[PATCH] libata: use dev->ap
[deliverable/linux.git] / drivers / scsi / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
35#include <linux/config.h>
36#include <linux/kernel.h>
37#include <linux/module.h>
38#include <linux/pci.h>
39#include <linux/init.h>
40#include <linux/list.h>
41#include <linux/mm.h>
42#include <linux/highmem.h>
43#include <linux/spinlock.h>
44#include <linux/blkdev.h>
45#include <linux/delay.h>
46#include <linux/timer.h>
47#include <linux/interrupt.h>
48#include <linux/completion.h>
49#include <linux/suspend.h>
50#include <linux/workqueue.h>
67846b30 51#include <linux/jiffies.h>
378f058c 52#include <linux/scatterlist.h>
1da177e4 53#include <scsi/scsi.h>
1da177e4 54#include "scsi_priv.h"
193515d5 55#include <scsi/scsi_cmnd.h>
1da177e4
LT
56#include <scsi/scsi_host.h>
57#include <linux/libata.h>
58#include <asm/io.h>
59#include <asm/semaphore.h>
60#include <asm/byteorder.h>
61
62#include "libata.h"
63
3373efd8
TH
64static unsigned int ata_dev_init_params(struct ata_device *dev,
65 u16 heads, u16 sectors);
66static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
67static void ata_dev_xfermask(struct ata_device *dev);
1da177e4
LT
68
69static unsigned int ata_unique_id = 1;
70static struct workqueue_struct *ata_wq;
71
418dc1f5 72int atapi_enabled = 1;
1623c81e
JG
73module_param(atapi_enabled, int, 0444);
74MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
75
95de719a
AL
76int atapi_dmadir = 0;
77module_param(atapi_dmadir, int, 0444);
78MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
79
c3c013a2
JG
80int libata_fua = 0;
81module_param_named(fua, libata_fua, int, 0444);
82MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
83
1da177e4
LT
84MODULE_AUTHOR("Jeff Garzik");
85MODULE_DESCRIPTION("Library module for ATA devices");
86MODULE_LICENSE("GPL");
87MODULE_VERSION(DRV_VERSION);
88
0baab86b 89
1da177e4
LT
90/**
91 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
92 * @tf: Taskfile to convert
93 * @fis: Buffer into which data will output
94 * @pmp: Port multiplier port
95 *
96 * Converts a standard ATA taskfile to a Serial ATA
97 * FIS structure (Register - Host to Device).
98 *
99 * LOCKING:
100 * Inherited from caller.
101 */
102
057ace5e 103void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
104{
105 fis[0] = 0x27; /* Register - Host to Device FIS */
106 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
107 bit 7 indicates Command FIS */
108 fis[2] = tf->command;
109 fis[3] = tf->feature;
110
111 fis[4] = tf->lbal;
112 fis[5] = tf->lbam;
113 fis[6] = tf->lbah;
114 fis[7] = tf->device;
115
116 fis[8] = tf->hob_lbal;
117 fis[9] = tf->hob_lbam;
118 fis[10] = tf->hob_lbah;
119 fis[11] = tf->hob_feature;
120
121 fis[12] = tf->nsect;
122 fis[13] = tf->hob_nsect;
123 fis[14] = 0;
124 fis[15] = tf->ctl;
125
126 fis[16] = 0;
127 fis[17] = 0;
128 fis[18] = 0;
129 fis[19] = 0;
130}
131
132/**
133 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
134 * @fis: Buffer from which data will be input
135 * @tf: Taskfile to output
136 *
e12a1be6 137 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
138 *
139 * LOCKING:
140 * Inherited from caller.
