[PATCH] libata: add detailed AC_ERR_* flags
[deliverable/linux.git] / drivers / scsi / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
35#include <linux/config.h>
36#include <linux/kernel.h>
37#include <linux/module.h>
38#include <linux/pci.h>
39#include <linux/init.h>
40#include <linux/list.h>
41#include <linux/mm.h>
42#include <linux/highmem.h>
43#include <linux/spinlock.h>
44#include <linux/blkdev.h>
45#include <linux/delay.h>
46#include <linux/timer.h>
47#include <linux/interrupt.h>
48#include <linux/completion.h>
49#include <linux/suspend.h>
50#include <linux/workqueue.h>
67846b30 51#include <linux/jiffies.h>
378f058c 52#include <linux/scatterlist.h>
1da177e4 53#include <scsi/scsi.h>
1da177e4 54#include "scsi_priv.h"
193515d5 55#include <scsi/scsi_cmnd.h>
1da177e4
LT
56#include <scsi/scsi_host.h>
57#include <linux/libata.h>
58#include <asm/io.h>
59#include <asm/semaphore.h>
60#include <asm/byteorder.h>
61
62#include "libata.h"
63
64static unsigned int ata_busy_sleep (struct ata_port *ap,
65 unsigned long tmout_pat,
66 unsigned long tmout);
59a10b17 67static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev);
8bf62ece 68static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev);
1da177e4
LT
69static void ata_set_mode(struct ata_port *ap);
70static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev);
057ace5e 71static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift);
1da177e4 72static int fgb(u32 bitmap);
057ace5e 73static int ata_choose_xfer_mode(const struct ata_port *ap,
1da177e4
LT
74 u8 *xfer_mode_out,
75 unsigned int *xfer_shift_out);
1da177e4
LT
76
77static unsigned int ata_unique_id = 1;
78static struct workqueue_struct *ata_wq;
79
1623c81e
JG
80int atapi_enabled = 0;
81module_param(atapi_enabled, int, 0444);
82MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
83
1da177e4
LT
84MODULE_AUTHOR("Jeff Garzik");
85MODULE_DESCRIPTION("Library module for ATA devices");
86MODULE_LICENSE("GPL");
87MODULE_VERSION(DRV_VERSION);
88
89/**
6f0ef4fa 90 * ata_tf_load_pio - send taskfile registers to host controller
1da177e4
LT
91 * @ap: Port to which output is sent
92 * @tf: ATA taskfile register set
93 *
94 * Outputs ATA taskfile to standard ATA host controller.
95 *
96 * LOCKING:
97 * Inherited from caller.
98 */
99
057ace5e 100static void ata_tf_load_pio(struct ata_port *ap, const struct ata_taskfile *tf)
1da177e4
LT
101{
102 struct ata_ioports *ioaddr = &ap->ioaddr;
103 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
104
105 if (tf->ctl != ap->last_ctl) {
106 outb(tf->ctl, ioaddr->ctl_addr);
107 ap->last_ctl = tf->ctl;
108 ata_wait_idle(ap);
109 }
110
111 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
112 outb(tf->hob_feature, ioaddr->feature_addr);
113 outb(tf->hob_nsect, ioaddr->nsect_addr);
114 outb(tf->hob_lbal, ioaddr->lbal_addr);
115 outb(tf->hob_lbam, ioaddr->lbam_addr);
116 outb(tf->hob_lbah, ioaddr->lbah_addr);
117 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
118 tf->hob_feature,
119 tf->hob_nsect,
120 tf->hob_lbal,
121 tf->hob_lbam,
122 tf->hob_lbah);
123 }
124
125 if (is_addr) {
126 outb(tf->feature, ioaddr->feature_addr);
127 outb(tf->nsect, ioaddr->nsect_addr);
128 outb(tf->lbal, ioaddr->lbal_addr);
129 outb(tf->lbam, ioaddr->lbam_addr);
130 outb(tf->lbah, ioaddr->lbah_addr);
131 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
132 tf->feature,
133 tf->nsect,
134 tf->lbal,
135 tf->lbam,
136 tf->lbah);
137 }
138
139 if (tf->flags & ATA_TFLAG_DEVICE) {
140 outb(tf->device, ioaddr->device_addr);
141 VPRINTK("device 0x%X\n", tf->device);
142 }
143
144 ata_wait_idle(ap);
145}
146
147/**
148 * ata_tf_load_mmio - send taskfile registers to host controller
149 * @ap: Port to which output is sent
150 * @tf: ATA taskfile register set
151 *
152 * Outputs ATA taskfile to standard ATA host controller using MMIO.
153 *
154 * LOCKING:
155 * Inherited from caller.
156 */
157
057ace5e 158static void ata_tf_load_mmio(struct ata_port *ap, const struct ata_taskfile *tf)
1da177e4
LT
159{
160 struct ata_ioports *ioaddr = &ap->ioaddr;
161 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
162
163 if (tf->ctl != ap->last_ctl) {
164 writeb(tf->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
165 ap->last_ctl = tf->ctl;
166 ata_wait_idle(ap);
167 }
168
169 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
170 writeb(tf->hob_feature, (void __iomem *) ioaddr->feature_addr);
171 writeb(tf->hob_nsect, (void __iomem *) ioaddr->nsect_addr);
172 writeb(tf->hob_lbal, (void __iomem *) ioaddr->lbal_addr);
173 writeb(tf->hob_lbam, (void __iomem *) ioaddr->lbam_addr);
174 writeb(tf->hob_lbah, (void __iomem *) ioaddr->lbah_addr);
175 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
176 tf->hob_feature,
177 tf->hob_nsect,
178 tf->hob_lbal,
179 tf->hob_lbam,
180 tf->hob_lbah);
181 }
182
183 if (is_addr) {
184 writeb(tf->feature, (void __iomem *) ioaddr->feature_addr);
185 writeb(tf->nsect, (void __iomem *) ioaddr->nsect_addr);
186 writeb(tf->lbal, (void __iomem *) ioaddr->lbal_addr);
187 writeb(tf->lbam, (void __iomem *) ioaddr->lbam_addr);
188 writeb(tf->lbah, (void __iomem *) ioaddr->lbah_addr);
189 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
190 tf->feature,
191 tf->nsect,
192 tf->lbal,
193 tf->lbam,
194 tf->lbah);
195 }
196
197 if (tf->flags & ATA_TFLAG_DEVICE) {
198 writeb(tf->device, (void __iomem *) ioaddr->device_addr);
199 VPRINTK("device 0x%X\n", tf->device);
200 }
201
202 ata_wait_idle(ap);
203}
204
0baab86b
EF
205
206/**
207 * ata_tf_load - send taskfile registers to host controller
208 * @ap: Port to which output is sent
209 * @tf: ATA taskfile register set
210 *
211 * Outputs ATA taskfile to standard ATA host controller using MMIO
212 * or PIO as indicated by the ATA_FLAG_MMIO flag.
213 * Writes the control, feature, nsect, lbal, lbam, and lbah registers.
214 * Optionally (ATA_TFLAG_LBA48) writes hob_feature, hob_nsect,
215 * hob_lbal, hob_lbam, and hob_lbah.
216 *
217 * This function waits for idle (!BUSY and !DRQ) after writing
218 * registers. If the control register has a new value, this
219 * function also waits for idle after writing control and before
220 * writing the remaining registers.
221 *
222 * May be used as the tf_load() entry in ata_port_operations.
223 *
224 * LOCKING:
225 * Inherited from caller.
226 */
057ace5e 227void ata_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
1da177e4
LT
228{
229 if (ap->flags & ATA_FLAG_MMIO)
230 ata_tf_load_mmio(ap, tf);
231 else
232 ata_tf_load_pio(ap, tf);
233}
234
235/**
0baab86b 236 * ata_exec_command_pio - issue ATA command to host controller
1da177e4
LT
237 * @ap: port to which command is being issued
238 * @tf: ATA taskfile register set
239 *
0baab86b 240 * Issues PIO write to ATA command register, with proper
1da177e4
LT
241 * synchronization with interrupt handler / other threads.
242 *
243 * LOCKING:
244 * spin_lock_irqsave(host_set lock)
245 */
246
057ace5e 247static void ata_exec_command_pio(struct ata_port *ap, const struct ata_taskfile *tf)
1da177e4
LT
248{
249 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
250
251 outb(tf->command, ap->ioaddr.command_addr);
252 ata_pause(ap);
253}
254
255
256/**
257 * ata_exec_command_mmio - issue ATA command to host controller
258 * @ap: port to which command is being issued
259 * @tf: ATA taskfile register set
260 *
261 * Issues MMIO write to ATA command register, with proper
262 * synchronization with interrupt handler / other threads.
263 *
264 * LOCKING:
265 * spin_lock_irqsave(host_set lock)
266 */
267
057ace5e 268static void ata_exec_command_mmio(struct ata_port *ap, const struct ata_taskfile *tf)
1da177e4
LT
269{
270 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
271
272 writeb(tf->command, (void __iomem *) ap->ioaddr.command_addr);
273 ata_pause(ap);
274}
275
0baab86b
EF
276
277/**
278 * ata_exec_command - issue ATA command to host controller
279 * @ap: port to which command is being issued
280 * @tf: ATA taskfile register set
281 *
282 * Issues PIO/MMIO write to ATA command register, with proper
283 * synchronization with interrupt handler / other threads.
284 *
285 * LOCKING:
286 * spin_lock_irqsave(host_set lock)
287 */
057ace5e 288void ata_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
1da177e4
LT
289{
290 if (ap->flags & ATA_FLAG_MMIO)
291 ata_exec_command_mmio(ap, tf);
292 else
293 ata_exec_command_pio(ap, tf);
294}
295
1da177e4
LT
296/**
297 * ata_tf_to_host - issue ATA taskfile to host controller
298 * @ap: port to which command is being issued
299 * @tf: ATA taskfile register set
300 *
301 * Issues ATA taskfile register set to ATA host controller,
302 * with proper synchronization with interrupt handler and
303 * other threads.
304 *
305 * LOCKING:
1da177e4
LT
306 * spin_lock_irqsave(host_set lock)
307 */
308
e5338254
JG
309static inline void ata_tf_to_host(struct ata_port *ap,
310 const struct ata_taskfile *tf)
1da177e4
LT
311{
312 ap->ops->tf_load(ap, tf);
313 ap->ops->exec_command(ap, tf);
314}
315
316/**
0baab86b 317 * ata_tf_read_pio - input device's ATA taskfile shadow registers
1da177e4
LT
318 * @ap: Port from which input is read
319 * @tf: ATA taskfile register set for storing input
320 *
321 * Reads ATA taskfile registers for currently-selected device
322 * into @tf.
323 *
324 * LOCKING:
325 * Inherited from caller.
326 */
327
328static void ata_tf_read_pio(struct ata_port *ap, struct ata_taskfile *tf)
329{
330 struct ata_ioports *ioaddr = &ap->ioaddr;
331
ac19bff2 332 tf->command = ata_check_status(ap);
0169e284 333 tf->feature = inb(ioaddr->error_addr);
1da177e4
LT
334 tf->nsect = inb(ioaddr->nsect_addr);
335 tf->lbal = inb(ioaddr->lbal_addr);
336 tf->lbam = inb(ioaddr->lbam_addr);
337 tf->lbah = inb(ioaddr->lbah_addr);
338 tf->device = inb(ioaddr->device_addr);
339
340 if (tf->flags & ATA_TFLAG_LBA48) {
341 outb(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
342 tf->hob_feature = inb(ioaddr->error_addr);
343 tf->hob_nsect = inb(ioaddr->nsect_addr);
344 tf->hob_lbal = inb(ioaddr->lbal_addr);
345 tf->hob_lbam = inb(ioaddr->lbam_addr);
346 tf->hob_lbah = inb(ioaddr->lbah_addr);
347 }
348}
349
350/**
351 * ata_tf_read_mmio - input device's ATA taskfile shadow registers
352 * @ap: Port from which input is read
353 * @tf: ATA taskfile register set for storing input
354 *
355 * Reads ATA taskfile registers for currently-selected device
356 * into @tf via MMIO.
357 *
358 * LOCKING:
359 * Inherited from caller.
360 */
361
362static void ata_tf_read_mmio(struct ata_port *ap, struct ata_taskfile *tf)
363{
364 struct ata_ioports *ioaddr = &ap->ioaddr;
365
ac19bff2 366 tf->command = ata_check_status(ap);
0169e284 367 tf->feature = readb((void __iomem *)ioaddr->error_addr);
1da177e4
LT
368 tf->nsect = readb((void __iomem *)ioaddr->nsect_addr);
369 tf->lbal = readb((void __iomem *)ioaddr->lbal_addr);
370 tf->lbam = readb((void __iomem *)ioaddr->lbam_addr);
371 tf->lbah = readb((void __iomem *)ioaddr->lbah_addr);
372 tf->device = readb((void __iomem *)ioaddr->device_addr);
373
374 if (tf->flags & ATA_TFLAG_LBA48) {
375 writeb(tf->ctl | ATA_HOB, (void __iomem *) ap->ioaddr.ctl_addr);
376 tf->hob_feature = readb((void __iomem *)ioaddr->error_addr);
377 tf->hob_nsect = readb((void __iomem *)ioaddr->nsect_addr);
378 tf->hob_lbal = readb((void __iomem *)ioaddr->lbal_addr);
379 tf->hob_lbam = readb((void __iomem *)ioaddr->lbam_addr);
380 tf->hob_lbah = readb((void __iomem *)ioaddr->lbah_addr);
381 }
382}
383
0baab86b
EF
384
385/**
386 * ata_tf_read - input device's ATA taskfile shadow registers
387 * @ap: Port from which input is read
388 * @tf: ATA taskfile register set for storing input
389 *
390 * Reads ATA taskfile registers for currently-selected device
391 * into @tf.
392 *
393 * Reads nsect, lbal, lbam, lbah, and device. If ATA_TFLAG_LBA48
394 * is set, also reads the hob registers.
395 *
396 * May be used as the tf_read() entry in ata_port_operations.
397 *
398 * LOCKING:
399 * Inherited from caller.
400 */
1da177e4
LT
401void ata_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
402{
403 if (ap->flags & ATA_FLAG_MMIO)
404 ata_tf_read_mmio(ap, tf);
405 else
406 ata_tf_read_pio(ap, tf);
407}
408
409/**
410 * ata_check_status_pio - Read device status reg & clear interrupt
411 * @ap: port where the device is
412 *
413 * Reads ATA taskfile status register for currently-selected device
0baab86b 414 * and return its value. This also clears pending interrupts
1da177e4
LT
415 * from this device
416 *
417 * LOCKING:
418 * Inherited from caller.
419 */
420static u8 ata_check_status_pio(struct ata_port *ap)
421{
422 return inb(ap->ioaddr.status_addr);
423}
424
425/**
426 * ata_check_status_mmio - Read device status reg & clear interrupt
427 * @ap: port where the device is
428 *
429 * Reads ATA taskfile status register for currently-selected device
0baab86b 430 * via MMIO and return its value. This also clears pending interrupts
1da177e4
LT
431 * from this device
432 *
433 * LOCKING:
434 * Inherited from caller.
435 */
436static u8 ata_check_status_mmio(struct ata_port *ap)
437{
438 return readb((void __iomem *) ap->ioaddr.status_addr);
439}
440
0baab86b
EF
441
442/**
443 * ata_check_status - Read device status reg & clear interrupt
444 * @ap: port where the device is
445 *
446 * Reads ATA taskfile status register for currently-selected device
447 * and return its value. This also clears pending interrupts
448 * from this device
449 *
450 * May be used as the check_status() entry in ata_port_operations.
451 *
452 * LOCKING:
453 * Inherited from caller.
454 */
1da177e4
LT
455u8 ata_check_status(struct ata_port *ap)
456{
457 if (ap->flags & ATA_FLAG_MMIO)
458 return ata_check_status_mmio(ap);
459 return ata_check_status_pio(ap);
460}
461
0baab86b
EF
462
463/**
464 * ata_altstatus - Read device alternate status reg
465 * @ap: port where the device is
466 *
467 * Reads ATA taskfile alternate status register for
468 * currently-selected device and return its value.
469 *
470 * Note: may NOT be used as the check_altstatus() entry in
471 * ata_port_operations.
472 *
473 * LOCKING:
474 * Inherited from caller.
475 */
1da177e4
LT
476u8 ata_altstatus(struct ata_port *ap)
477{
478 if (ap->ops->check_altstatus)
479 return ap->ops->check_altstatus(ap);
480
481 if (ap->flags & ATA_FLAG_MMIO)
482 return readb((void __iomem *)ap->ioaddr.altstatus_addr);
483 return inb(ap->ioaddr.altstatus_addr);
484}
485
0baab86b 486
1da177e4
LT
487/**
488 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
489 * @tf: Taskfile to convert
490 * @fis: Buffer into which data will output
491 * @pmp: Port multiplier port
492 *
493 * Converts a standard ATA taskfile to a Serial ATA
494 * FIS structure (Register - Host to Device).
495 *
496 * LOCKING:
497 * Inherited from caller.
498 */
499
057ace5e 500void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
501{
502 fis[0] = 0x27; /* Register - Host to Device FIS */
503 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
504 bit 7 indicates Command FIS */
505 fis[2] = tf->command;
506 fis[3] = tf->feature;
507
508 fis[4] = tf->lbal;
509 fis[5] = tf->lbam;
510 fis[6] = tf->lbah;
511 fis[7] = tf->device;
512
513 fis[8] = tf->hob_lbal;
514 fis[9] = tf->hob_lbam;
515 fis[10] = tf->hob_lbah;
516 fis[11] = tf->hob_feature;
517
518 fis[12] = tf->nsect;
519 fis[13] = tf->hob_nsect;
520 fis[14] = 0;
521 fis[15] = tf->ctl;
522
523 fis[16] = 0;
524 fis[17] = 0;
525 fis[18] = 0;
526 fis[19] = 0;
527}
528
529/**
530 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
531 * @fis: Buffer from which data will be input
532 * @tf: Taskfile to output
533 *
e12a1be6 534 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
535 *
536 * LOCKING:
537 * Inherited from caller.
538 */
539
057ace5e 540void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
541{
542 tf->command = fis[2]; /* status */
543 tf->feature = fis[3]; /* error */
544
545 tf->lbal = fis[4];
546 tf->lbam = fis[5];
547 tf->lbah = fis[6];
548 tf->device = fis[7];
549
550 tf->hob_lbal = fis[8];
551 tf->hob_lbam = fis[9];
552 tf->hob_lbah = fis[10];
553
554 tf->nsect = fis[12];
555 tf->hob_nsect = fis[13];
556}
557
8cbd6df1
AL
558static const u8 ata_rw_cmds[] = {
559 /* pio multi */
560 ATA_CMD_READ_MULTI,
561 ATA_CMD_WRITE_MULTI,
562 ATA_CMD_READ_MULTI_EXT,
563 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
564 0,
565 0,
566 0,
567 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
568 /* pio */
569 ATA_CMD_PIO_READ,
570 ATA_CMD_PIO_WRITE,
571 ATA_CMD_PIO_READ_EXT,
572 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
573 0,
574 0,
575 0,
576 0,
8cbd6df1
AL
577 /* dma */
578 ATA_CMD_READ,
579 ATA_CMD_WRITE,
580 ATA_CMD_READ_EXT,
9a3dccc4
TH
581 ATA_CMD_WRITE_EXT,
582 0,
583 0,
584 0,
585 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 586};
1da177e4
LT
587
588/**
8cbd6df1
AL
589 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
590 * @qc: command to examine and configure
1da177e4 591 *
8cbd6df1
AL
592 * Examine the device configuration and tf->flags to calculate
593 * the proper read/write commands and protocol to use.
1da177e4
LT
594 *
595 * LOCKING:
596 * caller.
597 */
9a3dccc4 598int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
1da177e4 599{
8cbd6df1
AL
600 struct ata_taskfile *tf = &qc->tf;
601 struct ata_device *dev = qc->dev;
9a3dccc4 602 u8 cmd;
1da177e4 603
9a3dccc4 604 int index, fua, lba48, write;
8cbd6df1 605
9a3dccc4 606 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
607 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
608 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 609
8cbd6df1
AL
610 if (dev->flags & ATA_DFLAG_PIO) {
611 tf->protocol = ATA_PROT_PIO;
9a3dccc4 612 index = dev->multi_count ? 0 : 8;
8d238e01
AC
613 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
614 /* Unable to use DMA due to host limitation */
615 tf->protocol = ATA_PROT_PIO;
616 index = dev->multi_count ? 0 : 4;
8cbd6df1
AL
617 } else {
618 tf->protocol = ATA_PROT_DMA;
9a3dccc4 619 index = 16;
8cbd6df1 620 }
1da177e4 621
9a3dccc4
TH
622 cmd = ata_rw_cmds[index + fua + lba48 + write];
623 if (cmd) {
624 tf->command = cmd;
625 return 0;
626 }
627 return -1;
1da177e4
LT
628}
629
98ac62de 630static const char * const xfer_mode_str[] = {
1da177e4
LT
631 "UDMA/16",
632 "UDMA/25",
633 "UDMA/33",
634 "UDMA/44",
635 "UDMA/66",
636 "UDMA/100",
637 "UDMA/133",
638 "UDMA7",
639 "MWDMA0",
640 "MWDMA1",
641 "MWDMA2",
642 "PIO0",
643 "PIO1",
644 "PIO2",
645 "PIO3",
646 "PIO4",
647};
648
649/**
650 * ata_udma_string - convert UDMA bit offset to string
651 * @mask: mask of bits supported; only highest bit counts.
652 *
653 * Determine string which represents the highest speed
654 * (highest bit in @udma_mask).
655 *
656 * LOCKING:
657 * None.
658 *
659 * RETURNS:
660 * Constant C string representing highest speed listed in
661 * @udma_mask, or the constant C string "<n/a>".
