[PATCH] libata: kill @verbose from ata_reset_fn_t
[deliverable/linux.git] / drivers / scsi / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
35#include <linux/config.h>
36#include <linux/kernel.h>
37#include <linux/module.h>
38#include <linux/pci.h>
39#include <linux/init.h>
40#include <linux/list.h>
41#include <linux/mm.h>
42#include <linux/highmem.h>
43#include <linux/spinlock.h>
44#include <linux/blkdev.h>
45#include <linux/delay.h>
46#include <linux/timer.h>
47#include <linux/interrupt.h>
48#include <linux/completion.h>
49#include <linux/suspend.h>
50#include <linux/workqueue.h>
67846b30 51#include <linux/jiffies.h>
378f058c 52#include <linux/scatterlist.h>
1da177e4 53#include <scsi/scsi.h>
1da177e4 54#include "scsi_priv.h"
193515d5 55#include <scsi/scsi_cmnd.h>
1da177e4
LT
56#include <scsi/scsi_host.h>
57#include <linux/libata.h>
58#include <asm/io.h>
59#include <asm/semaphore.h>
60#include <asm/byteorder.h>
61
62#include "libata.h"
63
6aff8f1f 64static unsigned int ata_dev_init_params(struct ata_port *ap,
00b6f5e9
AL
65 struct ata_device *dev,
66 u16 heads,
67 u16 sectors);
83206a29
TH
68static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
69 struct ata_device *dev);
acf356b1 70static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev);
1da177e4
LT
71
72static unsigned int ata_unique_id = 1;
73static struct workqueue_struct *ata_wq;
74
418dc1f5 75int atapi_enabled = 1;
1623c81e
JG
76module_param(atapi_enabled, int, 0444);
77MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
78
95de719a
AL
79int atapi_dmadir = 0;
80module_param(atapi_dmadir, int, 0444);
81MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
82
c3c013a2
JG
83int libata_fua = 0;
84module_param_named(fua, libata_fua, int, 0444);
85MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
86
1da177e4
LT
87MODULE_AUTHOR("Jeff Garzik");
88MODULE_DESCRIPTION("Library module for ATA devices");
89MODULE_LICENSE("GPL");
90MODULE_VERSION(DRV_VERSION);
91
0baab86b 92
1da177e4
LT
93/**
94 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
95 * @tf: Taskfile to convert
96 * @fis: Buffer into which data will output
97 * @pmp: Port multiplier port
98 *
99 * Converts a standard ATA taskfile to a Serial ATA
100 * FIS structure (Register - Host to Device).
101 *
102 * LOCKING:
103 * Inherited from caller.
104 */
105
057ace5e 106void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
107{
108 fis[0] = 0x27; /* Register - Host to Device FIS */
109 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
110 bit 7 indicates Command FIS */
111 fis[2] = tf->command;
112 fis[3] = tf->feature;
113
114 fis[4] = tf->lbal;
115 fis[5] = tf->lbam;
116 fis[6] = tf->lbah;
117 fis[7] = tf->device;
118
119 fis[8] = tf->hob_lbal;
120 fis[9] = tf->hob_lbam;
121 fis[10] = tf->hob_lbah;
122 fis[11] = tf->hob_feature;
123
124 fis[12] = tf->nsect;
125 fis[13] = tf->hob_nsect;
126 fis[14] = 0;
127 fis[15] = tf->ctl;
128
129 fis[16] = 0;
130 fis[17] = 0;
131 fis[18] = 0;
132 fis[19] = 0;
133}
134
135/**
136 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
137 * @fis: Buffer from which data will be input
138 * @tf: Taskfile to output
139 *
e12a1be6 140 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
141 *
142 * LOCKING:
143 * Inherited from caller.
144 */
145
057ace5e 146void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
147{
148 tf->command = fis[2]; /* status */
149 tf->feature = fis[3]; /* error */
150
151 tf->lbal = fis[4];
152 tf->lbam = fis[5];
153 tf->lbah = fis[6];
154 tf->device = fis[7];
155
156 tf->hob_lbal = fis[8];
157 tf->hob_lbam = fis[9];
158 tf->hob_lbah = fis[10];
159
160 tf->nsect = fis[12];
161 tf->hob_nsect = fis[13];
162}
163
8cbd6df1
AL
164static const u8 ata_rw_cmds[] = {
165 /* pio multi */
166 ATA_CMD_READ_MULTI,
167 ATA_CMD_WRITE_MULTI,
168 ATA_CMD_READ_MULTI_EXT,
169 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
170 0,
171 0,
172 0,
173 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
174 /* pio */
175 ATA_CMD_PIO_READ,
176 ATA_CMD_PIO_WRITE,
177 ATA_CMD_PIO_READ_EXT,
178 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
179 0,
180 0,
181 0,
182 0,
8cbd6df1
AL
183 /* dma */
184 ATA_CMD_READ,
185 ATA_CMD_WRITE,
186 ATA_CMD_READ_EXT,
9a3dccc4
TH
187 ATA_CMD_WRITE_EXT,
188 0,
189 0,
190 0,
191 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 192};
1da177e4
LT
193
194/**
8cbd6df1
AL
195 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
196 * @qc: command to examine and configure
1da177e4 197 *
2e9edbf8 198 * Examine the device configuration and tf->flags to calculate
8cbd6df1 199 * the proper read/write commands and protocol to use.
1da177e4
LT
200 *
201 * LOCKING:
202 * caller.
203 */
9a3dccc4 204int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
1da177e4 205{
8cbd6df1
AL
206 struct ata_taskfile *tf = &qc->tf;
207 struct ata_device *dev = qc->dev;
9a3dccc4 208 u8 cmd;
1da177e4 209
9a3dccc4 210 int index, fua, lba48, write;
2e9edbf8 211
9a3dccc4 212 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
213 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
214 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 215
8cbd6df1
AL
216 if (dev->flags & ATA_DFLAG_PIO) {
217 tf->protocol = ATA_PROT_PIO;
9a3dccc4 218 index = dev->multi_count ? 0 : 8;
8d238e01
AC
219 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
220 /* Unable to use DMA due to host limitation */
221 tf->protocol = ATA_PROT_PIO;
0565c26d 222 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
223 } else {
224 tf->protocol = ATA_PROT_DMA;
9a3dccc4 225 index = 16;
8cbd6df1 226 }
1da177e4 227
9a3dccc4
TH
228 cmd = ata_rw_cmds[index + fua + lba48 + write];
229 if (cmd) {
230 tf->command = cmd;
231 return 0;
232 }
233 return -1;
1da177e4
LT
234}
235
cb95d562
TH
236/**
237 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
238 * @pio_mask: pio_mask
239 * @mwdma_mask: mwdma_mask
240 * @udma_mask: udma_mask
241 *
242 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
243 * unsigned int xfer_mask.
244 *
245 * LOCKING:
246 * None.
247 *
248 * RETURNS:
249 * Packed xfer_mask.
250 */
251static unsigned int ata_pack_xfermask(unsigned int pio_mask,
252 unsigned int mwdma_mask,
253 unsigned int udma_mask)
254{
255 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
256 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
257 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
258}
259
c0489e4e
TH
260/**
261 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
262 * @xfer_mask: xfer_mask to unpack
263 * @pio_mask: resulting pio_mask
264 * @mwdma_mask: resulting mwdma_mask
265 * @udma_mask: resulting udma_mask
266 *
267 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
268 * Any NULL distination masks will be ignored.
269 */
270static void ata_unpack_xfermask(unsigned int xfer_mask,
271 unsigned int *pio_mask,
272 unsigned int *mwdma_mask,
273 unsigned int *udma_mask)
274{
275 if (pio_mask)
276 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
277 if (mwdma_mask)
278 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
279 if (udma_mask)
280 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
281}
282
cb95d562 283static const struct ata_xfer_ent {
be9a50c8 284 int shift, bits;
cb95d562
TH
285 u8 base;
286} ata_xfer_tbl[] = {
287 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
288 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
289 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
290 { -1, },
291};
292
293/**
294 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
295 * @xfer_mask: xfer_mask of interest
296 *
297 * Return matching XFER_* value for @xfer_mask. Only the highest
298 * bit of @xfer_mask is considered.
299 *
300 * LOCKING:
301 * None.
302 *
303 * RETURNS:
304 * Matching XFER_* value, 0 if no match found.
305 */
306static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
307{
308 int highbit = fls(xfer_mask) - 1;
309 const struct ata_xfer_ent *ent;
310
311 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
312 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
313 return ent->base + highbit - ent->shift;
314 return 0;
315}
316
317/**
318 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
319 * @xfer_mode: XFER_* of interest
320 *
321 * Return matching xfer_mask for @xfer_mode.
322 *
323 * LOCKING:
324 * None.
325 *
326 * RETURNS:
327 * Matching xfer_mask, 0 if no match found.
328 */
329static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
330{
331 const struct ata_xfer_ent *ent;
332
333 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
334 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
335 return 1 << (ent->shift + xfer_mode - ent->base);
336 return 0;
337}
338
339/**
340 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
341 * @xfer_mode: XFER_* of interest
342 *
343 * Return matching xfer_shift for @xfer_mode.
344 *
345 * LOCKING:
346 * None.
347 *
348 * RETURNS:
349 * Matching xfer_shift, -1 if no match found.
350 */
351static int ata_xfer_mode2shift(unsigned int xfer_mode)
352{
353 const struct ata_xfer_ent *ent;
354
355 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
356 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
357 return ent->shift;
358 return -1;
359}
360
1da177e4 361/**
1da7b0d0
TH
362 * ata_mode_string - convert xfer_mask to string
363 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
364 *
365 * Determine string which represents the highest speed
1da7b0d0 366 * (highest bit in @modemask).
1da177e4
LT
367 *
368 * LOCKING:
369 * None.
370 *
371 * RETURNS:
372 * Constant C string representing highest speed listed in
1da7b0d0 373 * @mode_mask, or the constant C string "<n/a>".
1da177e4 374 */
1da7b0d0 375static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 376{
75f554bc
TH
377 static const char * const xfer_mode_str[] = {
378 "PIO0",
379 "PIO1",
380 "PIO2",
381 "PIO3",
382 "PIO4",
383 "MWDMA0",
384 "MWDMA1",
385 "MWDMA2",
386 "UDMA/16",
387 "UDMA/25",
388 "UDMA/33",
389 "UDMA/44",
390 "UDMA/66",
391 "UDMA/100",
392 "UDMA/133",
393 "UDMA7",
394 };
1da7b0d0 395 int highbit;
1da177e4 396
1da7b0d0
TH
397 highbit = fls(xfer_mask) - 1;
398 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
399 return xfer_mode_str[highbit];
1da177e4 400 return "<n/a>";
1da177e4
LT
401}
402
4c360c81
TH
403static const char *sata_spd_string(unsigned int spd)
404{
405 static const char * const spd_str[] = {
406 "1.5 Gbps",
407 "3.0 Gbps",
408 };
409
410 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
411 return "<unknown>";
412 return spd_str[spd - 1];
413}
414
1ad8e7f9 415void ata_dev_disable(struct ata_port *ap, struct ata_device *dev)
0b8efb0a 416{
e1211e3f 417 if (ata_dev_enabled(dev)) {
0b8efb0a
TH
418 printk(KERN_WARNING "ata%u: dev %u disabled\n",
419 ap->id, dev->devno);
420 dev->class++;
421 }
422}
423
1da177e4
LT
424/**
425 * ata_pio_devchk - PATA device presence detection
426 * @ap: ATA channel to examine
427 * @device: Device to examine (starting at zero)
428 *
429 * This technique was originally described in
430 * Hale Landis's ATADRVR (www.ata-atapi.com), and
431 * later found its way into the ATA/ATAPI spec.
432 *
433 * Write a pattern to the ATA shadow registers,
434 * and if a device is present, it will respond by
435 * correctly storing and echoing back the
436 * ATA shadow register contents.
437 *
438 * LOCKING:
439 * caller.
440 */
441
442static unsigned int ata_pio_devchk(struct ata_port *ap,
443 unsigned int device)
444{
445 struct ata_ioports *ioaddr = &ap->ioaddr;
446 u8 nsect, lbal;
447
448 ap->ops->dev_select(ap, device);
449
450 outb(0x55, ioaddr->nsect_addr);
451 outb(0xaa, ioaddr->lbal_addr);
452
453 outb(0xaa, ioaddr->nsect_addr);
454 outb(0x55, ioaddr->lbal_addr);
455
456 outb(0x55, ioaddr->nsect_addr);
457 outb(0xaa, ioaddr->lbal_addr);
458
459 nsect = inb(ioaddr->nsect_addr);
460 lbal = inb(ioaddr->lbal_addr);
461
462 if ((nsect == 0x55) && (lbal == 0xaa))
463 return 1; /* we found a device */
464
465 return 0; /* nothing found */
466}
467
468/**
469 * ata_mmio_devchk - PATA device presence detection
470 * @ap: ATA channel to examine
471 * @device: Device to examine (starting at zero)
472 *
473 * This technique was originally described in
474 * Hale Landis's ATADRVR (www.ata-atapi.com), and
475 * later found its way into the ATA/ATAPI spec.
476 *
477 * Write a pattern to the ATA shadow registers,
478 * and if a device is present, it will respond by
479 * correctly storing and echoing back the
480 * ATA shadow register contents.
481 *
482 * LOCKING:
483 * caller.
484 */
485
486static unsigned int ata_mmio_devchk(struct ata_port *ap,
487 unsigned int device)
488{
489 struct ata_ioports *ioaddr = &ap->ioaddr;
490 u8 nsect, lbal;
491
492 ap->ops->dev_select(ap, device);
493
494 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
495 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
496
497 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
498 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
499
500 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
501 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
502
503 nsect = readb((void __iomem *) ioaddr->nsect_addr);
504 lbal = readb((void __iomem *) ioaddr->lbal_addr);
505
506 if ((nsect == 0x55) && (lbal == 0xaa))
507 return 1; /* we found a device */
508
509 return 0; /* nothing found */
510}
511
512/**
513 * ata_devchk - PATA device presence detection
514 * @ap: ATA channel to examine
515 * @device: Device to examine (starting at zero)
516 *
517 * Dispatch ATA device presence detection, depending
518 * on whether we are using PIO or MMIO to talk to the
519 * ATA shadow registers.
520 *
521 * LOCKING:
522 * caller.
523 */
524
525static unsigned int ata_devchk(struct ata_port *ap,
526 unsigned int device)
527{
528 if (ap->flags & ATA_FLAG_MMIO)
529 return ata_mmio_devchk(ap, device);
530 return ata_pio_devchk(ap, device);
531}
532
533/**
534 * ata_dev_classify - determine device type based on ATA-spec signature
535 * @tf: ATA taskfile register set for device to be identified
536 *
537 * Determine from taskfile register contents whether a device is
538 * ATA or ATAPI, as per "Signature and persistence" section
539 * of ATA/PI spec (volume 1, sect 5.14).
540 *
541 * LOCKING:
542 * None.
543 *
544 * RETURNS:
545 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
546 * the event of failure.
547 */
548
057ace5e 549unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
550{
551 /* Apple's open source Darwin code hints that some devices only
552 * put a proper signature into the LBA mid/high registers,
553 * So, we only check those. It's sufficient for uniqueness.
554 */
555
556 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
557 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
558 DPRINTK("found ATA device by sig\n");
559 return ATA_DEV_ATA;
560 }
561
562 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
563 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
564 DPRINTK("found ATAPI device by sig\n");
565 return ATA_DEV_ATAPI;
566 }
567
568 DPRINTK("unknown device\n");
569 return ATA_DEV_UNKNOWN;
570}
571
572/**
573 * ata_dev_try_classify - Parse returned ATA device signature
574 * @ap: ATA channel to examine
575 * @device: Device to examine (starting at zero)
b4dc7623 576 * @r_err: Value of error register on completion
1da177e4
LT
577 *
578 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
579 * an ATA/ATAPI-defined set of values is placed in the ATA
580 * shadow registers, indicating the results of device detection
581 * and diagnostics.
582 *
583 * Select the ATA device, and read the values from the ATA shadow
584 * registers. Then parse according to the Error register value,
585 * and the spec-defined values examined by ata_dev_classify().
586 *
587 * LOCKING:
588 * caller.
b4dc7623
TH
589 *
590 * RETURNS:
591 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
592 */
593
b4dc7623
TH
594static unsigned int
595ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 596{
1da177e4
LT
597 struct ata_taskfile tf;
598 unsigned int class;
599 u8 err;
600
601 ap->ops->dev_select(ap, device);
602
603 memset(&tf, 0, sizeof(tf));
604
1da177e4 605 ap->ops->tf_read(ap, &tf);
0169e284 606 err = tf.feature;
b4dc7623
TH
607 if (r_err)
608 *r_err = err;
1da177e4
LT
609
610 /* see if device passed diags */
611 if (err == 1)
612 /* do nothing */ ;
613 else if ((device == 0) && (err == 0x81))
614 /* do nothing */ ;
615 else
b4dc7623 616 return ATA_DEV_NONE;
1da177e4 617
b4dc7623 618 /* determine if device is ATA or ATAPI */
1da177e4 619 class = ata_dev_classify(&tf);
b4dc7623 620
1da177e4 621 if (class == ATA_DEV_UNKNOWN)
b4dc7623 622 return ATA_DEV_NONE;
1da177e4 623 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
624 return ATA_DEV_NONE;
625 return class;
1da177e4
LT
626}
627
628/**
6a62a04d 629 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
630 * @id: IDENTIFY DEVICE results we will examine
631 * @s: string into which data is output
632 * @ofs: offset into identify device page
633 * @len: length of string to return. must be an even number.
634 *
635 * The strings in the IDENTIFY DEVICE page are broken up into
636 * 16-bit chunks. Run through the string, and output each
637 * 8-bit chunk linearly, regardless of platform.
638 *
639 * LOCKING:
640 * caller.
641 */
642
6a62a04d
TH
643void ata_id_string(const u16 *id, unsigned char *s,
644 unsigned int ofs, unsigned int len)
1da177e4
LT
645{
646 unsigned int c;
647
648 while (len > 0) {
649 c = id[ofs] >> 8;
650 *s = c;
651 s++;
652
653 c = id[ofs] & 0xff;
654 *s = c;
655 s++;
656
657 ofs++;
658 len -= 2;
659 }
660}
661
0e949ff3 662/**
6a62a04d 663 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
664 * @id: IDENTIFY DEVICE results we will examine
665 * @s: string into which data is output
666 * @ofs: offset into identify device page
667 * @len: length of string to return. must be an odd number.
668 *
6a62a04d 669 * This function is identical to ata_id_string except that it
0e949ff3
TH
670 * trims trailing spaces and terminates the resulting string with
671 * null. @len must be actual maximum length (even number) + 1.
672 *
673 * LOCKING:
674 * caller.
675 */
6a62a04d
TH
676void ata_id_c_string(const u16 *id, unsigned char *s,
677 unsigned int ofs, unsigned int len)
0e949ff3
TH
678{
679 unsigned char *p;
680
681 WARN_ON(!(len & 1));
682
6a62a04d 683 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
684
685 p = s + strnlen(s, len - 1);
686 while (p > s && p[-1] == ' ')
687 p--;
688 *p = '\0';
689}
0baab86b 690
2940740b
TH
691static u64 ata_id_n_sectors(const u16 *id)
692{
693 if (ata_id_has_lba(id)) {
694 if (ata_id_has_lba48(id))
695 return ata_id_u64(id, 100);
696 else
697 return ata_id_u32(id, 60);
698 } else {
699 if (ata_id_current_chs_valid(id))
700 return ata_id_u32(id, 57);
701 else
702 return id[1] * id[3] * id[6];
703 }
704}
705
0baab86b
EF
706/**
707 * ata_noop_dev_select - Select device 0/1 on ATA bus
708 * @ap: ATA channel to manipulate
709 * @device: ATA device (numbered from zero) to select
710 *
711 * This function performs no actual function.
712 *
713 * May be used as the dev_select() entry in ata_port_operations.
714 *
715 * LOCKING:
716 * caller.
717 */
1da177e4
LT
718void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
719{
720}
721
0baab86b 722
1da177e4
LT
723/**
724 * ata_std_dev_select - Select device 0/1 on ATA bus
725 * @ap: ATA channel to manipulate
726 * @device: ATA device (numbered from zero) to select
727 *
728 * Use the method defined in the ATA specification to
729 * make either device 0, or device 1, active on the
0baab86b
EF
730 * ATA channel. Works with both PIO and MMIO.
731 *
732 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
733 *
734 * LOCKING:
735 * caller.
736 */
737
738void ata_std_dev_select (struct ata_port *ap, unsigned int device)
739{
740 u8 tmp;
741
742 if (device == 0)
743 tmp = ATA_DEVICE_OBS;
744 else
745 tmp = ATA_DEVICE_OBS | ATA_DEV1;
746
747 if (ap->flags & ATA_FLAG_MMIO) {
748 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
749 } else {
750 outb(tmp, ap->ioaddr.device_addr);
751 }
752 ata_pause(ap); /* needed; also flushes, for mmio */
753}
754
755/**
756 * ata_dev_select - Select device 0/1 on ATA bus
757 * @ap: ATA channel to manipulate
758 * @device: ATA device (numbered from zero) to select
759 * @wait: non-zero to wait for Status register BSY bit to clear
760 * @can_sleep: non-zero if context allows sleeping
761 *
762 * Use the method defined in the ATA specification to
763 * make either device 0, or device 1, active on the
764 * ATA channel.
