[PATCH] libata: minor fix for irq-pio merge
[deliverable/linux.git] / drivers / scsi / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
35#include <linux/config.h>
36#include <linux/kernel.h>
37#include <linux/module.h>
38#include <linux/pci.h>
39#include <linux/init.h>
40#include <linux/list.h>
41#include <linux/mm.h>
42#include <linux/highmem.h>
43#include <linux/spinlock.h>
44#include <linux/blkdev.h>
45#include <linux/delay.h>
46#include <linux/timer.h>
47#include <linux/interrupt.h>
48#include <linux/completion.h>
49#include <linux/suspend.h>
50#include <linux/workqueue.h>
67846b30 51#include <linux/jiffies.h>
378f058c 52#include <linux/scatterlist.h>
1da177e4 53#include <scsi/scsi.h>
1da177e4 54#include "scsi_priv.h"
193515d5 55#include <scsi/scsi_cmnd.h>
1da177e4
LT
56#include <scsi/scsi_host.h>
57#include <linux/libata.h>
58#include <asm/io.h>
59#include <asm/semaphore.h>
60#include <asm/byteorder.h>
61
62#include "libata.h"
63
3373efd8
TH
64static unsigned int ata_dev_init_params(struct ata_device *dev,
65 u16 heads, u16 sectors);
66static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
67static void ata_dev_xfermask(struct ata_device *dev);
1da177e4
LT
68
69static unsigned int ata_unique_id = 1;
70static struct workqueue_struct *ata_wq;
71
418dc1f5 72int atapi_enabled = 1;
1623c81e
JG
73module_param(atapi_enabled, int, 0444);
74MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
75
95de719a
AL
76int atapi_dmadir = 0;
77module_param(atapi_dmadir, int, 0444);
78MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
79
c3c013a2
JG
80int libata_fua = 0;
81module_param_named(fua, libata_fua, int, 0444);
82MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
83
1da177e4
LT
84MODULE_AUTHOR("Jeff Garzik");
85MODULE_DESCRIPTION("Library module for ATA devices");
86MODULE_LICENSE("GPL");
87MODULE_VERSION(DRV_VERSION);
88
0baab86b 89
1da177e4
LT
90/**
91 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
92 * @tf: Taskfile to convert
93 * @fis: Buffer into which data will output
94 * @pmp: Port multiplier port
95 *
96 * Converts a standard ATA taskfile to a Serial ATA
97 * FIS structure (Register - Host to Device).
98 *
99 * LOCKING:
100 * Inherited from caller.
101 */
102
057ace5e 103void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
104{
105 fis[0] = 0x27; /* Register - Host to Device FIS */
106 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
107 bit 7 indicates Command FIS */
108 fis[2] = tf->command;
109 fis[3] = tf->feature;
110
111 fis[4] = tf->lbal;
112 fis[5] = tf->lbam;
113 fis[6] = tf->lbah;
114 fis[7] = tf->device;
115
116 fis[8] = tf->hob_lbal;
117 fis[9] = tf->hob_lbam;
118 fis[10] = tf->hob_lbah;
119 fis[11] = tf->hob_feature;
120
121 fis[12] = tf->nsect;
122 fis[13] = tf->hob_nsect;
123 fis[14] = 0;
124 fis[15] = tf->ctl;
125
126 fis[16] = 0;
127 fis[17] = 0;
128 fis[18] = 0;
129 fis[19] = 0;
130}
131
132/**
133 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
134 * @fis: Buffer from which data will be input
135 * @tf: Taskfile to output
136 *
e12a1be6 137 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
138 *
139 * LOCKING:
140 * Inherited from caller.
141 */
142
057ace5e 143void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
144{
145 tf->command = fis[2]; /* status */
146 tf->feature = fis[3]; /* error */
147
148 tf->lbal = fis[4];
149 tf->lbam = fis[5];
150 tf->lbah = fis[6];
151 tf->device = fis[7];
152
153 tf->hob_lbal = fis[8];
154 tf->hob_lbam = fis[9];
155 tf->hob_lbah = fis[10];
156
157 tf->nsect = fis[12];
158 tf->hob_nsect = fis[13];
159}
160
8cbd6df1
AL
161static const u8 ata_rw_cmds[] = {
162 /* pio multi */
163 ATA_CMD_READ_MULTI,
164 ATA_CMD_WRITE_MULTI,
165 ATA_CMD_READ_MULTI_EXT,
166 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
167 0,
168 0,
169 0,
170 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
171 /* pio */
172 ATA_CMD_PIO_READ,
173 ATA_CMD_PIO_WRITE,
174 ATA_CMD_PIO_READ_EXT,
175 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
176 0,
177 0,
178 0,
179 0,
8cbd6df1
AL
180 /* dma */
181 ATA_CMD_READ,
182 ATA_CMD_WRITE,
183 ATA_CMD_READ_EXT,
9a3dccc4
TH
184 ATA_CMD_WRITE_EXT,
185 0,
186 0,
187 0,
188 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 189};
1da177e4
LT
190
191/**
8cbd6df1
AL
192 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
193 * @qc: command to examine and configure
1da177e4 194 *
2e9edbf8 195 * Examine the device configuration and tf->flags to calculate
8cbd6df1 196 * the proper read/write commands and protocol to use.
1da177e4
LT
197 *
198 * LOCKING:
199 * caller.
200 */
9a3dccc4 201int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
1da177e4 202{
8cbd6df1
AL
203 struct ata_taskfile *tf = &qc->tf;
204 struct ata_device *dev = qc->dev;
9a3dccc4 205 u8 cmd;
1da177e4 206
9a3dccc4 207 int index, fua, lba48, write;
2e9edbf8 208
9a3dccc4 209 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
210 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
211 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 212
8cbd6df1
AL
213 if (dev->flags & ATA_DFLAG_PIO) {
214 tf->protocol = ATA_PROT_PIO;
9a3dccc4 215 index = dev->multi_count ? 0 : 8;
8d238e01
AC
216 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
217 /* Unable to use DMA due to host limitation */
218 tf->protocol = ATA_PROT_PIO;
0565c26d 219 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
220 } else {
221 tf->protocol = ATA_PROT_DMA;
9a3dccc4 222 index = 16;
8cbd6df1 223 }
1da177e4 224
9a3dccc4
TH
225 cmd = ata_rw_cmds[index + fua + lba48 + write];
226 if (cmd) {
227 tf->command = cmd;
228 return 0;
229 }
230 return -1;
1da177e4
LT
231}
232
cb95d562
TH
233/**
234 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
235 * @pio_mask: pio_mask
236 * @mwdma_mask: mwdma_mask
237 * @udma_mask: udma_mask
238 *
239 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
240 * unsigned int xfer_mask.
241 *
242 * LOCKING:
243 * None.
244 *
245 * RETURNS:
246 * Packed xfer_mask.
247 */
248static unsigned int ata_pack_xfermask(unsigned int pio_mask,
249 unsigned int mwdma_mask,
250 unsigned int udma_mask)
251{
252 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
253 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
254 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
255}
256
c0489e4e
TH
257/**
258 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
259 * @xfer_mask: xfer_mask to unpack
260 * @pio_mask: resulting pio_mask
261 * @mwdma_mask: resulting mwdma_mask
262 * @udma_mask: resulting udma_mask
263 *
264 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
265 * Any NULL distination masks will be ignored.
266 */
267static void ata_unpack_xfermask(unsigned int xfer_mask,
268 unsigned int *pio_mask,
269 unsigned int *mwdma_mask,
270 unsigned int *udma_mask)
271{
272 if (pio_mask)
273 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
274 if (mwdma_mask)
275 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
276 if (udma_mask)
277 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
278}
279
cb95d562 280static const struct ata_xfer_ent {
be9a50c8 281 int shift, bits;
cb95d562
TH
282 u8 base;
283} ata_xfer_tbl[] = {
284 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
285 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
286 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
287 { -1, },
288};
289
290/**
291 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
292 * @xfer_mask: xfer_mask of interest
293 *
294 * Return matching XFER_* value for @xfer_mask. Only the highest
295 * bit of @xfer_mask is considered.
296 *
297 * LOCKING:
298 * None.
299 *
300 * RETURNS:
301 * Matching XFER_* value, 0 if no match found.
302 */
303static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
304{
305 int highbit = fls(xfer_mask) - 1;
306 const struct ata_xfer_ent *ent;
307
308 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
309 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
310 return ent->base + highbit - ent->shift;
311 return 0;
312}
313
314/**
315 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
316 * @xfer_mode: XFER_* of interest
317 *
318 * Return matching xfer_mask for @xfer_mode.
319 *
320 * LOCKING:
321 * None.
322 *
323 * RETURNS:
324 * Matching xfer_mask, 0 if no match found.
325 */
326static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
327{
328 const struct ata_xfer_ent *ent;
329
330 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
331 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
332 return 1 << (ent->shift + xfer_mode - ent->base);
333 return 0;
334}
335
336/**
337 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
338 * @xfer_mode: XFER_* of interest
339 *
340 * Return matching xfer_shift for @xfer_mode.
341 *
342 * LOCKING:
343 * None.
344 *
345 * RETURNS:
346 * Matching xfer_shift, -1 if no match found.
347 */
348static int ata_xfer_mode2shift(unsigned int xfer_mode)
349{
350 const struct ata_xfer_ent *ent;
351
352 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
353 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
354 return ent->shift;
355 return -1;
356}
357
1da177e4 358/**
1da7b0d0
TH
359 * ata_mode_string - convert xfer_mask to string
360 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
361 *
362 * Determine string which represents the highest speed
1da7b0d0 363 * (highest bit in @modemask).
1da177e4
LT
364 *
365 * LOCKING:
366 * None.
367 *
368 * RETURNS:
369 * Constant C string representing highest speed listed in
1da7b0d0 370 * @mode_mask, or the constant C string "<n/a>".
1da177e4 371 */
1da7b0d0 372static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 373{
75f554bc
TH
374 static const char * const xfer_mode_str[] = {
375 "PIO0",
376 "PIO1",
377 "PIO2",
378 "PIO3",
379 "PIO4",
380 "MWDMA0",
381 "MWDMA1",
382 "MWDMA2",
383 "UDMA/16",
384 "UDMA/25",
385 "UDMA/33",
386 "UDMA/44",
387 "UDMA/66",
388 "UDMA/100",
389 "UDMA/133",
390 "UDMA7",
391 };
1da7b0d0 392 int highbit;
1da177e4 393
1da7b0d0
TH
394 highbit = fls(xfer_mask) - 1;
395 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
396 return xfer_mode_str[highbit];
1da177e4 397 return "<n/a>";
1da177e4
LT
398}
399
4c360c81
TH
400static const char *sata_spd_string(unsigned int spd)
401{
402 static const char * const spd_str[] = {
403 "1.5 Gbps",
404 "3.0 Gbps",
405 };
406
407 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
408 return "<unknown>";
409 return spd_str[spd - 1];
410}
411
3373efd8 412void ata_dev_disable(struct ata_device *dev)
0b8efb0a 413{
e1211e3f 414 if (ata_dev_enabled(dev)) {
f15a1daf 415 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
0b8efb0a
TH
416 dev->class++;
417 }
418}
419
1da177e4
LT
420/**
421 * ata_pio_devchk - PATA device presence detection
422 * @ap: ATA channel to examine
423 * @device: Device to examine (starting at zero)
424 *
425 * This technique was originally described in
426 * Hale Landis's ATADRVR (www.ata-atapi.com), and
427 * later found its way into the ATA/ATAPI spec.
428 *
429 * Write a pattern to the ATA shadow registers,
430 * and if a device is present, it will respond by
431 * correctly storing and echoing back the
432 * ATA shadow register contents.
433 *
434 * LOCKING:
435 * caller.
436 */
437
438static unsigned int ata_pio_devchk(struct ata_port *ap,
439 unsigned int device)
440{
441 struct ata_ioports *ioaddr = &ap->ioaddr;
442 u8 nsect, lbal;
443
444 ap->ops->dev_select(ap, device);
445
446 outb(0x55, ioaddr->nsect_addr);
447 outb(0xaa, ioaddr->lbal_addr);
448
449 outb(0xaa, ioaddr->nsect_addr);
450 outb(0x55, ioaddr->lbal_addr);
451
452 outb(0x55, ioaddr->nsect_addr);
453 outb(0xaa, ioaddr->lbal_addr);
454
455 nsect = inb(ioaddr->nsect_addr);
456 lbal = inb(ioaddr->lbal_addr);
457
458 if ((nsect == 0x55) && (lbal == 0xaa))
459 return 1; /* we found a device */
460
461 return 0; /* nothing found */
462}
463
464/**
465 * ata_mmio_devchk - PATA device presence detection
466 * @ap: ATA channel to examine
467 * @device: Device to examine (starting at zero)
468 *
469 * This technique was originally described in
470 * Hale Landis's ATADRVR (www.ata-atapi.com), and
471 * later found its way into the ATA/ATAPI spec.
472 *
473 * Write a pattern to the ATA shadow registers,
474 * and if a device is present, it will respond by
475 * correctly storing and echoing back the
476 * ATA shadow register contents.
477 *
478 * LOCKING:
479 * caller.
480 */
481
482static unsigned int ata_mmio_devchk(struct ata_port *ap,
483 unsigned int device)
484{
485 struct ata_ioports *ioaddr = &ap->ioaddr;
486 u8 nsect, lbal;
487
488 ap->ops->dev_select(ap, device);
489
490 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
491 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
492
493 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
494 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
495
496 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
497 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
498
499 nsect = readb((void __iomem *) ioaddr->nsect_addr);
500 lbal = readb((void __iomem *) ioaddr->lbal_addr);
501
502 if ((nsect == 0x55) && (lbal == 0xaa))
503 return 1; /* we found a device */
504
505 return 0; /* nothing found */
506}
507
508/**
509 * ata_devchk - PATA device presence detection
510 * @ap: ATA channel to examine
511 * @device: Device to examine (starting at zero)
512 *
513 * Dispatch ATA device presence detection, depending
514 * on whether we are using PIO or MMIO to talk to the
515 * ATA shadow registers.
516 *
517 * LOCKING:
518 * caller.
519 */
520
521static unsigned int ata_devchk(struct ata_port *ap,
522 unsigned int device)
523{
524 if (ap->flags & ATA_FLAG_MMIO)
525 return ata_mmio_devchk(ap, device);
526 return ata_pio_devchk(ap, device);
527}
528
529/**
530 * ata_dev_classify - determine device type based on ATA-spec signature
531 * @tf: ATA taskfile register set for device to be identified
532 *
533 * Determine from taskfile register contents whether a device is
534 * ATA or ATAPI, as per "Signature and persistence" section
535 * of ATA/PI spec (volume 1, sect 5.14).
536 *
537 * LOCKING:
538 * None.
539 *
540 * RETURNS:
541 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
542 * the event of failure.
543 */
544
057ace5e 545unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
546{
547 /* Apple's open source Darwin code hints that some devices only
548 * put a proper signature into the LBA mid/high registers,
549 * So, we only check those. It's sufficient for uniqueness.
550 */
551
552 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
553 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
554 DPRINTK("found ATA device by sig\n");
555 return ATA_DEV_ATA;
556 }
557
558 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
559 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
560 DPRINTK("found ATAPI device by sig\n");
561 return ATA_DEV_ATAPI;
562 }
563
564 DPRINTK("unknown device\n");
565 return ATA_DEV_UNKNOWN;
566}
567
568/**
569 * ata_dev_try_classify - Parse returned ATA device signature
570 * @ap: ATA channel to examine
571 * @device: Device to examine (starting at zero)
b4dc7623 572 * @r_err: Value of error register on completion
1da177e4
LT
573 *
574 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
575 * an ATA/ATAPI-defined set of values is placed in the ATA
576 * shadow registers, indicating the results of device detection
577 * and diagnostics.
578 *
579 * Select the ATA device, and read the values from the ATA shadow
580 * registers. Then parse according to the Error register value,
581 * and the spec-defined values examined by ata_dev_classify().
582 *
583 * LOCKING:
584 * caller.
b4dc7623
TH
585 *
586 * RETURNS:
587 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
588 */
589
b4dc7623
TH
590static unsigned int
591ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 592{
1da177e4
LT
593 struct ata_taskfile tf;
594 unsigned int class;
595 u8 err;
596
597 ap->ops->dev_select(ap, device);
598
599 memset(&tf, 0, sizeof(tf));
600
1da177e4 601 ap->ops->tf_read(ap, &tf);
0169e284 602 err = tf.feature;
b4dc7623
TH
603 if (r_err)
604 *r_err = err;
1da177e4
LT
605
606 /* see if device passed diags */
607 if (err == 1)
608 /* do nothing */ ;
609 else if ((device == 0) && (err == 0x81))
610 /* do nothing */ ;
611 else
b4dc7623 612 return ATA_DEV_NONE;
1da177e4 613
b4dc7623 614 /* determine if device is ATA or ATAPI */
1da177e4 615 class = ata_dev_classify(&tf);
b4dc7623 616
1da177e4 617 if (class == ATA_DEV_UNKNOWN)
b4dc7623 618 return ATA_DEV_NONE;
1da177e4 619 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
620 return ATA_DEV_NONE;
621 return class;
1da177e4
LT
622}
623
624/**
6a62a04d 625 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
626 * @id: IDENTIFY DEVICE results we will examine
627 * @s: string into which data is output
628 * @ofs: offset into identify device page
629 * @len: length of string to return. must be an even number.
630 *
631 * The strings in the IDENTIFY DEVICE page are broken up into
632 * 16-bit chunks. Run through the string, and output each
633 * 8-bit chunk linearly, regardless of platform.
634 *
635 * LOCKING:
636 * caller.
637 */
638
6a62a04d
TH
639void ata_id_string(const u16 *id, unsigned char *s,
640 unsigned int ofs, unsigned int len)
1da177e4
LT
641{
642 unsigned int c;
643
644 while (len > 0) {
645 c = id[ofs] >> 8;
646 *s = c;
647 s++;
648
649 c = id[ofs] & 0xff;
650 *s = c;
651 s++;
652
653 ofs++;
654 len -= 2;
655 }
656}
657
0e949ff3 658/**
6a62a04d 659 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
660 * @id: IDENTIFY DEVICE results we will examine
661 * @s: string into which data is output
662 * @ofs: offset into identify device page
663 * @len: length of string to return. must be an odd number.
664 *
6a62a04d 665 * This function is identical to ata_id_string except that it
0e949ff3
TH
666 * trims trailing spaces and terminates the resulting string with
667 * null. @len must be actual maximum length (even number) + 1.
668 *
669 * LOCKING:
670 * caller.
671 */
6a62a04d
TH
672void ata_id_c_string(const u16 *id, unsigned char *s,
673 unsigned int ofs, unsigned int len)
0e949ff3
TH
674{
675 unsigned char *p;
676
677 WARN_ON(!(len & 1));
678
6a62a04d 679 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
680
681 p = s + strnlen(s, len - 1);
682 while (p > s && p[-1] == ' ')
683 p--;
684 *p = '\0';
685}
0baab86b 686
2940740b
TH
687static u64 ata_id_n_sectors(const u16 *id)
688{
689 if (ata_id_has_lba(id)) {
690 if (ata_id_has_lba48(id))
691 return ata_id_u64(id, 100);
692 else
693 return ata_id_u32(id, 60);
694 } else {
695 if (ata_id_current_chs_valid(id))
696 return ata_id_u32(id, 57);
697 else
698 return id[1] * id[3] * id[6];
699 }
700}
701
0baab86b
EF
702/**
703 * ata_noop_dev_select - Select device 0/1 on ATA bus
704 * @ap: ATA channel to manipulate
705 * @device: ATA device (numbered from zero) to select
706 *
707 * This function performs no actual function.
708 *
709 * May be used as the dev_select() entry in ata_port_operations.
710 *
711 * LOCKING:
712 * caller.
713 */
1da177e4
LT
714void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
715{
716}
717
0baab86b 718
1da177e4
LT
719/**
720 * ata_std_dev_select - Select device 0/1 on ATA bus
721 * @ap: ATA channel to manipulate
722 * @device: ATA device (numbered from zero) to select
723 *
724 * Use the method defined in the ATA specification to
725 * make either device 0, or device 1, active on the
0baab86b
EF
726 * ATA channel. Works with both PIO and MMIO.
727 *
728 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
729 *
730 * LOCKING:
731 * caller.
732 */
733
734void ata_std_dev_select (struct ata_port *ap, unsigned int device)
735{
736 u8 tmp;
737
738 if (device == 0)
739 tmp = ATA_DEVICE_OBS;
740 else
741 tmp = ATA_DEVICE_OBS | ATA_DEV1;
742
743 if (ap->flags & ATA_FLAG_MMIO) {
744 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
745 } else {
746 outb(tmp, ap->ioaddr.device_addr);
747 }
748 ata_pause(ap); /* needed; also flushes, for mmio */
749}
750
751/**
752 * ata_dev_select - Select device 0/1 on ATA bus
753 * @ap: ATA channel to manipulate
754 * @device: ATA device (numbered from zero) to select
755 * @wait: non-zero to wait for Status register BSY bit to clear
756 * @can_sleep: non-zero if context allows sleeping
757 *
758 * Use the method defined in the ATA specification to
759 * make either device 0, or device 1, active on the
760 * ATA channel.
761 *
762 * This is a high-level version of ata_std_dev_select(),
763 * which additionally provides the services of inserting
764 * the proper pauses and status polling, where needed.
765 *
766 * LOCKING:
767 * caller.
768 */
769
770void ata_dev_select(struct ata_port *ap, unsigned int device,
771 unsigned int wait, unsigned int can_sleep)
772{
773 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
774 ap->id, device, wait);
775
776 if (wait)
777 ata_wait_idle(ap);
778
779 ap->ops->dev_select(ap, device);
780
781 if (wait) {
782 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
783 msleep(150);
784 ata_wait_idle(ap);
785 }
786}
787
788/**
789 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 790 * @id: IDENTIFY DEVICE page to dump
1da177e4 791 *
0bd3300a
TH
792 * Dump selected 16-bit words from the given IDENTIFY DEVICE
793 * page.
1da177e4
LT
794 *
795 * LOCKING:
796 * caller.
797 */
798
0bd3300a 799static inline void ata_dump_id(const u16 *id)
1da177e4
LT
800{
801 DPRINTK("49==0x%04x "
802 "53==0x%04x "
803 "63==0x%04x "
804 "64==0x%04x "
805 "75==0x%04x \n",
0bd3300a
TH
806 id[49],
807 id[53],
808 id[63],
809 id[64],
810 id[75]);
1da177e4
LT
811 DPRINTK("80==0x%04x "
812 "81==0x%04x "
813 "82==0x%04x "
814 "83==0x%04x "
815 "84==0x%04x \n",
0bd3300a
TH
816 id[80],
817 id[81],
818 id[82],
819 id[83],
820 id[84]);
1da177e4
LT
821 DPRINTK("88==0x%04x "
822 "93==0x%04x\n",
0bd3300a
TH
823 id[88],
824 id[93]);
1da177e4
LT
825}
826
cb95d562
TH
827/**
828 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
829 * @id: IDENTIFY data to compute xfer mask from
830 *
831 * Compute the xfermask for this device. This is not as trivial
832 * as it seems if we must consider early devices correctly.
833 *
834 * FIXME: pre IDE drive timing (do we care ?).
835 *
836 * LOCKING:
837 * None.
