spin_lock_irqsave(host_set lock)
2330 *
1da177e4
LT
2331 * RETURNS: 0 when ATAPI DMA can be used
2332 * nonzero otherwise
2333 */
2334int ata_check_atapi_dma(struct ata_queued_cmd *qc)
2335{
2336 struct ata_port *ap = qc->ap;
2337 int rc = 0; /* Assume ATAPI DMA is OK by default */
2338
2339 if (ap->ops->check_atapi_dma)
2340 rc = ap->ops->check_atapi_dma(qc);
2341
2342 return rc;
2343}
2344/**
2345 * ata_qc_prep - Prepare taskfile for submission
2346 * @qc: Metadata associated with taskfile to be prepared
2347 *
780a87f7
JG
2348 * Prepare ATA taskfile for submission.
2349 *
1da177e4
LT
2350 * LOCKING:
2351 * spin_lock_irqsave(host_set lock)
2352 */
2353void ata_qc_prep(struct ata_queued_cmd *qc)
2354{
2355 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2356 return;
2357
2358 ata_fill_sg(qc);
2359}
2360
0cba632b
JG
2361/**
2362 * ata_sg_init_one - Associate command with memory buffer
2363 * @qc: Command to be associated
2364 * @buf: Memory buffer
2365 * @buflen: Length of memory buffer, in bytes.
2366 *
2367 * Initialize the data-related elements of queued_cmd @qc
2368 * to point to a single memory buffer, @buf of byte length @buflen.
2369 *
2370 * LOCKING:
2371 * spin_lock_irqsave(host_set lock)
2372 */
2373
1da177e4
LT
2374void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
2375{
2376 struct scatterlist *sg;
2377
2378 qc->flags |= ATA_QCFLAG_SINGLE;
2379
2380 memset(&qc->sgent, 0, sizeof(qc->sgent));
2381 qc->sg = &qc->sgent;
2382 qc->n_elem = 1;
2383 qc->buf_virt = buf;
2384
2385 sg = qc->sg;
2386 sg->page = virt_to_page(buf);
2387 sg->offset = (unsigned long) buf & ~PAGE_MASK;
32529e01 2388 sg->length = buflen;
1da177e4
LT
2389}
2390
0cba632b
JG
2391/**
2392 * ata_sg_init - Associate command with scatter-gather table.
2393 * @qc: Command to be associated
2394 * @sg: Scatter-gather table.
2395 * @n_elem: Number of elements in s/g table.
2396 *
2397 * Initialize the data-related elements of queued_cmd @qc
2398 * to point to a scatter-gather table @sg, containing @n_elem
2399 * elements.
2400 *
2401 * LOCKING:
2402 * spin_lock_irqsave(host_set lock)
2403 */
2404
1da177e4
LT
2405void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
2406 unsigned int n_elem)
2407{
2408 qc->flags |= ATA_QCFLAG_SG;
2409 qc->sg = sg;
2410 qc->n_elem = n_elem;
2411}
2412
2413/**
0cba632b
JG
2414 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
2415 * @qc: Command with memory buffer to be mapped.
2416 *
2417 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
2418 *
2419 * LOCKING:
2420 * spin_lock_irqsave(host_set lock)
2421 *
2422 * RETURNS:
0cba632b 2423 * Zero on success, negative on error.
1da177e4
LT
2424 */
2425
2426static int ata_sg_setup_one(struct ata_queued_cmd *qc)
2427{
2428 struct ata_port *ap = qc->ap;
2429 int dir = qc->dma_dir;
2430 struct scatterlist *sg = qc->sg;
2431 dma_addr_t dma_address;
2432
2433 dma_address = dma_map_single(ap->host_set->dev, qc->buf_virt,
32529e01 2434 sg->length, dir);
1da177e4
LT
2435 if (dma_mapping_error(dma_address))
2436 return -1;
2437
2438 sg_dma_address(sg) = dma_address;
32529e01 2439 sg_dma_len(sg) = sg->length;
1da177e4
LT
2440
2441 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
2442 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
2443
2444 return 0;
2445}
2446
2447/**
0cba632b
JG
2448 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
2449 * @qc: Command with scatter-gather table to be mapped.
2450 *
2451 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
2452 *
2453 * LOCKING:
2454 * spin_lock_irqsave(host_set lock)
2455 *
2456 * RETURNS:
0cba632b 2457 * Zero on success, negative on error.
1da177e4
LT
2458 *
2459 */
2460
2461static int ata_sg_setup(struct ata_queued_cmd *qc)
2462{
2463 struct ata_port *ap = qc->ap;
2464 struct scatterlist *sg = qc->sg;
2465 int n_elem, dir;
2466
2467 VPRINTK("ENTER, ata%u\n", ap->id);
2468 assert(qc->flags & ATA_QCFLAG_SG);
2469
2470 dir = qc->dma_dir;
2471 n_elem = dma_map_sg(ap->host_set->dev, sg, qc->n_elem, dir);
2472 if (n_elem < 1)
2473 return -1;
2474
2475 DPRINTK("%d sg elements mapped\n", n_elem);
2476
2477 qc->n_elem = n_elem;
2478
2479 return 0;
2480}
2481
40e8c82c
TH
2482/**
2483 * ata_poll_qc_complete - turn irq back on and finish qc
2484 * @qc: Command to complete
2485 * @drv_stat: ATA status register content
2486 *
2487 * LOCKING:
2488 * None. (grabs host lock)
2489 */
2490
2491void ata_poll_qc_complete(struct ata_queued_cmd *qc, u8 drv_stat)
2492{
2493 struct ata_port *ap = qc->ap;
b8f6153e 2494 unsigned long flags;
40e8c82c 2495
b8f6153e 2496 spin_lock_irqsave(&ap->host_set->lock, flags);
40e8c82c
TH
2497 ata_irq_on(ap);
2498 ata_qc_complete(qc, drv_stat);
b8f6153e 2499 spin_unlock_irqrestore(&ap->host_set->lock, flags);
40e8c82c
TH
2500}
2501
1da177e4
LT
2502/**
2503 * ata_pio_poll -
2504 * @ap:
2505 *
2506 * LOCKING:
0cba632b 2507 * None. (executing in kernel thread context)
1da177e4
LT
2508 *
2509 * RETURNS:
2510 *
2511 */
2512
2513static unsigned long ata_pio_poll(struct ata_port *ap)
2514{
2515 u8 status;
14be71f4
AL
2516 unsigned int poll_state = HSM_ST_UNKNOWN;
2517 unsigned int reg_state = HSM_ST_UNKNOWN;
2518 const unsigned int tmout_state = HSM_ST_TMOUT;
2519
2520 switch (ap->hsm_task_state) {
2521 case HSM_ST:
2522 case HSM_ST_POLL:
2523 poll_state = HSM_ST_POLL;
2524 reg_state = HSM_ST;
1da177e4 2525 break;
14be71f4
AL
2526 case HSM_ST_LAST:
2527 case HSM_ST_LAST_POLL:
2528 poll_state = HSM_ST_LAST_POLL;
2529 reg_state = HSM_ST_LAST;
1da177e4
LT
2530 break;
2531 default:
2532 BUG();
2533 break;
2534 }
2535
2536 status = ata_chk_status(ap);
2537 if (status & ATA_BUSY) {
2538 if (time_after(jiffies, ap->pio_task_timeout)) {
14be71f4 2539 ap->hsm_task_state = tmout_state;
1da177e4
LT
2540 return 0;
2541 }
14be71f4 2542 ap->hsm_task_state = poll_state;
1da177e4
LT
2543 return ATA_SHORT_PAUSE;
2544 }
2545
14be71f4 2546 ap->hsm_task_state = reg_state;
1da177e4
LT
2547 return 0;
2548}
2549
2550/**
2551 * ata_pio_complete -
2552 * @ap:
2553 *
2554 * LOCKING:
0cba632b 2555 * None. (executing in kernel thread context)
7fb6ec28
JG
2556 *
2557 * RETURNS:
2558 * Non-zero if qc completed, zero otherwise.
1da177e4
LT
2559 */
2560
7fb6ec28 2561static int ata_pio_complete (struct ata_port *ap)
1da177e4
LT
2562{
2563 struct ata_queued_cmd *qc;
2564 u8 drv_stat;
2565
2566 /*
31433ea3
AC
2567 * This is purely heuristic. This is a fast path. Sometimes when
2568 * we enter, BSY will be cleared in a chk-status or two. If not,
2569 * the drive is probably seeking or something. Snooze for a couple
2570 * msecs, then chk-status again. If still busy, fall back to
14be71f4 2571 * HSM_ST_POLL state.
1da177e4
LT
2572 */
2573 drv_stat = ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 10);
2574 if (drv_stat & (ATA_BUSY | ATA_DRQ)) {
2575 msleep(2);
2576 drv_stat = ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 10);
2577 if (drv_stat & (ATA_BUSY | ATA_DRQ)) {
14be71f4 2578 ap->hsm_task_state = HSM_ST_LAST_POLL;
1da177e4 2579 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
7fb6ec28 2580 return 0;
1da177e4
LT
2581 }
2582 }
2583
2584 drv_stat = ata_wait_idle(ap);
2585 if (!ata_ok(drv_stat)) {
14be71f4 2586 ap->hsm_task_state = HSM_ST_ERR;
7fb6ec28 2587 return 0;
1da177e4
LT
2588 }
2589
2590 qc = ata_qc_from_tag(ap, ap->active_tag);
2591 assert(qc != NULL);
2592
14be71f4 2593 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 2594
40e8c82c 2595 ata_poll_qc_complete(qc, drv_stat);
7fb6ec28
JG
2596
2597 /* another command may start at this point */
2598
2599 return 1;
1da177e4
LT
2600}
2601
0baab86b
EF
2602
2603/**
2604 * swap_buf_le16 -
2605 * @buf: Buffer to swap
2606 * @buf_words: Number of 16-bit words in buffer.
2607 *
2608 * Swap halves of 16-bit words if needed to convert from
2609 * little-endian byte order to native cpu byte order, or
2610 * vice-versa.
2611 *
2612 * LOCKING:
2613 */
1da177e4
LT
2614void swap_buf_le16(u16 *buf, unsigned int buf_words)
2615{
2616#ifdef __BIG_ENDIAN
2617 unsigned int i;
2618
2619 for (i = 0; i < buf_words; i++)
2620 buf[i] = le16_to_cpu(buf[i]);
2621#endif /* __BIG_ENDIAN */
2622}
2623
6ae4cfb5
AL
2624/**
2625 * ata_mmio_data_xfer - Transfer data by MMIO
2626 * @ap: port to read/write
2627 * @buf: data buffer
2628 * @buflen: buffer length
344babaa 2629 * @write_data: read/write
6ae4cfb5
AL
2630 *
2631 * Transfer data from/to the device data register by MMIO.
2632 *
2633 * LOCKING:
2634 * Inherited from caller.