765 *
766 * This is a high-level version of ata_std_dev_select(),
767 * which additionally provides the services of inserting
768 * the proper pauses and status polling, where needed.
769 *
770 * LOCKING:
771 * caller.
772 */
773
774void ata_dev_select(struct ata_port *ap, unsigned int device,
775 unsigned int wait, unsigned int can_sleep)
776{
777 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
778 ap->id, device, wait);
779
780 if (wait)
781 ata_wait_idle(ap);
782
783 ap->ops->dev_select(ap, device);
784
785 if (wait) {
786 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
787 msleep(150);
788 ata_wait_idle(ap);
789 }
790}
791
792/**
793 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 794 * @id: IDENTIFY DEVICE page to dump
1da177e4 795 *
0bd3300a
TH
796 * Dump selected 16-bit words from the given IDENTIFY DEVICE
797 * page.
1da177e4
LT
798 *
799 * LOCKING:
800 * caller.
801 */
802
0bd3300a 803static inline void ata_dump_id(const u16 *id)
1da177e4
LT
804{
805 DPRINTK("49==0x%04x "
806 "53==0x%04x "
807 "63==0x%04x "
808 "64==0x%04x "
809 "75==0x%04x \n",
0bd3300a
TH
810 id[49],
811 id[53],
812 id[63],
813 id[64],
814 id[75]);
1da177e4
LT
815 DPRINTK("80==0x%04x "
816 "81==0x%04x "
817 "82==0x%04x "
818 "83==0x%04x "
819 "84==0x%04x \n",
0bd3300a
TH
820 id[80],
821 id[81],
822 id[82],
823 id[83],
824 id[84]);
1da177e4
LT
825 DPRINTK("88==0x%04x "
826 "93==0x%04x\n",
0bd3300a
TH
827 id[88],
828 id[93]);
1da177e4
LT
829}
830
cb95d562
TH
831/**
832 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
833 * @id: IDENTIFY data to compute xfer mask from
834 *
835 * Compute the xfermask for this device. This is not as trivial
836 * as it seems if we must consider early devices correctly.
837 *
838 * FIXME: pre IDE drive timing (do we care ?).
839 *
840 * LOCKING:
841 * None.
842 *
843 * RETURNS:
844 * Computed xfermask
845 */
846static unsigned int ata_id_xfermask(const u16 *id)
847{
848 unsigned int pio_mask, mwdma_mask, udma_mask;
849
850 /* Usual case. Word 53 indicates word 64 is valid */
851 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
852 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
853 pio_mask <<= 3;
854 pio_mask |= 0x7;
855 } else {
856 /* If word 64 isn't valid then Word 51 high byte holds
857 * the PIO timing number for the maximum. Turn it into
858 * a mask.
859 */
860 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
861
862 /* But wait.. there's more. Design your standards by
863 * committee and you too can get a free iordy field to
864 * process. However its the speeds not the modes that
865 * are supported... Note drivers using the timing API
866 * will get this right anyway
867 */
868 }
869
870 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0
TH
871
872 udma_mask = 0;
873 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
874 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
875
876 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
877}
878
86e45b6b
TH
879/**
880 * ata_port_queue_task - Queue port_task
881 * @ap: The ata_port to queue port_task for
882 *
883 * Schedule @fn(@data) for execution after @delay jiffies using
884 * port_task. There is one port_task per port and it's the
885 * user(low level driver)'s responsibility to make sure that only
886 * one task is active at any given time.
887 *
888 * libata core layer takes care of synchronization between
889 * port_task and EH. ata_port_queue_task() may be ignored for EH
890 * synchronization.
891 *
892 * LOCKING:
893 * Inherited from caller.
894 */
895void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
896 unsigned long delay)
897{
898 int rc;
899
2e755f68 900 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
86e45b6b
TH
901 return;
902
903 PREPARE_WORK(&ap->port_task, fn, data);
904
905 if (!delay)
906 rc = queue_work(ata_wq, &ap->port_task);
907 else
908 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
909
910 /* rc == 0 means that another user is using port task */
911 WARN_ON(rc == 0);
912}
913
914/**
915 * ata_port_flush_task - Flush port_task
916 * @ap: The ata_port to flush port_task for
917 *
918 * After this function completes, port_task is guranteed not to
919 * be running or scheduled.
920 *
921 * LOCKING:
922 * Kernel thread context (may sleep)
923 */
924void ata_port_flush_task(struct ata_port *ap)
925{
926 unsigned long flags;
927
928 DPRINTK("ENTER\n");
929
930 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 931 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
86e45b6b
TH
932 spin_unlock_irqrestore(&ap->host_set->lock, flags);
933
934 DPRINTK("flush #1\n");
935 flush_workqueue(ata_wq);
936
937 /*
938 * At this point, if a task is running, it's guaranteed to see
939 * the FLUSH flag; thus, it will never queue pio tasks again.
940 * Cancel and flush.
941 */
942 if (!cancel_delayed_work(&ap->port_task)) {
943 DPRINTK("flush #2\n");
944 flush_workqueue(ata_wq);
945 }
946
947 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 948 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
86e45b6b
TH
949 spin_unlock_irqrestore(&ap->host_set->lock, flags);
950
951 DPRINTK("EXIT\n");
952}
953
77853bf2 954void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 955{
77853bf2 956 struct completion *waiting = qc->private_data;
a2a7a662 957
77853bf2 958 qc->ap->ops->tf_read(qc->ap, &qc->tf);
a2a7a662 959 complete(waiting);
a2a7a662
TH
960}
961
962/**
963 * ata_exec_internal - execute libata internal command
964 * @ap: Port to which the command is sent
965 * @dev: Device to which the command is sent
966 * @tf: Taskfile registers for the command and the result
d69cf37d 967 * @cdb: CDB for packet command
a2a7a662
TH
968 * @dma_dir: Data tranfer direction of the command
969 * @buf: Data buffer of the command
970 * @buflen: Length of data buffer
971 *
972 * Executes libata internal command with timeout. @tf contains
973 * command on entry and result on return. Timeout and error
974 * conditions are reported via return value. No recovery action
975 * is taken after a command times out. It's caller's duty to
976 * clean up after timeout.
977 *
978 * LOCKING:
979 * None. Should be called with kernel context, might sleep.
980 */
981
1ad8e7f9
TH
982unsigned ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
983 struct ata_taskfile *tf, const u8 *cdb,
984 int dma_dir, void *buf, unsigned int buflen)
a2a7a662
TH
985{
986 u8 command = tf->command;
987 struct ata_queued_cmd *qc;
988 DECLARE_COMPLETION(wait);
989 unsigned long flags;
77853bf2 990 unsigned int err_mask;
a2a7a662
TH
991
992 spin_lock_irqsave(&ap->host_set->lock, flags);
993
994 qc = ata_qc_new_init(ap, dev);
995 BUG_ON(qc == NULL);
996
997 qc->tf = *tf;
d69cf37d
TH
998 if (cdb)
999 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
a2a7a662
TH
1000 qc->dma_dir = dma_dir;
1001 if (dma_dir != DMA_NONE) {
1002 ata_sg_init_one(qc, buf, buflen);
1003 qc->nsect = buflen / ATA_SECT_SIZE;
1004 }
1005
77853bf2 1006 qc->private_data = &wait;
a2a7a662
TH
1007 qc->complete_fn = ata_qc_complete_internal;
1008
8e0e694a 1009 ata_qc_issue(qc);
a2a7a662
TH
1010
1011 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1012
1013 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
41ade50c
AL
1014 ata_port_flush_task(ap);
1015
a2a7a662
TH
1016 spin_lock_irqsave(&ap->host_set->lock, flags);
1017
1018 /* We're racing with irq here. If we lose, the
1019 * following test prevents us from completing the qc
1020 * again. If completion irq occurs after here but
1021 * before the caller cleans up, it will result in a
1022 * spurious interrupt. We can live with that.
1023 */
77853bf2 1024 if (qc->flags & ATA_QCFLAG_ACTIVE) {
11a56d24 1025 qc->err_mask = AC_ERR_TIMEOUT;
a2a7a662
TH
1026 ata_qc_complete(qc);
1027 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
1028 ap->id, command);
1029 }
1030
1031 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1032 }
1033
77853bf2
TH
1034 *tf = qc->tf;
1035 err_mask = qc->err_mask;
1036
1037 ata_qc_free(qc);
1038
1f7dd3e9
TH
1039 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1040 * Until those drivers are fixed, we detect the condition
1041 * here, fail the command with AC_ERR_SYSTEM and reenable the
1042 * port.
1043 *
1044 * Note that this doesn't change any behavior as internal
1045 * command failure results in disabling the device in the
1046 * higher layer for LLDDs without new reset/EH callbacks.
1047 *
1048 * Kill the following code as soon as those drivers are fixed.
1049 */
198e0fed 1050 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1051 err_mask |= AC_ERR_SYSTEM;
1052 ata_port_probe(ap);
1053 }
1054
77853bf2 1055 return err_mask;
a2a7a662
TH
1056}
1057
1bc4ccff
AC
1058/**
1059 * ata_pio_need_iordy - check if iordy needed
1060 * @adev: ATA device
1061 *
1062 * Check if the current speed of the device requires IORDY. Used
1063 * by various controllers for chip configuration.
1064 */
1065
1066unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1067{
1068 int pio;
1069 int speed = adev->pio_mode - XFER_PIO_0;
1070
1071 if (speed < 2)
1072 return 0;
1073 if (speed > 2)
1074 return 1;
2e9edbf8 1075
1bc4ccff
AC
1076 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1077
1078 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1079 pio = adev->id[ATA_ID_EIDE_PIO];
1080 /* Is the speed faster than the drive allows non IORDY ? */
1081 if (pio) {
1082 /* This is cycle times not frequency - watch the logic! */
1083 if (pio > 240) /* PIO2 is 240nS per cycle */
1084 return 1;
1085 return 0;
1086 }
1087 }
1088 return 0;
1089}
1090
1da177e4 1091/**
49016aca
TH
1092 * ata_dev_read_id - Read ID data from the specified device
1093 * @ap: port on which target device resides
1094 * @dev: target device
1095 * @p_class: pointer to class of the target device (may be changed)
1096 * @post_reset: is this read ID post-reset?
d9572b1d 1097 * @p_id: read IDENTIFY page (newly allocated)
1da177e4 1098 *
49016aca
TH
1099 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1100 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1101 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1102 * for pre-ATA4 drives.
1da177e4
LT
1103 *
1104 * LOCKING:
49016aca
TH
1105 * Kernel thread context (may sleep)
1106 *
1107 * RETURNS:
1108 * 0 on success, -errno otherwise.
1da177e4 1109 */
49016aca 1110static int ata_dev_read_id(struct ata_port *ap, struct ata_device *dev,
d9572b1d 1111 unsigned int *p_class, int post_reset, u16 **p_id)
1da177e4 1112{
49016aca 1113 unsigned int class = *p_class;
a0123703 1114 struct ata_taskfile tf;
49016aca 1115 unsigned int err_mask = 0;
d9572b1d 1116 u16 *id;
49016aca
TH
1117 const char *reason;
1118 int rc;
1da177e4 1119
49016aca 1120 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1121
49016aca 1122 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1da177e4 1123
d9572b1d
TH
1124 id = kmalloc(sizeof(id[0]) * ATA_ID_WORDS, GFP_KERNEL);
1125 if (id == NULL) {
1126 rc = -ENOMEM;
1127 reason = "out of memory";
1128 goto err_out;
1129 }
1130
49016aca
TH
1131 retry:
1132 ata_tf_init(ap, &tf, dev->devno);
a0123703 1133
49016aca
TH
1134 switch (class) {
1135 case ATA_DEV_ATA:
a0123703 1136 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1137 break;
1138 case ATA_DEV_ATAPI:
a0123703 1139 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1140 break;
1141 default:
1142 rc = -ENODEV;
1143 reason = "unsupported class";
1144 goto err_out;
1da177e4
LT
1145 }
1146
a0123703 1147 tf.protocol = ATA_PROT_PIO;
1da177e4 1148
d69cf37d 1149 err_mask = ata_exec_internal(ap, dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1150 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1151 if (err_mask) {
49016aca
TH
1152 rc = -EIO;
1153 reason = "I/O error";
1da177e4
LT
1154 goto err_out;
1155 }
1156
49016aca 1157 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1158
49016aca 1159 /* sanity check */
692785e7 1160 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
49016aca
TH
1161 rc = -EINVAL;
1162 reason = "device reports illegal type";
1163 goto err_out;
1164 }
1165
1166 if (post_reset && class == ATA_DEV_ATA) {
1167 /*
1168 * The exact sequence expected by certain pre-ATA4 drives is:
1169 * SRST RESET
1170 * IDENTIFY
1171 * INITIALIZE DEVICE PARAMETERS
1172 * anything else..
1173 * Some drives were very specific about that exact sequence.
1174 */
1175 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
00b6f5e9 1176 err_mask = ata_dev_init_params(ap, dev, id[3], id[6]);
49016aca
TH
1177 if (err_mask) {
1178 rc = -EIO;
1179 reason = "INIT_DEV_PARAMS failed";
1180 goto err_out;
1181 }
1182
1183 /* current CHS translation info (id[53-58]) might be
1184 * changed. reread the identify device info.
1185 */
1186 post_reset = 0;
1187 goto retry;
1188 }
1189 }
1190
1191 *p_class = class;
d9572b1d 1192 *p_id = id;
49016aca
TH
1193 return 0;
1194
1195 err_out:
1196 printk(KERN_WARNING "ata%u: dev %u failed to IDENTIFY (%s)\n",
1197 ap->id, dev->devno, reason);
d9572b1d 1198 kfree(id);
49016aca
TH
1199 return rc;
1200}
1201
4b2f3ede
TH
1202static inline u8 ata_dev_knobble(const struct ata_port *ap,
1203 struct ata_device *dev)
1204{
1205 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1206}
1207
49016aca 1208/**
ffeae418
TH
1209 * ata_dev_configure - Configure the specified ATA/ATAPI device
1210 * @ap: Port on which target device resides
1211 * @dev: Target device to configure
4c2d721a 1212 * @print_info: Enable device info printout
ffeae418
TH
1213 *
1214 * Configure @dev according to @dev->id. Generic and low-level
1215 * driver specific fixups are also applied.
49016aca
TH
1216 *
1217 * LOCKING:
ffeae418
TH
1218 * Kernel thread context (may sleep)
1219 *
1220 * RETURNS:
1221 * 0 on success, -errno otherwise
49016aca 1222 */
4c2d721a
TH
1223static int ata_dev_configure(struct ata_port *ap, struct ata_device *dev,
1224 int print_info)
49016aca 1225{
1148c3a7 1226 const u16 *id = dev->id;
ff8854b2 1227 unsigned int xfer_mask;
49016aca
TH
1228 int i, rc;
1229
e1211e3f 1230 if (!ata_dev_enabled(dev)) {
49016aca 1231 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
ffeae418
TH
1232 ap->id, dev->devno);
1233 return 0;
49016aca
TH
1234 }
1235
ffeae418 1236 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1237
c39f5ebe
TH
1238 /* print device capabilities */
1239 if (print_info)
1240 printk(KERN_DEBUG "ata%u: dev %u cfg 49:%04x 82:%04x 83:%04x "
1241 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1242 ap->id, dev->devno, id[49], id[82], id[83],
1243 id[84], id[85], id[86], id[87], id[88]);
1244
208a9933 1245 /* initialize to-be-configured parameters */
ea1dd4e1 1246 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1247 dev->max_sectors = 0;
1248 dev->cdb_len = 0;
1249 dev->n_sectors = 0;
1250 dev->cylinders = 0;
1251 dev->heads = 0;
1252 dev->sectors = 0;
1253
1da177e4
LT
1254 /*
1255 * common ATA, ATAPI feature tests
1256 */
1257
ff8854b2 1258 /* find max transfer mode; for printk only */
1148c3a7 1259 xfer_mask = ata_id_xfermask(id);
1da177e4 1260
1148c3a7 1261 ata_dump_id(id);
1da177e4
LT
1262
1263 /* ATA-specific feature tests */
1264 if (dev->class == ATA_DEV_ATA) {
1148c3a7 1265 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1266
1148c3a7 1267 if (ata_id_has_lba(id)) {
4c2d721a 1268 const char *lba_desc;
8bf62ece 1269
4c2d721a
TH
1270 lba_desc = "LBA";
1271 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1272 if (ata_id_has_lba48(id)) {
8bf62ece 1273 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a
TH
1274 lba_desc = "LBA48";
1275 }
8bf62ece
AL
1276
1277 /* print device info to dmesg */
4c2d721a
TH
1278 if (print_info)
1279 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1280 "max %s, %Lu sectors: %s\n",
1281 ap->id, dev->devno,
1148c3a7 1282 ata_id_major_version(id),
ff8854b2 1283 ata_mode_string(xfer_mask),
4c2d721a
TH
1284 (unsigned long long)dev->n_sectors,
1285 lba_desc);
ffeae418 1286 } else {
8bf62ece
AL
1287 /* CHS */
1288
1289 /* Default translation */
1148c3a7
TH
1290 dev->cylinders = id[1];
1291 dev->heads = id[3];
1292 dev->sectors = id[6];
8bf62ece 1293
1148c3a7 1294 if (ata_id_current_chs_valid(id)) {
8bf62ece 1295 /* Current CHS translation is valid. */
1148c3a7
TH
1296 dev->cylinders = id[54];
1297 dev->heads = id[55];
1298 dev->sectors = id[56];
8bf62ece
AL
1299 }
1300
1301 /* print device info to dmesg */
4c2d721a
TH
1302 if (print_info)
1303 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1304 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1305 ap->id, dev->devno,
1148c3a7 1306 ata_id_major_version(id),
ff8854b2 1307 ata_mode_string(xfer_mask),
4c2d721a
TH
1308 (unsigned long long)dev->n_sectors,
1309 dev->cylinders, dev->heads, dev->sectors);
1da177e4
LT
1310 }
1311
6e7846e9 1312 dev->cdb_len = 16;
1da177e4
LT
1313 }
1314
1315 /* ATAPI-specific feature tests */
2c13b7ce 1316 else if (dev->class == ATA_DEV_ATAPI) {
1148c3a7 1317 rc = atapi_cdb_len(id);
1da177e4
LT
1318 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1319 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
ffeae418 1320 rc = -EINVAL;
1da177e4
LT
1321 goto err_out_nosup;
1322 }
6e7846e9 1323 dev->cdb_len = (unsigned int) rc;
1da177e4
LT
1324
1325 /* print device info to dmesg */
4c2d721a
TH
1326 if (print_info)
1327 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
ff8854b2 1328 ap->id, dev->devno, ata_mode_string(xfer_mask));
1da177e4
LT
1329 }
1330
6e7846e9
TH
1331 ap->host->max_cmd_len = 0;
1332 for (i = 0; i < ATA_MAX_DEVICES; i++)
1333 ap->host->max_cmd_len = max_t(unsigned int,
1334 ap->host->max_cmd_len,
1335 ap->device[i].cdb_len);
1336
4b2f3ede
TH
1337 /* limit bridge transfers to udma5, 200 sectors */
1338 if (ata_dev_knobble(ap, dev)) {
4c2d721a
TH
1339 if (print_info)
1340 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1341 ap->id, dev->devno);
5a529139 1342 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
1343 dev->max_sectors = ATA_MAX_SECTORS;
1344 }
1345
1346 if (ap->ops->dev_config)
1347 ap->ops->dev_config(ap, dev);
1348
1da177e4 1349 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
ffeae418 1350 return 0;
1da177e4
LT
1351
1352err_out_nosup:
1da177e4 1353 DPRINTK("EXIT, err\n");
ffeae418 1354 return rc;
1da177e4
LT
1355}
1356
1357/**
1358 * ata_bus_probe - Reset and probe ATA bus
1359 * @ap: Bus to probe
1360 *
0cba632b
JG
1361 * Master ATA bus probing function. Initiates a hardware-dependent
1362 * bus reset, then attempts to identify any devices found on
1363 * the bus.
1364 *
1da177e4 1365 * LOCKING:
0cba632b 1366 * PCI/etc. bus probe sem.
1da177e4
LT
1367 *
1368 * RETURNS:
96072e69 1369 * Zero on success, negative errno otherwise.
