[PATCH] libata: implement ap->sata_spd_limit and helpers
[deliverable/linux.git] / drivers / scsi / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
35#include <linux/config.h>
36#include <linux/kernel.h>
37#include <linux/module.h>
38#include <linux/pci.h>
39#include <linux/init.h>
40#include <linux/list.h>
41#include <linux/mm.h>
42#include <linux/highmem.h>
43#include <linux/spinlock.h>
44#include <linux/blkdev.h>
45#include <linux/delay.h>
46#include <linux/timer.h>
47#include <linux/interrupt.h>
48#include <linux/completion.h>
49#include <linux/suspend.h>
50#include <linux/workqueue.h>
67846b30 51#include <linux/jiffies.h>
378f058c 52#include <linux/scatterlist.h>
1da177e4 53#include <scsi/scsi.h>
1da177e4 54#include "scsi_priv.h"
193515d5 55#include <scsi/scsi_cmnd.h>
1da177e4
LT
56#include <scsi/scsi_host.h>
57#include <linux/libata.h>
58#include <asm/io.h>
59#include <asm/semaphore.h>
60#include <asm/byteorder.h>
61
62#include "libata.h"
63
6aff8f1f 64static unsigned int ata_dev_init_params(struct ata_port *ap,
00b6f5e9
AL
65 struct ata_device *dev,
66 u16 heads,
67 u16 sectors);
1c3fae4d 68static int ata_down_sata_spd_limit(struct ata_port *ap);
e82cbdb9 69static int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev);
83206a29
TH
70static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
71 struct ata_device *dev);
acf356b1 72static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev);
1da177e4
LT
73
74static unsigned int ata_unique_id = 1;
75static struct workqueue_struct *ata_wq;
76
418dc1f5 77int atapi_enabled = 1;
1623c81e
JG
78module_param(atapi_enabled, int, 0444);
79MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
80
c3c013a2
JG
81int libata_fua = 0;
82module_param_named(fua, libata_fua, int, 0444);
83MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
84
1da177e4
LT
85MODULE_AUTHOR("Jeff Garzik");
86MODULE_DESCRIPTION("Library module for ATA devices");
87MODULE_LICENSE("GPL");
88MODULE_VERSION(DRV_VERSION);
89
0baab86b 90
1da177e4
LT
91/**
92 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
93 * @tf: Taskfile to convert
94 * @fis: Buffer into which data will output
95 * @pmp: Port multiplier port
96 *
97 * Converts a standard ATA taskfile to a Serial ATA
98 * FIS structure (Register - Host to Device).
99 *
100 * LOCKING:
101 * Inherited from caller.
102 */
103
057ace5e 104void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
105{
106 fis[0] = 0x27; /* Register - Host to Device FIS */
107 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
108 bit 7 indicates Command FIS */
109 fis[2] = tf->command;
110 fis[3] = tf->feature;
111
112 fis[4] = tf->lbal;
113 fis[5] = tf->lbam;
114 fis[6] = tf->lbah;
115 fis[7] = tf->device;
116
117 fis[8] = tf->hob_lbal;
118 fis[9] = tf->hob_lbam;
119 fis[10] = tf->hob_lbah;
120 fis[11] = tf->hob_feature;
121
122 fis[12] = tf->nsect;
123 fis[13] = tf->hob_nsect;
124 fis[14] = 0;
125 fis[15] = tf->ctl;
126
127 fis[16] = 0;
128 fis[17] = 0;
129 fis[18] = 0;
130 fis[19] = 0;
131}
132
133/**
134 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
135 * @fis: Buffer from which data will be input
136 * @tf: Taskfile to output
137 *
e12a1be6 138 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
139 *
140 * LOCKING:
141 * Inherited from caller.
142 */
143
057ace5e 144void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
145{
146 tf->command = fis[2]; /* status */
147 tf->feature = fis[3]; /* error */
148
149 tf->lbal = fis[4];
150 tf->lbam = fis[5];
151 tf->lbah = fis[6];
152 tf->device = fis[7];
153
154 tf->hob_lbal = fis[8];
155 tf->hob_lbam = fis[9];
156 tf->hob_lbah = fis[10];
157
158 tf->nsect = fis[12];
159 tf->hob_nsect = fis[13];
160}
161
8cbd6df1
AL
162static const u8 ata_rw_cmds[] = {
163 /* pio multi */
164 ATA_CMD_READ_MULTI,
165 ATA_CMD_WRITE_MULTI,
166 ATA_CMD_READ_MULTI_EXT,
167 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
168 0,
169 0,
170 0,
171 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
172 /* pio */
173 ATA_CMD_PIO_READ,
174 ATA_CMD_PIO_WRITE,
175 ATA_CMD_PIO_READ_EXT,
176 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
177 0,
178 0,
179 0,
180 0,
8cbd6df1
AL
181 /* dma */
182 ATA_CMD_READ,
183 ATA_CMD_WRITE,
184 ATA_CMD_READ_EXT,
9a3dccc4
TH
185 ATA_CMD_WRITE_EXT,
186 0,
187 0,
188 0,
189 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 190};
1da177e4
LT
191
192/**
8cbd6df1
AL
193 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
194 * @qc: command to examine and configure
1da177e4 195 *
2e9edbf8 196 * Examine the device configuration and tf->flags to calculate
8cbd6df1 197 * the proper read/write commands and protocol to use.
1da177e4
LT
198 *
199 * LOCKING:
200 * caller.
201 */
9a3dccc4 202int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
1da177e4 203{
8cbd6df1
AL
204 struct ata_taskfile *tf = &qc->tf;
205 struct ata_device *dev = qc->dev;
9a3dccc4 206 u8 cmd;
1da177e4 207
9a3dccc4 208 int index, fua, lba48, write;
2e9edbf8 209
9a3dccc4 210 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
211 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
212 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 213
8cbd6df1
AL
214 if (dev->flags & ATA_DFLAG_PIO) {
215 tf->protocol = ATA_PROT_PIO;
9a3dccc4 216 index = dev->multi_count ? 0 : 8;
8d238e01
AC
217 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
218 /* Unable to use DMA due to host limitation */
219 tf->protocol = ATA_PROT_PIO;
0565c26d 220 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
221 } else {
222 tf->protocol = ATA_PROT_DMA;
9a3dccc4 223 index = 16;
8cbd6df1 224 }
1da177e4 225
9a3dccc4
TH
226 cmd = ata_rw_cmds[index + fua + lba48 + write];
227 if (cmd) {
228 tf->command = cmd;
229 return 0;
230 }
231 return -1;
1da177e4
LT
232}
233
cb95d562
TH
234/**
235 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
236 * @pio_mask: pio_mask
237 * @mwdma_mask: mwdma_mask
238 * @udma_mask: udma_mask
239 *
240 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
241 * unsigned int xfer_mask.
242 *
243 * LOCKING:
244 * None.
245 *
246 * RETURNS:
247 * Packed xfer_mask.
248 */
249static unsigned int ata_pack_xfermask(unsigned int pio_mask,
250 unsigned int mwdma_mask,
251 unsigned int udma_mask)
252{
253 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
254 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
255 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
256}
257
c0489e4e
TH
258/**
259 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
260 * @xfer_mask: xfer_mask to unpack
261 * @pio_mask: resulting pio_mask
262 * @mwdma_mask: resulting mwdma_mask
263 * @udma_mask: resulting udma_mask
264 *
265 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
266 * Any NULL distination masks will be ignored.
267 */
268static void ata_unpack_xfermask(unsigned int xfer_mask,
269 unsigned int *pio_mask,
270 unsigned int *mwdma_mask,
271 unsigned int *udma_mask)
272{
273 if (pio_mask)
274 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
275 if (mwdma_mask)
276 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
277 if (udma_mask)
278 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
279}
280
cb95d562 281static const struct ata_xfer_ent {
be9a50c8 282 int shift, bits;
cb95d562
TH
283 u8 base;
284} ata_xfer_tbl[] = {
285 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
286 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
287 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
288 { -1, },
289};
290
291/**
292 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
293 * @xfer_mask: xfer_mask of interest
294 *
295 * Return matching XFER_* value for @xfer_mask. Only the highest
296 * bit of @xfer_mask is considered.
297 *
298 * LOCKING:
299 * None.
300 *
301 * RETURNS:
302 * Matching XFER_* value, 0 if no match found.
303 */
304static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
305{
306 int highbit = fls(xfer_mask) - 1;
307 const struct ata_xfer_ent *ent;
308
309 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
310 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
311 return ent->base + highbit - ent->shift;
312 return 0;
313}
314
315/**
316 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
317 * @xfer_mode: XFER_* of interest
318 *
319 * Return matching xfer_mask for @xfer_mode.
320 *
321 * LOCKING:
322 * None.
323 *
324 * RETURNS:
325 * Matching xfer_mask, 0 if no match found.
326 */
327static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
328{
329 const struct ata_xfer_ent *ent;
330
331 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
332 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
333 return 1 << (ent->shift + xfer_mode - ent->base);
334 return 0;
335}
336
337/**
338 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
339 * @xfer_mode: XFER_* of interest
340 *
341 * Return matching xfer_shift for @xfer_mode.
342 *
343 * LOCKING:
344 * None.
345 *
346 * RETURNS:
347 * Matching xfer_shift, -1 if no match found.
348 */
349static int ata_xfer_mode2shift(unsigned int xfer_mode)
350{
351 const struct ata_xfer_ent *ent;
352
353 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
354 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
355 return ent->shift;
356 return -1;
357}
358
1da177e4 359/**
1da7b0d0
TH
360 * ata_mode_string - convert xfer_mask to string
361 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
362 *
363 * Determine string which represents the highest speed
1da7b0d0 364 * (highest bit in @modemask).
1da177e4
LT
365 *
366 * LOCKING:
367 * None.
368 *
369 * RETURNS:
370 * Constant C string representing highest speed listed in
1da7b0d0 371 * @mode_mask, or the constant C string "<n/a>".
1da177e4 372 */
1da7b0d0 373static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 374{
75f554bc
TH
375 static const char * const xfer_mode_str[] = {
376 "PIO0",
377 "PIO1",
378 "PIO2",
379 "PIO3",
380 "PIO4",
381 "MWDMA0",
382 "MWDMA1",
383 "MWDMA2",
384 "UDMA/16",
385 "UDMA/25",
386 "UDMA/33",
387 "UDMA/44",
388 "UDMA/66",
389 "UDMA/100",
390 "UDMA/133",
391 "UDMA7",
392 };
1da7b0d0 393 int highbit;
1da177e4 394
1da7b0d0
TH
395 highbit = fls(xfer_mask) - 1;
396 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
397 return xfer_mode_str[highbit];
1da177e4 398 return "<n/a>";
1da177e4
LT
399}
400
4c360c81
TH
401static const char *sata_spd_string(unsigned int spd)
402{
403 static const char * const spd_str[] = {
404 "1.5 Gbps",
405 "3.0 Gbps",
406 };
407
408 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
409 return "<unknown>";
410 return spd_str[spd - 1];
411}
412
0b8efb0a
TH
413static void ata_dev_disable(struct ata_port *ap, struct ata_device *dev)
414{
e1211e3f 415 if (ata_dev_enabled(dev)) {
0b8efb0a
TH
416 printk(KERN_WARNING "ata%u: dev %u disabled\n",
417 ap->id, dev->devno);
418 dev->class++;
419 }
420}
421
1da177e4
LT
422/**
423 * ata_pio_devchk - PATA device presence detection
424 * @ap: ATA channel to examine
425 * @device: Device to examine (starting at zero)
426 *
427 * This technique was originally described in
428 * Hale Landis's ATADRVR (www.ata-atapi.com), and
429 * later found its way into the ATA/ATAPI spec.
430 *
431 * Write a pattern to the ATA shadow registers,
432 * and if a device is present, it will respond by
433 * correctly storing and echoing back the
434 * ATA shadow register contents.
435 *
436 * LOCKING:
437 * caller.
438 */
439
440static unsigned int ata_pio_devchk(struct ata_port *ap,
441 unsigned int device)
442{
443 struct ata_ioports *ioaddr = &ap->ioaddr;
444 u8 nsect, lbal;
445
446 ap->ops->dev_select(ap, device);
447
448 outb(0x55, ioaddr->nsect_addr);
449 outb(0xaa, ioaddr->lbal_addr);
450
451 outb(0xaa, ioaddr->nsect_addr);
452 outb(0x55, ioaddr->lbal_addr);
453
454 outb(0x55, ioaddr->nsect_addr);
455 outb(0xaa, ioaddr->lbal_addr);
456
457 nsect = inb(ioaddr->nsect_addr);
458 lbal = inb(ioaddr->lbal_addr);
459
460 if ((nsect == 0x55) && (lbal == 0xaa))
461 return 1; /* we found a device */
462
463 return 0; /* nothing found */
464}
465
466/**
467 * ata_mmio_devchk - PATA device presence detection
468 * @ap: ATA channel to examine
469 * @device: Device to examine (starting at zero)
470 *
471 * This technique was originally described in
472 * Hale Landis's ATADRVR (www.ata-atapi.com), and
473 * later found its way into the ATA/ATAPI spec.
474 *
475 * Write a pattern to the ATA shadow registers,
476 * and if a device is present, it will respond by
477 * correctly storing and echoing back the
478 * ATA shadow register contents.
479 *
480 * LOCKING:
481 * caller.
482 */
483
484static unsigned int ata_mmio_devchk(struct ata_port *ap,
485 unsigned int device)
486{
487 struct ata_ioports *ioaddr = &ap->ioaddr;
488 u8 nsect, lbal;
489
490 ap->ops->dev_select(ap, device);
491
492 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
493 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
494
495 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
496 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
497
498 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
499 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
500
501 nsect = readb((void __iomem *) ioaddr->nsect_addr);
502 lbal = readb((void __iomem *) ioaddr->lbal_addr);
503
504 if ((nsect == 0x55) && (lbal == 0xaa))
505 return 1; /* we found a device */
506
507 return 0; /* nothing found */
508}
509
510/**
511 * ata_devchk - PATA device presence detection
512 * @ap: ATA channel to examine
513 * @device: Device to examine (starting at zero)
514 *
515 * Dispatch ATA device presence detection, depending
516 * on whether we are using PIO or MMIO to talk to the
517 * ATA shadow registers.
518 *
519 * LOCKING:
520 * caller.
521 */
522
523static unsigned int ata_devchk(struct ata_port *ap,
524 unsigned int device)
525{
526 if (ap->flags & ATA_FLAG_MMIO)
527 return ata_mmio_devchk(ap, device);
528 return ata_pio_devchk(ap, device);
529}
530
531/**
532 * ata_dev_classify - determine device type based on ATA-spec signature
533 * @tf: ATA taskfile register set for device to be identified
534 *
535 * Determine from taskfile register contents whether a device is
536 * ATA or ATAPI, as per "Signature and persistence" section
537 * of ATA/PI spec (volume 1, sect 5.14).
538 *
539 * LOCKING:
540 * None.
541 *
542 * RETURNS:
543 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
544 * the event of failure.
545 */
546
057ace5e 547unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
548{
549 /* Apple's open source Darwin code hints that some devices only
550 * put a proper signature into the LBA mid/high registers,
551 * So, we only check those. It's sufficient for uniqueness.
552 */
553
554 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
555 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
556 DPRINTK("found ATA device by sig\n");
557 return ATA_DEV_ATA;
558 }
559
560 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
561 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
562 DPRINTK("found ATAPI device by sig\n");
563 return ATA_DEV_ATAPI;
564 }
565
566 DPRINTK("unknown device\n");
567 return ATA_DEV_UNKNOWN;
568}
569
570/**
571 * ata_dev_try_classify - Parse returned ATA device signature
572 * @ap: ATA channel to examine
573 * @device: Device to examine (starting at zero)
b4dc7623 574 * @r_err: Value of error register on completion
1da177e4
LT
575 *
576 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
577 * an ATA/ATAPI-defined set of values is placed in the ATA
578 * shadow registers, indicating the results of device detection
579 * and diagnostics.
580 *
581 * Select the ATA device, and read the values from the ATA shadow
582 * registers. Then parse according to the Error register value,
583 * and the spec-defined values examined by ata_dev_classify().
584 *
585 * LOCKING:
586 * caller.
b4dc7623
TH
587 *
588 * RETURNS:
589 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
590 */
591
b4dc7623
TH
592static unsigned int
593ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 594{
1da177e4
LT
595 struct ata_taskfile tf;
596 unsigned int class;
597 u8 err;
598
599 ap->ops->dev_select(ap, device);
600
601 memset(&tf, 0, sizeof(tf));
602
1da177e4 603 ap->ops->tf_read(ap, &tf);
0169e284 604 err = tf.feature;
b4dc7623
TH
605 if (r_err)
606 *r_err = err;
1da177e4
LT
607
608 /* see if device passed diags */
609 if (err == 1)
610 /* do nothing */ ;
611 else if ((device == 0) && (err == 0x81))
612 /* do nothing */ ;
613 else
b4dc7623 614 return ATA_DEV_NONE;
1da177e4 615
b4dc7623 616 /* determine if device is ATA or ATAPI */
1da177e4 617 class = ata_dev_classify(&tf);
b4dc7623 618
1da177e4 619 if (class == ATA_DEV_UNKNOWN)
b4dc7623 620 return ATA_DEV_NONE;
1da177e4 621 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
622 return ATA_DEV_NONE;
623 return class;
1da177e4
LT
624}
625
626/**
6a62a04d 627 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
628 * @id: IDENTIFY DEVICE results we will examine
629 * @s: string into which data is output
630 * @ofs: offset into identify device page
631 * @len: length of string to return. must be an even number.
632 *
633 * The strings in the IDENTIFY DEVICE page are broken up into
634 * 16-bit chunks. Run through the string, and output each
635 * 8-bit chunk linearly, regardless of platform.
636 *
637 * LOCKING:
638 * caller.
639 */
640
6a62a04d
TH
641void ata_id_string(const u16 *id, unsigned char *s,
642 unsigned int ofs, unsigned int len)
1da177e4
LT
643{
644 unsigned int c;
645
646 while (len > 0) {
647 c = id[ofs] >> 8;
648 *s = c;
649 s++;
650
651 c = id[ofs] & 0xff;
652 *s = c;
653 s++;
654
655 ofs++;
656 len -= 2;
657 }
658}
659
0e949ff3 660/**
6a62a04d 661 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
662 * @id: IDENTIFY DEVICE results we will examine
663 * @s: string into which data is output
664 * @ofs: offset into identify device page
665 * @len: length of string to return. must be an odd number.
666 *
6a62a04d 667 * This function is identical to ata_id_string except that it
0e949ff3
TH
668 * trims trailing spaces and terminates the resulting string with
669 * null. @len must be actual maximum length (even number) + 1.
670 *
671 * LOCKING:
672 * caller.
673 */
6a62a04d
TH
674void ata_id_c_string(const u16 *id, unsigned char *s,
675 unsigned int ofs, unsigned int len)
0e949ff3
TH
676{
677 unsigned char *p;
678
679 WARN_ON(!(len & 1));
680
6a62a04d 681 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
682
683 p = s + strnlen(s, len - 1);
684 while (p > s && p[-1] == ' ')
685 p--;
686 *p = '\0';
687}
0baab86b 688
2940740b
TH
689static u64 ata_id_n_sectors(const u16 *id)
690{
691 if (ata_id_has_lba(id)) {
692 if (ata_id_has_lba48(id))
693 return ata_id_u64(id, 100);
694 else
695 return ata_id_u32(id, 60);
696 } else {
697 if (ata_id_current_chs_valid(id))
698 return ata_id_u32(id, 57);
699 else
700 return id[1] * id[3] * id[6];
701 }
702}
703
0baab86b
EF
704/**
705 * ata_noop_dev_select - Select device 0/1 on ATA bus
706 * @ap: ATA channel to manipulate
707 * @device: ATA device (numbered from zero) to select
708 *
709 * This function performs no actual function.
710 *
711 * May be used as the dev_select() entry in ata_port_operations.
712 *
713 * LOCKING:
714 * caller.
715 */
1da177e4
LT
716void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
717{
718}
719
0baab86b 720
1da177e4
LT
721/**
722 * ata_std_dev_select - Select device 0/1 on ATA bus
723 * @ap: ATA channel to manipulate
724 * @device: ATA device (numbered from zero) to select
725 *
726 * Use the method defined in the ATA specification to
727 * make either device 0, or device 1, active on the
0baab86b
EF
728 * ATA channel. Works with both PIO and MMIO.
729 *
730 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
731 *
732 * LOCKING:
733 * caller.
734 */
735
736void ata_std_dev_select (struct ata_port *ap, unsigned int device)
737{
738 u8 tmp;
739
740 if (device == 0)
741 tmp = ATA_DEVICE_OBS;
742 else
743 tmp = ATA_DEVICE_OBS | ATA_DEV1;
744
745 if (ap->flags & ATA_FLAG_MMIO) {
746 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
747 } else {
748 outb(tmp, ap->ioaddr.device_addr);
749 }
750 ata_pause(ap); /* needed; also flushes, for mmio */
751}
752
753/**
754 * ata_dev_select - Select device 0/1 on ATA bus
755 * @ap: ATA channel to manipulate
756 * @device: ATA device (numbered from zero) to select
757 * @wait: non-zero to wait for Status register BSY bit to clear
758 * @can_sleep: non-zero if context allows sleeping
759 *
760 * Use the method defined in the ATA specification to
761 * make either device 0, or device 1, active on the
762 * ATA channel.