2635 *
2636 */
2637
1da177e4
LT
2638static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
2639 unsigned int buflen, int write_data)
2640{
2641 unsigned int i;
2642 unsigned int words = buflen >> 1;
2643 u16 *buf16 = (u16 *) buf;
2644 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
2645
6ae4cfb5 2646 /* Transfer multiple of 2 bytes */
1da177e4
LT
2647 if (write_data) {
2648 for (i = 0; i < words; i++)
2649 writew(le16_to_cpu(buf16[i]), mmio);
2650 } else {
2651 for (i = 0; i < words; i++)
2652 buf16[i] = cpu_to_le16(readw(mmio));
2653 }
6ae4cfb5
AL
2654
2655 /* Transfer trailing 1 byte, if any. */
2656 if (unlikely(buflen & 0x01)) {
2657 u16 align_buf[1] = { 0 };
2658 unsigned char *trailing_buf = buf + buflen - 1;
2659
2660 if (write_data) {
2661 memcpy(align_buf, trailing_buf, 1);
2662 writew(le16_to_cpu(align_buf[0]), mmio);
2663 } else {
2664 align_buf[0] = cpu_to_le16(readw(mmio));
2665 memcpy(trailing_buf, align_buf, 1);
2666 }
2667 }
1da177e4
LT
2668}
2669
6ae4cfb5
AL
2670/**
2671 * ata_pio_data_xfer - Transfer data by PIO
2672 * @ap: port to read/write
2673 * @buf: data buffer
2674 * @buflen: buffer length
344babaa 2675 * @write_data: read/write
6ae4cfb5
AL
2676 *
2677 * Transfer data from/to the device data register by PIO.
2678 *
2679 * LOCKING:
2680 * Inherited from caller.
2681 *
2682 */
2683
1da177e4
LT
2684static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
2685 unsigned int buflen, int write_data)
2686{
6ae4cfb5 2687 unsigned int words = buflen >> 1;
1da177e4 2688
6ae4cfb5 2689 /* Transfer multiple of 2 bytes */
1da177e4 2690 if (write_data)
6ae4cfb5 2691 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 2692 else
6ae4cfb5
AL
2693 insw(ap->ioaddr.data_addr, buf, words);
2694
2695 /* Transfer trailing 1 byte, if any. */
2696 if (unlikely(buflen & 0x01)) {
2697 u16 align_buf[1] = { 0 };
2698 unsigned char *trailing_buf = buf + buflen - 1;
2699
2700 if (write_data) {
2701 memcpy(align_buf, trailing_buf, 1);
2702 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
2703 } else {
2704 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
2705 memcpy(trailing_buf, align_buf, 1);
2706 }
2707 }
1da177e4
LT
2708}
2709
6ae4cfb5
AL
2710/**
2711 * ata_data_xfer - Transfer data from/to the data register.
2712 * @ap: port to read/write
2713 * @buf: data buffer
2714 * @buflen: buffer length
2715 * @do_write: read/write
2716 *
2717 * Transfer data from/to the device data register.
2718 *
2719 * LOCKING:
2720 * Inherited from caller.
2721 *
2722 */
2723
1da177e4
LT
2724static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
2725 unsigned int buflen, int do_write)
2726{
2727 if (ap->flags & ATA_FLAG_MMIO)
2728 ata_mmio_data_xfer(ap, buf, buflen, do_write);
2729 else
2730 ata_pio_data_xfer(ap, buf, buflen, do_write);
2731}
2732
6ae4cfb5
AL
2733/**
2734 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
2735 * @qc: Command on going
2736 *
2737 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
2738 *
2739 * LOCKING:
2740 * Inherited from caller.
2741 */
2742
1da177e4
LT
2743static void ata_pio_sector(struct ata_queued_cmd *qc)
2744{
2745 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
2746 struct scatterlist *sg = qc->sg;
2747 struct ata_port *ap = qc->ap;
2748 struct page *page;
2749 unsigned int offset;
2750 unsigned char *buf;
312f7da2 2751 unsigned long flags;
1da177e4
LT
2752
2753 if (qc->cursect == (qc->nsect - 1))
14be71f4 2754 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
2755
2756 page = sg[qc->cursg].page;
2757 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
2758
2759 /* get the current page and offset */
2760 page = nth_page(page, (offset >> PAGE_SHIFT));
2761 offset %= PAGE_SIZE;
2762
1da177e4
LT
2763 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
2764
083958d3
AL
2765 local_irq_save(flags);
2766 buf = kmap_atomic(page, KM_IRQ0);
2767
1da177e4 2768 /* do the actual data transfer */
083958d3 2769 ata_data_xfer(ap, buf + offset, ATA_SECT_SIZE, do_write);
1da177e4 2770
083958d3 2771 kunmap_atomic(buf, KM_IRQ0);
312f7da2 2772 local_irq_restore(flags);
7282aa4b
AL
2773
2774 qc->cursect++;
2775 qc->cursg_ofs++;
2776
2777 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
2778 qc->cursg++;
2779 qc->cursg_ofs = 0;
2780 }
1da177e4
LT
2781}
2782
c71c1857
AL
2783/**
2784 * atapi_send_cdb - Write CDB bytes to hardware
2785 * @ap: Port to which ATAPI device is attached.
2786 * @qc: Taskfile currently active
2787 *
2788 * When device has indicated its readiness to accept
2789 * a CDB, this function is called. Send the CDB.
2790 *
2791 * LOCKING:
2792 * caller.
2793 */
2794
2795static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
2796{
2797 /* send SCSI cdb */
2798 DPRINTK("send cdb\n");
2799 assert(ap->cdb_len >= 12);
2800
2801 ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1);
2802 ata_altstatus(ap); /* flush */
2803
2804 switch (qc->tf.protocol) {
2805 case ATA_PROT_ATAPI:
2806 ap->hsm_task_state = HSM_ST;
2807 break;
2808 case ATA_PROT_ATAPI_NODATA:
2809 ap->hsm_task_state = HSM_ST_LAST;
2810 break;
2811 case ATA_PROT_ATAPI_DMA:
2812 ap->hsm_task_state = HSM_ST_LAST;
2813 /* initiate bmdma */
2814 ap->ops->bmdma_start(qc);
2815 break;
2816 }
2817}
2818
2819/**
2820 * ata_dataout_task - Write first data block to hardware
2821 * @_data: Port to which ATA/ATAPI device is attached.
2822 *
2823 * When device has indicated its readiness to accept
2824 * the data, this function sends out the CDB or
2825 * the first data block by PIO.
2826 * After this,
2827 * - If polling, ata_pio_task() handles the rest.
2828 * - Otherwise, interrupt handler takes over.
2829 *
2830 * LOCKING:
2831 * Kernel thread context (may sleep)
2832 */
2833
2834static void ata_dataout_task(void *_data)
2835{
2836 struct ata_port *ap = _data;
2837 struct ata_queued_cmd *qc;
2838 u8 status;
2839 unsigned long flags;
2840
2841 qc = ata_qc_from_tag(ap, ap->active_tag);
2842 assert(qc != NULL);
2843 assert(qc->flags & ATA_QCFLAG_ACTIVE);
2844
2845 /* sleep-wait for BSY to clear */
2846 DPRINTK("busy wait\n");
2847 if (ata_busy_sleep(ap, ATA_TMOUT_DATAOUT_QUICK, ATA_TMOUT_DATAOUT))
2848 goto err_out;
2849
2850 /* make sure DRQ is set */
2851 status = ata_chk_status(ap);
2852 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ)
2853 goto err_out;
2854
2855 /* Send the CDB (atapi) or the first data block (ata pio out).
2856 * During the state transition, interrupt handler shouldn't
2857 * be invoked before the data transfer is complete and
2858 * hsm_task_state is changed. Hence, the following locking.
2859 */
2860 spin_lock_irqsave(&ap->host_set->lock, flags);
2861
2862 if (qc->tf.protocol == ATA_PROT_PIO) {
2863 /* PIO data out protocol.
2864 * send first data block.
2865 */
2866
2867 /* ata_pio_sector() might change the state to HSM_ST_LAST.
2868 * so, the state is changed here before ata_pio_sector().
2869 */
2870 ap->hsm_task_state = HSM_ST;
2871 ata_pio_sector(qc);
2872 ata_altstatus(ap); /* flush */
2873 } else
2874 /* send CDB */
2875 atapi_send_cdb(ap, qc);
2876
2877 /* if polling, ata_pio_task() handles the rest.
2878 * otherwise, interrupt handler takes over from here.
2879 */
2880 if (qc->tf.flags & ATA_TFLAG_POLLING)
2881 queue_work(ata_wq, &ap->pio_task);
2882
2883 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2884
2885 return;
2886
2887err_out:
2888 ata_pio_error(ap);
2889}
2890
6ae4cfb5
AL
2891/**
2892 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
2893 * @qc: Command on going
2894 * @bytes: number of bytes
2895 *
2896 * Transfer Transfer data from/to the ATAPI device.
2897 *
2898 * LOCKING:
2899 * Inherited from caller.
2900 *
2901 */
2902
1da177e4
LT
2903static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
2904{
2905 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
2906 struct scatterlist *sg = qc->sg;
2907 struct ata_port *ap = qc->ap;
2908 struct page *page;
2909 unsigned char *buf;
2910 unsigned int offset, count;
312f7da2 2911 unsigned long flags;
1da177e4 2912
563a6e1f 2913 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 2914 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
2915
2916next_sg:
563a6e1f 2917 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 2918 /*
563a6e1f
AL
2919 * The end of qc->sg is reached and the device expects
2920 * more data to transfer. In order not to overrun qc->sg
2921 * and fulfill length specified in the byte count register,
2922 * - for read case, discard trailing data from the device
2923 * - for write case, padding zero data to the device
2924 */
2925 u16 pad_buf[1] = { 0 };
2926 unsigned int words = bytes >> 1;
2927 unsigned int i;
2928
2929 if (words) /* warning if bytes > 1 */
7fb6ec28 2930 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
563a6e1f
AL
2931 ap->id, bytes);
2932
2933 for (i = 0; i < words; i++)
2934 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
2935
14be71f4 2936 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
2937 return;
2938 }
2939
1da177e4
LT
2940 sg = &qc->sg[qc->cursg];
2941
1da177e4
LT
2942 page = sg->page;
2943 offset = sg->offset + qc->cursg_ofs;
2944
2945 /* get the current page and offset */
2946 page = nth_page(page, (offset >> PAGE_SHIFT));
2947 offset %= PAGE_SIZE;
2948
6952df03 2949 /* don't overrun current sg */
32529e01 2950 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
2951
2952 /* don't cross page boundaries */
2953 count = min(count, (unsigned int)PAGE_SIZE - offset);
2954
7282aa4b
AL
2955 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
2956
083958d3
AL
2957 local_irq_save(flags);
2958 buf = kmap_atomic(page, KM_IRQ0);
2959
7282aa4b 2960 /* do the actual data transfer */
083958d3 2961 ata_data_xfer(ap, buf + offset, count, do_write);
7282aa4b 2962
083958d3 2963 kunmap_atomic(buf, KM_IRQ0);
7282aa4b
AL
2964 local_irq_restore(flags);
2965
1da177e4
LT
2966 bytes -= count;
2967 qc->curbytes += count;
2968 qc->cursg_ofs += count;
2969
32529e01 2970 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
2971 qc->cursg++;
2972 qc->cursg_ofs = 0;
2973 }
2974
563a6e1f 2975 if (bytes)
1da177e4 2976 goto next_sg;
1da177e4
LT
2977}
2978
6ae4cfb5
AL
2979/**
2980 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
2981 * @qc: Command on going
2982 *
2983 * Transfer Transfer data from/to the ATAPI device.
2984 *
2985 * LOCKING:
2986 * Inherited from caller.