1da177e4
LT
1370 */
1371
1372static int ata_bus_probe(struct ata_port *ap)
1373{
28ca5c57 1374 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1
TH
1375 int tries[ATA_MAX_DEVICES];
1376 int i, rc, down_xfermask;
e82cbdb9 1377 struct ata_device *dev;
1da177e4 1378
28ca5c57 1379 ata_port_probe(ap);
c19ba8af 1380
14d2bac1
TH
1381 for (i = 0; i < ATA_MAX_DEVICES; i++)
1382 tries[i] = ATA_PROBE_MAX_TRIES;
1383
1384 retry:
1385 down_xfermask = 0;
1386
2044470c
TH
1387 /* reset and determine device classes */
1388 for (i = 0; i < ATA_MAX_DEVICES; i++)
1389 classes[i] = ATA_DEV_UNKNOWN;
2061a47a 1390
2044470c 1391 if (ap->ops->probe_reset) {
c19ba8af 1392 rc = ap->ops->probe_reset(ap, classes);
28ca5c57
TH
1393 if (rc) {
1394 printk("ata%u: reset failed (errno=%d)\n", ap->id, rc);
1395 return rc;
c19ba8af 1396 }
28ca5c57 1397 } else {
c19ba8af
TH
1398 ap->ops->phy_reset(ap);
1399
198e0fed 1400 if (!(ap->flags & ATA_FLAG_DISABLED))
2044470c 1401 for (i = 0; i < ATA_MAX_DEVICES; i++)
28ca5c57 1402 classes[i] = ap->device[i].class;
2044470c 1403
28ca5c57
TH
1404 ata_port_probe(ap);
1405 }
1da177e4 1406
2044470c
TH
1407 for (i = 0; i < ATA_MAX_DEVICES; i++)
1408 if (classes[i] == ATA_DEV_UNKNOWN)
1409 classes[i] = ATA_DEV_NONE;
1410
28ca5c57 1411 /* read IDENTIFY page and configure devices */
1da177e4 1412 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e82cbdb9 1413 dev = &ap->device[i];
28ca5c57
TH
1414 dev->class = classes[i];
1415
14d2bac1
TH
1416 if (!tries[i]) {
1417 ata_down_xfermask_limit(ap, dev, 1);
1418 ata_dev_disable(ap, dev);
ffeae418
TH
1419 }
1420
14d2bac1 1421 if (!ata_dev_enabled(dev))
ffeae418 1422 continue;
ffeae418 1423
14d2bac1
TH
1424 kfree(dev->id);
1425 dev->id = NULL;
1426 rc = ata_dev_read_id(ap, dev, &dev->class, 1, &dev->id);
1427 if (rc)
1428 goto fail;
1429
1430 rc = ata_dev_configure(ap, dev, 1);
1431 if (rc)
1432 goto fail;
1da177e4
LT
1433 }
1434
e82cbdb9
TH
1435 /* configure transfer mode */
1436 if (ap->ops->set_mode) {
1437 /* FIXME: make ->set_mode handle no device case and
1438 * return error code and failing device on failure as
1439 * ata_set_mode() does.
1440 */
14d2bac1
TH
1441 for (i = 0; i < ATA_MAX_DEVICES; i++)
1442 if (ata_dev_enabled(&ap->device[i])) {
1443 ap->ops->set_mode(ap);
1444 break;
1445 }
e82cbdb9
TH
1446 rc = 0;
1447 } else {
14d2bac1
TH
1448 rc = ata_set_mode(ap, &dev);
1449 if (rc) {
1450 down_xfermask = 1;
1451 goto fail;
1452 }
e82cbdb9 1453 }
1da177e4 1454
e82cbdb9
TH
1455 for (i = 0; i < ATA_MAX_DEVICES; i++)
1456 if (ata_dev_enabled(&ap->device[i]))
1457 return 0;
1da177e4 1458
e82cbdb9
TH
1459 /* no device present, disable port */
1460 ata_port_disable(ap);
1da177e4 1461 ap->ops->port_disable(ap);
96072e69 1462 return -ENODEV;
14d2bac1
TH
1463
1464 fail:
1465 switch (rc) {
1466 case -EINVAL:
1467 case -ENODEV:
1468 tries[dev->devno] = 0;
1469 break;
1470 case -EIO:
1471 ata_down_sata_spd_limit(ap);
1472 /* fall through */
1473 default:
1474 tries[dev->devno]--;
1475 if (down_xfermask &&
1476 ata_down_xfermask_limit(ap, dev, tries[dev->devno] == 1))
1477 tries[dev->devno] = 0;
1478 }
1479
1480 goto retry;
1da177e4
LT
1481}
1482
1483/**
0cba632b
JG
1484 * ata_port_probe - Mark port as enabled
1485 * @ap: Port for which we indicate enablement
1da177e4 1486 *
0cba632b
JG
1487 * Modify @ap data structure such that the system
1488 * thinks that the entire port is enabled.
1489 *
1490 * LOCKING: host_set lock, or some other form of
1491 * serialization.
1da177e4
LT
1492 */
1493
1494void ata_port_probe(struct ata_port *ap)
1495{
198e0fed 1496 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
1497}
1498
3be680b7
TH
1499/**
1500 * sata_print_link_status - Print SATA link status
1501 * @ap: SATA port to printk link status about
1502 *
1503 * This function prints link speed and status of a SATA link.
1504 *
1505 * LOCKING:
1506 * None.
1507 */
1508static void sata_print_link_status(struct ata_port *ap)
1509{
6d5f9732 1510 u32 sstatus, scontrol, tmp;
3be680b7
TH
1511
1512 if (!ap->ops->scr_read)
1513 return;
1514
1515 sstatus = scr_read(ap, SCR_STATUS);
6d5f9732 1516 scontrol = scr_read(ap, SCR_CONTROL);
3be680b7
TH
1517
1518 if (sata_dev_present(ap)) {
1519 tmp = (sstatus >> 4) & 0xf;
6d5f9732
TH
1520 printk(KERN_INFO
1521 "ata%u: SATA link up %s (SStatus %X SControl %X)\n",
1522 ap->id, sata_spd_string(tmp), sstatus, scontrol);
3be680b7 1523 } else {
6d5f9732
TH
1524 printk(KERN_INFO
1525 "ata%u: SATA link down (SStatus %X SControl %X)\n",
1526 ap->id, sstatus, scontrol);
3be680b7
TH
1527 }
1528}
1529
1da177e4 1530/**
780a87f7
JG
1531 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1532 * @ap: SATA port associated with target SATA PHY.
1da177e4 1533 *
780a87f7
JG
1534 * This function issues commands to standard SATA Sxxx
1535 * PHY registers, to wake up the phy (and device), and
1536 * clear any reset condition.
1da177e4
LT
1537 *
1538 * LOCKING:
0cba632b 1539 * PCI/etc. bus probe sem.
1da177e4
LT
1540 *
1541 */
1542void __sata_phy_reset(struct ata_port *ap)
1543{
1544 u32 sstatus;
1545 unsigned long timeout = jiffies + (HZ * 5);
1546
1547 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e
BR
1548 /* issue phy wake/reset */
1549 scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1550 /* Couldn't find anything in SATA I/II specs, but
1551 * AHCI-1.1 10.4.2 says at least 1 ms. */
1552 mdelay(1);
1da177e4 1553 }
cdcca89e 1554 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1da177e4
LT
1555
1556 /* wait for phy to become ready, if necessary */
1557 do {
1558 msleep(200);
1559 sstatus = scr_read(ap, SCR_STATUS);
1560 if ((sstatus & 0xf) != 1)
1561 break;
1562 } while (time_before(jiffies, timeout));
1563
3be680b7
TH
1564 /* print link status */
1565 sata_print_link_status(ap);
656563e3 1566
3be680b7
TH
1567 /* TODO: phy layer with polling, timeouts, etc. */
1568 if (sata_dev_present(ap))
1da177e4 1569 ata_port_probe(ap);
3be680b7 1570 else
1da177e4 1571 ata_port_disable(ap);
1da177e4 1572
198e0fed 1573 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1574 return;
1575
1576 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1577 ata_port_disable(ap);
1578 return;
1579 }
1580
1581 ap->cbl = ATA_CBL_SATA;
1582}
1583
1584/**
780a87f7
JG
1585 * sata_phy_reset - Reset SATA bus.
1586 * @ap: SATA port associated with target SATA PHY.
1da177e4 1587 *
780a87f7
JG
1588 * This function resets the SATA bus, and then probes
1589 * the bus for devices.
1da177e4
LT
1590 *
1591 * LOCKING:
0cba632b 1592 * PCI/etc. bus probe sem.
1da177e4
LT
1593 *
1594 */
1595void sata_phy_reset(struct ata_port *ap)
1596{
1597 __sata_phy_reset(ap);
198e0fed 1598 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1599 return;
1600 ata_bus_reset(ap);
1601}
1602
ebdfca6e
AC
1603/**
1604 * ata_dev_pair - return other device on cable
1605 * @ap: port
1606 * @adev: device
1607 *
1608 * Obtain the other device on the same cable, or if none is
1609 * present NULL is returned
1610 */
2e9edbf8 1611
ebdfca6e
AC
1612struct ata_device *ata_dev_pair(struct ata_port *ap, struct ata_device *adev)
1613{
1614 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 1615 if (!ata_dev_enabled(pair))
ebdfca6e
AC
1616 return NULL;
1617 return pair;
1618}
1619
1da177e4 1620/**
780a87f7
JG
1621 * ata_port_disable - Disable port.
1622 * @ap: Port to be disabled.
1da177e4 1623 *
780a87f7
JG
1624 * Modify @ap data structure such that the system
1625 * thinks that the entire port is disabled, and should
1626 * never attempt to probe or communicate with devices
1627 * on this port.
1628 *
1629 * LOCKING: host_set lock, or some other form of
1630 * serialization.
1da177e4
LT
1631 */
1632
1633void ata_port_disable(struct ata_port *ap)
1634{
1635 ap->device[0].class = ATA_DEV_NONE;
1636 ap->device[1].class = ATA_DEV_NONE;
198e0fed 1637 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
1638}
1639
1c3fae4d
TH
1640/**
1641 * ata_down_sata_spd_limit - adjust SATA spd limit downward
1642 * @ap: Port to adjust SATA spd limit for
1643 *
1644 * Adjust SATA spd limit of @ap downward. Note that this
1645 * function only adjusts the limit. The change must be applied
1646 * using ata_set_sata_spd().
1647 *
1648 * LOCKING:
1649 * Inherited from caller.
1650 *
1651 * RETURNS:
1652 * 0 on success, negative errno on failure
1653 */
1ad8e7f9 1654int ata_down_sata_spd_limit(struct ata_port *ap)
1c3fae4d
TH
1655{
1656 u32 spd, mask;
1657 int highbit;
1658
1659 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1660 return -EOPNOTSUPP;
1661
1662 mask = ap->sata_spd_limit;
1663 if (mask <= 1)
1664 return -EINVAL;
1665 highbit = fls(mask) - 1;
1666 mask &= ~(1 << highbit);
1667
1668 spd = (scr_read(ap, SCR_STATUS) >> 4) & 0xf;
1669 if (spd <= 1)
1670 return -EINVAL;
1671 spd--;
1672 mask &= (1 << spd) - 1;
1673 if (!mask)
1674 return -EINVAL;
1675
1676 ap->sata_spd_limit = mask;
1677
1678 printk(KERN_WARNING "ata%u: limiting SATA link speed to %s\n",
1679 ap->id, sata_spd_string(fls(mask)));
1680
1681 return 0;
1682}
1683
1684static int __ata_set_sata_spd_needed(struct ata_port *ap, u32 *scontrol)
1685{
1686 u32 spd, limit;
1687
1688 if (ap->sata_spd_limit == UINT_MAX)
1689 limit = 0;
1690 else
1691 limit = fls(ap->sata_spd_limit);
1692
1693 spd = (*scontrol >> 4) & 0xf;
1694 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1695
1696 return spd != limit;
1697}
1698
1699/**
1700 * ata_set_sata_spd_needed - is SATA spd configuration needed
1701 * @ap: Port in question
1702 *
1703 * Test whether the spd limit in SControl matches
1704 * @ap->sata_spd_limit. This function is used to determine
1705 * whether hardreset is necessary to apply SATA spd
1706 * configuration.
1707 *
1708 * LOCKING:
1709 * Inherited from caller.
1710 *
1711 * RETURNS:
1712 * 1 if SATA spd configuration is needed, 0 otherwise.
1713 */
1ad8e7f9 1714int ata_set_sata_spd_needed(struct ata_port *ap)
1c3fae4d
TH
1715{
1716 u32 scontrol;
1717
1718 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1719 return 0;
1720
1721 scontrol = scr_read(ap, SCR_CONTROL);
1722
1723 return __ata_set_sata_spd_needed(ap, &scontrol);
1724}
1725
1726/**
1727 * ata_set_sata_spd - set SATA spd according to spd limit
1728 * @ap: Port to set SATA spd for
1729 *
1730 * Set SATA spd of @ap according to sata_spd_limit.
1731 *
1732 * LOCKING:
1733 * Inherited from caller.
1734 *
1735 * RETURNS:
1736 * 0 if spd doesn't need to be changed, 1 if spd has been
1737 * changed. -EOPNOTSUPP if SCR registers are inaccessible.
1738 */
1739static int ata_set_sata_spd(struct ata_port *ap)
1740{
1741 u32 scontrol;
1742
1743 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1744 return -EOPNOTSUPP;
1745
1746 scontrol = scr_read(ap, SCR_CONTROL);
1747 if (!__ata_set_sata_spd_needed(ap, &scontrol))
1748 return 0;
1749
1750 scr_write(ap, SCR_CONTROL, scontrol);
1751 return 1;
1752}
1753
452503f9
AC
1754/*
1755 * This mode timing computation functionality is ported over from
1756 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1757 */
1758/*
1759 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1760 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1761 * for PIO 5, which is a nonstandard extension and UDMA6, which
2e9edbf8 1762 * is currently supported only by Maxtor drives.
452503f9
AC
1763 */
1764
1765static const struct ata_timing ata_timing[] = {
1766
1767 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1768 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1769 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1770 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1771
1772 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1773 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1774 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1775
1776/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 1777
452503f9
AC
1778 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1779 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1780 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 1781
452503f9
AC
1782 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1783 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1784 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1785
1786/* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1787 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1788 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1789
1790 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1791 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1792 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1793
1794/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1795
1796 { 0xFF }
1797};
1798
1799#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1800#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1801
1802static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1803{
1804 q->setup = EZ(t->setup * 1000, T);
1805 q->act8b = EZ(t->act8b * 1000, T);
1806 q->rec8b = EZ(t->rec8b * 1000, T);
1807 q->cyc8b = EZ(t->cyc8b * 1000, T);
1808 q->active = EZ(t->active * 1000, T);
1809 q->recover = EZ(t->recover * 1000, T);
1810 q->cycle = EZ(t->cycle * 1000, T);
1811 q->udma = EZ(t->udma * 1000, UT);
1812}
1813
1814void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1815 struct ata_timing *m, unsigned int what)
1816{
1817 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1818 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1819 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1820 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1821 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1822 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1823 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1824 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1825}
1826
1827static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1828{
1829 const struct ata_timing *t;
1830
1831 for (t = ata_timing; t->mode != speed; t++)
91190758 1832 if (t->mode == 0xFF)
452503f9 1833 return NULL;
2e9edbf8 1834 return t;
452503f9
AC
1835}
1836
1837int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1838 struct ata_timing *t, int T, int UT)
1839{
1840 const struct ata_timing *s;
1841 struct ata_timing p;
1842
1843 /*
2e9edbf8 1844 * Find the mode.
75b1f2f8 1845 */
452503f9
AC
1846
1847 if (!(s = ata_timing_find_mode(speed)))
1848 return -EINVAL;
1849
75b1f2f8
AL
1850 memcpy(t, s, sizeof(*s));
1851
452503f9
AC
1852 /*
1853 * If the drive is an EIDE drive, it can tell us it needs extended
1854 * PIO/MW_DMA cycle timing.
1855 */
1856
1857 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1858 memset(&p, 0, sizeof(p));
1859 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1860 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1861 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1862 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1863 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1864 }
1865 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1866 }
1867
1868 /*
1869 * Convert the timing to bus clock counts.
1870 */
1871
75b1f2f8 1872 ata_timing_quantize(t, t, T, UT);
452503f9
AC
1873
1874 /*
c893a3ae
RD
1875 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1876 * S.M.A.R.T * and some other commands. We have to ensure that the
1877 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
1878 */
1879
1880 if (speed > XFER_PIO_4) {
1881 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1882 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1883 }
1884
1885 /*
c893a3ae 1886 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
1887 */
1888
1889 if (t->act8b + t->rec8b < t->cyc8b) {
1890 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1891 t->rec8b = t->cyc8b - t->act8b;
1892 }
1893
1894 if (t->active + t->recover < t->cycle) {
1895 t->active += (t->cycle - (t->active + t->recover)) / 2;
1896 t->recover = t->cycle - t->active;
1897 }
1898
1899 return 0;
1900}
1901
cf176e1a
TH
1902/**
1903 * ata_down_xfermask_limit - adjust dev xfer masks downward
1904 * @ap: Port associated with device @dev
1905 * @dev: Device to adjust xfer masks
1906 * @force_pio0: Force PIO0
1907 *
1908 * Adjust xfer masks of @dev downward. Note that this function
1909 * does not apply the change. Invoking ata_set_mode() afterwards
1910 * will apply the limit.
1911 *
1912 * LOCKING:
1913 * Inherited from caller.
1914 *
1915 * RETURNS:
1916 * 0 on success, negative errno on failure
1917 */
1ad8e7f9
TH
1918int ata_down_xfermask_limit(struct ata_port *ap, struct ata_device *dev,
1919 int force_pio0)
cf176e1a
TH
1920{
1921 unsigned long xfer_mask;
1922 int highbit;
1923
1924 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
1925 dev->udma_mask);
1926
1927 if (!xfer_mask)
1928 goto fail;
1929 /* don't gear down to MWDMA from UDMA, go directly to PIO */
1930 if (xfer_mask & ATA_MASK_UDMA)
1931 xfer_mask &= ~ATA_MASK_MWDMA;
1932
1933 highbit = fls(xfer_mask) - 1;
1934 xfer_mask &= ~(1 << highbit);
1935 if (force_pio0)
1936 xfer_mask &= 1 << ATA_SHIFT_PIO;
1937 if (!xfer_mask)
1938 goto fail;
1939
1940 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
1941 &dev->udma_mask);
1942
1943 printk(KERN_WARNING "ata%u: dev %u limiting speed to %s\n",
1944 ap->id, dev->devno, ata_mode_string(xfer_mask));
1945
1946 return 0;
1947
1948 fail:
1949 return -EINVAL;
1950}
1951
83206a29 1952static int ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1da177e4 1953{
83206a29
TH
1954 unsigned int err_mask;
1955 int rc;
1da177e4 1956
e8384607 1957 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
1958 if (dev->xfer_shift == ATA_SHIFT_PIO)
1959 dev->flags |= ATA_DFLAG_PIO;
1960
83206a29
TH
1961 err_mask = ata_dev_set_xfermode(ap, dev);
1962 if (err_mask) {
1963 printk(KERN_ERR
1964 "ata%u: failed to set xfermode (err_mask=0x%x)\n",
1965 ap->id, err_mask);
1966 return -EIO;
1967 }
1da177e4 1968
83206a29 1969 rc = ata_dev_revalidate(ap, dev, 0);
5eb45c02 1970 if (rc)
83206a29 1971 return rc;
48a8a14f 1972
23e71c3d
TH
1973 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
1974 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4
LT
1975
1976 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
23e71c3d
TH
1977 ap->id, dev->devno,
1978 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 1979 return 0;
1da177e4
LT
1980}
1981
1da177e4
LT
1982/**
1983 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1984 * @ap: port on which timings will be programmed
e82cbdb9 1985 * @r_failed_dev: out paramter for failed device
1da177e4 1986 *
e82cbdb9
TH
1987 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
1988 * ata_set_mode() fails, pointer to the failing device is
1989 * returned in @r_failed_dev.
780a87f7 1990 *
1da177e4 1991 * LOCKING:
0cba632b 1992 * PCI/etc. bus probe sem.
e82cbdb9
TH
1993 *
1994 * RETURNS:
1995 * 0 on success, negative errno otherwise
1da177e4 1996 */
1ad8e7f9 1997int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 1998{
e8e0619f 1999 struct ata_device *dev;
e82cbdb9 2000 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2001
a6d5a51c
TH
2002 /* step 1: calculate xfer_mask */
2003 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2004 unsigned int pio_mask, dma_mask;
a6d5a51c 2005
e8e0619f
TH
2006 dev = &ap->device[i];
2007
e1211e3f 2008 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2009 continue;
2010
acf356b1 2011 ata_dev_xfermask(ap, dev);
1da177e4 2012
acf356b1
TH
2013 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2014 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2015 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2016 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2017
4f65977d 2018 found = 1;
5444a6f4
AC
2019 if (dev->dma_mode)
2020 used_dma = 1;
a6d5a51c 2021 }
4f65977d 2022 if (!found)
e82cbdb9 2023 goto out;
a6d5a51c
TH
2024
2025 /* step 2: always set host PIO timings */
e8e0619f
TH
2026 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2027 dev = &ap->device[i];
2028 if (!ata_dev_enabled(dev))
2029 continue;
2030
2031 if (!dev->pio_mode) {
2032 printk(KERN_WARNING "ata%u: dev %u no PIO support\n",
2033 ap->id, dev->devno);
2034 rc = -EINVAL;
e82cbdb9 2035 goto out;
e8e0619f
TH
2036 }
2037
2038 dev->xfer_mode = dev->pio_mode;
2039 dev->xfer_shift = ATA_SHIFT_PIO;
2040 if (ap->ops->set_piomode)
2041 ap->ops->set_piomode(ap, dev);
2042 }
1da177e4 2043
a6d5a51c 2044 /* step 3: set host DMA timings */
e8e0619f
TH
2045 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2046 dev = &ap->device[i];
2047
2048 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2049 continue;
2050
2051 dev->xfer_mode = dev->dma_mode;
2052 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2053 if (ap->ops->set_dmamode)
2054 ap->ops->set_dmamode(ap, dev);
2055 }
1da177e4
LT
2056
2057 /* step 4: update devices' xfer mode */
83206a29 2058 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2059 dev = &ap->device[i];
1da177e4 2060
e1211e3f 2061 if (!ata_dev_enabled(dev))
83206a29
TH
2062 continue;
2063
5bbc53f4
TH
2064 rc = ata_dev_set_mode(ap, dev);
2065 if (rc)
e82cbdb9 2066 goto out;
83206a29 2067 }
1da177e4 2068
e8e0619f
TH
2069 /* Record simplex status. If we selected DMA then the other
2070 * host channels are not permitted to do so.