763 *
764 * This is a high-level version of ata_std_dev_select(),
765 * which additionally provides the services of inserting
766 * the proper pauses and status polling, where needed.
767 *
768 * LOCKING:
769 * caller.
770 */
771
772void ata_dev_select(struct ata_port *ap, unsigned int device,
773 unsigned int wait, unsigned int can_sleep)
774{
775 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
776 ap->id, device, wait);
777
778 if (wait)
779 ata_wait_idle(ap);
780
781 ap->ops->dev_select(ap, device);
782
783 if (wait) {
784 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
785 msleep(150);
786 ata_wait_idle(ap);
787 }
788}
789
790/**
791 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 792 * @id: IDENTIFY DEVICE page to dump
1da177e4 793 *
0bd3300a
TH
794 * Dump selected 16-bit words from the given IDENTIFY DEVICE
795 * page.
1da177e4
LT
796 *
797 * LOCKING:
798 * caller.
799 */
800
0bd3300a 801static inline void ata_dump_id(const u16 *id)
1da177e4
LT
802{
803 DPRINTK("49==0x%04x "
804 "53==0x%04x "
805 "63==0x%04x "
806 "64==0x%04x "
807 "75==0x%04x \n",
0bd3300a
TH
808 id[49],
809 id[53],
810 id[63],
811 id[64],
812 id[75]);
1da177e4
LT
813 DPRINTK("80==0x%04x "
814 "81==0x%04x "
815 "82==0x%04x "
816 "83==0x%04x "
817 "84==0x%04x \n",
0bd3300a
TH
818 id[80],
819 id[81],
820 id[82],
821 id[83],
822 id[84]);
1da177e4
LT
823 DPRINTK("88==0x%04x "
824 "93==0x%04x\n",
0bd3300a
TH
825 id[88],
826 id[93]);
1da177e4
LT
827}
828
cb95d562
TH
829/**
830 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
831 * @id: IDENTIFY data to compute xfer mask from
832 *
833 * Compute the xfermask for this device. This is not as trivial
834 * as it seems if we must consider early devices correctly.
835 *
836 * FIXME: pre IDE drive timing (do we care ?).
837 *
838 * LOCKING:
839 * None.
840 *
841 * RETURNS:
842 * Computed xfermask
843 */
844static unsigned int ata_id_xfermask(const u16 *id)
845{
846 unsigned int pio_mask, mwdma_mask, udma_mask;
847
848 /* Usual case. Word 53 indicates word 64 is valid */
849 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
850 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
851 pio_mask <<= 3;
852 pio_mask |= 0x7;
853 } else {
854 /* If word 64 isn't valid then Word 51 high byte holds
855 * the PIO timing number for the maximum. Turn it into
856 * a mask.
857 */
858 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
859
860 /* But wait.. there's more. Design your standards by
861 * committee and you too can get a free iordy field to
862 * process. However its the speeds not the modes that
863 * are supported... Note drivers using the timing API
864 * will get this right anyway
865 */
866 }
867
868 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0
TH
869
870 udma_mask = 0;
871 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
872 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
873
874 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
875}
876
86e45b6b
TH
877/**
878 * ata_port_queue_task - Queue port_task
879 * @ap: The ata_port to queue port_task for
880 *
881 * Schedule @fn(@data) for execution after @delay jiffies using
882 * port_task. There is one port_task per port and it's the
883 * user(low level driver)'s responsibility to make sure that only
884 * one task is active at any given time.
885 *
886 * libata core layer takes care of synchronization between
887 * port_task and EH. ata_port_queue_task() may be ignored for EH
888 * synchronization.
889 *
890 * LOCKING:
891 * Inherited from caller.
892 */
893void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
894 unsigned long delay)
895{
896 int rc;
897
2e755f68 898 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
86e45b6b
TH
899 return;
900
901 PREPARE_WORK(&ap->port_task, fn, data);
902
903 if (!delay)
904 rc = queue_work(ata_wq, &ap->port_task);
905 else
906 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
907
908 /* rc == 0 means that another user is using port task */
909 WARN_ON(rc == 0);
910}
911
912/**
913 * ata_port_flush_task - Flush port_task
914 * @ap: The ata_port to flush port_task for
915 *
916 * After this function completes, port_task is guranteed not to
917 * be running or scheduled.
918 *
919 * LOCKING:
920 * Kernel thread context (may sleep)
921 */
922void ata_port_flush_task(struct ata_port *ap)
923{
924 unsigned long flags;
925
926 DPRINTK("ENTER\n");
927
928 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 929 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
86e45b6b
TH
930 spin_unlock_irqrestore(&ap->host_set->lock, flags);
931
932 DPRINTK("flush #1\n");
933 flush_workqueue(ata_wq);
934
935 /*
936 * At this point, if a task is running, it's guaranteed to see
937 * the FLUSH flag; thus, it will never queue pio tasks again.
938 * Cancel and flush.
939 */
940 if (!cancel_delayed_work(&ap->port_task)) {
941 DPRINTK("flush #2\n");
942 flush_workqueue(ata_wq);
943 }
944
945 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 946 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
86e45b6b
TH
947 spin_unlock_irqrestore(&ap->host_set->lock, flags);
948
949 DPRINTK("EXIT\n");
950}
951
77853bf2 952void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 953{
77853bf2 954 struct completion *waiting = qc->private_data;
a2a7a662 955
77853bf2 956 qc->ap->ops->tf_read(qc->ap, &qc->tf);
a2a7a662 957 complete(waiting);
a2a7a662
TH
958}
959
960/**
961 * ata_exec_internal - execute libata internal command
962 * @ap: Port to which the command is sent
963 * @dev: Device to which the command is sent
964 * @tf: Taskfile registers for the command and the result
965 * @dma_dir: Data tranfer direction of the command
966 * @buf: Data buffer of the command
967 * @buflen: Length of data buffer
968 *
969 * Executes libata internal command with timeout. @tf contains
970 * command on entry and result on return. Timeout and error
971 * conditions are reported via return value. No recovery action
972 * is taken after a command times out. It's caller's duty to
973 * clean up after timeout.
974 *
975 * LOCKING:
976 * None. Should be called with kernel context, might sleep.
977 */
978
979static unsigned
980ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
981 struct ata_taskfile *tf,
982 int dma_dir, void *buf, unsigned int buflen)
983{
984 u8 command = tf->command;
985 struct ata_queued_cmd *qc;
986 DECLARE_COMPLETION(wait);
987 unsigned long flags;
77853bf2 988 unsigned int err_mask;
a2a7a662
TH
989
990 spin_lock_irqsave(&ap->host_set->lock, flags);
991
992 qc = ata_qc_new_init(ap, dev);
993 BUG_ON(qc == NULL);
994
995 qc->tf = *tf;
996 qc->dma_dir = dma_dir;
997 if (dma_dir != DMA_NONE) {
998 ata_sg_init_one(qc, buf, buflen);
999 qc->nsect = buflen / ATA_SECT_SIZE;
1000 }
1001
77853bf2 1002 qc->private_data = &wait;
a2a7a662
TH
1003 qc->complete_fn = ata_qc_complete_internal;
1004
8e0e694a 1005 ata_qc_issue(qc);
a2a7a662
TH
1006
1007 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1008
1009 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
41ade50c
AL
1010 ata_port_flush_task(ap);
1011
a2a7a662
TH
1012 spin_lock_irqsave(&ap->host_set->lock, flags);
1013
1014 /* We're racing with irq here. If we lose, the
1015 * following test prevents us from completing the qc
1016 * again. If completion irq occurs after here but
1017 * before the caller cleans up, it will result in a
1018 * spurious interrupt. We can live with that.
1019 */
77853bf2 1020 if (qc->flags & ATA_QCFLAG_ACTIVE) {
11a56d24 1021 qc->err_mask = AC_ERR_TIMEOUT;
a2a7a662
TH
1022 ata_qc_complete(qc);
1023 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
1024 ap->id, command);
1025 }
1026
1027 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1028 }
1029
77853bf2
TH
1030 *tf = qc->tf;
1031 err_mask = qc->err_mask;
1032
1033 ata_qc_free(qc);
1034
1f7dd3e9
TH
1035 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1036 * Until those drivers are fixed, we detect the condition
1037 * here, fail the command with AC_ERR_SYSTEM and reenable the
1038 * port.
1039 *
1040 * Note that this doesn't change any behavior as internal
1041 * command failure results in disabling the device in the
1042 * higher layer for LLDDs without new reset/EH callbacks.
1043 *
1044 * Kill the following code as soon as those drivers are fixed.
1045 */
1046 if (ap->flags & ATA_FLAG_PORT_DISABLED) {
1047 err_mask |= AC_ERR_SYSTEM;
1048 ata_port_probe(ap);
1049 }
1050
77853bf2 1051 return err_mask;
a2a7a662
TH
1052}
1053
1bc4ccff
AC
1054/**
1055 * ata_pio_need_iordy - check if iordy needed
1056 * @adev: ATA device
1057 *
1058 * Check if the current speed of the device requires IORDY. Used
1059 * by various controllers for chip configuration.
1060 */
1061
1062unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1063{
1064 int pio;
1065 int speed = adev->pio_mode - XFER_PIO_0;
1066
1067 if (speed < 2)
1068 return 0;
1069 if (speed > 2)
1070 return 1;
2e9edbf8 1071
1bc4ccff
AC
1072 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1073
1074 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1075 pio = adev->id[ATA_ID_EIDE_PIO];
1076 /* Is the speed faster than the drive allows non IORDY ? */
1077 if (pio) {
1078 /* This is cycle times not frequency - watch the logic! */
1079 if (pio > 240) /* PIO2 is 240nS per cycle */
1080 return 1;
1081 return 0;
1082 }
1083 }
1084 return 0;
1085}
1086
1da177e4 1087/**
49016aca
TH
1088 * ata_dev_read_id - Read ID data from the specified device
1089 * @ap: port on which target device resides
1090 * @dev: target device
1091 * @p_class: pointer to class of the target device (may be changed)
1092 * @post_reset: is this read ID post-reset?
d9572b1d 1093 * @p_id: read IDENTIFY page (newly allocated)
1da177e4 1094 *
49016aca
TH
1095 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1096 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1097 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1098 * for pre-ATA4 drives.
1da177e4
LT
1099 *
1100 * LOCKING:
49016aca
TH
1101 * Kernel thread context (may sleep)
1102 *
1103 * RETURNS:
1104 * 0 on success, -errno otherwise.
1da177e4 1105 */
49016aca 1106static int ata_dev_read_id(struct ata_port *ap, struct ata_device *dev,
d9572b1d 1107 unsigned int *p_class, int post_reset, u16 **p_id)
1da177e4 1108{
49016aca 1109 unsigned int class = *p_class;
a0123703 1110 struct ata_taskfile tf;
49016aca 1111 unsigned int err_mask = 0;
d9572b1d 1112 u16 *id;
49016aca
TH
1113 const char *reason;
1114 int rc;
1da177e4 1115
49016aca 1116 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1117
49016aca 1118 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1da177e4 1119
d9572b1d
TH
1120 id = kmalloc(sizeof(id[0]) * ATA_ID_WORDS, GFP_KERNEL);
1121 if (id == NULL) {
1122 rc = -ENOMEM;
1123 reason = "out of memory";
1124 goto err_out;
1125 }
1126
49016aca
TH
1127 retry:
1128 ata_tf_init(ap, &tf, dev->devno);
a0123703 1129
49016aca
TH
1130 switch (class) {
1131 case ATA_DEV_ATA:
a0123703 1132 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1133 break;
1134 case ATA_DEV_ATAPI:
a0123703 1135 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1136 break;
1137 default:
1138 rc = -ENODEV;
1139 reason = "unsupported class";
1140 goto err_out;
1da177e4
LT
1141 }
1142
a0123703 1143 tf.protocol = ATA_PROT_PIO;
1da177e4 1144
a0123703 1145 err_mask = ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
49016aca 1146 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1147 if (err_mask) {
49016aca
TH
1148 rc = -EIO;
1149 reason = "I/O error";
1da177e4
LT
1150 goto err_out;
1151 }
1152
49016aca 1153 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1154
49016aca 1155 /* sanity check */
692785e7 1156 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
49016aca
TH
1157 rc = -EINVAL;
1158 reason = "device reports illegal type";
1159 goto err_out;
1160 }
1161
1162 if (post_reset && class == ATA_DEV_ATA) {
1163 /*
1164 * The exact sequence expected by certain pre-ATA4 drives is:
1165 * SRST RESET
1166 * IDENTIFY
1167 * INITIALIZE DEVICE PARAMETERS
1168 * anything else..
1169 * Some drives were very specific about that exact sequence.
1170 */
1171 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
00b6f5e9 1172 err_mask = ata_dev_init_params(ap, dev, id[3], id[6]);
49016aca
TH
1173 if (err_mask) {
1174 rc = -EIO;
1175 reason = "INIT_DEV_PARAMS failed";
1176 goto err_out;
1177 }
1178
1179 /* current CHS translation info (id[53-58]) might be
1180 * changed. reread the identify device info.
1181 */
1182 post_reset = 0;
1183 goto retry;
1184 }
1185 }
1186
1187 *p_class = class;
d9572b1d 1188 *p_id = id;
49016aca
TH
1189 return 0;
1190
1191 err_out:
1192 printk(KERN_WARNING "ata%u: dev %u failed to IDENTIFY (%s)\n",
1193 ap->id, dev->devno, reason);
d9572b1d 1194 kfree(id);
49016aca
TH
1195 return rc;
1196}
1197
4b2f3ede
TH
1198static inline u8 ata_dev_knobble(const struct ata_port *ap,
1199 struct ata_device *dev)
1200{
1201 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1202}
1203
49016aca 1204/**
ffeae418
TH
1205 * ata_dev_configure - Configure the specified ATA/ATAPI device
1206 * @ap: Port on which target device resides
1207 * @dev: Target device to configure
4c2d721a 1208 * @print_info: Enable device info printout
ffeae418
TH
1209 *
1210 * Configure @dev according to @dev->id. Generic and low-level
1211 * driver specific fixups are also applied.
49016aca
TH
1212 *
1213 * LOCKING:
ffeae418
TH
1214 * Kernel thread context (may sleep)
1215 *
1216 * RETURNS:
1217 * 0 on success, -errno otherwise
49016aca 1218 */
4c2d721a
TH
1219static int ata_dev_configure(struct ata_port *ap, struct ata_device *dev,
1220 int print_info)
49016aca 1221{
1148c3a7 1222 const u16 *id = dev->id;
ff8854b2 1223 unsigned int xfer_mask;
49016aca
TH
1224 int i, rc;
1225
e1211e3f 1226 if (!ata_dev_enabled(dev)) {
49016aca 1227 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
ffeae418
TH
1228 ap->id, dev->devno);
1229 return 0;
49016aca
TH
1230 }
1231
ffeae418 1232 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1233
c39f5ebe
TH
1234 /* print device capabilities */
1235 if (print_info)
1236 printk(KERN_DEBUG "ata%u: dev %u cfg 49:%04x 82:%04x 83:%04x "
1237 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1238 ap->id, dev->devno, id[49], id[82], id[83],
1239 id[84], id[85], id[86], id[87], id[88]);
1240
208a9933
TH
1241 /* initialize to-be-configured parameters */
1242 dev->flags = 0;
1243 dev->max_sectors = 0;
1244 dev->cdb_len = 0;
1245 dev->n_sectors = 0;
1246 dev->cylinders = 0;
1247 dev->heads = 0;
1248 dev->sectors = 0;
1249
1da177e4
LT
1250 /*
1251 * common ATA, ATAPI feature tests
1252 */
1253
ff8854b2 1254 /* find max transfer mode; for printk only */
1148c3a7 1255 xfer_mask = ata_id_xfermask(id);
1da177e4 1256
1148c3a7 1257 ata_dump_id(id);
1da177e4
LT
1258
1259 /* ATA-specific feature tests */
1260 if (dev->class == ATA_DEV_ATA) {
1148c3a7 1261 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1262
1148c3a7 1263 if (ata_id_has_lba(id)) {
4c2d721a 1264 const char *lba_desc;
8bf62ece 1265
4c2d721a
TH
1266 lba_desc = "LBA";
1267 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1268 if (ata_id_has_lba48(id)) {
8bf62ece 1269 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a
TH
1270 lba_desc = "LBA48";
1271 }
8bf62ece
AL
1272
1273 /* print device info to dmesg */
4c2d721a
TH
1274 if (print_info)
1275 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1276 "max %s, %Lu sectors: %s\n",
1277 ap->id, dev->devno,
1148c3a7 1278 ata_id_major_version(id),
ff8854b2 1279 ata_mode_string(xfer_mask),
4c2d721a
TH
1280 (unsigned long long)dev->n_sectors,
1281 lba_desc);
ffeae418 1282 } else {
8bf62ece
AL
1283 /* CHS */
1284
1285 /* Default translation */
1148c3a7
TH
1286 dev->cylinders = id[1];
1287 dev->heads = id[3];
1288 dev->sectors = id[6];
8bf62ece 1289
1148c3a7 1290 if (ata_id_current_chs_valid(id)) {
8bf62ece 1291 /* Current CHS translation is valid. */
1148c3a7
TH
1292 dev->cylinders = id[54];
1293 dev->heads = id[55];
1294 dev->sectors = id[56];
8bf62ece
AL
1295 }
1296
1297 /* print device info to dmesg */
4c2d721a
TH
1298 if (print_info)
1299 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1300 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1301 ap->id, dev->devno,
1148c3a7 1302 ata_id_major_version(id),
ff8854b2 1303 ata_mode_string(xfer_mask),
4c2d721a
TH
1304 (unsigned long long)dev->n_sectors,
1305 dev->cylinders, dev->heads, dev->sectors);
1da177e4
LT
1306 }
1307
6e7846e9 1308 dev->cdb_len = 16;
1da177e4
LT
1309 }
1310
1311 /* ATAPI-specific feature tests */
2c13b7ce 1312 else if (dev->class == ATA_DEV_ATAPI) {
1148c3a7 1313 rc = atapi_cdb_len(id);
1da177e4
LT
1314 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1315 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
ffeae418 1316 rc = -EINVAL;
1da177e4
LT
1317 goto err_out_nosup;
1318 }
6e7846e9 1319 dev->cdb_len = (unsigned int) rc;
1da177e4
LT
1320
1321 /* print device info to dmesg */
4c2d721a
TH
1322 if (print_info)
1323 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
ff8854b2 1324 ap->id, dev->devno, ata_mode_string(xfer_mask));
1da177e4
LT
1325 }
1326
6e7846e9
TH
1327 ap->host->max_cmd_len = 0;
1328 for (i = 0; i < ATA_MAX_DEVICES; i++)
1329 ap->host->max_cmd_len = max_t(unsigned int,
1330 ap->host->max_cmd_len,
1331 ap->device[i].cdb_len);
1332
4b2f3ede
TH
1333 /* limit bridge transfers to udma5, 200 sectors */
1334 if (ata_dev_knobble(ap, dev)) {
4c2d721a
TH
1335 if (print_info)
1336 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1337 ap->id, dev->devno);
5a529139 1338 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
1339 dev->max_sectors = ATA_MAX_SECTORS;
1340 }
1341
1342 if (ap->ops->dev_config)
1343 ap->ops->dev_config(ap, dev);
1344
1da177e4 1345 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
ffeae418 1346 return 0;
1da177e4
LT
1347
1348err_out_nosup:
1da177e4 1349 DPRINTK("EXIT, err\n");
ffeae418 1350 return rc;
1da177e4
LT
1351}
1352
1353/**
1354 * ata_bus_probe - Reset and probe ATA bus
1355 * @ap: Bus to probe
1356 *
0cba632b
JG
1357 * Master ATA bus probing function. Initiates a hardware-dependent
1358 * bus reset, then attempts to identify any devices found on
1359 * the bus.
1360 *
1da177e4 1361 * LOCKING:
0cba632b 1362 * PCI/etc. bus probe sem.
1da177e4
LT
1363 *
1364 * RETURNS:
96072e69 1365 * Zero on success, negative errno otherwise.