2987 *
2988 */
2989
1da177e4
LT
2990static void atapi_pio_bytes(struct ata_queued_cmd *qc)
2991{
2992 struct ata_port *ap = qc->ap;
2993 struct ata_device *dev = qc->dev;
2994 unsigned int ireason, bc_lo, bc_hi, bytes;
2995 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
2996
2997 ap->ops->tf_read(ap, &qc->tf);
2998 ireason = qc->tf.nsect;
2999 bc_lo = qc->tf.lbam;
3000 bc_hi = qc->tf.lbah;
3001 bytes = (bc_hi << 8) | bc_lo;
3002
3003 /* shall be cleared to zero, indicating xfer of data */
3004 if (ireason & (1 << 0))
3005 goto err_out;
3006
3007 /* make sure transfer direction matches expected */
3008 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3009 if (do_write != i_write)
3010 goto err_out;
3011
312f7da2
AL
3012 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
3013
1da177e4
LT
3014 __atapi_pio_bytes(qc, bytes);
3015
3016 return;
3017
3018err_out:
3019 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3020 ap->id, dev->devno);
14be71f4 3021 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3022}
3023
3024/**
3025 * ata_pio_sector -
3026 * @ap:
3027 *
3028 * LOCKING:
0cba632b 3029 * None. (executing in kernel thread context)
1da177e4
LT
3030 */
3031
3032static void ata_pio_block(struct ata_port *ap)
3033{
3034 struct ata_queued_cmd *qc;
3035 u8 status;
3036
3037 /*
3038 * This is purely hueristic. This is a fast path.
3039 * Sometimes when we enter, BSY will be cleared in
3040 * a chk-status or two. If not, the drive is probably seeking
3041 * or something. Snooze for a couple msecs, then
3042 * chk-status again. If still busy, fall back to
14be71f4 3043 * HSM_ST_POLL state.
1da177e4
LT
3044 */
3045 status = ata_busy_wait(ap, ATA_BUSY, 5);
3046 if (status & ATA_BUSY) {
3047 msleep(2);
3048 status = ata_busy_wait(ap, ATA_BUSY, 10);
3049 if (status & ATA_BUSY) {
14be71f4 3050 ap->hsm_task_state = HSM_ST_POLL;
1da177e4
LT
3051 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3052 return;
3053 }
3054 }
3055
3056 qc = ata_qc_from_tag(ap, ap->active_tag);
3057 assert(qc != NULL);
3058
3059 if (is_atapi_taskfile(&qc->tf)) {
3060 /* no more data to transfer or unsupported ATAPI command */
3061 if ((status & ATA_DRQ) == 0) {
14be71f4 3062 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3063 return;
3064 }
3065
3066 atapi_pio_bytes(qc);
3067 } else {
3068 /* handle BSY=0, DRQ=0 as error */
3069 if ((status & ATA_DRQ) == 0) {
14be71f4 3070 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3071 return;
3072 }
3073
3074 ata_pio_sector(qc);
3075 }
3076}
3077
3078static void ata_pio_error(struct ata_port *ap)
3079{
3080 struct ata_queued_cmd *qc;
3081 u8 drv_stat;
3082
3083 qc = ata_qc_from_tag(ap, ap->active_tag);
3084 assert(qc != NULL);
3085
3086 drv_stat = ata_chk_status(ap);
3087 printk(KERN_WARNING "ata%u: PIO error, drv_stat 0x%x\n",
3088 ap->id, drv_stat);
3089
14be71f4 3090 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 3091
40e8c82c 3092 ata_poll_qc_complete(qc, drv_stat | ATA_ERR);
1da177e4
LT
3093}
3094
3095static void ata_pio_task(void *_data)
3096{
3097 struct ata_port *ap = _data;
7fb6ec28
JG
3098 unsigned long timeout;
3099 int qc_completed;
3100
3101fsm_start:
3102 timeout = 0;
3103 qc_completed = 0;
1da177e4 3104
14be71f4
AL
3105 switch (ap->hsm_task_state) {
3106 case HSM_ST_IDLE:
1da177e4
LT
3107 return;
3108
14be71f4 3109 case HSM_ST:
1da177e4
LT
3110 ata_pio_block(ap);
3111 break;
3112
14be71f4 3113 case HSM_ST_LAST:
7fb6ec28 3114 qc_completed = ata_pio_complete(ap);
1da177e4
LT
3115 break;
3116
14be71f4
AL
3117 case HSM_ST_POLL:
3118 case HSM_ST_LAST_POLL:
1da177e4
LT
3119 timeout = ata_pio_poll(ap);
3120 break;
3121
14be71f4
AL
3122 case HSM_ST_TMOUT:
3123 case HSM_ST_ERR:
1da177e4
LT
3124 ata_pio_error(ap);
3125 return;
3126 }
3127
3128 if (timeout)
7fb6ec28
JG
3129 queue_delayed_work(ata_wq, &ap->pio_task, timeout);
3130 else if (!qc_completed)
3131 goto fsm_start;
1da177e4
LT
3132}
3133
1da177e4
LT
3134/**
3135 * ata_qc_timeout - Handle timeout of queued command
3136 * @qc: Command that timed out
3137 *
3138 * Some part of the kernel (currently, only the SCSI layer)
3139 * has noticed that the active command on port @ap has not
3140 * completed after a specified length of time. Handle this
3141 * condition by disabling DMA (if necessary) and completing
3142 * transactions, with error if necessary.
3143 *
3144 * This also handles the case of the "lost interrupt", where
3145 * for some reason (possibly hardware bug, possibly driver bug)
3146 * an interrupt was not delivered to the driver, even though the
3147 * transaction completed successfully.
3148 *
3149 * LOCKING:
0cba632b 3150 * Inherited from SCSI layer (none, can sleep)
1da177e4
LT
3151 */
3152
3153static void ata_qc_timeout(struct ata_queued_cmd *qc)
3154{
3155 struct ata_port *ap = qc->ap;
b8f6153e 3156 struct ata_host_set *host_set = ap->host_set;
1da177e4
LT
3157 struct ata_device *dev = qc->dev;
3158 u8 host_stat = 0, drv_stat;
b8f6153e 3159 unsigned long flags;
1da177e4
LT
3160
3161 DPRINTK("ENTER\n");
3162
3163 /* FIXME: doesn't this conflict with timeout handling? */
3164 if (qc->dev->class == ATA_DEV_ATAPI && qc->scsicmd) {
3165 struct scsi_cmnd *cmd = qc->scsicmd;
3166
3111b0d1 3167 if (!(cmd->eh_eflags & SCSI_EH_CANCEL_CMD)) {
1da177e4
LT
3168
3169 /* finish completing original command */
b8f6153e 3170 spin_lock_irqsave(&host_set->lock, flags);
1da177e4 3171 __ata_qc_complete(qc);
b8f6153e 3172 spin_unlock_irqrestore(&host_set->lock, flags);
1da177e4
LT
3173
3174 atapi_request_sense(ap, dev, cmd);
3175
3176 cmd->result = (CHECK_CONDITION << 1) | (DID_OK << 16);
3177 scsi_finish_command(cmd);
3178
3179 goto out;
3180 }
3181 }
3182
b8f6153e
JG
3183 spin_lock_irqsave(&host_set->lock, flags);
3184
1da177e4
LT
3185 /* hack alert! We cannot use the supplied completion
3186 * function from inside the ->eh_strategy_handler() thread.
3187 * libata is the only user of ->eh_strategy_handler() in
3188 * any kernel, so the default scsi_done() assumes it is
3189 * not being called from the SCSI EH.
3190 */
3191 qc->scsidone = scsi_finish_command;
3192
3193 switch (qc->tf.protocol) {
3194
3195 case ATA_PROT_DMA:
3196 case ATA_PROT_ATAPI_DMA:
3197 host_stat = ap->ops->bmdma_status(ap);
3198
3199 /* before we do anything else, clear DMA-Start bit */
b73fc89f 3200 ap->ops->bmdma_stop(qc);
1da177e4
LT
3201
3202 /* fall through */
3203
3204 default:
3205 ata_altstatus(ap);
3206 drv_stat = ata_chk_status(ap);
3207
3208 /* ack bmdma irq events */
3209 ap->ops->irq_clear(ap);
3210
3211 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
3212 ap->id, qc->tf.command, drv_stat, host_stat);
3213
312f7da2
AL
3214 ap->hsm_task_state = HSM_ST_IDLE;
3215
1da177e4
LT
3216 /* complete taskfile transaction */
3217 ata_qc_complete(qc, drv_stat);
3218 break;
3219 }
b8f6153e
JG
3220
3221 spin_unlock_irqrestore(&host_set->lock, flags);
3222
1da177e4
LT
3223out:
3224 DPRINTK("EXIT\n");
3225}
3226
3227/**
3228 * ata_eng_timeout - Handle timeout of queued command
3229 * @ap: Port on which timed-out command is active
3230 *
3231 * Some part of the kernel (currently, only the SCSI layer)
3232 * has noticed that the active command on port @ap has not
3233 * completed after a specified length of time. Handle this
3234 * condition by disabling DMA (if necessary) and completing
3235 * transactions, with error if necessary.
3236 *
3237 * This also handles the case of the "lost interrupt", where
3238 * for some reason (possibly hardware bug, possibly driver bug)
3239 * an interrupt was not delivered to the driver, even though the
3240 * transaction completed successfully.
3241 *
3242 * LOCKING:
3243 * Inherited from SCSI layer (none, can sleep)
3244 */
3245
3246void ata_eng_timeout(struct ata_port *ap)
3247{
3248 struct ata_queued_cmd *qc;
3249
3250 DPRINTK("ENTER\n");
3251
3252 qc = ata_qc_from_tag(ap, ap->active_tag);
e12669e7
JG
3253 if (qc)
3254 ata_qc_timeout(qc);
3255 else {
1da177e4
LT
3256 printk(KERN_ERR "ata%u: BUG: timeout without command\n",
3257 ap->id);
3258 goto out;
3259 }
3260
1da177e4
LT
3261out:
3262 DPRINTK("EXIT\n");
3263}
3264
3265/**
3266 * ata_qc_new - Request an available ATA command, for queueing
3267 * @ap: Port associated with device @dev
3268 * @dev: Device from whom we request an available command structure
3269 *
3270 * LOCKING:
0cba632b 3271 * None.
1da177e4
LT
3272 */
3273
3274static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
3275{
3276 struct ata_queued_cmd *qc = NULL;
3277 unsigned int i;
3278
3279 for (i = 0; i < ATA_MAX_QUEUE; i++)
3280 if (!test_and_set_bit(i, &ap->qactive)) {
3281 qc = ata_qc_from_tag(ap, i);
3282 break;
3283 }
3284
3285 if (qc)
3286 qc->tag = i;
3287
3288 return qc;
3289}
3290
3291/**
3292 * ata_qc_new_init - Request an available ATA command, and initialize it
3293 * @ap: Port associated with device @dev
3294 * @dev: Device from whom we request an available command structure
3295 *
3296 * LOCKING:
0cba632b 3297 * None.