5444a6f4 2071 */
5444a6f4
AC
2072 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2073 ap->host_set->simplex_claimed = 1;
2074
e8e0619f 2075 /* step5: chip specific finalisation */
1da177e4
LT
2076 if (ap->ops->post_set_mode)
2077 ap->ops->post_set_mode(ap);
2078
e82cbdb9
TH
2079 out:
2080 if (rc)
2081 *r_failed_dev = dev;
2082 return rc;
1da177e4
LT
2083}
2084
1fdffbce
JG
2085/**
2086 * ata_tf_to_host - issue ATA taskfile to host controller
2087 * @ap: port to which command is being issued
2088 * @tf: ATA taskfile register set
2089 *
2090 * Issues ATA taskfile register set to ATA host controller,
2091 * with proper synchronization with interrupt handler and
2092 * other threads.
2093 *
2094 * LOCKING:
2095 * spin_lock_irqsave(host_set lock)
2096 */
2097
2098static inline void ata_tf_to_host(struct ata_port *ap,
2099 const struct ata_taskfile *tf)
2100{
2101 ap->ops->tf_load(ap, tf);
2102 ap->ops->exec_command(ap, tf);
2103}
2104
1da177e4
LT
2105/**
2106 * ata_busy_sleep - sleep until BSY clears, or timeout
2107 * @ap: port containing status register to be polled
2108 * @tmout_pat: impatience timeout
2109 * @tmout: overall timeout
2110 *
780a87f7
JG
2111 * Sleep until ATA Status register bit BSY clears,
2112 * or a timeout occurs.
2113 *
2114 * LOCKING: None.
1da177e4
LT
2115 */
2116
6f8b9958
TH
2117unsigned int ata_busy_sleep (struct ata_port *ap,
2118 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2119{
2120 unsigned long timer_start, timeout;
2121 u8 status;
2122
2123 status = ata_busy_wait(ap, ATA_BUSY, 300);
2124 timer_start = jiffies;
2125 timeout = timer_start + tmout_pat;
2126 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2127 msleep(50);
2128 status = ata_busy_wait(ap, ATA_BUSY, 3);
2129 }
2130
2131 if (status & ATA_BUSY)
2132 printk(KERN_WARNING "ata%u is slow to respond, "
2133 "please be patient\n", ap->id);
2134
2135 timeout = timer_start + tmout;
2136 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2137 msleep(50);
2138 status = ata_chk_status(ap);
2139 }
2140
2141 if (status & ATA_BUSY) {
2142 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
2143 ap->id, tmout / HZ);
2144 return 1;
2145 }
2146
2147 return 0;
2148}
2149
2150static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2151{
2152 struct ata_ioports *ioaddr = &ap->ioaddr;
2153 unsigned int dev0 = devmask & (1 << 0);
2154 unsigned int dev1 = devmask & (1 << 1);
2155 unsigned long timeout;
2156
2157 /* if device 0 was found in ata_devchk, wait for its
2158 * BSY bit to clear
2159 */
2160 if (dev0)
2161 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2162
2163 /* if device 1 was found in ata_devchk, wait for
2164 * register access, then wait for BSY to clear
2165 */
2166 timeout = jiffies + ATA_TMOUT_BOOT;
2167 while (dev1) {
2168 u8 nsect, lbal;
2169
2170 ap->ops->dev_select(ap, 1);
2171 if (ap->flags & ATA_FLAG_MMIO) {
2172 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2173 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2174 } else {
2175 nsect = inb(ioaddr->nsect_addr);
2176 lbal = inb(ioaddr->lbal_addr);
2177 }
2178 if ((nsect == 1) && (lbal == 1))
2179 break;
2180 if (time_after(jiffies, timeout)) {
2181 dev1 = 0;
2182 break;
2183 }
2184 msleep(50); /* give drive a breather */
2185 }
2186 if (dev1)
2187 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2188
2189 /* is all this really necessary? */
2190 ap->ops->dev_select(ap, 0);
2191 if (dev1)
2192 ap->ops->dev_select(ap, 1);
2193 if (dev0)
2194 ap->ops->dev_select(ap, 0);
2195}
2196
1da177e4
LT
2197static unsigned int ata_bus_softreset(struct ata_port *ap,
2198 unsigned int devmask)
2199{
2200 struct ata_ioports *ioaddr = &ap->ioaddr;
2201
2202 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2203
2204 /* software reset. causes dev0 to be selected */
2205 if (ap->flags & ATA_FLAG_MMIO) {
2206 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2207 udelay(20); /* FIXME: flush */
2208 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2209 udelay(20); /* FIXME: flush */
2210 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2211 } else {
2212 outb(ap->ctl, ioaddr->ctl_addr);
2213 udelay(10);
2214 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2215 udelay(10);
2216 outb(ap->ctl, ioaddr->ctl_addr);
2217 }
2218
2219 /* spec mandates ">= 2ms" before checking status.
2220 * We wait 150ms, because that was the magic delay used for
2221 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2222 * between when the ATA command register is written, and then
2223 * status is checked. Because waiting for "a while" before
2224 * checking status is fine, post SRST, we perform this magic
2225 * delay here as well.
09c7ad79
AC
2226 *
2227 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
2228 */
2229 msleep(150);
2230
2e9edbf8 2231 /* Before we perform post reset processing we want to see if
298a41ca
TH
2232 * the bus shows 0xFF because the odd clown forgets the D7
2233 * pulldown resistor.
2234 */
09c7ad79 2235 if (ata_check_status(ap) == 0xFF)
298a41ca 2236 return AC_ERR_OTHER;
09c7ad79 2237
1da177e4
LT
2238 ata_bus_post_reset(ap, devmask);
2239
2240 return 0;
2241}
2242
2243/**
2244 * ata_bus_reset - reset host port and associated ATA channel
2245 * @ap: port to reset
2246 *
2247 * This is typically the first time we actually start issuing
2248 * commands to the ATA channel. We wait for BSY to clear, then
2249 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2250 * result. Determine what devices, if any, are on the channel
2251 * by looking at the device 0/1 error register. Look at the signature
2252 * stored in each device's taskfile registers, to determine if
2253 * the device is ATA or ATAPI.
2254 *
2255 * LOCKING:
0cba632b
JG
2256 * PCI/etc. bus probe sem.
2257 * Obtains host_set lock.
1da177e4
LT
2258 *
2259 * SIDE EFFECTS:
198e0fed 2260 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
2261 */
2262
2263void ata_bus_reset(struct ata_port *ap)
2264{
2265 struct ata_ioports *ioaddr = &ap->ioaddr;
2266 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2267 u8 err;
aec5c3c1 2268 unsigned int dev0, dev1 = 0, devmask = 0;
1da177e4
LT
2269
2270 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2271
2272 /* determine if device 0/1 are present */
2273 if (ap->flags & ATA_FLAG_SATA_RESET)
2274 dev0 = 1;
2275 else {
2276 dev0 = ata_devchk(ap, 0);
2277 if (slave_possible)
2278 dev1 = ata_devchk(ap, 1);
2279 }
2280
2281 if (dev0)
2282 devmask |= (1 << 0);
2283 if (dev1)
2284 devmask |= (1 << 1);
2285
2286 /* select device 0 again */
2287 ap->ops->dev_select(ap, 0);
2288
2289 /* issue bus reset */
2290 if (ap->flags & ATA_FLAG_SRST)
aec5c3c1
TH
2291 if (ata_bus_softreset(ap, devmask))
2292 goto err_out;
1da177e4
LT
2293
2294 /*
2295 * determine by signature whether we have ATA or ATAPI devices
2296 */
b4dc7623 2297 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 2298 if ((slave_possible) && (err != 0x81))
b4dc7623 2299 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
2300
2301 /* re-enable interrupts */
2302 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2303 ata_irq_on(ap);
2304
2305 /* is double-select really necessary? */
2306 if (ap->device[1].class != ATA_DEV_NONE)
2307 ap->ops->dev_select(ap, 1);
2308 if (ap->device[0].class != ATA_DEV_NONE)
2309 ap->ops->dev_select(ap, 0);
2310
2311 /* if no devices were detected, disable this port */
2312 if ((ap->device[0].class == ATA_DEV_NONE) &&
2313 (ap->device[1].class == ATA_DEV_NONE))
2314 goto err_out;
2315
2316 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2317 /* set up device control for ATA_FLAG_SATA_RESET */
2318 if (ap->flags & ATA_FLAG_MMIO)
2319 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2320 else
2321 outb(ap->ctl, ioaddr->ctl_addr);
2322 }
2323
2324 DPRINTK("EXIT\n");
2325 return;
2326
2327err_out:
2328 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2329 ap->ops->port_disable(ap);
2330
2331 DPRINTK("EXIT\n");
2332}
2333
7a7921e8
TH
2334static int sata_phy_resume(struct ata_port *ap)
2335{
2336 unsigned long timeout = jiffies + (HZ * 5);
852ee16a 2337 u32 scontrol, sstatus;
7a7921e8 2338
852ee16a
TH
2339 scontrol = scr_read(ap, SCR_CONTROL);
2340 scontrol = (scontrol & 0x0f0) | 0x300;
2341 scr_write_flush(ap, SCR_CONTROL, scontrol);
7a7921e8
TH
2342
2343 /* Wait for phy to become ready, if necessary. */
2344 do {
2345 msleep(200);
2346 sstatus = scr_read(ap, SCR_STATUS);
2347 if ((sstatus & 0xf) != 1)
2348 return 0;
2349 } while (time_before(jiffies, timeout));
2350
2351 return -1;
2352}
2353
8a19ac89
TH
2354/**
2355 * ata_std_probeinit - initialize probing
2356 * @ap: port to be probed
2357 *
2358 * @ap is about to be probed. Initialize it. This function is
2359 * to be used as standard callback for ata_drive_probe_reset().
3a39746a
TH
2360 *
2361 * NOTE!!! Do not use this function as probeinit if a low level
2362 * driver implements only hardreset. Just pass NULL as probeinit
2363 * in that case. Using this function is probably okay but doing
2364 * so makes reset sequence different from the original
2365 * ->phy_reset implementation and Jeff nervous. :-P
8a19ac89 2366 */
17efc5f7 2367void ata_std_probeinit(struct ata_port *ap)
8a19ac89 2368{
17efc5f7 2369 if ((ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read) {
1c3fae4d
TH
2370 u32 spd;
2371
db70fef0
TH
2372 /* set cable type and resume link */
2373 ap->cbl = ATA_CBL_SATA;
8a19ac89 2374 sata_phy_resume(ap);
1c3fae4d 2375
db70fef0 2376 /* init sata_spd_limit to the current value */
1c3fae4d
TH
2377 spd = (scr_read(ap, SCR_CONTROL) & 0xf0) >> 4;
2378 if (spd)
2379 ap->sata_spd_limit &= (1 << spd) - 1;
2380
db70fef0 2381 /* wait for device */
3a39746a
TH
2382 if (sata_dev_present(ap))
2383 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2384 }
8a19ac89
TH
2385}
2386
c2bd5804
TH
2387/**
2388 * ata_std_softreset - reset host port via ATA SRST
2389 * @ap: port to reset
c2bd5804
TH
2390 * @classes: resulting classes of attached devices
2391 *
2392 * Reset host port using ATA SRST. This function is to be used
2393 * as standard callback for ata_drive_*_reset() functions.
2394 *
2395 * LOCKING:
2396 * Kernel thread context (may sleep)
2397 *
2398 * RETURNS:
2399 * 0 on success, -errno otherwise.
2400 */
2bf2cb26 2401int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
c2bd5804
TH
2402{
2403 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2404 unsigned int devmask = 0, err_mask;
2405 u8 err;
2406
2407 DPRINTK("ENTER\n");
2408
3a39746a
TH
2409 if (ap->ops->scr_read && !sata_dev_present(ap)) {
2410 classes[0] = ATA_DEV_NONE;
2411 goto out;
2412 }
2413
c2bd5804
TH
2414 /* determine if device 0/1 are present */
2415 if (ata_devchk(ap, 0))
2416 devmask |= (1 << 0);
2417 if (slave_possible && ata_devchk(ap, 1))
2418 devmask |= (1 << 1);
2419
c2bd5804
TH
2420 /* select device 0 again */
2421 ap->ops->dev_select(ap, 0);
2422
2423 /* issue bus reset */
2424 DPRINTK("about to softreset, devmask=%x\n", devmask);
2425 err_mask = ata_bus_softreset(ap, devmask);
2426 if (err_mask) {
2bf2cb26
TH
2427 printk(KERN_ERR "ata%u: SRST failed (err_mask=0x%x)\n",
2428 ap->id, err_mask);
c2bd5804
TH
2429 return -EIO;
2430 }
2431
2432 /* determine by signature whether we have ATA or ATAPI devices */
2433 classes[0] = ata_dev_try_classify(ap, 0, &err);
2434 if (slave_possible && err != 0x81)
2435 classes[1] = ata_dev_try_classify(ap, 1, &err);
2436
3a39746a 2437 out:
c2bd5804
TH
2438 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2439 return 0;
2440}
2441
2442/**
2443 * sata_std_hardreset - reset host port via SATA phy reset
2444 * @ap: port to reset
c2bd5804
TH
2445 * @class: resulting class of attached device
2446 *
2447 * SATA phy-reset host port using DET bits of SControl register.
2448 * This function is to be used as standard callback for
2449 * ata_drive_*_reset().
2450 *
2451 * LOCKING:
2452 * Kernel thread context (may sleep)
2453 *
2454 * RETURNS:
2455 * 0 on success, -errno otherwise.
2456 */
2bf2cb26 2457int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
c2bd5804 2458{
852ee16a
TH
2459 u32 scontrol;
2460
c2bd5804
TH
2461 DPRINTK("ENTER\n");
2462
1c3fae4d
TH
2463 if (ata_set_sata_spd_needed(ap)) {
2464 /* SATA spec says nothing about how to reconfigure
2465 * spd. To be on the safe side, turn off phy during
2466 * reconfiguration. This works for at least ICH7 AHCI
2467 * and Sil3124.
2468 */
2469 scontrol = scr_read(ap, SCR_CONTROL);
2470 scontrol = (scontrol & 0x0f0) | 0x302;
2471 scr_write_flush(ap, SCR_CONTROL, scontrol);
2472
2473 ata_set_sata_spd(ap);
2474 }
2475
2476 /* issue phy wake/reset */
852ee16a
TH
2477 scontrol = scr_read(ap, SCR_CONTROL);
2478 scontrol = (scontrol & 0x0f0) | 0x301;
2479 scr_write_flush(ap, SCR_CONTROL, scontrol);
c2bd5804 2480
1c3fae4d 2481 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
2482 * 10.4.2 says at least 1 ms.
2483 */
2484 msleep(1);
2485
1c3fae4d 2486 /* bring phy back */
7a7921e8 2487 sata_phy_resume(ap);
c2bd5804 2488
c2bd5804
TH
2489 /* TODO: phy layer with polling, timeouts, etc. */
2490 if (!sata_dev_present(ap)) {
2491 *class = ATA_DEV_NONE;
2492 DPRINTK("EXIT, link offline\n");
2493 return 0;
2494 }
2495
2496 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2bf2cb26
TH
2497 printk(KERN_ERR "ata%u: COMRESET failed "
2498 "(device not ready)\n", ap->id);
c2bd5804
TH
2499 return -EIO;
2500 }
2501
3a39746a
TH
2502 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2503
c2bd5804
TH
2504 *class = ata_dev_try_classify(ap, 0, NULL);
2505
2506 DPRINTK("EXIT, class=%u\n", *class);
2507 return 0;
2508}
2509
2510/**
2511 * ata_std_postreset - standard postreset callback
2512 * @ap: the target ata_port
2513 * @classes: classes of attached devices
2514 *
2515 * This function is invoked after a successful reset. Note that
2516 * the device might have been reset more than once using
2517 * different reset methods before postreset is invoked.
c2bd5804
TH
2518 *
2519 * This function is to be used as standard callback for
2520 * ata_drive_*_reset().
2521 *
2522 * LOCKING:
2523 * Kernel thread context (may sleep)
2524 */
2525void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2526{
2527 DPRINTK("ENTER\n");
2528
c2bd5804
TH
2529 /* print link status */
2530 if (ap->cbl == ATA_CBL_SATA)
2531 sata_print_link_status(ap);
2532
3a39746a
TH
2533 /* re-enable interrupts */
2534 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2535 ata_irq_on(ap);
c2bd5804
TH
2536
2537 /* is double-select really necessary? */
2538 if (classes[0] != ATA_DEV_NONE)
2539 ap->ops->dev_select(ap, 1);
2540 if (classes[1] != ATA_DEV_NONE)
2541 ap->ops->dev_select(ap, 0);
2542
3a39746a
TH
2543 /* bail out if no device is present */
2544 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2545 DPRINTK("EXIT, no device\n");
2546 return;
2547 }
2548
2549 /* set up device control */
2550 if (ap->ioaddr.ctl_addr) {
2551 if (ap->flags & ATA_FLAG_MMIO)
2552 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2553 else
2554 outb(ap->ctl, ap->ioaddr.ctl_addr);
2555 }
c2bd5804
TH
2556
2557 DPRINTK("EXIT\n");
2558}
2559
2560/**
2561 * ata_std_probe_reset - standard probe reset method
2562 * @ap: prot to perform probe-reset
2563 * @classes: resulting classes of attached devices
2564 *
2565 * The stock off-the-shelf ->probe_reset method.
2566 *
2567 * LOCKING:
2568 * Kernel thread context (may sleep)
2569 *
2570 * RETURNS:
2571 * 0 on success, -errno otherwise.
2572 */
2573int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2574{
2575 ata_reset_fn_t hardreset;
2576
2577 hardreset = NULL;
db70fef0 2578 if (ap->cbl == ATA_CBL_SATA && ap->ops->scr_read)
c2bd5804
TH
2579 hardreset = sata_std_hardreset;
2580
8a19ac89 2581 return ata_drive_probe_reset(ap, ata_std_probeinit,
7944ea95 2582 ata_std_softreset, hardreset,
c2bd5804
TH
2583 ata_std_postreset, classes);
2584}
2585
2bf2cb26
TH
2586int ata_do_reset(struct ata_port *ap, ata_reset_fn_t reset,
2587 ata_postreset_fn_t postreset, unsigned int *classes)
a62c0fc5
TH
2588{
2589 int i, rc;
2590
2591 for (i = 0; i < ATA_MAX_DEVICES; i++)
2592 classes[i] = ATA_DEV_UNKNOWN;
2593
2bf2cb26 2594 rc = reset(ap, classes);
a62c0fc5
TH
2595 if (rc)
2596 return rc;
2597
2598 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2599 * is complete and convert all ATA_DEV_UNKNOWN to
2600 * ATA_DEV_NONE.
2601 */
2602 for (i = 0; i < ATA_MAX_DEVICES; i++)
2603 if (classes[i] != ATA_DEV_UNKNOWN)
2604 break;
2605
2606 if (i < ATA_MAX_DEVICES)
2607 for (i = 0; i < ATA_MAX_DEVICES; i++)
2608 if (classes[i] == ATA_DEV_UNKNOWN)
2609 classes[i] = ATA_DEV_NONE;
2610
2611 if (postreset)
2612 postreset(ap, classes);
2613
9974e7cc 2614 return 0;
a62c0fc5
TH
2615}
2616
2617/**
2618 * ata_drive_probe_reset - Perform probe reset with given methods
2619 * @ap: port to reset
7944ea95 2620 * @probeinit: probeinit method (can be NULL)
a62c0fc5
TH
2621 * @softreset: softreset method (can be NULL)
2622 * @hardreset: hardreset method (can be NULL)
2623 * @postreset: postreset method (can be NULL)
2624 * @classes: resulting classes of attached devices
2625 *
2626 * Reset the specified port and classify attached devices using
2627 * given methods. This function prefers softreset but tries all
2628 * possible reset sequences to reset and classify devices. This
2629 * function is intended to be used for constructing ->probe_reset
2630 * callback by low level drivers.
2631 *
2632 * Reset methods should follow the following rules.
2633 *
2634 * - Return 0 on sucess, -errno on failure.
2635 * - If classification is supported, fill classes[] with
2636 * recognized class codes.
2637 * - If classification is not supported, leave classes[] alone.
a62c0fc5
TH
2638 *
2639 * LOCKING:
2640 * Kernel thread context (may sleep)
2641 *
2642 * RETURNS:
2643 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2644 * if classification fails, and any error code from reset
2645 * methods.