1da177e4
LT
1366 */
1367
1368static int ata_bus_probe(struct ata_port *ap)
1369{
28ca5c57 1370 unsigned int classes[ATA_MAX_DEVICES];
96072e69 1371 int i, rc, found = 0;
e82cbdb9 1372 struct ata_device *dev;
1da177e4 1373
28ca5c57 1374 ata_port_probe(ap);
c19ba8af 1375
2044470c
TH
1376 /* reset and determine device classes */
1377 for (i = 0; i < ATA_MAX_DEVICES; i++)
1378 classes[i] = ATA_DEV_UNKNOWN;
2061a47a 1379
2044470c 1380 if (ap->ops->probe_reset) {
c19ba8af 1381 rc = ap->ops->probe_reset(ap, classes);
28ca5c57
TH
1382 if (rc) {
1383 printk("ata%u: reset failed (errno=%d)\n", ap->id, rc);
1384 return rc;
c19ba8af 1385 }
28ca5c57 1386 } else {
c19ba8af
TH
1387 ap->ops->phy_reset(ap);
1388
2044470c
TH
1389 if (!(ap->flags & ATA_FLAG_PORT_DISABLED))
1390 for (i = 0; i < ATA_MAX_DEVICES; i++)
28ca5c57 1391 classes[i] = ap->device[i].class;
2044470c 1392
28ca5c57
TH
1393 ata_port_probe(ap);
1394 }
1da177e4 1395
2044470c
TH
1396 for (i = 0; i < ATA_MAX_DEVICES; i++)
1397 if (classes[i] == ATA_DEV_UNKNOWN)
1398 classes[i] = ATA_DEV_NONE;
1399
28ca5c57 1400 /* read IDENTIFY page and configure devices */
1da177e4 1401 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e82cbdb9 1402 dev = &ap->device[i];
28ca5c57
TH
1403 dev->class = classes[i];
1404
e1211e3f 1405 if (!ata_dev_enabled(dev))
ffeae418
TH
1406 continue;
1407
1408 WARN_ON(dev->id != NULL);
1409 if (ata_dev_read_id(ap, dev, &dev->class, 1, &dev->id)) {
1410 dev->class = ATA_DEV_NONE;
1411 continue;
1412 }
1413
4c2d721a 1414 if (ata_dev_configure(ap, dev, 1)) {
fcef978f 1415 ata_dev_disable(ap, dev);
ffeae418 1416 continue;
1da177e4 1417 }
ffeae418 1418
ffeae418 1419 found = 1;
1da177e4
LT
1420 }
1421
e82cbdb9
TH
1422 /* configure transfer mode */
1423 if (ap->ops->set_mode) {
1424 /* FIXME: make ->set_mode handle no device case and
1425 * return error code and failing device on failure as
1426 * ata_set_mode() does.
1427 */
1428 if (found)
1429 ap->ops->set_mode(ap);
1430 rc = 0;
1431 } else {
1432 while (ata_set_mode(ap, &dev))
1433 ata_dev_disable(ap, dev);
1434 }
1da177e4 1435
e82cbdb9
TH
1436 for (i = 0; i < ATA_MAX_DEVICES; i++)
1437 if (ata_dev_enabled(&ap->device[i]))
1438 return 0;
1da177e4 1439
e82cbdb9
TH
1440 /* no device present, disable port */
1441 ata_port_disable(ap);
1da177e4 1442 ap->ops->port_disable(ap);
96072e69 1443 return -ENODEV;
1da177e4
LT
1444}
1445
1446/**
0cba632b
JG
1447 * ata_port_probe - Mark port as enabled
1448 * @ap: Port for which we indicate enablement
1da177e4 1449 *
0cba632b
JG
1450 * Modify @ap data structure such that the system
1451 * thinks that the entire port is enabled.
1452 *
1453 * LOCKING: host_set lock, or some other form of
1454 * serialization.
1da177e4
LT
1455 */
1456
1457void ata_port_probe(struct ata_port *ap)
1458{
1459 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1460}
1461
3be680b7
TH
1462/**
1463 * sata_print_link_status - Print SATA link status
1464 * @ap: SATA port to printk link status about
1465 *
1466 * This function prints link speed and status of a SATA link.
1467 *
1468 * LOCKING:
1469 * None.
1470 */
1471static void sata_print_link_status(struct ata_port *ap)
1472{
1473 u32 sstatus, tmp;
3be680b7
TH
1474
1475 if (!ap->ops->scr_read)
1476 return;
1477
1478 sstatus = scr_read(ap, SCR_STATUS);
1479
1480 if (sata_dev_present(ap)) {
1481 tmp = (sstatus >> 4) & 0xf;
4c360c81
TH
1482 printk(KERN_INFO "ata%u: SATA link up %s (SStatus %X)\n",
1483 ap->id, sata_spd_string(tmp), sstatus);
3be680b7
TH
1484 } else {
1485 printk(KERN_INFO "ata%u: SATA link down (SStatus %X)\n",
1486 ap->id, sstatus);
1487 }
1488}
1489
1da177e4 1490/**
780a87f7
JG
1491 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1492 * @ap: SATA port associated with target SATA PHY.
1da177e4 1493 *
780a87f7
JG
1494 * This function issues commands to standard SATA Sxxx
1495 * PHY registers, to wake up the phy (and device), and
1496 * clear any reset condition.
1da177e4
LT
1497 *
1498 * LOCKING:
0cba632b 1499 * PCI/etc. bus probe sem.
1da177e4
LT
1500 *
1501 */
1502void __sata_phy_reset(struct ata_port *ap)
1503{
1504 u32 sstatus;
1505 unsigned long timeout = jiffies + (HZ * 5);
1506
1507 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e
BR
1508 /* issue phy wake/reset */
1509 scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1510 /* Couldn't find anything in SATA I/II specs, but
1511 * AHCI-1.1 10.4.2 says at least 1 ms. */
1512 mdelay(1);
1da177e4 1513 }
cdcca89e 1514 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1da177e4
LT
1515
1516 /* wait for phy to become ready, if necessary */
1517 do {
1518 msleep(200);
1519 sstatus = scr_read(ap, SCR_STATUS);
1520 if ((sstatus & 0xf) != 1)
1521 break;
1522 } while (time_before(jiffies, timeout));
1523
3be680b7
TH
1524 /* print link status */
1525 sata_print_link_status(ap);
656563e3 1526
3be680b7
TH
1527 /* TODO: phy layer with polling, timeouts, etc. */
1528 if (sata_dev_present(ap))
1da177e4 1529 ata_port_probe(ap);
3be680b7 1530 else
1da177e4 1531 ata_port_disable(ap);
1da177e4
LT
1532
1533 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1534 return;
1535
1536 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1537 ata_port_disable(ap);
1538 return;
1539 }
1540
1541 ap->cbl = ATA_CBL_SATA;
1542}
1543
1544/**
780a87f7
JG
1545 * sata_phy_reset - Reset SATA bus.
1546 * @ap: SATA port associated with target SATA PHY.
1da177e4 1547 *
780a87f7
JG
1548 * This function resets the SATA bus, and then probes
1549 * the bus for devices.
1da177e4
LT
1550 *
1551 * LOCKING:
0cba632b 1552 * PCI/etc. bus probe sem.
1da177e4
LT
1553 *
1554 */
1555void sata_phy_reset(struct ata_port *ap)
1556{
1557 __sata_phy_reset(ap);
1558 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1559 return;
1560 ata_bus_reset(ap);
1561}
1562
ebdfca6e
AC
1563/**
1564 * ata_dev_pair - return other device on cable
1565 * @ap: port
1566 * @adev: device
1567 *
1568 * Obtain the other device on the same cable, or if none is
1569 * present NULL is returned
1570 */
2e9edbf8 1571
ebdfca6e
AC
1572struct ata_device *ata_dev_pair(struct ata_port *ap, struct ata_device *adev)
1573{
1574 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 1575 if (!ata_dev_enabled(pair))
ebdfca6e
AC
1576 return NULL;
1577 return pair;
1578}
1579
1da177e4 1580/**
780a87f7
JG
1581 * ata_port_disable - Disable port.
1582 * @ap: Port to be disabled.
1da177e4 1583 *
780a87f7
JG
1584 * Modify @ap data structure such that the system
1585 * thinks that the entire port is disabled, and should
1586 * never attempt to probe or communicate with devices
1587 * on this port.
1588 *
1589 * LOCKING: host_set lock, or some other form of
1590 * serialization.
1da177e4
LT
1591 */
1592
1593void ata_port_disable(struct ata_port *ap)
1594{
1595 ap->device[0].class = ATA_DEV_NONE;
1596 ap->device[1].class = ATA_DEV_NONE;
1597 ap->flags |= ATA_FLAG_PORT_DISABLED;
1598}
1599
1c3fae4d
TH
1600/**
1601 * ata_down_sata_spd_limit - adjust SATA spd limit downward
1602 * @ap: Port to adjust SATA spd limit for
1603 *
1604 * Adjust SATA spd limit of @ap downward. Note that this
1605 * function only adjusts the limit. The change must be applied
1606 * using ata_set_sata_spd().
1607 *
1608 * LOCKING:
1609 * Inherited from caller.
1610 *
1611 * RETURNS:
1612 * 0 on success, negative errno on failure
1613 */
1614static int ata_down_sata_spd_limit(struct ata_port *ap)
1615{
1616 u32 spd, mask;
1617 int highbit;
1618
1619 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1620 return -EOPNOTSUPP;
1621
1622 mask = ap->sata_spd_limit;
1623 if (mask <= 1)
1624 return -EINVAL;
1625 highbit = fls(mask) - 1;
1626 mask &= ~(1 << highbit);
1627
1628 spd = (scr_read(ap, SCR_STATUS) >> 4) & 0xf;
1629 if (spd <= 1)
1630 return -EINVAL;
1631 spd--;
1632 mask &= (1 << spd) - 1;
1633 if (!mask)
1634 return -EINVAL;
1635
1636 ap->sata_spd_limit = mask;
1637
1638 printk(KERN_WARNING "ata%u: limiting SATA link speed to %s\n",
1639 ap->id, sata_spd_string(fls(mask)));
1640
1641 return 0;
1642}
1643
1644static int __ata_set_sata_spd_needed(struct ata_port *ap, u32 *scontrol)
1645{
1646 u32 spd, limit;
1647
1648 if (ap->sata_spd_limit == UINT_MAX)
1649 limit = 0;
1650 else
1651 limit = fls(ap->sata_spd_limit);
1652
1653 spd = (*scontrol >> 4) & 0xf;
1654 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1655
1656 return spd != limit;
1657}
1658
1659/**
1660 * ata_set_sata_spd_needed - is SATA spd configuration needed
1661 * @ap: Port in question
1662 *
1663 * Test whether the spd limit in SControl matches
1664 * @ap->sata_spd_limit. This function is used to determine
1665 * whether hardreset is necessary to apply SATA spd
1666 * configuration.
1667 *
1668 * LOCKING:
1669 * Inherited from caller.
1670 *
1671 * RETURNS:
1672 * 1 if SATA spd configuration is needed, 0 otherwise.
1673 */
1674static int ata_set_sata_spd_needed(struct ata_port *ap)
1675{
1676 u32 scontrol;
1677
1678 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1679 return 0;
1680
1681 scontrol = scr_read(ap, SCR_CONTROL);
1682
1683 return __ata_set_sata_spd_needed(ap, &scontrol);
1684}
1685
1686/**
1687 * ata_set_sata_spd - set SATA spd according to spd limit
1688 * @ap: Port to set SATA spd for
1689 *
1690 * Set SATA spd of @ap according to sata_spd_limit.
1691 *
1692 * LOCKING:
1693 * Inherited from caller.
1694 *
1695 * RETURNS:
1696 * 0 if spd doesn't need to be changed, 1 if spd has been
1697 * changed. -EOPNOTSUPP if SCR registers are inaccessible.
1698 */
1699static int ata_set_sata_spd(struct ata_port *ap)
1700{
1701 u32 scontrol;
1702
1703 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1704 return -EOPNOTSUPP;
1705
1706 scontrol = scr_read(ap, SCR_CONTROL);
1707 if (!__ata_set_sata_spd_needed(ap, &scontrol))
1708 return 0;
1709
1710 scr_write(ap, SCR_CONTROL, scontrol);
1711 return 1;
1712}
1713
452503f9
AC
1714/*
1715 * This mode timing computation functionality is ported over from
1716 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1717 */
1718/*
1719 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1720 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1721 * for PIO 5, which is a nonstandard extension and UDMA6, which
2e9edbf8 1722 * is currently supported only by Maxtor drives.
452503f9
AC
1723 */
1724
1725static const struct ata_timing ata_timing[] = {
1726
1727 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1728 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1729 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1730 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1731
1732 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1733 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1734 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1735
1736/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 1737
452503f9
AC
1738 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1739 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1740 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 1741
452503f9
AC
1742 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1743 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1744 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1745
1746/* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1747 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1748 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1749
1750 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1751 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1752 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1753
1754/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1755
1756 { 0xFF }
1757};
1758
1759#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1760#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1761
1762static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1763{
1764 q->setup = EZ(t->setup * 1000, T);
1765 q->act8b = EZ(t->act8b * 1000, T);
1766 q->rec8b = EZ(t->rec8b * 1000, T);
1767 q->cyc8b = EZ(t->cyc8b * 1000, T);
1768 q->active = EZ(t->active * 1000, T);
1769 q->recover = EZ(t->recover * 1000, T);
1770 q->cycle = EZ(t->cycle * 1000, T);
1771 q->udma = EZ(t->udma * 1000, UT);
1772}
1773
1774void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1775 struct ata_timing *m, unsigned int what)
1776{
1777 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1778 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1779 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1780 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1781 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1782 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1783 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1784 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1785}
1786
1787static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1788{
1789 const struct ata_timing *t;
1790
1791 for (t = ata_timing; t->mode != speed; t++)
91190758 1792 if (t->mode == 0xFF)
452503f9 1793 return NULL;
2e9edbf8 1794 return t;
452503f9
AC
1795}
1796
1797int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1798 struct ata_timing *t, int T, int UT)
1799{
1800 const struct ata_timing *s;
1801 struct ata_timing p;
1802
1803 /*
2e9edbf8 1804 * Find the mode.
75b1f2f8 1805 */
452503f9
AC
1806
1807 if (!(s = ata_timing_find_mode(speed)))
1808 return -EINVAL;
1809
75b1f2f8
AL
1810 memcpy(t, s, sizeof(*s));
1811
452503f9
AC
1812 /*
1813 * If the drive is an EIDE drive, it can tell us it needs extended
1814 * PIO/MW_DMA cycle timing.
1815 */
1816
1817 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1818 memset(&p, 0, sizeof(p));
1819 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1820 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1821 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1822 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1823 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1824 }
1825 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1826 }
1827
1828 /*
1829 * Convert the timing to bus clock counts.
1830 */
1831
75b1f2f8 1832 ata_timing_quantize(t, t, T, UT);
452503f9
AC
1833
1834 /*
c893a3ae
RD
1835 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1836 * S.M.A.R.T * and some other commands. We have to ensure that the
1837 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
1838 */
1839
1840 if (speed > XFER_PIO_4) {
1841 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1842 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1843 }
1844
1845 /*
c893a3ae 1846 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
1847 */
1848
1849 if (t->act8b + t->rec8b < t->cyc8b) {
1850 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1851 t->rec8b = t->cyc8b - t->act8b;
1852 }
1853
1854 if (t->active + t->recover < t->cycle) {
1855 t->active += (t->cycle - (t->active + t->recover)) / 2;
1856 t->recover = t->cycle - t->active;
1857 }
1858
1859 return 0;
1860}
1861
83206a29 1862static int ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1da177e4 1863{
83206a29
TH
1864 unsigned int err_mask;
1865 int rc;
1da177e4
LT
1866
1867 if (dev->xfer_shift == ATA_SHIFT_PIO)
1868 dev->flags |= ATA_DFLAG_PIO;
1869
83206a29
TH
1870 err_mask = ata_dev_set_xfermode(ap, dev);
1871 if (err_mask) {
1872 printk(KERN_ERR
1873 "ata%u: failed to set xfermode (err_mask=0x%x)\n",
1874 ap->id, err_mask);
1875 return -EIO;
1876 }
1da177e4 1877
83206a29
TH
1878 rc = ata_dev_revalidate(ap, dev, 0);
1879 if (rc) {
1880 printk(KERN_ERR
1881 "ata%u: failed to revalidate after set xfermode\n",
1882 ap->id);
1883 return rc;
48a8a14f
TH
1884 }
1885
23e71c3d
TH
1886 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
1887 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4
LT
1888
1889 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
23e71c3d
TH
1890 ap->id, dev->devno,
1891 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 1892 return 0;
1da177e4
LT
1893}
1894
1da177e4
LT
1895/**
1896 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1897 * @ap: port on which timings will be programmed
e82cbdb9 1898 * @r_failed_dev: out paramter for failed device
1da177e4 1899 *
e82cbdb9
TH
1900 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
1901 * ata_set_mode() fails, pointer to the failing device is
1902 * returned in @r_failed_dev.
780a87f7 1903 *
1da177e4 1904 * LOCKING:
0cba632b 1905 * PCI/etc. bus probe sem.
e82cbdb9
TH
1906 *
1907 * RETURNS:
1908 * 0 on success, negative errno otherwise
1da177e4 1909 */
e82cbdb9 1910static int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 1911{
e8e0619f 1912 struct ata_device *dev;
e82cbdb9 1913 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 1914
a6d5a51c
TH
1915 /* step 1: calculate xfer_mask */
1916 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 1917 unsigned int pio_mask, dma_mask;
a6d5a51c 1918
e8e0619f
TH
1919 dev = &ap->device[i];
1920
e1211e3f 1921 if (!ata_dev_enabled(dev))
a6d5a51c
TH
1922 continue;
1923
acf356b1 1924 ata_dev_xfermask(ap, dev);
1da177e4 1925
acf356b1
TH
1926 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
1927 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
1928 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
1929 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 1930
4f65977d 1931 found = 1;
5444a6f4
AC
1932 if (dev->dma_mode)
1933 used_dma = 1;
a6d5a51c 1934 }
4f65977d 1935 if (!found)
e82cbdb9 1936 goto out;
a6d5a51c
TH
1937
1938 /* step 2: always set host PIO timings */
e8e0619f
TH
1939 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1940 dev = &ap->device[i];
1941 if (!ata_dev_enabled(dev))
1942 continue;
1943
1944 if (!dev->pio_mode) {
1945 printk(KERN_WARNING "ata%u: dev %u no PIO support\n",
1946 ap->id, dev->devno);
1947 rc = -EINVAL;
e82cbdb9 1948 goto out;
e8e0619f
TH
1949 }
1950
1951 dev->xfer_mode = dev->pio_mode;
1952 dev->xfer_shift = ATA_SHIFT_PIO;
1953 if (ap->ops->set_piomode)
1954 ap->ops->set_piomode(ap, dev);
1955 }
1da177e4 1956
a6d5a51c 1957 /* step 3: set host DMA timings */
e8e0619f
TH
1958 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1959 dev = &ap->device[i];
1960
1961 if (!ata_dev_enabled(dev) || !dev->dma_mode)
1962 continue;
1963
1964 dev->xfer_mode = dev->dma_mode;
1965 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
1966 if (ap->ops->set_dmamode)
1967 ap->ops->set_dmamode(ap, dev);
1968 }
1da177e4
LT
1969
1970 /* step 4: update devices' xfer mode */
83206a29 1971 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 1972 dev = &ap->device[i];
1da177e4 1973
e1211e3f 1974 if (!ata_dev_enabled(dev))
83206a29
TH
1975 continue;
1976
5bbc53f4
TH
1977 rc = ata_dev_set_mode(ap, dev);
1978 if (rc)
e82cbdb9 1979 goto out;
83206a29 1980 }
1da177e4 1981
e8e0619f
TH
1982 /* Record simplex status. If we selected DMA then the other
1983 * host channels are not permitted to do so.
5444a6f4 1984 */
5444a6f4
AC
1985 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
1986 ap->host_set->simplex_claimed = 1;
1987
e8e0619f 1988 /* step5: chip specific finalisation */
1da177e4
LT
1989 if (ap->ops->post_set_mode)
1990 ap->ops->post_set_mode(ap);
1991
e82cbdb9
TH
1992 out:
1993 if (rc)
1994 *r_failed_dev = dev;
1995 return rc;
1da177e4
LT
1996}
1997
1fdffbce
JG
1998/**
1999 * ata_tf_to_host - issue ATA taskfile to host controller
2000 * @ap: port to which command is being issued
2001 * @tf: ATA taskfile register set
2002 *
2003 * Issues ATA taskfile register set to ATA host controller,
2004 * with proper synchronization with interrupt handler and
2005 * other threads.
2006 *
2007 * LOCKING:
2008 * spin_lock_irqsave(host_set lock)
2009 */
2010
2011static inline void ata_tf_to_host(struct ata_port *ap,
2012 const struct ata_taskfile *tf)
2013{
2014 ap->ops->tf_load(ap, tf);
2015 ap->ops->exec_command(ap, tf);
2016}
2017
1da177e4
LT
2018/**
2019 * ata_busy_sleep - sleep until BSY clears, or timeout
2020 * @ap: port containing status register to be polled
2021 * @tmout_pat: impatience timeout
2022 * @tmout: overall timeout
2023 *
780a87f7
JG
2024 * Sleep until ATA Status register bit BSY clears,
2025 * or a timeout occurs.
2026 *
2027 * LOCKING: None.