1da177e4
LT
3298 */
3299
3300struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
3301 struct ata_device *dev)
3302{
3303 struct ata_queued_cmd *qc;
3304
3305 qc = ata_qc_new(ap);
3306 if (qc) {
3307 qc->sg = NULL;
3308 qc->flags = 0;
3309 qc->scsicmd = NULL;
3310 qc->ap = ap;
3311 qc->dev = dev;
3312 qc->cursect = qc->cursg = qc->cursg_ofs = 0;
3313 qc->nsect = 0;
3314 qc->nbytes = qc->curbytes = 0;
3315
3316 ata_tf_init(ap, &qc->tf, dev->devno);
3317
8bf62ece
AL
3318 if (dev->flags & ATA_DFLAG_LBA) {
3319 qc->tf.flags |= ATA_TFLAG_LBA;
3320
3321 if (dev->flags & ATA_DFLAG_LBA48)
3322 qc->tf.flags |= ATA_TFLAG_LBA48;
3323 }
1da177e4
LT
3324 }
3325
3326 return qc;
3327}
3328
a939c963 3329int ata_qc_complete_noop(struct ata_queued_cmd *qc, u8 drv_stat)
1da177e4
LT
3330{
3331 return 0;
3332}
3333
3334static void __ata_qc_complete(struct ata_queued_cmd *qc)
3335{
3336 struct ata_port *ap = qc->ap;
3337 unsigned int tag, do_clear = 0;
3338
3339 qc->flags = 0;
3340 tag = qc->tag;
3341 if (likely(ata_tag_valid(tag))) {
3342 if (tag == ap->active_tag)
3343 ap->active_tag = ATA_TAG_POISON;
3344 qc->tag = ATA_TAG_POISON;
3345 do_clear = 1;
3346 }
3347
3348 if (qc->waiting) {
3349 struct completion *waiting = qc->waiting;
3350 qc->waiting = NULL;
3351 complete(waiting);
3352 }
3353
3354 if (likely(do_clear))
3355 clear_bit(tag, &ap->qactive);
3356}
3357
3358/**
3359 * ata_qc_free - free unused ata_queued_cmd
3360 * @qc: Command to complete
3361 *
3362 * Designed to free unused ata_queued_cmd object
3363 * in case something prevents using it.
3364 *
3365 * LOCKING:
0cba632b 3366 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3367 *
3368 */
3369void ata_qc_free(struct ata_queued_cmd *qc)
3370{
3371 assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
3372 assert(qc->waiting == NULL); /* nothing should be waiting */
3373
3374 __ata_qc_complete(qc);
3375}
3376
3377/**
3378 * ata_qc_complete - Complete an active ATA command
3379 * @qc: Command to complete
0cba632b
JG
3380 * @drv_stat: ATA Status register contents
3381 *
3382 * Indicate to the mid and upper layers that an ATA
3383 * command has completed, with either an ok or not-ok status.
1da177e4
LT
3384 *
3385 * LOCKING:
0cba632b 3386 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3387 *
3388 */
3389
3390void ata_qc_complete(struct ata_queued_cmd *qc, u8 drv_stat)
3391{
3392 int rc;
3393
3394 assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
3395 assert(qc->flags & ATA_QCFLAG_ACTIVE);
3396
3397 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
3398 ata_sg_clean(qc);
3399
3f3791d3
AL
3400 /* atapi: mark qc as inactive to prevent the interrupt handler
3401 * from completing the command twice later, before the error handler
3402 * is called. (when rc != 0 and atapi request sense is needed)
3403 */
3404 qc->flags &= ~ATA_QCFLAG_ACTIVE;
3405
1da177e4
LT
3406 /* call completion callback */
3407 rc = qc->complete_fn(qc, drv_stat);
3408
3409 /* if callback indicates not to complete command (non-zero),
3410 * return immediately
3411 */
3412 if (rc != 0)
3413 return;
3414
3415 __ata_qc_complete(qc);
3416
3417 VPRINTK("EXIT\n");
3418}
3419
3420static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
3421{
3422 struct ata_port *ap = qc->ap;
3423
3424 switch (qc->tf.protocol) {
3425 case ATA_PROT_DMA:
3426 case ATA_PROT_ATAPI_DMA:
3427 return 1;
3428
3429 case ATA_PROT_ATAPI:
3430 case ATA_PROT_PIO:
3431 case ATA_PROT_PIO_MULT:
3432 if (ap->flags & ATA_FLAG_PIO_DMA)
3433 return 1;
3434
3435 /* fall through */
3436
3437 default:
3438 return 0;
3439 }
3440
3441 /* never reached */
3442}
3443
3444/**
3445 * ata_qc_issue - issue taskfile to device
3446 * @qc: command to issue to device
3447 *
3448 * Prepare an ATA command to submission to device.
3449 * This includes mapping the data into a DMA-able
3450 * area, filling in the S/G table, and finally
3451 * writing the taskfile to hardware, starting the command.
3452 *
3453 * LOCKING:
3454 * spin_lock_irqsave(host_set lock)
3455 *
3456 * RETURNS:
3457 * Zero on success, negative on error.
3458 */
3459
3460int ata_qc_issue(struct ata_queued_cmd *qc)
3461{
3462 struct ata_port *ap = qc->ap;
3463
3464 if (ata_should_dma_map(qc)) {
3465 if (qc->flags & ATA_QCFLAG_SG) {
3466 if (ata_sg_setup(qc))
3467 goto err_out;
3468 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
3469 if (ata_sg_setup_one(qc))
3470 goto err_out;
3471 }
3472 } else {
3473 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3474 }
3475
3476 ap->ops->qc_prep(qc);
3477
3478 qc->ap->active_tag = qc->tag;
3479 qc->flags |= ATA_QCFLAG_ACTIVE;
3480
3481 return ap->ops->qc_issue(qc);
3482
3483err_out:
3484 return -1;
3485}
3486
0baab86b 3487
1da177e4
LT
3488/**
3489 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
3490 * @qc: command to issue to device
3491 *
3492 * Using various libata functions and hooks, this function
3493 * starts an ATA command. ATA commands are grouped into
3494 * classes called "protocols", and issuing each type of protocol
3495 * is slightly different.
3496 *
0baab86b
EF
3497 * May be used as the qc_issue() entry in ata_port_operations.
3498 *
1da177e4
LT
3499 * LOCKING:
3500 * spin_lock_irqsave(host_set lock)
3501 *
3502 * RETURNS:
3503 * Zero on success, negative on error.
3504 */
3505
3506int ata_qc_issue_prot(struct ata_queued_cmd *qc)
3507{
3508 struct ata_port *ap = qc->ap;
3509
e50362ec
AL
3510 /* Use polling pio if the LLD doesn't handle
3511 * interrupt driven pio and atapi CDB interrupt.
3512 */
3513 if (ap->flags & ATA_FLAG_PIO_POLLING) {
3514 switch (qc->tf.protocol) {
3515 case ATA_PROT_PIO:
3516 case ATA_PROT_ATAPI:
3517 case ATA_PROT_ATAPI_NODATA:
3518 qc->tf.flags |= ATA_TFLAG_POLLING;
3519 break;
3520 case ATA_PROT_ATAPI_DMA:
3521 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3522 BUG();
3523 break;
3524 default:
3525 break;
3526 }
3527 }
3528
312f7da2 3529 /* select the device */
1da177e4
LT
3530 ata_dev_select(ap, qc->dev->devno, 1, 0);
3531
312f7da2 3532 /* start the command */
1da177e4
LT
3533 switch (qc->tf.protocol) {
3534 case ATA_PROT_NODATA:
312f7da2
AL
3535 if (qc->tf.flags & ATA_TFLAG_POLLING)
3536 ata_qc_set_polling(qc);
3537
1da177e4 3538 ata_tf_to_host_nolock(ap, &qc->tf);
312f7da2
AL
3539 ap->hsm_task_state = HSM_ST_LAST;
3540
3541 if (qc->tf.flags & ATA_TFLAG_POLLING)
3542 queue_work(ata_wq, &ap->pio_task);
3543
1da177e4
LT
3544 break;
3545
3546 case ATA_PROT_DMA:
312f7da2
AL
3547 assert(!(qc->tf.flags & ATA_TFLAG_POLLING));
3548
1da177e4
LT
3549 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3550 ap->ops->bmdma_setup(qc); /* set up bmdma */
3551 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 3552 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3553 break;
3554
312f7da2
AL
3555 case ATA_PROT_PIO:
3556 if (qc->tf.flags & ATA_TFLAG_POLLING)
3557 ata_qc_set_polling(qc);
3558
1da177e4 3559 ata_tf_to_host_nolock(ap, &qc->tf);
312f7da2 3560
54f00389
AL
3561 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3562 /* PIO data out protocol */
3563 ap->hsm_task_state = HSM_ST_FIRST;
3564 queue_work(ata_wq, &ap->dataout_task);
3565
3566 /* always send first data block using
3567 * the ata_dataout_task() codepath.
3568 */
312f7da2 3569 } else {
54f00389
AL
3570 /* PIO data in protocol */
3571 ap->hsm_task_state = HSM_ST;
3572
3573 if (qc->tf.flags & ATA_TFLAG_POLLING)
3574 queue_work(ata_wq, &ap->pio_task);
3575
3576 /* if polling, ata_pio_task() handles the rest.
3577 * otherwise, interrupt handler takes over from here.
3578 */
312f7da2
AL
3579 }
3580
1da177e4
LT
3581 break;
3582
3583 case ATA_PROT_ATAPI:
1da177e4 3584 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
3585 if (qc->tf.flags & ATA_TFLAG_POLLING)
3586 ata_qc_set_polling(qc);
3587
1da177e4 3588 ata_tf_to_host_nolock(ap, &qc->tf);
312f7da2
AL
3589 ap->hsm_task_state = HSM_ST_FIRST;
3590
3591 /* send cdb by polling if no cdb interrupt */
3592 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
3593 (qc->tf.flags & ATA_TFLAG_POLLING))
f9997be9 3594 queue_work(ata_wq, &ap->dataout_task);
1da177e4
LT
3595 break;
3596
3597 case ATA_PROT_ATAPI_DMA:
312f7da2
AL
3598 assert(!(qc->tf.flags & ATA_TFLAG_POLLING));
3599
1da177e4
LT
3600 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3601 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
3602 ap->hsm_task_state = HSM_ST_FIRST;
3603
3604 /* send cdb by polling if no cdb interrupt */
3605 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
f9997be9 3606 queue_work(ata_wq, &ap->dataout_task);
1da177e4
LT
3607 break;
3608
3609 default:
3610 WARN_ON(1);
3611 return -1;
3612 }
3613
3614 return 0;
3615}
3616
3617/**
0baab86b 3618 * ata_bmdma_setup_mmio - Set up PCI IDE BMDMA transaction
1da177e4
LT
3619 * @qc: Info associated with this ATA transaction.
3620 *
3621 * LOCKING:
3622 * spin_lock_irqsave(host_set lock)
3623 */
3624
3625static void ata_bmdma_setup_mmio (struct ata_queued_cmd *qc)
3626{
3627 struct ata_port *ap = qc->ap;
3628 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3629 u8 dmactl;
3630 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3631
3632 /* load PRD table addr. */
3633 mb(); /* make sure PRD table writes are visible to controller */
3634 writel(ap->prd_dma, mmio + ATA_DMA_TABLE_OFS);
3635
3636 /* specify data direction, triple-check start bit is clear */
3637 dmactl = readb(mmio + ATA_DMA_CMD);
3638 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3639 if (!rw)
3640 dmactl |= ATA_DMA_WR;
3641 writeb(dmactl, mmio + ATA_DMA_CMD);
3642
3643 /* issue r/w command */
3644 ap->ops->exec_command(ap, &qc->tf);
3645}
3646
3647/**
b73fc89f 3648 * ata_bmdma_start_mmio - Start a PCI IDE BMDMA transaction
1da177e4
LT
3649 * @qc: Info associated with this ATA transaction.