2646 */
7944ea95 2647int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
a62c0fc5
TH
2648 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2649 ata_postreset_fn_t postreset, unsigned int *classes)
2650{
2651 int rc = -EINVAL;
2652
7944ea95
TH
2653 if (probeinit)
2654 probeinit(ap);
2655
90dac02c 2656 if (softreset && !ata_set_sata_spd_needed(ap)) {
2bf2cb26 2657 rc = ata_do_reset(ap, softreset, postreset, classes);
9974e7cc
TH
2658 if (rc == 0 && classes[0] != ATA_DEV_UNKNOWN)
2659 goto done;
edbabd86
TH
2660 printk(KERN_INFO "ata%u: softreset failed, will try "
2661 "hardreset in 5 secs\n", ap->id);
2662 ssleep(5);
a62c0fc5
TH
2663 }
2664
2665 if (!hardreset)
9974e7cc 2666 goto done;
a62c0fc5 2667
90dac02c 2668 while (1) {
2bf2cb26 2669 rc = ata_do_reset(ap, hardreset, postreset, classes);
90dac02c
TH
2670 if (rc == 0) {
2671 if (classes[0] != ATA_DEV_UNKNOWN)
2672 goto done;
2673 break;
2674 }
2675
2676 if (ata_down_sata_spd_limit(ap))
2677 goto done;
edbabd86
TH
2678
2679 printk(KERN_INFO "ata%u: hardreset failed, will retry "
2680 "in 5 secs\n", ap->id);
2681 ssleep(5);
90dac02c 2682 }
a62c0fc5 2683
edbabd86
TH
2684 if (softreset) {
2685 printk(KERN_INFO "ata%u: hardreset succeeded without "
2686 "classification, will retry softreset in 5 secs\n",
2687 ap->id);
2688 ssleep(5);
2689
2bf2cb26 2690 rc = ata_do_reset(ap, softreset, postreset, classes);
edbabd86 2691 }
a62c0fc5 2692
9974e7cc
TH
2693 done:
2694 if (rc == 0 && classes[0] == ATA_DEV_UNKNOWN)
2695 rc = -ENODEV;
a62c0fc5
TH
2696 return rc;
2697}
2698
623a3128
TH
2699/**
2700 * ata_dev_same_device - Determine whether new ID matches configured device
2701 * @ap: port on which the device to compare against resides
2702 * @dev: device to compare against
2703 * @new_class: class of the new device
2704 * @new_id: IDENTIFY page of the new device
2705 *
2706 * Compare @new_class and @new_id against @dev and determine
2707 * whether @dev is the device indicated by @new_class and
2708 * @new_id.
2709 *
2710 * LOCKING:
2711 * None.
2712 *
2713 * RETURNS:
2714 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2715 */
2716static int ata_dev_same_device(struct ata_port *ap, struct ata_device *dev,
2717 unsigned int new_class, const u16 *new_id)
2718{
2719 const u16 *old_id = dev->id;
2720 unsigned char model[2][41], serial[2][21];
2721 u64 new_n_sectors;
2722
2723 if (dev->class != new_class) {
2724 printk(KERN_INFO
2725 "ata%u: dev %u class mismatch %d != %d\n",
2726 ap->id, dev->devno, dev->class, new_class);
2727 return 0;
2728 }
2729
2730 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2731 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2732 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2733 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2734 new_n_sectors = ata_id_n_sectors(new_id);
2735
2736 if (strcmp(model[0], model[1])) {
2737 printk(KERN_INFO
2738 "ata%u: dev %u model number mismatch '%s' != '%s'\n",
2739 ap->id, dev->devno, model[0], model[1]);
2740 return 0;
2741 }
2742
2743 if (strcmp(serial[0], serial[1])) {
2744 printk(KERN_INFO
2745 "ata%u: dev %u serial number mismatch '%s' != '%s'\n",
2746 ap->id, dev->devno, serial[0], serial[1]);
2747 return 0;
2748 }
2749
2750 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2751 printk(KERN_INFO
2752 "ata%u: dev %u n_sectors mismatch %llu != %llu\n",
2753 ap->id, dev->devno, (unsigned long long)dev->n_sectors,
2754 (unsigned long long)new_n_sectors);
2755 return 0;
2756 }
2757
2758 return 1;
2759}
2760
2761/**
2762 * ata_dev_revalidate - Revalidate ATA device
2763 * @ap: port on which the device to revalidate resides
2764 * @dev: device to revalidate
2765 * @post_reset: is this revalidation after reset?
2766 *
2767 * Re-read IDENTIFY page and make sure @dev is still attached to
2768 * the port.
2769 *
2770 * LOCKING:
2771 * Kernel thread context (may sleep)
2772 *
2773 * RETURNS:
2774 * 0 on success, negative errno otherwise
2775 */
2776int ata_dev_revalidate(struct ata_port *ap, struct ata_device *dev,
2777 int post_reset)
2778{
5eb45c02
TH
2779 unsigned int class = dev->class;
2780 u16 *id = NULL;
623a3128
TH
2781 int rc;
2782
5eb45c02
TH
2783 if (!ata_dev_enabled(dev)) {
2784 rc = -ENODEV;
2785 goto fail;
2786 }
623a3128
TH
2787
2788 /* allocate & read ID data */
2789 rc = ata_dev_read_id(ap, dev, &class, post_reset, &id);
2790 if (rc)
2791 goto fail;
2792
2793 /* is the device still there? */
2794 if (!ata_dev_same_device(ap, dev, class, id)) {
2795 rc = -ENODEV;
2796 goto fail;
2797 }
2798
2799 kfree(dev->id);
2800 dev->id = id;
2801
2802 /* configure device according to the new ID */
5eb45c02
TH
2803 rc = ata_dev_configure(ap, dev, 0);
2804 if (rc == 0)
2805 return 0;
623a3128
TH
2806
2807 fail:
2808 printk(KERN_ERR "ata%u: dev %u revalidation failed (errno=%d)\n",
2809 ap->id, dev->devno, rc);
2810 kfree(id);
2811 return rc;
2812}
2813
98ac62de 2814static const char * const ata_dma_blacklist [] = {
f4b15fef
AC
2815 "WDC AC11000H", NULL,
2816 "WDC AC22100H", NULL,
2817 "WDC AC32500H", NULL,
2818 "WDC AC33100H", NULL,
2819 "WDC AC31600H", NULL,
2820 "WDC AC32100H", "24.09P07",
2821 "WDC AC23200L", "21.10N21",
2822 "Compaq CRD-8241B", NULL,
2823 "CRD-8400B", NULL,
2824 "CRD-8480B", NULL,
2825 "CRD-8482B", NULL,
2826 "CRD-84", NULL,
2827 "SanDisk SDP3B", NULL,
2828 "SanDisk SDP3B-64", NULL,
2829 "SANYO CD-ROM CRD", NULL,
2830 "HITACHI CDR-8", NULL,
2e9edbf8 2831 "HITACHI CDR-8335", NULL,
f4b15fef 2832 "HITACHI CDR-8435", NULL,
2e9edbf8
JG
2833 "Toshiba CD-ROM XM-6202B", NULL,
2834 "TOSHIBA CD-ROM XM-1702BC", NULL,
2835 "CD-532E-A", NULL,
2836 "E-IDE CD-ROM CR-840", NULL,
2837 "CD-ROM Drive/F5A", NULL,
2838 "WPI CDD-820", NULL,
f4b15fef 2839 "SAMSUNG CD-ROM SC-148C", NULL,
2e9edbf8 2840 "SAMSUNG CD-ROM SC", NULL,
f4b15fef
AC
2841 "SanDisk SDP3B-64", NULL,
2842 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2843 "_NEC DV5800A", NULL,
2844 "SAMSUNG CD-ROM SN-124", "N001"
1da177e4 2845};
2e9edbf8 2846
f4b15fef
AC
2847static int ata_strim(char *s, size_t len)
2848{
2849 len = strnlen(s, len);
2850
2851 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2852 while ((len > 0) && (s[len - 1] == ' ')) {
2853 len--;
2854 s[len] = 0;
2855 }
2856 return len;
2857}
1da177e4 2858
057ace5e 2859static int ata_dma_blacklisted(const struct ata_device *dev)
1da177e4 2860{
f4b15fef
AC
2861 unsigned char model_num[40];
2862 unsigned char model_rev[16];
2863 unsigned int nlen, rlen;
1da177e4
LT
2864 int i;
2865
f4b15fef
AC
2866 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2867 sizeof(model_num));
2868 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2869 sizeof(model_rev));
2870 nlen = ata_strim(model_num, sizeof(model_num));
2871 rlen = ata_strim(model_rev, sizeof(model_rev));
1da177e4 2872
f4b15fef
AC
2873 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2874 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2875 if (ata_dma_blacklist[i+1] == NULL)
2876 return 1;
2877 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2878 return 1;
2879 }
2880 }
1da177e4
LT
2881 return 0;
2882}
2883
a6d5a51c
TH
2884/**
2885 * ata_dev_xfermask - Compute supported xfermask of the given device
2886 * @ap: Port on which the device to compute xfermask for resides
2887 * @dev: Device to compute xfermask for
2888 *
acf356b1
TH
2889 * Compute supported xfermask of @dev and store it in
2890 * dev->*_mask. This function is responsible for applying all
2891 * known limits including host controller limits, device
2892 * blacklist, etc...
a6d5a51c 2893 *
600511e8
TH
2894 * FIXME: The current implementation limits all transfer modes to
2895 * the fastest of the lowested device on the port. This is not
05c8e0ac 2896 * required on most controllers.
600511e8 2897 *
a6d5a51c
TH
2898 * LOCKING:
2899 * None.
a6d5a51c 2900 */
acf356b1 2901static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev)
1da177e4 2902{
5444a6f4 2903 struct ata_host_set *hs = ap->host_set;
a6d5a51c
TH
2904 unsigned long xfer_mask;
2905 int i;
1da177e4 2906
565083e1
TH
2907 xfer_mask = ata_pack_xfermask(ap->pio_mask,
2908 ap->mwdma_mask, ap->udma_mask);
2909
2910 /* Apply cable rule here. Don't apply it early because when
2911 * we handle hot plug the cable type can itself change.
2912 */
2913 if (ap->cbl == ATA_CBL_PATA40)
2914 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
1da177e4 2915
5444a6f4 2916 /* FIXME: Use port-wide xfermask for now */
a6d5a51c
TH
2917 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2918 struct ata_device *d = &ap->device[i];
565083e1
TH
2919
2920 if (ata_dev_absent(d))
2921 continue;
2922
2923 if (ata_dev_disabled(d)) {
2924 /* to avoid violating device selection timing */
2925 xfer_mask &= ata_pack_xfermask(d->pio_mask,
2926 UINT_MAX, UINT_MAX);
a6d5a51c 2927 continue;
565083e1
TH
2928 }
2929
2930 xfer_mask &= ata_pack_xfermask(d->pio_mask,
2931 d->mwdma_mask, d->udma_mask);
a6d5a51c
TH
2932 xfer_mask &= ata_id_xfermask(d->id);
2933 if (ata_dma_blacklisted(d))
2934 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
1da177e4
LT
2935 }
2936
a6d5a51c
TH
2937 if (ata_dma_blacklisted(dev))
2938 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, "
2939 "disabling DMA\n", ap->id, dev->devno);
2940
5444a6f4
AC
2941 if (hs->flags & ATA_HOST_SIMPLEX) {
2942 if (hs->simplex_claimed)
2943 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2944 }
565083e1 2945
5444a6f4
AC
2946 if (ap->ops->mode_filter)
2947 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
2948
565083e1
TH
2949 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
2950 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
2951}
2952
1da177e4
LT
2953/**
2954 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2955 * @ap: Port associated with device @dev
2956 * @dev: Device to which command will be sent
2957 *
780a87f7
JG
2958 * Issue SET FEATURES - XFER MODE command to device @dev
2959 * on port @ap.
2960 *
1da177e4 2961 * LOCKING:
0cba632b 2962 * PCI/etc. bus probe sem.
83206a29
TH
2963 *
2964 * RETURNS:
2965 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
2966 */
2967
83206a29
TH
2968static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
2969 struct ata_device *dev)
1da177e4 2970{
a0123703 2971 struct ata_taskfile tf;
83206a29 2972 unsigned int err_mask;
1da177e4
LT
2973
2974 /* set up set-features taskfile */
2975 DPRINTK("set features - xfer mode\n");
2976
a0123703
TH
2977 ata_tf_init(ap, &tf, dev->devno);
2978 tf.command = ATA_CMD_SET_FEATURES;
2979 tf.feature = SETFEATURES_XFER;
2980 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2981 tf.protocol = ATA_PROT_NODATA;
2982 tf.nsect = dev->xfer_mode;
1da177e4 2983
d69cf37d 2984 err_mask = ata_exec_internal(ap, dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 2985
83206a29
TH
2986 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2987 return err_mask;
1da177e4
LT
2988}
2989
8bf62ece
AL
2990/**
2991 * ata_dev_init_params - Issue INIT DEV PARAMS command
2992 * @ap: Port associated with device @dev
2993 * @dev: Device to which command will be sent
2994 *
2995 * LOCKING:
6aff8f1f
TH
2996 * Kernel thread context (may sleep)
2997 *
2998 * RETURNS:
2999 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece
AL
3000 */
3001
6aff8f1f 3002static unsigned int ata_dev_init_params(struct ata_port *ap,
00b6f5e9
AL
3003 struct ata_device *dev,
3004 u16 heads,
3005 u16 sectors)
8bf62ece 3006{
a0123703 3007 struct ata_taskfile tf;
6aff8f1f 3008 unsigned int err_mask;
8bf62ece
AL
3009
3010 /* Number of sectors per track 1-255. Number of heads 1-16 */
3011 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3012 return AC_ERR_INVALID;
8bf62ece
AL
3013
3014 /* set up init dev params taskfile */
3015 DPRINTK("init dev params \n");
3016
a0123703
TH
3017 ata_tf_init(ap, &tf, dev->devno);
3018 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3019 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3020 tf.protocol = ATA_PROT_NODATA;
3021 tf.nsect = sectors;
3022 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3023
d69cf37d 3024 err_mask = ata_exec_internal(ap, dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3025
6aff8f1f
TH
3026 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3027 return err_mask;
8bf62ece
AL
3028}
3029
1da177e4 3030/**
0cba632b
JG
3031 * ata_sg_clean - Unmap DMA memory associated with command
3032 * @qc: Command containing DMA memory to be released
3033 *
3034 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3035 *
3036 * LOCKING:
0cba632b 3037 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3038 */
3039
3040static void ata_sg_clean(struct ata_queued_cmd *qc)
3041{
3042 struct ata_port *ap = qc->ap;
cedc9a47 3043 struct scatterlist *sg = qc->__sg;
1da177e4 3044 int dir = qc->dma_dir;
cedc9a47 3045 void *pad_buf = NULL;
1da177e4 3046
a4631474
TH
3047 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3048 WARN_ON(sg == NULL);
1da177e4
LT
3049
3050 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 3051 WARN_ON(qc->n_elem > 1);
1da177e4 3052
2c13b7ce 3053 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 3054
cedc9a47
JG
3055 /* if we padded the buffer out to 32-bit bound, and data
3056 * xfer direction is from-device, we must copy from the
3057 * pad buffer back into the supplied buffer
3058 */
3059 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3060 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3061
3062 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 3063 if (qc->n_elem)
2f1f610b 3064 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
3065 /* restore last sg */
3066 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3067 if (pad_buf) {
3068 struct scatterlist *psg = &qc->pad_sgent;
3069 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3070 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 3071 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3072 }
3073 } else {
2e242fa9 3074 if (qc->n_elem)
2f1f610b 3075 dma_unmap_single(ap->dev,
e1410f2d
JG
3076 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3077 dir);
cedc9a47
JG
3078 /* restore sg */
3079 sg->length += qc->pad_len;
3080 if (pad_buf)
3081 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3082 pad_buf, qc->pad_len);
3083 }
1da177e4
LT
3084
3085 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 3086 qc->__sg = NULL;
1da177e4
LT
3087}
3088
3089/**
3090 * ata_fill_sg - Fill PCI IDE PRD table
3091 * @qc: Metadata associated with taskfile to be transferred
3092 *
780a87f7
JG
3093 * Fill PCI IDE PRD (scatter-gather) table with segments
3094 * associated with the current disk command.
3095 *
1da177e4 3096 * LOCKING:
780a87f7 3097 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3098 *
3099 */
3100static void ata_fill_sg(struct ata_queued_cmd *qc)
3101{
1da177e4 3102 struct ata_port *ap = qc->ap;
cedc9a47
JG
3103 struct scatterlist *sg;
3104 unsigned int idx;
1da177e4 3105
a4631474 3106 WARN_ON(qc->__sg == NULL);
f131883e 3107 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
3108
3109 idx = 0;
cedc9a47 3110 ata_for_each_sg(sg, qc) {
1da177e4
LT
3111 u32 addr, offset;
3112 u32 sg_len, len;
3113
3114 /* determine if physical DMA addr spans 64K boundary.
3115 * Note h/w doesn't support 64-bit, so we unconditionally
3116 * truncate dma_addr_t to u32.
3117 */
3118 addr = (u32) sg_dma_address(sg);
3119 sg_len = sg_dma_len(sg);
3120
3121 while (sg_len) {
3122 offset = addr & 0xffff;
3123 len = sg_len;
3124 if ((offset + sg_len) > 0x10000)
3125 len = 0x10000 - offset;
3126
3127 ap->prd[idx].addr = cpu_to_le32(addr);
3128 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3129 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3130
3131 idx++;
3132 sg_len -= len;
3133 addr += len;
3134 }
3135 }
3136
3137 if (idx)
3138 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3139}
3140/**
3141 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3142 * @qc: Metadata associated with taskfile to check
3143 *
780a87f7
JG
3144 * Allow low-level driver to filter ATA PACKET commands, returning
3145 * a status indicating whether or not it is OK to use DMA for the
3146 * supplied PACKET command.
3147 *
1da177e4 3148 * LOCKING:
0cba632b
JG
3149 * spin_lock_irqsave(host_set lock)
3150 *
1da177e4
LT
3151 * RETURNS: 0 when ATAPI DMA can be used
3152 * nonzero otherwise
3153 */
3154int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3155{
3156 struct ata_port *ap = qc->ap;
3157 int rc = 0; /* Assume ATAPI DMA is OK by default */
3158
3159 if (ap->ops->check_atapi_dma)
3160 rc = ap->ops->check_atapi_dma(qc);
3161
3162 return rc;
3163}
3164/**
3165 * ata_qc_prep - Prepare taskfile for submission
3166 * @qc: Metadata associated with taskfile to be prepared
3167 *
780a87f7
JG
3168 * Prepare ATA taskfile for submission.
3169 *
1da177e4
LT
3170 * LOCKING:
3171 * spin_lock_irqsave(host_set lock)
3172 */
3173void ata_qc_prep(struct ata_queued_cmd *qc)
3174{
3175 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3176 return;
3177
3178 ata_fill_sg(qc);
3179}
3180
e46834cd
BK
3181void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3182
0cba632b
JG
3183/**
3184 * ata_sg_init_one - Associate command with memory buffer
3185 * @qc: Command to be associated
3186 * @buf: Memory buffer
3187 * @buflen: Length of memory buffer, in bytes.
3188 *
3189 * Initialize the data-related elements of queued_cmd @qc
3190 * to point to a single memory buffer, @buf of byte length @buflen.
3191 *
3192 * LOCKING:
3193 * spin_lock_irqsave(host_set lock)
3194 */
3195
1da177e4
LT
3196void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3197{
3198 struct scatterlist *sg;
3199
3200 qc->flags |= ATA_QCFLAG_SINGLE;
3201
3202 memset(&qc->sgent, 0, sizeof(qc->sgent));
cedc9a47 3203 qc->__sg = &qc->sgent;
1da177e4 3204 qc->n_elem = 1;
cedc9a47 3205 qc->orig_n_elem = 1;
1da177e4
LT
3206 qc->buf_virt = buf;
3207
cedc9a47 3208 sg = qc->__sg;
f0612bbc 3209 sg_init_one(sg, buf, buflen);
1da177e4
LT
3210}
3211
0cba632b
JG
3212/**
3213 * ata_sg_init - Associate command with scatter-gather table.
3214 * @qc: Command to be associated
3215 * @sg: Scatter-gather table.
3216 * @n_elem: Number of elements in s/g table.
3217 *
3218 * Initialize the data-related elements of queued_cmd @qc
3219 * to point to a scatter-gather table @sg, containing @n_elem
3220 * elements.
3221 *
3222 * LOCKING:
3223 * spin_lock_irqsave(host_set lock)
3224 */
3225
1da177e4
LT
3226void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3227 unsigned int n_elem)
3228{
3229 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 3230 qc->__sg = sg;
1da177e4 3231 qc->n_elem = n_elem;
cedc9a47 3232 qc->orig_n_elem = n_elem;
1da177e4
LT
3233}
3234
3235/**
0cba632b
JG
3236 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3237 * @qc: Command with memory buffer to be mapped.