662 */
663
664static const char *ata_mode_string(unsigned int mask)
665{
666 int i;
667
668 for (i = 7; i >= 0; i--)
669 if (mask & (1 << i))
670 goto out;
671 for (i = ATA_SHIFT_MWDMA + 2; i >= ATA_SHIFT_MWDMA; i--)
672 if (mask & (1 << i))
673 goto out;
674 for (i = ATA_SHIFT_PIO + 4; i >= ATA_SHIFT_PIO; i--)
675 if (mask & (1 << i))
676 goto out;
677
678 return "<n/a>";
679
680out:
681 return xfer_mode_str[i];
682}
683
684/**
685 * ata_pio_devchk - PATA device presence detection
686 * @ap: ATA channel to examine
687 * @device: Device to examine (starting at zero)
688 *
689 * This technique was originally described in
690 * Hale Landis's ATADRVR (www.ata-atapi.com), and
691 * later found its way into the ATA/ATAPI spec.
692 *
693 * Write a pattern to the ATA shadow registers,
694 * and if a device is present, it will respond by
695 * correctly storing and echoing back the
696 * ATA shadow register contents.
697 *
698 * LOCKING:
699 * caller.
700 */
701
702static unsigned int ata_pio_devchk(struct ata_port *ap,
703 unsigned int device)
704{
705 struct ata_ioports *ioaddr = &ap->ioaddr;
706 u8 nsect, lbal;
707
708 ap->ops->dev_select(ap, device);
709
710 outb(0x55, ioaddr->nsect_addr);
711 outb(0xaa, ioaddr->lbal_addr);
712
713 outb(0xaa, ioaddr->nsect_addr);
714 outb(0x55, ioaddr->lbal_addr);
715
716 outb(0x55, ioaddr->nsect_addr);
717 outb(0xaa, ioaddr->lbal_addr);
718
719 nsect = inb(ioaddr->nsect_addr);
720 lbal = inb(ioaddr->lbal_addr);
721
722 if ((nsect == 0x55) && (lbal == 0xaa))
723 return 1; /* we found a device */
724
725 return 0; /* nothing found */
726}
727
728/**
729 * ata_mmio_devchk - PATA device presence detection
730 * @ap: ATA channel to examine
731 * @device: Device to examine (starting at zero)
732 *
733 * This technique was originally described in
734 * Hale Landis's ATADRVR (www.ata-atapi.com), and
735 * later found its way into the ATA/ATAPI spec.
736 *
737 * Write a pattern to the ATA shadow registers,
738 * and if a device is present, it will respond by
739 * correctly storing and echoing back the
740 * ATA shadow register contents.
741 *
742 * LOCKING:
743 * caller.
744 */
745
746static unsigned int ata_mmio_devchk(struct ata_port *ap,
747 unsigned int device)
748{
749 struct ata_ioports *ioaddr = &ap->ioaddr;
750 u8 nsect, lbal;
751
752 ap->ops->dev_select(ap, device);
753
754 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
755 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
756
757 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
758 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
759
760 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
761 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
762
763 nsect = readb((void __iomem *) ioaddr->nsect_addr);
764 lbal = readb((void __iomem *) ioaddr->lbal_addr);
765
766 if ((nsect == 0x55) && (lbal == 0xaa))
767 return 1; /* we found a device */
768
769 return 0; /* nothing found */
770}
771
772/**
773 * ata_devchk - PATA device presence detection
774 * @ap: ATA channel to examine
775 * @device: Device to examine (starting at zero)
776 *
777 * Dispatch ATA device presence detection, depending
778 * on whether we are using PIO or MMIO to talk to the
779 * ATA shadow registers.
780 *
781 * LOCKING:
782 * caller.
783 */
784
785static unsigned int ata_devchk(struct ata_port *ap,
786 unsigned int device)
787{
788 if (ap->flags & ATA_FLAG_MMIO)
789 return ata_mmio_devchk(ap, device);
790 return ata_pio_devchk(ap, device);
791}
792
793/**
794 * ata_dev_classify - determine device type based on ATA-spec signature
795 * @tf: ATA taskfile register set for device to be identified
796 *
797 * Determine from taskfile register contents whether a device is
798 * ATA or ATAPI, as per "Signature and persistence" section
799 * of ATA/PI spec (volume 1, sect 5.14).
800 *
801 * LOCKING:
802 * None.
803 *
804 * RETURNS:
805 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
806 * the event of failure.
807 */
808
057ace5e 809unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
810{
811 /* Apple's open source Darwin code hints that some devices only
812 * put a proper signature into the LBA mid/high registers,
813 * So, we only check those. It's sufficient for uniqueness.
814 */
815
816 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
817 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
818 DPRINTK("found ATA device by sig\n");
819 return ATA_DEV_ATA;
820 }
821
822 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
823 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
824 DPRINTK("found ATAPI device by sig\n");
825 return ATA_DEV_ATAPI;
826 }
827
828 DPRINTK("unknown device\n");
829 return ATA_DEV_UNKNOWN;
830}
831
832/**
833 * ata_dev_try_classify - Parse returned ATA device signature
834 * @ap: ATA channel to examine
835 * @device: Device to examine (starting at zero)
836 *
837 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
838 * an ATA/ATAPI-defined set of values is placed in the ATA
839 * shadow registers, indicating the results of device detection
840 * and diagnostics.
841 *
842 * Select the ATA device, and read the values from the ATA shadow
843 * registers. Then parse according to the Error register value,
844 * and the spec-defined values examined by ata_dev_classify().
845 *
846 * LOCKING:
847 * caller.
848 */
849
850static u8 ata_dev_try_classify(struct ata_port *ap, unsigned int device)
851{
852 struct ata_device *dev = &ap->device[device];
853 struct ata_taskfile tf;
854 unsigned int class;
855 u8 err;
856
857 ap->ops->dev_select(ap, device);
858
859 memset(&tf, 0, sizeof(tf));
860
1da177e4 861 ap->ops->tf_read(ap, &tf);
0169e284 862 err = tf.feature;
1da177e4
LT
863
864 dev->class = ATA_DEV_NONE;
865
866 /* see if device passed diags */
867 if (err == 1)
868 /* do nothing */ ;
869 else if ((device == 0) && (err == 0x81))
870 /* do nothing */ ;
871 else
872 return err;
873
874 /* determine if device if ATA or ATAPI */
875 class = ata_dev_classify(&tf);
876 if (class == ATA_DEV_UNKNOWN)
877 return err;
878 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
879 return err;
880
881 dev->class = class;
882
883 return err;
884}
885
886/**
887 * ata_dev_id_string - Convert IDENTIFY DEVICE page into string
888 * @id: IDENTIFY DEVICE results we will examine
889 * @s: string into which data is output
890 * @ofs: offset into identify device page
891 * @len: length of string to return. must be an even number.
892 *
893 * The strings in the IDENTIFY DEVICE page are broken up into
894 * 16-bit chunks. Run through the string, and output each
895 * 8-bit chunk linearly, regardless of platform.
896 *
897 * LOCKING:
898 * caller.
899 */
900
057ace5e 901void ata_dev_id_string(const u16 *id, unsigned char *s,
1da177e4
LT
902 unsigned int ofs, unsigned int len)
903{
904 unsigned int c;
905
906 while (len > 0) {
907 c = id[ofs] >> 8;
908 *s = c;
909 s++;
910
911 c = id[ofs] & 0xff;
912 *s = c;
913 s++;
914
915 ofs++;
916 len -= 2;
917 }
918}
919
0baab86b
EF
920
921/**
922 * ata_noop_dev_select - Select device 0/1 on ATA bus
923 * @ap: ATA channel to manipulate
924 * @device: ATA device (numbered from zero) to select
925 *
926 * This function performs no actual function.
927 *
928 * May be used as the dev_select() entry in ata_port_operations.
929 *
930 * LOCKING:
931 * caller.
932 */
1da177e4
LT
933void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
934{
935}
936
0baab86b 937
1da177e4
LT
938/**
939 * ata_std_dev_select - Select device 0/1 on ATA bus
940 * @ap: ATA channel to manipulate
941 * @device: ATA device (numbered from zero) to select
942 *
943 * Use the method defined in the ATA specification to
944 * make either device 0, or device 1, active on the
0baab86b
EF
945 * ATA channel. Works with both PIO and MMIO.
946 *
947 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
948 *
949 * LOCKING:
950 * caller.
951 */
952
953void ata_std_dev_select (struct ata_port *ap, unsigned int device)
954{
955 u8 tmp;
956
957 if (device == 0)
958 tmp = ATA_DEVICE_OBS;
959 else
960 tmp = ATA_DEVICE_OBS | ATA_DEV1;
961
962 if (ap->flags & ATA_FLAG_MMIO) {
963 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
964 } else {
965 outb(tmp, ap->ioaddr.device_addr);
966 }
967 ata_pause(ap); /* needed; also flushes, for mmio */
968}
969
970/**
971 * ata_dev_select - Select device 0/1 on ATA bus
972 * @ap: ATA channel to manipulate
973 * @device: ATA device (numbered from zero) to select
974 * @wait: non-zero to wait for Status register BSY bit to clear
975 * @can_sleep: non-zero if context allows sleeping
976 *
977 * Use the method defined in the ATA specification to
978 * make either device 0, or device 1, active on the
979 * ATA channel.
980 *
981 * This is a high-level version of ata_std_dev_select(),
982 * which additionally provides the services of inserting
983 * the proper pauses and status polling, where needed.
984 *
985 * LOCKING:
986 * caller.
987 */
988
989void ata_dev_select(struct ata_port *ap, unsigned int device,
990 unsigned int wait, unsigned int can_sleep)
991{
992 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
993 ap->id, device, wait);
994
995 if (wait)
996 ata_wait_idle(ap);
997
998 ap->ops->dev_select(ap, device);
999
1000 if (wait) {
1001 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1002 msleep(150);
1003 ata_wait_idle(ap);
1004 }
1005}
1006
1007/**
1008 * ata_dump_id - IDENTIFY DEVICE info debugging output
1009 * @dev: Device whose IDENTIFY DEVICE page we will dump
1010 *
1011 * Dump selected 16-bit words from a detected device's
1012 * IDENTIFY PAGE page.
1013 *
1014 * LOCKING:
1015 * caller.
1016 */
1017
057ace5e 1018static inline void ata_dump_id(const struct ata_device *dev)
1da177e4
LT
1019{
1020 DPRINTK("49==0x%04x "
1021 "53==0x%04x "
1022 "63==0x%04x "
1023 "64==0x%04x "
1024 "75==0x%04x \n",
1025 dev->id[49],
1026 dev->id[53],
1027 dev->id[63],
1028 dev->id[64],
1029 dev->id[75]);
1030 DPRINTK("80==0x%04x "
1031 "81==0x%04x "
1032 "82==0x%04x "
1033 "83==0x%04x "
1034 "84==0x%04x \n",
1035 dev->id[80],
1036 dev->id[81],
1037 dev->id[82],
1038 dev->id[83],
1039 dev->id[84]);
1040 DPRINTK("88==0x%04x "
1041 "93==0x%04x\n",
1042 dev->id[88],
1043 dev->id[93]);
1044}
1045
11e29e21
AC
1046/*
1047 * Compute the PIO modes available for this device. This is not as
1048 * trivial as it seems if we must consider early devices correctly.
1049 *
1050 * FIXME: pre IDE drive timing (do we care ?).
1051 */
1052
057ace5e 1053static unsigned int ata_pio_modes(const struct ata_device *adev)
11e29e21
AC
1054{
1055 u16 modes;
1056
ffa29456
AC
1057 /* Usual case. Word 53 indicates word 64 is valid */
1058 if (adev->id[ATA_ID_FIELD_VALID] & (1 << 1)) {
11e29e21
AC
1059 modes = adev->id[ATA_ID_PIO_MODES] & 0x03;
1060 modes <<= 3;
1061 modes |= 0x7;
1062 return modes;
1063 }
1064
ffa29456
AC
1065 /* If word 64 isn't valid then Word 51 high byte holds the PIO timing
1066 number for the maximum. Turn it into a mask and return it */
1067 modes = (2 << ((adev->id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF)) - 1 ;
11e29e21 1068 return modes;
ffa29456
AC
1069 /* But wait.. there's more. Design your standards by committee and
1070 you too can get a free iordy field to process. However its the
1071 speeds not the modes that are supported... Note drivers using the
1072 timing API will get this right anyway */
11e29e21
AC
1073}
1074
77853bf2 1075void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1076{
77853bf2 1077 struct completion *waiting = qc->private_data;
a2a7a662 1078
77853bf2 1079 qc->ap->ops->tf_read(qc->ap, &qc->tf);
a2a7a662 1080 complete(waiting);
a2a7a662
TH
1081}
1082
1083/**
1084 * ata_exec_internal - execute libata internal command
1085 * @ap: Port to which the command is sent
1086 * @dev: Device to which the command is sent
1087 * @tf: Taskfile registers for the command and the result
1088 * @dma_dir: Data tranfer direction of the command
1089 * @buf: Data buffer of the command
1090 * @buflen: Length of data buffer
1091 *
1092 * Executes libata internal command with timeout. @tf contains
1093 * command on entry and result on return. Timeout and error
1094 * conditions are reported via return value. No recovery action
1095 * is taken after a command times out. It's caller's duty to
1096 * clean up after timeout.
1097 *
1098 * LOCKING:
1099 * None. Should be called with kernel context, might sleep.
1100 */
1101
1102static unsigned
1103ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
1104 struct ata_taskfile *tf,
1105 int dma_dir, void *buf, unsigned int buflen)
1106{
1107 u8 command = tf->command;
1108 struct ata_queued_cmd *qc;
1109 DECLARE_COMPLETION(wait);
1110 unsigned long flags;
77853bf2 1111 unsigned int err_mask;
a2a7a662
TH
1112
1113 spin_lock_irqsave(&ap->host_set->lock, flags);
1114
1115 qc = ata_qc_new_init(ap, dev);
1116 BUG_ON(qc == NULL);
1117
1118 qc->tf = *tf;
1119 qc->dma_dir = dma_dir;
1120 if (dma_dir != DMA_NONE) {
1121 ata_sg_init_one(qc, buf, buflen);
1122 qc->nsect = buflen / ATA_SECT_SIZE;
1123 }
1124
77853bf2 1125 qc->private_data = &wait;
a2a7a662
TH
1126 qc->complete_fn = ata_qc_complete_internal;
1127
8e436af9
TH
1128 if (ata_qc_issue(qc)) {
1129 qc->err_mask = AC_ERR_OTHER;
1130 ata_qc_complete(qc);
1131 }
a2a7a662
TH
1132
1133 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1134
1135 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
1136 spin_lock_irqsave(&ap->host_set->lock, flags);
1137
1138 /* We're racing with irq here. If we lose, the
1139 * following test prevents us from completing the qc
1140 * again. If completion irq occurs after here but
1141 * before the caller cleans up, it will result in a
1142 * spurious interrupt. We can live with that.
1143 */
77853bf2 1144 if (qc->flags & ATA_QCFLAG_ACTIVE) {
11a56d24 1145 qc->err_mask = AC_ERR_TIMEOUT;
a2a7a662
TH
1146 ata_qc_complete(qc);
1147 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
1148 ap->id, command);
1149 }
1150
1151 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1152 }
1153
77853bf2
TH
1154 *tf = qc->tf;
1155 err_mask = qc->err_mask;
1156
1157 ata_qc_free(qc);
1158
1159 return err_mask;
a2a7a662
TH
1160}
1161
1bc4ccff
AC
1162/**
1163 * ata_pio_need_iordy - check if iordy needed
1164 * @adev: ATA device
1165 *
1166 * Check if the current speed of the device requires IORDY. Used
1167 * by various controllers for chip configuration.
1168 */
1169
1170unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1171{
1172 int pio;
1173 int speed = adev->pio_mode - XFER_PIO_0;
1174
1175 if (speed < 2)
1176 return 0;
1177 if (speed > 2)
1178 return 1;
1179
1180 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1181
1182 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1183 pio = adev->id[ATA_ID_EIDE_PIO];
1184 /* Is the speed faster than the drive allows non IORDY ? */
1185 if (pio) {
1186 /* This is cycle times not frequency - watch the logic! */
1187 if (pio > 240) /* PIO2 is 240nS per cycle */
1188 return 1;
1189 return 0;
1190 }
1191 }
1192 return 0;
1193}
1194
1da177e4
LT
1195/**
1196 * ata_dev_identify - obtain IDENTIFY x DEVICE page
1197 * @ap: port on which device we wish to probe resides
1198 * @device: device bus address, starting at zero
1199 *
1200 * Following bus reset, we issue the IDENTIFY [PACKET] DEVICE
1201 * command, and read back the 512-byte device information page.
1202 * The device information page is fed to us via the standard
1203 * PIO-IN protocol, but we hand-code it here. (TODO: investigate
1204 * using standard PIO-IN paths)
1205 *
1206 * After reading the device information page, we use several
1207 * bits of information from it to initialize data structures
1208 * that will be used during the lifetime of the ata_device.
1209 * Other data from the info page is used to disqualify certain
1210 * older ATA devices we do not wish to support.
1211 *
1212 * LOCKING:
1213 * Inherited from caller. Some functions called by this function
1214 * obtain the host_set lock.
1215 */
1216
1217static void ata_dev_identify(struct ata_port *ap, unsigned int device)
1218{
1219 struct ata_device *dev = &ap->device[device];
8bf62ece 1220 unsigned int major_version;
1da177e4
LT
1221 u16 tmp;
1222 unsigned long xfer_modes;
1da177e4 1223 unsigned int using_edd;
a0123703
TH
1224 struct ata_taskfile tf;
1225 unsigned int err_mask;
1da177e4
LT
1226 int rc;
1227
1228 if (!ata_dev_present(dev)) {
1229 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1230 ap->id, device);
1231 return;
1232 }
1233
1234 if (ap->flags & (ATA_FLAG_SRST | ATA_FLAG_SATA_RESET))
1235 using_edd = 0;
1236 else
1237 using_edd = 1;
1238
1239 DPRINTK("ENTER, host %u, dev %u\n", ap->id, device);
1240
1241 assert (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ATAPI ||
1242 dev->class == ATA_DEV_NONE);
1243
1244 ata_dev_select(ap, device, 1, 1); /* select device 0/1 */
1245
1da177e4 1246retry:
a0123703
TH
1247 ata_tf_init(ap, &tf, device);
1248
1da177e4 1249 if (dev->class == ATA_DEV_ATA) {
a0123703 1250 tf.command = ATA_CMD_ID_ATA;
1da177e4
LT
1251 DPRINTK("do ATA identify\n");
1252 } else {
a0123703 1253 tf.command = ATA_CMD_ID_ATAPI;
1da177e4
LT
1254 DPRINTK("do ATAPI identify\n");
1255 }
1256
a0123703 1257 tf.protocol = ATA_PROT_PIO;
1da177e4 1258
a0123703
TH
1259 err_mask = ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
1260 dev->id, sizeof(dev->id));
1da177e4 1261
a0123703
TH
1262 if (err_mask) {
1263 if (err_mask & ~AC_ERR_DEV)
1264 goto err_out;
0169e284 1265
1da177e4
LT
1266 /*
1267 * arg! EDD works for all test cases, but seems to return
1268 * the ATA signature for some ATAPI devices. Until the
1269 * reason for this is found and fixed, we fix up the mess
1270 * here. If IDENTIFY DEVICE returns command aborted
1271 * (as ATAPI devices do), then we issue an
1272 * IDENTIFY PACKET DEVICE.
1273 *
1274 * ATA software reset (SRST, the default) does not appear
1275 * to have this problem.
1276 */
7c398335 1277 if ((using_edd) && (dev->class == ATA_DEV_ATA)) {
a0123703 1278 u8 err = tf.feature;
1da177e4
LT
1279 if (err & ATA_ABORTED) {
1280 dev->class = ATA_DEV_ATAPI;
1da177e4
LT
1281 goto retry;
1282 }
1283 }
1284 goto err_out;
1285 }
1286
1287 swap_buf_le16(dev->id, ATA_ID_WORDS);
1288
1289 /* print device capabilities */
1290 printk(KERN_DEBUG "ata%u: dev %u cfg "
1291 "49:%04x 82:%04x 83:%04x 84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1292 ap->id, device, dev->id[49],
1293 dev->id[82], dev->id[83], dev->id[84],
1294 dev->id[85], dev->id[86], dev->id[87],
1295 dev->id[88]);
1296
1297 /*
1298 * common ATA, ATAPI feature tests
1299 */
1300
8bf62ece
AL
1301 /* we require DMA support (bits 8 of word 49) */
1302 if (!ata_id_has_dma(dev->id)) {
1303 printk(KERN_DEBUG "ata%u: no dma\n", ap->id);
1da177e4
LT
1304 goto err_out_nosup;
1305 }
1306
1307 /* quick-n-dirty find max transfer mode; for printk only */
1308 xfer_modes = dev->id[ATA_ID_UDMA_MODES];
1309 if (!xfer_modes)
1310 xfer_modes = (dev->id[ATA_ID_MWDMA_MODES]) << ATA_SHIFT_MWDMA;
11e29e21
AC
1311 if (!xfer_modes)
1312 xfer_modes = ata_pio_modes(dev);
1da177e4
LT
1313
1314 ata_dump_id(dev);
1315
1316 /* ATA-specific feature tests */
1317 if (dev->class == ATA_DEV_ATA) {
1318 if (!ata_id_is_ata(dev->id)) /* sanity check */
1319 goto err_out_nosup;
1320
8bf62ece 1321 /* get major version */
1da177e4 1322 tmp = dev->id[ATA_ID_MAJOR_VER];
8bf62ece
AL
1323 for (major_version = 14; major_version >= 1; major_version--)
1324 if (tmp & (1 << major_version))
1da177e4
LT
1325 break;
1326
8bf62ece
AL
1327 /*
1328 * The exact sequence expected by certain pre-ATA4 drives is:
1329 * SRST RESET
1330 * IDENTIFY
1331 * INITIALIZE DEVICE PARAMETERS
1332 * anything else..