838 *
839 * RETURNS:
840 * Computed xfermask
841 */
842static unsigned int ata_id_xfermask(const u16 *id)
843{
844 unsigned int pio_mask, mwdma_mask, udma_mask;
845
846 /* Usual case. Word 53 indicates word 64 is valid */
847 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
848 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
849 pio_mask <<= 3;
850 pio_mask |= 0x7;
851 } else {
852 /* If word 64 isn't valid then Word 51 high byte holds
853 * the PIO timing number for the maximum. Turn it into
854 * a mask.
855 */
856 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
857
858 /* But wait.. there's more. Design your standards by
859 * committee and you too can get a free iordy field to
860 * process. However its the speeds not the modes that
861 * are supported... Note drivers using the timing API
862 * will get this right anyway
863 */
864 }
865
866 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0
TH
867
868 udma_mask = 0;
869 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
870 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
871
872 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
873}
874
86e45b6b
TH
875/**
876 * ata_port_queue_task - Queue port_task
877 * @ap: The ata_port to queue port_task for
e2a7f77a
RD
878 * @fn: workqueue function to be scheduled
879 * @data: data value to pass to workqueue function
880 * @delay: delay time for workqueue function
86e45b6b
TH
881 *
882 * Schedule @fn(@data) for execution after @delay jiffies using
883 * port_task. There is one port_task per port and it's the
884 * user(low level driver)'s responsibility to make sure that only
885 * one task is active at any given time.
886 *
887 * libata core layer takes care of synchronization between
888 * port_task and EH. ata_port_queue_task() may be ignored for EH
889 * synchronization.
890 *
891 * LOCKING:
892 * Inherited from caller.
893 */
894void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
895 unsigned long delay)
896{
897 int rc;
898
2e755f68 899 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
86e45b6b
TH
900 return;
901
902 PREPARE_WORK(&ap->port_task, fn, data);
903
904 if (!delay)
905 rc = queue_work(ata_wq, &ap->port_task);
906 else
907 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
908
909 /* rc == 0 means that another user is using port task */
910 WARN_ON(rc == 0);
911}
912
913/**
914 * ata_port_flush_task - Flush port_task
915 * @ap: The ata_port to flush port_task for
916 *
917 * After this function completes, port_task is guranteed not to
918 * be running or scheduled.
919 *
920 * LOCKING:
921 * Kernel thread context (may sleep)
922 */
923void ata_port_flush_task(struct ata_port *ap)
924{
925 unsigned long flags;
926
927 DPRINTK("ENTER\n");
928
929 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 930 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
86e45b6b
TH
931 spin_unlock_irqrestore(&ap->host_set->lock, flags);
932
933 DPRINTK("flush #1\n");
934 flush_workqueue(ata_wq);
935
936 /*
937 * At this point, if a task is running, it's guaranteed to see
938 * the FLUSH flag; thus, it will never queue pio tasks again.
939 * Cancel and flush.
940 */
941 if (!cancel_delayed_work(&ap->port_task)) {
942 DPRINTK("flush #2\n");
943 flush_workqueue(ata_wq);
944 }
945
946 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 947 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
86e45b6b
TH
948 spin_unlock_irqrestore(&ap->host_set->lock, flags);
949
950 DPRINTK("EXIT\n");
951}
952
77853bf2 953void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 954{
77853bf2 955 struct completion *waiting = qc->private_data;
a2a7a662 956
a2a7a662 957 complete(waiting);
a2a7a662
TH
958}
959
960/**
961 * ata_exec_internal - execute libata internal command
a2a7a662
TH
962 * @dev: Device to which the command is sent
963 * @tf: Taskfile registers for the command and the result
d69cf37d 964 * @cdb: CDB for packet command
a2a7a662
TH
965 * @dma_dir: Data tranfer direction of the command
966 * @buf: Data buffer of the command
967 * @buflen: Length of data buffer
968 *
969 * Executes libata internal command with timeout. @tf contains
970 * command on entry and result on return. Timeout and error
971 * conditions are reported via return value. No recovery action
972 * is taken after a command times out. It's caller's duty to
973 * clean up after timeout.
974 *
975 * LOCKING:
976 * None. Should be called with kernel context, might sleep.
977 */
978
3373efd8 979unsigned ata_exec_internal(struct ata_device *dev,
1ad8e7f9
TH
980 struct ata_taskfile *tf, const u8 *cdb,
981 int dma_dir, void *buf, unsigned int buflen)
a2a7a662 982{
3373efd8 983 struct ata_port *ap = dev->ap;
a2a7a662
TH
984 u8 command = tf->command;
985 struct ata_queued_cmd *qc;
2ab7db1f 986 unsigned int tag, preempted_tag;
dedaf2b0 987 u32 preempted_sactive, preempted_qc_active;
a2a7a662
TH
988 DECLARE_COMPLETION(wait);
989 unsigned long flags;
77853bf2 990 unsigned int err_mask;
d95a717f 991 int rc;
a2a7a662
TH
992
993 spin_lock_irqsave(&ap->host_set->lock, flags);
994
e3180499
TH
995 /* no internal command while frozen */
996 if (ap->flags & ATA_FLAG_FROZEN) {
997 spin_unlock_irqrestore(&ap->host_set->lock, flags);
998 return AC_ERR_SYSTEM;
999 }
1000
2ab7db1f 1001 /* initialize internal qc */
a2a7a662 1002
2ab7db1f
TH
1003 /* XXX: Tag 0 is used for drivers with legacy EH as some
1004 * drivers choke if any other tag is given. This breaks
1005 * ata_tag_internal() test for those drivers. Don't use new
1006 * EH stuff without converting to it.
1007 */
1008 if (ap->ops->error_handler)
1009 tag = ATA_TAG_INTERNAL;
1010 else
1011 tag = 0;
1012
6cec4a39 1013 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1014 BUG();
f69499f4 1015 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1016
1017 qc->tag = tag;
1018 qc->scsicmd = NULL;
1019 qc->ap = ap;
1020 qc->dev = dev;
1021 ata_qc_reinit(qc);
1022
1023 preempted_tag = ap->active_tag;
dedaf2b0
TH
1024 preempted_sactive = ap->sactive;
1025 preempted_qc_active = ap->qc_active;
2ab7db1f 1026 ap->active_tag = ATA_TAG_POISON;
dedaf2b0
TH
1027 ap->sactive = 0;
1028 ap->qc_active = 0;
2ab7db1f
TH
1029
1030 /* prepare & issue qc */
a2a7a662 1031 qc->tf = *tf;
d69cf37d
TH
1032 if (cdb)
1033 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1034 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1035 qc->dma_dir = dma_dir;
1036 if (dma_dir != DMA_NONE) {
1037 ata_sg_init_one(qc, buf, buflen);
1038 qc->nsect = buflen / ATA_SECT_SIZE;
1039 }
1040
77853bf2 1041 qc->private_data = &wait;
a2a7a662
TH
1042 qc->complete_fn = ata_qc_complete_internal;
1043
8e0e694a 1044 ata_qc_issue(qc);
a2a7a662
TH
1045
1046 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1047
d95a717f
TH
1048 rc = wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL);
1049
1050 ata_port_flush_task(ap);
41ade50c 1051
d95a717f 1052 if (!rc) {
a2a7a662
TH
1053 spin_lock_irqsave(&ap->host_set->lock, flags);
1054
1055 /* We're racing with irq here. If we lose, the
1056 * following test prevents us from completing the qc
d95a717f
TH
1057 * twice. If we win, the port is frozen and will be
1058 * cleaned up by ->post_internal_cmd().
a2a7a662 1059 */
77853bf2 1060 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1061 qc->err_mask |= AC_ERR_TIMEOUT;
1062
1063 if (ap->ops->error_handler)
1064 ata_port_freeze(ap);
1065 else
1066 ata_qc_complete(qc);
f15a1daf
TH
1067
1068 ata_dev_printk(dev, KERN_WARNING,
1069 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1070 }
1071
1072 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1073 }
1074
d95a717f
TH
1075 /* do post_internal_cmd */
1076 if (ap->ops->post_internal_cmd)
1077 ap->ops->post_internal_cmd(qc);
1078
1079 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
1080 ata_dev_printk(dev, KERN_WARNING, "zero err_mask for failed "
1081 "internal command, assuming AC_ERR_OTHER\n");
1082 qc->err_mask |= AC_ERR_OTHER;
1083 }
1084
15869303
TH
1085 /* finish up */
1086 spin_lock_irqsave(&ap->host_set->lock, flags);
1087
e61e0672 1088 *tf = qc->result_tf;
77853bf2
TH
1089 err_mask = qc->err_mask;
1090
1091 ata_qc_free(qc);
2ab7db1f 1092 ap->active_tag = preempted_tag;
dedaf2b0
TH
1093 ap->sactive = preempted_sactive;
1094 ap->qc_active = preempted_qc_active;
77853bf2 1095
1f7dd3e9
TH
1096 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1097 * Until those drivers are fixed, we detect the condition
1098 * here, fail the command with AC_ERR_SYSTEM and reenable the
1099 * port.
1100 *
1101 * Note that this doesn't change any behavior as internal
1102 * command failure results in disabling the device in the
1103 * higher layer for LLDDs without new reset/EH callbacks.
1104 *
1105 * Kill the following code as soon as those drivers are fixed.
1106 */
198e0fed 1107 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1108 err_mask |= AC_ERR_SYSTEM;
1109 ata_port_probe(ap);
1110 }
1111
15869303
TH
1112 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1113
77853bf2 1114 return err_mask;
a2a7a662
TH
1115}
1116
1bc4ccff
AC
1117/**
1118 * ata_pio_need_iordy - check if iordy needed
1119 * @adev: ATA device
1120 *
1121 * Check if the current speed of the device requires IORDY. Used
1122 * by various controllers for chip configuration.
1123 */
1124
1125unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1126{
1127 int pio;
1128 int speed = adev->pio_mode - XFER_PIO_0;
1129
1130 if (speed < 2)
1131 return 0;
1132 if (speed > 2)
1133 return 1;
2e9edbf8 1134
1bc4ccff
AC
1135 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1136
1137 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1138 pio = adev->id[ATA_ID_EIDE_PIO];
1139 /* Is the speed faster than the drive allows non IORDY ? */
1140 if (pio) {
1141 /* This is cycle times not frequency - watch the logic! */
1142 if (pio > 240) /* PIO2 is 240nS per cycle */
1143 return 1;
1144 return 0;
1145 }
1146 }
1147 return 0;
1148}
1149
1da177e4 1150/**
49016aca 1151 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1152 * @dev: target device
1153 * @p_class: pointer to class of the target device (may be changed)
1154 * @post_reset: is this read ID post-reset?
fe635c7e 1155 * @id: buffer to read IDENTIFY data into
1da177e4 1156 *
49016aca
TH
1157 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1158 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1159 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1160 * for pre-ATA4 drives.
1da177e4
LT
1161 *
1162 * LOCKING:
49016aca
TH
1163 * Kernel thread context (may sleep)
1164 *
1165 * RETURNS:
1166 * 0 on success, -errno otherwise.
1da177e4 1167 */
3373efd8
TH
1168static int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1169 int post_reset, u16 *id)
1da177e4 1170{
3373efd8 1171 struct ata_port *ap = dev->ap;
49016aca 1172 unsigned int class = *p_class;
a0123703 1173 struct ata_taskfile tf;
49016aca
TH
1174 unsigned int err_mask = 0;
1175 const char *reason;
1176 int rc;
1da177e4 1177
49016aca 1178 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1179
49016aca 1180 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1da177e4 1181
49016aca 1182 retry:
3373efd8 1183 ata_tf_init(dev, &tf);
a0123703 1184
49016aca
TH
1185 switch (class) {
1186 case ATA_DEV_ATA:
a0123703 1187 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1188 break;
1189 case ATA_DEV_ATAPI:
a0123703 1190 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1191 break;
1192 default:
1193 rc = -ENODEV;
1194 reason = "unsupported class";
1195 goto err_out;
1da177e4
LT
1196 }
1197
a0123703 1198 tf.protocol = ATA_PROT_PIO;
1da177e4 1199
3373efd8 1200 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1201 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1202 if (err_mask) {
49016aca
TH
1203 rc = -EIO;
1204 reason = "I/O error";
1da177e4
LT
1205 goto err_out;
1206 }
1207
49016aca 1208 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1209
49016aca 1210 /* sanity check */
692785e7 1211 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
49016aca
TH
1212 rc = -EINVAL;
1213 reason = "device reports illegal type";
1214 goto err_out;
1215 }
1216
1217 if (post_reset && class == ATA_DEV_ATA) {
1218 /*
1219 * The exact sequence expected by certain pre-ATA4 drives is:
1220 * SRST RESET
1221 * IDENTIFY
1222 * INITIALIZE DEVICE PARAMETERS
1223 * anything else..
1224 * Some drives were very specific about that exact sequence.
1225 */
1226 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1227 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1228 if (err_mask) {
1229 rc = -EIO;
1230 reason = "INIT_DEV_PARAMS failed";
1231 goto err_out;
1232 }
1233
1234 /* current CHS translation info (id[53-58]) might be
1235 * changed. reread the identify device info.
1236 */
1237 post_reset = 0;
1238 goto retry;
1239 }
1240 }
1241
1242 *p_class = class;
fe635c7e 1243
49016aca
TH
1244 return 0;
1245
1246 err_out:
f15a1daf
TH
1247 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1248 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1249 return rc;
1250}
1251
3373efd8 1252static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1253{
3373efd8 1254 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1255}
1256
a6e6ce8e
TH
1257static void ata_dev_config_ncq(struct ata_device *dev,
1258 char *desc, size_t desc_sz)
1259{
1260 struct ata_port *ap = dev->ap;
1261 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1262
1263 if (!ata_id_has_ncq(dev->id)) {
1264 desc[0] = '\0';
1265 return;
1266 }
1267
1268 if (ap->flags & ATA_FLAG_NCQ) {
1269 hdepth = min(ap->host->can_queue, ATA_MAX_QUEUE - 1);
1270 dev->flags |= ATA_DFLAG_NCQ;
1271 }
1272
1273 if (hdepth >= ddepth)
1274 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1275 else
1276 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1277}
1278
49016aca 1279/**
ffeae418 1280 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418 1281 * @dev: Target device to configure
4c2d721a 1282 * @print_info: Enable device info printout
ffeae418
TH
1283 *
1284 * Configure @dev according to @dev->id. Generic and low-level
1285 * driver specific fixups are also applied.
49016aca
TH
1286 *
1287 * LOCKING:
ffeae418
TH
1288 * Kernel thread context (may sleep)
1289 *
1290 * RETURNS:
1291 * 0 on success, -errno otherwise
49016aca 1292 */
3373efd8 1293static int ata_dev_configure(struct ata_device *dev, int print_info)
49016aca 1294{
3373efd8 1295 struct ata_port *ap = dev->ap;
1148c3a7 1296 const u16 *id = dev->id;
ff8854b2 1297 unsigned int xfer_mask;
49016aca
TH
1298 int i, rc;
1299
e1211e3f 1300 if (!ata_dev_enabled(dev)) {
49016aca 1301 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
ffeae418
TH
1302 ap->id, dev->devno);
1303 return 0;
49016aca
TH
1304 }
1305
ffeae418 1306 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1307
c39f5ebe
TH
1308 /* print device capabilities */
1309 if (print_info)
f15a1daf
TH
1310 ata_dev_printk(dev, KERN_DEBUG, "cfg 49:%04x 82:%04x 83:%04x "
1311 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1312 id[49], id[82], id[83], id[84],
1313 id[85], id[86], id[87], id[88]);
c39f5ebe 1314
208a9933 1315 /* initialize to-be-configured parameters */
ea1dd4e1 1316 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1317 dev->max_sectors = 0;
1318 dev->cdb_len = 0;
1319 dev->n_sectors = 0;
1320 dev->cylinders = 0;
1321 dev->heads = 0;
1322 dev->sectors = 0;
1323
1da177e4
LT
1324 /*
1325 * common ATA, ATAPI feature tests
1326 */
1327
ff8854b2 1328 /* find max transfer mode; for printk only */
1148c3a7 1329 xfer_mask = ata_id_xfermask(id);
1da177e4 1330
1148c3a7 1331 ata_dump_id(id);
1da177e4
LT
1332
1333 /* ATA-specific feature tests */
1334 if (dev->class == ATA_DEV_ATA) {
1148c3a7 1335 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1336
1148c3a7 1337 if (ata_id_has_lba(id)) {
4c2d721a 1338 const char *lba_desc;
a6e6ce8e 1339 char ncq_desc[20];
8bf62ece 1340
4c2d721a
TH
1341 lba_desc = "LBA";
1342 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1343 if (ata_id_has_lba48(id)) {
8bf62ece 1344 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a
TH
1345 lba_desc = "LBA48";
1346 }
8bf62ece 1347
a6e6ce8e
TH
1348 /* config NCQ */
1349 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1350
8bf62ece 1351 /* print device info to dmesg */
4c2d721a 1352 if (print_info)
f15a1daf 1353 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
a6e6ce8e 1354 "max %s, %Lu sectors: %s %s\n",
f15a1daf
TH
1355 ata_id_major_version(id),
1356 ata_mode_string(xfer_mask),
1357 (unsigned long long)dev->n_sectors,
a6e6ce8e 1358 lba_desc, ncq_desc);
ffeae418 1359 } else {
8bf62ece
AL
1360 /* CHS */
1361
1362 /* Default translation */
1148c3a7
TH
1363 dev->cylinders = id[1];
1364 dev->heads = id[3];
1365 dev->sectors = id[6];
8bf62ece 1366
1148c3a7 1367 if (ata_id_current_chs_valid(id)) {
8bf62ece 1368 /* Current CHS translation is valid. */
1148c3a7
TH
1369 dev->cylinders = id[54];
1370 dev->heads = id[55];
1371 dev->sectors = id[56];
8bf62ece
AL
1372 }
1373
1374 /* print device info to dmesg */
4c2d721a 1375 if (print_info)
f15a1daf
TH
1376 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1377 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1378 ata_id_major_version(id),
1379 ata_mode_string(xfer_mask),
1380 (unsigned long long)dev->n_sectors,
1381 dev->cylinders, dev->heads, dev->sectors);
1da177e4
LT
1382 }
1383
07f6f7d0
AL
1384 if (dev->id[59] & 0x100) {
1385 dev->multi_count = dev->id[59] & 0xff;
1386 DPRINTK("ata%u: dev %u multi count %u\n",
999bb6f4 1387 ap->id, dev->devno, dev->multi_count);
07f6f7d0
AL
1388 }
1389
6e7846e9 1390 dev->cdb_len = 16;
1da177e4
LT
1391 }
1392
1393 /* ATAPI-specific feature tests */
2c13b7ce 1394 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1395 char *cdb_intr_string = "";
1396
1148c3a7 1397 rc = atapi_cdb_len(id);
1da177e4 1398 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
f15a1daf
TH
1399 ata_dev_printk(dev, KERN_WARNING,
1400 "unsupported CDB len\n");
ffeae418 1401 rc = -EINVAL;
1da177e4
LT
1402 goto err_out_nosup;
1403 }
6e7846e9 1404 dev->cdb_len = (unsigned int) rc;
1da177e4 1405
08a556db 1406 if (ata_id_cdb_intr(dev->id)) {
312f7da2 1407 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
1408 cdb_intr_string = ", CDB intr";
1409 }
312f7da2 1410
1da177e4 1411 /* print device info to dmesg */
4c2d721a 1412 if (print_info)
12436c30
TH
1413 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1414 ata_mode_string(xfer_mask),
1415 cdb_intr_string);
1da177e4
LT
1416 }
1417
6e7846e9
TH
1418 ap->host->max_cmd_len = 0;
1419 for (i = 0; i < ATA_MAX_DEVICES; i++)
1420 ap->host->max_cmd_len = max_t(unsigned int,
1421 ap->host->max_cmd_len,
1422 ap->device[i].cdb_len);
1423
4b2f3ede 1424 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 1425 if (ata_dev_knobble(dev)) {
4c2d721a 1426 if (print_info)
f15a1daf
TH
1427 ata_dev_printk(dev, KERN_INFO,
1428 "applying bridge limits\n");
5a529139 1429 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
1430 dev->max_sectors = ATA_MAX_SECTORS;
1431 }
1432
1433 if (ap->ops->dev_config)
1434 ap->ops->dev_config(ap, dev);
1435
1da177e4 1436 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
ffeae418 1437 return 0;
1da177e4
LT
1438
1439err_out_nosup:
1da177e4 1440 DPRINTK("EXIT, err\n");
ffeae418 1441 return rc;
1da177e4
LT
1442}
1443
1444/**
1445 * ata_bus_probe - Reset and probe ATA bus
1446 * @ap: Bus to probe
1447 *
0cba632b
JG
1448 * Master ATA bus probing function. Initiates a hardware-dependent
1449 * bus reset, then attempts to identify any devices found on
1450 * the bus.
1451 *
1da177e4 1452 * LOCKING:
0cba632b 1453 * PCI/etc. bus probe sem.
1da177e4
LT
1454 *
1455 * RETURNS:
96072e69 1456 * Zero on success, negative errno otherwise.
1da177e4
LT
1457 */
1458
1459static int ata_bus_probe(struct ata_port *ap)
1460{
28ca5c57 1461 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1
TH
1462 int tries[ATA_MAX_DEVICES];
1463 int i, rc, down_xfermask;
e82cbdb9 1464 struct ata_device *dev;
1da177e4 1465
28ca5c57 1466 ata_port_probe(ap);
c19ba8af 1467
14d2bac1
TH
1468 for (i = 0; i < ATA_MAX_DEVICES; i++)
1469 tries[i] = ATA_PROBE_MAX_TRIES;
1470
1471 retry:
1472 down_xfermask = 0;
1473
2044470c
TH
1474 /* reset and determine device classes */
1475 for (i = 0; i < ATA_MAX_DEVICES; i++)
1476 classes[i] = ATA_DEV_UNKNOWN;
2061a47a 1477
2044470c 1478 if (ap->ops->probe_reset) {
c19ba8af 1479 rc = ap->ops->probe_reset(ap, classes);
28ca5c57 1480 if (rc) {
f15a1daf
TH
1481 ata_port_printk(ap, KERN_ERR,
1482 "reset failed (errno=%d)\n", rc);
28ca5c57 1483 return rc;
c19ba8af 1484 }
28ca5c57 1485 } else {
c19ba8af
TH
1486 ap->ops->phy_reset(ap);
1487
f8c2c420
TH
1488 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1489 if (!(ap->flags & ATA_FLAG_DISABLED))
28ca5c57 1490 classes[i] = ap->device[i].class;
f8c2c420
TH
1491 ap->device[i].class = ATA_DEV_UNKNOWN;
1492 }
2044470c 1493
28ca5c57
TH
1494 ata_port_probe(ap);
1495 }
1da177e4 1496
2044470c
TH
1497 for (i = 0; i < ATA_MAX_DEVICES; i++)
1498 if (classes[i] == ATA_DEV_UNKNOWN)
1499 classes[i] = ATA_DEV_NONE;
1500
28ca5c57 1501 /* read IDENTIFY page and configure devices */
1da177e4 1502 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e82cbdb9 1503 dev = &ap->device[i];
28ca5c57 1504
ec573755
TH
1505 if (tries[i])
1506 dev->class = classes[i];
ffeae418 1507
14d2bac1 1508 if (!ata_dev_enabled(dev))
ffeae418 1509 continue;
ffeae418 1510
3373efd8 1511 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
14d2bac1
TH
1512 if (rc)
1513 goto fail;
1514
3373efd8 1515 rc = ata_dev_configure(dev, 1);
14d2bac1
TH
1516 if (rc)
1517 goto fail;
1da177e4
LT
1518 }
1519
e82cbdb9 1520 /* configure transfer mode */
3adcebb2 1521 rc = ata_set_mode(ap, &dev);
51713d35
TH
1522 if (rc) {
1523 down_xfermask = 1;
1524 goto fail;
e82cbdb9 1525 }
1da177e4 1526
e82cbdb9
TH
1527 for (i = 0; i < ATA_MAX_DEVICES; i++)
1528 if (ata_dev_enabled(&ap->device[i]))
1529 return 0;
1da177e4 1530
e82cbdb9
TH
1531 /* no device present, disable port */
1532 ata_port_disable(ap);
1da177e4 1533 ap->ops->port_disable(ap);
96072e69 1534 return -ENODEV;
14d2bac1
TH
1535
1536 fail:
1537 switch (rc) {
1538 case -EINVAL:
1539 case -ENODEV:
1540 tries[dev->devno] = 0;
1541 break;
1542 case -EIO:
3c567b7d 1543 sata_down_spd_limit(ap);
14d2bac1
TH
1544 /* fall through */
1545 default:
1546 tries[dev->devno]--;
1547 if (down_xfermask &&
3373efd8 1548 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
14d2bac1
TH
1549 tries[dev->devno] = 0;
1550 }
1551
ec573755 1552 if (!tries[dev->devno]) {
3373efd8
TH
1553 ata_down_xfermask_limit(dev, 1);
1554 ata_dev_disable(dev);
ec573755
TH
1555 }
1556
14d2bac1 1557 goto retry;
1da177e4
LT
1558}
1559
1560/**
0cba632b
JG
1561 * ata_port_probe - Mark port as enabled
1562 * @ap: Port for which we indicate enablement
1da177e4 1563 *
0cba632b
JG
1564 * Modify @ap data structure such that the system
1565 * thinks that the entire port is enabled.