3238 *
3239 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
3240 *
3241 * LOCKING:
3242 * spin_lock_irqsave(host_set lock)
3243 *
3244 * RETURNS:
0cba632b 3245 * Zero on success, negative on error.
1da177e4
LT
3246 */
3247
3248static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3249{
3250 struct ata_port *ap = qc->ap;
3251 int dir = qc->dma_dir;
cedc9a47 3252 struct scatterlist *sg = qc->__sg;
1da177e4 3253 dma_addr_t dma_address;
2e242fa9 3254 int trim_sg = 0;
1da177e4 3255
cedc9a47
JG
3256 /* we must lengthen transfers to end on a 32-bit boundary */
3257 qc->pad_len = sg->length & 3;
3258 if (qc->pad_len) {
3259 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3260 struct scatterlist *psg = &qc->pad_sgent;
3261
a4631474 3262 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3263
3264 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3265
3266 if (qc->tf.flags & ATA_TFLAG_WRITE)
3267 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3268 qc->pad_len);
3269
3270 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3271 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3272 /* trim sg */
3273 sg->length -= qc->pad_len;
2e242fa9
TH
3274 if (sg->length == 0)
3275 trim_sg = 1;
cedc9a47
JG
3276
3277 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3278 sg->length, qc->pad_len);
3279 }
3280
2e242fa9
TH
3281 if (trim_sg) {
3282 qc->n_elem--;
e1410f2d
JG
3283 goto skip_map;
3284 }
3285
2f1f610b 3286 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 3287 sg->length, dir);
537a95d9
TH
3288 if (dma_mapping_error(dma_address)) {
3289 /* restore sg */
3290 sg->length += qc->pad_len;
1da177e4 3291 return -1;
537a95d9 3292 }
1da177e4
LT
3293
3294 sg_dma_address(sg) = dma_address;
32529e01 3295 sg_dma_len(sg) = sg->length;
1da177e4 3296
2e242fa9 3297skip_map:
1da177e4
LT
3298 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3299 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3300
3301 return 0;
3302}
3303
3304/**
0cba632b
JG
3305 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3306 * @qc: Command with scatter-gather table to be mapped.
3307 *
3308 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
3309 *
3310 * LOCKING:
3311 * spin_lock_irqsave(host_set lock)
3312 *
3313 * RETURNS:
0cba632b 3314 * Zero on success, negative on error.
1da177e4
LT
3315 *
3316 */
3317
3318static int ata_sg_setup(struct ata_queued_cmd *qc)
3319{
3320 struct ata_port *ap = qc->ap;
cedc9a47
JG
3321 struct scatterlist *sg = qc->__sg;
3322 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 3323 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
3324
3325 VPRINTK("ENTER, ata%u\n", ap->id);
a4631474 3326 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 3327
cedc9a47
JG
3328 /* we must lengthen transfers to end on a 32-bit boundary */
3329 qc->pad_len = lsg->length & 3;
3330 if (qc->pad_len) {
3331 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3332 struct scatterlist *psg = &qc->pad_sgent;
3333 unsigned int offset;
3334
a4631474 3335 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3336
3337 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3338
3339 /*
3340 * psg->page/offset are used to copy to-be-written
3341 * data in this function or read data in ata_sg_clean.
3342 */
3343 offset = lsg->offset + lsg->length - qc->pad_len;
3344 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3345 psg->offset = offset_in_page(offset);
3346
3347 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3348 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3349 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 3350 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3351 }
3352
3353 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3354 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3355 /* trim last sg */
3356 lsg->length -= qc->pad_len;
e1410f2d
JG
3357 if (lsg->length == 0)
3358 trim_sg = 1;
cedc9a47
JG
3359
3360 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3361 qc->n_elem - 1, lsg->length, qc->pad_len);
3362 }
3363
e1410f2d
JG
3364 pre_n_elem = qc->n_elem;
3365 if (trim_sg && pre_n_elem)
3366 pre_n_elem--;
3367
3368 if (!pre_n_elem) {
3369 n_elem = 0;
3370 goto skip_map;
3371 }
3372
1da177e4 3373 dir = qc->dma_dir;
2f1f610b 3374 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
3375 if (n_elem < 1) {
3376 /* restore last sg */
3377 lsg->length += qc->pad_len;
1da177e4 3378 return -1;
537a95d9 3379 }
1da177e4
LT
3380
3381 DPRINTK("%d sg elements mapped\n", n_elem);
3382
e1410f2d 3383skip_map:
1da177e4
LT
3384 qc->n_elem = n_elem;
3385
3386 return 0;
3387}
3388
40e8c82c
TH
3389/**
3390 * ata_poll_qc_complete - turn irq back on and finish qc
3391 * @qc: Command to complete
8e8b77dd 3392 * @err_mask: ATA status register content
40e8c82c
TH
3393 *
3394 * LOCKING:
3395 * None. (grabs host lock)
3396 */
3397
a22e2eb0 3398void ata_poll_qc_complete(struct ata_queued_cmd *qc)
40e8c82c
TH
3399{
3400 struct ata_port *ap = qc->ap;
b8f6153e 3401 unsigned long flags;
40e8c82c 3402
b8f6153e 3403 spin_lock_irqsave(&ap->host_set->lock, flags);
40e8c82c
TH
3404 ap->flags &= ~ATA_FLAG_NOINTR;
3405 ata_irq_on(ap);
a22e2eb0 3406 ata_qc_complete(qc);
b8f6153e 3407 spin_unlock_irqrestore(&ap->host_set->lock, flags);
40e8c82c
TH
3408}
3409
1da177e4 3410/**
c893a3ae 3411 * ata_pio_poll - poll using PIO, depending on current state
c91af2c8 3412 * @qc: qc in progress
1da177e4
LT
3413 *
3414 * LOCKING:
0cba632b 3415 * None. (executing in kernel thread context)
1da177e4
LT
3416 *
3417 * RETURNS:
6f0ef4fa 3418 * timeout value to use
1da177e4 3419 */
c91af2c8 3420static unsigned long ata_pio_poll(struct ata_queued_cmd *qc)
1da177e4 3421{
c91af2c8 3422 struct ata_port *ap = qc->ap;
1da177e4 3423 u8 status;
14be71f4
AL
3424 unsigned int poll_state = HSM_ST_UNKNOWN;
3425 unsigned int reg_state = HSM_ST_UNKNOWN;
14be71f4
AL
3426
3427 switch (ap->hsm_task_state) {
3428 case HSM_ST:
3429 case HSM_ST_POLL:
3430 poll_state = HSM_ST_POLL;
3431 reg_state = HSM_ST;
1da177e4 3432 break;
14be71f4
AL
3433 case HSM_ST_LAST:
3434 case HSM_ST_LAST_POLL:
3435 poll_state = HSM_ST_LAST_POLL;
3436 reg_state = HSM_ST_LAST;
1da177e4
LT
3437 break;
3438 default:
3439 BUG();
3440 break;
3441 }
3442
3443 status = ata_chk_status(ap);
3444 if (status & ATA_BUSY) {
3445 if (time_after(jiffies, ap->pio_task_timeout)) {
11a56d24 3446 qc->err_mask |= AC_ERR_TIMEOUT;
7c398335 3447 ap->hsm_task_state = HSM_ST_TMOUT;
1da177e4
LT
3448 return 0;
3449 }
14be71f4 3450 ap->hsm_task_state = poll_state;
1da177e4
LT
3451 return ATA_SHORT_PAUSE;
3452 }
3453
14be71f4 3454 ap->hsm_task_state = reg_state;
1da177e4
LT
3455 return 0;
3456}
3457
3458/**
6f0ef4fa 3459 * ata_pio_complete - check if drive is busy or idle
c91af2c8 3460 * @qc: qc to complete
1da177e4
LT
3461 *
3462 * LOCKING:
0cba632b 3463 * None. (executing in kernel thread context)
7fb6ec28
JG
3464 *
3465 * RETURNS:
3466 * Non-zero if qc completed, zero otherwise.
1da177e4 3467 */
c91af2c8 3468static int ata_pio_complete(struct ata_queued_cmd *qc)
1da177e4 3469{
c91af2c8 3470 struct ata_port *ap = qc->ap;
1da177e4
LT
3471 u8 drv_stat;
3472
3473 /*
31433ea3
AC
3474 * This is purely heuristic. This is a fast path. Sometimes when
3475 * we enter, BSY will be cleared in a chk-status or two. If not,
3476 * the drive is probably seeking or something. Snooze for a couple
3477 * msecs, then chk-status again. If still busy, fall back to
14be71f4 3478 * HSM_ST_POLL state.
1da177e4 3479 */
fe79e683
AL
3480 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3481 if (drv_stat & ATA_BUSY) {
1da177e4 3482 msleep(2);
fe79e683
AL
3483 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3484 if (drv_stat & ATA_BUSY) {
14be71f4 3485 ap->hsm_task_state = HSM_ST_LAST_POLL;
1da177e4 3486 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
7fb6ec28 3487 return 0;
1da177e4
LT
3488 }
3489 }
3490
3491 drv_stat = ata_wait_idle(ap);
3492 if (!ata_ok(drv_stat)) {
1c848984 3493 qc->err_mask |= __ac_err_mask(drv_stat);
14be71f4 3494 ap->hsm_task_state = HSM_ST_ERR;
7fb6ec28 3495 return 0;
1da177e4
LT
3496 }
3497
14be71f4 3498 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 3499
a4631474 3500 WARN_ON(qc->err_mask);
a22e2eb0 3501 ata_poll_qc_complete(qc);
7fb6ec28
JG
3502
3503 /* another command may start at this point */
3504
3505 return 1;
1da177e4
LT
3506}
3507
0baab86b
EF
3508
3509/**
c893a3ae 3510 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
3511 * @buf: Buffer to swap
3512 * @buf_words: Number of 16-bit words in buffer.
3513 *
3514 * Swap halves of 16-bit words if needed to convert from
3515 * little-endian byte order to native cpu byte order, or
3516 * vice-versa.
3517 *
3518 * LOCKING:
6f0ef4fa 3519 * Inherited from caller.
0baab86b 3520 */
1da177e4
LT
3521void swap_buf_le16(u16 *buf, unsigned int buf_words)
3522{
3523#ifdef __BIG_ENDIAN
3524 unsigned int i;
3525
3526 for (i = 0; i < buf_words; i++)
3527 buf[i] = le16_to_cpu(buf[i]);
3528#endif /* __BIG_ENDIAN */
3529}
3530
6ae4cfb5
AL
3531/**
3532 * ata_mmio_data_xfer - Transfer data by MMIO
3533 * @ap: port to read/write
3534 * @buf: data buffer
3535 * @buflen: buffer length
344babaa 3536 * @write_data: read/write
6ae4cfb5
AL
3537 *
3538 * Transfer data from/to the device data register by MMIO.
3539 *
3540 * LOCKING:
3541 * Inherited from caller.
6ae4cfb5
AL
3542 */
3543
1da177e4
LT
3544static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3545 unsigned int buflen, int write_data)
3546{
3547 unsigned int i;
3548 unsigned int words = buflen >> 1;
3549 u16 *buf16 = (u16 *) buf;
3550 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3551
6ae4cfb5 3552 /* Transfer multiple of 2 bytes */
1da177e4
LT
3553 if (write_data) {
3554 for (i = 0; i < words; i++)
3555 writew(le16_to_cpu(buf16[i]), mmio);
3556 } else {
3557 for (i = 0; i < words; i++)
3558 buf16[i] = cpu_to_le16(readw(mmio));
3559 }
6ae4cfb5
AL
3560
3561 /* Transfer trailing 1 byte, if any. */
3562 if (unlikely(buflen & 0x01)) {
3563 u16 align_buf[1] = { 0 };
3564 unsigned char *trailing_buf = buf + buflen - 1;
3565
3566 if (write_data) {
3567 memcpy(align_buf, trailing_buf, 1);
3568 writew(le16_to_cpu(align_buf[0]), mmio);
3569 } else {
3570 align_buf[0] = cpu_to_le16(readw(mmio));
3571 memcpy(trailing_buf, align_buf, 1);
3572 }
3573 }
1da177e4
LT
3574}
3575
6ae4cfb5
AL
3576/**
3577 * ata_pio_data_xfer - Transfer data by PIO
3578 * @ap: port to read/write
3579 * @buf: data buffer
3580 * @buflen: buffer length
344babaa 3581 * @write_data: read/write
6ae4cfb5
AL
3582 *
3583 * Transfer data from/to the device data register by PIO.
3584 *
3585 * LOCKING:
3586 * Inherited from caller.
6ae4cfb5
AL
3587 */
3588
1da177e4
LT
3589static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3590 unsigned int buflen, int write_data)
3591{
6ae4cfb5 3592 unsigned int words = buflen >> 1;
1da177e4 3593
6ae4cfb5 3594 /* Transfer multiple of 2 bytes */
1da177e4 3595 if (write_data)
6ae4cfb5 3596 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 3597 else
6ae4cfb5
AL
3598 insw(ap->ioaddr.data_addr, buf, words);
3599
3600 /* Transfer trailing 1 byte, if any. */
3601 if (unlikely(buflen & 0x01)) {
3602 u16 align_buf[1] = { 0 };
3603 unsigned char *trailing_buf = buf + buflen - 1;
3604
3605 if (write_data) {
3606 memcpy(align_buf, trailing_buf, 1);
3607 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3608 } else {
3609 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3610 memcpy(trailing_buf, align_buf, 1);
3611 }
3612 }
1da177e4
LT
3613}
3614
6ae4cfb5
AL
3615/**
3616 * ata_data_xfer - Transfer data from/to the data register.
3617 * @ap: port to read/write
3618 * @buf: data buffer
3619 * @buflen: buffer length
3620 * @do_write: read/write
3621 *
3622 * Transfer data from/to the device data register.
3623 *
3624 * LOCKING:
3625 * Inherited from caller.
6ae4cfb5
AL
3626 */
3627
1da177e4
LT
3628static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3629 unsigned int buflen, int do_write)
3630{
a1bd9e68
AC
3631 /* Make the crap hardware pay the costs not the good stuff */
3632 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3633 unsigned long flags;
3634 local_irq_save(flags);
3635 if (ap->flags & ATA_FLAG_MMIO)
3636 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3637 else
3638 ata_pio_data_xfer(ap, buf, buflen, do_write);
3639 local_irq_restore(flags);
3640 } else {
3641 if (ap->flags & ATA_FLAG_MMIO)
3642 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3643 else
3644 ata_pio_data_xfer(ap, buf, buflen, do_write);
3645 }
1da177e4
LT
3646}
3647
6ae4cfb5
AL
3648/**
3649 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3650 * @qc: Command on going
3651 *
3652 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3653 *
3654 * LOCKING:
3655 * Inherited from caller.
3656 */
3657
1da177e4
LT
3658static void ata_pio_sector(struct ata_queued_cmd *qc)
3659{
3660 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3661 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3662 struct ata_port *ap = qc->ap;
3663 struct page *page;
3664 unsigned int offset;
3665 unsigned char *buf;
3666
3667 if (qc->cursect == (qc->nsect - 1))
14be71f4 3668 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3669
3670 page = sg[qc->cursg].page;
3671 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3672
3673 /* get the current page and offset */
3674 page = nth_page(page, (offset >> PAGE_SHIFT));
3675 offset %= PAGE_SIZE;
3676
3677 buf = kmap(page) + offset;
3678
3679 qc->cursect++;
3680 qc->cursg_ofs++;
3681
32529e01 3682 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
1da177e4
LT
3683 qc->cursg++;
3684 qc->cursg_ofs = 0;
3685 }
3686
3687 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3688
3689 /* do the actual data transfer */
3690 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3691 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3692
3693 kunmap(page);
3694}
3695
6ae4cfb5
AL
3696/**
3697 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3698 * @qc: Command on going
3699 * @bytes: number of bytes
3700 *
3701 * Transfer Transfer data from/to the ATAPI device.
3702 *
3703 * LOCKING:
3704 * Inherited from caller.
3705 *
3706 */
3707
1da177e4
LT
3708static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3709{
3710 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3711 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3712 struct ata_port *ap = qc->ap;
3713 struct page *page;
3714 unsigned char *buf;
3715 unsigned int offset, count;
3716
563a6e1f 3717 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 3718 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3719
3720next_sg:
563a6e1f 3721 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 3722 /*
563a6e1f
AL
3723 * The end of qc->sg is reached and the device expects
3724 * more data to transfer. In order not to overrun qc->sg
3725 * and fulfill length specified in the byte count register,
3726 * - for read case, discard trailing data from the device
3727 * - for write case, padding zero data to the device
3728 */
3729 u16 pad_buf[1] = { 0 };
3730 unsigned int words = bytes >> 1;
3731 unsigned int i;
3732
3733 if (words) /* warning if bytes > 1 */
7fb6ec28 3734 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
563a6e1f
AL
3735 ap->id, bytes);
3736
3737 for (i = 0; i < words; i++)
3738 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3739
14be71f4 3740 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
3741 return;
3742 }
3743
cedc9a47 3744 sg = &qc->__sg[qc->cursg];
1da177e4 3745
1da177e4
LT
3746 page = sg->page;
3747 offset = sg->offset + qc->cursg_ofs;
3748
3749 /* get the current page and offset */
3750 page = nth_page(page, (offset >> PAGE_SHIFT));
3751 offset %= PAGE_SIZE;
3752
6952df03 3753 /* don't overrun current sg */
32529e01 3754 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
3755
3756 /* don't cross page boundaries */
3757 count = min(count, (unsigned int)PAGE_SIZE - offset);
3758
3759 buf = kmap(page) + offset;
3760
3761 bytes -= count;
3762 qc->curbytes += count;
3763 qc->cursg_ofs += count;
3764
32529e01 3765 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
3766 qc->cursg++;
3767 qc->cursg_ofs = 0;
3768 }
3769
3770 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3771
3772 /* do the actual data transfer */
3773 ata_data_xfer(ap, buf, count, do_write);
3774
3775 kunmap(page);
3776
563a6e1f 3777 if (bytes)
1da177e4 3778 goto next_sg;
1da177e4
LT
3779}
3780
6ae4cfb5
AL
3781/**
3782 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3783 * @qc: Command on going
3784 *
3785 * Transfer Transfer data from/to the ATAPI device.
3786 *
3787 * LOCKING:
3788 * Inherited from caller.
6ae4cfb5
AL
3789 */
3790
1da177e4
LT
3791static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3792{
3793 struct ata_port *ap = qc->ap;
3794 struct ata_device *dev = qc->dev;
3795 unsigned int ireason, bc_lo, bc_hi, bytes;
3796 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3797
3798 ap->ops->tf_read(ap, &qc->tf);
3799 ireason = qc->tf.nsect;
3800 bc_lo = qc->tf.lbam;
3801 bc_hi = qc->tf.lbah;
3802 bytes = (bc_hi << 8) | bc_lo;
3803
3804 /* shall be cleared to zero, indicating xfer of data */
3805 if (ireason & (1 << 0))
3806 goto err_out;
3807
3808 /* make sure transfer direction matches expected */
3809 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3810 if (do_write != i_write)
3811 goto err_out;
3812
3813 __atapi_pio_bytes(qc, bytes);
3814
3815 return;
3816
3817err_out:
3818 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3819 ap->id, dev->devno);
11a56d24 3820 qc->err_mask |= AC_ERR_HSM;
14be71f4 3821 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3822}
3823
3824/**
6f0ef4fa 3825 * ata_pio_block - start PIO on a block
c91af2c8 3826 * @qc: qc to transfer block for
1da177e4
LT
3827 *
3828 * LOCKING:
0cba632b 3829 * None. (executing in kernel thread context)
1da177e4 3830 */
c91af2c8 3831static void ata_pio_block(struct ata_queued_cmd *qc)
1da177e4 3832{
c91af2c8 3833 struct ata_port *ap = qc->ap;
1da177e4
LT
3834 u8 status;
3835
3836 /*
6f0ef4fa 3837 * This is purely heuristic. This is a fast path.
1da177e4
LT
3838 * Sometimes when we enter, BSY will be cleared in
3839 * a chk-status or two. If not, the drive is probably seeking
3840 * or something. Snooze for a couple msecs, then
3841 * chk-status again. If still busy, fall back to
14be71f4 3842 * HSM_ST_POLL state.