141 */
142
057ace5e 143void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
144{
145 tf->command = fis[2]; /* status */
146 tf->feature = fis[3]; /* error */
147
148 tf->lbal = fis[4];
149 tf->lbam = fis[5];
150 tf->lbah = fis[6];
151 tf->device = fis[7];
152
153 tf->hob_lbal = fis[8];
154 tf->hob_lbam = fis[9];
155 tf->hob_lbah = fis[10];
156
157 tf->nsect = fis[12];
158 tf->hob_nsect = fis[13];
159}
160
8cbd6df1
AL
161static const u8 ata_rw_cmds[] = {
162 /* pio multi */
163 ATA_CMD_READ_MULTI,
164 ATA_CMD_WRITE_MULTI,
165 ATA_CMD_READ_MULTI_EXT,
166 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
167 0,
168 0,
169 0,
170 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
171 /* pio */
172 ATA_CMD_PIO_READ,
173 ATA_CMD_PIO_WRITE,
174 ATA_CMD_PIO_READ_EXT,
175 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
176 0,
177 0,
178 0,
179 0,
8cbd6df1
AL
180 /* dma */
181 ATA_CMD_READ,
182 ATA_CMD_WRITE,
183 ATA_CMD_READ_EXT,
9a3dccc4
TH
184 ATA_CMD_WRITE_EXT,
185 0,
186 0,
187 0,
188 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 189};
1da177e4
LT
190
191/**
8cbd6df1
AL
192 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
193 * @qc: command to examine and configure
1da177e4 194 *
2e9edbf8 195 * Examine the device configuration and tf->flags to calculate
8cbd6df1 196 * the proper read/write commands and protocol to use.
1da177e4
LT
197 *
198 * LOCKING:
199 * caller.
200 */
9a3dccc4 201int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
1da177e4 202{
8cbd6df1
AL
203 struct ata_taskfile *tf = &qc->tf;
204 struct ata_device *dev = qc->dev;
9a3dccc4 205 u8 cmd;
1da177e4 206
9a3dccc4 207 int index, fua, lba48, write;
2e9edbf8 208
9a3dccc4 209 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
210 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
211 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 212
8cbd6df1
AL
213 if (dev->flags & ATA_DFLAG_PIO) {
214 tf->protocol = ATA_PROT_PIO;
9a3dccc4 215 index = dev->multi_count ? 0 : 8;
8d238e01
AC
216 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
217 /* Unable to use DMA due to host limitation */
218 tf->protocol = ATA_PROT_PIO;
0565c26d 219 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
220 } else {
221 tf->protocol = ATA_PROT_DMA;
9a3dccc4 222 index = 16;
8cbd6df1 223 }
1da177e4 224
9a3dccc4
TH
225 cmd = ata_rw_cmds[index + fua + lba48 + write];
226 if (cmd) {
227 tf->command = cmd;
228 return 0;
229 }
230 return -1;
1da177e4
LT
231}
232
cb95d562
TH
233/**
234 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
235 * @pio_mask: pio_mask
236 * @mwdma_mask: mwdma_mask
237 * @udma_mask: udma_mask
238 *
239 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
240 * unsigned int xfer_mask.
241 *
242 * LOCKING:
243 * None.
244 *
245 * RETURNS:
246 * Packed xfer_mask.
247 */
248static unsigned int ata_pack_xfermask(unsigned int pio_mask,
249 unsigned int mwdma_mask,
250 unsigned int udma_mask)
251{
252 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
253 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
254 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
255}
256
c0489e4e
TH
257/**
258 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
259 * @xfer_mask: xfer_mask to unpack
260 * @pio_mask: resulting pio_mask
261 * @mwdma_mask: resulting mwdma_mask
262 * @udma_mask: resulting udma_mask
263 *
264 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
265 * Any NULL distination masks will be ignored.
266 */
267static void ata_unpack_xfermask(unsigned int xfer_mask,
268 unsigned int *pio_mask,
269 unsigned int *mwdma_mask,
270 unsigned int *udma_mask)
271{
272 if (pio_mask)
273 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
274 if (mwdma_mask)
275 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
276 if (udma_mask)
277 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
278}
279
cb95d562 280static const struct ata_xfer_ent {
be9a50c8 281 int shift, bits;
cb95d562
TH
282 u8 base;
283} ata_xfer_tbl[] = {
284 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
285 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
286 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
287 { -1, },
288};
289
290/**
291 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
292 * @xfer_mask: xfer_mask of interest
293 *
294 * Return matching XFER_* value for @xfer_mask. Only the highest
295 * bit of @xfer_mask is considered.
296 *
297 * LOCKING:
298 * None.
299 *
300 * RETURNS:
301 * Matching XFER_* value, 0 if no match found.
302 */
303static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
304{
305 int highbit = fls(xfer_mask) - 1;
306 const struct ata_xfer_ent *ent;
307
308 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
309 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
310 return ent->base + highbit - ent->shift;
311 return 0;
312}
313
314/**
315 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
316 * @xfer_mode: XFER_* of interest
317 *
318 * Return matching xfer_mask for @xfer_mode.