1333 * Some drives were very specific about that exact sequence.
1334 */
59a10b17 1335 if (major_version < 4 || (!ata_id_has_lba(dev->id))) {
8bf62ece
AL
1336 ata_dev_init_params(ap, dev);
1337
59a10b17
AL
1338 /* current CHS translation info (id[53-58]) might be
1339 * changed. reread the identify device info.
1340 */
1341 ata_dev_reread_id(ap, dev);
1342 }
1343
8bf62ece
AL
1344 if (ata_id_has_lba(dev->id)) {
1345 dev->flags |= ATA_DFLAG_LBA;
1346
1347 if (ata_id_has_lba48(dev->id)) {
1348 dev->flags |= ATA_DFLAG_LBA48;
1349 dev->n_sectors = ata_id_u64(dev->id, 100);
1350 } else {
1351 dev->n_sectors = ata_id_u32(dev->id, 60);
1352 }
1353
1354 /* print device info to dmesg */
1355 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors:%s\n",
1356 ap->id, device,
1357 major_version,
1358 ata_mode_string(xfer_modes),
1359 (unsigned long long)dev->n_sectors,
1360 dev->flags & ATA_DFLAG_LBA48 ? " LBA48" : " LBA");
1361 } else {
1362 /* CHS */
1363
1364 /* Default translation */
1365 dev->cylinders = dev->id[1];
1366 dev->heads = dev->id[3];
1367 dev->sectors = dev->id[6];
1368 dev->n_sectors = dev->cylinders * dev->heads * dev->sectors;
1369
1370 if (ata_id_current_chs_valid(dev->id)) {
1371 /* Current CHS translation is valid. */
1372 dev->cylinders = dev->id[54];
1373 dev->heads = dev->id[55];
1374 dev->sectors = dev->id[56];
1375
1376 dev->n_sectors = ata_id_u32(dev->id, 57);
1377 }
1378
1379 /* print device info to dmesg */
1380 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors: CHS %d/%d/%d\n",
1381 ap->id, device,
1382 major_version,
1383 ata_mode_string(xfer_modes),
1384 (unsigned long long)dev->n_sectors,
1385 (int)dev->cylinders, (int)dev->heads, (int)dev->sectors);
1da177e4 1386
1da177e4
LT
1387 }
1388
1389 ap->host->max_cmd_len = 16;
1da177e4
LT
1390 }
1391
1392 /* ATAPI-specific feature tests */
2c13b7ce 1393 else if (dev->class == ATA_DEV_ATAPI) {
1da177e4
LT
1394 if (ata_id_is_ata(dev->id)) /* sanity check */
1395 goto err_out_nosup;
1396
1397 rc = atapi_cdb_len(dev->id);
1398 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1399 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1400 goto err_out_nosup;
1401 }
1402 ap->cdb_len = (unsigned int) rc;
1403 ap->host->max_cmd_len = (unsigned char) ap->cdb_len;
1404
1405 /* print device info to dmesg */
1406 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1407 ap->id, device,
1408 ata_mode_string(xfer_modes));
1409 }
1410
1411 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1412 return;
1413
1414err_out_nosup:
1415 printk(KERN_WARNING "ata%u: dev %u not supported, ignoring\n",
1416 ap->id, device);
1417err_out:
1418 dev->class++; /* converts ATA_DEV_xxx into ATA_DEV_xxx_UNSUP */
1419 DPRINTK("EXIT, err\n");
1420}
1421
6f2f3812 1422
057ace5e 1423static inline u8 ata_dev_knobble(const struct ata_port *ap)
6f2f3812
BC
1424{
1425 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(ap->device->id)));
1426}
1427
1428/**
1429 * ata_dev_config - Run device specific handlers and check for
1430 * SATA->PATA bridges
8a60a071 1431 * @ap: Bus
6f2f3812
BC
1432 * @i: Device
1433 *
1434 * LOCKING:
1435 */
8a60a071 1436
6f2f3812
BC
1437void ata_dev_config(struct ata_port *ap, unsigned int i)
1438{
1439 /* limit bridge transfers to udma5, 200 sectors */
1440 if (ata_dev_knobble(ap)) {
1441 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1442 ap->id, ap->device->devno);
1443 ap->udma_mask &= ATA_UDMA5;
1444 ap->host->max_sectors = ATA_MAX_SECTORS;
1445 ap->host->hostt->max_sectors = ATA_MAX_SECTORS;
9d824d07 1446 ap->device[i].flags |= ATA_DFLAG_LOCK_SECTORS;
6f2f3812
BC
1447 }
1448
1449 if (ap->ops->dev_config)
1450 ap->ops->dev_config(ap, &ap->device[i]);
1451}
1452
1da177e4
LT
1453/**
1454 * ata_bus_probe - Reset and probe ATA bus
1455 * @ap: Bus to probe
1456 *
0cba632b
JG
1457 * Master ATA bus probing function. Initiates a hardware-dependent
1458 * bus reset, then attempts to identify any devices found on
1459 * the bus.
1460 *
1da177e4 1461 * LOCKING:
0cba632b 1462 * PCI/etc. bus probe sem.
1da177e4
LT
1463 *
1464 * RETURNS:
1465 * Zero on success, non-zero on error.
1466 */
1467
1468static int ata_bus_probe(struct ata_port *ap)
1469{
1470 unsigned int i, found = 0;
1471
1472 ap->ops->phy_reset(ap);
1473 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1474 goto err_out;
1475
1476 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1477 ata_dev_identify(ap, i);
1478 if (ata_dev_present(&ap->device[i])) {
1479 found = 1;
6f2f3812 1480 ata_dev_config(ap,i);
1da177e4
LT
1481 }
1482 }
1483
1484 if ((!found) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1485 goto err_out_disable;
1486
1487 ata_set_mode(ap);
1488 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1489 goto err_out_disable;
1490
1491 return 0;
1492
1493err_out_disable:
1494 ap->ops->port_disable(ap);
1495err_out:
1496 return -1;
1497}
1498
1499/**
0cba632b
JG
1500 * ata_port_probe - Mark port as enabled
1501 * @ap: Port for which we indicate enablement
1da177e4 1502 *
0cba632b
JG
1503 * Modify @ap data structure such that the system
1504 * thinks that the entire port is enabled.
1505 *
1506 * LOCKING: host_set lock, or some other form of
1507 * serialization.
1da177e4
LT
1508 */
1509
1510void ata_port_probe(struct ata_port *ap)
1511{
1512 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1513}
1514
3be680b7
TH
1515/**
1516 * sata_print_link_status - Print SATA link status
1517 * @ap: SATA port to printk link status about
1518 *
1519 * This function prints link speed and status of a SATA link.
1520 *
1521 * LOCKING:
1522 * None.
1523 */
1524static void sata_print_link_status(struct ata_port *ap)
1525{
1526 u32 sstatus, tmp;
1527 const char *speed;
1528
1529 if (!ap->ops->scr_read)
1530 return;
1531
1532 sstatus = scr_read(ap, SCR_STATUS);
1533
1534 if (sata_dev_present(ap)) {
1535 tmp = (sstatus >> 4) & 0xf;
1536 if (tmp & (1 << 0))
1537 speed = "1.5";
1538 else if (tmp & (1 << 1))
1539 speed = "3.0";
1540 else
1541 speed = "<unknown>";
1542 printk(KERN_INFO "ata%u: SATA link up %s Gbps (SStatus %X)\n",
1543 ap->id, speed, sstatus);
1544 } else {
1545 printk(KERN_INFO "ata%u: SATA link down (SStatus %X)\n",
1546 ap->id, sstatus);
1547 }
1548}
1549
1da177e4 1550/**
780a87f7
JG
1551 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1552 * @ap: SATA port associated with target SATA PHY.
1da177e4 1553 *
780a87f7
JG
1554 * This function issues commands to standard SATA Sxxx
1555 * PHY registers, to wake up the phy (and device), and
1556 * clear any reset condition.
1da177e4
LT
1557 *
1558 * LOCKING:
0cba632b 1559 * PCI/etc. bus probe sem.
1da177e4
LT
1560 *
1561 */
1562void __sata_phy_reset(struct ata_port *ap)
1563{
1564 u32 sstatus;
1565 unsigned long timeout = jiffies + (HZ * 5);
1566
1567 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e
BR
1568 /* issue phy wake/reset */
1569 scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1570 /* Couldn't find anything in SATA I/II specs, but
1571 * AHCI-1.1 10.4.2 says at least 1 ms. */
1572 mdelay(1);
1da177e4 1573 }
cdcca89e 1574 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1da177e4
LT
1575
1576 /* wait for phy to become ready, if necessary */
1577 do {
1578 msleep(200);
1579 sstatus = scr_read(ap, SCR_STATUS);
1580 if ((sstatus & 0xf) != 1)
1581 break;
1582 } while (time_before(jiffies, timeout));
1583
3be680b7
TH
1584 /* print link status */
1585 sata_print_link_status(ap);
656563e3 1586
3be680b7
TH
1587 /* TODO: phy layer with polling, timeouts, etc. */
1588 if (sata_dev_present(ap))
1da177e4 1589 ata_port_probe(ap);
3be680b7 1590 else
1da177e4 1591 ata_port_disable(ap);
1da177e4
LT
1592
1593 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1594 return;
1595
1596 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1597 ata_port_disable(ap);
1598 return;
1599 }
1600
1601 ap->cbl = ATA_CBL_SATA;
1602}
1603
1604/**
780a87f7
JG
1605 * sata_phy_reset - Reset SATA bus.
1606 * @ap: SATA port associated with target SATA PHY.
1da177e4 1607 *
780a87f7
JG
1608 * This function resets the SATA bus, and then probes
1609 * the bus for devices.
1da177e4
LT
1610 *
1611 * LOCKING:
0cba632b 1612 * PCI/etc. bus probe sem.
1da177e4
LT
1613 *
1614 */
1615void sata_phy_reset(struct ata_port *ap)
1616{
1617 __sata_phy_reset(ap);
1618 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1619 return;
1620 ata_bus_reset(ap);
1621}
1622
1623/**
780a87f7
JG
1624 * ata_port_disable - Disable port.
1625 * @ap: Port to be disabled.
1da177e4 1626 *
780a87f7
JG
1627 * Modify @ap data structure such that the system
1628 * thinks that the entire port is disabled, and should
1629 * never attempt to probe or communicate with devices
1630 * on this port.
1631 *
1632 * LOCKING: host_set lock, or some other form of
1633 * serialization.
1da177e4
LT
1634 */
1635
1636void ata_port_disable(struct ata_port *ap)
1637{
1638 ap->device[0].class = ATA_DEV_NONE;
1639 ap->device[1].class = ATA_DEV_NONE;
1640 ap->flags |= ATA_FLAG_PORT_DISABLED;
1641}
1642
452503f9
AC
1643/*
1644 * This mode timing computation functionality is ported over from
1645 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1646 */
1647/*
1648 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1649 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1650 * for PIO 5, which is a nonstandard extension and UDMA6, which
1651 * is currently supported only by Maxtor drives.
1652 */
1653
1654static const struct ata_timing ata_timing[] = {
1655
1656 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1657 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1658 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1659 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1660
1661 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1662 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1663 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1664
1665/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1666
1667 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1668 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1669 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1670
1671 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1672 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1673 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1674
1675/* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1676 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1677 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1678
1679 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1680 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1681 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1682
1683/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1684
1685 { 0xFF }
1686};
1687
1688#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1689#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1690
1691static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1692{
1693 q->setup = EZ(t->setup * 1000, T);
1694 q->act8b = EZ(t->act8b * 1000, T);
1695 q->rec8b = EZ(t->rec8b * 1000, T);
1696 q->cyc8b = EZ(t->cyc8b * 1000, T);
1697 q->active = EZ(t->active * 1000, T);
1698 q->recover = EZ(t->recover * 1000, T);
1699 q->cycle = EZ(t->cycle * 1000, T);
1700 q->udma = EZ(t->udma * 1000, UT);
1701}
1702
1703void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1704 struct ata_timing *m, unsigned int what)
1705{
1706 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1707 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1708 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1709 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1710 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1711 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1712 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1713 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1714}
1715
1716static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1717{
1718 const struct ata_timing *t;
1719
1720 for (t = ata_timing; t->mode != speed; t++)
91190758 1721 if (t->mode == 0xFF)
452503f9
AC
1722 return NULL;
1723 return t;
1724}
1725
1726int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1727 struct ata_timing *t, int T, int UT)
1728{
1729 const struct ata_timing *s;
1730 struct ata_timing p;
1731
1732 /*
1733 * Find the mode.
75b1f2f8 1734 */
452503f9
AC
1735
1736 if (!(s = ata_timing_find_mode(speed)))
1737 return -EINVAL;
1738
75b1f2f8
AL
1739 memcpy(t, s, sizeof(*s));
1740
452503f9
AC
1741 /*
1742 * If the drive is an EIDE drive, it can tell us it needs extended
1743 * PIO/MW_DMA cycle timing.
1744 */
1745
1746 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1747 memset(&p, 0, sizeof(p));
1748 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1749 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1750 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1751 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1752 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1753 }
1754 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1755 }
1756
1757 /*
1758 * Convert the timing to bus clock counts.
1759 */
1760
75b1f2f8 1761 ata_timing_quantize(t, t, T, UT);
452503f9
AC
1762
1763 /*
1764 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, S.M.A.R.T
1765 * and some other commands. We have to ensure that the DMA cycle timing is
1766 * slower/equal than the fastest PIO timing.
1767 */
1768
1769 if (speed > XFER_PIO_4) {
1770 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1771 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1772 }
1773
1774 /*
1775 * Lenghten active & recovery time so that cycle time is correct.
1776 */
1777
1778 if (t->act8b + t->rec8b < t->cyc8b) {
1779 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1780 t->rec8b = t->cyc8b - t->act8b;
1781 }
1782
1783 if (t->active + t->recover < t->cycle) {
1784 t->active += (t->cycle - (t->active + t->recover)) / 2;
1785 t->recover = t->cycle - t->active;
1786 }
1787
1788 return 0;
1789}
1790
057ace5e 1791static const struct {
1da177e4
LT
1792 unsigned int shift;
1793 u8 base;
1794} xfer_mode_classes[] = {
1795 { ATA_SHIFT_UDMA, XFER_UDMA_0 },
1796 { ATA_SHIFT_MWDMA, XFER_MW_DMA_0 },
1797 { ATA_SHIFT_PIO, XFER_PIO_0 },
1798};
1799
858119e1 1800static u8 base_from_shift(unsigned int shift)
1da177e4
LT
1801{
1802 int i;
1803
1804 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++)
1805 if (xfer_mode_classes[i].shift == shift)
1806 return xfer_mode_classes[i].base;
1807
1808 return 0xff;
1809}
1810
1811static void ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1812{
1813 int ofs, idx;
1814 u8 base;
1815
1816 if (!ata_dev_present(dev) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1817 return;
1818
1819 if (dev->xfer_shift == ATA_SHIFT_PIO)
1820 dev->flags |= ATA_DFLAG_PIO;
1821
1822 ata_dev_set_xfermode(ap, dev);
1823
1824 base = base_from_shift(dev->xfer_shift);
1825 ofs = dev->xfer_mode - base;
1826 idx = ofs + dev->xfer_shift;
1827 WARN_ON(idx >= ARRAY_SIZE(xfer_mode_str));
1828
1829 DPRINTK("idx=%d xfer_shift=%u, xfer_mode=0x%x, base=0x%x, offset=%d\n",
1830 idx, dev->xfer_shift, (int)dev->xfer_mode, (int)base, ofs);
1831
1832 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1833 ap->id, dev->devno, xfer_mode_str[idx]);
1834}
1835
1836static int ata_host_set_pio(struct ata_port *ap)
1837{
1838 unsigned int mask;
1839 int x, i;
1840 u8 base, xfer_mode;
1841
1842 mask = ata_get_mode_mask(ap, ATA_SHIFT_PIO);
1843 x = fgb(mask);
1844 if (x < 0) {
1845 printk(KERN_WARNING "ata%u: no PIO support\n", ap->id);
1846 return -1;
1847 }
1848
1849 base = base_from_shift(ATA_SHIFT_PIO);
1850 xfer_mode = base + x;
1851
1852 DPRINTK("base 0x%x xfer_mode 0x%x mask 0x%x x %d\n",
1853 (int)base, (int)xfer_mode, mask, x);
1854
1855 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1856 struct ata_device *dev = &ap->device[i];
1857 if (ata_dev_present(dev)) {
1858 dev->pio_mode = xfer_mode;
1859 dev->xfer_mode = xfer_mode;
1860 dev->xfer_shift = ATA_SHIFT_PIO;
1861 if (ap->ops->set_piomode)
1862 ap->ops->set_piomode(ap, dev);
1863 }
1864 }
1865
1866 return 0;
1867}
1868
1869static void ata_host_set_dma(struct ata_port *ap, u8 xfer_mode,
1870 unsigned int xfer_shift)
1871{
1872 int i;
1873
1874 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1875 struct ata_device *dev = &ap->device[i];
1876 if (ata_dev_present(dev)) {
1877 dev->dma_mode = xfer_mode;
1878 dev->xfer_mode = xfer_mode;
1879 dev->xfer_shift = xfer_shift;
1880 if (ap->ops->set_dmamode)
1881 ap->ops->set_dmamode(ap, dev);
1882 }
1883 }
1884}
1885
1886/**
1887 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1888 * @ap: port on which timings will be programmed
1889 *
780a87f7
JG
1890 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1891 *
1da177e4 1892 * LOCKING:
0cba632b 1893 * PCI/etc. bus probe sem.
1da177e4
LT
1894 *
1895 */
1896static void ata_set_mode(struct ata_port *ap)
1897{
8cbd6df1 1898 unsigned int xfer_shift;
1da177e4
LT
1899 u8 xfer_mode;
1900 int rc;
1901
1902 /* step 1: always set host PIO timings */
1903 rc = ata_host_set_pio(ap);
1904 if (rc)
1905 goto err_out;
1906
1907 /* step 2: choose the best data xfer mode */
1908 xfer_mode = xfer_shift = 0;
1909 rc = ata_choose_xfer_mode(ap, &xfer_mode, &xfer_shift);
1910 if (rc)
1911 goto err_out;
1912
1913 /* step 3: if that xfer mode isn't PIO, set host DMA timings */
1914 if (xfer_shift != ATA_SHIFT_PIO)
1915 ata_host_set_dma(ap, xfer_mode, xfer_shift);
1916
1917 /* step 4: update devices' xfer mode */
1918 ata_dev_set_mode(ap, &ap->device[0]);
1919 ata_dev_set_mode(ap, &ap->device[1]);
1920
1921 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1922 return;
1923
1924 if (ap->ops->post_set_mode)
1925 ap->ops->post_set_mode(ap);
1926
1da177e4
LT
1927 return;
1928
1929err_out:
1930 ata_port_disable(ap);
1931}
1932
1933/**
1934 * ata_busy_sleep - sleep until BSY clears, or timeout
1935 * @ap: port containing status register to be polled
1936 * @tmout_pat: impatience timeout
1937 * @tmout: overall timeout
1938 *
780a87f7
JG
1939 * Sleep until ATA Status register bit BSY clears,
1940 * or a timeout occurs.
1941 *
1942 * LOCKING: None.
1da177e4
LT
1943 *
1944 */
1945
1946static unsigned int ata_busy_sleep (struct ata_port *ap,
1947 unsigned long tmout_pat,
1948 unsigned long tmout)
1949{
1950 unsigned long timer_start, timeout;
1951 u8 status;
1952
1953 status = ata_busy_wait(ap, ATA_BUSY, 300);
1954 timer_start = jiffies;
1955 timeout = timer_start + tmout_pat;
1956 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1957 msleep(50);
1958 status = ata_busy_wait(ap, ATA_BUSY, 3);
1959 }
1960
1961 if (status & ATA_BUSY)
1962 printk(KERN_WARNING "ata%u is slow to respond, "
1963 "please be patient\n", ap->id);
1964
1965 timeout = timer_start + tmout;
1966 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1967 msleep(50);
1968 status = ata_chk_status(ap);
1969 }
1970
1971 if (status & ATA_BUSY) {
1972 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
1973 ap->id, tmout / HZ);
1974 return 1;
1975 }
1976
1977 return 0;
1978}
1979
1980static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
1981{
1982 struct ata_ioports *ioaddr = &ap->ioaddr;
1983 unsigned int dev0 = devmask & (1 << 0);
1984 unsigned int dev1 = devmask & (1 << 1);
1985 unsigned long timeout;
1986
1987 /* if device 0 was found in ata_devchk, wait for its
1988 * BSY bit to clear
1989 */
1990 if (dev0)
1991 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1992
1993 /* if device 1 was found in ata_devchk, wait for
1994 * register access, then wait for BSY to clear
1995 */
1996 timeout = jiffies + ATA_TMOUT_BOOT;
1997 while (dev1) {
1998 u8 nsect, lbal;
1999
2000 ap->ops->dev_select(ap, 1);
2001 if (ap->flags & ATA_FLAG_MMIO) {
2002 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2003 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2004 } else {
2005 nsect = inb(ioaddr->nsect_addr);
2006 lbal = inb(ioaddr->lbal_addr);
2007 }
2008 if ((nsect == 1) && (lbal == 1))
2009 break;
2010 if (time_after(jiffies, timeout)) {
2011 dev1 = 0;
2012 break;
2013 }
2014 msleep(50); /* give drive a breather */
2015 }
2016 if (dev1)
2017 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2018
2019 /* is all this really necessary? */
2020 ap->ops->dev_select(ap, 0);
2021 if (dev1)
2022 ap->ops->dev_select(ap, 1);
2023 if (dev0)
2024 ap->ops->dev_select(ap, 0);
2025}
2026
2027/**
0cba632b
JG
2028 * ata_bus_edd - Issue EXECUTE DEVICE DIAGNOSTIC command.