1da177e4
LT
3843 */
3844 status = ata_busy_wait(ap, ATA_BUSY, 5);
3845 if (status & ATA_BUSY) {
3846 msleep(2);
3847 status = ata_busy_wait(ap, ATA_BUSY, 10);
3848 if (status & ATA_BUSY) {
14be71f4 3849 ap->hsm_task_state = HSM_ST_POLL;
1da177e4
LT
3850 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3851 return;
3852 }
3853 }
3854
fe79e683
AL
3855 /* check error */
3856 if (status & (ATA_ERR | ATA_DF)) {
3857 qc->err_mask |= AC_ERR_DEV;
3858 ap->hsm_task_state = HSM_ST_ERR;
3859 return;
3860 }
3861
3862 /* transfer data if any */
1da177e4 3863 if (is_atapi_taskfile(&qc->tf)) {
fe79e683 3864 /* DRQ=0 means no more data to transfer */
1da177e4 3865 if ((status & ATA_DRQ) == 0) {
14be71f4 3866 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3867 return;
3868 }
3869
3870 atapi_pio_bytes(qc);
3871 } else {
3872 /* handle BSY=0, DRQ=0 as error */
3873 if ((status & ATA_DRQ) == 0) {
11a56d24 3874 qc->err_mask |= AC_ERR_HSM;
14be71f4 3875 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3876 return;
3877 }
3878
3879 ata_pio_sector(qc);
3880 }
3881}
3882
c91af2c8 3883static void ata_pio_error(struct ata_queued_cmd *qc)
1da177e4 3884{
c91af2c8 3885 struct ata_port *ap = qc->ap;
1da177e4 3886
0565c26d 3887 if (qc->tf.command != ATA_CMD_PACKET)
d63cb4a6
TH
3888 printk(KERN_WARNING "ata%u: dev %u PIO error\n",
3889 ap->id, qc->dev->devno);
0565c26d 3890
2e9edbf8 3891 /* make sure qc->err_mask is available to
1c848984
AL
3892 * know what's wrong and recover
3893 */
a4631474 3894 WARN_ON(qc->err_mask == 0);
1c848984 3895
14be71f4 3896 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 3897
a22e2eb0 3898 ata_poll_qc_complete(qc);
1da177e4
LT
3899}
3900
3901static void ata_pio_task(void *_data)
3902{
c91af2c8
TH
3903 struct ata_queued_cmd *qc = _data;
3904 struct ata_port *ap = qc->ap;
7fb6ec28
JG
3905 unsigned long timeout;
3906 int qc_completed;
3907
3908fsm_start:
3909 timeout = 0;
3910 qc_completed = 0;
1da177e4 3911
14be71f4
AL
3912 switch (ap->hsm_task_state) {
3913 case HSM_ST_IDLE:
1da177e4
LT
3914 return;
3915
14be71f4 3916 case HSM_ST:
c91af2c8 3917 ata_pio_block(qc);
1da177e4
LT
3918 break;
3919
14be71f4 3920 case HSM_ST_LAST:
c91af2c8 3921 qc_completed = ata_pio_complete(qc);
1da177e4
LT
3922 break;
3923
14be71f4
AL
3924 case HSM_ST_POLL:
3925 case HSM_ST_LAST_POLL:
c91af2c8 3926 timeout = ata_pio_poll(qc);
1da177e4
LT
3927 break;
3928
14be71f4
AL
3929 case HSM_ST_TMOUT:
3930 case HSM_ST_ERR:
c91af2c8 3931 ata_pio_error(qc);
1da177e4
LT
3932 return;
3933 }
3934
3935 if (timeout)
c91af2c8 3936 ata_port_queue_task(ap, ata_pio_task, qc, timeout);
7fb6ec28
JG
3937 else if (!qc_completed)
3938 goto fsm_start;
1da177e4
LT
3939}
3940
8061f5f0
TH
3941/**
3942 * atapi_packet_task - Write CDB bytes to hardware
c91af2c8 3943 * @_data: qc in progress
8061f5f0
TH
3944 *
3945 * When device has indicated its readiness to accept
3946 * a CDB, this function is called. Send the CDB.
3947 * If DMA is to be performed, exit immediately.
3948 * Otherwise, we are in polling mode, so poll
3949 * status under operation succeeds or fails.
3950 *
3951 * LOCKING:
3952 * Kernel thread context (may sleep)
3953 */
8061f5f0
TH
3954static void atapi_packet_task(void *_data)
3955{
c91af2c8
TH
3956 struct ata_queued_cmd *qc = _data;
3957 struct ata_port *ap = qc->ap;
8061f5f0
TH
3958 u8 status;
3959
8061f5f0
TH
3960 /* sleep-wait for BSY to clear */
3961 DPRINTK("busy wait\n");
3962 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
3963 qc->err_mask |= AC_ERR_TIMEOUT;
3964 goto err_out;
3965 }
3966
3967 /* make sure DRQ is set */
3968 status = ata_chk_status(ap);
3969 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
3970 qc->err_mask |= AC_ERR_HSM;
3971 goto err_out;
3972 }
3973
3974 /* send SCSI cdb */
3975 DPRINTK("send cdb\n");
3976 WARN_ON(qc->dev->cdb_len < 12);
3977
3978 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
3979 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
3980 unsigned long flags;
3981
3982 /* Once we're done issuing command and kicking bmdma,
3983 * irq handler takes over. To not lose irq, we need
3984 * to clear NOINTR flag before sending cdb, but
3985 * interrupt handler shouldn't be invoked before we're
3986 * finished. Hence, the following locking.
3987 */
3988 spin_lock_irqsave(&ap->host_set->lock, flags);
3989 ap->flags &= ~ATA_FLAG_NOINTR;
3990 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
3991 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
3992 ap->ops->bmdma_start(qc); /* initiate bmdma */
3993 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3994 } else {
3995 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
3996
3997 /* PIO commands are handled by polling */
3998 ap->hsm_task_state = HSM_ST;
c91af2c8 3999 ata_port_queue_task(ap, ata_pio_task, qc, 0);
8061f5f0
TH
4000 }
4001
4002 return;
4003
4004err_out:
4005 ata_poll_qc_complete(qc);
4006}
4007
1da177e4
LT
4008/**
4009 * ata_qc_new - Request an available ATA command, for queueing
4010 * @ap: Port associated with device @dev
4011 * @dev: Device from whom we request an available command structure
4012 *
4013 * LOCKING:
0cba632b 4014 * None.
1da177e4
LT
4015 */
4016
4017static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4018{
4019 struct ata_queued_cmd *qc = NULL;
4020 unsigned int i;
4021
4022 for (i = 0; i < ATA_MAX_QUEUE; i++)
4023 if (!test_and_set_bit(i, &ap->qactive)) {
4024 qc = ata_qc_from_tag(ap, i);
4025 break;
4026 }
4027
4028 if (qc)
4029 qc->tag = i;
4030
4031 return qc;
4032}
4033
4034/**
4035 * ata_qc_new_init - Request an available ATA command, and initialize it
4036 * @ap: Port associated with device @dev
4037 * @dev: Device from whom we request an available command structure
4038 *
4039 * LOCKING:
0cba632b 4040 * None.
1da177e4
LT
4041 */
4042
4043struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
4044 struct ata_device *dev)
4045{
4046 struct ata_queued_cmd *qc;
4047
4048 qc = ata_qc_new(ap);
4049 if (qc) {
1da177e4
LT
4050 qc->scsicmd = NULL;
4051 qc->ap = ap;
4052 qc->dev = dev;
1da177e4 4053
2c13b7ce 4054 ata_qc_reinit(qc);
1da177e4
LT
4055 }
4056
4057 return qc;
4058}
4059
1da177e4
LT
4060/**
4061 * ata_qc_free - free unused ata_queued_cmd
4062 * @qc: Command to complete
4063 *
4064 * Designed to free unused ata_queued_cmd object
4065 * in case something prevents using it.
4066 *
4067 * LOCKING:
0cba632b 4068 * spin_lock_irqsave(host_set lock)
1da177e4
LT
4069 */
4070void ata_qc_free(struct ata_queued_cmd *qc)
4071{
4ba946e9
TH
4072 struct ata_port *ap = qc->ap;
4073 unsigned int tag;
4074
a4631474 4075 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 4076
4ba946e9
TH
4077 qc->flags = 0;
4078 tag = qc->tag;
4079 if (likely(ata_tag_valid(tag))) {
4080 if (tag == ap->active_tag)
4081 ap->active_tag = ATA_TAG_POISON;
4082 qc->tag = ATA_TAG_POISON;
4083 clear_bit(tag, &ap->qactive);
4084 }
1da177e4
LT
4085}
4086
76014427 4087void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4088{
a4631474
TH
4089 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4090 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
4091
4092 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4093 ata_sg_clean(qc);
4094
3f3791d3
AL
4095 /* atapi: mark qc as inactive to prevent the interrupt handler
4096 * from completing the command twice later, before the error handler
4097 * is called. (when rc != 0 and atapi request sense is needed)
4098 */
4099 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4100
1da177e4 4101 /* call completion callback */
77853bf2 4102 qc->complete_fn(qc);
1da177e4
LT
4103}
4104
4105static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4106{
4107 struct ata_port *ap = qc->ap;
4108
4109 switch (qc->tf.protocol) {
4110 case ATA_PROT_DMA:
4111 case ATA_PROT_ATAPI_DMA:
4112 return 1;
4113
4114 case ATA_PROT_ATAPI:
4115 case ATA_PROT_PIO:
1da177e4
LT
4116 if (ap->flags & ATA_FLAG_PIO_DMA)
4117 return 1;
4118
4119 /* fall through */
4120
4121 default:
4122 return 0;
4123 }
4124
4125 /* never reached */
4126}
4127
4128/**
4129 * ata_qc_issue - issue taskfile to device
4130 * @qc: command to issue to device
4131 *
4132 * Prepare an ATA command to submission to device.
4133 * This includes mapping the data into a DMA-able
4134 * area, filling in the S/G table, and finally
4135 * writing the taskfile to hardware, starting the command.
4136 *
4137 * LOCKING:
4138 * spin_lock_irqsave(host_set lock)
1da177e4 4139 */
8e0e694a 4140void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4141{
4142 struct ata_port *ap = qc->ap;
4143
e4a70e76
TH
4144 qc->ap->active_tag = qc->tag;
4145 qc->flags |= ATA_QCFLAG_ACTIVE;
4146
1da177e4
LT
4147 if (ata_should_dma_map(qc)) {
4148 if (qc->flags & ATA_QCFLAG_SG) {
4149 if (ata_sg_setup(qc))
8e436af9 4150 goto sg_err;
1da177e4
LT
4151 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4152 if (ata_sg_setup_one(qc))
8e436af9 4153 goto sg_err;
1da177e4
LT
4154 }
4155 } else {
4156 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4157 }
4158
4159 ap->ops->qc_prep(qc);
4160
8e0e694a
TH
4161 qc->err_mask |= ap->ops->qc_issue(qc);
4162 if (unlikely(qc->err_mask))
4163 goto err;
4164 return;
1da177e4 4165
8e436af9
TH
4166sg_err:
4167 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
4168 qc->err_mask |= AC_ERR_SYSTEM;
4169err:
4170 ata_qc_complete(qc);
1da177e4
LT
4171}
4172
4173/**
4174 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4175 * @qc: command to issue to device
4176 *
4177 * Using various libata functions and hooks, this function
4178 * starts an ATA command. ATA commands are grouped into
4179 * classes called "protocols", and issuing each type of protocol
4180 * is slightly different.
4181 *
0baab86b
EF
4182 * May be used as the qc_issue() entry in ata_port_operations.
4183 *
1da177e4
LT
4184 * LOCKING:
4185 * spin_lock_irqsave(host_set lock)
4186 *
4187 * RETURNS:
9a3d9eb0 4188 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
4189 */
4190
9a3d9eb0 4191unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
4192{
4193 struct ata_port *ap = qc->ap;
4194
4195 ata_dev_select(ap, qc->dev->devno, 1, 0);
4196
4197 switch (qc->tf.protocol) {
4198 case ATA_PROT_NODATA:
e5338254 4199 ata_tf_to_host(ap, &qc->tf);
1da177e4
LT
4200 break;
4201
4202 case ATA_PROT_DMA:
4203 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4204 ap->ops->bmdma_setup(qc); /* set up bmdma */
4205 ap->ops->bmdma_start(qc); /* initiate bmdma */
4206 break;
4207
4208 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
4209 ata_qc_set_polling(qc);
e5338254 4210 ata_tf_to_host(ap, &qc->tf);
14be71f4 4211 ap->hsm_task_state = HSM_ST;
c91af2c8 4212 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
4213 break;
4214
4215 case ATA_PROT_ATAPI:
4216 ata_qc_set_polling(qc);
e5338254 4217 ata_tf_to_host(ap, &qc->tf);
c91af2c8 4218 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
1da177e4
LT
4219 break;
4220
4221 case ATA_PROT_ATAPI_NODATA:
c1389503 4222 ap->flags |= ATA_FLAG_NOINTR;
e5338254 4223 ata_tf_to_host(ap, &qc->tf);
c91af2c8 4224 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
1da177e4
LT
4225 break;
4226
4227 case ATA_PROT_ATAPI_DMA:
c1389503 4228 ap->flags |= ATA_FLAG_NOINTR;
1da177e4
LT
4229 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4230 ap->ops->bmdma_setup(qc); /* set up bmdma */
c91af2c8 4231 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
1da177e4
LT
4232 break;
4233
4234 default:
4235 WARN_ON(1);
9a3d9eb0 4236 return AC_ERR_SYSTEM;
1da177e4
LT
4237 }
4238
4239 return 0;
4240}
4241
1da177e4
LT
4242/**
4243 * ata_host_intr - Handle host interrupt for given (port, task)
4244 * @ap: Port on which interrupt arrived (possibly...)
4245 * @qc: Taskfile currently active in engine
4246 *
4247 * Handle host interrupt for given queued command. Currently,
4248 * only DMA interrupts are handled. All other commands are
4249 * handled via polling with interrupts disabled (nIEN bit).
4250 *
4251 * LOCKING:
4252 * spin_lock_irqsave(host_set lock)
4253 *
4254 * RETURNS:
4255 * One if interrupt was handled, zero if not (shared irq).
4256 */
4257
4258inline unsigned int ata_host_intr (struct ata_port *ap,
4259 struct ata_queued_cmd *qc)
4260{
4261 u8 status, host_stat;
4262
4263 switch (qc->tf.protocol) {
4264
4265 case ATA_PROT_DMA:
4266 case ATA_PROT_ATAPI_DMA:
4267 case ATA_PROT_ATAPI:
4268 /* check status of DMA engine */
4269 host_stat = ap->ops->bmdma_status(ap);
4270 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4271
4272 /* if it's not our irq... */
4273 if (!(host_stat & ATA_DMA_INTR))
4274 goto idle_irq;
4275
4276 /* before we do anything else, clear DMA-Start bit */
b73fc89f 4277 ap->ops->bmdma_stop(qc);
1da177e4
LT
4278
4279 /* fall through */
4280
4281 case ATA_PROT_ATAPI_NODATA:
4282 case ATA_PROT_NODATA:
4283 /* check altstatus */
4284 status = ata_altstatus(ap);
4285 if (status & ATA_BUSY)
4286 goto idle_irq;
4287
4288 /* check main status, clearing INTRQ */
4289 status = ata_chk_status(ap);
4290 if (unlikely(status & ATA_BUSY))
4291 goto idle_irq;
4292 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4293 ap->id, qc->tf.protocol, status);
4294
4295 /* ack bmdma irq events */
4296 ap->ops->irq_clear(ap);
4297
4298 /* complete taskfile transaction */
a22e2eb0
AL
4299 qc->err_mask |= ac_err_mask(status);
4300 ata_qc_complete(qc);
1da177e4
LT
4301 break;
4302
4303 default:
4304 goto idle_irq;
4305 }
4306
4307 return 1; /* irq handled */
4308
4309idle_irq:
4310 ap->stats.idle_irq++;
4311
4312#ifdef ATA_IRQ_TRAP
4313 if ((ap->stats.idle_irq % 1000) == 0) {
1da177e4
LT
4314 ata_irq_ack(ap, 0); /* debug trap */
4315 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
23cfce89 4316 return 1;
1da177e4
LT
4317 }
4318#endif
4319 return 0; /* irq not handled */
4320}
4321
4322/**
4323 * ata_interrupt - Default ATA host interrupt handler
0cba632b
JG
4324 * @irq: irq line (unused)
4325 * @dev_instance: pointer to our ata_host_set information structure
1da177e4
LT
4326 * @regs: unused
4327 *
0cba632b
JG
4328 * Default interrupt handler for PCI IDE devices. Calls
4329 * ata_host_intr() for each port that is not disabled.
4330 *
1da177e4 4331 * LOCKING:
0cba632b 4332 * Obtains host_set lock during operation.
1da177e4
LT
4333 *
4334 * RETURNS:
0cba632b 4335 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
4336 */
4337
4338irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4339{
4340 struct ata_host_set *host_set = dev_instance;
4341 unsigned int i;
4342 unsigned int handled = 0;
4343 unsigned long flags;
4344
4345 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4346 spin_lock_irqsave(&host_set->lock, flags);
4347
4348 for (i = 0; i < host_set->n_ports; i++) {
4349 struct ata_port *ap;
4350
4351 ap = host_set->ports[i];
c1389503 4352 if (ap &&
198e0fed 4353 !(ap->flags & (ATA_FLAG_DISABLED | ATA_FLAG_NOINTR))) {
1da177e4
LT
4354 struct ata_queued_cmd *qc;
4355
4356 qc = ata_qc_from_tag(ap, ap->active_tag);
21b1ed74
AL
4357 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4358 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
4359 handled |= ata_host_intr(ap, qc);
4360 }
4361 }
4362
4363 spin_unlock_irqrestore(&host_set->lock, flags);
4364
4365 return IRQ_RETVAL(handled);
4366}
4367
0baab86b 4368
9b847548
JA
4369/*
4370 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4371 * without filling any other registers
4372 */
4373static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
4374 u8 cmd)
4375{
4376 struct ata_taskfile tf;
4377 int err;
4378
4379 ata_tf_init(ap, &tf, dev->devno);
4380
4381 tf.command = cmd;
4382 tf.flags |= ATA_TFLAG_DEVICE;
4383 tf.protocol = ATA_PROT_NODATA;
4384
d69cf37d 4385 err = ata_exec_internal(ap, dev, &tf, NULL, DMA_NONE, NULL, 0);
9b847548
JA
4386 if (err)
4387 printk(KERN_ERR "%s: ata command failed: %d\n",
4388 __FUNCTION__, err);
4389
4390 return err;
4391}
4392
4393static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
4394{
4395 u8 cmd;
4396
4397 if (!ata_try_flush_cache(dev))
4398 return 0;
4399
4400 if (ata_id_has_flush_ext(dev->id))
4401 cmd = ATA_CMD_FLUSH_EXT;
4402 else
4403 cmd = ATA_CMD_FLUSH;
4404
4405 return ata_do_simple_cmd(ap, dev, cmd);
4406}
4407
4408static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
4409{
4410 return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
4411}
4412
4413static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
4414{
4415 return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
4416}
4417
4418/**
4419 * ata_device_resume - wakeup a previously suspended devices
c893a3ae
RD
4420 * @ap: port the device is connected to
4421 * @dev: the device to resume
9b847548
JA
4422 *
4423 * Kick the drive back into action, by sending it an idle immediate
4424 * command and making sure its transfer mode matches between drive
4425 * and host.
4426 *
4427 */
4428int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
4429{
4430 if (ap->flags & ATA_FLAG_SUSPENDED) {
e82cbdb9 4431 struct ata_device *failed_dev;
9b847548 4432 ap->flags &= ~ATA_FLAG_SUSPENDED;
e82cbdb9
TH
4433 while (ata_set_mode(ap, &failed_dev))
4434 ata_dev_disable(ap, failed_dev);
9b847548 4435 }
e1211e3f 4436 if (!ata_dev_enabled(dev))
9b847548
JA
4437 return 0;
4438 if (dev->class == ATA_DEV_ATA)
4439 ata_start_drive(ap, dev);
4440
4441 return 0;
4442}
4443
4444/**
4445 * ata_device_suspend - prepare a device for suspend
c893a3ae
RD
4446 * @ap: port the device is connected to
4447 * @dev: the device to suspend
9b847548
JA
4448 *
4449 * Flush the cache on the drive, if appropriate, then issue a
4450 * standbynow command.
9b847548 4451 */
082776e4 4452int ata_device_suspend(struct ata_port *ap, struct ata_device *dev, pm_message_t state)
9b847548 4453{
e1211e3f 4454 if (!ata_dev_enabled(dev))
9b847548
JA
4455 return 0;
4456 if (dev->class == ATA_DEV_ATA)
4457 ata_flush_cache(ap, dev);
4458
082776e4
NC
4459 if (state.event != PM_EVENT_FREEZE)
4460 ata_standby_drive(ap, dev);
9b847548
JA
4461 ap->flags |= ATA_FLAG_SUSPENDED;
4462 return 0;
4463}
4464
c893a3ae
RD
4465/**
4466 * ata_port_start - Set port up for dma.
4467 * @ap: Port to initialize
4468 *
4469 * Called just after data structures for each port are
4470 * initialized. Allocates space for PRD table.
4471 *
4472 * May be used as the port_start() entry in ata_port_operations.
4473 *
4474 * LOCKING:
4475 * Inherited from caller.
4476 */
4477
1da177e4
LT
4478int ata_port_start (struct ata_port *ap)
4479{
2f1f610b 4480 struct device *dev = ap->dev;
6037d6bb 4481 int rc;
1da177e4
LT
4482
4483 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4484 if (!ap->prd)
4485 return -ENOMEM;
4486
6037d6bb
JG
4487 rc = ata_pad_alloc(ap, dev);
4488 if (rc) {
cedc9a47 4489 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4490 return rc;
cedc9a47
JG
4491 }
4492
1da177e4
LT
4493 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4494
4495 return 0;
4496}
4497
0baab86b
EF
4498
4499/**
4500 * ata_port_stop - Undo ata_port_start()
4501 * @ap: Port to shut down
4502 *
4503 * Frees the PRD table.