1da177e4
LT
2028 */
2029
6f8b9958
TH
2030unsigned int ata_busy_sleep (struct ata_port *ap,
2031 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2032{
2033 unsigned long timer_start, timeout;
2034 u8 status;
2035
2036 status = ata_busy_wait(ap, ATA_BUSY, 300);
2037 timer_start = jiffies;
2038 timeout = timer_start + tmout_pat;
2039 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2040 msleep(50);
2041 status = ata_busy_wait(ap, ATA_BUSY, 3);
2042 }
2043
2044 if (status & ATA_BUSY)
2045 printk(KERN_WARNING "ata%u is slow to respond, "
2046 "please be patient\n", ap->id);
2047
2048 timeout = timer_start + tmout;
2049 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2050 msleep(50);
2051 status = ata_chk_status(ap);
2052 }
2053
2054 if (status & ATA_BUSY) {
2055 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
2056 ap->id, tmout / HZ);
2057 return 1;
2058 }
2059
2060 return 0;
2061}
2062
2063static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2064{
2065 struct ata_ioports *ioaddr = &ap->ioaddr;
2066 unsigned int dev0 = devmask & (1 << 0);
2067 unsigned int dev1 = devmask & (1 << 1);
2068 unsigned long timeout;
2069
2070 /* if device 0 was found in ata_devchk, wait for its
2071 * BSY bit to clear
2072 */
2073 if (dev0)
2074 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2075
2076 /* if device 1 was found in ata_devchk, wait for
2077 * register access, then wait for BSY to clear
2078 */
2079 timeout = jiffies + ATA_TMOUT_BOOT;
2080 while (dev1) {
2081 u8 nsect, lbal;
2082
2083 ap->ops->dev_select(ap, 1);
2084 if (ap->flags & ATA_FLAG_MMIO) {
2085 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2086 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2087 } else {
2088 nsect = inb(ioaddr->nsect_addr);
2089 lbal = inb(ioaddr->lbal_addr);
2090 }
2091 if ((nsect == 1) && (lbal == 1))
2092 break;
2093 if (time_after(jiffies, timeout)) {
2094 dev1 = 0;
2095 break;
2096 }
2097 msleep(50); /* give drive a breather */
2098 }
2099 if (dev1)
2100 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2101
2102 /* is all this really necessary? */
2103 ap->ops->dev_select(ap, 0);
2104 if (dev1)
2105 ap->ops->dev_select(ap, 1);
2106 if (dev0)
2107 ap->ops->dev_select(ap, 0);
2108}
2109
1da177e4
LT
2110static unsigned int ata_bus_softreset(struct ata_port *ap,
2111 unsigned int devmask)
2112{
2113 struct ata_ioports *ioaddr = &ap->ioaddr;
2114
2115 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2116
2117 /* software reset. causes dev0 to be selected */
2118 if (ap->flags & ATA_FLAG_MMIO) {
2119 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2120 udelay(20); /* FIXME: flush */
2121 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2122 udelay(20); /* FIXME: flush */
2123 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2124 } else {
2125 outb(ap->ctl, ioaddr->ctl_addr);
2126 udelay(10);
2127 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2128 udelay(10);
2129 outb(ap->ctl, ioaddr->ctl_addr);
2130 }
2131
2132 /* spec mandates ">= 2ms" before checking status.
2133 * We wait 150ms, because that was the magic delay used for
2134 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2135 * between when the ATA command register is written, and then
2136 * status is checked. Because waiting for "a while" before
2137 * checking status is fine, post SRST, we perform this magic
2138 * delay here as well.
09c7ad79
AC
2139 *
2140 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
2141 */
2142 msleep(150);
2143
2e9edbf8 2144 /* Before we perform post reset processing we want to see if
298a41ca
TH
2145 * the bus shows 0xFF because the odd clown forgets the D7
2146 * pulldown resistor.
2147 */
09c7ad79 2148 if (ata_check_status(ap) == 0xFF)
298a41ca 2149 return AC_ERR_OTHER;
09c7ad79 2150
1da177e4
LT
2151 ata_bus_post_reset(ap, devmask);
2152
2153 return 0;
2154}
2155
2156/**
2157 * ata_bus_reset - reset host port and associated ATA channel
2158 * @ap: port to reset
2159 *
2160 * This is typically the first time we actually start issuing
2161 * commands to the ATA channel. We wait for BSY to clear, then
2162 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2163 * result. Determine what devices, if any, are on the channel
2164 * by looking at the device 0/1 error register. Look at the signature
2165 * stored in each device's taskfile registers, to determine if
2166 * the device is ATA or ATAPI.
2167 *
2168 * LOCKING:
0cba632b
JG
2169 * PCI/etc. bus probe sem.
2170 * Obtains host_set lock.
1da177e4
LT
2171 *
2172 * SIDE EFFECTS:
2173 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
2174 */
2175
2176void ata_bus_reset(struct ata_port *ap)
2177{
2178 struct ata_ioports *ioaddr = &ap->ioaddr;
2179 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2180 u8 err;
aec5c3c1 2181 unsigned int dev0, dev1 = 0, devmask = 0;
1da177e4
LT
2182
2183 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2184
2185 /* determine if device 0/1 are present */
2186 if (ap->flags & ATA_FLAG_SATA_RESET)
2187 dev0 = 1;
2188 else {
2189 dev0 = ata_devchk(ap, 0);
2190 if (slave_possible)
2191 dev1 = ata_devchk(ap, 1);
2192 }
2193
2194 if (dev0)
2195 devmask |= (1 << 0);
2196 if (dev1)
2197 devmask |= (1 << 1);
2198
2199 /* select device 0 again */
2200 ap->ops->dev_select(ap, 0);
2201
2202 /* issue bus reset */
2203 if (ap->flags & ATA_FLAG_SRST)
aec5c3c1
TH
2204 if (ata_bus_softreset(ap, devmask))
2205 goto err_out;
1da177e4
LT
2206
2207 /*
2208 * determine by signature whether we have ATA or ATAPI devices
2209 */
b4dc7623 2210 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 2211 if ((slave_possible) && (err != 0x81))
b4dc7623 2212 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
2213
2214 /* re-enable interrupts */
2215 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2216 ata_irq_on(ap);
2217
2218 /* is double-select really necessary? */
2219 if (ap->device[1].class != ATA_DEV_NONE)
2220 ap->ops->dev_select(ap, 1);
2221 if (ap->device[0].class != ATA_DEV_NONE)
2222 ap->ops->dev_select(ap, 0);
2223
2224 /* if no devices were detected, disable this port */
2225 if ((ap->device[0].class == ATA_DEV_NONE) &&
2226 (ap->device[1].class == ATA_DEV_NONE))
2227 goto err_out;
2228
2229 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2230 /* set up device control for ATA_FLAG_SATA_RESET */
2231 if (ap->flags & ATA_FLAG_MMIO)
2232 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2233 else
2234 outb(ap->ctl, ioaddr->ctl_addr);
2235 }
2236
2237 DPRINTK("EXIT\n");
2238 return;
2239
2240err_out:
2241 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2242 ap->ops->port_disable(ap);
2243
2244 DPRINTK("EXIT\n");
2245}
2246
7a7921e8
TH
2247static int sata_phy_resume(struct ata_port *ap)
2248{
2249 unsigned long timeout = jiffies + (HZ * 5);
852ee16a 2250 u32 scontrol, sstatus;
7a7921e8 2251
852ee16a
TH
2252 scontrol = scr_read(ap, SCR_CONTROL);
2253 scontrol = (scontrol & 0x0f0) | 0x300;
2254 scr_write_flush(ap, SCR_CONTROL, scontrol);
7a7921e8
TH
2255
2256 /* Wait for phy to become ready, if necessary. */
2257 do {
2258 msleep(200);
2259 sstatus = scr_read(ap, SCR_STATUS);
2260 if ((sstatus & 0xf) != 1)
2261 return 0;
2262 } while (time_before(jiffies, timeout));
2263
2264 return -1;
2265}
2266
8a19ac89
TH
2267/**
2268 * ata_std_probeinit - initialize probing
2269 * @ap: port to be probed
2270 *
2271 * @ap is about to be probed. Initialize it. This function is
2272 * to be used as standard callback for ata_drive_probe_reset().
3a39746a
TH
2273 *
2274 * NOTE!!! Do not use this function as probeinit if a low level
2275 * driver implements only hardreset. Just pass NULL as probeinit
2276 * in that case. Using this function is probably okay but doing
2277 * so makes reset sequence different from the original
2278 * ->phy_reset implementation and Jeff nervous. :-P
8a19ac89 2279 */
17efc5f7 2280void ata_std_probeinit(struct ata_port *ap)
8a19ac89 2281{
17efc5f7 2282 if ((ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read) {
1c3fae4d
TH
2283 u32 spd;
2284
8a19ac89 2285 sata_phy_resume(ap);
1c3fae4d
TH
2286
2287 spd = (scr_read(ap, SCR_CONTROL) & 0xf0) >> 4;
2288 if (spd)
2289 ap->sata_spd_limit &= (1 << spd) - 1;
2290
3a39746a
TH
2291 if (sata_dev_present(ap))
2292 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2293 }
8a19ac89
TH
2294}
2295
c2bd5804
TH
2296/**
2297 * ata_std_softreset - reset host port via ATA SRST
2298 * @ap: port to reset
2299 * @verbose: fail verbosely
2300 * @classes: resulting classes of attached devices
2301 *
2302 * Reset host port using ATA SRST. This function is to be used
2303 * as standard callback for ata_drive_*_reset() functions.
2304 *
2305 * LOCKING:
2306 * Kernel thread context (may sleep)
2307 *
2308 * RETURNS:
2309 * 0 on success, -errno otherwise.
2310 */
2311int ata_std_softreset(struct ata_port *ap, int verbose, unsigned int *classes)
2312{
2313 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2314 unsigned int devmask = 0, err_mask;
2315 u8 err;
2316
2317 DPRINTK("ENTER\n");
2318
3a39746a
TH
2319 if (ap->ops->scr_read && !sata_dev_present(ap)) {
2320 classes[0] = ATA_DEV_NONE;
2321 goto out;
2322 }
2323
c2bd5804
TH
2324 /* determine if device 0/1 are present */
2325 if (ata_devchk(ap, 0))
2326 devmask |= (1 << 0);
2327 if (slave_possible && ata_devchk(ap, 1))
2328 devmask |= (1 << 1);
2329
c2bd5804
TH
2330 /* select device 0 again */
2331 ap->ops->dev_select(ap, 0);
2332
2333 /* issue bus reset */
2334 DPRINTK("about to softreset, devmask=%x\n", devmask);
2335 err_mask = ata_bus_softreset(ap, devmask);
2336 if (err_mask) {
2337 if (verbose)
2338 printk(KERN_ERR "ata%u: SRST failed (err_mask=0x%x)\n",
2339 ap->id, err_mask);
2340 else
2341 DPRINTK("EXIT, softreset failed (err_mask=0x%x)\n",
2342 err_mask);
2343 return -EIO;
2344 }
2345
2346 /* determine by signature whether we have ATA or ATAPI devices */
2347 classes[0] = ata_dev_try_classify(ap, 0, &err);
2348 if (slave_possible && err != 0x81)
2349 classes[1] = ata_dev_try_classify(ap, 1, &err);
2350
3a39746a 2351 out:
c2bd5804
TH
2352 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2353 return 0;
2354}
2355
2356/**
2357 * sata_std_hardreset - reset host port via SATA phy reset
2358 * @ap: port to reset
2359 * @verbose: fail verbosely
2360 * @class: resulting class of attached device
2361 *
2362 * SATA phy-reset host port using DET bits of SControl register.
2363 * This function is to be used as standard callback for
2364 * ata_drive_*_reset().
2365 *
2366 * LOCKING:
2367 * Kernel thread context (may sleep)
2368 *
2369 * RETURNS:
2370 * 0 on success, -errno otherwise.
2371 */
2372int sata_std_hardreset(struct ata_port *ap, int verbose, unsigned int *class)
2373{
852ee16a
TH
2374 u32 scontrol;
2375
c2bd5804
TH
2376 DPRINTK("ENTER\n");
2377
1c3fae4d
TH
2378 if (ata_set_sata_spd_needed(ap)) {
2379 /* SATA spec says nothing about how to reconfigure
2380 * spd. To be on the safe side, turn off phy during
2381 * reconfiguration. This works for at least ICH7 AHCI
2382 * and Sil3124.
2383 */
2384 scontrol = scr_read(ap, SCR_CONTROL);
2385 scontrol = (scontrol & 0x0f0) | 0x302;
2386 scr_write_flush(ap, SCR_CONTROL, scontrol);
2387
2388 ata_set_sata_spd(ap);
2389 }
2390
2391 /* issue phy wake/reset */
852ee16a
TH
2392 scontrol = scr_read(ap, SCR_CONTROL);
2393 scontrol = (scontrol & 0x0f0) | 0x301;
2394 scr_write_flush(ap, SCR_CONTROL, scontrol);
c2bd5804 2395
1c3fae4d 2396 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
2397 * 10.4.2 says at least 1 ms.
2398 */
2399 msleep(1);
2400
1c3fae4d 2401 /* bring phy back */
7a7921e8 2402 sata_phy_resume(ap);
c2bd5804 2403
c2bd5804
TH
2404 /* TODO: phy layer with polling, timeouts, etc. */
2405 if (!sata_dev_present(ap)) {
2406 *class = ATA_DEV_NONE;
2407 DPRINTK("EXIT, link offline\n");
2408 return 0;
2409 }
2410
2411 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2412 if (verbose)
2413 printk(KERN_ERR "ata%u: COMRESET failed "
2414 "(device not ready)\n", ap->id);
2415 else
2416 DPRINTK("EXIT, device not ready\n");
2417 return -EIO;
2418 }
2419
3a39746a
TH
2420 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2421
c2bd5804
TH
2422 *class = ata_dev_try_classify(ap, 0, NULL);
2423
2424 DPRINTK("EXIT, class=%u\n", *class);
2425 return 0;
2426}
2427
2428/**
2429 * ata_std_postreset - standard postreset callback
2430 * @ap: the target ata_port
2431 * @classes: classes of attached devices
2432 *
2433 * This function is invoked after a successful reset. Note that
2434 * the device might have been reset more than once using
2435 * different reset methods before postreset is invoked.
c2bd5804
TH
2436 *
2437 * This function is to be used as standard callback for
2438 * ata_drive_*_reset().
2439 *
2440 * LOCKING:
2441 * Kernel thread context (may sleep)
2442 */
2443void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2444{
2445 DPRINTK("ENTER\n");
2446
56497bd5 2447 /* set cable type if it isn't already set */
c2bd5804
TH
2448 if (ap->cbl == ATA_CBL_NONE && ap->flags & ATA_FLAG_SATA)
2449 ap->cbl = ATA_CBL_SATA;
2450
2451 /* print link status */
2452 if (ap->cbl == ATA_CBL_SATA)
2453 sata_print_link_status(ap);
2454
3a39746a
TH
2455 /* re-enable interrupts */
2456 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2457 ata_irq_on(ap);
c2bd5804
TH
2458
2459 /* is double-select really necessary? */
2460 if (classes[0] != ATA_DEV_NONE)
2461 ap->ops->dev_select(ap, 1);
2462 if (classes[1] != ATA_DEV_NONE)
2463 ap->ops->dev_select(ap, 0);
2464
3a39746a
TH
2465 /* bail out if no device is present */
2466 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2467 DPRINTK("EXIT, no device\n");
2468 return;
2469 }
2470
2471 /* set up device control */
2472 if (ap->ioaddr.ctl_addr) {
2473 if (ap->flags & ATA_FLAG_MMIO)
2474 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2475 else
2476 outb(ap->ctl, ap->ioaddr.ctl_addr);
2477 }
c2bd5804
TH
2478
2479 DPRINTK("EXIT\n");
2480}
2481
2482/**
2483 * ata_std_probe_reset - standard probe reset method
2484 * @ap: prot to perform probe-reset
2485 * @classes: resulting classes of attached devices
2486 *
2487 * The stock off-the-shelf ->probe_reset method.
2488 *
2489 * LOCKING:
2490 * Kernel thread context (may sleep)
2491 *
2492 * RETURNS:
2493 * 0 on success, -errno otherwise.
2494 */
2495int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2496{
2497 ata_reset_fn_t hardreset;
2498
2499 hardreset = NULL;
b911fc3a 2500 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read)
c2bd5804
TH
2501 hardreset = sata_std_hardreset;
2502
8a19ac89 2503 return ata_drive_probe_reset(ap, ata_std_probeinit,
7944ea95 2504 ata_std_softreset, hardreset,
c2bd5804
TH
2505 ata_std_postreset, classes);
2506}
2507
9974e7cc
TH
2508static int ata_do_reset(struct ata_port *ap,
2509 ata_reset_fn_t reset, ata_postreset_fn_t postreset,
2510 int verbose, unsigned int *classes)
a62c0fc5
TH
2511{
2512 int i, rc;
2513
2514 for (i = 0; i < ATA_MAX_DEVICES; i++)
2515 classes[i] = ATA_DEV_UNKNOWN;
2516
9974e7cc 2517 rc = reset(ap, verbose, classes);
a62c0fc5
TH
2518 if (rc)
2519 return rc;
2520
2521 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2522 * is complete and convert all ATA_DEV_UNKNOWN to
2523 * ATA_DEV_NONE.
2524 */
2525 for (i = 0; i < ATA_MAX_DEVICES; i++)
2526 if (classes[i] != ATA_DEV_UNKNOWN)
2527 break;
2528
2529 if (i < ATA_MAX_DEVICES)
2530 for (i = 0; i < ATA_MAX_DEVICES; i++)
2531 if (classes[i] == ATA_DEV_UNKNOWN)
2532 classes[i] = ATA_DEV_NONE;
2533
2534 if (postreset)
2535 postreset(ap, classes);
2536
9974e7cc 2537 return 0;
a62c0fc5
TH
2538}
2539
2540/**
2541 * ata_drive_probe_reset - Perform probe reset with given methods
2542 * @ap: port to reset
7944ea95 2543 * @probeinit: probeinit method (can be NULL)
a62c0fc5
TH
2544 * @softreset: softreset method (can be NULL)
2545 * @hardreset: hardreset method (can be NULL)
2546 * @postreset: postreset method (can be NULL)
2547 * @classes: resulting classes of attached devices
2548 *
2549 * Reset the specified port and classify attached devices using
2550 * given methods. This function prefers softreset but tries all
2551 * possible reset sequences to reset and classify devices. This
2552 * function is intended to be used for constructing ->probe_reset
2553 * callback by low level drivers.
2554 *
2555 * Reset methods should follow the following rules.
2556 *
2557 * - Return 0 on sucess, -errno on failure.
2558 * - If classification is supported, fill classes[] with
2559 * recognized class codes.
2560 * - If classification is not supported, leave classes[] alone.
2561 * - If verbose is non-zero, print error message on failure;
2562 * otherwise, shut up.
2563 *
2564 * LOCKING:
2565 * Kernel thread context (may sleep)
2566 *
2567 * RETURNS:
2568 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2569 * if classification fails, and any error code from reset
2570 * methods.
2571 */
7944ea95 2572int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
a62c0fc5
TH
2573 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2574 ata_postreset_fn_t postreset, unsigned int *classes)
2575{
2576 int rc = -EINVAL;
2577
7944ea95
TH
2578 if (probeinit)
2579 probeinit(ap);
2580
a62c0fc5 2581 if (softreset) {
9974e7cc
TH
2582 rc = ata_do_reset(ap, softreset, postreset, 0, classes);
2583 if (rc == 0 && classes[0] != ATA_DEV_UNKNOWN)
2584 goto done;
a62c0fc5
TH
2585 }
2586
2587 if (!hardreset)
9974e7cc 2588 goto done;
a62c0fc5 2589
9974e7cc
TH
2590 rc = ata_do_reset(ap, hardreset, postreset, 0, classes);
2591 if (rc || classes[0] != ATA_DEV_UNKNOWN)
2592 goto done;
a62c0fc5
TH
2593
2594 if (softreset)
9974e7cc 2595 rc = ata_do_reset(ap, softreset, postreset, 0, classes);
a62c0fc5 2596
9974e7cc
TH
2597 done:
2598 if (rc == 0 && classes[0] == ATA_DEV_UNKNOWN)
2599 rc = -ENODEV;
a62c0fc5
TH
2600 return rc;
2601}
2602
623a3128
TH
2603/**
2604 * ata_dev_same_device - Determine whether new ID matches configured device
2605 * @ap: port on which the device to compare against resides
2606 * @dev: device to compare against
2607 * @new_class: class of the new device
2608 * @new_id: IDENTIFY page of the new device
2609 *
2610 * Compare @new_class and @new_id against @dev and determine
2611 * whether @dev is the device indicated by @new_class and
2612 * @new_id.
2613 *
2614 * LOCKING:
2615 * None.
2616 *
2617 * RETURNS:
2618 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2619 */
2620static int ata_dev_same_device(struct ata_port *ap, struct ata_device *dev,
2621 unsigned int new_class, const u16 *new_id)
2622{
2623 const u16 *old_id = dev->id;
2624 unsigned char model[2][41], serial[2][21];
2625 u64 new_n_sectors;
2626
2627 if (dev->class != new_class) {
2628 printk(KERN_INFO
2629 "ata%u: dev %u class mismatch %d != %d\n",
2630 ap->id, dev->devno, dev->class, new_class);
2631 return 0;
2632 }
2633
2634 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2635 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2636 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2637 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2638 new_n_sectors = ata_id_n_sectors(new_id);
2639
2640 if (strcmp(model[0], model[1])) {
2641 printk(KERN_INFO
2642 "ata%u: dev %u model number mismatch '%s' != '%s'\n",
2643 ap->id, dev->devno, model[0], model[1]);
2644 return 0;
2645 }
2646
2647 if (strcmp(serial[0], serial[1])) {
2648 printk(KERN_INFO
2649 "ata%u: dev %u serial number mismatch '%s' != '%s'\n",
2650 ap->id, dev->devno, serial[0], serial[1]);
2651 return 0;
2652 }
2653
2654 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2655 printk(KERN_INFO
2656 "ata%u: dev %u n_sectors mismatch %llu != %llu\n",
2657 ap->id, dev->devno, (unsigned long long)dev->n_sectors,
2658 (unsigned long long)new_n_sectors);
2659 return 0;
2660 }
2661
2662 return 1;
2663}
2664
2665/**
2666 * ata_dev_revalidate - Revalidate ATA device
2667 * @ap: port on which the device to revalidate resides
2668 * @dev: device to revalidate
2669 * @post_reset: is this revalidation after reset?