1566 *
1567 * LOCKING: host_set lock, or some other form of
1568 * serialization.
1da177e4
LT
1569 */
1570
1571void ata_port_probe(struct ata_port *ap)
1572{
198e0fed 1573 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
1574}
1575
3be680b7
TH
1576/**
1577 * sata_print_link_status - Print SATA link status
1578 * @ap: SATA port to printk link status about
1579 *
1580 * This function prints link speed and status of a SATA link.
1581 *
1582 * LOCKING:
1583 * None.
1584 */
1585static void sata_print_link_status(struct ata_port *ap)
1586{
6d5f9732 1587 u32 sstatus, scontrol, tmp;
3be680b7 1588
81952c54 1589 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 1590 return;
81952c54 1591 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 1592
81952c54 1593 if (ata_port_online(ap)) {
3be680b7 1594 tmp = (sstatus >> 4) & 0xf;
f15a1daf
TH
1595 ata_port_printk(ap, KERN_INFO,
1596 "SATA link up %s (SStatus %X SControl %X)\n",
1597 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 1598 } else {
f15a1daf
TH
1599 ata_port_printk(ap, KERN_INFO,
1600 "SATA link down (SStatus %X SControl %X)\n",
1601 sstatus, scontrol);
3be680b7
TH
1602 }
1603}
1604
1da177e4 1605/**
780a87f7
JG
1606 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1607 * @ap: SATA port associated with target SATA PHY.
1da177e4 1608 *
780a87f7
JG
1609 * This function issues commands to standard SATA Sxxx
1610 * PHY registers, to wake up the phy (and device), and
1611 * clear any reset condition.
1da177e4
LT
1612 *
1613 * LOCKING:
0cba632b 1614 * PCI/etc. bus probe sem.
1da177e4
LT
1615 *
1616 */
1617void __sata_phy_reset(struct ata_port *ap)
1618{
1619 u32 sstatus;
1620 unsigned long timeout = jiffies + (HZ * 5);
1621
1622 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 1623 /* issue phy wake/reset */
81952c54 1624 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1625 /* Couldn't find anything in SATA I/II specs, but
1626 * AHCI-1.1 10.4.2 says at least 1 ms. */
1627 mdelay(1);
1da177e4 1628 }
81952c54
TH
1629 /* phy wake/clear reset */
1630 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
1631
1632 /* wait for phy to become ready, if necessary */
1633 do {
1634 msleep(200);
81952c54 1635 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
1636 if ((sstatus & 0xf) != 1)
1637 break;
1638 } while (time_before(jiffies, timeout));
1639
3be680b7
TH
1640 /* print link status */
1641 sata_print_link_status(ap);
656563e3 1642
3be680b7 1643 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 1644 if (!ata_port_offline(ap))
1da177e4 1645 ata_port_probe(ap);
3be680b7 1646 else
1da177e4 1647 ata_port_disable(ap);
1da177e4 1648
198e0fed 1649 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1650 return;
1651
1652 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1653 ata_port_disable(ap);
1654 return;
1655 }
1656
1657 ap->cbl = ATA_CBL_SATA;
1658}
1659
1660/**
780a87f7
JG
1661 * sata_phy_reset - Reset SATA bus.
1662 * @ap: SATA port associated with target SATA PHY.
1da177e4 1663 *
780a87f7
JG
1664 * This function resets the SATA bus, and then probes
1665 * the bus for devices.
1da177e4
LT
1666 *
1667 * LOCKING:
0cba632b 1668 * PCI/etc. bus probe sem.
1da177e4
LT
1669 *
1670 */
1671void sata_phy_reset(struct ata_port *ap)
1672{
1673 __sata_phy_reset(ap);
198e0fed 1674 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1675 return;
1676 ata_bus_reset(ap);
1677}
1678
ebdfca6e
AC
1679/**
1680 * ata_dev_pair - return other device on cable
ebdfca6e
AC
1681 * @adev: device
1682 *
1683 * Obtain the other device on the same cable, or if none is
1684 * present NULL is returned
1685 */
2e9edbf8 1686
3373efd8 1687struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 1688{
3373efd8 1689 struct ata_port *ap = adev->ap;
ebdfca6e 1690 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 1691 if (!ata_dev_enabled(pair))
ebdfca6e
AC
1692 return NULL;
1693 return pair;
1694}
1695
1da177e4 1696/**
780a87f7
JG
1697 * ata_port_disable - Disable port.
1698 * @ap: Port to be disabled.
1da177e4 1699 *
780a87f7
JG
1700 * Modify @ap data structure such that the system
1701 * thinks that the entire port is disabled, and should
1702 * never attempt to probe or communicate with devices
1703 * on this port.
1704 *
1705 * LOCKING: host_set lock, or some other form of
1706 * serialization.
1da177e4
LT
1707 */
1708
1709void ata_port_disable(struct ata_port *ap)
1710{
1711 ap->device[0].class = ATA_DEV_NONE;
1712 ap->device[1].class = ATA_DEV_NONE;
198e0fed 1713 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
1714}
1715
1c3fae4d 1716/**
3c567b7d 1717 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
1718 * @ap: Port to adjust SATA spd limit for
1719 *
1720 * Adjust SATA spd limit of @ap downward. Note that this
1721 * function only adjusts the limit. The change must be applied
3c567b7d 1722 * using sata_set_spd().
1c3fae4d
TH
1723 *
1724 * LOCKING:
1725 * Inherited from caller.
1726 *
1727 * RETURNS:
1728 * 0 on success, negative errno on failure
1729 */
3c567b7d 1730int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 1731{
81952c54
TH
1732 u32 sstatus, spd, mask;
1733 int rc, highbit;
1c3fae4d 1734
81952c54
TH
1735 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1736 if (rc)
1737 return rc;
1c3fae4d
TH
1738
1739 mask = ap->sata_spd_limit;
1740 if (mask <= 1)
1741 return -EINVAL;
1742 highbit = fls(mask) - 1;
1743 mask &= ~(1 << highbit);
1744
81952c54 1745 spd = (sstatus >> 4) & 0xf;
1c3fae4d
TH
1746 if (spd <= 1)
1747 return -EINVAL;
1748 spd--;
1749 mask &= (1 << spd) - 1;
1750 if (!mask)
1751 return -EINVAL;
1752
1753 ap->sata_spd_limit = mask;
1754
f15a1daf
TH
1755 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1756 sata_spd_string(fls(mask)));
1c3fae4d
TH
1757
1758 return 0;
1759}
1760
3c567b7d 1761static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
1762{
1763 u32 spd, limit;
1764
1765 if (ap->sata_spd_limit == UINT_MAX)
1766 limit = 0;
1767 else
1768 limit = fls(ap->sata_spd_limit);
1769
1770 spd = (*scontrol >> 4) & 0xf;
1771 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1772
1773 return spd != limit;
1774}
1775
1776/**
3c567b7d 1777 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
1778 * @ap: Port in question
1779 *
1780 * Test whether the spd limit in SControl matches
1781 * @ap->sata_spd_limit. This function is used to determine
1782 * whether hardreset is necessary to apply SATA spd
1783 * configuration.
1784 *
1785 * LOCKING:
1786 * Inherited from caller.
1787 *
1788 * RETURNS:
1789 * 1 if SATA spd configuration is needed, 0 otherwise.
1790 */
3c567b7d 1791int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
1792{
1793 u32 scontrol;
1794
81952c54 1795 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
1796 return 0;
1797
3c567b7d 1798 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
1799}
1800
1801/**
3c567b7d 1802 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
1803 * @ap: Port to set SATA spd for
1804 *
1805 * Set SATA spd of @ap according to sata_spd_limit.
1806 *
1807 * LOCKING:
1808 * Inherited from caller.
1809 *
1810 * RETURNS:
1811 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 1812 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 1813 */
3c567b7d 1814int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
1815{
1816 u32 scontrol;
81952c54 1817 int rc;
1c3fae4d 1818
81952c54
TH
1819 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1820 return rc;
1c3fae4d 1821
3c567b7d 1822 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
1823 return 0;
1824
81952c54
TH
1825 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1826 return rc;
1827
1c3fae4d
TH
1828 return 1;
1829}
1830
452503f9
AC
1831/*
1832 * This mode timing computation functionality is ported over from
1833 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1834 */
1835/*
1836 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1837 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1838 * for PIO 5, which is a nonstandard extension and UDMA6, which
2e9edbf8 1839 * is currently supported only by Maxtor drives.
452503f9
AC
1840 */
1841
1842static const struct ata_timing ata_timing[] = {
1843
1844 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1845 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1846 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1847 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1848
1849 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1850 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1851 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1852
1853/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 1854
452503f9
AC
1855 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1856 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1857 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 1858
452503f9
AC
1859 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1860 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1861 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1862
1863/* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1864 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1865 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1866
1867 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1868 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1869 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1870
1871/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1872
1873 { 0xFF }
1874};
1875
1876#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1877#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1878
1879static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1880{
1881 q->setup = EZ(t->setup * 1000, T);
1882 q->act8b = EZ(t->act8b * 1000, T);
1883 q->rec8b = EZ(t->rec8b * 1000, T);
1884 q->cyc8b = EZ(t->cyc8b * 1000, T);
1885 q->active = EZ(t->active * 1000, T);
1886 q->recover = EZ(t->recover * 1000, T);
1887 q->cycle = EZ(t->cycle * 1000, T);
1888 q->udma = EZ(t->udma * 1000, UT);
1889}
1890
1891void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1892 struct ata_timing *m, unsigned int what)
1893{
1894 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1895 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1896 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1897 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1898 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1899 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1900 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1901 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1902}
1903
1904static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1905{
1906 const struct ata_timing *t;
1907
1908 for (t = ata_timing; t->mode != speed; t++)
91190758 1909 if (t->mode == 0xFF)
452503f9 1910 return NULL;
2e9edbf8 1911 return t;
452503f9
AC
1912}
1913
1914int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1915 struct ata_timing *t, int T, int UT)
1916{
1917 const struct ata_timing *s;
1918 struct ata_timing p;
1919
1920 /*
2e9edbf8 1921 * Find the mode.
75b1f2f8 1922 */
452503f9
AC
1923
1924 if (!(s = ata_timing_find_mode(speed)))
1925 return -EINVAL;
1926
75b1f2f8
AL
1927 memcpy(t, s, sizeof(*s));
1928
452503f9
AC
1929 /*
1930 * If the drive is an EIDE drive, it can tell us it needs extended
1931 * PIO/MW_DMA cycle timing.
1932 */
1933
1934 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1935 memset(&p, 0, sizeof(p));
1936 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1937 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1938 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1939 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1940 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1941 }
1942 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1943 }
1944
1945 /*
1946 * Convert the timing to bus clock counts.
1947 */
1948
75b1f2f8 1949 ata_timing_quantize(t, t, T, UT);
452503f9
AC
1950
1951 /*
c893a3ae
RD
1952 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1953 * S.M.A.R.T * and some other commands. We have to ensure that the
1954 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
1955 */
1956
1957 if (speed > XFER_PIO_4) {
1958 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1959 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1960 }
1961
1962 /*
c893a3ae 1963 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
1964 */
1965
1966 if (t->act8b + t->rec8b < t->cyc8b) {
1967 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1968 t->rec8b = t->cyc8b - t->act8b;
1969 }
1970
1971 if (t->active + t->recover < t->cycle) {
1972 t->active += (t->cycle - (t->active + t->recover)) / 2;
1973 t->recover = t->cycle - t->active;
1974 }
1975
1976 return 0;
1977}
1978
cf176e1a
TH
1979/**
1980 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a
TH
1981 * @dev: Device to adjust xfer masks
1982 * @force_pio0: Force PIO0
1983 *
1984 * Adjust xfer masks of @dev downward. Note that this function
1985 * does not apply the change. Invoking ata_set_mode() afterwards
1986 * will apply the limit.
1987 *
1988 * LOCKING:
1989 * Inherited from caller.
1990 *
1991 * RETURNS:
1992 * 0 on success, negative errno on failure
1993 */
3373efd8 1994int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
cf176e1a
TH
1995{
1996 unsigned long xfer_mask;
1997 int highbit;
1998
1999 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2000 dev->udma_mask);
2001
2002 if (!xfer_mask)
2003 goto fail;
2004 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2005 if (xfer_mask & ATA_MASK_UDMA)
2006 xfer_mask &= ~ATA_MASK_MWDMA;
2007
2008 highbit = fls(xfer_mask) - 1;
2009 xfer_mask &= ~(1 << highbit);
2010 if (force_pio0)
2011 xfer_mask &= 1 << ATA_SHIFT_PIO;
2012 if (!xfer_mask)
2013 goto fail;
2014
2015 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2016 &dev->udma_mask);
2017
f15a1daf
TH
2018 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2019 ata_mode_string(xfer_mask));
cf176e1a
TH
2020
2021 return 0;
2022
2023 fail:
2024 return -EINVAL;
2025}
2026
3373efd8 2027static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2028{
83206a29
TH
2029 unsigned int err_mask;
2030 int rc;
1da177e4 2031
e8384607 2032 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2033 if (dev->xfer_shift == ATA_SHIFT_PIO)
2034 dev->flags |= ATA_DFLAG_PIO;
2035
3373efd8 2036 err_mask = ata_dev_set_xfermode(dev);
83206a29 2037 if (err_mask) {
f15a1daf
TH
2038 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2039 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2040 return -EIO;
2041 }
1da177e4 2042
3373efd8 2043 rc = ata_dev_revalidate(dev, 0);
5eb45c02 2044 if (rc)
83206a29 2045 return rc;
48a8a14f 2046
23e71c3d
TH
2047 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2048 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2049
f15a1daf
TH
2050 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2051 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2052 return 0;
1da177e4
LT
2053}
2054
1da177e4
LT
2055/**
2056 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2057 * @ap: port on which timings will be programmed
e82cbdb9 2058 * @r_failed_dev: out paramter for failed device
1da177e4 2059 *
e82cbdb9
TH
2060 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2061 * ata_set_mode() fails, pointer to the failing device is
2062 * returned in @r_failed_dev.
780a87f7 2063 *
1da177e4 2064 * LOCKING:
0cba632b 2065 * PCI/etc. bus probe sem.
e82cbdb9
TH
2066 *
2067 * RETURNS:
2068 * 0 on success, negative errno otherwise
1da177e4 2069 */
1ad8e7f9 2070int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 2071{
e8e0619f 2072 struct ata_device *dev;
e82cbdb9 2073 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2074
3adcebb2
TH
2075 /* has private set_mode? */
2076 if (ap->ops->set_mode) {
2077 /* FIXME: make ->set_mode handle no device case and
2078 * return error code and failing device on failure.
2079 */
2080 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2081 if (ata_dev_enabled(&ap->device[i])) {
2082 ap->ops->set_mode(ap);
2083 break;
2084 }
2085 }
2086 return 0;
2087 }
2088
a6d5a51c
TH
2089 /* step 1: calculate xfer_mask */
2090 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2091 unsigned int pio_mask, dma_mask;
a6d5a51c 2092
e8e0619f
TH
2093 dev = &ap->device[i];
2094
e1211e3f 2095 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2096 continue;
2097
3373efd8 2098 ata_dev_xfermask(dev);
1da177e4 2099
acf356b1
TH
2100 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2101 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2102 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2103 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2104
4f65977d 2105 found = 1;
5444a6f4
AC
2106 if (dev->dma_mode)
2107 used_dma = 1;
a6d5a51c 2108 }
4f65977d 2109 if (!found)
e82cbdb9 2110 goto out;
a6d5a51c
TH
2111
2112 /* step 2: always set host PIO timings */
e8e0619f
TH
2113 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2114 dev = &ap->device[i];
2115 if (!ata_dev_enabled(dev))
2116 continue;
2117
2118 if (!dev->pio_mode) {
f15a1daf 2119 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2120 rc = -EINVAL;
e82cbdb9 2121 goto out;
e8e0619f
TH
2122 }
2123
2124 dev->xfer_mode = dev->pio_mode;
2125 dev->xfer_shift = ATA_SHIFT_PIO;
2126 if (ap->ops->set_piomode)
2127 ap->ops->set_piomode(ap, dev);
2128 }
1da177e4 2129
a6d5a51c 2130 /* step 3: set host DMA timings */
e8e0619f
TH
2131 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2132 dev = &ap->device[i];
2133
2134 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2135 continue;
2136
2137 dev->xfer_mode = dev->dma_mode;
2138 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2139 if (ap->ops->set_dmamode)
2140 ap->ops->set_dmamode(ap, dev);
2141 }
1da177e4
LT
2142
2143 /* step 4: update devices' xfer mode */
83206a29 2144 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2145 dev = &ap->device[i];
1da177e4 2146
e1211e3f 2147 if (!ata_dev_enabled(dev))
83206a29
TH
2148 continue;
2149
3373efd8 2150 rc = ata_dev_set_mode(dev);
5bbc53f4 2151 if (rc)
e82cbdb9 2152 goto out;
83206a29 2153 }
1da177e4 2154
e8e0619f
TH
2155 /* Record simplex status. If we selected DMA then the other
2156 * host channels are not permitted to do so.
5444a6f4 2157 */
5444a6f4
AC
2158 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2159 ap->host_set->simplex_claimed = 1;
2160
e8e0619f 2161 /* step5: chip specific finalisation */
1da177e4
LT
2162 if (ap->ops->post_set_mode)
2163 ap->ops->post_set_mode(ap);
2164
e82cbdb9
TH
2165 out:
2166 if (rc)
2167 *r_failed_dev = dev;
2168 return rc;
1da177e4
LT
2169}
2170
1fdffbce
JG
2171/**
2172 * ata_tf_to_host - issue ATA taskfile to host controller
2173 * @ap: port to which command is being issued
2174 * @tf: ATA taskfile register set
2175 *
2176 * Issues ATA taskfile register set to ATA host controller,
2177 * with proper synchronization with interrupt handler and
2178 * other threads.
2179 *
2180 * LOCKING:
2181 * spin_lock_irqsave(host_set lock)
2182 */
2183
2184static inline void ata_tf_to_host(struct ata_port *ap,
2185 const struct ata_taskfile *tf)
2186{
2187 ap->ops->tf_load(ap, tf);
2188 ap->ops->exec_command(ap, tf);
2189}
2190
1da177e4
LT
2191/**
2192 * ata_busy_sleep - sleep until BSY clears, or timeout
2193 * @ap: port containing status register to be polled
2194 * @tmout_pat: impatience timeout
2195 * @tmout: overall timeout
2196 *
780a87f7
JG
2197 * Sleep until ATA Status register bit BSY clears,
2198 * or a timeout occurs.
2199 *
2200 * LOCKING: None.
1da177e4
LT
2201 */
2202
6f8b9958
TH
2203unsigned int ata_busy_sleep (struct ata_port *ap,
2204 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2205{
2206 unsigned long timer_start, timeout;
2207 u8 status;
2208
2209 status = ata_busy_wait(ap, ATA_BUSY, 300);
2210 timer_start = jiffies;
2211 timeout = timer_start + tmout_pat;
2212 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2213 msleep(50);
2214 status = ata_busy_wait(ap, ATA_BUSY, 3);
2215 }
2216
2217 if (status & ATA_BUSY)
f15a1daf
TH
2218 ata_port_printk(ap, KERN_WARNING,
2219 "port is slow to respond, please be patient\n");
1da177e4
LT
2220
2221 timeout = timer_start + tmout;
2222 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2223 msleep(50);
2224 status = ata_chk_status(ap);
2225 }
2226
2227 if (status & ATA_BUSY) {
f15a1daf
TH
2228 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2229 "(%lu secs)\n", tmout / HZ);
1da177e4
LT
2230 return 1;
2231 }
2232
2233 return 0;
2234}
2235
2236static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2237{
2238 struct ata_ioports *ioaddr = &ap->ioaddr;
2239 unsigned int dev0 = devmask & (1 << 0);
2240 unsigned int dev1 = devmask & (1 << 1);
2241 unsigned long timeout;
2242
2243 /* if device 0 was found in ata_devchk, wait for its
2244 * BSY bit to clear
2245 */
2246 if (dev0)
2247 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2248
2249 /* if device 1 was found in ata_devchk, wait for
2250 * register access, then wait for BSY to clear
2251 */
2252 timeout = jiffies + ATA_TMOUT_BOOT;
2253 while (dev1) {
2254 u8 nsect, lbal;
2255
2256 ap->ops->dev_select(ap, 1);
2257 if (ap->flags & ATA_FLAG_MMIO) {
2258 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2259 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2260 } else {
2261 nsect = inb(ioaddr->nsect_addr);
2262 lbal = inb(ioaddr->lbal_addr);
2263 }
2264 if ((nsect == 1) && (lbal == 1))
2265 break;
2266 if (time_after(jiffies, timeout)) {
2267 dev1 = 0;
2268 break;
2269 }
2270 msleep(50); /* give drive a breather */
2271 }
2272 if (dev1)
2273 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2274
2275 /* is all this really necessary? */
2276 ap->ops->dev_select(ap, 0);
2277 if (dev1)
2278 ap->ops->dev_select(ap, 1);
2279 if (dev0)
2280 ap->ops->dev_select(ap, 0);
2281}
2282
1da177e4
LT
2283static unsigned int ata_bus_softreset(struct ata_port *ap,
2284 unsigned int devmask)
2285{
2286 struct ata_ioports *ioaddr = &ap->ioaddr;
2287
2288 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2289
2290 /* software reset. causes dev0 to be selected */
2291 if (ap->flags & ATA_FLAG_MMIO) {
2292 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2293 udelay(20); /* FIXME: flush */
2294 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2295 udelay(20); /* FIXME: flush */
2296 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2297 } else {
2298 outb(ap->ctl, ioaddr->ctl_addr);
2299 udelay(10);
2300 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2301 udelay(10);
2302 outb(ap->ctl, ioaddr->ctl_addr);
2303 }
2304
2305 /* spec mandates ">= 2ms" before checking status.