319 *
320 * LOCKING:
321 * None.
322 *
323 * RETURNS:
324 * Matching xfer_mask, 0 if no match found.
325 */
326static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
327{
328 const struct ata_xfer_ent *ent;
329
330 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
331 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
332 return 1 << (ent->shift + xfer_mode - ent->base);
333 return 0;
334}
335
336/**
337 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
338 * @xfer_mode: XFER_* of interest
339 *
340 * Return matching xfer_shift for @xfer_mode.
341 *
342 * LOCKING:
343 * None.
344 *
345 * RETURNS:
346 * Matching xfer_shift, -1 if no match found.
347 */
348static int ata_xfer_mode2shift(unsigned int xfer_mode)
349{
350 const struct ata_xfer_ent *ent;
351
352 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
353 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
354 return ent->shift;
355 return -1;
356}
357
1da177e4 358/**
1da7b0d0
TH
359 * ata_mode_string - convert xfer_mask to string
360 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
361 *
362 * Determine string which represents the highest speed
1da7b0d0 363 * (highest bit in @modemask).
1da177e4
LT
364 *
365 * LOCKING:
366 * None.
367 *
368 * RETURNS:
369 * Constant C string representing highest speed listed in
1da7b0d0 370 * @mode_mask, or the constant C string "<n/a>".
1da177e4 371 */
1da7b0d0 372static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 373{
75f554bc
TH
374 static const char * const xfer_mode_str[] = {
375 "PIO0",
376 "PIO1",
377 "PIO2",
378 "PIO3",
379 "PIO4",
380 "MWDMA0",
381 "MWDMA1",
382 "MWDMA2",
383 "UDMA/16",
384 "UDMA/25",
385 "UDMA/33",
386 "UDMA/44",
387 "UDMA/66",
388 "UDMA/100",
389 "UDMA/133",
390 "UDMA7",
391 };
1da7b0d0 392 int highbit;
1da177e4 393
1da7b0d0
TH
394 highbit = fls(xfer_mask) - 1;
395 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
396 return xfer_mode_str[highbit];
1da177e4 397 return "<n/a>";
1da177e4
LT
398}
399
4c360c81
TH
400static const char *sata_spd_string(unsigned int spd)
401{
402 static const char * const spd_str[] = {
403 "1.5 Gbps",
404 "3.0 Gbps",
405 };
406
407 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
408 return "<unknown>";
409 return spd_str[spd - 1];
410}
411
3373efd8 412void ata_dev_disable(struct ata_device *dev)
0b8efb0a 413{
e1211e3f 414 if (ata_dev_enabled(dev)) {
0b8efb0a 415 printk(KERN_WARNING "ata%u: dev %u disabled\n",
3373efd8 416 dev->ap->id, dev->devno);
0b8efb0a
TH
417 dev->class++;
418 }
419}
420
1da177e4
LT
421/**
422 * ata_pio_devchk - PATA device presence detection
423 * @ap: ATA channel to examine
424 * @device: Device to examine (starting at zero)
425 *
426 * This technique was originally described in
427 * Hale Landis's ATADRVR (www.ata-atapi.com), and
428 * later found its way into the ATA/ATAPI spec.
429 *
430 * Write a pattern to the ATA shadow registers,
431 * and if a device is present, it will respond by
432 * correctly storing and echoing back the
433 * ATA shadow register contents.
434 *
435 * LOCKING:
436 * caller.
437 */
438
439static unsigned int ata_pio_devchk(struct ata_port *ap,
440 unsigned int device)
441{
442 struct ata_ioports *ioaddr = &ap->ioaddr;
443 u8 nsect, lbal;
444
445 ap->ops->dev_select(ap, device);
446
447 outb(0x55, ioaddr->nsect_addr);
448 outb(0xaa, ioaddr->lbal_addr);
449
450 outb(0xaa, ioaddr->nsect_addr);
451 outb(0x55, ioaddr->lbal_addr);
452
453 outb(0x55, ioaddr->nsect_addr);
454 outb(0xaa, ioaddr->lbal_addr);
455
456 nsect = inb(ioaddr->nsect_addr);
457 lbal = inb(ioaddr->lbal_addr);
458
459 if ((nsect == 0x55) && (lbal == 0xaa))
460 return 1; /* we found a device */
461
462 return 0; /* nothing found */
463}
464
465/**
466 * ata_mmio_devchk - PATA device presence detection
467 * @ap: ATA channel to examine
468 * @device: Device to examine (starting at zero)
469 *
470 * This technique was originally described in
471 * Hale Landis's ATADRVR (www.ata-atapi.com), and
472 * later found its way into the ATA/ATAPI spec.