3650 *
3651 * LOCKING:
3652 * spin_lock_irqsave(host_set lock)
3653 */
3654
3655static void ata_bmdma_start_mmio (struct ata_queued_cmd *qc)
3656{
3657 struct ata_port *ap = qc->ap;
3658 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3659 u8 dmactl;
3660
3661 /* start host DMA transaction */
3662 dmactl = readb(mmio + ATA_DMA_CMD);
3663 writeb(dmactl | ATA_DMA_START, mmio + ATA_DMA_CMD);
3664
3665 /* Strictly, one may wish to issue a readb() here, to
3666 * flush the mmio write. However, control also passes
3667 * to the hardware at this point, and it will interrupt
3668 * us when we are to resume control. So, in effect,
3669 * we don't care when the mmio write flushes.
3670 * Further, a read of the DMA status register _immediately_
3671 * following the write may not be what certain flaky hardware
3672 * is expected, so I think it is best to not add a readb()
3673 * without first all the MMIO ATA cards/mobos.
3674 * Or maybe I'm just being paranoid.
3675 */
3676}
3677
3678/**
3679 * ata_bmdma_setup_pio - Set up PCI IDE BMDMA transaction (PIO)
3680 * @qc: Info associated with this ATA transaction.
3681 *
3682 * LOCKING:
3683 * spin_lock_irqsave(host_set lock)
3684 */
3685
3686static void ata_bmdma_setup_pio (struct ata_queued_cmd *qc)
3687{
3688 struct ata_port *ap = qc->ap;
3689 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3690 u8 dmactl;
3691
3692 /* load PRD table addr. */
3693 outl(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
3694
3695 /* specify data direction, triple-check start bit is clear */
3696 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3697 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3698 if (!rw)
3699 dmactl |= ATA_DMA_WR;
3700 outb(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3701
3702 /* issue r/w command */
3703 ap->ops->exec_command(ap, &qc->tf);
3704}
3705
3706/**
3707 * ata_bmdma_start_pio - Start a PCI IDE BMDMA transaction (PIO)
3708 * @qc: Info associated with this ATA transaction.
3709 *
3710 * LOCKING:
3711 * spin_lock_irqsave(host_set lock)
3712 */
3713
3714static void ata_bmdma_start_pio (struct ata_queued_cmd *qc)
3715{
3716 struct ata_port *ap = qc->ap;
3717 u8 dmactl;
3718
3719 /* start host DMA transaction */
3720 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3721 outb(dmactl | ATA_DMA_START,
3722 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3723}
3724
0baab86b
EF
3725
3726/**
3727 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
3728 * @qc: Info associated with this ATA transaction.
3729 *
3730 * Writes the ATA_DMA_START flag to the DMA command register.
3731 *
3732 * May be used as the bmdma_start() entry in ata_port_operations.
3733 *
3734 * LOCKING:
3735 * spin_lock_irqsave(host_set lock)
3736 */
1da177e4
LT
3737void ata_bmdma_start(struct ata_queued_cmd *qc)
3738{
3739 if (qc->ap->flags & ATA_FLAG_MMIO)
3740 ata_bmdma_start_mmio(qc);
3741 else
3742 ata_bmdma_start_pio(qc);
3743}
3744
0baab86b
EF
3745
3746/**
3747 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
3748 * @qc: Info associated with this ATA transaction.
3749 *
3750 * Writes address of PRD table to device's PRD Table Address
3751 * register, sets the DMA control register, and calls
3752 * ops->exec_command() to start the transfer.
3753 *
3754 * May be used as the bmdma_setup() entry in ata_port_operations.
3755 *
3756 * LOCKING:
3757 * spin_lock_irqsave(host_set lock)
3758 */
1da177e4
LT
3759void ata_bmdma_setup(struct ata_queued_cmd *qc)
3760{
3761 if (qc->ap->flags & ATA_FLAG_MMIO)
3762 ata_bmdma_setup_mmio(qc);
3763 else
3764 ata_bmdma_setup_pio(qc);
3765}
3766
0baab86b
EF
3767
3768/**
3769 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
decc6d0b 3770 * @ap: Port associated with this ATA transaction.
0baab86b
EF
3771 *
3772 * Clear interrupt and error flags in DMA status register.
3773 *
3774 * May be used as the irq_clear() entry in ata_port_operations.
3775 *
3776 * LOCKING:
3777 * spin_lock_irqsave(host_set lock)
3778 */
3779
1da177e4
LT
3780void ata_bmdma_irq_clear(struct ata_port *ap)
3781{
3782 if (ap->flags & ATA_FLAG_MMIO) {
3783 void __iomem *mmio = ((void __iomem *) ap->ioaddr.bmdma_addr) + ATA_DMA_STATUS;
3784 writeb(readb(mmio), mmio);
3785 } else {
3786 unsigned long addr = ap->ioaddr.bmdma_addr + ATA_DMA_STATUS;
3787 outb(inb(addr), addr);
3788 }
3789
3790}
3791
0baab86b
EF
3792
3793/**
3794 * ata_bmdma_status - Read PCI IDE BMDMA status
decc6d0b 3795 * @ap: Port associated with this ATA transaction.
0baab86b
EF
3796 *
3797 * Read and return BMDMA status register.
3798 *
3799 * May be used as the bmdma_status() entry in ata_port_operations.
3800 *
3801 * LOCKING:
3802 * spin_lock_irqsave(host_set lock)
3803 */
3804
1da177e4
LT
3805u8 ata_bmdma_status(struct ata_port *ap)
3806{
3807 u8 host_stat;
3808 if (ap->flags & ATA_FLAG_MMIO) {
3809 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3810 host_stat = readb(mmio + ATA_DMA_STATUS);
3811 } else
ee500aab 3812 host_stat = inb(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
1da177e4
LT
3813 return host_stat;
3814}
3815
0baab86b
EF
3816
3817/**
3818 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
b73fc89f 3819 * @qc: Command we are ending DMA for
0baab86b
EF
3820 *
3821 * Clears the ATA_DMA_START flag in the dma control register
3822 *
3823 * May be used as the bmdma_stop() entry in ata_port_operations.
3824 *
3825 * LOCKING:
3826 * spin_lock_irqsave(host_set lock)
3827 */
3828
b73fc89f 3829void ata_bmdma_stop(struct ata_queued_cmd *qc)
1da177e4 3830{
b73fc89f 3831 struct ata_port *ap = qc->ap;
1da177e4
LT
3832 if (ap->flags & ATA_FLAG_MMIO) {
3833 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3834
3835 /* clear start/stop bit */
3836 writeb(readb(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3837 mmio + ATA_DMA_CMD);
3838 } else {
3839 /* clear start/stop bit */
3840 outb(inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD) & ~ATA_DMA_START,
3841 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3842 }
3843
3844 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3845 ata_altstatus(ap); /* dummy read */
3846}
3847
3848/**
3849 * ata_host_intr - Handle host interrupt for given (port, task)
3850 * @ap: Port on which interrupt arrived (possibly...)
3851 * @qc: Taskfile currently active in engine
3852 *
3853 * Handle host interrupt for given queued command. Currently,
3854 * only DMA interrupts are handled. All other commands are
3855 * handled via polling with interrupts disabled (nIEN bit).
3856 *
3857 * LOCKING:
3858 * spin_lock_irqsave(host_set lock)
3859 *
3860 * RETURNS:
3861 * One if interrupt was handled, zero if not (shared irq).
3862 */
3863
3864inline unsigned int ata_host_intr (struct ata_port *ap,
3865 struct ata_queued_cmd *qc)
3866{
312f7da2 3867 u8 status, host_stat = 0;
1da177e4 3868
312f7da2
AL
3869 VPRINTK("ata%u: protocol %d task_state %d\n",
3870 ap->id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 3871
312f7da2
AL
3872 /* Check whether we are expecting interrupt in this state */
3873 switch (ap->hsm_task_state) {
3874 case HSM_ST_FIRST:
3875 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
3876 * The flag was turned on only for atapi devices.
3877 * No need to check is_atapi_taskfile(&qc->tf) again.
3878 */
3879 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 3880 goto idle_irq;
312f7da2
AL
3881 break;
3882 case HSM_ST_LAST:
3883 if (qc->tf.protocol == ATA_PROT_DMA ||
3884 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
3885 /* check status of DMA engine */
3886 host_stat = ap->ops->bmdma_status(ap);
3887 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
3888
3889 /* if it's not our irq... */
3890 if (!(host_stat & ATA_DMA_INTR))
3891 goto idle_irq;
3892
3893 /* before we do anything else, clear DMA-Start bit */
3894 ap->ops->bmdma_stop(qc);
3895 }
3896 break;
3897 case HSM_ST:
3898 break;
3899 default:
3900 goto idle_irq;
3901 }
1da177e4 3902
312f7da2
AL
3903 /* check altstatus */
3904 status = ata_altstatus(ap);
3905 if (status & ATA_BUSY)
3906 goto idle_irq;
1da177e4 3907
312f7da2
AL
3908 /* check main status, clearing INTRQ */
3909 status = ata_chk_status(ap);
3910 if (unlikely(status & ATA_BUSY))
3911 goto idle_irq;
1da177e4 3912
312f7da2
AL
3913 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
3914 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
1da177e4 3915
312f7da2
AL
3916 /* ack bmdma irq events */
3917 ap->ops->irq_clear(ap);
1da177e4 3918
312f7da2
AL
3919 /* check error */
3920 if (unlikely((status & ATA_ERR) || (host_stat & ATA_DMA_ERR)))
3921 ap->hsm_task_state = HSM_ST_ERR;
3922
3923fsm_start:
3924 switch (ap->hsm_task_state) {
3925 case HSM_ST_FIRST:
3926 /* Some pre-ATAPI-4 devices assert INTRQ
3927 * at this state when ready to receive CDB.