2306 * We wait 150ms, because that was the magic delay used for
2307 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2308 * between when the ATA command register is written, and then
2309 * status is checked. Because waiting for "a while" before
2310 * checking status is fine, post SRST, we perform this magic
2311 * delay here as well.
09c7ad79
AC
2312 *
2313 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
2314 */
2315 msleep(150);
2316
2e9edbf8 2317 /* Before we perform post reset processing we want to see if
298a41ca
TH
2318 * the bus shows 0xFF because the odd clown forgets the D7
2319 * pulldown resistor.
2320 */
987d2f05 2321 if (ata_check_status(ap) == 0xFF) {
f15a1daf 2322 ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n");
298a41ca 2323 return AC_ERR_OTHER;
987d2f05 2324 }
09c7ad79 2325
1da177e4
LT
2326 ata_bus_post_reset(ap, devmask);
2327
2328 return 0;
2329}
2330
2331/**
2332 * ata_bus_reset - reset host port and associated ATA channel
2333 * @ap: port to reset
2334 *
2335 * This is typically the first time we actually start issuing
2336 * commands to the ATA channel. We wait for BSY to clear, then
2337 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2338 * result. Determine what devices, if any, are on the channel
2339 * by looking at the device 0/1 error register. Look at the signature
2340 * stored in each device's taskfile registers, to determine if
2341 * the device is ATA or ATAPI.
2342 *
2343 * LOCKING:
0cba632b
JG
2344 * PCI/etc. bus probe sem.
2345 * Obtains host_set lock.
1da177e4
LT
2346 *
2347 * SIDE EFFECTS:
198e0fed 2348 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
2349 */
2350
2351void ata_bus_reset(struct ata_port *ap)
2352{
2353 struct ata_ioports *ioaddr = &ap->ioaddr;
2354 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2355 u8 err;
aec5c3c1 2356 unsigned int dev0, dev1 = 0, devmask = 0;
1da177e4
LT
2357
2358 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2359
2360 /* determine if device 0/1 are present */
2361 if (ap->flags & ATA_FLAG_SATA_RESET)
2362 dev0 = 1;
2363 else {
2364 dev0 = ata_devchk(ap, 0);
2365 if (slave_possible)
2366 dev1 = ata_devchk(ap, 1);
2367 }
2368
2369 if (dev0)
2370 devmask |= (1 << 0);
2371 if (dev1)
2372 devmask |= (1 << 1);
2373
2374 /* select device 0 again */
2375 ap->ops->dev_select(ap, 0);
2376
2377 /* issue bus reset */
2378 if (ap->flags & ATA_FLAG_SRST)
aec5c3c1
TH
2379 if (ata_bus_softreset(ap, devmask))
2380 goto err_out;
1da177e4
LT
2381
2382 /*
2383 * determine by signature whether we have ATA or ATAPI devices
2384 */
b4dc7623 2385 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 2386 if ((slave_possible) && (err != 0x81))
b4dc7623 2387 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
2388
2389 /* re-enable interrupts */
2390 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2391 ata_irq_on(ap);
2392
2393 /* is double-select really necessary? */
2394 if (ap->device[1].class != ATA_DEV_NONE)
2395 ap->ops->dev_select(ap, 1);
2396 if (ap->device[0].class != ATA_DEV_NONE)
2397 ap->ops->dev_select(ap, 0);
2398
2399 /* if no devices were detected, disable this port */
2400 if ((ap->device[0].class == ATA_DEV_NONE) &&
2401 (ap->device[1].class == ATA_DEV_NONE))
2402 goto err_out;
2403
2404 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2405 /* set up device control for ATA_FLAG_SATA_RESET */
2406 if (ap->flags & ATA_FLAG_MMIO)
2407 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2408 else
2409 outb(ap->ctl, ioaddr->ctl_addr);
2410 }
2411
2412 DPRINTK("EXIT\n");
2413 return;
2414
2415err_out:
f15a1daf 2416 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
2417 ap->ops->port_disable(ap);
2418
2419 DPRINTK("EXIT\n");
2420}
2421
7a7921e8
TH
2422static int sata_phy_resume(struct ata_port *ap)
2423{
2424 unsigned long timeout = jiffies + (HZ * 5);
852ee16a 2425 u32 scontrol, sstatus;
81952c54
TH
2426 int rc;
2427
2428 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2429 return rc;
7a7921e8 2430
852ee16a 2431 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
2432
2433 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2434 return rc;
7a7921e8
TH
2435
2436 /* Wait for phy to become ready, if necessary. */
2437 do {
2438 msleep(200);
81952c54
TH
2439 if ((rc = sata_scr_read(ap, SCR_STATUS, &sstatus)))
2440 return rc;
7a7921e8
TH
2441 if ((sstatus & 0xf) != 1)
2442 return 0;
2443 } while (time_before(jiffies, timeout));
2444
81952c54 2445 return -EBUSY;
7a7921e8
TH
2446}
2447
8a19ac89
TH
2448/**
2449 * ata_std_probeinit - initialize probing
2450 * @ap: port to be probed
2451 *
2452 * @ap is about to be probed. Initialize it. This function is
2453 * to be used as standard callback for ata_drive_probe_reset().
3a39746a
TH
2454 *
2455 * NOTE!!! Do not use this function as probeinit if a low level
2456 * driver implements only hardreset. Just pass NULL as probeinit
2457 * in that case. Using this function is probably okay but doing
2458 * so makes reset sequence different from the original
2459 * ->phy_reset implementation and Jeff nervous. :-P
8a19ac89 2460 */
17efc5f7 2461void ata_std_probeinit(struct ata_port *ap)
8a19ac89 2462{
81952c54 2463 u32 scontrol;
1c3fae4d 2464
81952c54
TH
2465 /* resume link */
2466 sata_phy_resume(ap);
1c3fae4d 2467
81952c54
TH
2468 /* init sata_spd_limit to the current value */
2469 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
2470 int spd = (scontrol >> 4) & 0xf;
2471 ap->sata_spd_limit &= (1 << spd) - 1;
3a39746a 2472 }
81952c54
TH
2473
2474 /* wait for device */
2475 if (ata_port_online(ap))
2476 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
8a19ac89
TH
2477}
2478
c2bd5804
TH
2479/**
2480 * ata_std_softreset - reset host port via ATA SRST
2481 * @ap: port to reset
c2bd5804
TH
2482 * @classes: resulting classes of attached devices
2483 *
2484 * Reset host port using ATA SRST. This function is to be used
2485 * as standard callback for ata_drive_*_reset() functions.
2486 *
2487 * LOCKING:
2488 * Kernel thread context (may sleep)
2489 *
2490 * RETURNS:
2491 * 0 on success, -errno otherwise.
2492 */
2bf2cb26 2493int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
c2bd5804
TH
2494{
2495 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2496 unsigned int devmask = 0, err_mask;
2497 u8 err;
2498
2499 DPRINTK("ENTER\n");
2500
81952c54 2501 if (ata_port_offline(ap)) {
3a39746a
TH
2502 classes[0] = ATA_DEV_NONE;
2503 goto out;
2504 }
2505
c2bd5804
TH
2506 /* determine if device 0/1 are present */
2507 if (ata_devchk(ap, 0))
2508 devmask |= (1 << 0);
2509 if (slave_possible && ata_devchk(ap, 1))
2510 devmask |= (1 << 1);
2511
c2bd5804
TH
2512 /* select device 0 again */
2513 ap->ops->dev_select(ap, 0);
2514
2515 /* issue bus reset */
2516 DPRINTK("about to softreset, devmask=%x\n", devmask);
2517 err_mask = ata_bus_softreset(ap, devmask);
2518 if (err_mask) {
f15a1daf
TH
2519 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2520 err_mask);
c2bd5804
TH
2521 return -EIO;
2522 }
2523
2524 /* determine by signature whether we have ATA or ATAPI devices */
2525 classes[0] = ata_dev_try_classify(ap, 0, &err);
2526 if (slave_possible && err != 0x81)
2527 classes[1] = ata_dev_try_classify(ap, 1, &err);
2528
3a39746a 2529 out:
c2bd5804
TH
2530 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2531 return 0;
2532}
2533
2534/**
2535 * sata_std_hardreset - reset host port via SATA phy reset
2536 * @ap: port to reset
c2bd5804
TH
2537 * @class: resulting class of attached device
2538 *
2539 * SATA phy-reset host port using DET bits of SControl register.
2540 * This function is to be used as standard callback for
2541 * ata_drive_*_reset().
2542 *
2543 * LOCKING:
2544 * Kernel thread context (may sleep)
2545 *
2546 * RETURNS:
2547 * 0 on success, -errno otherwise.
2548 */
2bf2cb26 2549int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
c2bd5804 2550{
852ee16a 2551 u32 scontrol;
81952c54 2552 int rc;
852ee16a 2553
c2bd5804
TH
2554 DPRINTK("ENTER\n");
2555
3c567b7d 2556 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
2557 /* SATA spec says nothing about how to reconfigure
2558 * spd. To be on the safe side, turn off phy during
2559 * reconfiguration. This works for at least ICH7 AHCI
2560 * and Sil3124.
2561 */
81952c54
TH
2562 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2563 return rc;
2564
1c3fae4d 2565 scontrol = (scontrol & 0x0f0) | 0x302;
81952c54
TH
2566
2567 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2568 return rc;
1c3fae4d 2569
3c567b7d 2570 sata_set_spd(ap);
1c3fae4d
TH
2571 }
2572
2573 /* issue phy wake/reset */
81952c54
TH
2574 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2575 return rc;
2576
852ee16a 2577 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
2578
2579 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2580 return rc;
c2bd5804 2581
1c3fae4d 2582 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
2583 * 10.4.2 says at least 1 ms.
2584 */
2585 msleep(1);
2586
1c3fae4d 2587 /* bring phy back */
7a7921e8 2588 sata_phy_resume(ap);
c2bd5804 2589
c2bd5804 2590 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 2591 if (ata_port_offline(ap)) {
c2bd5804
TH
2592 *class = ATA_DEV_NONE;
2593 DPRINTK("EXIT, link offline\n");
2594 return 0;
2595 }
2596
2597 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
f15a1daf
TH
2598 ata_port_printk(ap, KERN_ERR,
2599 "COMRESET failed (device not ready)\n");
c2bd5804
TH
2600 return -EIO;
2601 }
2602
3a39746a
TH
2603 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2604
c2bd5804
TH
2605 *class = ata_dev_try_classify(ap, 0, NULL);
2606
2607 DPRINTK("EXIT, class=%u\n", *class);
2608 return 0;
2609}
2610
2611/**
2612 * ata_std_postreset - standard postreset callback
2613 * @ap: the target ata_port
2614 * @classes: classes of attached devices
2615 *
2616 * This function is invoked after a successful reset. Note that
2617 * the device might have been reset more than once using
2618 * different reset methods before postreset is invoked.
c2bd5804
TH
2619 *
2620 * This function is to be used as standard callback for
2621 * ata_drive_*_reset().
2622 *
2623 * LOCKING:
2624 * Kernel thread context (may sleep)
2625 */
2626void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2627{
dc2b3515
TH
2628 u32 serror;
2629
c2bd5804
TH
2630 DPRINTK("ENTER\n");
2631
c2bd5804 2632 /* print link status */
81952c54 2633 sata_print_link_status(ap);
c2bd5804 2634
dc2b3515
TH
2635 /* clear SError */
2636 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2637 sata_scr_write(ap, SCR_ERROR, serror);
2638
3a39746a 2639 /* re-enable interrupts */
e3180499
TH
2640 if (!ap->ops->error_handler) {
2641 /* FIXME: hack. create a hook instead */
2642 if (ap->ioaddr.ctl_addr)
2643 ata_irq_on(ap);
2644 }
c2bd5804
TH
2645
2646 /* is double-select really necessary? */
2647 if (classes[0] != ATA_DEV_NONE)
2648 ap->ops->dev_select(ap, 1);
2649 if (classes[1] != ATA_DEV_NONE)
2650 ap->ops->dev_select(ap, 0);
2651
3a39746a
TH
2652 /* bail out if no device is present */
2653 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2654 DPRINTK("EXIT, no device\n");
2655 return;
2656 }
2657
2658 /* set up device control */
2659 if (ap->ioaddr.ctl_addr) {
2660 if (ap->flags & ATA_FLAG_MMIO)
2661 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2662 else
2663 outb(ap->ctl, ap->ioaddr.ctl_addr);
2664 }
c2bd5804
TH
2665
2666 DPRINTK("EXIT\n");
2667}
2668
2669/**
2670 * ata_std_probe_reset - standard probe reset method
2671 * @ap: prot to perform probe-reset
2672 * @classes: resulting classes of attached devices
2673 *
2674 * The stock off-the-shelf ->probe_reset method.
2675 *
2676 * LOCKING:
2677 * Kernel thread context (may sleep)
2678 *
2679 * RETURNS:
2680 * 0 on success, -errno otherwise.
2681 */
2682int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2683{
2684 ata_reset_fn_t hardreset;
2685
2686 hardreset = NULL;
81952c54 2687 if (sata_scr_valid(ap))
c2bd5804
TH
2688 hardreset = sata_std_hardreset;
2689
8a19ac89 2690 return ata_drive_probe_reset(ap, ata_std_probeinit,
7944ea95 2691 ata_std_softreset, hardreset,
c2bd5804
TH
2692 ata_std_postreset, classes);
2693}
2694
2bf2cb26 2695int ata_do_reset(struct ata_port *ap, ata_reset_fn_t reset,
96bd39ec 2696 unsigned int *classes)
a62c0fc5
TH
2697{
2698 int i, rc;
2699
2700 for (i = 0; i < ATA_MAX_DEVICES; i++)
2701 classes[i] = ATA_DEV_UNKNOWN;
2702
2bf2cb26 2703 rc = reset(ap, classes);
a62c0fc5
TH
2704 if (rc)
2705 return rc;
2706
2707 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2708 * is complete and convert all ATA_DEV_UNKNOWN to
2709 * ATA_DEV_NONE.
2710 */
2711 for (i = 0; i < ATA_MAX_DEVICES; i++)
2712 if (classes[i] != ATA_DEV_UNKNOWN)
2713 break;
2714
2715 if (i < ATA_MAX_DEVICES)
2716 for (i = 0; i < ATA_MAX_DEVICES; i++)
2717 if (classes[i] == ATA_DEV_UNKNOWN)
2718 classes[i] = ATA_DEV_NONE;
2719
9974e7cc 2720 return 0;
a62c0fc5
TH
2721}
2722
2723/**
2724 * ata_drive_probe_reset - Perform probe reset with given methods
2725 * @ap: port to reset
7944ea95 2726 * @probeinit: probeinit method (can be NULL)
a62c0fc5
TH
2727 * @softreset: softreset method (can be NULL)
2728 * @hardreset: hardreset method (can be NULL)
2729 * @postreset: postreset method (can be NULL)
2730 * @classes: resulting classes of attached devices
2731 *
2732 * Reset the specified port and classify attached devices using
2733 * given methods. This function prefers softreset but tries all
2734 * possible reset sequences to reset and classify devices. This
2735 * function is intended to be used for constructing ->probe_reset
2736 * callback by low level drivers.
2737 *
2738 * Reset methods should follow the following rules.
2739 *
2740 * - Return 0 on sucess, -errno on failure.
2741 * - If classification is supported, fill classes[] with
2742 * recognized class codes.
2743 * - If classification is not supported, leave classes[] alone.
a62c0fc5
TH
2744 *
2745 * LOCKING:
2746 * Kernel thread context (may sleep)
2747 *
2748 * RETURNS:
2749 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2750 * if classification fails, and any error code from reset
2751 * methods.
2752 */
7944ea95 2753int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
a62c0fc5
TH
2754 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2755 ata_postreset_fn_t postreset, unsigned int *classes)
2756{
2757 int rc = -EINVAL;
2758
e3180499
TH
2759 ata_eh_freeze_port(ap);
2760
7944ea95
TH
2761 if (probeinit)
2762 probeinit(ap);
2763
3c567b7d 2764 if (softreset && !sata_set_spd_needed(ap)) {
96bd39ec 2765 rc = ata_do_reset(ap, softreset, classes);
9974e7cc
TH
2766 if (rc == 0 && classes[0] != ATA_DEV_UNKNOWN)
2767 goto done;
f15a1daf
TH
2768 ata_port_printk(ap, KERN_INFO, "softreset failed, "
2769 "will try hardreset in 5 secs\n");
edbabd86 2770 ssleep(5);
a62c0fc5
TH
2771 }
2772
2773 if (!hardreset)
9974e7cc 2774 goto done;
a62c0fc5 2775
90dac02c 2776 while (1) {
96bd39ec 2777 rc = ata_do_reset(ap, hardreset, classes);
90dac02c
TH
2778 if (rc == 0) {
2779 if (classes[0] != ATA_DEV_UNKNOWN)
2780 goto done;
2781 break;
2782 }
2783
3c567b7d 2784 if (sata_down_spd_limit(ap))
90dac02c 2785 goto done;
edbabd86 2786
f15a1daf
TH
2787 ata_port_printk(ap, KERN_INFO, "hardreset failed, "
2788 "will retry in 5 secs\n");
edbabd86 2789 ssleep(5);
90dac02c 2790 }
a62c0fc5 2791
edbabd86 2792 if (softreset) {
f15a1daf
TH
2793 ata_port_printk(ap, KERN_INFO,
2794 "hardreset succeeded without classification, "
2795 "will retry softreset in 5 secs\n");
edbabd86
TH
2796 ssleep(5);
2797
96bd39ec 2798 rc = ata_do_reset(ap, softreset, classes);
edbabd86 2799 }
a62c0fc5 2800
9974e7cc 2801 done:
96bd39ec
TH
2802 if (rc == 0) {
2803 if (postreset)
2804 postreset(ap, classes);
e3180499
TH
2805
2806 ata_eh_thaw_port(ap);
2807
96bd39ec
TH
2808 if (classes[0] == ATA_DEV_UNKNOWN)
2809 rc = -ENODEV;
2810 }
a62c0fc5
TH
2811 return rc;
2812}
2813
623a3128
TH
2814/**
2815 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
2816 * @dev: device to compare against
2817 * @new_class: class of the new device
2818 * @new_id: IDENTIFY page of the new device
2819 *
2820 * Compare @new_class and @new_id against @dev and determine
2821 * whether @dev is the device indicated by @new_class and
2822 * @new_id.
2823 *
2824 * LOCKING:
2825 * None.
2826 *
2827 * RETURNS:
2828 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2829 */
3373efd8
TH
2830static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2831 const u16 *new_id)
623a3128
TH
2832{
2833 const u16 *old_id = dev->id;
2834 unsigned char model[2][41], serial[2][21];
2835 u64 new_n_sectors;
2836
2837 if (dev->class != new_class) {
f15a1daf
TH
2838 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2839 dev->class, new_class);
623a3128
TH
2840 return 0;
2841 }
2842
2843 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2844 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2845 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2846 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2847 new_n_sectors = ata_id_n_sectors(new_id);
2848
2849 if (strcmp(model[0], model[1])) {
f15a1daf
TH
2850 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
2851 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
2852 return 0;
2853 }
2854
2855 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
2856 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
2857 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
2858 return 0;
2859 }
2860
2861 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
f15a1daf
TH
2862 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
2863 "%llu != %llu\n",
2864 (unsigned long long)dev->n_sectors,
2865 (unsigned long long)new_n_sectors);
623a3128
TH
2866 return 0;
2867 }
2868
2869 return 1;
2870}
2871
2872/**
2873 * ata_dev_revalidate - Revalidate ATA device
623a3128
TH
2874 * @dev: device to revalidate
2875 * @post_reset: is this revalidation after reset?
2876 *
2877 * Re-read IDENTIFY page and make sure @dev is still attached to
2878 * the port.
2879 *
2880 * LOCKING:
2881 * Kernel thread context (may sleep)
2882 *
2883 * RETURNS:
2884 * 0 on success, negative errno otherwise
2885 */
3373efd8 2886int ata_dev_revalidate(struct ata_device *dev, int post_reset)
623a3128 2887{
5eb45c02 2888 unsigned int class = dev->class;
f15a1daf 2889 u16 *id = (void *)dev->ap->sector_buf;
623a3128
TH
2890 int rc;
2891
5eb45c02
TH
2892 if (!ata_dev_enabled(dev)) {
2893 rc = -ENODEV;
2894 goto fail;
2895 }
623a3128 2896
fe635c7e 2897 /* read ID data */
3373efd8 2898 rc = ata_dev_read_id(dev, &class, post_reset, id);
623a3128
TH
2899 if (rc)
2900 goto fail;
2901
2902 /* is the device still there? */
3373efd8 2903 if (!ata_dev_same_device(dev, class, id)) {
623a3128
TH
2904 rc = -ENODEV;
2905 goto fail;
2906 }
2907
fe635c7e 2908 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
623a3128
TH
2909
2910 /* configure device according to the new ID */
3373efd8 2911 rc = ata_dev_configure(dev, 0);
5eb45c02
TH
2912 if (rc == 0)
2913 return 0;
623a3128
TH
2914
2915 fail:
f15a1daf 2916 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
2917 return rc;
2918}
2919
98ac62de 2920static const char * const ata_dma_blacklist [] = {
f4b15fef
AC
2921 "WDC AC11000H", NULL,
2922 "WDC AC22100H", NULL,
2923 "WDC AC32500H", NULL,
2924 "WDC AC33100H", NULL,
2925 "WDC AC31600H", NULL,
2926 "WDC AC32100H", "24.09P07",
2927 "WDC AC23200L", "21.10N21",
2928 "Compaq CRD-8241B", NULL,
2929 "CRD-8400B", NULL,
2930 "CRD-8480B", NULL,
2931 "CRD-8482B", NULL,
2932 "CRD-84", NULL,
2933 "SanDisk SDP3B", NULL,
2934 "SanDisk SDP3B-64", NULL,
2935 "SANYO CD-ROM CRD", NULL,
2936 "HITACHI CDR-8", NULL,
2e9edbf8 2937 "HITACHI CDR-8335", NULL,
f4b15fef 2938 "HITACHI CDR-8435", NULL,
2e9edbf8
JG
2939 "Toshiba CD-ROM XM-6202B", NULL,
2940 "TOSHIBA CD-ROM XM-1702BC", NULL,
2941 "CD-532E-A", NULL,
2942 "E-IDE CD-ROM CR-840", NULL,
2943 "CD-ROM Drive/F5A", NULL,
2944 "WPI CDD-820", NULL,
f4b15fef 2945 "SAMSUNG CD-ROM SC-148C", NULL,
2e9edbf8 2946 "SAMSUNG CD-ROM SC", NULL,
f4b15fef
AC
2947 "SanDisk SDP3B-64", NULL,
2948 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2949 "_NEC DV5800A", NULL,
2950 "SAMSUNG CD-ROM SN-124", "N001"
1da177e4 2951};
2e9edbf8 2952
f4b15fef
AC
2953static int ata_strim(char *s, size_t len)
2954{
2955 len = strnlen(s, len);
2956
2957 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2958 while ((len > 0) && (s[len - 1] == ' ')) {
2959 len--;
2960 s[len] = 0;
2961 }
2962 return len;
2963}
1da177e4 2964
057ace5e 2965static int ata_dma_blacklisted(const struct ata_device *dev)
1da177e4 2966{
f4b15fef
AC
2967 unsigned char model_num[40];
2968 unsigned char model_rev[16];
2969 unsigned int nlen, rlen;
1da177e4
LT
2970 int i;
2971
f4b15fef
AC
2972 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2973 sizeof(model_num));
2974 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2975 sizeof(model_rev));
2976 nlen = ata_strim(model_num, sizeof(model_num));
2977 rlen = ata_strim(model_rev, sizeof(model_rev));
1da177e4 2978
f4b15fef
AC
2979 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2980 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2981 if (ata_dma_blacklist[i+1] == NULL)
2982 return 1;
2983 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2984 return 1;
2985 }
2986 }
1da177e4
LT
2987 return 0;
2988}
2989
a6d5a51c
TH
2990/**
2991 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
2992 * @dev: Device to compute xfermask for
2993 *
acf356b1
TH
2994 * Compute supported xfermask of @dev and store it in
2995 * dev->*_mask. This function is responsible for applying all
2996 * known limits including host controller limits, device
2997 * blacklist, etc...
a6d5a51c 2998 *
600511e8
TH
2999 * FIXME: The current implementation limits all transfer modes to
3000 * the fastest of the lowested device on the port. This is not
05c8e0ac 3001 * required on most controllers.