473 *
474 * Write a pattern to the ATA shadow registers,
475 * and if a device is present, it will respond by
476 * correctly storing and echoing back the
477 * ATA shadow register contents.
478 *
479 * LOCKING:
480 * caller.
481 */
482
483static unsigned int ata_mmio_devchk(struct ata_port *ap,
484 unsigned int device)
485{
486 struct ata_ioports *ioaddr = &ap->ioaddr;
487 u8 nsect, lbal;
488
489 ap->ops->dev_select(ap, device);
490
491 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
492 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
493
494 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
495 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
496
497 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
498 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
499
500 nsect = readb((void __iomem *) ioaddr->nsect_addr);
501 lbal = readb((void __iomem *) ioaddr->lbal_addr);
502
503 if ((nsect == 0x55) && (lbal == 0xaa))
504 return 1; /* we found a device */
505
506 return 0; /* nothing found */
507}
508
509/**
510 * ata_devchk - PATA device presence detection
511 * @ap: ATA channel to examine
512 * @device: Device to examine (starting at zero)
513 *
514 * Dispatch ATA device presence detection, depending
515 * on whether we are using PIO or MMIO to talk to the
516 * ATA shadow registers.
517 *
518 * LOCKING:
519 * caller.
520 */
521
522static unsigned int ata_devchk(struct ata_port *ap,
523 unsigned int device)
524{
525 if (ap->flags & ATA_FLAG_MMIO)
526 return ata_mmio_devchk(ap, device);
527 return ata_pio_devchk(ap, device);
528}
529
530/**
531 * ata_dev_classify - determine device type based on ATA-spec signature
532 * @tf: ATA taskfile register set for device to be identified
533 *
534 * Determine from taskfile register contents whether a device is
535 * ATA or ATAPI, as per "Signature and persistence" section
536 * of ATA/PI spec (volume 1, sect 5.14).
537 *
538 * LOCKING:
539 * None.
540 *
541 * RETURNS:
542 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
543 * the event of failure.
544 */
545
057ace5e 546unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
547{
548 /* Apple's open source Darwin code hints that some devices only
549 * put a proper signature into the LBA mid/high registers,
550 * So, we only check those. It's sufficient for uniqueness.
551 */
552
553 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
554 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
555 DPRINTK("found ATA device by sig\n");
556 return ATA_DEV_ATA;
557 }
558
559 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
560 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
561 DPRINTK("found ATAPI device by sig\n");
562 return ATA_DEV_ATAPI;
563 }
564
565 DPRINTK("unknown device\n");
566 return ATA_DEV_UNKNOWN;
567}
568
569/**
570 * ata_dev_try_classify - Parse returned ATA device signature
571 * @ap: ATA channel to examine
572 * @device: Device to examine (starting at zero)
b4dc7623 573 * @r_err: Value of error register on completion
1da177e4
LT
574 *
575 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
576 * an ATA/ATAPI-defined set of values is placed in the ATA
577 * shadow registers, indicating the results of device detection
578 * and diagnostics.
579 *
580 * Select the ATA device, and read the values from the ATA shadow
581 * registers. Then parse according to the Error register value,
582 * and the spec-defined values examined by ata_dev_classify().