3928 */
3929
3930 /* check device status */
3931 if (unlikely((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ)) {
3932 /* Wrong status. Let EH handle this */
3933 ap->hsm_task_state = HSM_ST_ERR;
3934 goto fsm_start;
3935 }
3936
3937 atapi_send_cdb(ap, qc);
3938
3939 break;
3940
3941 case HSM_ST:
3942 /* complete command or read/write the data register */
3943 if (qc->tf.protocol == ATA_PROT_ATAPI) {
3944 /* ATAPI PIO protocol */
3945 if ((status & ATA_DRQ) == 0) {
3946 /* no more data to transfer */
3947 ap->hsm_task_state = HSM_ST_LAST;
3948 goto fsm_start;
3949 }
3950
3951 atapi_pio_bytes(qc);
3952
3953 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
3954 /* bad ireason reported by device */
3955 goto fsm_start;
3956
3957 } else {
3958 /* ATA PIO protocol */
3959 if (unlikely((status & ATA_DRQ) == 0)) {
3960 /* handle BSY=0, DRQ=0 as error */
3961 ap->hsm_task_state = HSM_ST_ERR;
3962 goto fsm_start;
3963 }
3964
3965 ata_pio_sector(qc);
3966
3967 if (ap->hsm_task_state == HSM_ST_LAST &&
3968 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
3969 /* all data read */
3970 ata_altstatus(ap);
3971 status = ata_chk_status(ap);
3972 goto fsm_start;
3973 }
3974 }
3975
3976 ata_altstatus(ap); /* flush */
3977 break;
3978
3979 case HSM_ST_LAST:
3980 if (unlikely(status & ATA_DRQ)) {
3981 /* handle DRQ=1 as error */
3982 ap->hsm_task_state = HSM_ST_ERR;
3983 goto fsm_start;
3984 }
3985
3986 /* no more data to transfer */
3987 DPRINTK("ata%u: command complete, drv_stat 0x%x\n",
3988 ap->id, status);
3989
3990 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4
LT
3991
3992 /* complete taskfile transaction */
3993 ata_qc_complete(qc, status);
3994 break;
3995
312f7da2
AL
3996 case HSM_ST_ERR:
3997 printk(KERN_ERR "ata%u: command error, drv_stat 0x%x host_stat 0x%x\n",
3998 ap->id, status, host_stat);
3999
4000 ap->hsm_task_state = HSM_ST_IDLE;
4001 ata_qc_complete(qc, status | ATA_ERR);
4002 break;
1da177e4
LT
4003 default:
4004 goto idle_irq;
4005 }
4006
4007 return 1; /* irq handled */
4008
4009idle_irq:
4010 ap->stats.idle_irq++;
4011
4012#ifdef ATA_IRQ_TRAP
4013 if ((ap->stats.idle_irq % 1000) == 0) {
4014 handled = 1;
4015 ata_irq_ack(ap, 0); /* debug trap */
4016 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
4017 }
4018#endif
4019 return 0; /* irq not handled */
4020}
4021
4022/**
4023 * ata_interrupt - Default ATA host interrupt handler
0cba632b
JG
4024 * @irq: irq line (unused)
4025 * @dev_instance: pointer to our ata_host_set information structure
1da177e4
LT
4026 * @regs: unused
4027 *
0cba632b
JG
4028 * Default interrupt handler for PCI IDE devices. Calls
4029 * ata_host_intr() for each port that is not disabled.
4030 *
1da177e4 4031 * LOCKING:
0cba632b 4032 * Obtains host_set lock during operation.
1da177e4
LT
4033 *
4034 * RETURNS:
0cba632b 4035 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
4036 *
4037 */
4038
4039irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4040{
4041 struct ata_host_set *host_set = dev_instance;
4042 unsigned int i;
4043 unsigned int handled = 0;
4044 unsigned long flags;
4045
4046 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4047 spin_lock_irqsave(&host_set->lock, flags);
4048
4049 for (i = 0; i < host_set->n_ports; i++) {
4050 struct ata_port *ap;
4051
4052 ap = host_set->ports[i];
c1389503 4053 if (ap &&
312f7da2 4054 !(ap->flags & ATA_FLAG_PORT_DISABLED)) {
1da177e4
LT
4055 struct ata_queued_cmd *qc;
4056
4057 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 4058 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 4059 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
4060 handled |= ata_host_intr(ap, qc);
4061 }
4062 }
4063
4064 spin_unlock_irqrestore(&host_set->lock, flags);
4065
4066 return IRQ_RETVAL(handled);
4067}
4068
0baab86b
EF
4069/**
4070 * ata_port_start - Set port up for dma.
4071 * @ap: Port to initialize
4072 *
4073 * Called just after data structures for each port are
4074 * initialized. Allocates space for PRD table.
4075 *
4076 * May be used as the port_start() entry in ata_port_operations.
4077 *
4078 * LOCKING:
4079 */
4080
1da177e4
LT
4081int ata_port_start (struct ata_port *ap)
4082{
4083 struct device *dev = ap->host_set->dev;
4084
4085 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4086 if (!ap->prd)
4087 return -ENOMEM;
4088
4089 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4090
4091 return 0;
4092}
4093
0baab86b
EF
4094
4095/**
4096 * ata_port_stop - Undo ata_port_start()
4097 * @ap: Port to shut down
4098 *
4099 * Frees the PRD table.
4100 *
4101 * May be used as the port_stop() entry in ata_port_operations.
4102 *
4103 * LOCKING:
4104 */
4105
1da177e4
LT
4106void ata_port_stop (struct ata_port *ap)
4107{
4108 struct device *dev = ap->host_set->dev;
4109
4110 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4111}
4112
aa8f0dc6
JG
4113void ata_host_stop (struct ata_host_set *host_set)
4114{
4115 if (host_set->mmio_base)
4116 iounmap(host_set->mmio_base);
4117}
4118
4119
1da177e4
LT
4120/**
4121 * ata_host_remove - Unregister SCSI host structure with upper layers
4122 * @ap: Port to unregister
4123 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4124 *
4125 * LOCKING:
4126 */
4127
4128static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4129{
4130 struct Scsi_Host *sh = ap->host;
4131
4132 DPRINTK("ENTER\n");
4133
4134 if (do_unregister)
4135 scsi_remove_host(sh);
4136
4137 ap->ops->port_stop(ap);
4138}
4139
4140/**
4141 * ata_host_init - Initialize an ata_port structure
4142 * @ap: Structure to initialize
4143 * @host: associated SCSI mid-layer structure
4144 * @host_set: Collection of hosts to which @ap belongs
4145 * @ent: Probe information provided by low-level driver
4146 * @port_no: Port number associated with this ata_port
4147 *
0cba632b
JG
4148 * Initialize a new ata_port structure, and its associated
4149 * scsi_host.
4150 *
1da177e4 4151 * LOCKING:
0cba632b 4152 * Inherited from caller.
1da177e4
LT
4153 *
4154 */
4155
4156static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4157 struct ata_host_set *host_set,
4158 struct ata_probe_ent *ent, unsigned int port_no)
4159{
4160 unsigned int i;
4161
4162 host->max_id = 16;
4163 host->max_lun = 1;
4164 host->max_channel = 1;
4165 host->unique_id = ata_unique_id++;
4166 host->max_cmd_len = 12;
12413197 4167
1da177e4
LT
4168 scsi_assign_lock(host, &host_set->lock);
4169
4170 ap->flags = ATA_FLAG_PORT_DISABLED;
4171 ap->id = host->unique_id;
4172 ap->host = host;
4173 ap->ctl = ATA_DEVCTL_OBS;
4174 ap->host_set = host_set;
4175 ap->port_no = port_no;
4176 ap->hard_port_no =
4177 ent->legacy_mode ? ent->hard_port_no : port_no;
4178 ap->pio_mask = ent->pio_mask;
4179 ap->mwdma_mask = ent->mwdma_mask;
4180 ap->udma_mask = ent->udma_mask;
4181 ap->flags |= ent->host_flags;
4182 ap->ops = ent->port_ops;
4183 ap->cbl = ATA_CBL_NONE;
4184 ap->active_tag = ATA_TAG_POISON;
4185 ap->last_ctl = 0xFF;
4186
f9997be9 4187 INIT_WORK(&ap->dataout_task, ata_dataout_task, ap);
1da177e4
LT
4188 INIT_WORK(&ap->pio_task, ata_pio_task, ap);
4189
4190 for (i = 0; i < ATA_MAX_DEVICES; i++)
4191 ap->device[i].devno = i;
4192
4193#ifdef ATA_IRQ_TRAP
4194 ap->stats.unhandled_irq = 1;
4195 ap->stats.idle_irq = 1;
4196#endif
4197
4198 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4199}
4200
4201/**
4202 * ata_host_add - Attach low-level ATA driver to system
4203 * @ent: Information provided by low-level driver
4204 * @host_set: Collections of ports to which we add
4205 * @port_no: Port number associated with this host
4206 *
0cba632b
JG
4207 * Attach low-level ATA driver to system.
4208 *
1da177e4 4209 * LOCKING:
0cba632b 4210 * PCI/etc. bus probe sem.
1da177e4
LT
4211 *
4212 * RETURNS:
0cba632b 4213 * New ata_port on success, for NULL on error.
1da177e4
LT
4214 *
4215 */
4216
4217static struct ata_port * ata_host_add(struct ata_probe_ent *ent,
4218 struct ata_host_set *host_set,
4219 unsigned int port_no)
4220{
4221 struct Scsi_Host *host;
4222 struct ata_port *ap;
4223 int rc;
4224
4225 DPRINTK("ENTER\n");
4226 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4227 if (!host)
4228 return NULL;
4229
4230 ap = (struct ata_port *) &host->hostdata[0];
4231
4232 ata_host_init(ap, host, host_set, ent, port_no);
4233
4234 rc = ap->ops->port_start(ap);
4235 if (rc)
4236 goto err_out;
4237
4238 return ap;
4239
4240err_out:
4241 scsi_host_put(host);
4242 return NULL;
4243}
4244
4245/**
0cba632b
JG
4246 * ata_device_add - Register hardware device with ATA and SCSI layers
4247 * @ent: Probe information describing hardware device to be registered
4248 *
4249 * This function processes the information provided in the probe
4250 * information struct @ent, allocates the necessary ATA and SCSI
4251 * host information structures, initializes them, and registers
4252 * everything with requisite kernel subsystems.
4253 *
4254 * This function requests irqs, probes the ATA bus, and probes
4255 * the SCSI bus.
1da177e4
LT
4256 *
4257 * LOCKING:
0cba632b 4258 * PCI/etc. bus probe sem.
1da177e4
LT
4259 *
4260 * RETURNS:
0cba632b 4261 * Number of ports registered. Zero on error (no ports registered).
1da177e4
LT
4262 *
4263 */
4264
4265int ata_device_add(struct ata_probe_ent *ent)
4266{
4267 unsigned int count = 0, i;
4268 struct device *dev = ent->dev;
4269 struct ata_host_set *host_set;
4270
4271 DPRINTK("ENTER\n");
4272 /* alloc a container for our list of ATA ports (buses) */
4273 host_set = kmalloc(sizeof(struct ata_host_set) +
4274 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4275 if (!host_set)
4276 return 0;
4277 memset(host_set, 0, sizeof(struct ata_host_set) + (ent->n_ports * sizeof(void *)));
4278 spin_lock_init(&host_set->lock);
4279
4280 host_set->dev = dev;
4281 host_set->n_ports = ent->n_ports;
4282 host_set->irq = ent->irq;
4283 host_set->mmio_base = ent->mmio_base;
4284 host_set->private_data = ent->private_data;
4285 host_set->ops = ent->port_ops;
4286
4287 /* register each port bound to this device */
4288 for (i = 0; i < ent->n_ports; i++) {
4289 struct ata_port *ap;
4290 unsigned long xfer_mode_mask;
4291
4292 ap = ata_host_add(ent, host_set, i);
4293 if (!ap)
4294 goto err_out;
4295
4296 host_set->ports[i] = ap;
4297 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4298 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4299 (ap->pio_mask << ATA_SHIFT_PIO);
4300
4301 /* print per-port info to dmesg */
4302 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4303 "bmdma 0x%lX irq %lu\n",
4304 ap->id,
4305 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4306 ata_mode_string(xfer_mode_mask),
4307 ap->ioaddr.cmd_addr,
4308 ap->ioaddr.ctl_addr,
4309 ap->ioaddr.bmdma_addr,
4310 ent->irq);
4311
4312 ata_chk_status(ap);
4313 host_set->ops->irq_clear(ap);
4314 count++;
4315 }
4316
4317 if (!count) {
4318 kfree(host_set);
4319 return 0;
4320 }
4321
4322 /* obtain irq, that is shared between channels */
4323 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4324 DRV_NAME, host_set))
4325 goto err_out;
4326
4327 /* perform each probe synchronously */
4328 DPRINTK("probe begin\n");
4329 for (i = 0; i < count; i++) {
4330 struct ata_port *ap;
4331 int rc;
4332
4333 ap = host_set->ports[i];
4334
4335 DPRINTK("ata%u: probe begin\n", ap->id);
4336 rc = ata_bus_probe(ap);
4337 DPRINTK("ata%u: probe end\n", ap->id);
4338
4339 if (rc) {
4340 /* FIXME: do something useful here?