600511e8 3002 *
a6d5a51c
TH
3003 * LOCKING:
3004 * None.
a6d5a51c 3005 */
3373efd8 3006static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 3007{
3373efd8 3008 struct ata_port *ap = dev->ap;
5444a6f4 3009 struct ata_host_set *hs = ap->host_set;
a6d5a51c
TH
3010 unsigned long xfer_mask;
3011 int i;
1da177e4 3012
565083e1
TH
3013 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3014 ap->mwdma_mask, ap->udma_mask);
3015
3016 /* Apply cable rule here. Don't apply it early because when
3017 * we handle hot plug the cable type can itself change.
3018 */
3019 if (ap->cbl == ATA_CBL_PATA40)
3020 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
1da177e4 3021
5444a6f4 3022 /* FIXME: Use port-wide xfermask for now */
a6d5a51c
TH
3023 for (i = 0; i < ATA_MAX_DEVICES; i++) {
3024 struct ata_device *d = &ap->device[i];
565083e1
TH
3025
3026 if (ata_dev_absent(d))
3027 continue;
3028
3029 if (ata_dev_disabled(d)) {
3030 /* to avoid violating device selection timing */
3031 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3032 UINT_MAX, UINT_MAX);
a6d5a51c 3033 continue;
565083e1
TH
3034 }
3035
3036 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3037 d->mwdma_mask, d->udma_mask);
a6d5a51c
TH
3038 xfer_mask &= ata_id_xfermask(d->id);
3039 if (ata_dma_blacklisted(d))
3040 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
1da177e4
LT
3041 }
3042
a6d5a51c 3043 if (ata_dma_blacklisted(dev))
f15a1daf
TH
3044 ata_dev_printk(dev, KERN_WARNING,
3045 "device is on DMA blacklist, disabling DMA\n");
a6d5a51c 3046
5444a6f4
AC
3047 if (hs->flags & ATA_HOST_SIMPLEX) {
3048 if (hs->simplex_claimed)
3049 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3050 }
565083e1 3051
5444a6f4
AC
3052 if (ap->ops->mode_filter)
3053 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3054
565083e1
TH
3055 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3056 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3057}
3058
1da177e4
LT
3059/**
3060 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3061 * @dev: Device to which command will be sent
3062 *
780a87f7
JG
3063 * Issue SET FEATURES - XFER MODE command to device @dev
3064 * on port @ap.
3065 *
1da177e4 3066 * LOCKING:
0cba632b 3067 * PCI/etc. bus probe sem.
83206a29
TH
3068 *
3069 * RETURNS:
3070 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3071 */
3072
3373efd8 3073static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3074{
a0123703 3075 struct ata_taskfile tf;
83206a29 3076 unsigned int err_mask;
1da177e4
LT
3077
3078 /* set up set-features taskfile */
3079 DPRINTK("set features - xfer mode\n");
3080
3373efd8 3081 ata_tf_init(dev, &tf);
a0123703
TH
3082 tf.command = ATA_CMD_SET_FEATURES;
3083 tf.feature = SETFEATURES_XFER;
3084 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3085 tf.protocol = ATA_PROT_NODATA;
3086 tf.nsect = dev->xfer_mode;
1da177e4 3087
3373efd8 3088 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3089
83206a29
TH
3090 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3091 return err_mask;
1da177e4
LT
3092}
3093
8bf62ece
AL
3094/**
3095 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3096 * @dev: Device to which command will be sent
e2a7f77a
RD
3097 * @heads: Number of heads (taskfile parameter)
3098 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
3099 *
3100 * LOCKING:
6aff8f1f
TH
3101 * Kernel thread context (may sleep)
3102 *
3103 * RETURNS:
3104 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3105 */
3373efd8
TH
3106static unsigned int ata_dev_init_params(struct ata_device *dev,
3107 u16 heads, u16 sectors)
8bf62ece 3108{
a0123703 3109 struct ata_taskfile tf;
6aff8f1f 3110 unsigned int err_mask;
8bf62ece
AL
3111
3112 /* Number of sectors per track 1-255. Number of heads 1-16 */
3113 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3114 return AC_ERR_INVALID;
8bf62ece
AL
3115
3116 /* set up init dev params taskfile */
3117 DPRINTK("init dev params \n");
3118
3373efd8 3119 ata_tf_init(dev, &tf);
a0123703
TH
3120 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3121 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3122 tf.protocol = ATA_PROT_NODATA;
3123 tf.nsect = sectors;
3124 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3125
3373efd8 3126 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3127
6aff8f1f
TH
3128 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3129 return err_mask;
8bf62ece
AL
3130}
3131
1da177e4 3132/**
0cba632b
JG
3133 * ata_sg_clean - Unmap DMA memory associated with command
3134 * @qc: Command containing DMA memory to be released
3135 *
3136 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3137 *
3138 * LOCKING:
0cba632b 3139 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3140 */
3141
3142static void ata_sg_clean(struct ata_queued_cmd *qc)
3143{
3144 struct ata_port *ap = qc->ap;
cedc9a47 3145 struct scatterlist *sg = qc->__sg;
1da177e4 3146 int dir = qc->dma_dir;
cedc9a47 3147 void *pad_buf = NULL;
1da177e4 3148
a4631474
TH
3149 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3150 WARN_ON(sg == NULL);
1da177e4
LT
3151
3152 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 3153 WARN_ON(qc->n_elem > 1);
1da177e4 3154
2c13b7ce 3155 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 3156
cedc9a47
JG
3157 /* if we padded the buffer out to 32-bit bound, and data
3158 * xfer direction is from-device, we must copy from the
3159 * pad buffer back into the supplied buffer
3160 */
3161 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3162 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3163
3164 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 3165 if (qc->n_elem)
2f1f610b 3166 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
3167 /* restore last sg */
3168 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3169 if (pad_buf) {
3170 struct scatterlist *psg = &qc->pad_sgent;
3171 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3172 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 3173 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3174 }
3175 } else {
2e242fa9 3176 if (qc->n_elem)
2f1f610b 3177 dma_unmap_single(ap->dev,
e1410f2d
JG
3178 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3179 dir);
cedc9a47
JG
3180 /* restore sg */
3181 sg->length += qc->pad_len;
3182 if (pad_buf)
3183 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3184 pad_buf, qc->pad_len);
3185 }
1da177e4
LT
3186
3187 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 3188 qc->__sg = NULL;
1da177e4
LT
3189}
3190
3191/**
3192 * ata_fill_sg - Fill PCI IDE PRD table
3193 * @qc: Metadata associated with taskfile to be transferred
3194 *
780a87f7
JG
3195 * Fill PCI IDE PRD (scatter-gather) table with segments
3196 * associated with the current disk command.
3197 *
1da177e4 3198 * LOCKING:
780a87f7 3199 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3200 *
3201 */
3202static void ata_fill_sg(struct ata_queued_cmd *qc)
3203{
1da177e4 3204 struct ata_port *ap = qc->ap;
cedc9a47
JG
3205 struct scatterlist *sg;
3206 unsigned int idx;
1da177e4 3207
a4631474 3208 WARN_ON(qc->__sg == NULL);
f131883e 3209 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
3210
3211 idx = 0;
cedc9a47 3212 ata_for_each_sg(sg, qc) {
1da177e4
LT
3213 u32 addr, offset;
3214 u32 sg_len, len;
3215
3216 /* determine if physical DMA addr spans 64K boundary.
3217 * Note h/w doesn't support 64-bit, so we unconditionally
3218 * truncate dma_addr_t to u32.
3219 */
3220 addr = (u32) sg_dma_address(sg);
3221 sg_len = sg_dma_len(sg);
3222
3223 while (sg_len) {
3224 offset = addr & 0xffff;
3225 len = sg_len;
3226 if ((offset + sg_len) > 0x10000)
3227 len = 0x10000 - offset;
3228
3229 ap->prd[idx].addr = cpu_to_le32(addr);
3230 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3231 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3232
3233 idx++;
3234 sg_len -= len;
3235 addr += len;
3236 }
3237 }
3238
3239 if (idx)
3240 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3241}
3242/**
3243 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3244 * @qc: Metadata associated with taskfile to check
3245 *
780a87f7
JG
3246 * Allow low-level driver to filter ATA PACKET commands, returning
3247 * a status indicating whether or not it is OK to use DMA for the
3248 * supplied PACKET command.
3249 *
1da177e4 3250 * LOCKING:
0cba632b
JG
3251 * spin_lock_irqsave(host_set lock)
3252 *
1da177e4
LT
3253 * RETURNS: 0 when ATAPI DMA can be used
3254 * nonzero otherwise
3255 */
3256int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3257{
3258 struct ata_port *ap = qc->ap;
3259 int rc = 0; /* Assume ATAPI DMA is OK by default */
3260
3261 if (ap->ops->check_atapi_dma)
3262 rc = ap->ops->check_atapi_dma(qc);
3263
c2bbc551
AL
3264 /* We don't support polling DMA.
3265 * Use PIO if the LLDD handles only interrupts in
3266 * the HSM_ST_LAST state and the ATAPI device
3267 * generates CDB interrupts.
3268 */
3269 if ((ap->flags & ATA_FLAG_PIO_POLLING) &&
3270 (qc->dev->flags & ATA_DFLAG_CDB_INTR))
3271 rc = 1;
3272
1da177e4
LT
3273 return rc;
3274}
3275/**
3276 * ata_qc_prep - Prepare taskfile for submission
3277 * @qc: Metadata associated with taskfile to be prepared
3278 *
780a87f7
JG
3279 * Prepare ATA taskfile for submission.
3280 *
1da177e4
LT
3281 * LOCKING:
3282 * spin_lock_irqsave(host_set lock)
3283 */
3284void ata_qc_prep(struct ata_queued_cmd *qc)
3285{
3286 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3287 return;
3288
3289 ata_fill_sg(qc);
3290}
3291
e46834cd
BK
3292void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3293
0cba632b
JG
3294/**
3295 * ata_sg_init_one - Associate command with memory buffer
3296 * @qc: Command to be associated
3297 * @buf: Memory buffer
3298 * @buflen: Length of memory buffer, in bytes.
3299 *
3300 * Initialize the data-related elements of queued_cmd @qc
3301 * to point to a single memory buffer, @buf of byte length @buflen.
3302 *
3303 * LOCKING:
3304 * spin_lock_irqsave(host_set lock)
3305 */
3306
1da177e4
LT
3307void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3308{
3309 struct scatterlist *sg;
3310
3311 qc->flags |= ATA_QCFLAG_SINGLE;
3312
3313 memset(&qc->sgent, 0, sizeof(qc->sgent));
cedc9a47 3314 qc->__sg = &qc->sgent;
1da177e4 3315 qc->n_elem = 1;
cedc9a47 3316 qc->orig_n_elem = 1;
1da177e4
LT
3317 qc->buf_virt = buf;
3318
cedc9a47 3319 sg = qc->__sg;
f0612bbc 3320 sg_init_one(sg, buf, buflen);
1da177e4
LT
3321}
3322
0cba632b
JG
3323/**
3324 * ata_sg_init - Associate command with scatter-gather table.
3325 * @qc: Command to be associated
3326 * @sg: Scatter-gather table.
3327 * @n_elem: Number of elements in s/g table.
3328 *
3329 * Initialize the data-related elements of queued_cmd @qc
3330 * to point to a scatter-gather table @sg, containing @n_elem
3331 * elements.
3332 *
3333 * LOCKING:
3334 * spin_lock_irqsave(host_set lock)
3335 */
3336
1da177e4
LT
3337void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3338 unsigned int n_elem)
3339{
3340 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 3341 qc->__sg = sg;
1da177e4 3342 qc->n_elem = n_elem;
cedc9a47 3343 qc->orig_n_elem = n_elem;
1da177e4
LT
3344}
3345
3346/**
0cba632b
JG
3347 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3348 * @qc: Command with memory buffer to be mapped.
3349 *
3350 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
3351 *
3352 * LOCKING:
3353 * spin_lock_irqsave(host_set lock)
3354 *
3355 * RETURNS:
0cba632b 3356 * Zero on success, negative on error.
1da177e4
LT
3357 */
3358
3359static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3360{
3361 struct ata_port *ap = qc->ap;
3362 int dir = qc->dma_dir;
cedc9a47 3363 struct scatterlist *sg = qc->__sg;
1da177e4 3364 dma_addr_t dma_address;
2e242fa9 3365 int trim_sg = 0;
1da177e4 3366
cedc9a47
JG
3367 /* we must lengthen transfers to end on a 32-bit boundary */
3368 qc->pad_len = sg->length & 3;
3369 if (qc->pad_len) {
3370 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3371 struct scatterlist *psg = &qc->pad_sgent;
3372
a4631474 3373 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3374
3375 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3376
3377 if (qc->tf.flags & ATA_TFLAG_WRITE)
3378 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3379 qc->pad_len);
3380
3381 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3382 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3383 /* trim sg */
3384 sg->length -= qc->pad_len;
2e242fa9
TH
3385 if (sg->length == 0)
3386 trim_sg = 1;
cedc9a47
JG
3387
3388 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3389 sg->length, qc->pad_len);
3390 }
3391
2e242fa9
TH
3392 if (trim_sg) {
3393 qc->n_elem--;
e1410f2d
JG
3394 goto skip_map;
3395 }
3396
2f1f610b 3397 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 3398 sg->length, dir);
537a95d9
TH
3399 if (dma_mapping_error(dma_address)) {
3400 /* restore sg */
3401 sg->length += qc->pad_len;
1da177e4 3402 return -1;
537a95d9 3403 }
1da177e4
LT
3404
3405 sg_dma_address(sg) = dma_address;
32529e01 3406 sg_dma_len(sg) = sg->length;
1da177e4 3407
2e242fa9 3408skip_map:
1da177e4
LT
3409 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3410 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3411
3412 return 0;
3413}
3414
3415/**
0cba632b
JG
3416 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3417 * @qc: Command with scatter-gather table to be mapped.
3418 *
3419 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
3420 *
3421 * LOCKING:
3422 * spin_lock_irqsave(host_set lock)
3423 *
3424 * RETURNS:
0cba632b 3425 * Zero on success, negative on error.
1da177e4
LT
3426 *
3427 */
3428
3429static int ata_sg_setup(struct ata_queued_cmd *qc)
3430{
3431 struct ata_port *ap = qc->ap;
cedc9a47
JG
3432 struct scatterlist *sg = qc->__sg;
3433 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 3434 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
3435
3436 VPRINTK("ENTER, ata%u\n", ap->id);
a4631474 3437 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 3438
cedc9a47
JG
3439 /* we must lengthen transfers to end on a 32-bit boundary */
3440 qc->pad_len = lsg->length & 3;
3441 if (qc->pad_len) {
3442 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3443 struct scatterlist *psg = &qc->pad_sgent;
3444 unsigned int offset;
3445
a4631474 3446 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3447
3448 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3449
3450 /*
3451 * psg->page/offset are used to copy to-be-written
3452 * data in this function or read data in ata_sg_clean.
3453 */
3454 offset = lsg->offset + lsg->length - qc->pad_len;
3455 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3456 psg->offset = offset_in_page(offset);
3457
3458 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3459 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3460 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 3461 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3462 }
3463
3464 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3465 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3466 /* trim last sg */
3467 lsg->length -= qc->pad_len;
e1410f2d
JG
3468 if (lsg->length == 0)
3469 trim_sg = 1;
cedc9a47
JG
3470
3471 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3472 qc->n_elem - 1, lsg->length, qc->pad_len);
3473 }
3474
e1410f2d
JG
3475 pre_n_elem = qc->n_elem;
3476 if (trim_sg && pre_n_elem)
3477 pre_n_elem--;
3478
3479 if (!pre_n_elem) {
3480 n_elem = 0;
3481 goto skip_map;
3482 }
3483
1da177e4 3484 dir = qc->dma_dir;
2f1f610b 3485 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
3486 if (n_elem < 1) {
3487 /* restore last sg */
3488 lsg->length += qc->pad_len;
1da177e4 3489 return -1;
537a95d9 3490 }
1da177e4
LT
3491
3492 DPRINTK("%d sg elements mapped\n", n_elem);
3493
e1410f2d 3494skip_map:
1da177e4
LT
3495 qc->n_elem = n_elem;
3496
3497 return 0;
3498}
3499
0baab86b 3500/**
c893a3ae 3501 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
3502 * @buf: Buffer to swap
3503 * @buf_words: Number of 16-bit words in buffer.
3504 *
3505 * Swap halves of 16-bit words if needed to convert from
3506 * little-endian byte order to native cpu byte order, or
3507 * vice-versa.
3508 *
3509 * LOCKING:
6f0ef4fa 3510 * Inherited from caller.
0baab86b 3511 */
1da177e4
LT
3512void swap_buf_le16(u16 *buf, unsigned int buf_words)
3513{
3514#ifdef __BIG_ENDIAN
3515 unsigned int i;
3516
3517 for (i = 0; i < buf_words; i++)
3518 buf[i] = le16_to_cpu(buf[i]);
3519#endif /* __BIG_ENDIAN */
3520}
3521
6ae4cfb5
AL
3522/**
3523 * ata_mmio_data_xfer - Transfer data by MMIO
3524 * @ap: port to read/write
3525 * @buf: data buffer
3526 * @buflen: buffer length
344babaa 3527 * @write_data: read/write
6ae4cfb5
AL
3528 *
3529 * Transfer data from/to the device data register by MMIO.
3530 *
3531 * LOCKING:
3532 * Inherited from caller.
6ae4cfb5
AL
3533 */
3534
1da177e4
LT
3535static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3536 unsigned int buflen, int write_data)
3537{
3538 unsigned int i;
3539 unsigned int words = buflen >> 1;
3540 u16 *buf16 = (u16 *) buf;
3541 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3542
6ae4cfb5 3543 /* Transfer multiple of 2 bytes */
1da177e4
LT
3544 if (write_data) {
3545 for (i = 0; i < words; i++)
3546 writew(le16_to_cpu(buf16[i]), mmio);
3547 } else {
3548 for (i = 0; i < words; i++)
3549 buf16[i] = cpu_to_le16(readw(mmio));
3550 }
6ae4cfb5
AL
3551
3552 /* Transfer trailing 1 byte, if any. */
3553 if (unlikely(buflen & 0x01)) {
3554 u16 align_buf[1] = { 0 };
3555 unsigned char *trailing_buf = buf + buflen - 1;
3556
3557 if (write_data) {
3558 memcpy(align_buf, trailing_buf, 1);
3559 writew(le16_to_cpu(align_buf[0]), mmio);
3560 } else {
3561 align_buf[0] = cpu_to_le16(readw(mmio));
3562 memcpy(trailing_buf, align_buf, 1);
3563 }
3564 }
1da177e4
LT
3565}
3566
6ae4cfb5
AL
3567/**
3568 * ata_pio_data_xfer - Transfer data by PIO
3569 * @ap: port to read/write
3570 * @buf: data buffer
3571 * @buflen: buffer length
344babaa 3572 * @write_data: read/write
6ae4cfb5
AL
3573 *
3574 * Transfer data from/to the device data register by PIO.
3575 *
3576 * LOCKING:
3577 * Inherited from caller.
6ae4cfb5
AL
3578 */
3579
1da177e4
LT
3580static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3581 unsigned int buflen, int write_data)
3582{
6ae4cfb5 3583 unsigned int words = buflen >> 1;
1da177e4 3584
6ae4cfb5 3585 /* Transfer multiple of 2 bytes */
1da177e4 3586 if (write_data)
6ae4cfb5 3587 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 3588 else
6ae4cfb5
AL
3589 insw(ap->ioaddr.data_addr, buf, words);
3590
3591 /* Transfer trailing 1 byte, if any. */
3592 if (unlikely(buflen & 0x01)) {
3593 u16 align_buf[1] = { 0 };
3594 unsigned char *trailing_buf = buf + buflen - 1;
3595
3596 if (write_data) {
3597 memcpy(align_buf, trailing_buf, 1);
3598 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3599 } else {
3600 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3601 memcpy(trailing_buf, align_buf, 1);
3602 }
3603 }
1da177e4
LT
3604}
3605
6ae4cfb5
AL
3606/**
3607 * ata_data_xfer - Transfer data from/to the data register.
3608 * @ap: port to read/write
3609 * @buf: data buffer
3610 * @buflen: buffer length
3611 * @do_write: read/write
3612 *
3613 * Transfer data from/to the device data register.
3614 *
3615 * LOCKING:
3616 * Inherited from caller.
6ae4cfb5
AL
3617 */
3618
1da177e4
LT
3619static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3620 unsigned int buflen, int do_write)
3621{
a1bd9e68
AC
3622 /* Make the crap hardware pay the costs not the good stuff */
3623 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3624 unsigned long flags;
3625 local_irq_save(flags);
3626 if (ap->flags & ATA_FLAG_MMIO)
3627 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3628 else
3629 ata_pio_data_xfer(ap, buf, buflen, do_write);
3630 local_irq_restore(flags);
3631 } else {
3632 if (ap->flags & ATA_FLAG_MMIO)
3633 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3634 else
3635 ata_pio_data_xfer(ap, buf, buflen, do_write);
3636 }
1da177e4
LT
3637}
3638
6ae4cfb5
AL
3639/**
3640 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3641 * @qc: Command on going
3642 *
3643 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3644 *
3645 * LOCKING:
3646 * Inherited from caller.