2670 *
2671 * Re-read IDENTIFY page and make sure @dev is still attached to
2672 * the port.
2673 *
2674 * LOCKING:
2675 * Kernel thread context (may sleep)
2676 *
2677 * RETURNS:
2678 * 0 on success, negative errno otherwise
2679 */
2680int ata_dev_revalidate(struct ata_port *ap, struct ata_device *dev,
2681 int post_reset)
2682{
2683 unsigned int class;
2684 u16 *id;
2685 int rc;
2686
e1211e3f 2687 if (!ata_dev_enabled(dev))
623a3128
TH
2688 return -ENODEV;
2689
2690 class = dev->class;
2691 id = NULL;
2692
2693 /* allocate & read ID data */
2694 rc = ata_dev_read_id(ap, dev, &class, post_reset, &id);
2695 if (rc)
2696 goto fail;
2697
2698 /* is the device still there? */
2699 if (!ata_dev_same_device(ap, dev, class, id)) {
2700 rc = -ENODEV;
2701 goto fail;
2702 }
2703
2704 kfree(dev->id);
2705 dev->id = id;
2706
2707 /* configure device according to the new ID */
2708 return ata_dev_configure(ap, dev, 0);
2709
2710 fail:
2711 printk(KERN_ERR "ata%u: dev %u revalidation failed (errno=%d)\n",
2712 ap->id, dev->devno, rc);
2713 kfree(id);
2714 return rc;
2715}
2716
98ac62de 2717static const char * const ata_dma_blacklist [] = {
f4b15fef
AC
2718 "WDC AC11000H", NULL,
2719 "WDC AC22100H", NULL,
2720 "WDC AC32500H", NULL,
2721 "WDC AC33100H", NULL,
2722 "WDC AC31600H", NULL,
2723 "WDC AC32100H", "24.09P07",
2724 "WDC AC23200L", "21.10N21",
2725 "Compaq CRD-8241B", NULL,
2726 "CRD-8400B", NULL,
2727 "CRD-8480B", NULL,
2728 "CRD-8482B", NULL,
2729 "CRD-84", NULL,
2730 "SanDisk SDP3B", NULL,
2731 "SanDisk SDP3B-64", NULL,
2732 "SANYO CD-ROM CRD", NULL,
2733 "HITACHI CDR-8", NULL,
2e9edbf8 2734 "HITACHI CDR-8335", NULL,
f4b15fef 2735 "HITACHI CDR-8435", NULL,
2e9edbf8
JG
2736 "Toshiba CD-ROM XM-6202B", NULL,
2737 "TOSHIBA CD-ROM XM-1702BC", NULL,
2738 "CD-532E-A", NULL,
2739 "E-IDE CD-ROM CR-840", NULL,
2740 "CD-ROM Drive/F5A", NULL,
2741 "WPI CDD-820", NULL,
f4b15fef 2742 "SAMSUNG CD-ROM SC-148C", NULL,
2e9edbf8 2743 "SAMSUNG CD-ROM SC", NULL,
f4b15fef
AC
2744 "SanDisk SDP3B-64", NULL,
2745 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2746 "_NEC DV5800A", NULL,
2747 "SAMSUNG CD-ROM SN-124", "N001"
1da177e4 2748};
2e9edbf8 2749
f4b15fef
AC
2750static int ata_strim(char *s, size_t len)
2751{
2752 len = strnlen(s, len);
2753
2754 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2755 while ((len > 0) && (s[len - 1] == ' ')) {
2756 len--;
2757 s[len] = 0;
2758 }
2759 return len;
2760}
1da177e4 2761
057ace5e 2762static int ata_dma_blacklisted(const struct ata_device *dev)
1da177e4 2763{
f4b15fef
AC
2764 unsigned char model_num[40];
2765 unsigned char model_rev[16];
2766 unsigned int nlen, rlen;
1da177e4
LT
2767 int i;
2768
f4b15fef
AC
2769 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2770 sizeof(model_num));
2771 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2772 sizeof(model_rev));
2773 nlen = ata_strim(model_num, sizeof(model_num));
2774 rlen = ata_strim(model_rev, sizeof(model_rev));
1da177e4 2775
f4b15fef
AC
2776 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2777 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2778 if (ata_dma_blacklist[i+1] == NULL)
2779 return 1;
2780 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2781 return 1;
2782 }
2783 }
1da177e4
LT
2784 return 0;
2785}
2786
a6d5a51c
TH
2787/**
2788 * ata_dev_xfermask - Compute supported xfermask of the given device
2789 * @ap: Port on which the device to compute xfermask for resides
2790 * @dev: Device to compute xfermask for
2791 *
acf356b1
TH
2792 * Compute supported xfermask of @dev and store it in
2793 * dev->*_mask. This function is responsible for applying all
2794 * known limits including host controller limits, device
2795 * blacklist, etc...
a6d5a51c 2796 *
600511e8
TH
2797 * FIXME: The current implementation limits all transfer modes to
2798 * the fastest of the lowested device on the port. This is not
05c8e0ac 2799 * required on most controllers.
600511e8 2800 *
a6d5a51c
TH
2801 * LOCKING:
2802 * None.
a6d5a51c 2803 */
acf356b1 2804static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev)
1da177e4 2805{
5444a6f4 2806 struct ata_host_set *hs = ap->host_set;
a6d5a51c
TH
2807 unsigned long xfer_mask;
2808 int i;
1da177e4 2809
a6d5a51c
TH
2810 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
2811 ap->udma_mask);
1da177e4 2812
5444a6f4 2813 /* FIXME: Use port-wide xfermask for now */
a6d5a51c
TH
2814 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2815 struct ata_device *d = &ap->device[i];
e1211e3f 2816 if (!ata_dev_enabled(d))
a6d5a51c 2817 continue;
acf356b1
TH
2818 xfer_mask &= ata_pack_xfermask(d->pio_mask, d->mwdma_mask,
2819 d->udma_mask);
a6d5a51c
TH
2820 xfer_mask &= ata_id_xfermask(d->id);
2821 if (ata_dma_blacklisted(d))
2822 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
5444a6f4
AC
2823 /* Apply cable rule here. Don't apply it early because when
2824 we handle hot plug the cable type can itself change */
2825 if (ap->cbl == ATA_CBL_PATA40)
2826 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
1da177e4
LT
2827 }
2828
a6d5a51c
TH
2829 if (ata_dma_blacklisted(dev))
2830 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, "
2831 "disabling DMA\n", ap->id, dev->devno);
2832
5444a6f4
AC
2833 if (hs->flags & ATA_HOST_SIMPLEX) {
2834 if (hs->simplex_claimed)
2835 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2836 }
2837 if (ap->ops->mode_filter)
2838 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
2839
acf356b1
TH
2840 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2841 &dev->udma_mask);
1da177e4
LT
2842}
2843
1da177e4
LT
2844/**
2845 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2846 * @ap: Port associated with device @dev
2847 * @dev: Device to which command will be sent
2848 *
780a87f7
JG
2849 * Issue SET FEATURES - XFER MODE command to device @dev
2850 * on port @ap.
2851 *
1da177e4 2852 * LOCKING:
0cba632b 2853 * PCI/etc. bus probe sem.
83206a29
TH
2854 *
2855 * RETURNS:
2856 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
2857 */
2858
83206a29
TH
2859static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
2860 struct ata_device *dev)
1da177e4 2861{
a0123703 2862 struct ata_taskfile tf;
83206a29 2863 unsigned int err_mask;
1da177e4
LT
2864
2865 /* set up set-features taskfile */
2866 DPRINTK("set features - xfer mode\n");
2867
a0123703
TH
2868 ata_tf_init(ap, &tf, dev->devno);
2869 tf.command = ATA_CMD_SET_FEATURES;
2870 tf.feature = SETFEATURES_XFER;
2871 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2872 tf.protocol = ATA_PROT_NODATA;
2873 tf.nsect = dev->xfer_mode;
1da177e4 2874
83206a29 2875 err_mask = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
1da177e4 2876
83206a29
TH
2877 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2878 return err_mask;
1da177e4
LT
2879}
2880
8bf62ece
AL
2881/**
2882 * ata_dev_init_params - Issue INIT DEV PARAMS command
2883 * @ap: Port associated with device @dev
2884 * @dev: Device to which command will be sent
2885 *
2886 * LOCKING:
6aff8f1f
TH
2887 * Kernel thread context (may sleep)
2888 *
2889 * RETURNS:
2890 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece
AL
2891 */
2892
6aff8f1f 2893static unsigned int ata_dev_init_params(struct ata_port *ap,
00b6f5e9
AL
2894 struct ata_device *dev,
2895 u16 heads,
2896 u16 sectors)
8bf62ece 2897{
a0123703 2898 struct ata_taskfile tf;
6aff8f1f 2899 unsigned int err_mask;
8bf62ece
AL
2900
2901 /* Number of sectors per track 1-255. Number of heads 1-16 */
2902 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 2903 return AC_ERR_INVALID;
8bf62ece
AL
2904
2905 /* set up init dev params taskfile */
2906 DPRINTK("init dev params \n");
2907
a0123703
TH
2908 ata_tf_init(ap, &tf, dev->devno);
2909 tf.command = ATA_CMD_INIT_DEV_PARAMS;
2910 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2911 tf.protocol = ATA_PROT_NODATA;
2912 tf.nsect = sectors;
2913 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 2914
6aff8f1f 2915 err_mask = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
8bf62ece 2916
6aff8f1f
TH
2917 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2918 return err_mask;
8bf62ece
AL
2919}
2920
1da177e4 2921/**
0cba632b
JG
2922 * ata_sg_clean - Unmap DMA memory associated with command
2923 * @qc: Command containing DMA memory to be released
2924 *
2925 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
2926 *
2927 * LOCKING:
0cba632b 2928 * spin_lock_irqsave(host_set lock)
1da177e4
LT
2929 */
2930
2931static void ata_sg_clean(struct ata_queued_cmd *qc)
2932{
2933 struct ata_port *ap = qc->ap;
cedc9a47 2934 struct scatterlist *sg = qc->__sg;
1da177e4 2935 int dir = qc->dma_dir;
cedc9a47 2936 void *pad_buf = NULL;
1da177e4 2937
a4631474
TH
2938 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
2939 WARN_ON(sg == NULL);
1da177e4
LT
2940
2941 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 2942 WARN_ON(qc->n_elem > 1);
1da177e4 2943
2c13b7ce 2944 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 2945
cedc9a47
JG
2946 /* if we padded the buffer out to 32-bit bound, and data
2947 * xfer direction is from-device, we must copy from the
2948 * pad buffer back into the supplied buffer
2949 */
2950 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
2951 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2952
2953 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 2954 if (qc->n_elem)
2f1f610b 2955 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
2956 /* restore last sg */
2957 sg[qc->orig_n_elem - 1].length += qc->pad_len;
2958 if (pad_buf) {
2959 struct scatterlist *psg = &qc->pad_sgent;
2960 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2961 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 2962 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
2963 }
2964 } else {
2e242fa9 2965 if (qc->n_elem)
2f1f610b 2966 dma_unmap_single(ap->dev,
e1410f2d
JG
2967 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
2968 dir);
cedc9a47
JG
2969 /* restore sg */
2970 sg->length += qc->pad_len;
2971 if (pad_buf)
2972 memcpy(qc->buf_virt + sg->length - qc->pad_len,
2973 pad_buf, qc->pad_len);
2974 }
1da177e4
LT
2975
2976 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 2977 qc->__sg = NULL;
1da177e4
LT
2978}
2979
2980/**
2981 * ata_fill_sg - Fill PCI IDE PRD table
2982 * @qc: Metadata associated with taskfile to be transferred
2983 *
780a87f7
JG
2984 * Fill PCI IDE PRD (scatter-gather) table with segments
2985 * associated with the current disk command.
2986 *
1da177e4 2987 * LOCKING:
780a87f7 2988 * spin_lock_irqsave(host_set lock)
1da177e4
LT
2989 *
2990 */
2991static void ata_fill_sg(struct ata_queued_cmd *qc)
2992{
1da177e4 2993 struct ata_port *ap = qc->ap;
cedc9a47
JG
2994 struct scatterlist *sg;
2995 unsigned int idx;
1da177e4 2996
a4631474 2997 WARN_ON(qc->__sg == NULL);
f131883e 2998 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
2999
3000 idx = 0;
cedc9a47 3001 ata_for_each_sg(sg, qc) {
1da177e4
LT
3002 u32 addr, offset;
3003 u32 sg_len, len;
3004
3005 /* determine if physical DMA addr spans 64K boundary.
3006 * Note h/w doesn't support 64-bit, so we unconditionally
3007 * truncate dma_addr_t to u32.
3008 */
3009 addr = (u32) sg_dma_address(sg);
3010 sg_len = sg_dma_len(sg);
3011
3012 while (sg_len) {
3013 offset = addr & 0xffff;
3014 len = sg_len;
3015 if ((offset + sg_len) > 0x10000)
3016 len = 0x10000 - offset;
3017
3018 ap->prd[idx].addr = cpu_to_le32(addr);
3019 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3020 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3021
3022 idx++;
3023 sg_len -= len;
3024 addr += len;
3025 }
3026 }
3027
3028 if (idx)
3029 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3030}
3031/**
3032 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3033 * @qc: Metadata associated with taskfile to check
3034 *
780a87f7
JG
3035 * Allow low-level driver to filter ATA PACKET commands, returning
3036 * a status indicating whether or not it is OK to use DMA for the
3037 * supplied PACKET command.
3038 *
1da177e4 3039 * LOCKING:
0cba632b
JG
3040 * spin_lock_irqsave(host_set lock)
3041 *
1da177e4
LT
3042 * RETURNS: 0 when ATAPI DMA can be used
3043 * nonzero otherwise
3044 */
3045int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3046{
3047 struct ata_port *ap = qc->ap;
3048 int rc = 0; /* Assume ATAPI DMA is OK by default */
3049
3050 if (ap->ops->check_atapi_dma)
3051 rc = ap->ops->check_atapi_dma(qc);
3052
3053 return rc;
3054}
3055/**
3056 * ata_qc_prep - Prepare taskfile for submission
3057 * @qc: Metadata associated with taskfile to be prepared
3058 *
780a87f7
JG
3059 * Prepare ATA taskfile for submission.
3060 *
1da177e4
LT
3061 * LOCKING:
3062 * spin_lock_irqsave(host_set lock)
3063 */
3064void ata_qc_prep(struct ata_queued_cmd *qc)
3065{
3066 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3067 return;
3068
3069 ata_fill_sg(qc);
3070}
3071
e46834cd
BK
3072void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3073
0cba632b
JG
3074/**
3075 * ata_sg_init_one - Associate command with memory buffer
3076 * @qc: Command to be associated
3077 * @buf: Memory buffer
3078 * @buflen: Length of memory buffer, in bytes.
3079 *
3080 * Initialize the data-related elements of queued_cmd @qc
3081 * to point to a single memory buffer, @buf of byte length @buflen.
3082 *
3083 * LOCKING:
3084 * spin_lock_irqsave(host_set lock)
3085 */
3086
1da177e4
LT
3087void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3088{
3089 struct scatterlist *sg;
3090
3091 qc->flags |= ATA_QCFLAG_SINGLE;
3092
3093 memset(&qc->sgent, 0, sizeof(qc->sgent));
cedc9a47 3094 qc->__sg = &qc->sgent;
1da177e4 3095 qc->n_elem = 1;
cedc9a47 3096 qc->orig_n_elem = 1;
1da177e4
LT
3097 qc->buf_virt = buf;
3098
cedc9a47 3099 sg = qc->__sg;
f0612bbc 3100 sg_init_one(sg, buf, buflen);
1da177e4
LT
3101}
3102
0cba632b
JG
3103/**
3104 * ata_sg_init - Associate command with scatter-gather table.
3105 * @qc: Command to be associated
3106 * @sg: Scatter-gather table.
3107 * @n_elem: Number of elements in s/g table.
3108 *
3109 * Initialize the data-related elements of queued_cmd @qc
3110 * to point to a scatter-gather table @sg, containing @n_elem
3111 * elements.
3112 *
3113 * LOCKING:
3114 * spin_lock_irqsave(host_set lock)
3115 */
3116
1da177e4
LT
3117void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3118 unsigned int n_elem)
3119{
3120 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 3121 qc->__sg = sg;
1da177e4 3122 qc->n_elem = n_elem;
cedc9a47 3123 qc->orig_n_elem = n_elem;
1da177e4
LT
3124}
3125
3126/**
0cba632b
JG
3127 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3128 * @qc: Command with memory buffer to be mapped.
3129 *
3130 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
3131 *
3132 * LOCKING:
3133 * spin_lock_irqsave(host_set lock)
3134 *
3135 * RETURNS:
0cba632b 3136 * Zero on success, negative on error.
1da177e4
LT
3137 */
3138
3139static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3140{
3141 struct ata_port *ap = qc->ap;
3142 int dir = qc->dma_dir;
cedc9a47 3143 struct scatterlist *sg = qc->__sg;
1da177e4 3144 dma_addr_t dma_address;
2e242fa9 3145 int trim_sg = 0;
1da177e4 3146
cedc9a47
JG
3147 /* we must lengthen transfers to end on a 32-bit boundary */
3148 qc->pad_len = sg->length & 3;
3149 if (qc->pad_len) {
3150 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3151 struct scatterlist *psg = &qc->pad_sgent;
3152
a4631474 3153 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3154
3155 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3156
3157 if (qc->tf.flags & ATA_TFLAG_WRITE)
3158 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3159 qc->pad_len);
3160
3161 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3162 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3163 /* trim sg */
3164 sg->length -= qc->pad_len;
2e242fa9
TH
3165 if (sg->length == 0)
3166 trim_sg = 1;
cedc9a47
JG
3167
3168 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3169 sg->length, qc->pad_len);
3170 }
3171
2e242fa9
TH
3172 if (trim_sg) {
3173 qc->n_elem--;
e1410f2d
JG
3174 goto skip_map;
3175 }
3176
2f1f610b 3177 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 3178 sg->length, dir);
537a95d9
TH
3179 if (dma_mapping_error(dma_address)) {
3180 /* restore sg */
3181 sg->length += qc->pad_len;
1da177e4 3182 return -1;
537a95d9 3183 }
1da177e4
LT
3184
3185 sg_dma_address(sg) = dma_address;
32529e01 3186 sg_dma_len(sg) = sg->length;
1da177e4 3187
2e242fa9 3188skip_map:
1da177e4
LT
3189 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3190 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3191
3192 return 0;
3193}
3194
3195/**
0cba632b
JG
3196 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3197 * @qc: Command with scatter-gather table to be mapped.
3198 *
3199 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
3200 *
3201 * LOCKING:
3202 * spin_lock_irqsave(host_set lock)
3203 *
3204 * RETURNS:
0cba632b 3205 * Zero on success, negative on error.
1da177e4
LT
3206 *
3207 */
3208
3209static int ata_sg_setup(struct ata_queued_cmd *qc)
3210{
3211 struct ata_port *ap = qc->ap;
cedc9a47
JG
3212 struct scatterlist *sg = qc->__sg;
3213 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 3214 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
3215
3216 VPRINTK("ENTER, ata%u\n", ap->id);
a4631474 3217 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 3218
cedc9a47
JG
3219 /* we must lengthen transfers to end on a 32-bit boundary */
3220 qc->pad_len = lsg->length & 3;
3221 if (qc->pad_len) {
3222 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3223 struct scatterlist *psg = &qc->pad_sgent;
3224 unsigned int offset;
3225
a4631474 3226 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3227
3228 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3229
3230 /*
3231 * psg->page/offset are used to copy to-be-written
3232 * data in this function or read data in ata_sg_clean.