583 *
584 * LOCKING:
585 * caller.
b4dc7623
TH
586 *
587 * RETURNS:
588 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
589 */
590
b4dc7623
TH
591static unsigned int
592ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 593{
1da177e4
LT
594 struct ata_taskfile tf;
595 unsigned int class;
596 u8 err;
597
598 ap->ops->dev_select(ap, device);
599
600 memset(&tf, 0, sizeof(tf));
601
1da177e4 602 ap->ops->tf_read(ap, &tf);
0169e284 603 err = tf.feature;
b4dc7623
TH
604 if (r_err)
605 *r_err = err;
1da177e4
LT
606
607 /* see if device passed diags */
608 if (err == 1)
609 /* do nothing */ ;
610 else if ((device == 0) && (err == 0x81))
611 /* do nothing */ ;
612 else
b4dc7623 613 return ATA_DEV_NONE;
1da177e4 614
b4dc7623 615 /* determine if device is ATA or ATAPI */
1da177e4 616 class = ata_dev_classify(&tf);
b4dc7623 617
1da177e4 618 if (class == ATA_DEV_UNKNOWN)
b4dc7623 619 return ATA_DEV_NONE;
1da177e4 620 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
621 return ATA_DEV_NONE;
622 return class;
1da177e4
LT
623}
624
625/**
6a62a04d 626 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
627 * @id: IDENTIFY DEVICE results we will examine
628 * @s: string into which data is output
629 * @ofs: offset into identify device page
630 * @len: length of string to return. must be an even number.
631 *
632 * The strings in the IDENTIFY DEVICE page are broken up into
633 * 16-bit chunks. Run through the string, and output each
634 * 8-bit chunk linearly, regardless of platform.
635 *
636 * LOCKING:
637 * caller.
638 */
639
6a62a04d
TH
640void ata_id_string(const u16 *id, unsigned char *s,
641 unsigned int ofs, unsigned int len)
1da177e4
LT
642{
643 unsigned int c;
644
645 while (len > 0) {
646 c = id[ofs] >> 8;
647 *s = c;
648 s++;
649
650 c = id[ofs] & 0xff;
651 *s = c;
652 s++;
653
654 ofs++;
655 len -= 2;
656 }
657}
658
0e949ff3 659/**
6a62a04d 660 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
661 * @id: IDENTIFY DEVICE results we will examine
662 * @s: string into which data is output
663 * @ofs: offset into identify device page
664 * @len: length of string to return. must be an odd number.
665 *
6a62a04d 666 * This function is identical to ata_id_string except that it
0e949ff3
TH
667 * trims trailing spaces and terminates the resulting string with
668 * null. @len must be actual maximum length (even number) + 1.
669 *
670 * LOCKING:
671 * caller.
672 */
6a62a04d
TH
673void ata_id_c_string(const u16 *id, unsigned char *s,
674 unsigned int ofs, unsigned int len)
0e949ff3
TH
675{
676 unsigned char *p;
677
678 WARN_ON(!(len & 1));
679
6a62a04d 680 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
681
682 p = s + strnlen(s, len - 1);
683 while (p > s && p[-1] == ' ')
684 p--;
685 *p = '\0';
686}
0baab86b 687
2940740b
TH
688static u64 ata_id_n_sectors(const u16 *id)
689{
690 if (ata_id_has_lba(id)) {
691 if (ata_id_has_lba48(id))
692 return ata_id_u64(id, 100);
693 else
694 return ata_id_u32(id, 60);
695 } else {
696 if (ata_id_current_chs_valid(id))
697 return ata_id_u32(id, 57);
698 else
699 return id[1] * id[3] * id[6];
700 }
701}
702
0baab86b
EF
703/**
704 * ata_noop_dev_select - Select device 0/1 on ATA bus
705 * @ap: ATA channel to manipulate
706 * @device: ATA device (numbered from zero) to select
707 *
708 * This function performs no actual function.
709 *
710 * May be used as the dev_select() entry in ata_port_operations.
711 *
712 * LOCKING:
713 * caller.
714 */
1da177e4
LT
715void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
716{
717}
718
0baab86b 719
1da177e4
LT
720/**
721 * ata_std_dev_select - Select device 0/1 on ATA bus
722 * @ap: ATA channel to manipulate
723 * @device: ATA device (numbered from zero) to select
724 *
725 * Use the method defined in the ATA specification to
726 * make either device 0, or device 1, active on the
0baab86b
EF
727 * ATA channel. Works with both PIO and MMIO.
728 *
729 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
730 *
731 * LOCKING:
732 * caller.