2029 * @ap: Port to reset and probe
2030 *
2031 * Use the EXECUTE DEVICE DIAGNOSTIC command to reset and
2032 * probe the bus. Not often used these days.
1da177e4
LT
2033 *
2034 * LOCKING:
0cba632b 2035 * PCI/etc. bus probe sem.
e5338254 2036 * Obtains host_set lock.
1da177e4
LT
2037 *
2038 */
2039
2040static unsigned int ata_bus_edd(struct ata_port *ap)
2041{
2042 struct ata_taskfile tf;
e5338254 2043 unsigned long flags;
1da177e4
LT
2044
2045 /* set up execute-device-diag (bus reset) taskfile */
2046 /* also, take interrupts to a known state (disabled) */
2047 DPRINTK("execute-device-diag\n");
2048 ata_tf_init(ap, &tf, 0);
2049 tf.ctl |= ATA_NIEN;
2050 tf.command = ATA_CMD_EDD;
2051 tf.protocol = ATA_PROT_NODATA;
2052
2053 /* do bus reset */
e5338254 2054 spin_lock_irqsave(&ap->host_set->lock, flags);
1da177e4 2055 ata_tf_to_host(ap, &tf);
e5338254 2056 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1da177e4
LT
2057
2058 /* spec says at least 2ms. but who knows with those
2059 * crazy ATAPI devices...
2060 */
2061 msleep(150);
2062
2063 return ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2064}
2065
2066static unsigned int ata_bus_softreset(struct ata_port *ap,
2067 unsigned int devmask)
2068{
2069 struct ata_ioports *ioaddr = &ap->ioaddr;
2070
2071 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2072
2073 /* software reset. causes dev0 to be selected */
2074 if (ap->flags & ATA_FLAG_MMIO) {
2075 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2076 udelay(20); /* FIXME: flush */
2077 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2078 udelay(20); /* FIXME: flush */
2079 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2080 } else {
2081 outb(ap->ctl, ioaddr->ctl_addr);
2082 udelay(10);
2083 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2084 udelay(10);
2085 outb(ap->ctl, ioaddr->ctl_addr);
2086 }
2087
2088 /* spec mandates ">= 2ms" before checking status.
2089 * We wait 150ms, because that was the magic delay used for
2090 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2091 * between when the ATA command register is written, and then
2092 * status is checked. Because waiting for "a while" before
2093 * checking status is fine, post SRST, we perform this magic
2094 * delay here as well.
2095 */
2096 msleep(150);
2097
2098 ata_bus_post_reset(ap, devmask);
2099
2100 return 0;
2101}
2102
2103/**
2104 * ata_bus_reset - reset host port and associated ATA channel
2105 * @ap: port to reset
2106 *
2107 * This is typically the first time we actually start issuing
2108 * commands to the ATA channel. We wait for BSY to clear, then
2109 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2110 * result. Determine what devices, if any, are on the channel
2111 * by looking at the device 0/1 error register. Look at the signature
2112 * stored in each device's taskfile registers, to determine if
2113 * the device is ATA or ATAPI.
2114 *
2115 * LOCKING:
0cba632b
JG
2116 * PCI/etc. bus probe sem.
2117 * Obtains host_set lock.
1da177e4
LT
2118 *
2119 * SIDE EFFECTS:
2120 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
2121 */
2122
2123void ata_bus_reset(struct ata_port *ap)
2124{
2125 struct ata_ioports *ioaddr = &ap->ioaddr;
2126 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2127 u8 err;
2128 unsigned int dev0, dev1 = 0, rc = 0, devmask = 0;
2129
2130 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2131
2132 /* determine if device 0/1 are present */
2133 if (ap->flags & ATA_FLAG_SATA_RESET)
2134 dev0 = 1;
2135 else {
2136 dev0 = ata_devchk(ap, 0);
2137 if (slave_possible)
2138 dev1 = ata_devchk(ap, 1);
2139 }
2140
2141 if (dev0)
2142 devmask |= (1 << 0);
2143 if (dev1)
2144 devmask |= (1 << 1);
2145
2146 /* select device 0 again */
2147 ap->ops->dev_select(ap, 0);
2148
2149 /* issue bus reset */
2150 if (ap->flags & ATA_FLAG_SRST)
2151 rc = ata_bus_softreset(ap, devmask);
2152 else if ((ap->flags & ATA_FLAG_SATA_RESET) == 0) {
2153 /* set up device control */
2154 if (ap->flags & ATA_FLAG_MMIO)
2155 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2156 else
2157 outb(ap->ctl, ioaddr->ctl_addr);
2158 rc = ata_bus_edd(ap);
2159 }
2160
2161 if (rc)
2162 goto err_out;
2163
2164 /*
2165 * determine by signature whether we have ATA or ATAPI devices
2166 */
2167 err = ata_dev_try_classify(ap, 0);
2168 if ((slave_possible) && (err != 0x81))
2169 ata_dev_try_classify(ap, 1);
2170
2171 /* re-enable interrupts */
2172 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2173 ata_irq_on(ap);
2174
2175 /* is double-select really necessary? */
2176 if (ap->device[1].class != ATA_DEV_NONE)
2177 ap->ops->dev_select(ap, 1);
2178 if (ap->device[0].class != ATA_DEV_NONE)
2179 ap->ops->dev_select(ap, 0);
2180
2181 /* if no devices were detected, disable this port */
2182 if ((ap->device[0].class == ATA_DEV_NONE) &&
2183 (ap->device[1].class == ATA_DEV_NONE))
2184 goto err_out;
2185
2186 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2187 /* set up device control for ATA_FLAG_SATA_RESET */
2188 if (ap->flags & ATA_FLAG_MMIO)
2189 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2190 else
2191 outb(ap->ctl, ioaddr->ctl_addr);
2192 }
2193
2194 DPRINTK("EXIT\n");
2195 return;
2196
2197err_out:
2198 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2199 ap->ops->port_disable(ap);
2200
2201 DPRINTK("EXIT\n");
2202}
2203
057ace5e
JG
2204static void ata_pr_blacklisted(const struct ata_port *ap,
2205 const struct ata_device *dev)
1da177e4
LT
2206{
2207 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, disabling DMA\n",
2208 ap->id, dev->devno);
2209}
2210
98ac62de 2211static const char * const ata_dma_blacklist [] = {
1da177e4
LT
2212 "WDC AC11000H",
2213 "WDC AC22100H",
2214 "WDC AC32500H",
2215 "WDC AC33100H",
2216 "WDC AC31600H",
2217 "WDC AC32100H",
2218 "WDC AC23200L",
2219 "Compaq CRD-8241B",
2220 "CRD-8400B",
2221 "CRD-8480B",
2222 "CRD-8482B",
2223 "CRD-84",
2224 "SanDisk SDP3B",
2225 "SanDisk SDP3B-64",
2226 "SANYO CD-ROM CRD",
2227 "HITACHI CDR-8",
2228 "HITACHI CDR-8335",
2229 "HITACHI CDR-8435",
2230 "Toshiba CD-ROM XM-6202B",
e922256a 2231 "TOSHIBA CD-ROM XM-1702BC",
1da177e4
LT
2232 "CD-532E-A",
2233 "E-IDE CD-ROM CR-840",
2234 "CD-ROM Drive/F5A",
2235 "WPI CDD-820",
2236 "SAMSUNG CD-ROM SC-148C",
2237 "SAMSUNG CD-ROM SC",
2238 "SanDisk SDP3B-64",
1da177e4
LT
2239 "ATAPI CD-ROM DRIVE 40X MAXIMUM",
2240 "_NEC DV5800A",
2241};
2242
057ace5e 2243static int ata_dma_blacklisted(const struct ata_device *dev)
1da177e4
LT
2244{
2245 unsigned char model_num[40];
2246 char *s;
2247 unsigned int len;
2248 int i;
2249
2250 ata_dev_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2251 sizeof(model_num));
2252 s = &model_num[0];
2253 len = strnlen(s, sizeof(model_num));
2254
2255 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2256 while ((len > 0) && (s[len - 1] == ' ')) {
2257 len--;
2258 s[len] = 0;
2259 }
2260
2261 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i++)
2262 if (!strncmp(ata_dma_blacklist[i], s, len))
2263 return 1;
2264
2265 return 0;
2266}
2267
057ace5e 2268static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift)
1da177e4 2269{
057ace5e 2270 const struct ata_device *master, *slave;
1da177e4
LT
2271 unsigned int mask;
2272
2273 master = &ap->device[0];
2274 slave = &ap->device[1];
2275
2276 assert (ata_dev_present(master) || ata_dev_present(slave));
2277
2278 if (shift == ATA_SHIFT_UDMA) {
2279 mask = ap->udma_mask;
2280 if (ata_dev_present(master)) {
2281 mask &= (master->id[ATA_ID_UDMA_MODES] & 0xff);
057ace5e 2282 if (ata_dma_blacklisted(master)) {
1da177e4
LT
2283 mask = 0;
2284 ata_pr_blacklisted(ap, master);
2285 }
2286 }
2287 if (ata_dev_present(slave)) {
2288 mask &= (slave->id[ATA_ID_UDMA_MODES] & 0xff);
057ace5e 2289 if (ata_dma_blacklisted(slave)) {
1da177e4
LT
2290 mask = 0;
2291 ata_pr_blacklisted(ap, slave);
2292 }
2293 }
2294 }
2295 else if (shift == ATA_SHIFT_MWDMA) {
2296 mask = ap->mwdma_mask;
2297 if (ata_dev_present(master)) {
2298 mask &= (master->id[ATA_ID_MWDMA_MODES] & 0x07);
057ace5e 2299 if (ata_dma_blacklisted(master)) {
1da177e4
LT
2300 mask = 0;
2301 ata_pr_blacklisted(ap, master);
2302 }
2303 }
2304 if (ata_dev_present(slave)) {
2305 mask &= (slave->id[ATA_ID_MWDMA_MODES] & 0x07);
057ace5e 2306 if (ata_dma_blacklisted(slave)) {
1da177e4
LT
2307 mask = 0;
2308 ata_pr_blacklisted(ap, slave);
2309 }
2310 }
2311 }
2312 else if (shift == ATA_SHIFT_PIO) {
2313 mask = ap->pio_mask;
2314 if (ata_dev_present(master)) {
2315 /* spec doesn't return explicit support for
2316 * PIO0-2, so we fake it
2317 */
2318 u16 tmp_mode = master->id[ATA_ID_PIO_MODES] & 0x03;
2319 tmp_mode <<= 3;
2320 tmp_mode |= 0x7;
2321 mask &= tmp_mode;
2322 }
2323 if (ata_dev_present(slave)) {
2324 /* spec doesn't return explicit support for
2325 * PIO0-2, so we fake it
2326 */
2327 u16 tmp_mode = slave->id[ATA_ID_PIO_MODES] & 0x03;
2328 tmp_mode <<= 3;
2329 tmp_mode |= 0x7;
2330 mask &= tmp_mode;
2331 }
2332 }
2333 else {
2334 mask = 0xffffffff; /* shut up compiler warning */
2335 BUG();
2336 }
2337
2338 return mask;
2339}
2340
2341/* find greatest bit */
2342static int fgb(u32 bitmap)
2343{
2344 unsigned int i;
2345 int x = -1;
2346
2347 for (i = 0; i < 32; i++)
2348 if (bitmap & (1 << i))
2349 x = i;
2350
2351 return x;
2352}
2353
2354/**
2355 * ata_choose_xfer_mode - attempt to find best transfer mode
2356 * @ap: Port for which an xfer mode will be selected
2357 * @xfer_mode_out: (output) SET FEATURES - XFER MODE code
2358 * @xfer_shift_out: (output) bit shift that selects this mode
2359 *
0cba632b
JG
2360 * Based on host and device capabilities, determine the
2361 * maximum transfer mode that is amenable to all.
2362 *
1da177e4 2363 * LOCKING:
0cba632b 2364 * PCI/etc. bus probe sem.
1da177e4
LT
2365 *
2366 * RETURNS:
2367 * Zero on success, negative on error.
2368 */
2369
057ace5e 2370static int ata_choose_xfer_mode(const struct ata_port *ap,
1da177e4
LT
2371 u8 *xfer_mode_out,
2372 unsigned int *xfer_shift_out)
2373{
2374 unsigned int mask, shift;
2375 int x, i;
2376
2377 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++) {
2378 shift = xfer_mode_classes[i].shift;
2379 mask = ata_get_mode_mask(ap, shift);
2380
2381 x = fgb(mask);
2382 if (x >= 0) {
2383 *xfer_mode_out = xfer_mode_classes[i].base + x;
2384 *xfer_shift_out = shift;
2385 return 0;
2386 }
2387 }
2388
2389 return -1;
2390}
2391
2392/**
2393 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2394 * @ap: Port associated with device @dev
2395 * @dev: Device to which command will be sent
2396 *
780a87f7
JG
2397 * Issue SET FEATURES - XFER MODE command to device @dev
2398 * on port @ap.
2399 *
1da177e4 2400 * LOCKING:
0cba632b 2401 * PCI/etc. bus probe sem.
1da177e4
LT
2402 */
2403
2404static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev)
2405{
a0123703 2406 struct ata_taskfile tf;
1da177e4
LT
2407
2408 /* set up set-features taskfile */
2409 DPRINTK("set features - xfer mode\n");
2410
a0123703
TH
2411 ata_tf_init(ap, &tf, dev->devno);
2412 tf.command = ATA_CMD_SET_FEATURES;
2413 tf.feature = SETFEATURES_XFER;
2414 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2415 tf.protocol = ATA_PROT_NODATA;
2416 tf.nsect = dev->xfer_mode;
1da177e4 2417
a0123703
TH
2418 if (ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0)) {
2419 printk(KERN_ERR "ata%u: failed to set xfermode, disabled\n",
2420 ap->id);
1da177e4 2421 ata_port_disable(ap);
a0123703 2422 }
1da177e4
LT
2423
2424 DPRINTK("EXIT\n");
2425}
2426
59a10b17
AL
2427/**
2428 * ata_dev_reread_id - Reread the device identify device info
2429 * @ap: port where the device is
2430 * @dev: device to reread the identify device info
2431 *
2432 * LOCKING:
2433 */
2434
2435static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev)
2436{
a0123703 2437 struct ata_taskfile tf;
59a10b17 2438
a0123703 2439 ata_tf_init(ap, &tf, dev->devno);
59a10b17
AL
2440
2441 if (dev->class == ATA_DEV_ATA) {
a0123703 2442 tf.command = ATA_CMD_ID_ATA;
59a10b17
AL
2443 DPRINTK("do ATA identify\n");
2444 } else {
a0123703 2445 tf.command = ATA_CMD_ID_ATAPI;
59a10b17
AL
2446 DPRINTK("do ATAPI identify\n");
2447 }
2448
a0123703
TH
2449 tf.flags |= ATA_TFLAG_DEVICE;
2450 tf.protocol = ATA_PROT_PIO;
59a10b17 2451
a0123703
TH
2452 if (ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
2453 dev->id, sizeof(dev->id)))
59a10b17
AL
2454 goto err_out;
2455
59a10b17
AL
2456 swap_buf_le16(dev->id, ATA_ID_WORDS);
2457
2458 ata_dump_id(dev);
2459
2460 DPRINTK("EXIT\n");
2461
2462 return;
2463err_out:
a0123703 2464 printk(KERN_ERR "ata%u: failed to reread ID, disabled\n", ap->id);
59a10b17
AL
2465 ata_port_disable(ap);
2466}
2467
8bf62ece
AL
2468/**
2469 * ata_dev_init_params - Issue INIT DEV PARAMS command
2470 * @ap: Port associated with device @dev
2471 * @dev: Device to which command will be sent
2472 *
2473 * LOCKING:
2474 */
2475
2476static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev)
2477{
a0123703 2478 struct ata_taskfile tf;
8bf62ece
AL
2479 u16 sectors = dev->id[6];
2480 u16 heads = dev->id[3];
2481
2482 /* Number of sectors per track 1-255. Number of heads 1-16 */
2483 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
2484 return;
2485
2486 /* set up init dev params taskfile */
2487 DPRINTK("init dev params \n");
2488
a0123703
TH
2489 ata_tf_init(ap, &tf, dev->devno);
2490 tf.command = ATA_CMD_INIT_DEV_PARAMS;
2491 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2492 tf.protocol = ATA_PROT_NODATA;
2493 tf.nsect = sectors;
2494 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 2495
a0123703
TH
2496 if (ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0)) {
2497 printk(KERN_ERR "ata%u: failed to init parameters, disabled\n",
2498 ap->id);
8bf62ece 2499 ata_port_disable(ap);
a0123703 2500 }
8bf62ece
AL
2501
2502 DPRINTK("EXIT\n");
2503}
2504
1da177e4 2505/**
0cba632b
JG
2506 * ata_sg_clean - Unmap DMA memory associated with command
2507 * @qc: Command containing DMA memory to be released
2508 *
2509 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
2510 *
2511 * LOCKING:
0cba632b 2512 * spin_lock_irqsave(host_set lock)
1da177e4
LT
2513 */
2514
2515static void ata_sg_clean(struct ata_queued_cmd *qc)
2516{
2517 struct ata_port *ap = qc->ap;
cedc9a47 2518 struct scatterlist *sg = qc->__sg;
1da177e4 2519 int dir = qc->dma_dir;
cedc9a47 2520 void *pad_buf = NULL;
1da177e4
LT
2521
2522 assert(qc->flags & ATA_QCFLAG_DMAMAP);
2523 assert(sg != NULL);
2524
2525 if (qc->flags & ATA_QCFLAG_SINGLE)
2526 assert(qc->n_elem == 1);
2527
2c13b7ce 2528 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 2529
cedc9a47
JG
2530 /* if we padded the buffer out to 32-bit bound, and data
2531 * xfer direction is from-device, we must copy from the
2532 * pad buffer back into the supplied buffer
2533 */
2534 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
2535 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2536
2537 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d
JG
2538 if (qc->n_elem)
2539 dma_unmap_sg(ap->host_set->dev, sg, qc->n_elem, dir);
cedc9a47
JG
2540 /* restore last sg */
2541 sg[qc->orig_n_elem - 1].length += qc->pad_len;
2542 if (pad_buf) {
2543 struct scatterlist *psg = &qc->pad_sgent;
2544 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2545 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 2546 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
2547 }
2548 } else {
e1410f2d
JG
2549 if (sg_dma_len(&sg[0]) > 0)
2550 dma_unmap_single(ap->host_set->dev,
2551 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
2552 dir);
cedc9a47
JG
2553 /* restore sg */
2554 sg->length += qc->pad_len;
2555 if (pad_buf)
2556 memcpy(qc->buf_virt + sg->length - qc->pad_len,
2557 pad_buf, qc->pad_len);
2558 }
1da177e4
LT
2559
2560 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 2561 qc->__sg = NULL;
1da177e4
LT
2562}
2563
2564/**
2565 * ata_fill_sg - Fill PCI IDE PRD table
2566 * @qc: Metadata associated with taskfile to be transferred
2567 *
780a87f7
JG
2568 * Fill PCI IDE PRD (scatter-gather) table with segments
2569 * associated with the current disk command.
2570 *
1da177e4 2571 * LOCKING:
780a87f7 2572 * spin_lock_irqsave(host_set lock)
1da177e4
LT
2573 *
2574 */
2575static void ata_fill_sg(struct ata_queued_cmd *qc)
2576{
1da177e4 2577 struct ata_port *ap = qc->ap;
cedc9a47
JG
2578 struct scatterlist *sg;
2579 unsigned int idx;
1da177e4 2580
cedc9a47 2581 assert(qc->__sg != NULL);
1da177e4
LT
2582 assert(qc->n_elem > 0);
2583
2584 idx = 0;
cedc9a47 2585 ata_for_each_sg(sg, qc) {
1da177e4
LT
2586 u32 addr, offset;
2587 u32 sg_len, len;
2588
2589 /* determine if physical DMA addr spans 64K boundary.
2590 * Note h/w doesn't support 64-bit, so we unconditionally
2591 * truncate dma_addr_t to u32.
2592 */
2593 addr = (u32) sg_dma_address(sg);
2594 sg_len = sg_dma_len(sg);
2595
2596 while (sg_len) {
2597 offset = addr & 0xffff;
2598 len = sg_len;
2599 if ((offset + sg_len) > 0x10000)
2600 len = 0x10000 - offset;
2601
2602 ap->prd[idx].addr = cpu_to_le32(addr);
2603 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2604 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
2605
2606 idx++;
2607 sg_len -= len;
2608 addr += len;
2609 }
2610 }
2611
2612 if (idx)
2613 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2614}
2615/**
2616 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2617 * @qc: Metadata associated with taskfile to check
2618 *
780a87f7
JG
2619 * Allow low-level driver to filter ATA PACKET commands, returning
2620 * a status indicating whether or not it is OK to use DMA for the
2621 * supplied PACKET command.
2622 *
1da177e4 2623 * LOCKING:
0cba632b
JG
2624 * spin_lock_irqsave(host_set lock)
2625 *
1da177e4
LT
2626 * RETURNS: 0 when ATAPI DMA can be used
2627 * nonzero otherwise
2628 */
2629int ata_check_atapi_dma(struct ata_queued_cmd *qc)
2630{
2631 struct ata_port *ap = qc->ap;
2632 int rc = 0; /* Assume ATAPI DMA is OK by default */
2633
2634 if (ap->ops->check_atapi_dma)
2635 rc = ap->ops->check_atapi_dma(qc);
2636
2637 return rc;
2638}
2639/**
2640 * ata_qc_prep - Prepare taskfile for submission
2641 * @qc: Metadata associated with taskfile to be prepared
2642 *
780a87f7
JG
2643 * Prepare ATA taskfile for submission.