3233 */
3234 offset = lsg->offset + lsg->length - qc->pad_len;
3235 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3236 psg->offset = offset_in_page(offset);
3237
3238 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3239 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3240 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 3241 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3242 }
3243
3244 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3245 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3246 /* trim last sg */
3247 lsg->length -= qc->pad_len;
e1410f2d
JG
3248 if (lsg->length == 0)
3249 trim_sg = 1;
cedc9a47
JG
3250
3251 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3252 qc->n_elem - 1, lsg->length, qc->pad_len);
3253 }
3254
e1410f2d
JG
3255 pre_n_elem = qc->n_elem;
3256 if (trim_sg && pre_n_elem)
3257 pre_n_elem--;
3258
3259 if (!pre_n_elem) {
3260 n_elem = 0;
3261 goto skip_map;
3262 }
3263
1da177e4 3264 dir = qc->dma_dir;
2f1f610b 3265 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
3266 if (n_elem < 1) {
3267 /* restore last sg */
3268 lsg->length += qc->pad_len;
1da177e4 3269 return -1;
537a95d9 3270 }
1da177e4
LT
3271
3272 DPRINTK("%d sg elements mapped\n", n_elem);
3273
e1410f2d 3274skip_map:
1da177e4
LT
3275 qc->n_elem = n_elem;
3276
3277 return 0;
3278}
3279
40e8c82c
TH
3280/**
3281 * ata_poll_qc_complete - turn irq back on and finish qc
3282 * @qc: Command to complete
8e8b77dd 3283 * @err_mask: ATA status register content
40e8c82c
TH
3284 *
3285 * LOCKING:
3286 * None. (grabs host lock)
3287 */
3288
a22e2eb0 3289void ata_poll_qc_complete(struct ata_queued_cmd *qc)
40e8c82c
TH
3290{
3291 struct ata_port *ap = qc->ap;
b8f6153e 3292 unsigned long flags;
40e8c82c 3293
b8f6153e 3294 spin_lock_irqsave(&ap->host_set->lock, flags);
40e8c82c
TH
3295 ap->flags &= ~ATA_FLAG_NOINTR;
3296 ata_irq_on(ap);
a22e2eb0 3297 ata_qc_complete(qc);
b8f6153e 3298 spin_unlock_irqrestore(&ap->host_set->lock, flags);
40e8c82c
TH
3299}
3300
1da177e4 3301/**
c893a3ae 3302 * ata_pio_poll - poll using PIO, depending on current state
6f0ef4fa 3303 * @ap: the target ata_port
1da177e4
LT
3304 *
3305 * LOCKING:
0cba632b 3306 * None. (executing in kernel thread context)
1da177e4
LT
3307 *
3308 * RETURNS:
6f0ef4fa 3309 * timeout value to use
1da177e4
LT
3310 */
3311
3312static unsigned long ata_pio_poll(struct ata_port *ap)
3313{
c14b8331 3314 struct ata_queued_cmd *qc;
1da177e4 3315 u8 status;
14be71f4
AL
3316 unsigned int poll_state = HSM_ST_UNKNOWN;
3317 unsigned int reg_state = HSM_ST_UNKNOWN;
14be71f4 3318
c14b8331 3319 qc = ata_qc_from_tag(ap, ap->active_tag);
a4631474 3320 WARN_ON(qc == NULL);
c14b8331 3321
14be71f4
AL
3322 switch (ap->hsm_task_state) {
3323 case HSM_ST:
3324 case HSM_ST_POLL:
3325 poll_state = HSM_ST_POLL;
3326 reg_state = HSM_ST;
1da177e4 3327 break;
14be71f4
AL
3328 case HSM_ST_LAST:
3329 case HSM_ST_LAST_POLL:
3330 poll_state = HSM_ST_LAST_POLL;
3331 reg_state = HSM_ST_LAST;
1da177e4
LT
3332 break;
3333 default:
3334 BUG();
3335 break;
3336 }
3337
3338 status = ata_chk_status(ap);
3339 if (status & ATA_BUSY) {
3340 if (time_after(jiffies, ap->pio_task_timeout)) {
11a56d24 3341 qc->err_mask |= AC_ERR_TIMEOUT;
7c398335 3342 ap->hsm_task_state = HSM_ST_TMOUT;
1da177e4
LT
3343 return 0;
3344 }
14be71f4 3345 ap->hsm_task_state = poll_state;
1da177e4
LT
3346 return ATA_SHORT_PAUSE;
3347 }
3348
14be71f4 3349 ap->hsm_task_state = reg_state;
1da177e4
LT
3350 return 0;
3351}
3352
3353/**
6f0ef4fa
RD
3354 * ata_pio_complete - check if drive is busy or idle
3355 * @ap: the target ata_port
1da177e4
LT
3356 *
3357 * LOCKING:
0cba632b 3358 * None. (executing in kernel thread context)
7fb6ec28
JG
3359 *
3360 * RETURNS:
3361 * Non-zero if qc completed, zero otherwise.
1da177e4
LT
3362 */
3363
7fb6ec28 3364static int ata_pio_complete (struct ata_port *ap)
1da177e4
LT
3365{
3366 struct ata_queued_cmd *qc;
3367 u8 drv_stat;
3368
3369 /*
31433ea3
AC
3370 * This is purely heuristic. This is a fast path. Sometimes when
3371 * we enter, BSY will be cleared in a chk-status or two. If not,
3372 * the drive is probably seeking or something. Snooze for a couple
3373 * msecs, then chk-status again. If still busy, fall back to
14be71f4 3374 * HSM_ST_POLL state.
1da177e4 3375 */
fe79e683
AL
3376 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3377 if (drv_stat & ATA_BUSY) {
1da177e4 3378 msleep(2);
fe79e683
AL
3379 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3380 if (drv_stat & ATA_BUSY) {
14be71f4 3381 ap->hsm_task_state = HSM_ST_LAST_POLL;
1da177e4 3382 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
7fb6ec28 3383 return 0;
1da177e4
LT
3384 }
3385 }
3386
c14b8331 3387 qc = ata_qc_from_tag(ap, ap->active_tag);
a4631474 3388 WARN_ON(qc == NULL);
c14b8331 3389
1da177e4
LT
3390 drv_stat = ata_wait_idle(ap);
3391 if (!ata_ok(drv_stat)) {
1c848984 3392 qc->err_mask |= __ac_err_mask(drv_stat);
14be71f4 3393 ap->hsm_task_state = HSM_ST_ERR;
7fb6ec28 3394 return 0;
1da177e4
LT
3395 }
3396
14be71f4 3397 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 3398
a4631474 3399 WARN_ON(qc->err_mask);
a22e2eb0 3400 ata_poll_qc_complete(qc);
7fb6ec28
JG
3401
3402 /* another command may start at this point */
3403
3404 return 1;
1da177e4
LT
3405}
3406
0baab86b
EF
3407
3408/**
c893a3ae 3409 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
3410 * @buf: Buffer to swap
3411 * @buf_words: Number of 16-bit words in buffer.
3412 *
3413 * Swap halves of 16-bit words if needed to convert from
3414 * little-endian byte order to native cpu byte order, or
3415 * vice-versa.
3416 *
3417 * LOCKING:
6f0ef4fa 3418 * Inherited from caller.
0baab86b 3419 */
1da177e4
LT
3420void swap_buf_le16(u16 *buf, unsigned int buf_words)
3421{
3422#ifdef __BIG_ENDIAN
3423 unsigned int i;
3424
3425 for (i = 0; i < buf_words; i++)
3426 buf[i] = le16_to_cpu(buf[i]);
3427#endif /* __BIG_ENDIAN */
3428}
3429
6ae4cfb5
AL
3430/**
3431 * ata_mmio_data_xfer - Transfer data by MMIO
3432 * @ap: port to read/write
3433 * @buf: data buffer
3434 * @buflen: buffer length
344babaa 3435 * @write_data: read/write
6ae4cfb5
AL
3436 *
3437 * Transfer data from/to the device data register by MMIO.
3438 *
3439 * LOCKING:
3440 * Inherited from caller.
6ae4cfb5
AL
3441 */
3442
1da177e4
LT
3443static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3444 unsigned int buflen, int write_data)
3445{
3446 unsigned int i;
3447 unsigned int words = buflen >> 1;
3448 u16 *buf16 = (u16 *) buf;
3449 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3450
6ae4cfb5 3451 /* Transfer multiple of 2 bytes */
1da177e4
LT
3452 if (write_data) {
3453 for (i = 0; i < words; i++)
3454 writew(le16_to_cpu(buf16[i]), mmio);
3455 } else {
3456 for (i = 0; i < words; i++)
3457 buf16[i] = cpu_to_le16(readw(mmio));
3458 }
6ae4cfb5
AL
3459
3460 /* Transfer trailing 1 byte, if any. */
3461 if (unlikely(buflen & 0x01)) {
3462 u16 align_buf[1] = { 0 };
3463 unsigned char *trailing_buf = buf + buflen - 1;
3464
3465 if (write_data) {
3466 memcpy(align_buf, trailing_buf, 1);
3467 writew(le16_to_cpu(align_buf[0]), mmio);
3468 } else {
3469 align_buf[0] = cpu_to_le16(readw(mmio));
3470 memcpy(trailing_buf, align_buf, 1);
3471 }
3472 }
1da177e4
LT
3473}
3474
6ae4cfb5
AL
3475/**
3476 * ata_pio_data_xfer - Transfer data by PIO
3477 * @ap: port to read/write
3478 * @buf: data buffer
3479 * @buflen: buffer length
344babaa 3480 * @write_data: read/write
6ae4cfb5
AL
3481 *
3482 * Transfer data from/to the device data register by PIO.
3483 *
3484 * LOCKING:
3485 * Inherited from caller.
6ae4cfb5
AL
3486 */
3487
1da177e4
LT
3488static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3489 unsigned int buflen, int write_data)
3490{
6ae4cfb5 3491 unsigned int words = buflen >> 1;
1da177e4 3492
6ae4cfb5 3493 /* Transfer multiple of 2 bytes */
1da177e4 3494 if (write_data)
6ae4cfb5 3495 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 3496 else
6ae4cfb5
AL
3497 insw(ap->ioaddr.data_addr, buf, words);
3498
3499 /* Transfer trailing 1 byte, if any. */
3500 if (unlikely(buflen & 0x01)) {
3501 u16 align_buf[1] = { 0 };
3502 unsigned char *trailing_buf = buf + buflen - 1;
3503
3504 if (write_data) {
3505 memcpy(align_buf, trailing_buf, 1);
3506 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3507 } else {
3508 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3509 memcpy(trailing_buf, align_buf, 1);
3510 }
3511 }
1da177e4
LT
3512}
3513
6ae4cfb5
AL
3514/**
3515 * ata_data_xfer - Transfer data from/to the data register.
3516 * @ap: port to read/write
3517 * @buf: data buffer
3518 * @buflen: buffer length
3519 * @do_write: read/write
3520 *
3521 * Transfer data from/to the device data register.
3522 *
3523 * LOCKING:
3524 * Inherited from caller.
6ae4cfb5
AL
3525 */
3526
1da177e4
LT
3527static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3528 unsigned int buflen, int do_write)
3529{
a1bd9e68
AC
3530 /* Make the crap hardware pay the costs not the good stuff */
3531 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3532 unsigned long flags;
3533 local_irq_save(flags);
3534 if (ap->flags & ATA_FLAG_MMIO)
3535 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3536 else
3537 ata_pio_data_xfer(ap, buf, buflen, do_write);
3538 local_irq_restore(flags);
3539 } else {
3540 if (ap->flags & ATA_FLAG_MMIO)
3541 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3542 else
3543 ata_pio_data_xfer(ap, buf, buflen, do_write);
3544 }
1da177e4
LT
3545}
3546
6ae4cfb5
AL
3547/**
3548 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3549 * @qc: Command on going
3550 *
3551 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3552 *
3553 * LOCKING:
3554 * Inherited from caller.
3555 */
3556
1da177e4
LT
3557static void ata_pio_sector(struct ata_queued_cmd *qc)
3558{
3559 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3560 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3561 struct ata_port *ap = qc->ap;
3562 struct page *page;
3563 unsigned int offset;
3564 unsigned char *buf;
3565
3566 if (qc->cursect == (qc->nsect - 1))
14be71f4 3567 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3568
3569 page = sg[qc->cursg].page;
3570 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3571
3572 /* get the current page and offset */
3573 page = nth_page(page, (offset >> PAGE_SHIFT));
3574 offset %= PAGE_SIZE;
3575
3576 buf = kmap(page) + offset;
3577
3578 qc->cursect++;
3579 qc->cursg_ofs++;
3580
32529e01 3581 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
1da177e4
LT
3582 qc->cursg++;
3583 qc->cursg_ofs = 0;
3584 }
3585
3586 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3587
3588 /* do the actual data transfer */
3589 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3590 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3591
3592 kunmap(page);
3593}
3594
6ae4cfb5
AL
3595/**
3596 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3597 * @qc: Command on going
3598 * @bytes: number of bytes
3599 *
3600 * Transfer Transfer data from/to the ATAPI device.
3601 *
3602 * LOCKING:
3603 * Inherited from caller.
3604 *
3605 */
3606
1da177e4
LT
3607static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3608{
3609 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3610 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3611 struct ata_port *ap = qc->ap;
3612 struct page *page;
3613 unsigned char *buf;
3614 unsigned int offset, count;
3615
563a6e1f 3616 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 3617 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3618
3619next_sg:
563a6e1f 3620 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 3621 /*
563a6e1f
AL
3622 * The end of qc->sg is reached and the device expects
3623 * more data to transfer. In order not to overrun qc->sg
3624 * and fulfill length specified in the byte count register,
3625 * - for read case, discard trailing data from the device
3626 * - for write case, padding zero data to the device
3627 */
3628 u16 pad_buf[1] = { 0 };
3629 unsigned int words = bytes >> 1;
3630 unsigned int i;
3631
3632 if (words) /* warning if bytes > 1 */
7fb6ec28 3633 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
563a6e1f
AL
3634 ap->id, bytes);
3635
3636 for (i = 0; i < words; i++)
3637 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3638
14be71f4 3639 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
3640 return;
3641 }
3642
cedc9a47 3643 sg = &qc->__sg[qc->cursg];
1da177e4 3644
1da177e4
LT
3645 page = sg->page;
3646 offset = sg->offset + qc->cursg_ofs;
3647
3648 /* get the current page and offset */
3649 page = nth_page(page, (offset >> PAGE_SHIFT));
3650 offset %= PAGE_SIZE;
3651
6952df03 3652 /* don't overrun current sg */
32529e01 3653 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
3654
3655 /* don't cross page boundaries */
3656 count = min(count, (unsigned int)PAGE_SIZE - offset);
3657
3658 buf = kmap(page) + offset;
3659
3660 bytes -= count;
3661 qc->curbytes += count;
3662 qc->cursg_ofs += count;
3663
32529e01 3664 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
3665 qc->cursg++;
3666 qc->cursg_ofs = 0;
3667 }
3668
3669 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3670
3671 /* do the actual data transfer */
3672 ata_data_xfer(ap, buf, count, do_write);
3673
3674 kunmap(page);
3675
563a6e1f 3676 if (bytes)
1da177e4 3677 goto next_sg;
1da177e4
LT
3678}
3679
6ae4cfb5
AL
3680/**
3681 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3682 * @qc: Command on going
3683 *
3684 * Transfer Transfer data from/to the ATAPI device.
3685 *
3686 * LOCKING:
3687 * Inherited from caller.
6ae4cfb5
AL
3688 */
3689
1da177e4
LT
3690static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3691{
3692 struct ata_port *ap = qc->ap;
3693 struct ata_device *dev = qc->dev;
3694 unsigned int ireason, bc_lo, bc_hi, bytes;
3695 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3696
3697 ap->ops->tf_read(ap, &qc->tf);
3698 ireason = qc->tf.nsect;
3699 bc_lo = qc->tf.lbam;
3700 bc_hi = qc->tf.lbah;
3701 bytes = (bc_hi << 8) | bc_lo;
3702
3703 /* shall be cleared to zero, indicating xfer of data */
3704 if (ireason & (1 << 0))
3705 goto err_out;
3706
3707 /* make sure transfer direction matches expected */
3708 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3709 if (do_write != i_write)
3710 goto err_out;
3711
3712 __atapi_pio_bytes(qc, bytes);
3713
3714 return;
3715
3716err_out:
3717 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3718 ap->id, dev->devno);
11a56d24 3719 qc->err_mask |= AC_ERR_HSM;
14be71f4 3720 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3721}
3722
3723/**
6f0ef4fa
RD
3724 * ata_pio_block - start PIO on a block
3725 * @ap: the target ata_port
1da177e4
LT
3726 *
3727 * LOCKING:
0cba632b 3728 * None. (executing in kernel thread context)
1da177e4
LT
3729 */
3730
3731static void ata_pio_block(struct ata_port *ap)
3732{
3733 struct ata_queued_cmd *qc;
3734 u8 status;
3735
3736 /*
6f0ef4fa 3737 * This is purely heuristic. This is a fast path.
1da177e4
LT
3738 * Sometimes when we enter, BSY will be cleared in
3739 * a chk-status or two. If not, the drive is probably seeking
3740 * or something. Snooze for a couple msecs, then
3741 * chk-status again. If still busy, fall back to
14be71f4 3742 * HSM_ST_POLL state.
1da177e4
LT
3743 */
3744 status = ata_busy_wait(ap, ATA_BUSY, 5);
3745 if (status & ATA_BUSY) {
3746 msleep(2);
3747 status = ata_busy_wait(ap, ATA_BUSY, 10);
3748 if (status & ATA_BUSY) {
14be71f4 3749 ap->hsm_task_state = HSM_ST_POLL;
1da177e4
LT
3750 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3751 return;
3752 }
3753 }
3754
3755 qc = ata_qc_from_tag(ap, ap->active_tag);
a4631474 3756 WARN_ON(qc == NULL);
1da177e4 3757
fe79e683
AL
3758 /* check error */
3759 if (status & (ATA_ERR | ATA_DF)) {
3760 qc->err_mask |= AC_ERR_DEV;
3761 ap->hsm_task_state = HSM_ST_ERR;
3762 return;
3763 }
3764
3765 /* transfer data if any */
1da177e4 3766 if (is_atapi_taskfile(&qc->tf)) {
fe79e683 3767 /* DRQ=0 means no more data to transfer */
1da177e4 3768 if ((status & ATA_DRQ) == 0) {
14be71f4 3769 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3770 return;
3771 }
3772
3773 atapi_pio_bytes(qc);
3774 } else {
3775 /* handle BSY=0, DRQ=0 as error */
3776 if ((status & ATA_DRQ) == 0) {
11a56d24 3777 qc->err_mask |= AC_ERR_HSM;
14be71f4 3778 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3779 return;
3780 }
3781
3782 ata_pio_sector(qc);
3783 }
3784}
3785
3786static void ata_pio_error(struct ata_port *ap)
3787{
3788 struct ata_queued_cmd *qc;
a7dac447 3789
1da177e4 3790 qc = ata_qc_from_tag(ap, ap->active_tag);
a4631474 3791 WARN_ON(qc == NULL);
1da177e4 3792
0565c26d
AL
3793 if (qc->tf.command != ATA_CMD_PACKET)
3794 printk(KERN_WARNING "ata%u: PIO error\n", ap->id);
3795
2e9edbf8 3796 /* make sure qc->err_mask is available to
1c848984
AL
3797 * know what's wrong and recover
3798 */
a4631474 3799 WARN_ON(qc->err_mask == 0);
1c848984 3800
14be71f4 3801 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 3802
a22e2eb0 3803 ata_poll_qc_complete(qc);
1da177e4
LT
3804}
3805
3806static void ata_pio_task(void *_data)
3807{
3808 struct ata_port *ap = _data;
7fb6ec28
JG
3809 unsigned long timeout;
3810 int qc_completed;
3811
3812fsm_start:
3813 timeout = 0;
3814 qc_completed = 0;
1da177e4 3815
14be71f4
AL
3816 switch (ap->hsm_task_state) {
3817 case HSM_ST_IDLE:
1da177e4
LT
3818 return;
3819
14be71f4 3820 case HSM_ST:
1da177e4
LT
3821 ata_pio_block(ap);
3822 break;
3823
14be71f4 3824 case HSM_ST_LAST:
7fb6ec28 3825 qc_completed = ata_pio_complete(ap);
1da177e4
LT
3826 break;
3827
14be71f4
AL
3828 case HSM_ST_POLL:
3829 case HSM_ST_LAST_POLL:
1da177e4
LT
3830 timeout = ata_pio_poll(ap);
3831 break;
3832
14be71f4
AL
3833 case HSM_ST_TMOUT:
3834 case HSM_ST_ERR:
1da177e4
LT
3835 ata_pio_error(ap);
3836 return;
3837 }
3838
3839 if (timeout)
8061f5f0 3840 ata_port_queue_task(ap, ata_pio_task, ap, timeout);
7fb6ec28
JG
3841 else if (!qc_completed)
3842 goto fsm_start;
1da177e4
LT
3843}
3844
8061f5f0
TH
3845/**
3846 * atapi_packet_task - Write CDB bytes to hardware
3847 * @_data: Port to which ATAPI device is attached.
3848 *
3849 * When device has indicated its readiness to accept
3850 * a CDB, this function is called. Send the CDB.
3851 * If DMA is to be performed, exit immediately.
3852 * Otherwise, we are in polling mode, so poll
3853 * status under operation succeeds or fails.