4504 *
4505 * May be used as the port_stop() entry in ata_port_operations.
4506 *
4507 * LOCKING:
6f0ef4fa 4508 * Inherited from caller.
0baab86b
EF
4509 */
4510
1da177e4
LT
4511void ata_port_stop (struct ata_port *ap)
4512{
2f1f610b 4513 struct device *dev = ap->dev;
1da177e4
LT
4514
4515 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4516 ata_pad_free(ap, dev);
1da177e4
LT
4517}
4518
aa8f0dc6
JG
4519void ata_host_stop (struct ata_host_set *host_set)
4520{
4521 if (host_set->mmio_base)
4522 iounmap(host_set->mmio_base);
4523}
4524
4525
1da177e4
LT
4526/**
4527 * ata_host_remove - Unregister SCSI host structure with upper layers
4528 * @ap: Port to unregister
4529 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4530 *
4531 * LOCKING:
6f0ef4fa 4532 * Inherited from caller.
1da177e4
LT
4533 */
4534
4535static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4536{
4537 struct Scsi_Host *sh = ap->host;
4538
4539 DPRINTK("ENTER\n");
4540
4541 if (do_unregister)
4542 scsi_remove_host(sh);
4543
4544 ap->ops->port_stop(ap);
4545}
4546
4547/**
4548 * ata_host_init - Initialize an ata_port structure
4549 * @ap: Structure to initialize
4550 * @host: associated SCSI mid-layer structure
4551 * @host_set: Collection of hosts to which @ap belongs
4552 * @ent: Probe information provided by low-level driver
4553 * @port_no: Port number associated with this ata_port
4554 *
0cba632b
JG
4555 * Initialize a new ata_port structure, and its associated
4556 * scsi_host.
4557 *
1da177e4 4558 * LOCKING:
0cba632b 4559 * Inherited from caller.
1da177e4
LT
4560 */
4561
4562static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4563 struct ata_host_set *host_set,
057ace5e 4564 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
4565{
4566 unsigned int i;
4567
4568 host->max_id = 16;
4569 host->max_lun = 1;
4570 host->max_channel = 1;
4571 host->unique_id = ata_unique_id++;
4572 host->max_cmd_len = 12;
12413197 4573
198e0fed 4574 ap->flags = ATA_FLAG_DISABLED;
1da177e4
LT
4575 ap->id = host->unique_id;
4576 ap->host = host;
4577 ap->ctl = ATA_DEVCTL_OBS;
4578 ap->host_set = host_set;
2f1f610b 4579 ap->dev = ent->dev;
1da177e4
LT
4580 ap->port_no = port_no;
4581 ap->hard_port_no =
4582 ent->legacy_mode ? ent->hard_port_no : port_no;
4583 ap->pio_mask = ent->pio_mask;
4584 ap->mwdma_mask = ent->mwdma_mask;
4585 ap->udma_mask = ent->udma_mask;
4586 ap->flags |= ent->host_flags;
4587 ap->ops = ent->port_ops;
4588 ap->cbl = ATA_CBL_NONE;
1c3fae4d 4589 ap->sata_spd_limit = UINT_MAX;
1da177e4
LT
4590 ap->active_tag = ATA_TAG_POISON;
4591 ap->last_ctl = 0xFF;
4592
86e45b6b 4593 INIT_WORK(&ap->port_task, NULL, NULL);
a72ec4ce 4594 INIT_LIST_HEAD(&ap->eh_done_q);
1da177e4 4595
acf356b1
TH
4596 for (i = 0; i < ATA_MAX_DEVICES; i++) {
4597 struct ata_device *dev = &ap->device[i];
4598 dev->devno = i;
4599 dev->pio_mask = UINT_MAX;
4600 dev->mwdma_mask = UINT_MAX;
4601 dev->udma_mask = UINT_MAX;
4602 }
1da177e4
LT
4603
4604#ifdef ATA_IRQ_TRAP
4605 ap->stats.unhandled_irq = 1;
4606 ap->stats.idle_irq = 1;
4607#endif
4608
4609 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4610}
4611
4612/**
4613 * ata_host_add - Attach low-level ATA driver to system
4614 * @ent: Information provided by low-level driver
4615 * @host_set: Collections of ports to which we add
4616 * @port_no: Port number associated with this host
4617 *
0cba632b
JG
4618 * Attach low-level ATA driver to system.
4619 *
1da177e4 4620 * LOCKING:
0cba632b 4621 * PCI/etc. bus probe sem.
1da177e4
LT
4622 *
4623 * RETURNS:
0cba632b 4624 * New ata_port on success, for NULL on error.
1da177e4
LT
4625 */
4626
057ace5e 4627static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
1da177e4
LT
4628 struct ata_host_set *host_set,
4629 unsigned int port_no)
4630{
4631 struct Scsi_Host *host;
4632 struct ata_port *ap;
4633 int rc;
4634
4635 DPRINTK("ENTER\n");
aec5c3c1
TH
4636
4637 if (!ent->port_ops->probe_reset &&
4638 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
4639 printk(KERN_ERR "ata%u: no reset mechanism available\n",
4640 port_no);
4641 return NULL;
4642 }
4643
1da177e4
LT
4644 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4645 if (!host)
4646 return NULL;
4647
30afc84c
TH
4648 host->transportt = &ata_scsi_transport_template;
4649
35bb94b1 4650 ap = ata_shost_to_port(host);
1da177e4
LT
4651
4652 ata_host_init(ap, host, host_set, ent, port_no);
4653
4654 rc = ap->ops->port_start(ap);
4655 if (rc)
4656 goto err_out;
4657
4658 return ap;
4659
4660err_out:
4661 scsi_host_put(host);
4662 return NULL;
4663}
4664
4665/**
0cba632b
JG
4666 * ata_device_add - Register hardware device with ATA and SCSI layers
4667 * @ent: Probe information describing hardware device to be registered
4668 *
4669 * This function processes the information provided in the probe
4670 * information struct @ent, allocates the necessary ATA and SCSI
4671 * host information structures, initializes them, and registers
4672 * everything with requisite kernel subsystems.
4673 *
4674 * This function requests irqs, probes the ATA bus, and probes
4675 * the SCSI bus.
1da177e4
LT
4676 *
4677 * LOCKING:
0cba632b 4678 * PCI/etc. bus probe sem.
1da177e4
LT
4679 *
4680 * RETURNS:
0cba632b 4681 * Number of ports registered. Zero on error (no ports registered).
1da177e4
LT
4682 */
4683
057ace5e 4684int ata_device_add(const struct ata_probe_ent *ent)
1da177e4
LT
4685{
4686 unsigned int count = 0, i;
4687 struct device *dev = ent->dev;
4688 struct ata_host_set *host_set;
4689
4690 DPRINTK("ENTER\n");
4691 /* alloc a container for our list of ATA ports (buses) */
57f3bda8 4692 host_set = kzalloc(sizeof(struct ata_host_set) +
1da177e4
LT
4693 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4694 if (!host_set)
4695 return 0;
1da177e4
LT
4696 spin_lock_init(&host_set->lock);
4697
4698 host_set->dev = dev;
4699 host_set->n_ports = ent->n_ports;
4700 host_set->irq = ent->irq;
4701 host_set->mmio_base = ent->mmio_base;
4702 host_set->private_data = ent->private_data;
4703 host_set->ops = ent->port_ops;
5444a6f4 4704 host_set->flags = ent->host_set_flags;
1da177e4
LT
4705
4706 /* register each port bound to this device */
4707 for (i = 0; i < ent->n_ports; i++) {
4708 struct ata_port *ap;
4709 unsigned long xfer_mode_mask;
4710
4711 ap = ata_host_add(ent, host_set, i);
4712 if (!ap)
4713 goto err_out;
4714
4715 host_set->ports[i] = ap;
4716 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4717 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4718 (ap->pio_mask << ATA_SHIFT_PIO);
4719
4720 /* print per-port info to dmesg */
4721 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4722 "bmdma 0x%lX irq %lu\n",
4723 ap->id,
4724 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4725 ata_mode_string(xfer_mode_mask),
4726 ap->ioaddr.cmd_addr,
4727 ap->ioaddr.ctl_addr,
4728 ap->ioaddr.bmdma_addr,
4729 ent->irq);
4730
4731 ata_chk_status(ap);
4732 host_set->ops->irq_clear(ap);
4733 count++;
4734 }
4735
57f3bda8
RD
4736 if (!count)
4737 goto err_free_ret;
1da177e4
LT
4738
4739 /* obtain irq, that is shared between channels */
4740 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4741 DRV_NAME, host_set))
4742 goto err_out;
4743
4744 /* perform each probe synchronously */
4745 DPRINTK("probe begin\n");
4746 for (i = 0; i < count; i++) {
4747 struct ata_port *ap;
4748 int rc;
4749
4750 ap = host_set->ports[i];
4751
c893a3ae 4752 DPRINTK("ata%u: bus probe begin\n", ap->id);
1da177e4 4753 rc = ata_bus_probe(ap);
c893a3ae 4754 DPRINTK("ata%u: bus probe end\n", ap->id);
1da177e4
LT
4755
4756 if (rc) {
4757 /* FIXME: do something useful here?
4758 * Current libata behavior will
4759 * tear down everything when
4760 * the module is removed
4761 * or the h/w is unplugged.
4762 */
4763 }
4764
4765 rc = scsi_add_host(ap->host, dev);
4766 if (rc) {
4767 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4768 ap->id);
4769 /* FIXME: do something useful here */
4770 /* FIXME: handle unconditional calls to
4771 * scsi_scan_host and ata_host_remove, below,
4772 * at the very least
4773 */
4774 }
4775 }
4776
4777 /* probes are done, now scan each port's disk(s) */
c893a3ae 4778 DPRINTK("host probe begin\n");
1da177e4
LT
4779 for (i = 0; i < count; i++) {
4780 struct ata_port *ap = host_set->ports[i];
4781
644dd0cc 4782 ata_scsi_scan_host(ap);
1da177e4
LT
4783 }
4784
4785 dev_set_drvdata(dev, host_set);
4786
4787 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4788 return ent->n_ports; /* success */
4789
4790err_out:
4791 for (i = 0; i < count; i++) {
4792 ata_host_remove(host_set->ports[i], 1);
4793 scsi_host_put(host_set->ports[i]->host);
4794 }
57f3bda8 4795err_free_ret:
1da177e4
LT
4796 kfree(host_set);
4797 VPRINTK("EXIT, returning 0\n");
4798 return 0;
4799}
4800
17b14451
AC
4801/**
4802 * ata_host_set_remove - PCI layer callback for device removal
4803 * @host_set: ATA host set that was removed
4804 *
2e9edbf8 4805 * Unregister all objects associated with this host set. Free those
17b14451
AC
4806 * objects.
4807 *
4808 * LOCKING:
4809 * Inherited from calling layer (may sleep).
4810 */
4811
17b14451
AC
4812void ata_host_set_remove(struct ata_host_set *host_set)
4813{
4814 struct ata_port *ap;
4815 unsigned int i;
4816
4817 for (i = 0; i < host_set->n_ports; i++) {
4818 ap = host_set->ports[i];
4819 scsi_remove_host(ap->host);
4820 }
4821
4822 free_irq(host_set->irq, host_set);
4823
4824 for (i = 0; i < host_set->n_ports; i++) {
4825 ap = host_set->ports[i];
4826
4827 ata_scsi_release(ap->host);
4828
4829 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4830 struct ata_ioports *ioaddr = &ap->ioaddr;
4831
4832 if (ioaddr->cmd_addr == 0x1f0)
4833 release_region(0x1f0, 8);
4834 else if (ioaddr->cmd_addr == 0x170)
4835 release_region(0x170, 8);
4836 }
4837
4838 scsi_host_put(ap->host);
4839 }
4840
4841 if (host_set->ops->host_stop)
4842 host_set->ops->host_stop(host_set);
4843
4844 kfree(host_set);
4845}
4846
1da177e4
LT
4847/**
4848 * ata_scsi_release - SCSI layer callback hook for host unload
4849 * @host: libata host to be unloaded
4850 *
4851 * Performs all duties necessary to shut down a libata port...
4852 * Kill port kthread, disable port, and release resources.
4853 *
4854 * LOCKING:
4855 * Inherited from SCSI layer.
4856 *
4857 * RETURNS:
4858 * One.
4859 */
4860
4861int ata_scsi_release(struct Scsi_Host *host)
4862{
35bb94b1 4863 struct ata_port *ap = ata_shost_to_port(host);
d9572b1d 4864 int i;
1da177e4
LT
4865
4866 DPRINTK("ENTER\n");
4867
4868 ap->ops->port_disable(ap);
4869 ata_host_remove(ap, 0);
d9572b1d
TH
4870 for (i = 0; i < ATA_MAX_DEVICES; i++)
4871 kfree(ap->device[i].id);
1da177e4
LT
4872
4873 DPRINTK("EXIT\n");
4874 return 1;
4875}
4876
4877/**
4878 * ata_std_ports - initialize ioaddr with standard port offsets.
4879 * @ioaddr: IO address structure to be initialized
0baab86b
EF
4880 *
4881 * Utility function which initializes data_addr, error_addr,
4882 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4883 * device_addr, status_addr, and command_addr to standard offsets
4884 * relative to cmd_addr.
4885 *
4886 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 4887 */
0baab86b 4888
1da177e4
LT
4889void ata_std_ports(struct ata_ioports *ioaddr)
4890{
4891 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4892 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4893 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4894 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4895 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4896 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4897 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4898 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4899 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4900 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4901}
4902
0baab86b 4903
374b1873
JG
4904#ifdef CONFIG_PCI
4905
4906void ata_pci_host_stop (struct ata_host_set *host_set)
4907{
4908 struct pci_dev *pdev = to_pci_dev(host_set->dev);
4909
4910 pci_iounmap(pdev, host_set->mmio_base);
4911}
4912
1da177e4
LT
4913/**
4914 * ata_pci_remove_one - PCI layer callback for device removal
4915 * @pdev: PCI device that was removed
4916 *
4917 * PCI layer indicates to libata via this hook that
6f0ef4fa 4918 * hot-unplug or module unload event has occurred.
1da177e4
LT
4919 * Handle this by unregistering all objects associated
4920 * with this PCI device. Free those objects. Then finally
4921 * release PCI resources and disable device.
4922 *
4923 * LOCKING:
4924 * Inherited from PCI layer (may sleep).
4925 */
4926
4927void ata_pci_remove_one (struct pci_dev *pdev)
4928{
4929 struct device *dev = pci_dev_to_dev(pdev);
4930 struct ata_host_set *host_set = dev_get_drvdata(dev);
1da177e4 4931
17b14451 4932 ata_host_set_remove(host_set);
1da177e4
LT
4933 pci_release_regions(pdev);
4934 pci_disable_device(pdev);
4935 dev_set_drvdata(dev, NULL);
4936}
4937
4938/* move to PCI subsystem */
057ace5e 4939int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
4940{
4941 unsigned long tmp = 0;
4942
4943 switch (bits->width) {
4944 case 1: {
4945 u8 tmp8 = 0;
4946 pci_read_config_byte(pdev, bits->reg, &tmp8);
4947 tmp = tmp8;
4948 break;
4949 }
4950 case 2: {
4951 u16 tmp16 = 0;
4952 pci_read_config_word(pdev, bits->reg, &tmp16);
4953 tmp = tmp16;
4954 break;
4955 }
4956 case 4: {
4957 u32 tmp32 = 0;
4958 pci_read_config_dword(pdev, bits->reg, &tmp32);
4959 tmp = tmp32;
4960 break;
4961 }
4962
4963 default:
4964 return -EINVAL;
4965 }
4966
4967 tmp &= bits->mask;
4968
4969 return (tmp == bits->val) ? 1 : 0;
4970}
9b847548
JA
4971
4972int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
4973{
4974 pci_save_state(pdev);
4975 pci_disable_device(pdev);
4976 pci_set_power_state(pdev, PCI_D3hot);
4977 return 0;
4978}
4979
4980int ata_pci_device_resume(struct pci_dev *pdev)
4981{
4982 pci_set_power_state(pdev, PCI_D0);
4983 pci_restore_state(pdev);
4984 pci_enable_device(pdev);
4985 pci_set_master(pdev);
4986 return 0;
4987}
1da177e4
LT
4988#endif /* CONFIG_PCI */
4989
4990
1da177e4
LT
4991static int __init ata_init(void)
4992{
4993 ata_wq = create_workqueue("ata");
4994 if (!ata_wq)
4995 return -ENOMEM;
4996
4997 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
4998 return 0;
4999}
5000
5001static void __exit ata_exit(void)
5002{
5003 destroy_workqueue(ata_wq);
5004}
5005
5006module_init(ata_init);
5007module_exit(ata_exit);
5008
67846b30
JG
5009static unsigned long ratelimit_time;
5010static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5011
5012int ata_ratelimit(void)
5013{
5014 int rc;
5015 unsigned long flags;
5016
5017 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5018
5019 if (time_after(jiffies, ratelimit_time)) {
5020 rc = 1;
5021 ratelimit_time = jiffies + (HZ/5);
5022 } else
5023 rc = 0;
5024
5025 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5026
5027 return rc;
5028}
5029
1da177e4
LT
5030/*
5031 * libata is essentially a library of internal helper functions for
5032 * low-level ATA host controller drivers. As such, the API/ABI is
5033 * likely to change as new drivers are added and updated.
5034 * Do not depend on ABI/API stability.
5035 */
5036
5037EXPORT_SYMBOL_GPL(ata_std_bios_param);
5038EXPORT_SYMBOL_GPL(ata_std_ports);
5039EXPORT_SYMBOL_GPL(ata_device_add);
17b14451 5040EXPORT_SYMBOL_GPL(ata_host_set_remove);
1da177e4
LT
5041EXPORT_SYMBOL_GPL(ata_sg_init);
5042EXPORT_SYMBOL_GPL(ata_sg_init_one);
76014427 5043EXPORT_SYMBOL_GPL(__ata_qc_complete);
1da177e4 5044EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
5045EXPORT_SYMBOL_GPL(ata_tf_load);
5046EXPORT_SYMBOL_GPL(ata_tf_read);
5047EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5048EXPORT_SYMBOL_GPL(ata_std_dev_select);
5049EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5050EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5051EXPORT_SYMBOL_GPL(ata_check_status);
5052EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
5053EXPORT_SYMBOL_GPL(ata_exec_command);
5054EXPORT_SYMBOL_GPL(ata_port_start);
5055EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 5056EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4
LT
5057EXPORT_SYMBOL_GPL(ata_interrupt);
5058EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 5059EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
5060EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5061EXPORT_SYMBOL_GPL(ata_bmdma_start);
5062EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5063EXPORT_SYMBOL_GPL(ata_bmdma_status);
5064EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5065EXPORT_SYMBOL_GPL(ata_port_probe);
5066EXPORT_SYMBOL_GPL(sata_phy_reset);
5067EXPORT_SYMBOL_GPL(__sata_phy_reset);
5068EXPORT_SYMBOL_GPL(ata_bus_reset);
8a19ac89 5069EXPORT_SYMBOL_GPL(ata_std_probeinit);
c2bd5804
TH
5070EXPORT_SYMBOL_GPL(ata_std_softreset);
5071EXPORT_SYMBOL_GPL(sata_std_hardreset);
5072EXPORT_SYMBOL_GPL(ata_std_postreset);
5073EXPORT_SYMBOL_GPL(ata_std_probe_reset);
a62c0fc5 5074EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
623a3128 5075EXPORT_SYMBOL_GPL(ata_dev_revalidate);
2e9edbf8
JG
5076EXPORT_SYMBOL_GPL(ata_dev_classify);
5077EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 5078EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 5079EXPORT_SYMBOL_GPL(ata_ratelimit);
6f8b9958 5080EXPORT_SYMBOL_GPL(ata_busy_sleep);
86e45b6b 5081EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
5082EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5083EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4
LT
5084EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5085EXPORT_SYMBOL_GPL(ata_scsi_release);
5086EXPORT_SYMBOL_GPL(ata_host_intr);
6a62a04d
TH
5087EXPORT_SYMBOL_GPL(ata_id_string);
5088EXPORT_SYMBOL_GPL(ata_id_c_string);
1da177e4
LT
5089EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5090
1bc4ccff 5091EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
5092EXPORT_SYMBOL_GPL(ata_timing_compute);
5093EXPORT_SYMBOL_GPL(ata_timing_merge);
5094
1da177e4
LT
5095#ifdef CONFIG_PCI
5096EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 5097EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
5098EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5099EXPORT_SYMBOL_GPL(ata_pci_init_one);
5100EXPORT_SYMBOL_GPL(ata_pci_remove_one);
9b847548
JA
5101EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5102EXPORT_SYMBOL_GPL(ata_pci_device_resume);
67951ade
AC
5103EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5104EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 5105#endif /* CONFIG_PCI */
9b847548
JA
5106
5107EXPORT_SYMBOL_GPL(ata_device_suspend);
5108EXPORT_SYMBOL_GPL(ata_device_resume);
5109EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5110EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
ece1d636
TH
5111
5112EXPORT_SYMBOL_GPL(ata_scsi_error);
5113EXPORT_SYMBOL_GPL(ata_eng_timeout);
5114EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5115EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
This page took 0.61535 seconds and 5 git commands to generate.