2644 *
1da177e4
LT
2645 * LOCKING:
2646 * spin_lock_irqsave(host_set lock)
2647 */
2648void ata_qc_prep(struct ata_queued_cmd *qc)
2649{
2650 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2651 return;
2652
2653 ata_fill_sg(qc);
2654}
2655
0cba632b
JG
2656/**
2657 * ata_sg_init_one - Associate command with memory buffer
2658 * @qc: Command to be associated
2659 * @buf: Memory buffer
2660 * @buflen: Length of memory buffer, in bytes.
2661 *
2662 * Initialize the data-related elements of queued_cmd @qc
2663 * to point to a single memory buffer, @buf of byte length @buflen.
2664 *
2665 * LOCKING:
2666 * spin_lock_irqsave(host_set lock)
2667 */
2668
1da177e4
LT
2669void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
2670{
2671 struct scatterlist *sg;
2672
2673 qc->flags |= ATA_QCFLAG_SINGLE;
2674
2675 memset(&qc->sgent, 0, sizeof(qc->sgent));
cedc9a47 2676 qc->__sg = &qc->sgent;
1da177e4 2677 qc->n_elem = 1;
cedc9a47 2678 qc->orig_n_elem = 1;
1da177e4
LT
2679 qc->buf_virt = buf;
2680
cedc9a47 2681 sg = qc->__sg;
f0612bbc 2682 sg_init_one(sg, buf, buflen);
1da177e4
LT
2683}
2684
0cba632b
JG
2685/**
2686 * ata_sg_init - Associate command with scatter-gather table.
2687 * @qc: Command to be associated
2688 * @sg: Scatter-gather table.
2689 * @n_elem: Number of elements in s/g table.
2690 *
2691 * Initialize the data-related elements of queued_cmd @qc
2692 * to point to a scatter-gather table @sg, containing @n_elem
2693 * elements.
2694 *
2695 * LOCKING:
2696 * spin_lock_irqsave(host_set lock)
2697 */
2698
1da177e4
LT
2699void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
2700 unsigned int n_elem)
2701{
2702 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 2703 qc->__sg = sg;
1da177e4 2704 qc->n_elem = n_elem;
cedc9a47 2705 qc->orig_n_elem = n_elem;
1da177e4
LT
2706}
2707
2708/**
0cba632b
JG
2709 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
2710 * @qc: Command with memory buffer to be mapped.
2711 *
2712 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
2713 *
2714 * LOCKING:
2715 * spin_lock_irqsave(host_set lock)
2716 *
2717 * RETURNS:
0cba632b 2718 * Zero on success, negative on error.
1da177e4
LT
2719 */
2720
2721static int ata_sg_setup_one(struct ata_queued_cmd *qc)
2722{
2723 struct ata_port *ap = qc->ap;
2724 int dir = qc->dma_dir;
cedc9a47 2725 struct scatterlist *sg = qc->__sg;
1da177e4
LT
2726 dma_addr_t dma_address;
2727
cedc9a47
JG
2728 /* we must lengthen transfers to end on a 32-bit boundary */
2729 qc->pad_len = sg->length & 3;
2730 if (qc->pad_len) {
2731 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2732 struct scatterlist *psg = &qc->pad_sgent;
2733
2734 assert(qc->dev->class == ATA_DEV_ATAPI);
2735
2736 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
2737
2738 if (qc->tf.flags & ATA_TFLAG_WRITE)
2739 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
2740 qc->pad_len);
2741
2742 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
2743 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
2744 /* trim sg */
2745 sg->length -= qc->pad_len;
2746
2747 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
2748 sg->length, qc->pad_len);
2749 }
2750
e1410f2d
JG
2751 if (!sg->length) {
2752 sg_dma_address(sg) = 0;
2753 goto skip_map;
2754 }
2755
1da177e4 2756 dma_address = dma_map_single(ap->host_set->dev, qc->buf_virt,
32529e01 2757 sg->length, dir);
537a95d9
TH
2758 if (dma_mapping_error(dma_address)) {
2759 /* restore sg */
2760 sg->length += qc->pad_len;
1da177e4 2761 return -1;
537a95d9 2762 }
1da177e4
LT
2763
2764 sg_dma_address(sg) = dma_address;
e1410f2d 2765skip_map:
32529e01 2766 sg_dma_len(sg) = sg->length;
1da177e4
LT
2767
2768 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
2769 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
2770
2771 return 0;
2772}
2773
2774/**
0cba632b
JG
2775 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
2776 * @qc: Command with scatter-gather table to be mapped.
2777 *
2778 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
2779 *
2780 * LOCKING:
2781 * spin_lock_irqsave(host_set lock)
2782 *
2783 * RETURNS:
0cba632b 2784 * Zero on success, negative on error.
1da177e4
LT
2785 *
2786 */
2787
2788static int ata_sg_setup(struct ata_queued_cmd *qc)
2789{
2790 struct ata_port *ap = qc->ap;
cedc9a47
JG
2791 struct scatterlist *sg = qc->__sg;
2792 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 2793 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
2794
2795 VPRINTK("ENTER, ata%u\n", ap->id);
2796 assert(qc->flags & ATA_QCFLAG_SG);
2797
cedc9a47
JG
2798 /* we must lengthen transfers to end on a 32-bit boundary */
2799 qc->pad_len = lsg->length & 3;
2800 if (qc->pad_len) {
2801 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2802 struct scatterlist *psg = &qc->pad_sgent;
2803 unsigned int offset;
2804
2805 assert(qc->dev->class == ATA_DEV_ATAPI);
2806
2807 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
2808
2809 /*
2810 * psg->page/offset are used to copy to-be-written
2811 * data in this function or read data in ata_sg_clean.
2812 */
2813 offset = lsg->offset + lsg->length - qc->pad_len;
2814 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
2815 psg->offset = offset_in_page(offset);
2816
2817 if (qc->tf.flags & ATA_TFLAG_WRITE) {
2818 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2819 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 2820 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
2821 }
2822
2823 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
2824 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
2825 /* trim last sg */
2826 lsg->length -= qc->pad_len;
e1410f2d
JG
2827 if (lsg->length == 0)
2828 trim_sg = 1;
cedc9a47
JG
2829
2830 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
2831 qc->n_elem - 1, lsg->length, qc->pad_len);
2832 }
2833
e1410f2d
JG
2834 pre_n_elem = qc->n_elem;
2835 if (trim_sg && pre_n_elem)
2836 pre_n_elem--;
2837
2838 if (!pre_n_elem) {
2839 n_elem = 0;
2840 goto skip_map;
2841 }
2842
1da177e4 2843 dir = qc->dma_dir;
e1410f2d 2844 n_elem = dma_map_sg(ap->host_set->dev, sg, pre_n_elem, dir);
537a95d9
TH
2845 if (n_elem < 1) {
2846 /* restore last sg */
2847 lsg->length += qc->pad_len;
1da177e4 2848 return -1;
537a95d9 2849 }
1da177e4
LT
2850
2851 DPRINTK("%d sg elements mapped\n", n_elem);
2852
e1410f2d 2853skip_map:
1da177e4
LT
2854 qc->n_elem = n_elem;
2855
2856 return 0;
2857}
2858
40e8c82c
TH
2859/**
2860 * ata_poll_qc_complete - turn irq back on and finish qc
2861 * @qc: Command to complete
8e8b77dd 2862 * @err_mask: ATA status register content
40e8c82c
TH
2863 *
2864 * LOCKING:
2865 * None. (grabs host lock)
2866 */
2867
a22e2eb0 2868void ata_poll_qc_complete(struct ata_queued_cmd *qc)
40e8c82c
TH
2869{
2870 struct ata_port *ap = qc->ap;
b8f6153e 2871 unsigned long flags;
40e8c82c 2872
b8f6153e 2873 spin_lock_irqsave(&ap->host_set->lock, flags);
40e8c82c
TH
2874 ap->flags &= ~ATA_FLAG_NOINTR;
2875 ata_irq_on(ap);
a22e2eb0 2876 ata_qc_complete(qc);
b8f6153e 2877 spin_unlock_irqrestore(&ap->host_set->lock, flags);
40e8c82c
TH
2878}
2879
1da177e4
LT
2880/**
2881 * ata_pio_poll -
6f0ef4fa 2882 * @ap: the target ata_port
1da177e4
LT
2883 *
2884 * LOCKING:
0cba632b 2885 * None. (executing in kernel thread context)
1da177e4
LT
2886 *
2887 * RETURNS:
6f0ef4fa 2888 * timeout value to use
1da177e4
LT
2889 */
2890
2891static unsigned long ata_pio_poll(struct ata_port *ap)
2892{
c14b8331 2893 struct ata_queued_cmd *qc;
1da177e4 2894 u8 status;
14be71f4
AL
2895 unsigned int poll_state = HSM_ST_UNKNOWN;
2896 unsigned int reg_state = HSM_ST_UNKNOWN;
14be71f4 2897
c14b8331
AL
2898 qc = ata_qc_from_tag(ap, ap->active_tag);
2899 assert(qc != NULL);
2900
14be71f4
AL
2901 switch (ap->hsm_task_state) {
2902 case HSM_ST:
2903 case HSM_ST_POLL:
2904 poll_state = HSM_ST_POLL;
2905 reg_state = HSM_ST;
1da177e4 2906 break;
14be71f4
AL
2907 case HSM_ST_LAST:
2908 case HSM_ST_LAST_POLL:
2909 poll_state = HSM_ST_LAST_POLL;
2910 reg_state = HSM_ST_LAST;
1da177e4
LT
2911 break;
2912 default:
2913 BUG();
2914 break;
2915 }
2916
2917 status = ata_chk_status(ap);
2918 if (status & ATA_BUSY) {
2919 if (time_after(jiffies, ap->pio_task_timeout)) {
11a56d24 2920 qc->err_mask |= AC_ERR_TIMEOUT;
7c398335 2921 ap->hsm_task_state = HSM_ST_TMOUT;
1da177e4
LT
2922 return 0;
2923 }
14be71f4 2924 ap->hsm_task_state = poll_state;
1da177e4
LT
2925 return ATA_SHORT_PAUSE;
2926 }
2927
14be71f4 2928 ap->hsm_task_state = reg_state;
1da177e4
LT
2929 return 0;
2930}
2931
2932/**
6f0ef4fa
RD
2933 * ata_pio_complete - check if drive is busy or idle
2934 * @ap: the target ata_port
1da177e4
LT
2935 *
2936 * LOCKING:
0cba632b 2937 * None. (executing in kernel thread context)
7fb6ec28
JG
2938 *
2939 * RETURNS:
2940 * Non-zero if qc completed, zero otherwise.
1da177e4
LT
2941 */
2942
7fb6ec28 2943static int ata_pio_complete (struct ata_port *ap)
1da177e4
LT
2944{
2945 struct ata_queued_cmd *qc;
2946 u8 drv_stat;
2947
2948 /*
31433ea3
AC
2949 * This is purely heuristic. This is a fast path. Sometimes when
2950 * we enter, BSY will be cleared in a chk-status or two. If not,
2951 * the drive is probably seeking or something. Snooze for a couple
2952 * msecs, then chk-status again. If still busy, fall back to
14be71f4 2953 * HSM_ST_POLL state.
1da177e4 2954 */
fe79e683
AL
2955 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
2956 if (drv_stat & ATA_BUSY) {
1da177e4 2957 msleep(2);
fe79e683
AL
2958 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
2959 if (drv_stat & ATA_BUSY) {
14be71f4 2960 ap->hsm_task_state = HSM_ST_LAST_POLL;
1da177e4 2961 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
7fb6ec28 2962 return 0;
1da177e4
LT
2963 }
2964 }
2965
c14b8331
AL
2966 qc = ata_qc_from_tag(ap, ap->active_tag);
2967 assert(qc != NULL);
2968
1da177e4
LT
2969 drv_stat = ata_wait_idle(ap);
2970 if (!ata_ok(drv_stat)) {
1c848984 2971 qc->err_mask |= __ac_err_mask(drv_stat);
14be71f4 2972 ap->hsm_task_state = HSM_ST_ERR;
7fb6ec28 2973 return 0;
1da177e4
LT
2974 }
2975
14be71f4 2976 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 2977
a22e2eb0
AL
2978 assert(qc->err_mask == 0);
2979 ata_poll_qc_complete(qc);
7fb6ec28
JG
2980
2981 /* another command may start at this point */
2982
2983 return 1;
1da177e4
LT
2984}
2985
0baab86b
EF
2986
2987/**
6f0ef4fa 2988 * swap_buf_le16 - swap halves of 16-words in place
0baab86b
EF
2989 * @buf: Buffer to swap
2990 * @buf_words: Number of 16-bit words in buffer.
2991 *
2992 * Swap halves of 16-bit words if needed to convert from
2993 * little-endian byte order to native cpu byte order, or
2994 * vice-versa.
2995 *
2996 * LOCKING:
6f0ef4fa 2997 * Inherited from caller.
0baab86b 2998 */
1da177e4
LT
2999void swap_buf_le16(u16 *buf, unsigned int buf_words)
3000{
3001#ifdef __BIG_ENDIAN
3002 unsigned int i;
3003
3004 for (i = 0; i < buf_words; i++)
3005 buf[i] = le16_to_cpu(buf[i]);
3006#endif /* __BIG_ENDIAN */
3007}
3008
6ae4cfb5
AL
3009/**
3010 * ata_mmio_data_xfer - Transfer data by MMIO
3011 * @ap: port to read/write
3012 * @buf: data buffer
3013 * @buflen: buffer length
344babaa 3014 * @write_data: read/write
6ae4cfb5
AL
3015 *
3016 * Transfer data from/to the device data register by MMIO.
3017 *
3018 * LOCKING:
3019 * Inherited from caller.
6ae4cfb5
AL
3020 */
3021
1da177e4
LT
3022static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3023 unsigned int buflen, int write_data)
3024{
3025 unsigned int i;
3026 unsigned int words = buflen >> 1;
3027 u16 *buf16 = (u16 *) buf;
3028 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3029
6ae4cfb5 3030 /* Transfer multiple of 2 bytes */
1da177e4
LT
3031 if (write_data) {
3032 for (i = 0; i < words; i++)
3033 writew(le16_to_cpu(buf16[i]), mmio);
3034 } else {
3035 for (i = 0; i < words; i++)
3036 buf16[i] = cpu_to_le16(readw(mmio));
3037 }
6ae4cfb5
AL
3038
3039 /* Transfer trailing 1 byte, if any. */
3040 if (unlikely(buflen & 0x01)) {
3041 u16 align_buf[1] = { 0 };
3042 unsigned char *trailing_buf = buf + buflen - 1;
3043
3044 if (write_data) {
3045 memcpy(align_buf, trailing_buf, 1);
3046 writew(le16_to_cpu(align_buf[0]), mmio);
3047 } else {
3048 align_buf[0] = cpu_to_le16(readw(mmio));
3049 memcpy(trailing_buf, align_buf, 1);
3050 }
3051 }
1da177e4
LT
3052}
3053
6ae4cfb5
AL
3054/**
3055 * ata_pio_data_xfer - Transfer data by PIO
3056 * @ap: port to read/write
3057 * @buf: data buffer
3058 * @buflen: buffer length
344babaa 3059 * @write_data: read/write
6ae4cfb5
AL
3060 *
3061 * Transfer data from/to the device data register by PIO.
3062 *
3063 * LOCKING:
3064 * Inherited from caller.
6ae4cfb5
AL
3065 */
3066
1da177e4
LT
3067static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3068 unsigned int buflen, int write_data)
3069{
6ae4cfb5 3070 unsigned int words = buflen >> 1;
1da177e4 3071
6ae4cfb5 3072 /* Transfer multiple of 2 bytes */
1da177e4 3073 if (write_data)
6ae4cfb5 3074 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 3075 else
6ae4cfb5
AL
3076 insw(ap->ioaddr.data_addr, buf, words);
3077
3078 /* Transfer trailing 1 byte, if any. */
3079 if (unlikely(buflen & 0x01)) {
3080 u16 align_buf[1] = { 0 };
3081 unsigned char *trailing_buf = buf + buflen - 1;
3082
3083 if (write_data) {
3084 memcpy(align_buf, trailing_buf, 1);
3085 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3086 } else {
3087 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3088 memcpy(trailing_buf, align_buf, 1);
3089 }
3090 }
1da177e4
LT
3091}
3092
6ae4cfb5
AL
3093/**
3094 * ata_data_xfer - Transfer data from/to the data register.
3095 * @ap: port to read/write
3096 * @buf: data buffer
3097 * @buflen: buffer length
3098 * @do_write: read/write
3099 *
3100 * Transfer data from/to the device data register.
3101 *
3102 * LOCKING:
3103 * Inherited from caller.
6ae4cfb5
AL
3104 */
3105
1da177e4
LT
3106static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3107 unsigned int buflen, int do_write)
3108{
a1bd9e68
AC
3109 /* Make the crap hardware pay the costs not the good stuff */
3110 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3111 unsigned long flags;
3112 local_irq_save(flags);
3113 if (ap->flags & ATA_FLAG_MMIO)
3114 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3115 else
3116 ata_pio_data_xfer(ap, buf, buflen, do_write);
3117 local_irq_restore(flags);
3118 } else {
3119 if (ap->flags & ATA_FLAG_MMIO)
3120 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3121 else
3122 ata_pio_data_xfer(ap, buf, buflen, do_write);
3123 }
1da177e4
LT
3124}
3125
6ae4cfb5
AL
3126/**
3127 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3128 * @qc: Command on going
3129 *
3130 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3131 *
3132 * LOCKING:
3133 * Inherited from caller.
3134 */
3135
1da177e4
LT
3136static void ata_pio_sector(struct ata_queued_cmd *qc)
3137{
3138 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3139 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3140 struct ata_port *ap = qc->ap;
3141 struct page *page;
3142 unsigned int offset;
3143 unsigned char *buf;
3144
3145 if (qc->cursect == (qc->nsect - 1))
14be71f4 3146 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3147
3148 page = sg[qc->cursg].page;
3149 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3150
3151 /* get the current page and offset */
3152 page = nth_page(page, (offset >> PAGE_SHIFT));
3153 offset %= PAGE_SIZE;
3154
3155 buf = kmap(page) + offset;
3156
3157 qc->cursect++;
3158 qc->cursg_ofs++;
3159
32529e01 3160 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
1da177e4
LT
3161 qc->cursg++;
3162 qc->cursg_ofs = 0;
3163 }
3164
3165 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3166
3167 /* do the actual data transfer */
3168 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3169 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3170
3171 kunmap(page);
3172}
3173
6ae4cfb5
AL
3174/**
3175 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3176 * @qc: Command on going
3177 * @bytes: number of bytes
3178 *
3179 * Transfer Transfer data from/to the ATAPI device.
3180 *
3181 * LOCKING:
3182 * Inherited from caller.
3183 *
3184 */
3185
1da177e4
LT
3186static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3187{
3188 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3189 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3190 struct ata_port *ap = qc->ap;
3191 struct page *page;
3192 unsigned char *buf;
3193 unsigned int offset, count;
3194
563a6e1f 3195 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 3196 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3197
3198next_sg:
563a6e1f 3199 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 3200 /*
563a6e1f
AL
3201 * The end of qc->sg is reached and the device expects
3202 * more data to transfer. In order not to overrun qc->sg
3203 * and fulfill length specified in the byte count register,
3204 * - for read case, discard trailing data from the device
3205 * - for write case, padding zero data to the device
3206 */
3207 u16 pad_buf[1] = { 0 };
3208 unsigned int words = bytes >> 1;
3209 unsigned int i;
3210
3211 if (words) /* warning if bytes > 1 */
7fb6ec28 3212 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
563a6e1f
AL
3213 ap->id, bytes);
3214
3215 for (i = 0; i < words; i++)
3216 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3217
14be71f4 3218 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
3219 return;
3220 }
3221
cedc9a47 3222 sg = &qc->__sg[qc->cursg];
1da177e4 3223
1da177e4
LT
3224 page = sg->page;
3225 offset = sg->offset + qc->cursg_ofs;
3226
3227 /* get the current page and offset */
3228 page = nth_page(page, (offset >> PAGE_SHIFT));
3229 offset %= PAGE_SIZE;
3230
6952df03 3231 /* don't overrun current sg */
32529e01 3232 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
3233
3234 /* don't cross page boundaries */
3235 count = min(count, (unsigned int)PAGE_SIZE - offset);
3236
3237 buf = kmap(page) + offset;
3238
3239 bytes -= count;
3240 qc->curbytes += count;
3241 qc->cursg_ofs += count;
3242
32529e01 3243 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
3244 qc->cursg++;
3245 qc->cursg_ofs = 0;
3246 }
3247
3248 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3249
3250 /* do the actual data transfer */
3251 ata_data_xfer(ap, buf, count, do_write);
3252
3253 kunmap(page);
3254
563a6e1f 3255 if (bytes)
1da177e4 3256 goto next_sg;
1da177e4
LT
3257}
3258
6ae4cfb5
AL
3259/**
3260 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3261 * @qc: Command on going
3262 *
3263 * Transfer Transfer data from/to the ATAPI device.
3264 *
3265 * LOCKING:
3266 * Inherited from caller.