3854 *
3855 * LOCKING:
3856 * Kernel thread context (may sleep)
3857 */
3858
3859static void atapi_packet_task(void *_data)
3860{
3861 struct ata_port *ap = _data;
3862 struct ata_queued_cmd *qc;
3863 u8 status;
3864
3865 qc = ata_qc_from_tag(ap, ap->active_tag);
3866 WARN_ON(qc == NULL);
3867 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
3868
3869 /* sleep-wait for BSY to clear */
3870 DPRINTK("busy wait\n");
3871 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
3872 qc->err_mask |= AC_ERR_TIMEOUT;
3873 goto err_out;
3874 }
3875
3876 /* make sure DRQ is set */
3877 status = ata_chk_status(ap);
3878 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
3879 qc->err_mask |= AC_ERR_HSM;
3880 goto err_out;
3881 }
3882
3883 /* send SCSI cdb */
3884 DPRINTK("send cdb\n");
3885 WARN_ON(qc->dev->cdb_len < 12);
3886
3887 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
3888 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
3889 unsigned long flags;
3890
3891 /* Once we're done issuing command and kicking bmdma,
3892 * irq handler takes over. To not lose irq, we need
3893 * to clear NOINTR flag before sending cdb, but
3894 * interrupt handler shouldn't be invoked before we're
3895 * finished. Hence, the following locking.
3896 */
3897 spin_lock_irqsave(&ap->host_set->lock, flags);
3898 ap->flags &= ~ATA_FLAG_NOINTR;
3899 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
3900 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
3901 ap->ops->bmdma_start(qc); /* initiate bmdma */
3902 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3903 } else {
3904 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
3905
3906 /* PIO commands are handled by polling */
3907 ap->hsm_task_state = HSM_ST;
3908 ata_port_queue_task(ap, ata_pio_task, ap, 0);
3909 }
3910
3911 return;
3912
3913err_out:
3914 ata_poll_qc_complete(qc);
3915}
3916
1da177e4
LT
3917/**
3918 * ata_qc_timeout - Handle timeout of queued command
3919 * @qc: Command that timed out
3920 *
3921 * Some part of the kernel (currently, only the SCSI layer)
3922 * has noticed that the active command on port @ap has not
3923 * completed after a specified length of time. Handle this
3924 * condition by disabling DMA (if necessary) and completing
3925 * transactions, with error if necessary.
3926 *
3927 * This also handles the case of the "lost interrupt", where
3928 * for some reason (possibly hardware bug, possibly driver bug)
3929 * an interrupt was not delivered to the driver, even though the
3930 * transaction completed successfully.
3931 *
3932 * LOCKING:
0cba632b 3933 * Inherited from SCSI layer (none, can sleep)
1da177e4
LT
3934 */
3935
3936static void ata_qc_timeout(struct ata_queued_cmd *qc)
3937{
3938 struct ata_port *ap = qc->ap;
b8f6153e 3939 struct ata_host_set *host_set = ap->host_set;
1da177e4 3940 u8 host_stat = 0, drv_stat;
b8f6153e 3941 unsigned long flags;
1da177e4
LT
3942
3943 DPRINTK("ENTER\n");
3944
c18d06f8
TH
3945 ap->hsm_task_state = HSM_ST_IDLE;
3946
b8f6153e
JG
3947 spin_lock_irqsave(&host_set->lock, flags);
3948
1da177e4
LT
3949 switch (qc->tf.protocol) {
3950
3951 case ATA_PROT_DMA:
3952 case ATA_PROT_ATAPI_DMA:
3953 host_stat = ap->ops->bmdma_status(ap);
3954
3955 /* before we do anything else, clear DMA-Start bit */
b73fc89f 3956 ap->ops->bmdma_stop(qc);
1da177e4
LT
3957
3958 /* fall through */
3959
3960 default:
3961 ata_altstatus(ap);
3962 drv_stat = ata_chk_status(ap);
3963
3964 /* ack bmdma irq events */
3965 ap->ops->irq_clear(ap);
3966
3967 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
3968 ap->id, qc->tf.command, drv_stat, host_stat);
3969
3970 /* complete taskfile transaction */
a22e2eb0 3971 qc->err_mask |= ac_err_mask(drv_stat);
1da177e4
LT
3972 break;
3973 }
b8f6153e
JG
3974
3975 spin_unlock_irqrestore(&host_set->lock, flags);
3976
a72ec4ce
TH
3977 ata_eh_qc_complete(qc);
3978
1da177e4
LT
3979 DPRINTK("EXIT\n");
3980}
3981
3982/**
3983 * ata_eng_timeout - Handle timeout of queued command
3984 * @ap: Port on which timed-out command is active
3985 *
3986 * Some part of the kernel (currently, only the SCSI layer)
3987 * has noticed that the active command on port @ap has not
3988 * completed after a specified length of time. Handle this
3989 * condition by disabling DMA (if necessary) and completing
3990 * transactions, with error if necessary.
3991 *
3992 * This also handles the case of the "lost interrupt", where
3993 * for some reason (possibly hardware bug, possibly driver bug)
3994 * an interrupt was not delivered to the driver, even though the
3995 * transaction completed successfully.
3996 *
3997 * LOCKING:
3998 * Inherited from SCSI layer (none, can sleep)
3999 */
4000
4001void ata_eng_timeout(struct ata_port *ap)
4002{
1da177e4
LT
4003 DPRINTK("ENTER\n");
4004
f6379020 4005 ata_qc_timeout(ata_qc_from_tag(ap, ap->active_tag));
1da177e4 4006
1da177e4
LT
4007 DPRINTK("EXIT\n");
4008}
4009
4010/**
4011 * ata_qc_new - Request an available ATA command, for queueing
4012 * @ap: Port associated with device @dev
4013 * @dev: Device from whom we request an available command structure
4014 *
4015 * LOCKING:
0cba632b 4016 * None.
1da177e4
LT
4017 */
4018
4019static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4020{
4021 struct ata_queued_cmd *qc = NULL;
4022 unsigned int i;
4023
4024 for (i = 0; i < ATA_MAX_QUEUE; i++)
4025 if (!test_and_set_bit(i, &ap->qactive)) {
4026 qc = ata_qc_from_tag(ap, i);
4027 break;
4028 }
4029
4030 if (qc)
4031 qc->tag = i;
4032
4033 return qc;
4034}
4035
4036/**
4037 * ata_qc_new_init - Request an available ATA command, and initialize it
4038 * @ap: Port associated with device @dev
4039 * @dev: Device from whom we request an available command structure
4040 *
4041 * LOCKING:
0cba632b 4042 * None.
1da177e4
LT
4043 */
4044
4045struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
4046 struct ata_device *dev)
4047{
4048 struct ata_queued_cmd *qc;
4049
4050 qc = ata_qc_new(ap);
4051 if (qc) {
1da177e4
LT
4052 qc->scsicmd = NULL;
4053 qc->ap = ap;
4054 qc->dev = dev;
1da177e4 4055
2c13b7ce 4056 ata_qc_reinit(qc);
1da177e4
LT
4057 }
4058
4059 return qc;
4060}
4061
1da177e4
LT
4062/**
4063 * ata_qc_free - free unused ata_queued_cmd
4064 * @qc: Command to complete
4065 *
4066 * Designed to free unused ata_queued_cmd object
4067 * in case something prevents using it.
4068 *
4069 * LOCKING:
0cba632b 4070 * spin_lock_irqsave(host_set lock)
1da177e4
LT
4071 */
4072void ata_qc_free(struct ata_queued_cmd *qc)
4073{
4ba946e9
TH
4074 struct ata_port *ap = qc->ap;
4075 unsigned int tag;
4076
a4631474 4077 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 4078
4ba946e9
TH
4079 qc->flags = 0;
4080 tag = qc->tag;
4081 if (likely(ata_tag_valid(tag))) {
4082 if (tag == ap->active_tag)
4083 ap->active_tag = ATA_TAG_POISON;
4084 qc->tag = ATA_TAG_POISON;
4085 clear_bit(tag, &ap->qactive);
4086 }
1da177e4
LT
4087}
4088
76014427 4089void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4090{
a4631474
TH
4091 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4092 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
4093
4094 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4095 ata_sg_clean(qc);
4096
3f3791d3
AL
4097 /* atapi: mark qc as inactive to prevent the interrupt handler
4098 * from completing the command twice later, before the error handler
4099 * is called. (when rc != 0 and atapi request sense is needed)
4100 */
4101 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4102
1da177e4 4103 /* call completion callback */
77853bf2 4104 qc->complete_fn(qc);
1da177e4
LT
4105}
4106
4107static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4108{
4109 struct ata_port *ap = qc->ap;
4110
4111 switch (qc->tf.protocol) {
4112 case ATA_PROT_DMA:
4113 case ATA_PROT_ATAPI_DMA:
4114 return 1;
4115
4116 case ATA_PROT_ATAPI:
4117 case ATA_PROT_PIO:
1da177e4
LT
4118 if (ap->flags & ATA_FLAG_PIO_DMA)
4119 return 1;
4120
4121 /* fall through */
4122
4123 default:
4124 return 0;
4125 }
4126
4127 /* never reached */
4128}
4129
4130/**
4131 * ata_qc_issue - issue taskfile to device
4132 * @qc: command to issue to device
4133 *
4134 * Prepare an ATA command to submission to device.
4135 * This includes mapping the data into a DMA-able
4136 * area, filling in the S/G table, and finally
4137 * writing the taskfile to hardware, starting the command.
4138 *
4139 * LOCKING:
4140 * spin_lock_irqsave(host_set lock)
1da177e4 4141 */
8e0e694a 4142void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4143{
4144 struct ata_port *ap = qc->ap;
4145
e4a70e76
TH
4146 qc->ap->active_tag = qc->tag;
4147 qc->flags |= ATA_QCFLAG_ACTIVE;
4148
1da177e4
LT
4149 if (ata_should_dma_map(qc)) {
4150 if (qc->flags & ATA_QCFLAG_SG) {
4151 if (ata_sg_setup(qc))
8e436af9 4152 goto sg_err;
1da177e4
LT
4153 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4154 if (ata_sg_setup_one(qc))
8e436af9 4155 goto sg_err;
1da177e4
LT
4156 }
4157 } else {
4158 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4159 }
4160
4161 ap->ops->qc_prep(qc);
4162
8e0e694a
TH
4163 qc->err_mask |= ap->ops->qc_issue(qc);
4164 if (unlikely(qc->err_mask))
4165 goto err;
4166 return;
1da177e4 4167
8e436af9
TH
4168sg_err:
4169 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
4170 qc->err_mask |= AC_ERR_SYSTEM;
4171err:
4172 ata_qc_complete(qc);
1da177e4
LT
4173}
4174
4175/**
4176 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4177 * @qc: command to issue to device
4178 *
4179 * Using various libata functions and hooks, this function
4180 * starts an ATA command. ATA commands are grouped into
4181 * classes called "protocols", and issuing each type of protocol
4182 * is slightly different.
4183 *
0baab86b
EF
4184 * May be used as the qc_issue() entry in ata_port_operations.
4185 *
1da177e4
LT
4186 * LOCKING:
4187 * spin_lock_irqsave(host_set lock)
4188 *
4189 * RETURNS:
9a3d9eb0 4190 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
4191 */
4192
9a3d9eb0 4193unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
4194{
4195 struct ata_port *ap = qc->ap;
4196
4197 ata_dev_select(ap, qc->dev->devno, 1, 0);
4198
4199 switch (qc->tf.protocol) {
4200 case ATA_PROT_NODATA:
e5338254 4201 ata_tf_to_host(ap, &qc->tf);
1da177e4
LT
4202 break;
4203
4204 case ATA_PROT_DMA:
4205 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4206 ap->ops->bmdma_setup(qc); /* set up bmdma */
4207 ap->ops->bmdma_start(qc); /* initiate bmdma */
4208 break;
4209
4210 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
4211 ata_qc_set_polling(qc);
e5338254 4212 ata_tf_to_host(ap, &qc->tf);
14be71f4 4213 ap->hsm_task_state = HSM_ST;
8061f5f0 4214 ata_port_queue_task(ap, ata_pio_task, ap, 0);
1da177e4
LT
4215 break;
4216
4217 case ATA_PROT_ATAPI:
4218 ata_qc_set_polling(qc);
e5338254 4219 ata_tf_to_host(ap, &qc->tf);
8061f5f0 4220 ata_port_queue_task(ap, atapi_packet_task, ap, 0);
1da177e4
LT
4221 break;
4222
4223 case ATA_PROT_ATAPI_NODATA:
c1389503 4224 ap->flags |= ATA_FLAG_NOINTR;
e5338254 4225 ata_tf_to_host(ap, &qc->tf);
8061f5f0 4226 ata_port_queue_task(ap, atapi_packet_task, ap, 0);
1da177e4
LT
4227 break;
4228
4229 case ATA_PROT_ATAPI_DMA:
c1389503 4230 ap->flags |= ATA_FLAG_NOINTR;
1da177e4
LT
4231 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4232 ap->ops->bmdma_setup(qc); /* set up bmdma */
8061f5f0 4233 ata_port_queue_task(ap, atapi_packet_task, ap, 0);
1da177e4
LT
4234 break;
4235
4236 default:
4237 WARN_ON(1);
9a3d9eb0 4238 return AC_ERR_SYSTEM;
1da177e4
LT
4239 }
4240
4241 return 0;
4242}
4243
1da177e4
LT
4244/**
4245 * ata_host_intr - Handle host interrupt for given (port, task)
4246 * @ap: Port on which interrupt arrived (possibly...)
4247 * @qc: Taskfile currently active in engine
4248 *
4249 * Handle host interrupt for given queued command. Currently,
4250 * only DMA interrupts are handled. All other commands are
4251 * handled via polling with interrupts disabled (nIEN bit).
4252 *
4253 * LOCKING:
4254 * spin_lock_irqsave(host_set lock)
4255 *
4256 * RETURNS:
4257 * One if interrupt was handled, zero if not (shared irq).
4258 */
4259
4260inline unsigned int ata_host_intr (struct ata_port *ap,
4261 struct ata_queued_cmd *qc)
4262{
4263 u8 status, host_stat;
4264
4265 switch (qc->tf.protocol) {
4266
4267 case ATA_PROT_DMA:
4268 case ATA_PROT_ATAPI_DMA:
4269 case ATA_PROT_ATAPI:
4270 /* check status of DMA engine */
4271 host_stat = ap->ops->bmdma_status(ap);
4272 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4273
4274 /* if it's not our irq... */
4275 if (!(host_stat & ATA_DMA_INTR))
4276 goto idle_irq;
4277
4278 /* before we do anything else, clear DMA-Start bit */
b73fc89f 4279 ap->ops->bmdma_stop(qc);
1da177e4
LT
4280
4281 /* fall through */
4282
4283 case ATA_PROT_ATAPI_NODATA:
4284 case ATA_PROT_NODATA:
4285 /* check altstatus */
4286 status = ata_altstatus(ap);
4287 if (status & ATA_BUSY)
4288 goto idle_irq;
4289
4290 /* check main status, clearing INTRQ */
4291 status = ata_chk_status(ap);
4292 if (unlikely(status & ATA_BUSY))
4293 goto idle_irq;
4294 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4295 ap->id, qc->tf.protocol, status);
4296
4297 /* ack bmdma irq events */
4298 ap->ops->irq_clear(ap);
4299
4300 /* complete taskfile transaction */
a22e2eb0
AL
4301 qc->err_mask |= ac_err_mask(status);
4302 ata_qc_complete(qc);
1da177e4
LT
4303 break;
4304
4305 default:
4306 goto idle_irq;
4307 }
4308
4309 return 1; /* irq handled */
4310
4311idle_irq:
4312 ap->stats.idle_irq++;
4313
4314#ifdef ATA_IRQ_TRAP
4315 if ((ap->stats.idle_irq % 1000) == 0) {
1da177e4
LT
4316 ata_irq_ack(ap, 0); /* debug trap */
4317 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
23cfce89 4318 return 1;
1da177e4
LT
4319 }
4320#endif
4321 return 0; /* irq not handled */
4322}
4323
4324/**
4325 * ata_interrupt - Default ATA host interrupt handler
0cba632b
JG
4326 * @irq: irq line (unused)
4327 * @dev_instance: pointer to our ata_host_set information structure
1da177e4
LT
4328 * @regs: unused
4329 *
0cba632b
JG
4330 * Default interrupt handler for PCI IDE devices. Calls
4331 * ata_host_intr() for each port that is not disabled.
4332 *
1da177e4 4333 * LOCKING:
0cba632b 4334 * Obtains host_set lock during operation.
1da177e4
LT
4335 *
4336 * RETURNS:
0cba632b 4337 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
4338 */
4339
4340irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4341{
4342 struct ata_host_set *host_set = dev_instance;
4343 unsigned int i;
4344 unsigned int handled = 0;
4345 unsigned long flags;
4346
4347 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4348 spin_lock_irqsave(&host_set->lock, flags);
4349
4350 for (i = 0; i < host_set->n_ports; i++) {
4351 struct ata_port *ap;
4352
4353 ap = host_set->ports[i];
c1389503
TH
4354 if (ap &&
4355 !(ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR))) {
1da177e4
LT
4356 struct ata_queued_cmd *qc;
4357
4358 qc = ata_qc_from_tag(ap, ap->active_tag);
21b1ed74
AL
4359 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4360 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
4361 handled |= ata_host_intr(ap, qc);
4362 }
4363 }
4364
4365 spin_unlock_irqrestore(&host_set->lock, flags);
4366
4367 return IRQ_RETVAL(handled);
4368}
4369
0baab86b 4370
9b847548
JA
4371/*
4372 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4373 * without filling any other registers
4374 */
4375static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
4376 u8 cmd)
4377{
4378 struct ata_taskfile tf;
4379 int err;
4380
4381 ata_tf_init(ap, &tf, dev->devno);
4382
4383 tf.command = cmd;
4384 tf.flags |= ATA_TFLAG_DEVICE;
4385 tf.protocol = ATA_PROT_NODATA;
4386
4387 err = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
4388 if (err)
4389 printk(KERN_ERR "%s: ata command failed: %d\n",
4390 __FUNCTION__, err);
4391
4392 return err;
4393}
4394
4395static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
4396{
4397 u8 cmd;
4398
4399 if (!ata_try_flush_cache(dev))
4400 return 0;
4401
4402 if (ata_id_has_flush_ext(dev->id))
4403 cmd = ATA_CMD_FLUSH_EXT;
4404 else
4405 cmd = ATA_CMD_FLUSH;
4406
4407 return ata_do_simple_cmd(ap, dev, cmd);
4408}
4409
4410static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
4411{
4412 return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
4413}
4414
4415static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
4416{
4417 return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
4418}
4419
4420/**
4421 * ata_device_resume - wakeup a previously suspended devices
c893a3ae
RD
4422 * @ap: port the device is connected to
4423 * @dev: the device to resume
9b847548
JA
4424 *
4425 * Kick the drive back into action, by sending it an idle immediate
4426 * command and making sure its transfer mode matches between drive
4427 * and host.
4428 *
4429 */
4430int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
4431{
4432 if (ap->flags & ATA_FLAG_SUSPENDED) {
e82cbdb9 4433 struct ata_device *failed_dev;
9b847548 4434 ap->flags &= ~ATA_FLAG_SUSPENDED;
e82cbdb9
TH
4435 while (ata_set_mode(ap, &failed_dev))
4436 ata_dev_disable(ap, failed_dev);
9b847548 4437 }
e1211e3f 4438 if (!ata_dev_enabled(dev))
9b847548
JA
4439 return 0;
4440 if (dev->class == ATA_DEV_ATA)
4441 ata_start_drive(ap, dev);
4442
4443 return 0;
4444}
4445
4446/**
4447 * ata_device_suspend - prepare a device for suspend
c893a3ae
RD
4448 * @ap: port the device is connected to
4449 * @dev: the device to suspend
9b847548
JA
4450 *
4451 * Flush the cache on the drive, if appropriate, then issue a
4452 * standbynow command.
9b847548 4453 */
082776e4 4454int ata_device_suspend(struct ata_port *ap, struct ata_device *dev, pm_message_t state)
9b847548 4455{
e1211e3f 4456 if (!ata_dev_enabled(dev))
9b847548
JA
4457 return 0;
4458 if (dev->class == ATA_DEV_ATA)
4459 ata_flush_cache(ap, dev);
4460
082776e4
NC
4461 if (state.event != PM_EVENT_FREEZE)
4462 ata_standby_drive(ap, dev);
9b847548
JA
4463 ap->flags |= ATA_FLAG_SUSPENDED;
4464 return 0;
4465}
4466
c893a3ae
RD
4467/**
4468 * ata_port_start - Set port up for dma.
4469 * @ap: Port to initialize
4470 *
4471 * Called just after data structures for each port are
4472 * initialized. Allocates space for PRD table.
4473 *
4474 * May be used as the port_start() entry in ata_port_operations.
4475 *
4476 * LOCKING:
4477 * Inherited from caller.
4478 */
4479
1da177e4
LT
4480int ata_port_start (struct ata_port *ap)
4481{
2f1f610b 4482 struct device *dev = ap->dev;
6037d6bb 4483 int rc;
1da177e4
LT
4484
4485 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4486 if (!ap->prd)
4487 return -ENOMEM;
4488
6037d6bb
JG
4489 rc = ata_pad_alloc(ap, dev);
4490 if (rc) {
cedc9a47 4491 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4492 return rc;
cedc9a47
JG
4493 }
4494
1da177e4
LT
4495 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4496
4497 return 0;
4498}
4499
0baab86b
EF
4500
4501/**
4502 * ata_port_stop - Undo ata_port_start()
4503 * @ap: Port to shut down
4504 *
4505 * Frees the PRD table.