4341 * Current libata behavior will
4342 * tear down everything when
4343 * the module is removed
4344 * or the h/w is unplugged.
4345 */
4346 }
4347
4348 rc = scsi_add_host(ap->host, dev);
4349 if (rc) {
4350 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4351 ap->id);
4352 /* FIXME: do something useful here */
4353 /* FIXME: handle unconditional calls to
4354 * scsi_scan_host and ata_host_remove, below,
4355 * at the very least
4356 */
4357 }
4358 }
4359
4360 /* probes are done, now scan each port's disk(s) */
4361 DPRINTK("probe begin\n");
4362 for (i = 0; i < count; i++) {
4363 struct ata_port *ap = host_set->ports[i];
4364
644dd0cc 4365 ata_scsi_scan_host(ap);
1da177e4
LT
4366 }
4367
4368 dev_set_drvdata(dev, host_set);
4369
4370 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4371 return ent->n_ports; /* success */
4372
4373err_out:
4374 for (i = 0; i < count; i++) {
4375 ata_host_remove(host_set->ports[i], 1);
4376 scsi_host_put(host_set->ports[i]->host);
4377 }
4378 kfree(host_set);
4379 VPRINTK("EXIT, returning 0\n");
4380 return 0;
4381}
4382
17b14451
AC
4383/**
4384 * ata_host_set_remove - PCI layer callback for device removal
4385 * @host_set: ATA host set that was removed
4386 *
4387 * Unregister all objects associated with this host set. Free those
4388 * objects.
4389 *
4390 * LOCKING:
4391 * Inherited from calling layer (may sleep).
4392 */
4393
4394
4395void ata_host_set_remove(struct ata_host_set *host_set)
4396{
4397 struct ata_port *ap;
4398 unsigned int i;
4399
4400 for (i = 0; i < host_set->n_ports; i++) {
4401 ap = host_set->ports[i];
4402 scsi_remove_host(ap->host);
4403 }
4404
4405 free_irq(host_set->irq, host_set);
4406
4407 for (i = 0; i < host_set->n_ports; i++) {
4408 ap = host_set->ports[i];
4409
4410 ata_scsi_release(ap->host);
4411
4412 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4413 struct ata_ioports *ioaddr = &ap->ioaddr;
4414
4415 if (ioaddr->cmd_addr == 0x1f0)
4416 release_region(0x1f0, 8);
4417 else if (ioaddr->cmd_addr == 0x170)
4418 release_region(0x170, 8);
4419 }
4420
4421 scsi_host_put(ap->host);
4422 }
4423
4424 if (host_set->ops->host_stop)
4425 host_set->ops->host_stop(host_set);
4426
4427 kfree(host_set);
4428}
4429
1da177e4
LT
4430/**
4431 * ata_scsi_release - SCSI layer callback hook for host unload
4432 * @host: libata host to be unloaded
4433 *
4434 * Performs all duties necessary to shut down a libata port...
4435 * Kill port kthread, disable port, and release resources.
4436 *
4437 * LOCKING:
4438 * Inherited from SCSI layer.
4439 *
4440 * RETURNS:
4441 * One.
4442 */
4443
4444int ata_scsi_release(struct Scsi_Host *host)
4445{
4446 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
4447
4448 DPRINTK("ENTER\n");
4449
4450 ap->ops->port_disable(ap);
4451 ata_host_remove(ap, 0);
4452
4453 DPRINTK("EXIT\n");
4454 return 1;
4455}
4456
4457/**
4458 * ata_std_ports - initialize ioaddr with standard port offsets.
4459 * @ioaddr: IO address structure to be initialized
0baab86b
EF
4460 *
4461 * Utility function which initializes data_addr, error_addr,
4462 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4463 * device_addr, status_addr, and command_addr to standard offsets
4464 * relative to cmd_addr.
4465 *
4466 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 4467 */
0baab86b 4468
1da177e4
LT
4469void ata_std_ports(struct ata_ioports *ioaddr)
4470{
4471 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4472 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4473 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4474 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4475 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4476 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4477 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4478 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4479 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4480 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4481}
4482
4483static struct ata_probe_ent *
4484ata_probe_ent_alloc(struct device *dev, struct ata_port_info *port)
4485{
4486 struct ata_probe_ent *probe_ent;
4487
4488 probe_ent = kmalloc(sizeof(*probe_ent), GFP_KERNEL);
4489 if (!probe_ent) {
4490 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
4491 kobject_name(&(dev->kobj)));
4492 return NULL;
4493 }
4494
4495 memset(probe_ent, 0, sizeof(*probe_ent));
4496
4497 INIT_LIST_HEAD(&probe_ent->node);
4498 probe_ent->dev = dev;
4499
4500 probe_ent->sht = port->sht;
4501 probe_ent->host_flags = port->host_flags;
4502 probe_ent->pio_mask = port->pio_mask;
4503 probe_ent->mwdma_mask = port->mwdma_mask;
4504 probe_ent->udma_mask = port->udma_mask;
4505 probe_ent->port_ops = port->port_ops;
4506
4507 return probe_ent;
4508}
4509
0baab86b
EF
4510
4511
374b1873
JG
4512#ifdef CONFIG_PCI
4513
4514void ata_pci_host_stop (struct ata_host_set *host_set)
4515{
4516 struct pci_dev *pdev = to_pci_dev(host_set->dev);
4517
4518 pci_iounmap(pdev, host_set->mmio_base);
4519}
4520
0baab86b
EF
4521/**
4522 * ata_pci_init_native_mode - Initialize native-mode driver
4523 * @pdev: pci device to be initialized
4524 * @port: array[2] of pointers to port info structures.
47a86593 4525 * @ports: bitmap of ports present
0baab86b
EF
4526 *
4527 * Utility function which allocates and initializes an
4528 * ata_probe_ent structure for a standard dual-port
4529 * PIO-based IDE controller. The returned ata_probe_ent
4530 * structure can be passed to ata_device_add(). The returned
4531 * ata_probe_ent structure should then be freed with kfree().
47a86593
AC
4532 *
4533 * The caller need only pass the address of the primary port, the
4534 * secondary will be deduced automatically. If the device has non
4535 * standard secondary port mappings this function can be called twice,
4536 * once for each interface.
0baab86b
EF
4537 */
4538
1da177e4 4539struct ata_probe_ent *
47a86593 4540ata_pci_init_native_mode(struct pci_dev *pdev, struct ata_port_info **port, int ports)
1da177e4
LT
4541{
4542 struct ata_probe_ent *probe_ent =
4543 ata_probe_ent_alloc(pci_dev_to_dev(pdev), port[0]);
47a86593
AC
4544 int p = 0;
4545
1da177e4
LT
4546 if (!probe_ent)
4547 return NULL;
4548
1da177e4
LT
4549 probe_ent->irq = pdev->irq;
4550 probe_ent->irq_flags = SA_SHIRQ;
4551
47a86593
AC
4552 if (ports & ATA_PORT_PRIMARY) {
4553 probe_ent->port[p].cmd_addr = pci_resource_start(pdev, 0);
4554 probe_ent->port[p].altstatus_addr =
4555 probe_ent->port[p].ctl_addr =
4556 pci_resource_start(pdev, 1) | ATA_PCI_CTL_OFS;
4557 probe_ent->port[p].bmdma_addr = pci_resource_start(pdev, 4);
4558 ata_std_ports(&probe_ent->port[p]);
4559 p++;
4560 }
1da177e4 4561
47a86593
AC
4562 if (ports & ATA_PORT_SECONDARY) {
4563 probe_ent->port[p].cmd_addr = pci_resource_start(pdev, 2);
4564 probe_ent->port[p].altstatus_addr =
4565 probe_ent->port[p].ctl_addr =
4566 pci_resource_start(pdev, 3) | ATA_PCI_CTL_OFS;
4567 probe_ent->port[p].bmdma_addr = pci_resource_start(pdev, 4) + 8;
4568 ata_std_ports(&probe_ent->port[p]);
4569 p++;
4570 }
1da177e4 4571
47a86593 4572 probe_ent->n_ports = p;
1da177e4
LT
4573 return probe_ent;
4574}
4575
47a86593 4576static struct ata_probe_ent *ata_pci_init_legacy_port(struct pci_dev *pdev, struct ata_port_info **port, int port_num)
1da177e4 4577{
47a86593 4578 struct ata_probe_ent *probe_ent;
1da177e4
LT
4579
4580 probe_ent = ata_probe_ent_alloc(pci_dev_to_dev(pdev), port[0]);
4581 if (!probe_ent)
4582 return NULL;
1da177e4 4583
47a86593 4584
1da177e4 4585 probe_ent->legacy_mode = 1;
47a86593
AC
4586 probe_ent->n_ports = 1;
4587 probe_ent->hard_port_no = port_num;
4588
4589 switch(port_num)
4590 {
4591 case 0:
4592 probe_ent->irq = 14;
4593 probe_ent->port[0].cmd_addr = 0x1f0;
4594 probe_ent->port[0].altstatus_addr =
4595 probe_ent->port[0].ctl_addr = 0x3f6;
4596 break;
4597 case 1:
4598 probe_ent->irq = 15;
4599 probe_ent->port[0].cmd_addr = 0x170;
4600 probe_ent->port[0].altstatus_addr =
4601 probe_ent->port[0].ctl_addr = 0x376;
4602 break;
4603 }
4604 probe_ent->port[0].bmdma_addr = pci_resource_start(pdev, 4) + 8 * port_num;
1da177e4 4605 ata_std_ports(&probe_ent->port[0]);
1da177e4
LT
4606 return probe_ent;
4607}
4608
4609/**
4610 * ata_pci_init_one - Initialize/register PCI IDE host controller
4611 * @pdev: Controller to be initialized
4612 * @port_info: Information from low-level host driver
4613 * @n_ports: Number of ports attached to host controller
4614 *
0baab86b
EF
4615 * This is a helper function which can be called from a driver's
4616 * xxx_init_one() probe function if the hardware uses traditional
4617 * IDE taskfile registers.
4618 *
4619 * This function calls pci_enable_device(), reserves its register
4620 * regions, sets the dma mask, enables bus master mode, and calls
4621 * ata_device_add()
4622 *
1da177e4
LT
4623 * LOCKING:
4624 * Inherited from PCI layer (may sleep).
4625 *
4626 * RETURNS:
0cba632b 4627 * Zero on success, negative on errno-based value on error.