6ae4cfb5
AL
3267 */
3268
1da177e4
LT
3269static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3270{
3271 struct ata_port *ap = qc->ap;
3272 struct ata_device *dev = qc->dev;
3273 unsigned int ireason, bc_lo, bc_hi, bytes;
3274 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3275
3276 ap->ops->tf_read(ap, &qc->tf);
3277 ireason = qc->tf.nsect;
3278 bc_lo = qc->tf.lbam;
3279 bc_hi = qc->tf.lbah;
3280 bytes = (bc_hi << 8) | bc_lo;
3281
3282 /* shall be cleared to zero, indicating xfer of data */
3283 if (ireason & (1 << 0))
3284 goto err_out;
3285
3286 /* make sure transfer direction matches expected */
3287 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3288 if (do_write != i_write)
3289 goto err_out;
3290
3291 __atapi_pio_bytes(qc, bytes);
3292
3293 return;
3294
3295err_out:
3296 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3297 ap->id, dev->devno);
11a56d24 3298 qc->err_mask |= AC_ERR_HSM;
14be71f4 3299 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3300}
3301
3302/**
6f0ef4fa
RD
3303 * ata_pio_block - start PIO on a block
3304 * @ap: the target ata_port
1da177e4
LT
3305 *
3306 * LOCKING:
0cba632b 3307 * None. (executing in kernel thread context)
1da177e4
LT
3308 */
3309
3310static void ata_pio_block(struct ata_port *ap)
3311{
3312 struct ata_queued_cmd *qc;
3313 u8 status;
3314
3315 /*
6f0ef4fa 3316 * This is purely heuristic. This is a fast path.
1da177e4
LT
3317 * Sometimes when we enter, BSY will be cleared in
3318 * a chk-status or two. If not, the drive is probably seeking
3319 * or something. Snooze for a couple msecs, then
3320 * chk-status again. If still busy, fall back to
14be71f4 3321 * HSM_ST_POLL state.
1da177e4
LT
3322 */
3323 status = ata_busy_wait(ap, ATA_BUSY, 5);
3324 if (status & ATA_BUSY) {
3325 msleep(2);
3326 status = ata_busy_wait(ap, ATA_BUSY, 10);
3327 if (status & ATA_BUSY) {
14be71f4 3328 ap->hsm_task_state = HSM_ST_POLL;
1da177e4
LT
3329 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3330 return;
3331 }
3332 }
3333
3334 qc = ata_qc_from_tag(ap, ap->active_tag);
3335 assert(qc != NULL);
3336
fe79e683
AL
3337 /* check error */
3338 if (status & (ATA_ERR | ATA_DF)) {
3339 qc->err_mask |= AC_ERR_DEV;
3340 ap->hsm_task_state = HSM_ST_ERR;
3341 return;
3342 }
3343
3344 /* transfer data if any */
1da177e4 3345 if (is_atapi_taskfile(&qc->tf)) {
fe79e683 3346 /* DRQ=0 means no more data to transfer */
1da177e4 3347 if ((status & ATA_DRQ) == 0) {
14be71f4 3348 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3349 return;
3350 }
3351
3352 atapi_pio_bytes(qc);
3353 } else {
3354 /* handle BSY=0, DRQ=0 as error */
3355 if ((status & ATA_DRQ) == 0) {
11a56d24 3356 qc->err_mask |= AC_ERR_HSM;
14be71f4 3357 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3358 return;
3359 }
3360
3361 ata_pio_sector(qc);
3362 }
3363}
3364
3365static void ata_pio_error(struct ata_port *ap)
3366{
3367 struct ata_queued_cmd *qc;
a7dac447
JG
3368
3369 printk(KERN_WARNING "ata%u: PIO error\n", ap->id);
1da177e4
LT
3370
3371 qc = ata_qc_from_tag(ap, ap->active_tag);
3372 assert(qc != NULL);
3373
1c848984
AL
3374 /* make sure qc->err_mask is available to
3375 * know what's wrong and recover
3376 */
3377 assert(qc->err_mask);
3378
14be71f4 3379 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 3380
a22e2eb0 3381 ata_poll_qc_complete(qc);
1da177e4
LT
3382}
3383
3384static void ata_pio_task(void *_data)
3385{
3386 struct ata_port *ap = _data;
7fb6ec28
JG
3387 unsigned long timeout;
3388 int qc_completed;
3389
3390fsm_start:
3391 timeout = 0;
3392 qc_completed = 0;
1da177e4 3393
14be71f4
AL
3394 switch (ap->hsm_task_state) {
3395 case HSM_ST_IDLE:
1da177e4
LT
3396 return;
3397
14be71f4 3398 case HSM_ST:
1da177e4
LT
3399 ata_pio_block(ap);
3400 break;
3401
14be71f4 3402 case HSM_ST_LAST:
7fb6ec28 3403 qc_completed = ata_pio_complete(ap);
1da177e4
LT
3404 break;
3405
14be71f4
AL
3406 case HSM_ST_POLL:
3407 case HSM_ST_LAST_POLL:
1da177e4
LT
3408 timeout = ata_pio_poll(ap);
3409 break;
3410
14be71f4
AL
3411 case HSM_ST_TMOUT:
3412 case HSM_ST_ERR:
1da177e4
LT
3413 ata_pio_error(ap);
3414 return;
3415 }
3416
3417 if (timeout)
7fb6ec28
JG
3418 queue_delayed_work(ata_wq, &ap->pio_task, timeout);
3419 else if (!qc_completed)
3420 goto fsm_start;
1da177e4
LT
3421}
3422
1da177e4
LT
3423/**
3424 * ata_qc_timeout - Handle timeout of queued command
3425 * @qc: Command that timed out
3426 *
3427 * Some part of the kernel (currently, only the SCSI layer)
3428 * has noticed that the active command on port @ap has not
3429 * completed after a specified length of time. Handle this
3430 * condition by disabling DMA (if necessary) and completing
3431 * transactions, with error if necessary.
3432 *
3433 * This also handles the case of the "lost interrupt", where
3434 * for some reason (possibly hardware bug, possibly driver bug)
3435 * an interrupt was not delivered to the driver, even though the
3436 * transaction completed successfully.
3437 *
3438 * LOCKING:
0cba632b 3439 * Inherited from SCSI layer (none, can sleep)
1da177e4
LT
3440 */
3441
3442static void ata_qc_timeout(struct ata_queued_cmd *qc)
3443{
3444 struct ata_port *ap = qc->ap;
b8f6153e 3445 struct ata_host_set *host_set = ap->host_set;
1da177e4 3446 u8 host_stat = 0, drv_stat;
b8f6153e 3447 unsigned long flags;
1da177e4
LT
3448
3449 DPRINTK("ENTER\n");
3450
b8f6153e
JG
3451 spin_lock_irqsave(&host_set->lock, flags);
3452
1da177e4
LT
3453 /* hack alert! We cannot use the supplied completion
3454 * function from inside the ->eh_strategy_handler() thread.
3455 * libata is the only user of ->eh_strategy_handler() in
3456 * any kernel, so the default scsi_done() assumes it is
3457 * not being called from the SCSI EH.
3458 */
3459 qc->scsidone = scsi_finish_command;
3460
3461 switch (qc->tf.protocol) {
3462
3463 case ATA_PROT_DMA:
3464 case ATA_PROT_ATAPI_DMA:
3465 host_stat = ap->ops->bmdma_status(ap);
3466
3467 /* before we do anything else, clear DMA-Start bit */
b73fc89f 3468 ap->ops->bmdma_stop(qc);
1da177e4
LT
3469
3470 /* fall through */
3471
3472 default:
3473 ata_altstatus(ap);
3474 drv_stat = ata_chk_status(ap);
3475
3476 /* ack bmdma irq events */
3477 ap->ops->irq_clear(ap);
3478
3479 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
3480 ap->id, qc->tf.command, drv_stat, host_stat);
3481
3482 /* complete taskfile transaction */
a22e2eb0
AL
3483 qc->err_mask |= ac_err_mask(drv_stat);
3484 ata_qc_complete(qc);
1da177e4
LT
3485 break;
3486 }
b8f6153e
JG
3487
3488 spin_unlock_irqrestore(&host_set->lock, flags);
3489
1da177e4
LT
3490 DPRINTK("EXIT\n");
3491}
3492
3493/**
3494 * ata_eng_timeout - Handle timeout of queued command
3495 * @ap: Port on which timed-out command is active
3496 *
3497 * Some part of the kernel (currently, only the SCSI layer)
3498 * has noticed that the active command on port @ap has not
3499 * completed after a specified length of time. Handle this
3500 * condition by disabling DMA (if necessary) and completing
3501 * transactions, with error if necessary.
3502 *
3503 * This also handles the case of the "lost interrupt", where
3504 * for some reason (possibly hardware bug, possibly driver bug)
3505 * an interrupt was not delivered to the driver, even though the
3506 * transaction completed successfully.
3507 *
3508 * LOCKING:
3509 * Inherited from SCSI layer (none, can sleep)
3510 */
3511
3512void ata_eng_timeout(struct ata_port *ap)
3513{
3514 struct ata_queued_cmd *qc;
3515
3516 DPRINTK("ENTER\n");
3517
3518 qc = ata_qc_from_tag(ap, ap->active_tag);
e12669e7
JG
3519 if (qc)
3520 ata_qc_timeout(qc);
3521 else {
1da177e4
LT
3522 printk(KERN_ERR "ata%u: BUG: timeout without command\n",
3523 ap->id);
3524 goto out;
3525 }
3526
1da177e4
LT
3527out:
3528 DPRINTK("EXIT\n");
3529}
3530
3531/**
3532 * ata_qc_new - Request an available ATA command, for queueing
3533 * @ap: Port associated with device @dev
3534 * @dev: Device from whom we request an available command structure
3535 *
3536 * LOCKING:
0cba632b 3537 * None.
1da177e4
LT
3538 */
3539
3540static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
3541{
3542 struct ata_queued_cmd *qc = NULL;
3543 unsigned int i;
3544
3545 for (i = 0; i < ATA_MAX_QUEUE; i++)
3546 if (!test_and_set_bit(i, &ap->qactive)) {
3547 qc = ata_qc_from_tag(ap, i);
3548 break;
3549 }
3550
3551 if (qc)
3552 qc->tag = i;
3553
3554 return qc;
3555}
3556
3557/**
3558 * ata_qc_new_init - Request an available ATA command, and initialize it
3559 * @ap: Port associated with device @dev
3560 * @dev: Device from whom we request an available command structure
3561 *
3562 * LOCKING:
0cba632b 3563 * None.
1da177e4
LT
3564 */
3565
3566struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
3567 struct ata_device *dev)
3568{
3569 struct ata_queued_cmd *qc;
3570
3571 qc = ata_qc_new(ap);
3572 if (qc) {
1da177e4
LT
3573 qc->scsicmd = NULL;
3574 qc->ap = ap;
3575 qc->dev = dev;
1da177e4 3576
2c13b7ce 3577 ata_qc_reinit(qc);
1da177e4
LT
3578 }
3579
3580 return qc;
3581}
3582
1da177e4
LT
3583/**
3584 * ata_qc_free - free unused ata_queued_cmd
3585 * @qc: Command to complete
3586 *
3587 * Designed to free unused ata_queued_cmd object
3588 * in case something prevents using it.
3589 *
3590 * LOCKING:
0cba632b 3591 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3592 */
3593void ata_qc_free(struct ata_queued_cmd *qc)
3594{
4ba946e9
TH
3595 struct ata_port *ap = qc->ap;
3596 unsigned int tag;
3597
1da177e4 3598 assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 3599
4ba946e9
TH
3600 qc->flags = 0;
3601 tag = qc->tag;
3602 if (likely(ata_tag_valid(tag))) {
3603 if (tag == ap->active_tag)
3604 ap->active_tag = ATA_TAG_POISON;
3605 qc->tag = ATA_TAG_POISON;
3606 clear_bit(tag, &ap->qactive);
3607 }
1da177e4
LT
3608}
3609
3610/**
3611 * ata_qc_complete - Complete an active ATA command
3612 * @qc: Command to complete
8e8b77dd 3613 * @err_mask: ATA Status register contents
0cba632b
JG
3614 *
3615 * Indicate to the mid and upper layers that an ATA
3616 * command has completed, with either an ok or not-ok status.
1da177e4
LT
3617 *
3618 * LOCKING:
0cba632b 3619 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3620 */
3621
a22e2eb0 3622void ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 3623{
1da177e4
LT
3624 assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
3625 assert(qc->flags & ATA_QCFLAG_ACTIVE);
3626
3627 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
3628 ata_sg_clean(qc);
3629
3f3791d3
AL
3630 /* atapi: mark qc as inactive to prevent the interrupt handler
3631 * from completing the command twice later, before the error handler
3632 * is called. (when rc != 0 and atapi request sense is needed)
3633 */
3634 qc->flags &= ~ATA_QCFLAG_ACTIVE;
3635
1da177e4 3636 /* call completion callback */
77853bf2 3637 qc->complete_fn(qc);
1da177e4
LT
3638}
3639
3640static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
3641{
3642 struct ata_port *ap = qc->ap;
3643
3644 switch (qc->tf.protocol) {
3645 case ATA_PROT_DMA:
3646 case ATA_PROT_ATAPI_DMA:
3647 return 1;
3648
3649 case ATA_PROT_ATAPI:
3650 case ATA_PROT_PIO:
3651 case ATA_PROT_PIO_MULT:
3652 if (ap->flags & ATA_FLAG_PIO_DMA)
3653 return 1;
3654
3655 /* fall through */
3656
3657 default:
3658 return 0;
3659 }
3660
3661 /* never reached */
3662}
3663
3664/**
3665 * ata_qc_issue - issue taskfile to device
3666 * @qc: command to issue to device
3667 *
3668 * Prepare an ATA command to submission to device.
3669 * This includes mapping the data into a DMA-able
3670 * area, filling in the S/G table, and finally
3671 * writing the taskfile to hardware, starting the command.
3672 *
3673 * LOCKING:
3674 * spin_lock_irqsave(host_set lock)
3675 *
3676 * RETURNS:
3677 * Zero on success, negative on error.
3678 */
3679
3680int ata_qc_issue(struct ata_queued_cmd *qc)
3681{
3682 struct ata_port *ap = qc->ap;
3683
3684 if (ata_should_dma_map(qc)) {
3685 if (qc->flags & ATA_QCFLAG_SG) {
3686 if (ata_sg_setup(qc))
8e436af9 3687 goto sg_err;
1da177e4
LT
3688 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
3689 if (ata_sg_setup_one(qc))
8e436af9 3690 goto sg_err;
1da177e4
LT
3691 }
3692 } else {
3693 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3694 }
3695
3696 ap->ops->qc_prep(qc);
3697
3698 qc->ap->active_tag = qc->tag;
3699 qc->flags |= ATA_QCFLAG_ACTIVE;
3700
3701 return ap->ops->qc_issue(qc);
3702
8e436af9
TH
3703sg_err:
3704 qc->flags &= ~ATA_QCFLAG_DMAMAP;
1da177e4
LT
3705 return -1;
3706}
3707
0baab86b 3708
1da177e4
LT
3709/**
3710 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
3711 * @qc: command to issue to device
3712 *
3713 * Using various libata functions and hooks, this function
3714 * starts an ATA command. ATA commands are grouped into
3715 * classes called "protocols", and issuing each type of protocol
3716 * is slightly different.
3717 *
0baab86b
EF
3718 * May be used as the qc_issue() entry in ata_port_operations.
3719 *
1da177e4
LT
3720 * LOCKING:
3721 * spin_lock_irqsave(host_set lock)
3722 *
3723 * RETURNS:
3724 * Zero on success, negative on error.
3725 */
3726
3727int ata_qc_issue_prot(struct ata_queued_cmd *qc)
3728{
3729 struct ata_port *ap = qc->ap;
3730
3731 ata_dev_select(ap, qc->dev->devno, 1, 0);
3732
3733 switch (qc->tf.protocol) {
3734 case ATA_PROT_NODATA:
e5338254 3735 ata_tf_to_host(ap, &qc->tf);
1da177e4
LT
3736 break;
3737
3738 case ATA_PROT_DMA:
3739 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3740 ap->ops->bmdma_setup(qc); /* set up bmdma */
3741 ap->ops->bmdma_start(qc); /* initiate bmdma */
3742 break;
3743
3744 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
3745 ata_qc_set_polling(qc);
e5338254 3746 ata_tf_to_host(ap, &qc->tf);
14be71f4 3747 ap->hsm_task_state = HSM_ST;
1da177e4
LT
3748 queue_work(ata_wq, &ap->pio_task);
3749 break;
3750
3751 case ATA_PROT_ATAPI:
3752 ata_qc_set_polling(qc);
e5338254 3753 ata_tf_to_host(ap, &qc->tf);
1da177e4
LT
3754 queue_work(ata_wq, &ap->packet_task);
3755 break;
3756
3757 case ATA_PROT_ATAPI_NODATA:
c1389503 3758 ap->flags |= ATA_FLAG_NOINTR;
e5338254 3759 ata_tf_to_host(ap, &qc->tf);
1da177e4
LT
3760 queue_work(ata_wq, &ap->packet_task);
3761 break;
3762
3763 case ATA_PROT_ATAPI_DMA:
c1389503 3764 ap->flags |= ATA_FLAG_NOINTR;
1da177e4
LT
3765 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3766 ap->ops->bmdma_setup(qc); /* set up bmdma */
3767 queue_work(ata_wq, &ap->packet_task);
3768 break;
3769
3770 default:
3771 WARN_ON(1);
3772 return -1;
3773 }
3774
3775 return 0;
3776}
3777
3778/**
0baab86b 3779 * ata_bmdma_setup_mmio - Set up PCI IDE BMDMA transaction
1da177e4
LT
3780 * @qc: Info associated with this ATA transaction.
3781 *
3782 * LOCKING:
3783 * spin_lock_irqsave(host_set lock)
3784 */
3785
3786static void ata_bmdma_setup_mmio (struct ata_queued_cmd *qc)
3787{
3788 struct ata_port *ap = qc->ap;
3789 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3790 u8 dmactl;
3791 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3792
3793 /* load PRD table addr. */
3794 mb(); /* make sure PRD table writes are visible to controller */
3795 writel(ap->prd_dma, mmio + ATA_DMA_TABLE_OFS);
3796
3797 /* specify data direction, triple-check start bit is clear */
3798 dmactl = readb(mmio + ATA_DMA_CMD);
3799 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3800 if (!rw)
3801 dmactl |= ATA_DMA_WR;
3802 writeb(dmactl, mmio + ATA_DMA_CMD);
3803
3804 /* issue r/w command */
3805 ap->ops->exec_command(ap, &qc->tf);
3806}
3807
3808/**
b73fc89f 3809 * ata_bmdma_start_mmio - Start a PCI IDE BMDMA transaction
1da177e4
LT
3810 * @qc: Info associated with this ATA transaction.
3811 *
3812 * LOCKING:
3813 * spin_lock_irqsave(host_set lock)
3814 */
3815
3816static void ata_bmdma_start_mmio (struct ata_queued_cmd *qc)
3817{
3818 struct ata_port *ap = qc->ap;
3819 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3820 u8 dmactl;
3821
3822 /* start host DMA transaction */
3823 dmactl = readb(mmio + ATA_DMA_CMD);
3824 writeb(dmactl | ATA_DMA_START, mmio + ATA_DMA_CMD);
3825
3826 /* Strictly, one may wish to issue a readb() here, to
3827 * flush the mmio write. However, control also passes
3828 * to the hardware at this point, and it will interrupt
3829 * us when we are to resume control. So, in effect,
3830 * we don't care when the mmio write flushes.
3831 * Further, a read of the DMA status register _immediately_
3832 * following the write may not be what certain flaky hardware
3833 * is expected, so I think it is best to not add a readb()
3834 * without first all the MMIO ATA cards/mobos.
3835 * Or maybe I'm just being paranoid.
3836 */
3837}
3838
3839/**
3840 * ata_bmdma_setup_pio - Set up PCI IDE BMDMA transaction (PIO)
3841 * @qc: Info associated with this ATA transaction.
3842 *
3843 * LOCKING:
3844 * spin_lock_irqsave(host_set lock)
3845 */
3846
3847static void ata_bmdma_setup_pio (struct ata_queued_cmd *qc)
3848{
3849 struct ata_port *ap = qc->ap;
3850 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3851 u8 dmactl;
3852
3853 /* load PRD table addr. */
3854 outl(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
3855
3856 /* specify data direction, triple-check start bit is clear */
3857 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3858 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3859 if (!rw)
3860 dmactl |= ATA_DMA_WR;
3861 outb(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3862
3863 /* issue r/w command */
3864 ap->ops->exec_command(ap, &qc->tf);
3865}
3866
3867/**
3868 * ata_bmdma_start_pio - Start a PCI IDE BMDMA transaction (PIO)
3869 * @qc: Info associated with this ATA transaction.
3870 *
3871 * LOCKING:
3872 * spin_lock_irqsave(host_set lock)
3873 */
3874
3875static void ata_bmdma_start_pio (struct ata_queued_cmd *qc)
3876{
3877 struct ata_port *ap = qc->ap;
3878 u8 dmactl;
3879
3880 /* start host DMA transaction */
3881 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3882 outb(dmactl | ATA_DMA_START,
3883 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3884}
3885
0baab86b
EF
3886
3887/**
3888 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
3889 * @qc: Info associated with this ATA transaction.
3890 *
3891 * Writes the ATA_DMA_START flag to the DMA command register.
3892 *
3893 * May be used as the bmdma_start() entry in ata_port_operations.
3894 *
3895 * LOCKING:
3896 * spin_lock_irqsave(host_set lock)
3897 */
1da177e4
LT
3898void ata_bmdma_start(struct ata_queued_cmd *qc)
3899{
3900 if (qc->ap->flags & ATA_FLAG_MMIO)
3901 ata_bmdma_start_mmio(qc);
3902 else
3903 ata_bmdma_start_pio(qc);
3904}
3905
0baab86b
EF
3906
3907/**
3908 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
3909 * @qc: Info associated with this ATA transaction.
3910 *
3911 * Writes address of PRD table to device's PRD Table Address
3912 * register, sets the DMA control register, and calls
3913 * ops->exec_command() to start the transfer.
3914 *
3915 * May be used as the bmdma_setup() entry in ata_port_operations.