3647 */
3648
1da177e4
LT
3649static void ata_pio_sector(struct ata_queued_cmd *qc)
3650{
3651 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3652 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3653 struct ata_port *ap = qc->ap;
3654 struct page *page;
3655 unsigned int offset;
3656 unsigned char *buf;
3657
3658 if (qc->cursect == (qc->nsect - 1))
14be71f4 3659 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3660
3661 page = sg[qc->cursg].page;
3662 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3663
3664 /* get the current page and offset */
3665 page = nth_page(page, (offset >> PAGE_SHIFT));
3666 offset %= PAGE_SIZE;
3667
1da177e4
LT
3668 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3669
91b8b313
AL
3670 if (PageHighMem(page)) {
3671 unsigned long flags;
3672
3673 local_irq_save(flags);
3674 buf = kmap_atomic(page, KM_IRQ0);
083958d3 3675
91b8b313
AL
3676 /* do the actual data transfer */
3677 ata_data_xfer(ap, buf + offset, ATA_SECT_SIZE, do_write);
1da177e4 3678
91b8b313
AL
3679 kunmap_atomic(buf, KM_IRQ0);
3680 local_irq_restore(flags);
3681 } else {
3682 buf = page_address(page);
3683 ata_data_xfer(ap, buf + offset, ATA_SECT_SIZE, do_write);
3684 }
1da177e4
LT
3685
3686 qc->cursect++;
3687 qc->cursg_ofs++;
3688
32529e01 3689 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
1da177e4
LT
3690 qc->cursg++;
3691 qc->cursg_ofs = 0;
3692 }
1da177e4 3693}
1da177e4 3694
07f6f7d0
AL
3695/**
3696 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3697 * @qc: Command on going
3698 *
c81e29b4 3699 * Transfer one or many ATA_SECT_SIZE of data from/to the
07f6f7d0
AL
3700 * ATA device for the DRQ request.
3701 *
3702 * LOCKING:
3703 * Inherited from caller.
3704 */
1da177e4 3705
07f6f7d0
AL
3706static void ata_pio_sectors(struct ata_queued_cmd *qc)
3707{
3708 if (is_multi_taskfile(&qc->tf)) {
3709 /* READ/WRITE MULTIPLE */
3710 unsigned int nsect;
3711
587005de 3712 WARN_ON(qc->dev->multi_count == 0);
1da177e4 3713
07f6f7d0
AL
3714 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3715 while (nsect--)
3716 ata_pio_sector(qc);
3717 } else
3718 ata_pio_sector(qc);
3719}
3720
c71c1857
AL
3721/**
3722 * atapi_send_cdb - Write CDB bytes to hardware
3723 * @ap: Port to which ATAPI device is attached.
3724 * @qc: Taskfile currently active
3725 *
3726 * When device has indicated its readiness to accept
3727 * a CDB, this function is called. Send the CDB.
3728 *
3729 * LOCKING:
3730 * caller.
3731 */
3732
3733static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3734{
3735 /* send SCSI cdb */
3736 DPRINTK("send cdb\n");
db024d53 3737 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 3738
db024d53 3739 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
3740 ata_altstatus(ap); /* flush */
3741
3742 switch (qc->tf.protocol) {
3743 case ATA_PROT_ATAPI:
3744 ap->hsm_task_state = HSM_ST;
3745 break;
3746 case ATA_PROT_ATAPI_NODATA:
3747 ap->hsm_task_state = HSM_ST_LAST;
3748 break;
3749 case ATA_PROT_ATAPI_DMA:
3750 ap->hsm_task_state = HSM_ST_LAST;
3751 /* initiate bmdma */
3752 ap->ops->bmdma_start(qc);
3753 break;
3754 }
1da177e4
LT
3755}
3756
6ae4cfb5
AL
3757/**
3758 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3759 * @qc: Command on going
3760 * @bytes: number of bytes
3761 *
3762 * Transfer Transfer data from/to the ATAPI device.
3763 *
3764 * LOCKING:
3765 * Inherited from caller.
3766 *
3767 */
3768
1da177e4
LT
3769static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3770{
3771 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3772 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3773 struct ata_port *ap = qc->ap;
3774 struct page *page;
3775 unsigned char *buf;
3776 unsigned int offset, count;
3777
563a6e1f 3778 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 3779 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3780
3781next_sg:
563a6e1f 3782 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 3783 /*
563a6e1f
AL
3784 * The end of qc->sg is reached and the device expects
3785 * more data to transfer. In order not to overrun qc->sg
3786 * and fulfill length specified in the byte count register,
3787 * - for read case, discard trailing data from the device
3788 * - for write case, padding zero data to the device
3789 */
3790 u16 pad_buf[1] = { 0 };
3791 unsigned int words = bytes >> 1;
3792 unsigned int i;
3793
3794 if (words) /* warning if bytes > 1 */
f15a1daf
TH
3795 ata_dev_printk(qc->dev, KERN_WARNING,
3796 "%u bytes trailing data\n", bytes);
563a6e1f
AL
3797
3798 for (i = 0; i < words; i++)
3799 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3800
14be71f4 3801 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
3802 return;
3803 }
3804
cedc9a47 3805 sg = &qc->__sg[qc->cursg];
1da177e4 3806
1da177e4
LT
3807 page = sg->page;
3808 offset = sg->offset + qc->cursg_ofs;
3809
3810 /* get the current page and offset */
3811 page = nth_page(page, (offset >> PAGE_SHIFT));
3812 offset %= PAGE_SIZE;
3813
6952df03 3814 /* don't overrun current sg */
32529e01 3815 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
3816
3817 /* don't cross page boundaries */
3818 count = min(count, (unsigned int)PAGE_SIZE - offset);
3819
7282aa4b
AL
3820 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3821
91b8b313
AL
3822 if (PageHighMem(page)) {
3823 unsigned long flags;
3824
3825 local_irq_save(flags);
3826 buf = kmap_atomic(page, KM_IRQ0);
083958d3 3827
91b8b313
AL
3828 /* do the actual data transfer */
3829 ata_data_xfer(ap, buf + offset, count, do_write);
7282aa4b 3830
91b8b313
AL
3831 kunmap_atomic(buf, KM_IRQ0);
3832 local_irq_restore(flags);
3833 } else {
3834 buf = page_address(page);
3835 ata_data_xfer(ap, buf + offset, count, do_write);
3836 }
1da177e4
LT
3837
3838 bytes -= count;
3839 qc->curbytes += count;
3840 qc->cursg_ofs += count;
3841
32529e01 3842 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
3843 qc->cursg++;
3844 qc->cursg_ofs = 0;
3845 }
3846
563a6e1f 3847 if (bytes)
1da177e4 3848 goto next_sg;
1da177e4
LT
3849}
3850
6ae4cfb5
AL
3851/**
3852 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3853 * @qc: Command on going
3854 *
3855 * Transfer Transfer data from/to the ATAPI device.
3856 *
3857 * LOCKING:
3858 * Inherited from caller.
6ae4cfb5
AL
3859 */
3860
1da177e4
LT
3861static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3862{
3863 struct ata_port *ap = qc->ap;
3864 struct ata_device *dev = qc->dev;
3865 unsigned int ireason, bc_lo, bc_hi, bytes;
3866 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3867
eec4c3f3
AL
3868 /* Abuse qc->result_tf for temp storage of intermediate TF
3869 * here to save some kernel stack usage.
3870 * For normal completion, qc->result_tf is not relevant. For
3871 * error, qc->result_tf is later overwritten by ata_qc_complete().
3872 * So, the correctness of qc->result_tf is not affected.
3873 */
3874 ap->ops->tf_read(ap, &qc->result_tf);
3875 ireason = qc->result_tf.nsect;
3876 bc_lo = qc->result_tf.lbam;
3877 bc_hi = qc->result_tf.lbah;
1da177e4
LT
3878 bytes = (bc_hi << 8) | bc_lo;
3879
3880 /* shall be cleared to zero, indicating xfer of data */
3881 if (ireason & (1 << 0))
3882 goto err_out;
3883
3884 /* make sure transfer direction matches expected */
3885 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3886 if (do_write != i_write)
3887 goto err_out;
3888
312f7da2
AL
3889 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
3890
1da177e4
LT
3891 __atapi_pio_bytes(qc, bytes);
3892
3893 return;
3894
3895err_out:
f15a1daf 3896 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 3897 qc->err_mask |= AC_ERR_HSM;
14be71f4 3898 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3899}
3900
3901/**
c234fb00
AL
3902 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
3903 * @ap: the target ata_port
3904 * @qc: qc on going
1da177e4 3905 *
c234fb00
AL
3906 * RETURNS:
3907 * 1 if ok in workqueue, 0 otherwise.
1da177e4 3908 */
c234fb00
AL
3909
3910static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 3911{
c234fb00
AL
3912 if (qc->tf.flags & ATA_TFLAG_POLLING)
3913 return 1;
1da177e4 3914
c234fb00
AL
3915 if (ap->hsm_task_state == HSM_ST_FIRST) {
3916 if (qc->tf.protocol == ATA_PROT_PIO &&
3917 (qc->tf.flags & ATA_TFLAG_WRITE))
3918 return 1;
1da177e4 3919
c234fb00
AL
3920 if (is_atapi_taskfile(&qc->tf) &&
3921 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
3922 return 1;
fe79e683
AL
3923 }
3924
c234fb00
AL
3925 return 0;
3926}
1da177e4 3927
c17ea20d
TH
3928/**
3929 * ata_hsm_qc_complete - finish a qc running on standard HSM
3930 * @qc: Command to complete
3931 * @in_wq: 1 if called from workqueue, 0 otherwise
3932 *
3933 * Finish @qc which is running on standard HSM.
3934 *
3935 * LOCKING:
3936 * If @in_wq is zero, spin_lock_irqsave(host_set lock).
3937 * Otherwise, none on entry and grabs host lock.
3938 */
3939static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
3940{
3941 struct ata_port *ap = qc->ap;
3942 unsigned long flags;
3943
3944 if (ap->ops->error_handler) {
3945 if (in_wq) {
3946 spin_lock_irqsave(&ap->host_set->lock, flags);
3947
3948 /* EH might have kicked in while host_set lock
3949 * is released.
3950 */
3951 qc = ata_qc_from_tag(ap, qc->tag);
3952 if (qc) {
3953 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
3954 ata_irq_on(ap);
3955 ata_qc_complete(qc);
3956 } else
3957 ata_port_freeze(ap);
3958 }
3959
3960 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3961 } else {
3962 if (likely(!(qc->err_mask & AC_ERR_HSM)))
3963 ata_qc_complete(qc);
3964 else
3965 ata_port_freeze(ap);
3966 }
3967 } else {
3968 if (in_wq) {
3969 spin_lock_irqsave(&ap->host_set->lock, flags);
3970 ata_irq_on(ap);
3971 ata_qc_complete(qc);
3972 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3973 } else
3974 ata_qc_complete(qc);
3975 }
1da177e4 3976
c81e29b4 3977 ata_altstatus(ap); /* flush */
c17ea20d
TH
3978}
3979
bb5cb290
AL
3980/**
3981 * ata_hsm_move - move the HSM to the next state.
3982 * @ap: the target ata_port
3983 * @qc: qc on going
3984 * @status: current device status
3985 * @in_wq: 1 if called from workqueue, 0 otherwise
3986 *
3987 * RETURNS:
3988 * 1 when poll next status needed, 0 otherwise.
3989 */
3990
3991static int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
3992 u8 status, int in_wq)
e2cec771 3993{
bb5cb290
AL
3994 unsigned long flags = 0;
3995 int poll_next;
3996
6912ccd5
AL
3997 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
3998
bb5cb290
AL
3999 /* Make sure ata_qc_issue_prot() does not throw things
4000 * like DMA polling into the workqueue. Notice that
4001 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4002 */
c234fb00 4003 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 4004
e2cec771 4005fsm_start:
999bb6f4
AL
4006 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4007 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4008
e2cec771
AL
4009 switch (ap->hsm_task_state) {
4010 case HSM_ST_FIRST:
bb5cb290
AL
4011 /* Send first data block or PACKET CDB */
4012
4013 /* If polling, we will stay in the work queue after
4014 * sending the data. Otherwise, interrupt handler
4015 * takes over after sending the data.
4016 */
4017 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4018
e2cec771 4019 /* check device status */
3655d1d3
AL
4020 if (unlikely((status & ATA_DRQ) == 0)) {
4021 /* handle BSY=0, DRQ=0 as error */
4022 if (likely(status & (ATA_ERR | ATA_DF)))
4023 /* device stops HSM for abort/error */
4024 qc->err_mask |= AC_ERR_DEV;
4025 else
4026 /* HSM violation. Let EH handle this */
4027 qc->err_mask |= AC_ERR_HSM;
4028
14be71f4 4029 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 4030 goto fsm_start;
1da177e4
LT
4031 }
4032
71601958
AL
4033 /* Device should not ask for data transfer (DRQ=1)
4034 * when it finds something wrong.
eee6c32f
AL
4035 * We ignore DRQ here and stop the HSM by
4036 * changing hsm_task_state to HSM_ST_ERR and
4037 * let the EH abort the command or reset the device.
71601958
AL
4038 */
4039 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4040 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4041 ap->id, status);
3655d1d3 4042 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4043 ap->hsm_task_state = HSM_ST_ERR;
4044 goto fsm_start;
71601958 4045 }
1da177e4 4046
bb5cb290
AL
4047 /* Send the CDB (atapi) or the first data block (ata pio out).
4048 * During the state transition, interrupt handler shouldn't
4049 * be invoked before the data transfer is complete and
4050 * hsm_task_state is changed. Hence, the following locking.
4051 */
4052 if (in_wq)
4053 spin_lock_irqsave(&ap->host_set->lock, flags);
1da177e4 4054
bb5cb290
AL
4055 if (qc->tf.protocol == ATA_PROT_PIO) {
4056 /* PIO data out protocol.
4057 * send first data block.
4058 */
0565c26d 4059
bb5cb290
AL
4060 /* ata_pio_sectors() might change the state
4061 * to HSM_ST_LAST. so, the state is changed here
4062 * before ata_pio_sectors().
4063 */
4064 ap->hsm_task_state = HSM_ST;
4065 ata_pio_sectors(qc);
4066 ata_altstatus(ap); /* flush */
4067 } else
4068 /* send CDB */
4069 atapi_send_cdb(ap, qc);
4070
4071 if (in_wq)
4072 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4073
4074 /* if polling, ata_pio_task() handles the rest.
4075 * otherwise, interrupt handler takes over from here.
4076 */
e2cec771 4077 break;
1c848984 4078
e2cec771
AL
4079 case HSM_ST:
4080 /* complete command or read/write the data register */
4081 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4082 /* ATAPI PIO protocol */
4083 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
4084 /* No more data to transfer or device error.
4085 * Device error will be tagged in HSM_ST_LAST.
4086 */
e2cec771
AL
4087 ap->hsm_task_state = HSM_ST_LAST;
4088 goto fsm_start;
4089 }
1da177e4 4090
71601958
AL
4091 /* Device should not ask for data transfer (DRQ=1)
4092 * when it finds something wrong.
eee6c32f
AL
4093 * We ignore DRQ here and stop the HSM by
4094 * changing hsm_task_state to HSM_ST_ERR and
4095 * let the EH abort the command or reset the device.
71601958
AL
4096 */
4097 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4098 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4099 ap->id, status);
3655d1d3 4100 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4101 ap->hsm_task_state = HSM_ST_ERR;
4102 goto fsm_start;
71601958 4103 }
1da177e4 4104
e2cec771 4105 atapi_pio_bytes(qc);
7fb6ec28 4106
e2cec771
AL
4107 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4108 /* bad ireason reported by device */
4109 goto fsm_start;
1da177e4 4110
e2cec771
AL
4111 } else {
4112 /* ATA PIO protocol */
4113 if (unlikely((status & ATA_DRQ) == 0)) {
4114 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
4115 if (likely(status & (ATA_ERR | ATA_DF)))
4116 /* device stops HSM for abort/error */
4117 qc->err_mask |= AC_ERR_DEV;
4118 else
4119 /* HSM violation. Let EH handle this */
4120 qc->err_mask |= AC_ERR_HSM;
4121
e2cec771
AL
4122 ap->hsm_task_state = HSM_ST_ERR;
4123 goto fsm_start;
4124 }
1da177e4 4125
eee6c32f
AL
4126 /* For PIO reads, some devices may ask for
4127 * data transfer (DRQ=1) alone with ERR=1.
4128 * We respect DRQ here and transfer one
4129 * block of junk data before changing the
4130 * hsm_task_state to HSM_ST_ERR.
4131 *
4132 * For PIO writes, ERR=1 DRQ=1 doesn't make
4133 * sense since the data block has been
4134 * transferred to the device.
71601958
AL
4135 */
4136 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
4137 /* data might be corrputed */
4138 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
4139
4140 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4141 ata_pio_sectors(qc);
4142 ata_altstatus(ap);
4143 status = ata_wait_idle(ap);
4144 }
4145
3655d1d3
AL
4146 if (status & (ATA_BUSY | ATA_DRQ))
4147 qc->err_mask |= AC_ERR_HSM;
4148
eee6c32f
AL
4149 /* ata_pio_sectors() might change the
4150 * state to HSM_ST_LAST. so, the state
4151 * is changed after ata_pio_sectors().
4152 */
4153 ap->hsm_task_state = HSM_ST_ERR;
4154 goto fsm_start;
71601958
AL
4155 }
4156
e2cec771
AL
4157 ata_pio_sectors(qc);
4158
4159 if (ap->hsm_task_state == HSM_ST_LAST &&
4160 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4161 /* all data read */
4162 ata_altstatus(ap);
52a32205 4163 status = ata_wait_idle(ap);
e2cec771
AL
4164 goto fsm_start;
4165 }
4166 }
4167
4168 ata_altstatus(ap); /* flush */
bb5cb290 4169 poll_next = 1;
1da177e4
LT
4170 break;
4171
14be71f4 4172 case HSM_ST_LAST:
6912ccd5
AL
4173 if (unlikely(!ata_ok(status))) {
4174 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
4175 ap->hsm_task_state = HSM_ST_ERR;
4176 goto fsm_start;
4177 }
4178
4179 /* no more data to transfer */
4332a771
AL
4180 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4181 ap->id, qc->dev->devno, status);
e2cec771 4182
6912ccd5
AL
4183 WARN_ON(qc->err_mask);
4184
e2cec771 4185 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 4186
e2cec771 4187 /* complete taskfile transaction */
c17ea20d 4188 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4189
4190 poll_next = 0;
1da177e4
LT
4191 break;
4192
14be71f4 4193 case HSM_ST_ERR:
e2cec771
AL
4194 /* make sure qc->err_mask is available to
4195 * know what's wrong and recover
4196 */
4197 WARN_ON(qc->err_mask == 0);
4198
4199 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 4200
999bb6f4 4201 /* complete taskfile transaction */
c17ea20d 4202 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4203
4204 poll_next = 0;
e2cec771
AL
4205 break;
4206 default:
bb5cb290 4207 poll_next = 0;
6912ccd5 4208 BUG();
1da177e4
LT
4209 }
4210
bb5cb290 4211 return poll_next;
1da177e4
LT
4212}
4213
1da177e4 4214static void ata_pio_task(void *_data)
8061f5f0 4215{
c91af2c8
TH
4216 struct ata_queued_cmd *qc = _data;
4217 struct ata_port *ap = qc->ap;
8061f5f0 4218 u8 status;
a1af3734 4219 int poll_next;
8061f5f0 4220
7fb6ec28 4221fsm_start:
a1af3734 4222 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 4223
a1af3734
AL
4224 /*
4225 * This is purely heuristic. This is a fast path.
4226 * Sometimes when we enter, BSY will be cleared in
4227 * a chk-status or two. If not, the drive is probably seeking
4228 * or something. Snooze for a couple msecs, then
4229 * chk-status again. If still busy, queue delayed work.
4230 */
4231 status = ata_busy_wait(ap, ATA_BUSY, 5);
4232 if (status & ATA_BUSY) {
4233 msleep(2);
4234 status = ata_busy_wait(ap, ATA_BUSY, 10);
4235 if (status & ATA_BUSY) {
31ce6dae 4236 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
4237 return;
4238 }
8061f5f0
TH
4239 }
4240
a1af3734
AL
4241 /* move the HSM */
4242 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 4243
a1af3734
AL
4244 /* another command or interrupt handler
4245 * may be running at this point.
4246 */
4247 if (poll_next)
7fb6ec28 4248 goto fsm_start;
8061f5f0
TH
4249}
4250
1da177e4
LT
4251/**
4252 * ata_qc_new - Request an available ATA command, for queueing
4253 * @ap: Port associated with device @dev
4254 * @dev: Device from whom we request an available command structure
4255 *
4256 * LOCKING:
0cba632b 4257 * None.
1da177e4
LT
4258 */
4259
4260static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4261{
4262 struct ata_queued_cmd *qc = NULL;
4263 unsigned int i;
4264
e3180499
TH
4265 /* no command while frozen */
4266 if (unlikely(ap->flags & ATA_FLAG_FROZEN))
4267 return NULL;
4268
2ab7db1f
TH
4269 /* the last tag is reserved for internal command. */
4270 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 4271 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 4272 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
4273 break;
4274 }
4275
4276 if (qc)
4277 qc->tag = i;
4278
4279 return qc;
4280}
4281
4282/**
4283 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
4284 * @dev: Device from whom we request an available command structure
4285 *
4286 * LOCKING:
0cba632b 4287 * None.
1da177e4
LT
4288 */
4289
3373efd8 4290struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 4291{
3373efd8 4292 struct ata_port *ap = dev->ap;
1da177e4
LT
4293 struct ata_queued_cmd *qc;
4294
4295 qc = ata_qc_new(ap);
4296 if (qc) {
1da177e4
LT
4297 qc->scsicmd = NULL;
4298 qc->ap = ap;
4299 qc->dev = dev;
1da177e4 4300
2c13b7ce 4301 ata_qc_reinit(qc);
1da177e4
LT
4302 }
4303
4304 return qc;
4305}
4306
1da177e4
LT
4307/**
4308 * ata_qc_free - free unused ata_queued_cmd
4309 * @qc: Command to complete
4310 *
4311 * Designed to free unused ata_queued_cmd object
4312 * in case something prevents using it.
4313 *
4314 * LOCKING:
0cba632b 4315 * spin_lock_irqsave(host_set lock)
1da177e4
LT
4316 */
4317void ata_qc_free(struct ata_queued_cmd *qc)
4318{
4ba946e9
TH
4319 struct ata_port *ap = qc->ap;
4320 unsigned int tag;
4321
a4631474 4322 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 4323
4ba946e9
TH
4324 qc->flags = 0;
4325 tag = qc->tag;
4326 if (likely(ata_tag_valid(tag))) {
4ba946e9 4327 qc->tag = ATA_TAG_POISON;
6cec4a39 4328 clear_bit(tag, &ap->qc_allocated);
4ba946e9 4329 }
1da177e4
LT
4330}
4331
76014427 4332void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4333{
dedaf2b0
TH
4334 struct ata_port *ap = qc->ap;
4335
a4631474
TH
4336 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4337 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
4338
4339 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4340 ata_sg_clean(qc);
4341
7401abf2 4342 /* command should be marked inactive atomically with qc completion */
dedaf2b0
TH
4343 if (qc->tf.protocol == ATA_PROT_NCQ)
4344 ap->sactive &= ~(1 << qc->tag);
4345 else
4346 ap->active_tag = ATA_TAG_POISON;
7401abf2 4347
3f3791d3
AL
4348 /* atapi: mark qc as inactive to prevent the interrupt handler
4349 * from completing the command twice later, before the error handler
4350 * is called. (when rc != 0 and atapi request sense is needed)
4351 */
4352 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 4353 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 4354
1da177e4 4355 /* call completion callback */
77853bf2 4356 qc->complete_fn(qc);
1da177e4
LT
4357}
4358
f686bcb8
TH
4359/**
4360 * ata_qc_complete - Complete an active ATA command
4361 * @qc: Command to complete
4362 * @err_mask: ATA Status register contents
4363 *
4364 * Indicate to the mid and upper layers that an ATA
4365 * command has completed, with either an ok or not-ok status.