1da177e4
LT
4628 *
4629 */
4630
4631int ata_pci_init_one (struct pci_dev *pdev, struct ata_port_info **port_info,
4632 unsigned int n_ports)
4633{
47a86593 4634 struct ata_probe_ent *probe_ent = NULL, *probe_ent2 = NULL;
1da177e4
LT
4635 struct ata_port_info *port[2];
4636 u8 tmp8, mask;
4637 unsigned int legacy_mode = 0;
4638 int disable_dev_on_err = 1;
4639 int rc;
4640
4641 DPRINTK("ENTER\n");
4642
4643 port[0] = port_info[0];
4644 if (n_ports > 1)
4645 port[1] = port_info[1];
4646 else
4647 port[1] = port[0];
4648
4649 if ((port[0]->host_flags & ATA_FLAG_NO_LEGACY) == 0
4650 && (pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
47a86593 4651 /* TODO: What if one channel is in native mode ... */
1da177e4
LT
4652 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
4653 mask = (1 << 2) | (1 << 0);
4654 if ((tmp8 & mask) != mask)
4655 legacy_mode = (1 << 3);
4656 }
4657
4658 /* FIXME... */
47a86593
AC
4659 if ((!legacy_mode) && (n_ports > 2)) {
4660 printk(KERN_ERR "ata: BUG: native mode, n_ports > 2\n");
4661 n_ports = 2;
4662 /* For now */
1da177e4
LT
4663 }
4664
47a86593
AC
4665 /* FIXME: Really for ATA it isn't safe because the device may be
4666 multi-purpose and we want to leave it alone if it was already
4667 enabled. Secondly for shared use as Arjan says we want refcounting
4668
4669 Checking dev->is_enabled is insufficient as this is not set at
4670 boot for the primary video which is BIOS enabled
4671 */
4672
1da177e4
LT
4673 rc = pci_enable_device(pdev);
4674 if (rc)
4675 return rc;
4676
4677 rc = pci_request_regions(pdev, DRV_NAME);
4678 if (rc) {
4679 disable_dev_on_err = 0;
4680 goto err_out;
4681 }
4682
47a86593 4683 /* FIXME: Should use platform specific mappers for legacy port ranges */
1da177e4
LT
4684 if (legacy_mode) {
4685 if (!request_region(0x1f0, 8, "libata")) {
4686 struct resource *conflict, res;
4687 res.start = 0x1f0;
4688 res.end = 0x1f0 + 8 - 1;
4689 conflict = ____request_resource(&ioport_resource, &res);
4690 if (!strcmp(conflict->name, "libata"))
4691 legacy_mode |= (1 << 0);
4692 else {
4693 disable_dev_on_err = 0;
4694 printk(KERN_WARNING "ata: 0x1f0 IDE port busy\n");
4695 }
4696 } else
4697 legacy_mode |= (1 << 0);
4698
4699 if (!request_region(0x170, 8, "libata")) {
4700 struct resource *conflict, res;
4701 res.start = 0x170;
4702 res.end = 0x170 + 8 - 1;
4703 conflict = ____request_resource(&ioport_resource, &res);
4704 if (!strcmp(conflict->name, "libata"))
4705 legacy_mode |= (1 << 1);
4706 else {
4707 disable_dev_on_err = 0;
4708 printk(KERN_WARNING "ata: 0x170 IDE port busy\n");
4709 }
4710 } else
4711 legacy_mode |= (1 << 1);
4712 }
4713
4714 /* we have legacy mode, but all ports are unavailable */
4715 if (legacy_mode == (1 << 3)) {
4716 rc = -EBUSY;
4717 goto err_out_regions;
4718 }
4719
4720 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
4721 if (rc)
4722 goto err_out_regions;
4723 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
4724 if (rc)
4725 goto err_out_regions;
4726
4727 if (legacy_mode) {
47a86593
AC
4728 if (legacy_mode & (1 << 0))
4729 probe_ent = ata_pci_init_legacy_port(pdev, port, 0);
4730 if (legacy_mode & (1 << 1))
4731 probe_ent2 = ata_pci_init_legacy_port(pdev, port, 1);
4732 } else {
4733 if (n_ports == 2)
4734 probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY | ATA_PORT_SECONDARY);
4735 else
4736 probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY);
4737 }
4738 if (!probe_ent && !probe_ent2) {
1da177e4
LT
4739 rc = -ENOMEM;
4740 goto err_out_regions;
4741 }
4742
4743 pci_set_master(pdev);
4744
4745 /* FIXME: check ata_device_add return */
4746 if (legacy_mode) {
4747 if (legacy_mode & (1 << 0))
4748 ata_device_add(probe_ent);
4749 if (legacy_mode & (1 << 1))
4750 ata_device_add(probe_ent2);
4751 } else
4752 ata_device_add(probe_ent);
4753
4754 kfree(probe_ent);
4755 kfree(probe_ent2);
4756
4757 return 0;
4758
4759err_out_regions:
4760 if (legacy_mode & (1 << 0))
4761 release_region(0x1f0, 8);
4762 if (legacy_mode & (1 << 1))
4763 release_region(0x170, 8);
4764 pci_release_regions(pdev);
4765err_out:
4766 if (disable_dev_on_err)
4767 pci_disable_device(pdev);
4768 return rc;
4769}
4770
4771/**
4772 * ata_pci_remove_one - PCI layer callback for device removal
4773 * @pdev: PCI device that was removed
4774 *
4775 * PCI layer indicates to libata via this hook that
4776 * hot-unplug or module unload event has occured.
4777 * Handle this by unregistering all objects associated
4778 * with this PCI device. Free those objects. Then finally
4779 * release PCI resources and disable device.
4780 *
4781 * LOCKING:
4782 * Inherited from PCI layer (may sleep).
4783 */
4784
4785void ata_pci_remove_one (struct pci_dev *pdev)
4786{
4787 struct device *dev = pci_dev_to_dev(pdev);
4788 struct ata_host_set *host_set = dev_get_drvdata(dev);
1da177e4 4789
17b14451 4790 ata_host_set_remove(host_set);
1da177e4
LT
4791 pci_release_regions(pdev);
4792 pci_disable_device(pdev);
4793 dev_set_drvdata(dev, NULL);
4794}
4795
4796/* move to PCI subsystem */
4797int pci_test_config_bits(struct pci_dev *pdev, struct pci_bits *bits)
4798{
4799 unsigned long tmp = 0;
4800
4801 switch (bits->width) {
4802 case 1: {
4803 u8 tmp8 = 0;
4804 pci_read_config_byte(pdev, bits->reg, &tmp8);
4805 tmp = tmp8;
4806 break;
4807 }
4808 case 2: {
4809 u16 tmp16 = 0;
4810 pci_read_config_word(pdev, bits->reg, &tmp16);
4811 tmp = tmp16;
4812 break;
4813 }
4814 case 4: {
4815 u32 tmp32 = 0;
4816 pci_read_config_dword(pdev, bits->reg, &tmp32);
4817 tmp = tmp32;
4818 break;
4819 }
4820
4821 default:
4822 return -EINVAL;
4823 }
4824
4825 tmp &= bits->mask;
4826
4827 return (tmp == bits->val) ? 1 : 0;
4828}
4829#endif /* CONFIG_PCI */
4830
4831
1da177e4
LT
4832static int __init ata_init(void)
4833{
4834 ata_wq = create_workqueue("ata");
4835 if (!ata_wq)
4836 return -ENOMEM;
4837
4838 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
4839 return 0;
4840}
4841
4842static void __exit ata_exit(void)
4843{
4844 destroy_workqueue(ata_wq);
4845}
4846
4847module_init(ata_init);
4848module_exit(ata_exit);
4849
67846b30
JG
4850static unsigned long ratelimit_time;
4851static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
4852
4853int ata_ratelimit(void)
4854{
4855 int rc;
4856 unsigned long flags;
4857
4858 spin_lock_irqsave(&ata_ratelimit_lock, flags);
4859
4860 if (time_after(jiffies, ratelimit_time)) {
4861 rc = 1;
4862 ratelimit_time = jiffies + (HZ/5);
4863 } else
4864 rc = 0;
4865
4866 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
4867
4868 return rc;
4869}
4870
1da177e4
LT
4871/*
4872 * libata is essentially a library of internal helper functions for
4873 * low-level ATA host controller drivers. As such, the API/ABI is
4874 * likely to change as new drivers are added and updated.
4875 * Do not depend on ABI/API stability.
4876 */
4877
4878EXPORT_SYMBOL_GPL(ata_std_bios_param);
4879EXPORT_SYMBOL_GPL(ata_std_ports);
4880EXPORT_SYMBOL_GPL(ata_device_add);
17b14451 4881EXPORT_SYMBOL_GPL(ata_host_set_remove);
1da177e4
LT
4882EXPORT_SYMBOL_GPL(ata_sg_init);
4883EXPORT_SYMBOL_GPL(ata_sg_init_one);
4884EXPORT_SYMBOL_GPL(ata_qc_complete);
4885EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
4886EXPORT_SYMBOL_GPL(ata_eng_timeout);
4887EXPORT_SYMBOL_GPL(ata_tf_load);
4888EXPORT_SYMBOL_GPL(ata_tf_read);
4889EXPORT_SYMBOL_GPL(ata_noop_dev_select);
4890EXPORT_SYMBOL_GPL(ata_std_dev_select);
4891EXPORT_SYMBOL_GPL(ata_tf_to_fis);
4892EXPORT_SYMBOL_GPL(ata_tf_from_fis);
4893EXPORT_SYMBOL_GPL(ata_check_status);
4894EXPORT_SYMBOL_GPL(ata_altstatus);
4895EXPORT_SYMBOL_GPL(ata_chk_err);
4896EXPORT_SYMBOL_GPL(ata_exec_command);
4897EXPORT_SYMBOL_GPL(ata_port_start);
4898EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 4899EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4
LT
4900EXPORT_SYMBOL_GPL(ata_interrupt);
4901EXPORT_SYMBOL_GPL(ata_qc_prep);
4902EXPORT_SYMBOL_GPL(ata_bmdma_setup);
4903EXPORT_SYMBOL_GPL(ata_bmdma_start);
4904EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
4905EXPORT_SYMBOL_GPL(ata_bmdma_status);
4906EXPORT_SYMBOL_GPL(ata_bmdma_stop);
4907EXPORT_SYMBOL_GPL(ata_port_probe);
4908EXPORT_SYMBOL_GPL(sata_phy_reset);
4909EXPORT_SYMBOL_GPL(__sata_phy_reset);
4910EXPORT_SYMBOL_GPL(ata_bus_reset);
4911EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 4912EXPORT_SYMBOL_GPL(ata_ratelimit);
1da177e4
LT
4913EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
4914EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
4915EXPORT_SYMBOL_GPL(ata_scsi_error);
4916EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
4917EXPORT_SYMBOL_GPL(ata_scsi_release);
4918EXPORT_SYMBOL_GPL(ata_host_intr);
4919EXPORT_SYMBOL_GPL(ata_dev_classify);
4920EXPORT_SYMBOL_GPL(ata_dev_id_string);
6f2f3812 4921EXPORT_SYMBOL_GPL(ata_dev_config);
1da177e4
LT
4922EXPORT_SYMBOL_GPL(ata_scsi_simulate);
4923
4924#ifdef CONFIG_PCI
4925EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 4926EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
4927EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
4928EXPORT_SYMBOL_GPL(ata_pci_init_one);
4929EXPORT_SYMBOL_GPL(ata_pci_remove_one);
4930#endif /* CONFIG_PCI */
This page took 0.292916 seconds and 5 git commands to generate.