3916 *
3917 * LOCKING:
3918 * spin_lock_irqsave(host_set lock)
3919 */
1da177e4
LT
3920void ata_bmdma_setup(struct ata_queued_cmd *qc)
3921{
3922 if (qc->ap->flags & ATA_FLAG_MMIO)
3923 ata_bmdma_setup_mmio(qc);
3924 else
3925 ata_bmdma_setup_pio(qc);
3926}
3927
0baab86b
EF
3928
3929/**
3930 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
decc6d0b 3931 * @ap: Port associated with this ATA transaction.
0baab86b
EF
3932 *
3933 * Clear interrupt and error flags in DMA status register.
3934 *
3935 * May be used as the irq_clear() entry in ata_port_operations.
3936 *
3937 * LOCKING:
3938 * spin_lock_irqsave(host_set lock)
3939 */
3940
1da177e4
LT
3941void ata_bmdma_irq_clear(struct ata_port *ap)
3942{
3943 if (ap->flags & ATA_FLAG_MMIO) {
3944 void __iomem *mmio = ((void __iomem *) ap->ioaddr.bmdma_addr) + ATA_DMA_STATUS;
3945 writeb(readb(mmio), mmio);
3946 } else {
3947 unsigned long addr = ap->ioaddr.bmdma_addr + ATA_DMA_STATUS;
3948 outb(inb(addr), addr);
3949 }
3950
3951}
3952
0baab86b
EF
3953
3954/**
3955 * ata_bmdma_status - Read PCI IDE BMDMA status
decc6d0b 3956 * @ap: Port associated with this ATA transaction.
0baab86b
EF
3957 *
3958 * Read and return BMDMA status register.
3959 *
3960 * May be used as the bmdma_status() entry in ata_port_operations.
3961 *
3962 * LOCKING:
3963 * spin_lock_irqsave(host_set lock)
3964 */
3965
1da177e4
LT
3966u8 ata_bmdma_status(struct ata_port *ap)
3967{
3968 u8 host_stat;
3969 if (ap->flags & ATA_FLAG_MMIO) {
3970 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3971 host_stat = readb(mmio + ATA_DMA_STATUS);
3972 } else
ee500aab 3973 host_stat = inb(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
1da177e4
LT
3974 return host_stat;
3975}
3976
0baab86b
EF
3977
3978/**
3979 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
b73fc89f 3980 * @qc: Command we are ending DMA for
0baab86b
EF
3981 *
3982 * Clears the ATA_DMA_START flag in the dma control register
3983 *
3984 * May be used as the bmdma_stop() entry in ata_port_operations.
3985 *
3986 * LOCKING:
3987 * spin_lock_irqsave(host_set lock)
3988 */
3989
b73fc89f 3990void ata_bmdma_stop(struct ata_queued_cmd *qc)
1da177e4 3991{
b73fc89f 3992 struct ata_port *ap = qc->ap;
1da177e4
LT
3993 if (ap->flags & ATA_FLAG_MMIO) {
3994 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3995
3996 /* clear start/stop bit */
3997 writeb(readb(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3998 mmio + ATA_DMA_CMD);
3999 } else {
4000 /* clear start/stop bit */
4001 outb(inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD) & ~ATA_DMA_START,
4002 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
4003 }
4004
4005 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
4006 ata_altstatus(ap); /* dummy read */
4007}
4008
4009/**
4010 * ata_host_intr - Handle host interrupt for given (port, task)
4011 * @ap: Port on which interrupt arrived (possibly...)
4012 * @qc: Taskfile currently active in engine
4013 *
4014 * Handle host interrupt for given queued command. Currently,
4015 * only DMA interrupts are handled. All other commands are
4016 * handled via polling with interrupts disabled (nIEN bit).
4017 *
4018 * LOCKING:
4019 * spin_lock_irqsave(host_set lock)
4020 *
4021 * RETURNS:
4022 * One if interrupt was handled, zero if not (shared irq).
4023 */
4024
4025inline unsigned int ata_host_intr (struct ata_port *ap,
4026 struct ata_queued_cmd *qc)
4027{
4028 u8 status, host_stat;
4029
4030 switch (qc->tf.protocol) {
4031
4032 case ATA_PROT_DMA:
4033 case ATA_PROT_ATAPI_DMA:
4034 case ATA_PROT_ATAPI:
4035 /* check status of DMA engine */
4036 host_stat = ap->ops->bmdma_status(ap);
4037 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4038
4039 /* if it's not our irq... */
4040 if (!(host_stat & ATA_DMA_INTR))
4041 goto idle_irq;
4042
4043 /* before we do anything else, clear DMA-Start bit */
b73fc89f 4044 ap->ops->bmdma_stop(qc);
1da177e4
LT
4045
4046 /* fall through */
4047
4048 case ATA_PROT_ATAPI_NODATA:
4049 case ATA_PROT_NODATA:
4050 /* check altstatus */
4051 status = ata_altstatus(ap);
4052 if (status & ATA_BUSY)
4053 goto idle_irq;
4054
4055 /* check main status, clearing INTRQ */
4056 status = ata_chk_status(ap);
4057 if (unlikely(status & ATA_BUSY))
4058 goto idle_irq;
4059 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4060 ap->id, qc->tf.protocol, status);
4061
4062 /* ack bmdma irq events */
4063 ap->ops->irq_clear(ap);
4064
4065 /* complete taskfile transaction */
a22e2eb0
AL
4066 qc->err_mask |= ac_err_mask(status);
4067 ata_qc_complete(qc);
1da177e4
LT
4068 break;
4069
4070 default:
4071 goto idle_irq;
4072 }
4073
4074 return 1; /* irq handled */
4075
4076idle_irq:
4077 ap->stats.idle_irq++;
4078
4079#ifdef ATA_IRQ_TRAP
4080 if ((ap->stats.idle_irq % 1000) == 0) {
4081 handled = 1;
4082 ata_irq_ack(ap, 0); /* debug trap */
4083 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
4084 }
4085#endif
4086 return 0; /* irq not handled */
4087}
4088
4089/**
4090 * ata_interrupt - Default ATA host interrupt handler
0cba632b
JG
4091 * @irq: irq line (unused)
4092 * @dev_instance: pointer to our ata_host_set information structure
1da177e4
LT
4093 * @regs: unused
4094 *
0cba632b
JG
4095 * Default interrupt handler for PCI IDE devices. Calls
4096 * ata_host_intr() for each port that is not disabled.
4097 *
1da177e4 4098 * LOCKING:
0cba632b 4099 * Obtains host_set lock during operation.
1da177e4
LT
4100 *
4101 * RETURNS:
0cba632b 4102 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
4103 */
4104
4105irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4106{
4107 struct ata_host_set *host_set = dev_instance;
4108 unsigned int i;
4109 unsigned int handled = 0;
4110 unsigned long flags;
4111
4112 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4113 spin_lock_irqsave(&host_set->lock, flags);
4114
4115 for (i = 0; i < host_set->n_ports; i++) {
4116 struct ata_port *ap;
4117
4118 ap = host_set->ports[i];
c1389503
TH
4119 if (ap &&
4120 !(ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR))) {
1da177e4
LT
4121 struct ata_queued_cmd *qc;
4122
4123 qc = ata_qc_from_tag(ap, ap->active_tag);
21b1ed74
AL
4124 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4125 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
4126 handled |= ata_host_intr(ap, qc);
4127 }
4128 }
4129
4130 spin_unlock_irqrestore(&host_set->lock, flags);
4131
4132 return IRQ_RETVAL(handled);
4133}
4134
4135/**
4136 * atapi_packet_task - Write CDB bytes to hardware
4137 * @_data: Port to which ATAPI device is attached.
4138 *
4139 * When device has indicated its readiness to accept
4140 * a CDB, this function is called. Send the CDB.
4141 * If DMA is to be performed, exit immediately.
4142 * Otherwise, we are in polling mode, so poll
4143 * status under operation succeeds or fails.
4144 *
4145 * LOCKING:
4146 * Kernel thread context (may sleep)
4147 */
4148
4149static void atapi_packet_task(void *_data)
4150{
4151 struct ata_port *ap = _data;
4152 struct ata_queued_cmd *qc;
4153 u8 status;
4154
4155 qc = ata_qc_from_tag(ap, ap->active_tag);
4156 assert(qc != NULL);
4157 assert(qc->flags & ATA_QCFLAG_ACTIVE);
4158
4159 /* sleep-wait for BSY to clear */
4160 DPRINTK("busy wait\n");
d8fe452b 4161 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
11a56d24 4162 qc->err_mask |= AC_ERR_TIMEOUT;
d8fe452b
AL
4163 goto err_out;
4164 }
1da177e4
LT
4165
4166 /* make sure DRQ is set */
4167 status = ata_chk_status(ap);
d8fe452b 4168 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
11a56d24 4169 qc->err_mask |= AC_ERR_HSM;
1da177e4 4170 goto err_out;
d8fe452b 4171 }
1da177e4
LT
4172
4173 /* send SCSI cdb */
4174 DPRINTK("send cdb\n");
4175 assert(ap->cdb_len >= 12);
1da177e4 4176
c1389503
TH
4177 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
4178 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
4179 unsigned long flags;
1da177e4 4180
c1389503
TH
4181 /* Once we're done issuing command and kicking bmdma,
4182 * irq handler takes over. To not lose irq, we need
4183 * to clear NOINTR flag before sending cdb, but
4184 * interrupt handler shouldn't be invoked before we're
4185 * finished. Hence, the following locking.
4186 */
4187 spin_lock_irqsave(&ap->host_set->lock, flags);
4188 ap->flags &= ~ATA_FLAG_NOINTR;
4189 ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1);
4190 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
4191 ap->ops->bmdma_start(qc); /* initiate bmdma */
4192 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4193 } else {
4194 ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1);
1da177e4 4195
c1389503 4196 /* PIO commands are handled by polling */
14be71f4 4197 ap->hsm_task_state = HSM_ST;
1da177e4
LT
4198 queue_work(ata_wq, &ap->pio_task);
4199 }
4200
4201 return;
4202
4203err_out:
a22e2eb0 4204 ata_poll_qc_complete(qc);
1da177e4
LT
4205}
4206
0baab86b
EF
4207
4208/**
4209 * ata_port_start - Set port up for dma.
4210 * @ap: Port to initialize
4211 *
4212 * Called just after data structures for each port are
4213 * initialized. Allocates space for PRD table.
4214 *
4215 * May be used as the port_start() entry in ata_port_operations.
4216 *
4217 * LOCKING:
6f0ef4fa 4218 * Inherited from caller.
0baab86b
EF
4219 */
4220
9b847548
JA
4221/*
4222 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4223 * without filling any other registers
4224 */
4225static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
4226 u8 cmd)
4227{
4228 struct ata_taskfile tf;
4229 int err;
4230
4231 ata_tf_init(ap, &tf, dev->devno);
4232
4233 tf.command = cmd;
4234 tf.flags |= ATA_TFLAG_DEVICE;
4235 tf.protocol = ATA_PROT_NODATA;
4236
4237 err = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
4238 if (err)
4239 printk(KERN_ERR "%s: ata command failed: %d\n",
4240 __FUNCTION__, err);
4241
4242 return err;
4243}
4244
4245static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
4246{
4247 u8 cmd;
4248
4249 if (!ata_try_flush_cache(dev))
4250 return 0;
4251
4252 if (ata_id_has_flush_ext(dev->id))
4253 cmd = ATA_CMD_FLUSH_EXT;
4254 else
4255 cmd = ATA_CMD_FLUSH;
4256
4257 return ata_do_simple_cmd(ap, dev, cmd);
4258}
4259
4260static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
4261{
4262 return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
4263}
4264
4265static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
4266{
4267 return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
4268}
4269
4270/**
4271 * ata_device_resume - wakeup a previously suspended devices
4272 *
4273 * Kick the drive back into action, by sending it an idle immediate
4274 * command and making sure its transfer mode matches between drive
4275 * and host.
4276 *
4277 */
4278int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
4279{
4280 if (ap->flags & ATA_FLAG_SUSPENDED) {
4281 ap->flags &= ~ATA_FLAG_SUSPENDED;
4282 ata_set_mode(ap);
4283 }
4284 if (!ata_dev_present(dev))
4285 return 0;
4286 if (dev->class == ATA_DEV_ATA)
4287 ata_start_drive(ap, dev);
4288
4289 return 0;
4290}
4291
4292/**
4293 * ata_device_suspend - prepare a device for suspend
4294 *
4295 * Flush the cache on the drive, if appropriate, then issue a
4296 * standbynow command.
4297 *
4298 */
4299int ata_device_suspend(struct ata_port *ap, struct ata_device *dev)
4300{
4301 if (!ata_dev_present(dev))
4302 return 0;
4303 if (dev->class == ATA_DEV_ATA)
4304 ata_flush_cache(ap, dev);
4305
4306 ata_standby_drive(ap, dev);
4307 ap->flags |= ATA_FLAG_SUSPENDED;
4308 return 0;
4309}
4310
1da177e4
LT
4311int ata_port_start (struct ata_port *ap)
4312{
4313 struct device *dev = ap->host_set->dev;
6037d6bb 4314 int rc;
1da177e4
LT
4315
4316 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4317 if (!ap->prd)
4318 return -ENOMEM;
4319
6037d6bb
JG
4320 rc = ata_pad_alloc(ap, dev);
4321 if (rc) {
cedc9a47 4322 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4323 return rc;
cedc9a47
JG
4324 }
4325
1da177e4
LT
4326 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4327
4328 return 0;
4329}
4330
0baab86b
EF
4331
4332/**
4333 * ata_port_stop - Undo ata_port_start()
4334 * @ap: Port to shut down
4335 *
4336 * Frees the PRD table.
4337 *
4338 * May be used as the port_stop() entry in ata_port_operations.
4339 *
4340 * LOCKING:
6f0ef4fa 4341 * Inherited from caller.
0baab86b
EF
4342 */
4343
1da177e4
LT
4344void ata_port_stop (struct ata_port *ap)
4345{
4346 struct device *dev = ap->host_set->dev;
4347
4348 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4349 ata_pad_free(ap, dev);
1da177e4
LT
4350}
4351
aa8f0dc6
JG
4352void ata_host_stop (struct ata_host_set *host_set)
4353{
4354 if (host_set->mmio_base)
4355 iounmap(host_set->mmio_base);
4356}
4357
4358
1da177e4
LT
4359/**
4360 * ata_host_remove - Unregister SCSI host structure with upper layers
4361 * @ap: Port to unregister
4362 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4363 *
4364 * LOCKING:
6f0ef4fa 4365 * Inherited from caller.
1da177e4
LT
4366 */
4367
4368static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4369{
4370 struct Scsi_Host *sh = ap->host;
4371
4372 DPRINTK("ENTER\n");
4373
4374 if (do_unregister)
4375 scsi_remove_host(sh);
4376
4377 ap->ops->port_stop(ap);
4378}
4379
4380/**
4381 * ata_host_init - Initialize an ata_port structure
4382 * @ap: Structure to initialize
4383 * @host: associated SCSI mid-layer structure
4384 * @host_set: Collection of hosts to which @ap belongs
4385 * @ent: Probe information provided by low-level driver
4386 * @port_no: Port number associated with this ata_port
4387 *
0cba632b
JG
4388 * Initialize a new ata_port structure, and its associated
4389 * scsi_host.
4390 *
1da177e4 4391 * LOCKING:
0cba632b 4392 * Inherited from caller.
1da177e4
LT
4393 */
4394
4395static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4396 struct ata_host_set *host_set,
057ace5e 4397 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
4398{
4399 unsigned int i;
4400
4401 host->max_id = 16;
4402 host->max_lun = 1;
4403 host->max_channel = 1;
4404 host->unique_id = ata_unique_id++;
4405 host->max_cmd_len = 12;
12413197 4406
1da177e4
LT
4407 ap->flags = ATA_FLAG_PORT_DISABLED;
4408 ap->id = host->unique_id;
4409 ap->host = host;
4410 ap->ctl = ATA_DEVCTL_OBS;
4411 ap->host_set = host_set;
4412 ap->port_no = port_no;
4413 ap->hard_port_no =
4414 ent->legacy_mode ? ent->hard_port_no : port_no;
4415 ap->pio_mask = ent->pio_mask;
4416 ap->mwdma_mask = ent->mwdma_mask;
4417 ap->udma_mask = ent->udma_mask;
4418 ap->flags |= ent->host_flags;
4419 ap->ops = ent->port_ops;
4420 ap->cbl = ATA_CBL_NONE;
4421 ap->active_tag = ATA_TAG_POISON;
4422 ap->last_ctl = 0xFF;
4423
4424 INIT_WORK(&ap->packet_task, atapi_packet_task, ap);
4425 INIT_WORK(&ap->pio_task, ata_pio_task, ap);
4426
4427 for (i = 0; i < ATA_MAX_DEVICES; i++)
4428 ap->device[i].devno = i;
4429
4430#ifdef ATA_IRQ_TRAP
4431 ap->stats.unhandled_irq = 1;
4432 ap->stats.idle_irq = 1;
4433#endif
4434
4435 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4436}
4437
4438/**
4439 * ata_host_add - Attach low-level ATA driver to system
4440 * @ent: Information provided by low-level driver
4441 * @host_set: Collections of ports to which we add
4442 * @port_no: Port number associated with this host
4443 *
0cba632b
JG
4444 * Attach low-level ATA driver to system.
4445 *
1da177e4 4446 * LOCKING:
0cba632b 4447 * PCI/etc. bus probe sem.
1da177e4
LT
4448 *
4449 * RETURNS:
0cba632b 4450 * New ata_port on success, for NULL on error.
1da177e4
LT
4451 */
4452
057ace5e 4453static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
1da177e4
LT
4454 struct ata_host_set *host_set,
4455 unsigned int port_no)
4456{
4457 struct Scsi_Host *host;
4458 struct ata_port *ap;
4459 int rc;
4460
4461 DPRINTK("ENTER\n");
4462 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4463 if (!host)
4464 return NULL;
4465
4466 ap = (struct ata_port *) &host->hostdata[0];
4467
4468 ata_host_init(ap, host, host_set, ent, port_no);
4469
4470 rc = ap->ops->port_start(ap);
4471 if (rc)
4472 goto err_out;
4473
4474 return ap;
4475
4476err_out:
4477 scsi_host_put(host);
4478 return NULL;
4479}
4480
4481/**
0cba632b
JG
4482 * ata_device_add - Register hardware device with ATA and SCSI layers
4483 * @ent: Probe information describing hardware device to be registered
4484 *
4485 * This function processes the information provided in the probe
4486 * information struct @ent, allocates the necessary ATA and SCSI
4487 * host information structures, initializes them, and registers
4488 * everything with requisite kernel subsystems.
4489 *
4490 * This function requests irqs, probes the ATA bus, and probes
4491 * the SCSI bus.
1da177e4
LT
4492 *
4493 * LOCKING:
0cba632b 4494 * PCI/etc. bus probe sem.
1da177e4
LT
4495 *
4496 * RETURNS:
0cba632b 4497 * Number of ports registered. Zero on error (no ports registered).
1da177e4
LT
4498 */
4499
057ace5e 4500int ata_device_add(const struct ata_probe_ent *ent)
1da177e4
LT
4501{
4502 unsigned int count = 0, i;
4503 struct device *dev = ent->dev;
4504 struct ata_host_set *host_set;
4505
4506 DPRINTK("ENTER\n");
4507 /* alloc a container for our list of ATA ports (buses) */
57f3bda8 4508 host_set = kzalloc(sizeof(struct ata_host_set) +
1da177e4
LT
4509 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4510 if (!host_set)
4511 return 0;
1da177e4
LT
4512 spin_lock_init(&host_set->lock);
4513
4514 host_set->dev = dev;
4515 host_set->n_ports = ent->n_ports;
4516 host_set->irq = ent->irq;
4517 host_set->mmio_base = ent->mmio_base;
4518 host_set->private_data = ent->private_data;
4519 host_set->ops = ent->port_ops;
4520
4521 /* register each port bound to this device */
4522 for (i = 0; i < ent->n_ports; i++) {
4523 struct ata_port *ap;
4524 unsigned long xfer_mode_mask;
4525
4526 ap = ata_host_add(ent, host_set, i);
4527 if (!ap)
4528 goto err_out;
4529
4530 host_set->ports[i] = ap;
4531 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4532 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4533 (ap->pio_mask << ATA_SHIFT_PIO);
4534
4535 /* print per-port info to dmesg */
4536 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4537 "bmdma 0x%lX irq %lu\n",
4538 ap->id,
4539 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4540 ata_mode_string(xfer_mode_mask),
4541 ap->ioaddr.cmd_addr,
4542 ap->ioaddr.ctl_addr,
4543 ap->ioaddr.bmdma_addr,
4544 ent->irq);
4545
4546 ata_chk_status(ap);
4547 host_set->ops->irq_clear(ap);
4548 count++;
4549 }
4550
57f3bda8
RD
4551 if (!count)
4552 goto err_free_ret;
1da177e4
LT
4553
4554 /* obtain irq, that is shared between channels */
4555 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4556 DRV_NAME, host_set))
4557 goto err_out;
4558
4559 /* perform each probe synchronously */
4560 DPRINTK("probe begin\n");
4561 for (i = 0; i < count; i++) {
4562 struct ata_port *ap;
4563 int rc;
4564
4565 ap = host_set->ports[i];
4566
4567 DPRINTK("ata%u: probe begin\n", ap->id);
4568 rc = ata_bus_probe(ap);
4569 DPRINTK("ata%u: probe end\n", ap->id);
4570
4571 if (rc) {
4572 /* FIXME: do something useful here?
4573 * Current libata behavior will
4574 * tear down everything when
4575 * the module is removed
4576 * or the h/w is unplugged.