4506 *
4507 * May be used as the port_stop() entry in ata_port_operations.
4508 *
4509 * LOCKING:
6f0ef4fa 4510 * Inherited from caller.
0baab86b
EF
4511 */
4512
1da177e4
LT
4513void ata_port_stop (struct ata_port *ap)
4514{
2f1f610b 4515 struct device *dev = ap->dev;
1da177e4
LT
4516
4517 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4518 ata_pad_free(ap, dev);
1da177e4
LT
4519}
4520
aa8f0dc6
JG
4521void ata_host_stop (struct ata_host_set *host_set)
4522{
4523 if (host_set->mmio_base)
4524 iounmap(host_set->mmio_base);
4525}
4526
4527
1da177e4
LT
4528/**
4529 * ata_host_remove - Unregister SCSI host structure with upper layers
4530 * @ap: Port to unregister
4531 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4532 *
4533 * LOCKING:
6f0ef4fa 4534 * Inherited from caller.
1da177e4
LT
4535 */
4536
4537static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4538{
4539 struct Scsi_Host *sh = ap->host;
4540
4541 DPRINTK("ENTER\n");
4542
4543 if (do_unregister)
4544 scsi_remove_host(sh);
4545
4546 ap->ops->port_stop(ap);
4547}
4548
4549/**
4550 * ata_host_init - Initialize an ata_port structure
4551 * @ap: Structure to initialize
4552 * @host: associated SCSI mid-layer structure
4553 * @host_set: Collection of hosts to which @ap belongs
4554 * @ent: Probe information provided by low-level driver
4555 * @port_no: Port number associated with this ata_port
4556 *
0cba632b
JG
4557 * Initialize a new ata_port structure, and its associated
4558 * scsi_host.
4559 *
1da177e4 4560 * LOCKING:
0cba632b 4561 * Inherited from caller.
1da177e4
LT
4562 */
4563
4564static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4565 struct ata_host_set *host_set,
057ace5e 4566 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
4567{
4568 unsigned int i;
4569
4570 host->max_id = 16;
4571 host->max_lun = 1;
4572 host->max_channel = 1;
4573 host->unique_id = ata_unique_id++;
4574 host->max_cmd_len = 12;
12413197 4575
1da177e4
LT
4576 ap->flags = ATA_FLAG_PORT_DISABLED;
4577 ap->id = host->unique_id;
4578 ap->host = host;
4579 ap->ctl = ATA_DEVCTL_OBS;
4580 ap->host_set = host_set;
2f1f610b 4581 ap->dev = ent->dev;
1da177e4
LT
4582 ap->port_no = port_no;
4583 ap->hard_port_no =
4584 ent->legacy_mode ? ent->hard_port_no : port_no;
4585 ap->pio_mask = ent->pio_mask;
4586 ap->mwdma_mask = ent->mwdma_mask;
4587 ap->udma_mask = ent->udma_mask;
4588 ap->flags |= ent->host_flags;
4589 ap->ops = ent->port_ops;
4590 ap->cbl = ATA_CBL_NONE;
1c3fae4d 4591 ap->sata_spd_limit = UINT_MAX;
1da177e4
LT
4592 ap->active_tag = ATA_TAG_POISON;
4593 ap->last_ctl = 0xFF;
4594
86e45b6b 4595 INIT_WORK(&ap->port_task, NULL, NULL);
a72ec4ce 4596 INIT_LIST_HEAD(&ap->eh_done_q);
1da177e4 4597
acf356b1
TH
4598 for (i = 0; i < ATA_MAX_DEVICES; i++) {
4599 struct ata_device *dev = &ap->device[i];
4600 dev->devno = i;
4601 dev->pio_mask = UINT_MAX;
4602 dev->mwdma_mask = UINT_MAX;
4603 dev->udma_mask = UINT_MAX;
4604 }
1da177e4
LT
4605
4606#ifdef ATA_IRQ_TRAP
4607 ap->stats.unhandled_irq = 1;
4608 ap->stats.idle_irq = 1;
4609#endif
4610
4611 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4612}
4613
4614/**
4615 * ata_host_add - Attach low-level ATA driver to system
4616 * @ent: Information provided by low-level driver
4617 * @host_set: Collections of ports to which we add
4618 * @port_no: Port number associated with this host
4619 *
0cba632b
JG
4620 * Attach low-level ATA driver to system.
4621 *
1da177e4 4622 * LOCKING:
0cba632b 4623 * PCI/etc. bus probe sem.
1da177e4
LT
4624 *
4625 * RETURNS:
0cba632b 4626 * New ata_port on success, for NULL on error.
1da177e4
LT
4627 */
4628
057ace5e 4629static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
1da177e4
LT
4630 struct ata_host_set *host_set,
4631 unsigned int port_no)
4632{
4633 struct Scsi_Host *host;
4634 struct ata_port *ap;
4635 int rc;
4636
4637 DPRINTK("ENTER\n");
aec5c3c1
TH
4638
4639 if (!ent->port_ops->probe_reset &&
4640 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
4641 printk(KERN_ERR "ata%u: no reset mechanism available\n",
4642 port_no);
4643 return NULL;
4644 }
4645
1da177e4
LT
4646 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4647 if (!host)
4648 return NULL;
4649
30afc84c
TH
4650 host->transportt = &ata_scsi_transport_template;
4651
1da177e4
LT
4652 ap = (struct ata_port *) &host->hostdata[0];
4653
4654 ata_host_init(ap, host, host_set, ent, port_no);
4655
4656 rc = ap->ops->port_start(ap);
4657 if (rc)
4658 goto err_out;
4659
4660 return ap;
4661
4662err_out:
4663 scsi_host_put(host);
4664 return NULL;
4665}
4666
4667/**
0cba632b
JG
4668 * ata_device_add - Register hardware device with ATA and SCSI layers
4669 * @ent: Probe information describing hardware device to be registered
4670 *
4671 * This function processes the information provided in the probe
4672 * information struct @ent, allocates the necessary ATA and SCSI
4673 * host information structures, initializes them, and registers
4674 * everything with requisite kernel subsystems.
4675 *
4676 * This function requests irqs, probes the ATA bus, and probes
4677 * the SCSI bus.
1da177e4
LT
4678 *
4679 * LOCKING:
0cba632b 4680 * PCI/etc. bus probe sem.
1da177e4
LT
4681 *
4682 * RETURNS:
0cba632b 4683 * Number of ports registered. Zero on error (no ports registered).
1da177e4
LT
4684 */
4685
057ace5e 4686int ata_device_add(const struct ata_probe_ent *ent)
1da177e4
LT
4687{
4688 unsigned int count = 0, i;
4689 struct device *dev = ent->dev;
4690 struct ata_host_set *host_set;
4691
4692 DPRINTK("ENTER\n");
4693 /* alloc a container for our list of ATA ports (buses) */
57f3bda8 4694 host_set = kzalloc(sizeof(struct ata_host_set) +
1da177e4
LT
4695 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4696 if (!host_set)
4697 return 0;
1da177e4
LT
4698 spin_lock_init(&host_set->lock);
4699
4700 host_set->dev = dev;
4701 host_set->n_ports = ent->n_ports;
4702 host_set->irq = ent->irq;
4703 host_set->mmio_base = ent->mmio_base;
4704 host_set->private_data = ent->private_data;
4705 host_set->ops = ent->port_ops;
5444a6f4 4706 host_set->flags = ent->host_set_flags;
1da177e4
LT
4707
4708 /* register each port bound to this device */
4709 for (i = 0; i < ent->n_ports; i++) {
4710 struct ata_port *ap;
4711 unsigned long xfer_mode_mask;
4712
4713 ap = ata_host_add(ent, host_set, i);
4714 if (!ap)
4715 goto err_out;
4716
4717 host_set->ports[i] = ap;
4718 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4719 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4720 (ap->pio_mask << ATA_SHIFT_PIO);
4721
4722 /* print per-port info to dmesg */
4723 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4724 "bmdma 0x%lX irq %lu\n",
4725 ap->id,
4726 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4727 ata_mode_string(xfer_mode_mask),
4728 ap->ioaddr.cmd_addr,
4729 ap->ioaddr.ctl_addr,
4730 ap->ioaddr.bmdma_addr,
4731 ent->irq);
4732
4733 ata_chk_status(ap);
4734 host_set->ops->irq_clear(ap);
4735 count++;
4736 }
4737
57f3bda8
RD
4738 if (!count)
4739 goto err_free_ret;
1da177e4
LT
4740
4741 /* obtain irq, that is shared between channels */
4742 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4743 DRV_NAME, host_set))
4744 goto err_out;
4745
4746 /* perform each probe synchronously */
4747 DPRINTK("probe begin\n");
4748 for (i = 0; i < count; i++) {
4749 struct ata_port *ap;
4750 int rc;
4751
4752 ap = host_set->ports[i];
4753
c893a3ae 4754 DPRINTK("ata%u: bus probe begin\n", ap->id);
1da177e4 4755 rc = ata_bus_probe(ap);
c893a3ae 4756 DPRINTK("ata%u: bus probe end\n", ap->id);
1da177e4
LT
4757
4758 if (rc) {
4759 /* FIXME: do something useful here?
4760 * Current libata behavior will
4761 * tear down everything when
4762 * the module is removed
4763 * or the h/w is unplugged.
4764 */
4765 }
4766
4767 rc = scsi_add_host(ap->host, dev);
4768 if (rc) {
4769 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4770 ap->id);
4771 /* FIXME: do something useful here */
4772 /* FIXME: handle unconditional calls to
4773 * scsi_scan_host and ata_host_remove, below,
4774 * at the very least
4775 */
4776 }
4777 }
4778
4779 /* probes are done, now scan each port's disk(s) */
c893a3ae 4780 DPRINTK("host probe begin\n");
1da177e4
LT
4781 for (i = 0; i < count; i++) {
4782 struct ata_port *ap = host_set->ports[i];
4783
644dd0cc 4784 ata_scsi_scan_host(ap);
1da177e4
LT
4785 }
4786
4787 dev_set_drvdata(dev, host_set);
4788
4789 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4790 return ent->n_ports; /* success */
4791
4792err_out:
4793 for (i = 0; i < count; i++) {
4794 ata_host_remove(host_set->ports[i], 1);
4795 scsi_host_put(host_set->ports[i]->host);
4796 }
57f3bda8 4797err_free_ret:
1da177e4
LT
4798 kfree(host_set);
4799 VPRINTK("EXIT, returning 0\n");
4800 return 0;
4801}
4802
17b14451
AC
4803/**
4804 * ata_host_set_remove - PCI layer callback for device removal
4805 * @host_set: ATA host set that was removed
4806 *
2e9edbf8 4807 * Unregister all objects associated with this host set. Free those
17b14451
AC
4808 * objects.
4809 *
4810 * LOCKING:
4811 * Inherited from calling layer (may sleep).
4812 */
4813
17b14451
AC
4814void ata_host_set_remove(struct ata_host_set *host_set)
4815{
4816 struct ata_port *ap;
4817 unsigned int i;
4818
4819 for (i = 0; i < host_set->n_ports; i++) {
4820 ap = host_set->ports[i];
4821 scsi_remove_host(ap->host);
4822 }
4823
4824 free_irq(host_set->irq, host_set);
4825
4826 for (i = 0; i < host_set->n_ports; i++) {
4827 ap = host_set->ports[i];
4828
4829 ata_scsi_release(ap->host);
4830
4831 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4832 struct ata_ioports *ioaddr = &ap->ioaddr;
4833
4834 if (ioaddr->cmd_addr == 0x1f0)
4835 release_region(0x1f0, 8);
4836 else if (ioaddr->cmd_addr == 0x170)
4837 release_region(0x170, 8);
4838 }
4839
4840 scsi_host_put(ap->host);
4841 }
4842
4843 if (host_set->ops->host_stop)
4844 host_set->ops->host_stop(host_set);
4845
4846 kfree(host_set);
4847}
4848
1da177e4
LT
4849/**
4850 * ata_scsi_release - SCSI layer callback hook for host unload
4851 * @host: libata host to be unloaded
4852 *
4853 * Performs all duties necessary to shut down a libata port...
4854 * Kill port kthread, disable port, and release resources.
4855 *
4856 * LOCKING:
4857 * Inherited from SCSI layer.
4858 *
4859 * RETURNS:
4860 * One.
4861 */
4862
4863int ata_scsi_release(struct Scsi_Host *host)
4864{
4865 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
d9572b1d 4866 int i;
1da177e4
LT
4867
4868 DPRINTK("ENTER\n");
4869
4870 ap->ops->port_disable(ap);
4871 ata_host_remove(ap, 0);
d9572b1d
TH
4872 for (i = 0; i < ATA_MAX_DEVICES; i++)
4873 kfree(ap->device[i].id);
1da177e4
LT
4874
4875 DPRINTK("EXIT\n");
4876 return 1;
4877}
4878
4879/**
4880 * ata_std_ports - initialize ioaddr with standard port offsets.
4881 * @ioaddr: IO address structure to be initialized
0baab86b
EF
4882 *
4883 * Utility function which initializes data_addr, error_addr,
4884 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4885 * device_addr, status_addr, and command_addr to standard offsets
4886 * relative to cmd_addr.
4887 *
4888 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 4889 */
0baab86b 4890
1da177e4
LT
4891void ata_std_ports(struct ata_ioports *ioaddr)
4892{
4893 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4894 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4895 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4896 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4897 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4898 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4899 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4900 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4901 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4902 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4903}
4904
0baab86b 4905
374b1873
JG
4906#ifdef CONFIG_PCI
4907
4908void ata_pci_host_stop (struct ata_host_set *host_set)
4909{
4910 struct pci_dev *pdev = to_pci_dev(host_set->dev);
4911
4912 pci_iounmap(pdev, host_set->mmio_base);
4913}
4914
1da177e4
LT
4915/**
4916 * ata_pci_remove_one - PCI layer callback for device removal
4917 * @pdev: PCI device that was removed
4918 *
4919 * PCI layer indicates to libata via this hook that
6f0ef4fa 4920 * hot-unplug or module unload event has occurred.
1da177e4
LT
4921 * Handle this by unregistering all objects associated
4922 * with this PCI device. Free those objects. Then finally
4923 * release PCI resources and disable device.
4924 *
4925 * LOCKING:
4926 * Inherited from PCI layer (may sleep).
4927 */
4928
4929void ata_pci_remove_one (struct pci_dev *pdev)
4930{
4931 struct device *dev = pci_dev_to_dev(pdev);
4932 struct ata_host_set *host_set = dev_get_drvdata(dev);
1da177e4 4933
17b14451 4934 ata_host_set_remove(host_set);
1da177e4
LT
4935 pci_release_regions(pdev);
4936 pci_disable_device(pdev);
4937 dev_set_drvdata(dev, NULL);
4938}
4939
4940/* move to PCI subsystem */
057ace5e 4941int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
4942{
4943 unsigned long tmp = 0;
4944
4945 switch (bits->width) {
4946 case 1: {
4947 u8 tmp8 = 0;
4948 pci_read_config_byte(pdev, bits->reg, &tmp8);
4949 tmp = tmp8;
4950 break;
4951 }
4952 case 2: {
4953 u16 tmp16 = 0;
4954 pci_read_config_word(pdev, bits->reg, &tmp16);
4955 tmp = tmp16;
4956 break;
4957 }
4958 case 4: {
4959 u32 tmp32 = 0;
4960 pci_read_config_dword(pdev, bits->reg, &tmp32);
4961 tmp = tmp32;
4962 break;
4963 }
4964
4965 default:
4966 return -EINVAL;
4967 }
4968
4969 tmp &= bits->mask;
4970
4971 return (tmp == bits->val) ? 1 : 0;
4972}
9b847548
JA
4973
4974int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
4975{
4976 pci_save_state(pdev);
4977 pci_disable_device(pdev);
4978 pci_set_power_state(pdev, PCI_D3hot);
4979 return 0;
4980}
4981
4982int ata_pci_device_resume(struct pci_dev *pdev)
4983{
4984 pci_set_power_state(pdev, PCI_D0);
4985 pci_restore_state(pdev);
4986 pci_enable_device(pdev);
4987 pci_set_master(pdev);
4988 return 0;
4989}
1da177e4
LT
4990#endif /* CONFIG_PCI */
4991
4992
1da177e4
LT
4993static int __init ata_init(void)
4994{
4995 ata_wq = create_workqueue("ata");
4996 if (!ata_wq)
4997 return -ENOMEM;
4998
4999 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5000 return 0;
5001}
5002
5003static void __exit ata_exit(void)
5004{
5005 destroy_workqueue(ata_wq);
5006}
5007
5008module_init(ata_init);
5009module_exit(ata_exit);
5010
67846b30
JG
5011static unsigned long ratelimit_time;
5012static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5013
5014int ata_ratelimit(void)
5015{
5016 int rc;
5017 unsigned long flags;
5018
5019 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5020
5021 if (time_after(jiffies, ratelimit_time)) {
5022 rc = 1;
5023 ratelimit_time = jiffies + (HZ/5);
5024 } else
5025 rc = 0;
5026
5027 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5028
5029 return rc;
5030}
5031
1da177e4
LT
5032/*
5033 * libata is essentially a library of internal helper functions for
5034 * low-level ATA host controller drivers. As such, the API/ABI is
5035 * likely to change as new drivers are added and updated.
5036 * Do not depend on ABI/API stability.
5037 */
5038
5039EXPORT_SYMBOL_GPL(ata_std_bios_param);
5040EXPORT_SYMBOL_GPL(ata_std_ports);
5041EXPORT_SYMBOL_GPL(ata_device_add);
17b14451 5042EXPORT_SYMBOL_GPL(ata_host_set_remove);
1da177e4
LT
5043EXPORT_SYMBOL_GPL(ata_sg_init);
5044EXPORT_SYMBOL_GPL(ata_sg_init_one);
76014427 5045EXPORT_SYMBOL_GPL(__ata_qc_complete);
1da177e4
LT
5046EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5047EXPORT_SYMBOL_GPL(ata_eng_timeout);
5048EXPORT_SYMBOL_GPL(ata_tf_load);
5049EXPORT_SYMBOL_GPL(ata_tf_read);
5050EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5051EXPORT_SYMBOL_GPL(ata_std_dev_select);
5052EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5053EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5054EXPORT_SYMBOL_GPL(ata_check_status);
5055EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
5056EXPORT_SYMBOL_GPL(ata_exec_command);
5057EXPORT_SYMBOL_GPL(ata_port_start);
5058EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 5059EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4
LT
5060EXPORT_SYMBOL_GPL(ata_interrupt);
5061EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 5062EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
5063EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5064EXPORT_SYMBOL_GPL(ata_bmdma_start);
5065EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5066EXPORT_SYMBOL_GPL(ata_bmdma_status);
5067EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5068EXPORT_SYMBOL_GPL(ata_port_probe);
5069EXPORT_SYMBOL_GPL(sata_phy_reset);
5070EXPORT_SYMBOL_GPL(__sata_phy_reset);
5071EXPORT_SYMBOL_GPL(ata_bus_reset);
8a19ac89 5072EXPORT_SYMBOL_GPL(ata_std_probeinit);
c2bd5804
TH
5073EXPORT_SYMBOL_GPL(ata_std_softreset);
5074EXPORT_SYMBOL_GPL(sata_std_hardreset);
5075EXPORT_SYMBOL_GPL(ata_std_postreset);
5076EXPORT_SYMBOL_GPL(ata_std_probe_reset);
a62c0fc5 5077EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
623a3128 5078EXPORT_SYMBOL_GPL(ata_dev_revalidate);
2e9edbf8
JG
5079EXPORT_SYMBOL_GPL(ata_dev_classify);
5080EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 5081EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 5082EXPORT_SYMBOL_GPL(ata_ratelimit);
6f8b9958 5083EXPORT_SYMBOL_GPL(ata_busy_sleep);
86e45b6b 5084EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
5085EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5086EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
5087EXPORT_SYMBOL_GPL(ata_scsi_error);
5088EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5089EXPORT_SYMBOL_GPL(ata_scsi_release);
5090EXPORT_SYMBOL_GPL(ata_host_intr);
6a62a04d
TH
5091EXPORT_SYMBOL_GPL(ata_id_string);
5092EXPORT_SYMBOL_GPL(ata_id_c_string);
1da177e4 5093EXPORT_SYMBOL_GPL(ata_scsi_simulate);
a72ec4ce
TH
5094EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5095EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
1da177e4 5096
1bc4ccff 5097EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
5098EXPORT_SYMBOL_GPL(ata_timing_compute);
5099EXPORT_SYMBOL_GPL(ata_timing_merge);
5100
1da177e4
LT
5101#ifdef CONFIG_PCI
5102EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 5103EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
5104EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5105EXPORT_SYMBOL_GPL(ata_pci_init_one);
5106EXPORT_SYMBOL_GPL(ata_pci_remove_one);
9b847548
JA
5107EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5108EXPORT_SYMBOL_GPL(ata_pci_device_resume);
67951ade
AC
5109EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5110EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 5111#endif /* CONFIG_PCI */
9b847548
JA
5112
5113EXPORT_SYMBOL_GPL(ata_device_suspend);
5114EXPORT_SYMBOL_GPL(ata_device_resume);
5115EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5116EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
This page took 0.42417 seconds and 5 git commands to generate.