4366 *
4367 * LOCKING:
4368 * spin_lock_irqsave(host_set lock)
4369 */
4370void ata_qc_complete(struct ata_queued_cmd *qc)
4371{
4372 struct ata_port *ap = qc->ap;
4373
4374 /* XXX: New EH and old EH use different mechanisms to
4375 * synchronize EH with regular execution path.
4376 *
4377 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4378 * Normal execution path is responsible for not accessing a
4379 * failed qc. libata core enforces the rule by returning NULL
4380 * from ata_qc_from_tag() for failed qcs.
4381 *
4382 * Old EH depends on ata_qc_complete() nullifying completion
4383 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4384 * not synchronize with interrupt handler. Only PIO task is
4385 * taken care of.
4386 */
4387 if (ap->ops->error_handler) {
4388 WARN_ON(ap->flags & ATA_FLAG_FROZEN);
4389
4390 if (unlikely(qc->err_mask))
4391 qc->flags |= ATA_QCFLAG_FAILED;
4392
4393 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4394 if (!ata_tag_internal(qc->tag)) {
4395 /* always fill result TF for failed qc */
4396 ap->ops->tf_read(ap, &qc->result_tf);
4397 ata_qc_schedule_eh(qc);
4398 return;
4399 }
4400 }
4401
4402 /* read result TF if requested */
4403 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4404 ap->ops->tf_read(ap, &qc->result_tf);
4405
4406 __ata_qc_complete(qc);
4407 } else {
4408 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4409 return;
4410
4411 /* read result TF if failed or requested */
4412 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4413 ap->ops->tf_read(ap, &qc->result_tf);
4414
4415 __ata_qc_complete(qc);
4416 }
4417}
4418
dedaf2b0
TH
4419/**
4420 * ata_qc_complete_multiple - Complete multiple qcs successfully
4421 * @ap: port in question
4422 * @qc_active: new qc_active mask
4423 * @finish_qc: LLDD callback invoked before completing a qc
4424 *
4425 * Complete in-flight commands. This functions is meant to be
4426 * called from low-level driver's interrupt routine to complete
4427 * requests normally. ap->qc_active and @qc_active is compared
4428 * and commands are completed accordingly.
4429 *
4430 * LOCKING:
4431 * spin_lock_irqsave(host_set lock)
4432 *
4433 * RETURNS:
4434 * Number of completed commands on success, -errno otherwise.
4435 */
4436int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4437 void (*finish_qc)(struct ata_queued_cmd *))
4438{
4439 int nr_done = 0;
4440 u32 done_mask;
4441 int i;
4442
4443 done_mask = ap->qc_active ^ qc_active;
4444
4445 if (unlikely(done_mask & qc_active)) {
4446 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4447 "(%08x->%08x)\n", ap->qc_active, qc_active);
4448 return -EINVAL;
4449 }
4450
4451 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4452 struct ata_queued_cmd *qc;
4453
4454 if (!(done_mask & (1 << i)))
4455 continue;
4456
4457 if ((qc = ata_qc_from_tag(ap, i))) {
4458 if (finish_qc)
4459 finish_qc(qc);
4460 ata_qc_complete(qc);
4461 nr_done++;
4462 }
4463 }
4464
4465 return nr_done;
4466}
4467
1da177e4
LT
4468static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4469{
4470 struct ata_port *ap = qc->ap;
4471
4472 switch (qc->tf.protocol) {
3dc1d881 4473 case ATA_PROT_NCQ:
1da177e4
LT
4474 case ATA_PROT_DMA:
4475 case ATA_PROT_ATAPI_DMA:
4476 return 1;
4477
4478 case ATA_PROT_ATAPI:
4479 case ATA_PROT_PIO:
1da177e4
LT
4480 if (ap->flags & ATA_FLAG_PIO_DMA)
4481 return 1;
4482
4483 /* fall through */
4484
4485 default:
4486 return 0;
4487 }
4488
4489 /* never reached */
4490}
4491
4492/**
4493 * ata_qc_issue - issue taskfile to device
4494 * @qc: command to issue to device
4495 *
4496 * Prepare an ATA command to submission to device.
4497 * This includes mapping the data into a DMA-able
4498 * area, filling in the S/G table, and finally
4499 * writing the taskfile to hardware, starting the command.
4500 *
4501 * LOCKING:
4502 * spin_lock_irqsave(host_set lock)
1da177e4 4503 */
8e0e694a 4504void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4505{
4506 struct ata_port *ap = qc->ap;
4507
dedaf2b0
TH
4508 /* Make sure only one non-NCQ command is outstanding. The
4509 * check is skipped for old EH because it reuses active qc to
4510 * request ATAPI sense.
4511 */
4512 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4513
4514 if (qc->tf.protocol == ATA_PROT_NCQ) {
4515 WARN_ON(ap->sactive & (1 << qc->tag));
4516 ap->sactive |= 1 << qc->tag;
4517 } else {
4518 WARN_ON(ap->sactive);
4519 ap->active_tag = qc->tag;
4520 }
4521
e4a70e76 4522 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 4523 ap->qc_active |= 1 << qc->tag;
e4a70e76 4524
1da177e4
LT
4525 if (ata_should_dma_map(qc)) {
4526 if (qc->flags & ATA_QCFLAG_SG) {
4527 if (ata_sg_setup(qc))
8e436af9 4528 goto sg_err;
1da177e4
LT
4529 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4530 if (ata_sg_setup_one(qc))
8e436af9 4531 goto sg_err;
1da177e4
LT
4532 }
4533 } else {
4534 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4535 }
4536
4537 ap->ops->qc_prep(qc);
4538
8e0e694a
TH
4539 qc->err_mask |= ap->ops->qc_issue(qc);
4540 if (unlikely(qc->err_mask))
4541 goto err;
4542 return;
1da177e4 4543
8e436af9
TH
4544sg_err:
4545 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
4546 qc->err_mask |= AC_ERR_SYSTEM;
4547err:
4548 ata_qc_complete(qc);
1da177e4
LT
4549}
4550
4551/**
4552 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4553 * @qc: command to issue to device
4554 *
4555 * Using various libata functions and hooks, this function
4556 * starts an ATA command. ATA commands are grouped into
4557 * classes called "protocols", and issuing each type of protocol
4558 * is slightly different.
4559 *
0baab86b
EF
4560 * May be used as the qc_issue() entry in ata_port_operations.
4561 *
1da177e4
LT
4562 * LOCKING:
4563 * spin_lock_irqsave(host_set lock)
4564 *
4565 * RETURNS:
9a3d9eb0 4566 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
4567 */
4568
9a3d9eb0 4569unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
4570{
4571 struct ata_port *ap = qc->ap;
4572
e50362ec
AL
4573 /* Use polling pio if the LLD doesn't handle
4574 * interrupt driven pio and atapi CDB interrupt.
4575 */
4576 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4577 switch (qc->tf.protocol) {
4578 case ATA_PROT_PIO:
4579 case ATA_PROT_ATAPI:
4580 case ATA_PROT_ATAPI_NODATA:
4581 qc->tf.flags |= ATA_TFLAG_POLLING;
4582 break;
4583 case ATA_PROT_ATAPI_DMA:
4584 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
c2bbc551 4585 /* see ata_check_atapi_dma() */
e50362ec
AL
4586 BUG();
4587 break;
4588 default:
4589 break;
4590 }
4591 }
4592
312f7da2 4593 /* select the device */
1da177e4
LT
4594 ata_dev_select(ap, qc->dev->devno, 1, 0);
4595
312f7da2 4596 /* start the command */
1da177e4
LT
4597 switch (qc->tf.protocol) {
4598 case ATA_PROT_NODATA:
312f7da2
AL
4599 if (qc->tf.flags & ATA_TFLAG_POLLING)
4600 ata_qc_set_polling(qc);
4601
e5338254 4602 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
4603 ap->hsm_task_state = HSM_ST_LAST;
4604
4605 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 4606 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 4607
1da177e4
LT
4608 break;
4609
4610 case ATA_PROT_DMA:
587005de 4611 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 4612
1da177e4
LT
4613 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4614 ap->ops->bmdma_setup(qc); /* set up bmdma */
4615 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 4616 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4617 break;
4618
312f7da2
AL
4619 case ATA_PROT_PIO:
4620 if (qc->tf.flags & ATA_TFLAG_POLLING)
4621 ata_qc_set_polling(qc);
1da177e4 4622
e5338254 4623 ata_tf_to_host(ap, &qc->tf);
312f7da2 4624
54f00389
AL
4625 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4626 /* PIO data out protocol */
4627 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 4628 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
4629
4630 /* always send first data block using
e27486db 4631 * the ata_pio_task() codepath.
54f00389 4632 */
312f7da2 4633 } else {
54f00389
AL
4634 /* PIO data in protocol */
4635 ap->hsm_task_state = HSM_ST;
4636
4637 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 4638 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
4639
4640 /* if polling, ata_pio_task() handles the rest.
4641 * otherwise, interrupt handler takes over from here.
4642 */
312f7da2
AL
4643 }
4644
1da177e4
LT
4645 break;
4646
1da177e4 4647 case ATA_PROT_ATAPI:
1da177e4 4648 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
4649 if (qc->tf.flags & ATA_TFLAG_POLLING)
4650 ata_qc_set_polling(qc);
4651
e5338254 4652 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 4653
312f7da2
AL
4654 ap->hsm_task_state = HSM_ST_FIRST;
4655
4656 /* send cdb by polling if no cdb interrupt */
4657 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4658 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 4659 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
4660 break;
4661
4662 case ATA_PROT_ATAPI_DMA:
587005de 4663 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 4664
1da177e4
LT
4665 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4666 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
4667 ap->hsm_task_state = HSM_ST_FIRST;
4668
4669 /* send cdb by polling if no cdb interrupt */
4670 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 4671 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
4672 break;
4673
4674 default:
4675 WARN_ON(1);
9a3d9eb0 4676 return AC_ERR_SYSTEM;
1da177e4
LT
4677 }
4678
4679 return 0;
4680}
4681
1da177e4
LT
4682/**
4683 * ata_host_intr - Handle host interrupt for given (port, task)
4684 * @ap: Port on which interrupt arrived (possibly...)
4685 * @qc: Taskfile currently active in engine
4686 *
4687 * Handle host interrupt for given queued command. Currently,
4688 * only DMA interrupts are handled. All other commands are
4689 * handled via polling with interrupts disabled (nIEN bit).
4690 *
4691 * LOCKING:
4692 * spin_lock_irqsave(host_set lock)
4693 *
4694 * RETURNS:
4695 * One if interrupt was handled, zero if not (shared irq).
4696 */
4697
4698inline unsigned int ata_host_intr (struct ata_port *ap,
4699 struct ata_queued_cmd *qc)
4700{
312f7da2 4701 u8 status, host_stat = 0;
1da177e4 4702
312f7da2
AL
4703 VPRINTK("ata%u: protocol %d task_state %d\n",
4704 ap->id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 4705
312f7da2
AL
4706 /* Check whether we are expecting interrupt in this state */
4707 switch (ap->hsm_task_state) {
4708 case HSM_ST_FIRST:
6912ccd5
AL
4709 /* Some pre-ATAPI-4 devices assert INTRQ
4710 * at this state when ready to receive CDB.
4711 */
1da177e4 4712
312f7da2
AL
4713 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4714 * The flag was turned on only for atapi devices.
4715 * No need to check is_atapi_taskfile(&qc->tf) again.
4716 */
4717 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 4718 goto idle_irq;
1da177e4 4719 break;
312f7da2
AL
4720 case HSM_ST_LAST:
4721 if (qc->tf.protocol == ATA_PROT_DMA ||
4722 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4723 /* check status of DMA engine */
4724 host_stat = ap->ops->bmdma_status(ap);
4725 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4726
4727 /* if it's not our irq... */
4728 if (!(host_stat & ATA_DMA_INTR))
4729 goto idle_irq;
4730
4731 /* before we do anything else, clear DMA-Start bit */
4732 ap->ops->bmdma_stop(qc);
a4f16610
AL
4733
4734 if (unlikely(host_stat & ATA_DMA_ERR)) {
4735 /* error when transfering data to/from memory */
4736 qc->err_mask |= AC_ERR_HOST_BUS;
4737 ap->hsm_task_state = HSM_ST_ERR;
4738 }
312f7da2
AL
4739 }
4740 break;
4741 case HSM_ST:
4742 break;
1da177e4
LT
4743 default:
4744 goto idle_irq;
4745 }
4746
312f7da2
AL
4747 /* check altstatus */
4748 status = ata_altstatus(ap);
4749 if (status & ATA_BUSY)
4750 goto idle_irq;
1da177e4 4751
312f7da2
AL
4752 /* check main status, clearing INTRQ */
4753 status = ata_chk_status(ap);
4754 if (unlikely(status & ATA_BUSY))
4755 goto idle_irq;
1da177e4 4756
312f7da2
AL
4757 /* ack bmdma irq events */
4758 ap->ops->irq_clear(ap);
1da177e4 4759
bb5cb290 4760 ata_hsm_move(ap, qc, status, 0);
1da177e4
LT
4761 return 1; /* irq handled */
4762
4763idle_irq:
4764 ap->stats.idle_irq++;
4765
4766#ifdef ATA_IRQ_TRAP
4767 if ((ap->stats.idle_irq % 1000) == 0) {
1da177e4 4768 ata_irq_ack(ap, 0); /* debug trap */
f15a1daf 4769 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 4770 return 1;
1da177e4
LT
4771 }
4772#endif
4773 return 0; /* irq not handled */
4774}
4775
4776/**
4777 * ata_interrupt - Default ATA host interrupt handler
0cba632b
JG
4778 * @irq: irq line (unused)
4779 * @dev_instance: pointer to our ata_host_set information structure
1da177e4
LT
4780 * @regs: unused
4781 *
0cba632b
JG
4782 * Default interrupt handler for PCI IDE devices. Calls
4783 * ata_host_intr() for each port that is not disabled.
4784 *
1da177e4 4785 * LOCKING:
0cba632b 4786 * Obtains host_set lock during operation.
1da177e4
LT
4787 *
4788 * RETURNS:
0cba632b 4789 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
4790 */
4791
4792irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4793{
4794 struct ata_host_set *host_set = dev_instance;
4795 unsigned int i;
4796 unsigned int handled = 0;
4797 unsigned long flags;
4798
4799 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4800 spin_lock_irqsave(&host_set->lock, flags);
4801
4802 for (i = 0; i < host_set->n_ports; i++) {
4803 struct ata_port *ap;
4804
4805 ap = host_set->ports[i];
c1389503 4806 if (ap &&
029f5468 4807 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
4808 struct ata_queued_cmd *qc;
4809
4810 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 4811 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 4812 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
4813 handled |= ata_host_intr(ap, qc);
4814 }
4815 }
4816
4817 spin_unlock_irqrestore(&host_set->lock, flags);
4818
4819 return IRQ_RETVAL(handled);
4820}
4821
34bf2170
TH
4822/**
4823 * sata_scr_valid - test whether SCRs are accessible
4824 * @ap: ATA port to test SCR accessibility for
4825 *
4826 * Test whether SCRs are accessible for @ap.
4827 *
4828 * LOCKING:
4829 * None.
4830 *
4831 * RETURNS:
4832 * 1 if SCRs are accessible, 0 otherwise.
4833 */
4834int sata_scr_valid(struct ata_port *ap)
4835{
4836 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4837}
4838
4839/**
4840 * sata_scr_read - read SCR register of the specified port
4841 * @ap: ATA port to read SCR for
4842 * @reg: SCR to read
4843 * @val: Place to store read value
4844 *
4845 * Read SCR register @reg of @ap into *@val. This function is
4846 * guaranteed to succeed if the cable type of the port is SATA
4847 * and the port implements ->scr_read.
4848 *
4849 * LOCKING:
4850 * None.
4851 *
4852 * RETURNS:
4853 * 0 on success, negative errno on failure.
4854 */
4855int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
4856{
4857 if (sata_scr_valid(ap)) {
4858 *val = ap->ops->scr_read(ap, reg);
4859 return 0;
4860 }
4861 return -EOPNOTSUPP;
4862}
4863
4864/**
4865 * sata_scr_write - write SCR register of the specified port
4866 * @ap: ATA port to write SCR for
4867 * @reg: SCR to write
4868 * @val: value to write
4869 *
4870 * Write @val to SCR register @reg of @ap. This function is
4871 * guaranteed to succeed if the cable type of the port is SATA
4872 * and the port implements ->scr_read.
4873 *
4874 * LOCKING:
4875 * None.
4876 *
4877 * RETURNS:
4878 * 0 on success, negative errno on failure.
4879 */
4880int sata_scr_write(struct ata_port *ap, int reg, u32 val)
4881{
4882 if (sata_scr_valid(ap)) {
4883 ap->ops->scr_write(ap, reg, val);
4884 return 0;
4885 }
4886 return -EOPNOTSUPP;
4887}
4888
4889/**
4890 * sata_scr_write_flush - write SCR register of the specified port and flush
4891 * @ap: ATA port to write SCR for
4892 * @reg: SCR to write
4893 * @val: value to write
4894 *
4895 * This function is identical to sata_scr_write() except that this
4896 * function performs flush after writing to the register.
4897 *
4898 * LOCKING:
4899 * None.
4900 *
4901 * RETURNS:
4902 * 0 on success, negative errno on failure.
4903 */
4904int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
4905{
4906 if (sata_scr_valid(ap)) {
4907 ap->ops->scr_write(ap, reg, val);
4908 ap->ops->scr_read(ap, reg);
4909 return 0;
4910 }
4911 return -EOPNOTSUPP;
4912}
4913
4914/**
4915 * ata_port_online - test whether the given port is online
4916 * @ap: ATA port to test
4917 *
4918 * Test whether @ap is online. Note that this function returns 0
4919 * if online status of @ap cannot be obtained, so
4920 * ata_port_online(ap) != !ata_port_offline(ap).
4921 *
4922 * LOCKING:
4923 * None.
4924 *
4925 * RETURNS:
4926 * 1 if the port online status is available and online.
4927 */
4928int ata_port_online(struct ata_port *ap)
4929{
4930 u32 sstatus;
4931
4932 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
4933 return 1;
4934 return 0;
4935}
4936
4937/**
4938 * ata_port_offline - test whether the given port is offline
4939 * @ap: ATA port to test
4940 *
4941 * Test whether @ap is offline. Note that this function returns
4942 * 0 if offline status of @ap cannot be obtained, so
4943 * ata_port_online(ap) != !ata_port_offline(ap).
4944 *
4945 * LOCKING:
4946 * None.
4947 *
4948 * RETURNS:
4949 * 1 if the port offline status is available and offline.
4950 */
4951int ata_port_offline(struct ata_port *ap)
4952{
4953 u32 sstatus;
4954
4955 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
4956 return 1;
4957 return 0;
4958}
0baab86b 4959
9b847548
JA
4960/*
4961 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4962 * without filling any other registers
4963 */
3373efd8 4964static int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
9b847548
JA
4965{
4966 struct ata_taskfile tf;
4967 int err;
4968
3373efd8 4969 ata_tf_init(dev, &tf);
9b847548
JA
4970
4971 tf.command = cmd;
4972 tf.flags |= ATA_TFLAG_DEVICE;
4973 tf.protocol = ATA_PROT_NODATA;
4974
3373efd8 4975 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
9b847548 4976 if (err)
f15a1daf
TH
4977 ata_dev_printk(dev, KERN_ERR, "%s: ata command failed: %d\n",
4978 __FUNCTION__, err);
9b847548
JA
4979
4980 return err;
4981}
4982
3373efd8 4983static int ata_flush_cache(struct ata_device *dev)
9b847548
JA
4984{
4985 u8 cmd;
4986
4987 if (!ata_try_flush_cache(dev))
4988 return 0;
4989
4990 if (ata_id_has_flush_ext(dev->id))
4991 cmd = ATA_CMD_FLUSH_EXT;
4992 else
4993 cmd = ATA_CMD_FLUSH;
4994
3373efd8 4995 return ata_do_simple_cmd(dev, cmd);
9b847548
JA
4996}
4997
3373efd8 4998static int ata_standby_drive(struct ata_device *dev)
9b847548 4999{
3373efd8 5000 return ata_do_simple_cmd(dev, ATA_CMD_STANDBYNOW1);
9b847548
JA
5001}
5002
3373efd8 5003static int ata_start_drive(struct ata_device *dev)
9b847548 5004{
3373efd8 5005 return ata_do_simple_cmd(dev, ATA_CMD_IDLEIMMEDIATE);
9b847548
JA
5006}
5007
5008/**
5009 * ata_device_resume - wakeup a previously suspended devices
c893a3ae 5010 * @dev: the device to resume
9b847548
JA
5011 *
5012 * Kick the drive back into action, by sending it an idle immediate
5013 * command and making sure its transfer mode matches between drive
5014 * and host.
5015 *
5016 */
3373efd8 5017int ata_device_resume(struct ata_device *dev)
9b847548 5018{
3373efd8
TH
5019 struct ata_port *ap = dev->ap;
5020
9b847548 5021 if (ap->flags & ATA_FLAG_SUSPENDED) {
e82cbdb9 5022 struct ata_device *failed_dev;
9b847548 5023 ap->flags &= ~ATA_FLAG_SUSPENDED;
e82cbdb9 5024 while (ata_set_mode(ap, &failed_dev))
3373efd8 5025 ata_dev_disable(failed_dev);
9b847548 5026 }
e1211e3f 5027 if (!ata_dev_enabled(dev))
9b847548
JA
5028 return 0;
5029 if (dev->class == ATA_DEV_ATA)
3373efd8 5030 ata_start_drive(dev);
9b847548
JA
5031
5032 return 0;
5033}
5034
5035/**
5036 * ata_device_suspend - prepare a device for suspend
c893a3ae 5037 * @dev: the device to suspend
e2a7f77a 5038 * @state: target power management state
9b847548
JA
5039 *
5040 * Flush the cache on the drive, if appropriate, then issue a
5041 * standbynow command.
9b847548 5042 */
3373efd8 5043int ata_device_suspend(struct ata_device *dev, pm_message_t state)
9b847548 5044{
3373efd8
TH
5045 struct ata_port *ap = dev->ap;
5046
e1211e3f 5047 if (!ata_dev_enabled(dev))
9b847548
JA
5048 return 0;
5049 if (dev->class == ATA_DEV_ATA)
3373efd8 5050 ata_flush_cache(dev);
9b847548 5051
082776e4 5052 if (state.event != PM_EVENT_FREEZE)
3373efd8 5053 ata_standby_drive(dev);
9b847548
JA
5054 ap->flags |= ATA_FLAG_SUSPENDED;
5055 return 0;
5056}
5057
c893a3ae
RD
5058/**
5059 * ata_port_start - Set port up for dma.
5060 * @ap: Port to initialize
5061 *
5062 * Called just after data structures for each port are
5063 * initialized. Allocates space for PRD table.
5064 *
5065 * May be used as the port_start() entry in ata_port_operations.
5066 *
5067 * LOCKING:
5068 * Inherited from caller.
5069 */
5070
1da177e4
LT
5071int ata_port_start (struct ata_port *ap)
5072{
2f1f610b 5073 struct device *dev = ap->dev;
6037d6bb 5074 int rc;
1da177e4
LT
5075
5076 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5077 if (!ap->prd)
5078 return -ENOMEM;
5079
6037d6bb
JG
5080 rc = ata_pad_alloc(ap, dev);
5081 if (rc) {
cedc9a47 5082 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 5083 return rc;
cedc9a47
JG
5084 }
5085
1da177e4
LT
5086 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5087
5088 return 0;
5089}
5090
0baab86b
EF
5091
5092/**
5093 * ata_port_stop - Undo ata_port_start()
5094 * @ap: Port to shut down
5095 *
5096 * Frees the PRD table.