4577 */
4578 }
4579
4580 rc = scsi_add_host(ap->host, dev);
4581 if (rc) {
4582 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4583 ap->id);
4584 /* FIXME: do something useful here */
4585 /* FIXME: handle unconditional calls to
4586 * scsi_scan_host and ata_host_remove, below,
4587 * at the very least
4588 */
4589 }
4590 }
4591
4592 /* probes are done, now scan each port's disk(s) */
4593 DPRINTK("probe begin\n");
4594 for (i = 0; i < count; i++) {
4595 struct ata_port *ap = host_set->ports[i];
4596
644dd0cc 4597 ata_scsi_scan_host(ap);
1da177e4
LT
4598 }
4599
4600 dev_set_drvdata(dev, host_set);
4601
4602 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4603 return ent->n_ports; /* success */
4604
4605err_out:
4606 for (i = 0; i < count; i++) {
4607 ata_host_remove(host_set->ports[i], 1);
4608 scsi_host_put(host_set->ports[i]->host);
4609 }
57f3bda8 4610err_free_ret:
1da177e4
LT
4611 kfree(host_set);
4612 VPRINTK("EXIT, returning 0\n");
4613 return 0;
4614}
4615
17b14451
AC
4616/**
4617 * ata_host_set_remove - PCI layer callback for device removal
4618 * @host_set: ATA host set that was removed
4619 *
4620 * Unregister all objects associated with this host set. Free those
4621 * objects.
4622 *
4623 * LOCKING:
4624 * Inherited from calling layer (may sleep).
4625 */
4626
17b14451
AC
4627void ata_host_set_remove(struct ata_host_set *host_set)
4628{
4629 struct ata_port *ap;
4630 unsigned int i;
4631
4632 for (i = 0; i < host_set->n_ports; i++) {
4633 ap = host_set->ports[i];
4634 scsi_remove_host(ap->host);
4635 }
4636
4637 free_irq(host_set->irq, host_set);
4638
4639 for (i = 0; i < host_set->n_ports; i++) {
4640 ap = host_set->ports[i];
4641
4642 ata_scsi_release(ap->host);
4643
4644 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4645 struct ata_ioports *ioaddr = &ap->ioaddr;
4646
4647 if (ioaddr->cmd_addr == 0x1f0)
4648 release_region(0x1f0, 8);
4649 else if (ioaddr->cmd_addr == 0x170)
4650 release_region(0x170, 8);
4651 }
4652
4653 scsi_host_put(ap->host);
4654 }
4655
4656 if (host_set->ops->host_stop)
4657 host_set->ops->host_stop(host_set);
4658
4659 kfree(host_set);
4660}
4661
1da177e4
LT
4662/**
4663 * ata_scsi_release - SCSI layer callback hook for host unload
4664 * @host: libata host to be unloaded
4665 *
4666 * Performs all duties necessary to shut down a libata port...
4667 * Kill port kthread, disable port, and release resources.
4668 *
4669 * LOCKING:
4670 * Inherited from SCSI layer.
4671 *
4672 * RETURNS:
4673 * One.
4674 */
4675
4676int ata_scsi_release(struct Scsi_Host *host)
4677{
4678 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
4679
4680 DPRINTK("ENTER\n");
4681
4682 ap->ops->port_disable(ap);
4683 ata_host_remove(ap, 0);
4684
4685 DPRINTK("EXIT\n");
4686 return 1;
4687}
4688
4689/**
4690 * ata_std_ports - initialize ioaddr with standard port offsets.
4691 * @ioaddr: IO address structure to be initialized
0baab86b
EF
4692 *
4693 * Utility function which initializes data_addr, error_addr,
4694 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4695 * device_addr, status_addr, and command_addr to standard offsets
4696 * relative to cmd_addr.
4697 *
4698 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 4699 */
0baab86b 4700
1da177e4
LT
4701void ata_std_ports(struct ata_ioports *ioaddr)
4702{
4703 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4704 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4705 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4706 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4707 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4708 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4709 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4710 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4711 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4712 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4713}
4714
4715static struct ata_probe_ent *
057ace5e 4716ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
1da177e4
LT
4717{
4718 struct ata_probe_ent *probe_ent;
4719
57f3bda8 4720 probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
1da177e4
LT
4721 if (!probe_ent) {
4722 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
4723 kobject_name(&(dev->kobj)));
4724 return NULL;
4725 }
4726
1da177e4
LT
4727 INIT_LIST_HEAD(&probe_ent->node);
4728 probe_ent->dev = dev;
4729
4730 probe_ent->sht = port->sht;
4731 probe_ent->host_flags = port->host_flags;
4732 probe_ent->pio_mask = port->pio_mask;
4733 probe_ent->mwdma_mask = port->mwdma_mask;
4734 probe_ent->udma_mask = port->udma_mask;
4735 probe_ent->port_ops = port->port_ops;
4736
4737 return probe_ent;
4738}
4739
0baab86b
EF
4740
4741
374b1873
JG
4742#ifdef CONFIG_PCI
4743
4744void ata_pci_host_stop (struct ata_host_set *host_set)
4745{
4746 struct pci_dev *pdev = to_pci_dev(host_set->dev);
4747
4748 pci_iounmap(pdev, host_set->mmio_base);
4749}
4750
0baab86b
EF
4751/**
4752 * ata_pci_init_native_mode - Initialize native-mode driver
4753 * @pdev: pci device to be initialized
4754 * @port: array[2] of pointers to port info structures.
47a86593 4755 * @ports: bitmap of ports present
0baab86b
EF
4756 *
4757 * Utility function which allocates and initializes an
4758 * ata_probe_ent structure for a standard dual-port
4759 * PIO-based IDE controller. The returned ata_probe_ent
4760 * structure can be passed to ata_device_add(). The returned
4761 * ata_probe_ent structure should then be freed with kfree().
47a86593
AC
4762 *
4763 * The caller need only pass the address of the primary port, the
4764 * secondary will be deduced automatically. If the device has non
4765 * standard secondary port mappings this function can be called twice,
4766 * once for each interface.
0baab86b
EF
4767 */
4768
1da177e4 4769struct ata_probe_ent *
47a86593 4770ata_pci_init_native_mode(struct pci_dev *pdev, struct ata_port_info **port, int ports)
1da177e4
LT
4771{
4772 struct ata_probe_ent *probe_ent =
4773 ata_probe_ent_alloc(pci_dev_to_dev(pdev), port[0]);
47a86593
AC
4774 int p = 0;
4775
1da177e4
LT
4776 if (!probe_ent)
4777 return NULL;
4778
1da177e4
LT
4779 probe_ent->irq = pdev->irq;
4780 probe_ent->irq_flags = SA_SHIRQ;
e99f8b5e 4781 probe_ent->private_data = port[0]->private_data;
1da177e4 4782
47a86593
AC
4783 if (ports & ATA_PORT_PRIMARY) {
4784 probe_ent->port[p].cmd_addr = pci_resource_start(pdev, 0);
4785 probe_ent->port[p].altstatus_addr =
4786 probe_ent->port[p].ctl_addr =
4787 pci_resource_start(pdev, 1) | ATA_PCI_CTL_OFS;
4788 probe_ent->port[p].bmdma_addr = pci_resource_start(pdev, 4);
4789 ata_std_ports(&probe_ent->port[p]);
4790 p++;
4791 }
1da177e4 4792
47a86593
AC
4793 if (ports & ATA_PORT_SECONDARY) {
4794 probe_ent->port[p].cmd_addr = pci_resource_start(pdev, 2);
4795 probe_ent->port[p].altstatus_addr =
4796 probe_ent->port[p].ctl_addr =
4797 pci_resource_start(pdev, 3) | ATA_PCI_CTL_OFS;
4798 probe_ent->port[p].bmdma_addr = pci_resource_start(pdev, 4) + 8;
4799 ata_std_ports(&probe_ent->port[p]);
4800 p++;
4801 }
1da177e4 4802
47a86593 4803 probe_ent->n_ports = p;
1da177e4
LT
4804 return probe_ent;
4805}
4806
0f0d5192 4807static struct ata_probe_ent *ata_pci_init_legacy_port(struct pci_dev *pdev, struct ata_port_info *port, int port_num)
1da177e4 4808{
47a86593 4809 struct ata_probe_ent *probe_ent;
1da177e4 4810
0f0d5192 4811 probe_ent = ata_probe_ent_alloc(pci_dev_to_dev(pdev), port);
1da177e4
LT
4812 if (!probe_ent)
4813 return NULL;
1da177e4 4814
1da177e4 4815 probe_ent->legacy_mode = 1;
47a86593
AC
4816 probe_ent->n_ports = 1;
4817 probe_ent->hard_port_no = port_num;
e99f8b5e 4818 probe_ent->private_data = port->private_data;
47a86593
AC
4819
4820 switch(port_num)
4821 {
4822 case 0:
4823 probe_ent->irq = 14;
4824 probe_ent->port[0].cmd_addr = 0x1f0;
4825 probe_ent->port[0].altstatus_addr =
4826 probe_ent->port[0].ctl_addr = 0x3f6;
4827 break;
4828 case 1:
4829 probe_ent->irq = 15;
4830 probe_ent->port[0].cmd_addr = 0x170;
4831 probe_ent->port[0].altstatus_addr =
4832 probe_ent->port[0].ctl_addr = 0x376;
4833 break;
4834 }
4835 probe_ent->port[0].bmdma_addr = pci_resource_start(pdev, 4) + 8 * port_num;
1da177e4 4836 ata_std_ports(&probe_ent->port[0]);
1da177e4
LT
4837 return probe_ent;
4838}
4839
4840/**
4841 * ata_pci_init_one - Initialize/register PCI IDE host controller
4842 * @pdev: Controller to be initialized
4843 * @port_info: Information from low-level host driver
4844 * @n_ports: Number of ports attached to host controller
4845 *
0baab86b
EF
4846 * This is a helper function which can be called from a driver's
4847 * xxx_init_one() probe function if the hardware uses traditional
4848 * IDE taskfile registers.
4849 *
4850 * This function calls pci_enable_device(), reserves its register
4851 * regions, sets the dma mask, enables bus master mode, and calls
4852 * ata_device_add()
4853 *
1da177e4
LT
4854 * LOCKING:
4855 * Inherited from PCI layer (may sleep).
4856 *
4857 * RETURNS:
0cba632b 4858 * Zero on success, negative on errno-based value on error.
1da177e4
LT
4859 */
4860
4861int ata_pci_init_one (struct pci_dev *pdev, struct ata_port_info **port_info,
4862 unsigned int n_ports)
4863{
47a86593 4864 struct ata_probe_ent *probe_ent = NULL, *probe_ent2 = NULL;
1da177e4
LT
4865 struct ata_port_info *port[2];
4866 u8 tmp8, mask;
4867 unsigned int legacy_mode = 0;
4868 int disable_dev_on_err = 1;
4869 int rc;
4870
4871 DPRINTK("ENTER\n");
4872
4873 port[0] = port_info[0];
4874 if (n_ports > 1)
4875 port[1] = port_info[1];
4876 else
4877 port[1] = port[0];
4878
4879 if ((port[0]->host_flags & ATA_FLAG_NO_LEGACY) == 0
4880 && (pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
47a86593 4881 /* TODO: What if one channel is in native mode ... */
1da177e4
LT
4882 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
4883 mask = (1 << 2) | (1 << 0);
4884 if ((tmp8 & mask) != mask)
4885 legacy_mode = (1 << 3);
4886 }
4887
4888 /* FIXME... */
47a86593
AC
4889 if ((!legacy_mode) && (n_ports > 2)) {
4890 printk(KERN_ERR "ata: BUG: native mode, n_ports > 2\n");
4891 n_ports = 2;
4892 /* For now */
1da177e4
LT
4893 }
4894
47a86593
AC
4895 /* FIXME: Really for ATA it isn't safe because the device may be
4896 multi-purpose and we want to leave it alone if it was already
4897 enabled. Secondly for shared use as Arjan says we want refcounting
4898
4899 Checking dev->is_enabled is insufficient as this is not set at
4900 boot for the primary video which is BIOS enabled
4901 */
4902
1da177e4
LT
4903 rc = pci_enable_device(pdev);
4904 if (rc)
4905 return rc;
4906
4907 rc = pci_request_regions(pdev, DRV_NAME);
4908 if (rc) {
4909 disable_dev_on_err = 0;
4910 goto err_out;
4911 }
4912
47a86593 4913 /* FIXME: Should use platform specific mappers for legacy port ranges */
1da177e4
LT
4914 if (legacy_mode) {
4915 if (!request_region(0x1f0, 8, "libata")) {
4916 struct resource *conflict, res;
4917 res.start = 0x1f0;
4918 res.end = 0x1f0 + 8 - 1;
4919 conflict = ____request_resource(&ioport_resource, &res);
4920 if (!strcmp(conflict->name, "libata"))
4921 legacy_mode |= (1 << 0);
4922 else {
4923 disable_dev_on_err = 0;
4924 printk(KERN_WARNING "ata: 0x1f0 IDE port busy\n");
4925 }
4926 } else
4927 legacy_mode |= (1 << 0);
4928
4929 if (!request_region(0x170, 8, "libata")) {
4930 struct resource *conflict, res;
4931 res.start = 0x170;
4932 res.end = 0x170 + 8 - 1;
4933 conflict = ____request_resource(&ioport_resource, &res);
4934 if (!strcmp(conflict->name, "libata"))
4935 legacy_mode |= (1 << 1);
4936 else {
4937 disable_dev_on_err = 0;
4938 printk(KERN_WARNING "ata: 0x170 IDE port busy\n");
4939 }
4940 } else
4941 legacy_mode |= (1 << 1);
4942 }
4943
4944 /* we have legacy mode, but all ports are unavailable */
4945 if (legacy_mode == (1 << 3)) {
4946 rc = -EBUSY;
4947 goto err_out_regions;
4948 }
4949
4950 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
4951 if (rc)
4952 goto err_out_regions;
4953 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
4954 if (rc)
4955 goto err_out_regions;
4956
4957 if (legacy_mode) {
47a86593 4958 if (legacy_mode & (1 << 0))
0f0d5192 4959 probe_ent = ata_pci_init_legacy_port(pdev, port[0], 0);
47a86593 4960 if (legacy_mode & (1 << 1))
0f0d5192 4961 probe_ent2 = ata_pci_init_legacy_port(pdev, port[1], 1);
47a86593
AC
4962 } else {
4963 if (n_ports == 2)
4964 probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY | ATA_PORT_SECONDARY);
4965 else
4966 probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY);
4967 }
4968 if (!probe_ent && !probe_ent2) {
1da177e4
LT
4969 rc = -ENOMEM;
4970 goto err_out_regions;
4971 }
4972
4973 pci_set_master(pdev);
4974
4975 /* FIXME: check ata_device_add return */
4976 if (legacy_mode) {
4977 if (legacy_mode & (1 << 0))
4978 ata_device_add(probe_ent);
4979 if (legacy_mode & (1 << 1))
4980 ata_device_add(probe_ent2);
4981 } else
4982 ata_device_add(probe_ent);
4983
4984 kfree(probe_ent);
4985 kfree(probe_ent2);
4986
4987 return 0;
4988
4989err_out_regions:
4990 if (legacy_mode & (1 << 0))
4991 release_region(0x1f0, 8);
4992 if (legacy_mode & (1 << 1))
4993 release_region(0x170, 8);
4994 pci_release_regions(pdev);
4995err_out:
4996 if (disable_dev_on_err)
4997 pci_disable_device(pdev);
4998 return rc;
4999}
5000
5001/**
5002 * ata_pci_remove_one - PCI layer callback for device removal
5003 * @pdev: PCI device that was removed
5004 *
5005 * PCI layer indicates to libata via this hook that
6f0ef4fa 5006 * hot-unplug or module unload event has occurred.
1da177e4
LT
5007 * Handle this by unregistering all objects associated
5008 * with this PCI device. Free those objects. Then finally
5009 * release PCI resources and disable device.
5010 *
5011 * LOCKING:
5012 * Inherited from PCI layer (may sleep).
5013 */
5014
5015void ata_pci_remove_one (struct pci_dev *pdev)
5016{
5017 struct device *dev = pci_dev_to_dev(pdev);
5018 struct ata_host_set *host_set = dev_get_drvdata(dev);
1da177e4 5019
17b14451 5020 ata_host_set_remove(host_set);
1da177e4
LT
5021 pci_release_regions(pdev);
5022 pci_disable_device(pdev);
5023 dev_set_drvdata(dev, NULL);
5024}
5025
5026/* move to PCI subsystem */
057ace5e 5027int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
5028{
5029 unsigned long tmp = 0;
5030
5031 switch (bits->width) {
5032 case 1: {
5033 u8 tmp8 = 0;
5034 pci_read_config_byte(pdev, bits->reg, &tmp8);
5035 tmp = tmp8;
5036 break;
5037 }
5038 case 2: {
5039 u16 tmp16 = 0;
5040 pci_read_config_word(pdev, bits->reg, &tmp16);
5041 tmp = tmp16;
5042 break;
5043 }
5044 case 4: {
5045 u32 tmp32 = 0;
5046 pci_read_config_dword(pdev, bits->reg, &tmp32);
5047 tmp = tmp32;
5048 break;
5049 }
5050
5051 default:
5052 return -EINVAL;
5053 }
5054
5055 tmp &= bits->mask;
5056
5057 return (tmp == bits->val) ? 1 : 0;
5058}
9b847548
JA
5059
5060int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5061{
5062 pci_save_state(pdev);
5063 pci_disable_device(pdev);
5064 pci_set_power_state(pdev, PCI_D3hot);
5065 return 0;
5066}
5067
5068int ata_pci_device_resume(struct pci_dev *pdev)
5069{
5070 pci_set_power_state(pdev, PCI_D0);
5071 pci_restore_state(pdev);
5072 pci_enable_device(pdev);
5073 pci_set_master(pdev);
5074 return 0;
5075}
1da177e4
LT
5076#endif /* CONFIG_PCI */
5077
5078
1da177e4
LT
5079static int __init ata_init(void)
5080{
5081 ata_wq = create_workqueue("ata");
5082 if (!ata_wq)
5083 return -ENOMEM;
5084
5085 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5086 return 0;
5087}
5088
5089static void __exit ata_exit(void)
5090{
5091 destroy_workqueue(ata_wq);
5092}
5093
5094module_init(ata_init);
5095module_exit(ata_exit);
5096
67846b30
JG
5097static unsigned long ratelimit_time;
5098static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5099
5100int ata_ratelimit(void)
5101{
5102 int rc;
5103 unsigned long flags;
5104
5105 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5106
5107 if (time_after(jiffies, ratelimit_time)) {
5108 rc = 1;
5109 ratelimit_time = jiffies + (HZ/5);
5110 } else
5111 rc = 0;
5112
5113 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5114
5115 return rc;
5116}
5117
1da177e4
LT
5118/*
5119 * libata is essentially a library of internal helper functions for
5120 * low-level ATA host controller drivers. As such, the API/ABI is
5121 * likely to change as new drivers are added and updated.
5122 * Do not depend on ABI/API stability.
5123 */
5124
5125EXPORT_SYMBOL_GPL(ata_std_bios_param);
5126EXPORT_SYMBOL_GPL(ata_std_ports);
5127EXPORT_SYMBOL_GPL(ata_device_add);
17b14451 5128EXPORT_SYMBOL_GPL(ata_host_set_remove);
1da177e4
LT
5129EXPORT_SYMBOL_GPL(ata_sg_init);
5130EXPORT_SYMBOL_GPL(ata_sg_init_one);
5131EXPORT_SYMBOL_GPL(ata_qc_complete);
5132EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5133EXPORT_SYMBOL_GPL(ata_eng_timeout);
5134EXPORT_SYMBOL_GPL(ata_tf_load);
5135EXPORT_SYMBOL_GPL(ata_tf_read);
5136EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5137EXPORT_SYMBOL_GPL(ata_std_dev_select);
5138EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5139EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5140EXPORT_SYMBOL_GPL(ata_check_status);
5141EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
5142EXPORT_SYMBOL_GPL(ata_exec_command);
5143EXPORT_SYMBOL_GPL(ata_port_start);
5144EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 5145EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4
LT
5146EXPORT_SYMBOL_GPL(ata_interrupt);
5147EXPORT_SYMBOL_GPL(ata_qc_prep);
5148EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5149EXPORT_SYMBOL_GPL(ata_bmdma_start);
5150EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5151EXPORT_SYMBOL_GPL(ata_bmdma_status);
5152EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5153EXPORT_SYMBOL_GPL(ata_port_probe);
5154EXPORT_SYMBOL_GPL(sata_phy_reset);
5155EXPORT_SYMBOL_GPL(__sata_phy_reset);
5156EXPORT_SYMBOL_GPL(ata_bus_reset);
5157EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 5158EXPORT_SYMBOL_GPL(ata_ratelimit);
1da177e4
LT
5159EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5160EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
5161EXPORT_SYMBOL_GPL(ata_scsi_error);
5162EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5163EXPORT_SYMBOL_GPL(ata_scsi_release);
5164EXPORT_SYMBOL_GPL(ata_host_intr);
5165EXPORT_SYMBOL_GPL(ata_dev_classify);
5166EXPORT_SYMBOL_GPL(ata_dev_id_string);
6f2f3812 5167EXPORT_SYMBOL_GPL(ata_dev_config);
1da177e4
LT
5168EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5169
1bc4ccff 5170EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
5171EXPORT_SYMBOL_GPL(ata_timing_compute);
5172EXPORT_SYMBOL_GPL(ata_timing_merge);
5173
1da177e4
LT
5174#ifdef CONFIG_PCI
5175EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 5176EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
5177EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5178EXPORT_SYMBOL_GPL(ata_pci_init_one);
5179EXPORT_SYMBOL_GPL(ata_pci_remove_one);
9b847548
JA
5180EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5181EXPORT_SYMBOL_GPL(ata_pci_device_resume);
1da177e4 5182#endif /* CONFIG_PCI */
9b847548
JA
5183
5184EXPORT_SYMBOL_GPL(ata_device_suspend);
5185EXPORT_SYMBOL_GPL(ata_device_resume);
5186EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5187EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
This page took 0.374353 seconds and 5 git commands to generate.