5097 *
5098 * May be used as the port_stop() entry in ata_port_operations.
5099 *
5100 * LOCKING:
6f0ef4fa 5101 * Inherited from caller.
0baab86b
EF
5102 */
5103
1da177e4
LT
5104void ata_port_stop (struct ata_port *ap)
5105{
2f1f610b 5106 struct device *dev = ap->dev;
1da177e4
LT
5107
5108 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 5109 ata_pad_free(ap, dev);
1da177e4
LT
5110}
5111
aa8f0dc6
JG
5112void ata_host_stop (struct ata_host_set *host_set)
5113{
5114 if (host_set->mmio_base)
5115 iounmap(host_set->mmio_base);
5116}
5117
5118
1da177e4
LT
5119/**
5120 * ata_host_remove - Unregister SCSI host structure with upper layers
5121 * @ap: Port to unregister
5122 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
5123 *
5124 * LOCKING:
6f0ef4fa 5125 * Inherited from caller.
1da177e4
LT
5126 */
5127
5128static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
5129{
5130 struct Scsi_Host *sh = ap->host;
5131
5132 DPRINTK("ENTER\n");
5133
5134 if (do_unregister)
5135 scsi_remove_host(sh);
5136
5137 ap->ops->port_stop(ap);
5138}
5139
5140/**
5141 * ata_host_init - Initialize an ata_port structure
5142 * @ap: Structure to initialize
5143 * @host: associated SCSI mid-layer structure
5144 * @host_set: Collection of hosts to which @ap belongs
5145 * @ent: Probe information provided by low-level driver
5146 * @port_no: Port number associated with this ata_port
5147 *
0cba632b
JG
5148 * Initialize a new ata_port structure, and its associated
5149 * scsi_host.
5150 *
1da177e4 5151 * LOCKING:
0cba632b 5152 * Inherited from caller.
1da177e4
LT
5153 */
5154
5155static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
5156 struct ata_host_set *host_set,
057ace5e 5157 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
5158{
5159 unsigned int i;
5160
5161 host->max_id = 16;
5162 host->max_lun = 1;
5163 host->max_channel = 1;
5164 host->unique_id = ata_unique_id++;
5165 host->max_cmd_len = 12;
12413197 5166
198e0fed 5167 ap->flags = ATA_FLAG_DISABLED;
1da177e4
LT
5168 ap->id = host->unique_id;
5169 ap->host = host;
5170 ap->ctl = ATA_DEVCTL_OBS;
5171 ap->host_set = host_set;
2f1f610b 5172 ap->dev = ent->dev;
1da177e4
LT
5173 ap->port_no = port_no;
5174 ap->hard_port_no =
5175 ent->legacy_mode ? ent->hard_port_no : port_no;
5176 ap->pio_mask = ent->pio_mask;
5177 ap->mwdma_mask = ent->mwdma_mask;
5178 ap->udma_mask = ent->udma_mask;
5179 ap->flags |= ent->host_flags;
5180 ap->ops = ent->port_ops;
1c3fae4d 5181 ap->sata_spd_limit = UINT_MAX;
1da177e4
LT
5182 ap->active_tag = ATA_TAG_POISON;
5183 ap->last_ctl = 0xFF;
5184
86e45b6b 5185 INIT_WORK(&ap->port_task, NULL, NULL);
a72ec4ce 5186 INIT_LIST_HEAD(&ap->eh_done_q);
1da177e4 5187
838df628
TH
5188 /* set cable type */
5189 ap->cbl = ATA_CBL_NONE;
5190 if (ap->flags & ATA_FLAG_SATA)
5191 ap->cbl = ATA_CBL_SATA;
5192
acf356b1
TH
5193 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5194 struct ata_device *dev = &ap->device[i];
38d87234 5195 dev->ap = ap;
acf356b1
TH
5196 dev->devno = i;
5197 dev->pio_mask = UINT_MAX;
5198 dev->mwdma_mask = UINT_MAX;
5199 dev->udma_mask = UINT_MAX;
5200 }
1da177e4
LT
5201
5202#ifdef ATA_IRQ_TRAP
5203 ap->stats.unhandled_irq = 1;
5204 ap->stats.idle_irq = 1;
5205#endif
5206
5207 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5208}
5209
5210/**
5211 * ata_host_add - Attach low-level ATA driver to system
5212 * @ent: Information provided by low-level driver
5213 * @host_set: Collections of ports to which we add
5214 * @port_no: Port number associated with this host
5215 *
0cba632b
JG
5216 * Attach low-level ATA driver to system.
5217 *
1da177e4 5218 * LOCKING:
0cba632b 5219 * PCI/etc. bus probe sem.
1da177e4
LT
5220 *
5221 * RETURNS:
0cba632b 5222 * New ata_port on success, for NULL on error.
1da177e4
LT
5223 */
5224
057ace5e 5225static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
1da177e4
LT
5226 struct ata_host_set *host_set,
5227 unsigned int port_no)
5228{
5229 struct Scsi_Host *host;
5230 struct ata_port *ap;
5231 int rc;
5232
5233 DPRINTK("ENTER\n");
aec5c3c1
TH
5234
5235 if (!ent->port_ops->probe_reset &&
5236 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5237 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5238 port_no);
5239 return NULL;
5240 }
5241
1da177e4
LT
5242 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5243 if (!host)
5244 return NULL;
5245
30afc84c
TH
5246 host->transportt = &ata_scsi_transport_template;
5247
35bb94b1 5248 ap = ata_shost_to_port(host);
1da177e4
LT
5249
5250 ata_host_init(ap, host, host_set, ent, port_no);
5251
5252 rc = ap->ops->port_start(ap);
5253 if (rc)
5254 goto err_out;
5255
5256 return ap;
5257
5258err_out:
5259 scsi_host_put(host);
5260 return NULL;
5261}
5262
5263/**
0cba632b
JG
5264 * ata_device_add - Register hardware device with ATA and SCSI layers
5265 * @ent: Probe information describing hardware device to be registered
5266 *
5267 * This function processes the information provided in the probe
5268 * information struct @ent, allocates the necessary ATA and SCSI
5269 * host information structures, initializes them, and registers
5270 * everything with requisite kernel subsystems.
5271 *
5272 * This function requests irqs, probes the ATA bus, and probes
5273 * the SCSI bus.
1da177e4
LT
5274 *
5275 * LOCKING:
0cba632b 5276 * PCI/etc. bus probe sem.
1da177e4
LT
5277 *
5278 * RETURNS:
0cba632b 5279 * Number of ports registered. Zero on error (no ports registered).
1da177e4
LT
5280 */
5281
057ace5e 5282int ata_device_add(const struct ata_probe_ent *ent)
1da177e4
LT
5283{
5284 unsigned int count = 0, i;
5285 struct device *dev = ent->dev;
5286 struct ata_host_set *host_set;
5287
5288 DPRINTK("ENTER\n");
5289 /* alloc a container for our list of ATA ports (buses) */
57f3bda8 5290 host_set = kzalloc(sizeof(struct ata_host_set) +
1da177e4
LT
5291 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5292 if (!host_set)
5293 return 0;
1da177e4
LT
5294 spin_lock_init(&host_set->lock);
5295
5296 host_set->dev = dev;
5297 host_set->n_ports = ent->n_ports;
5298 host_set->irq = ent->irq;
5299 host_set->mmio_base = ent->mmio_base;
5300 host_set->private_data = ent->private_data;
5301 host_set->ops = ent->port_ops;
5444a6f4 5302 host_set->flags = ent->host_set_flags;
1da177e4
LT
5303
5304 /* register each port bound to this device */
5305 for (i = 0; i < ent->n_ports; i++) {
5306 struct ata_port *ap;
5307 unsigned long xfer_mode_mask;
5308
5309 ap = ata_host_add(ent, host_set, i);
5310 if (!ap)
5311 goto err_out;
5312
5313 host_set->ports[i] = ap;
5314 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5315 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5316 (ap->pio_mask << ATA_SHIFT_PIO);
5317
5318 /* print per-port info to dmesg */
f15a1daf
TH
5319 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
5320 "ctl 0x%lX bmdma 0x%lX irq %lu\n",
5321 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5322 ata_mode_string(xfer_mode_mask),
5323 ap->ioaddr.cmd_addr,
5324 ap->ioaddr.ctl_addr,
5325 ap->ioaddr.bmdma_addr,
5326 ent->irq);
1da177e4
LT
5327
5328 ata_chk_status(ap);
5329 host_set->ops->irq_clear(ap);
e3180499 5330 ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */
1da177e4
LT
5331 count++;
5332 }
5333
57f3bda8
RD
5334 if (!count)
5335 goto err_free_ret;
1da177e4
LT
5336
5337 /* obtain irq, that is shared between channels */
5338 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
5339 DRV_NAME, host_set))
5340 goto err_out;
5341
5342 /* perform each probe synchronously */
5343 DPRINTK("probe begin\n");
5344 for (i = 0; i < count; i++) {
5345 struct ata_port *ap;
5346 int rc;
5347
5348 ap = host_set->ports[i];
5349
c893a3ae 5350 DPRINTK("ata%u: bus probe begin\n", ap->id);
1da177e4 5351 rc = ata_bus_probe(ap);
c893a3ae 5352 DPRINTK("ata%u: bus probe end\n", ap->id);
1da177e4
LT
5353
5354 if (rc) {
5355 /* FIXME: do something useful here?
5356 * Current libata behavior will
5357 * tear down everything when
5358 * the module is removed
5359 * or the h/w is unplugged.
5360 */
5361 }
5362
5363 rc = scsi_add_host(ap->host, dev);
5364 if (rc) {
f15a1daf 5365 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
1da177e4
LT
5366 /* FIXME: do something useful here */
5367 /* FIXME: handle unconditional calls to
5368 * scsi_scan_host and ata_host_remove, below,
5369 * at the very least
5370 */
5371 }
5372 }
5373
5374 /* probes are done, now scan each port's disk(s) */
c893a3ae 5375 DPRINTK("host probe begin\n");
1da177e4
LT
5376 for (i = 0; i < count; i++) {
5377 struct ata_port *ap = host_set->ports[i];
5378
644dd0cc 5379 ata_scsi_scan_host(ap);
1da177e4
LT
5380 }
5381
5382 dev_set_drvdata(dev, host_set);
5383
5384 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5385 return ent->n_ports; /* success */
5386
5387err_out:
5388 for (i = 0; i < count; i++) {
5389 ata_host_remove(host_set->ports[i], 1);
5390 scsi_host_put(host_set->ports[i]->host);
5391 }
57f3bda8 5392err_free_ret:
1da177e4
LT
5393 kfree(host_set);
5394 VPRINTK("EXIT, returning 0\n");
5395 return 0;
5396}
5397
17b14451
AC
5398/**
5399 * ata_host_set_remove - PCI layer callback for device removal
5400 * @host_set: ATA host set that was removed
5401 *
2e9edbf8 5402 * Unregister all objects associated with this host set. Free those
17b14451
AC
5403 * objects.
5404 *
5405 * LOCKING:
5406 * Inherited from calling layer (may sleep).
5407 */
5408
17b14451
AC
5409void ata_host_set_remove(struct ata_host_set *host_set)
5410{
5411 struct ata_port *ap;
5412 unsigned int i;
5413
5414 for (i = 0; i < host_set->n_ports; i++) {
5415 ap = host_set->ports[i];
5416 scsi_remove_host(ap->host);
5417 }
5418
5419 free_irq(host_set->irq, host_set);
5420
5421 for (i = 0; i < host_set->n_ports; i++) {
5422 ap = host_set->ports[i];
5423
5424 ata_scsi_release(ap->host);
5425
5426 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5427 struct ata_ioports *ioaddr = &ap->ioaddr;
5428
5429 if (ioaddr->cmd_addr == 0x1f0)
5430 release_region(0x1f0, 8);
5431 else if (ioaddr->cmd_addr == 0x170)
5432 release_region(0x170, 8);
5433 }
5434
5435 scsi_host_put(ap->host);
5436 }
5437
5438 if (host_set->ops->host_stop)
5439 host_set->ops->host_stop(host_set);
5440
5441 kfree(host_set);
5442}
5443
1da177e4
LT
5444/**
5445 * ata_scsi_release - SCSI layer callback hook for host unload
5446 * @host: libata host to be unloaded
5447 *
5448 * Performs all duties necessary to shut down a libata port...
5449 * Kill port kthread, disable port, and release resources.
5450 *
5451 * LOCKING:
5452 * Inherited from SCSI layer.
5453 *
5454 * RETURNS:
5455 * One.
5456 */
5457
5458int ata_scsi_release(struct Scsi_Host *host)
5459{
35bb94b1 5460 struct ata_port *ap = ata_shost_to_port(host);
1da177e4
LT
5461
5462 DPRINTK("ENTER\n");
5463
5464 ap->ops->port_disable(ap);
5465 ata_host_remove(ap, 0);
5466
5467 DPRINTK("EXIT\n");
5468 return 1;
5469}
5470
5471/**
5472 * ata_std_ports - initialize ioaddr with standard port offsets.
5473 * @ioaddr: IO address structure to be initialized
0baab86b
EF
5474 *
5475 * Utility function which initializes data_addr, error_addr,
5476 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5477 * device_addr, status_addr, and command_addr to standard offsets
5478 * relative to cmd_addr.
5479 *
5480 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 5481 */
0baab86b 5482
1da177e4
LT
5483void ata_std_ports(struct ata_ioports *ioaddr)
5484{
5485 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5486 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5487 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5488 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5489 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5490 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5491 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5492 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5493 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5494 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5495}
5496
0baab86b 5497
374b1873
JG
5498#ifdef CONFIG_PCI
5499
5500void ata_pci_host_stop (struct ata_host_set *host_set)
5501{
5502 struct pci_dev *pdev = to_pci_dev(host_set->dev);
5503
5504 pci_iounmap(pdev, host_set->mmio_base);
5505}
5506
1da177e4
LT
5507/**
5508 * ata_pci_remove_one - PCI layer callback for device removal
5509 * @pdev: PCI device that was removed
5510 *
5511 * PCI layer indicates to libata via this hook that
6f0ef4fa 5512 * hot-unplug or module unload event has occurred.
1da177e4
LT
5513 * Handle this by unregistering all objects associated
5514 * with this PCI device. Free those objects. Then finally
5515 * release PCI resources and disable device.
5516 *
5517 * LOCKING:
5518 * Inherited from PCI layer (may sleep).
5519 */
5520
5521void ata_pci_remove_one (struct pci_dev *pdev)
5522{
5523 struct device *dev = pci_dev_to_dev(pdev);
5524 struct ata_host_set *host_set = dev_get_drvdata(dev);
1da177e4 5525
17b14451 5526 ata_host_set_remove(host_set);
1da177e4
LT
5527 pci_release_regions(pdev);
5528 pci_disable_device(pdev);
5529 dev_set_drvdata(dev, NULL);
5530}
5531
5532/* move to PCI subsystem */
057ace5e 5533int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
5534{
5535 unsigned long tmp = 0;
5536
5537 switch (bits->width) {
5538 case 1: {
5539 u8 tmp8 = 0;
5540 pci_read_config_byte(pdev, bits->reg, &tmp8);
5541 tmp = tmp8;
5542 break;
5543 }
5544 case 2: {
5545 u16 tmp16 = 0;
5546 pci_read_config_word(pdev, bits->reg, &tmp16);
5547 tmp = tmp16;
5548 break;
5549 }
5550 case 4: {
5551 u32 tmp32 = 0;
5552 pci_read_config_dword(pdev, bits->reg, &tmp32);
5553 tmp = tmp32;
5554 break;
5555 }
5556
5557 default:
5558 return -EINVAL;
5559 }
5560
5561 tmp &= bits->mask;
5562
5563 return (tmp == bits->val) ? 1 : 0;
5564}
9b847548
JA
5565
5566int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5567{
5568 pci_save_state(pdev);
5569 pci_disable_device(pdev);
5570 pci_set_power_state(pdev, PCI_D3hot);
5571 return 0;
5572}
5573
5574int ata_pci_device_resume(struct pci_dev *pdev)
5575{
5576 pci_set_power_state(pdev, PCI_D0);
5577 pci_restore_state(pdev);
5578 pci_enable_device(pdev);
5579 pci_set_master(pdev);
5580 return 0;
5581}
1da177e4
LT
5582#endif /* CONFIG_PCI */
5583
5584
1da177e4
LT
5585static int __init ata_init(void)
5586{
5587 ata_wq = create_workqueue("ata");
5588 if (!ata_wq)
5589 return -ENOMEM;
5590
5591 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5592 return 0;
5593}
5594
5595static void __exit ata_exit(void)
5596{
5597 destroy_workqueue(ata_wq);
5598}
5599
5600module_init(ata_init);
5601module_exit(ata_exit);
5602
67846b30
JG
5603static unsigned long ratelimit_time;
5604static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5605
5606int ata_ratelimit(void)
5607{
5608 int rc;
5609 unsigned long flags;
5610
5611 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5612
5613 if (time_after(jiffies, ratelimit_time)) {
5614 rc = 1;
5615 ratelimit_time = jiffies + (HZ/5);
5616 } else
5617 rc = 0;
5618
5619 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5620
5621 return rc;
5622}
5623
c22daff4
TH
5624/**
5625 * ata_wait_register - wait until register value changes
5626 * @reg: IO-mapped register
5627 * @mask: Mask to apply to read register value
5628 * @val: Wait condition
5629 * @interval_msec: polling interval in milliseconds
5630 * @timeout_msec: timeout in milliseconds
5631 *
5632 * Waiting for some bits of register to change is a common
5633 * operation for ATA controllers. This function reads 32bit LE
5634 * IO-mapped register @reg and tests for the following condition.
5635 *
5636 * (*@reg & mask) != val
5637 *
5638 * If the condition is met, it returns; otherwise, the process is
5639 * repeated after @interval_msec until timeout.
5640 *
5641 * LOCKING:
5642 * Kernel thread context (may sleep)
5643 *
5644 * RETURNS:
5645 * The final register value.
5646 */
5647u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
5648 unsigned long interval_msec,
5649 unsigned long timeout_msec)
5650{
5651 unsigned long timeout;
5652 u32 tmp;
5653
5654 tmp = ioread32(reg);
5655
5656 /* Calculate timeout _after_ the first read to make sure
5657 * preceding writes reach the controller before starting to
5658 * eat away the timeout.
5659 */
5660 timeout = jiffies + (timeout_msec * HZ) / 1000;
5661
5662 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
5663 msleep(interval_msec);
5664 tmp = ioread32(reg);
5665 }
5666
5667 return tmp;
5668}
5669
1da177e4
LT
5670/*
5671 * libata is essentially a library of internal helper functions for
5672 * low-level ATA host controller drivers. As such, the API/ABI is
5673 * likely to change as new drivers are added and updated.
5674 * Do not depend on ABI/API stability.
5675 */
5676
5677EXPORT_SYMBOL_GPL(ata_std_bios_param);
5678EXPORT_SYMBOL_GPL(ata_std_ports);
5679EXPORT_SYMBOL_GPL(ata_device_add);
17b14451 5680EXPORT_SYMBOL_GPL(ata_host_set_remove);
1da177e4
LT
5681EXPORT_SYMBOL_GPL(ata_sg_init);
5682EXPORT_SYMBOL_GPL(ata_sg_init_one);
f686bcb8 5683EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 5684EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 5685EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
5686EXPORT_SYMBOL_GPL(ata_tf_load);
5687EXPORT_SYMBOL_GPL(ata_tf_read);
5688EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5689EXPORT_SYMBOL_GPL(ata_std_dev_select);
5690EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5691EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5692EXPORT_SYMBOL_GPL(ata_check_status);
5693EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
5694EXPORT_SYMBOL_GPL(ata_exec_command);
5695EXPORT_SYMBOL_GPL(ata_port_start);
5696EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 5697EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4
LT
5698EXPORT_SYMBOL_GPL(ata_interrupt);
5699EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 5700EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
5701EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5702EXPORT_SYMBOL_GPL(ata_bmdma_start);
5703EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5704EXPORT_SYMBOL_GPL(ata_bmdma_status);
5705EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
5706EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
5707EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
5708EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
5709EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
5710EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 5711EXPORT_SYMBOL_GPL(ata_port_probe);
3c567b7d 5712EXPORT_SYMBOL_GPL(sata_set_spd);
1da177e4
LT
5713EXPORT_SYMBOL_GPL(sata_phy_reset);
5714EXPORT_SYMBOL_GPL(__sata_phy_reset);
5715EXPORT_SYMBOL_GPL(ata_bus_reset);
8a19ac89 5716EXPORT_SYMBOL_GPL(ata_std_probeinit);
c2bd5804
TH
5717EXPORT_SYMBOL_GPL(ata_std_softreset);
5718EXPORT_SYMBOL_GPL(sata_std_hardreset);
5719EXPORT_SYMBOL_GPL(ata_std_postreset);
5720EXPORT_SYMBOL_GPL(ata_std_probe_reset);
a62c0fc5 5721EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
623a3128 5722EXPORT_SYMBOL_GPL(ata_dev_revalidate);
2e9edbf8
JG
5723EXPORT_SYMBOL_GPL(ata_dev_classify);
5724EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 5725EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 5726EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 5727EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 5728EXPORT_SYMBOL_GPL(ata_busy_sleep);
86e45b6b 5729EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
5730EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5731EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 5732EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
a6e6ce8e 5733EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4
LT
5734EXPORT_SYMBOL_GPL(ata_scsi_release);
5735EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
5736EXPORT_SYMBOL_GPL(sata_scr_valid);
5737EXPORT_SYMBOL_GPL(sata_scr_read);
5738EXPORT_SYMBOL_GPL(sata_scr_write);
5739EXPORT_SYMBOL_GPL(sata_scr_write_flush);
5740EXPORT_SYMBOL_GPL(ata_port_online);
5741EXPORT_SYMBOL_GPL(ata_port_offline);
6a62a04d
TH
5742EXPORT_SYMBOL_GPL(ata_id_string);
5743EXPORT_SYMBOL_GPL(ata_id_c_string);
1da177e4
LT
5744EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5745
1bc4ccff 5746EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
5747EXPORT_SYMBOL_GPL(ata_timing_compute);
5748EXPORT_SYMBOL_GPL(ata_timing_merge);
5749
1da177e4
LT
5750#ifdef CONFIG_PCI
5751EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 5752EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
5753EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5754EXPORT_SYMBOL_GPL(ata_pci_init_one);
5755EXPORT_SYMBOL_GPL(ata_pci_remove_one);
9b847548
JA
5756EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5757EXPORT_SYMBOL_GPL(ata_pci_device_resume);
67951ade
AC
5758EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5759EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 5760#endif /* CONFIG_PCI */
9b847548
JA
5761
5762EXPORT_SYMBOL_GPL(ata_device_suspend);
5763EXPORT_SYMBOL_GPL(ata_device_resume);
5764EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5765EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
ece1d636 5766
ece1d636 5767EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03
TH
5768EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
5769EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
5770EXPORT_SYMBOL_GPL(ata_port_freeze);
5771EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
5772EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
5773EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5774EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 5775EXPORT_SYMBOL_GPL(ata_do_eh);
This page took 0.620808 seconds and 5 git commands to generate.