733 */
734
735void ata_std_dev_select (struct ata_port *ap, unsigned int device)
736{
737 u8 tmp;
738
739 if (device == 0)
740 tmp = ATA_DEVICE_OBS;
741 else
742 tmp = ATA_DEVICE_OBS | ATA_DEV1;
743
744 if (ap->flags & ATA_FLAG_MMIO) {
745 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
746 } else {
747 outb(tmp, ap->ioaddr.device_addr);
748 }
749 ata_pause(ap); /* needed; also flushes, for mmio */
750}
751
752/**
753 * ata_dev_select - Select device 0/1 on ATA bus
754 * @ap: ATA channel to manipulate
755 * @device: ATA device (numbered from zero) to select
756 * @wait: non-zero to wait for Status register BSY bit to clear
757 * @can_sleep: non-zero if context allows sleeping
758 *
759 * Use the method defined in the ATA specification to
760 * make either device 0, or device 1, active on the
761 * ATA channel.
762 *
763 * This is a high-level version of ata_std_dev_select(),
764 * which additionally provides the services of inserting
765 * the proper pauses and status polling, where needed.
766 *
767 * LOCKING:
768 * caller.
769 */
770
771void ata_dev_select(struct ata_port *ap, unsigned int device,
772 unsigned int wait, unsigned int can_sleep)
773{
774 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
775 ap->id, device, wait);
776
777 if (wait)
778 ata_wait_idle(ap);
779
780 ap->ops->dev_select(ap, device);
781
782 if (wait) {
783 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
784 msleep(150);
785 ata_wait_idle(ap);
786 }
787}
788
789/**
790 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 791 * @id: IDENTIFY DEVICE page to dump
1da177e4 792 *
0bd3300a
TH
793 * Dump selected 16-bit words from the given IDENTIFY DEVICE
794 * page.
1da177e4
LT
795 *
796 * LOCKING:
797 * caller.
798 */
799
0bd3300a 800static inline void ata_dump_id(const u16 *id)
1da177e4
LT
801{
802 DPRINTK("49==0x%04x "
803 "53==0x%04x "
804 "63==0x%04x "
805 "64==0x%04x "
806 "75==0x%04x \n",
0bd3300a
TH
807 id[49],
808 id[53],
809 id[63],
810 id[64],
811 id[75]);
1da177e4
LT
812 DPRINTK("80==0x%04x "
813 "81==0x%04x "
814 "82==0x%04x "
815 "83==0x%04x "
816 "84==0x%04x \n",
0bd3300a
TH
817 id[80],
818 id[81],
819 id[82],
820 id[83],
821 id[84]);
1da177e4
LT
822 DPRINTK("88==0x%04x "
823 "93==0x%04x\n",
0bd3300a
TH
824 id[88],
825 id[93]);
1da177e4
LT
826}
827
cb95d562
TH
828/**
829 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
830 * @id: IDENTIFY data to compute xfer mask from
831 *
832 * Compute the xfermask for this device. This is not as trivial
833 * as it seems if we must consider early devices correctly.
834 *
835 * FIXME: pre IDE drive timing (do we care ?).
836 *
837 * LOCKING:
838 * None.
839 *
840 * RETURNS:
841 * Computed xfermask
842 */
843static unsigned int ata_id_xfermask(const u16 *id)
844{
845 unsigned int pio_mask, mwdma_mask, udma_mask;
846
847 /* Usual case. Word 53 indicates word 64 is valid */
848 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
849 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
850 pio_mask <<= 3;
851 pio_mask |= 0x7;
852 } else {
853 /* If word 64 isn't valid then Word 51 high byte holds
854 * the PIO timing number for the maximum. Turn it into
855 * a mask.
856 */
857 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
858
859 /* But wait.. there's more. Design your standards by
860 * committee and you too can get a free iordy field to
861 * process. However its the speeds not the modes that
862 * are supported... Note drivers using the timing API
863 * will get this right anyway
864 */
865 }
866
867 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0
TH
868
869 udma_mask = 0;
870 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
871 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
872
873 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
874}
875
86e45b6b
TH
876/**
877 * ata_port_queue_task - Queue port_task
878 * @ap: The ata_port to queue port_task for
879 *
880 * Schedule @fn(@data) for execution after @delay jiffies using
881 * port_task. There is one port_task per port and it's the
882 * user(low level driver)'s responsibility to make sure that only
883 * one task is active at any given time.
884 *
885 * libata core layer takes care of synchronization between
886 * port_task and EH. ata_port_queue_task() may be ignored for EH
887 * synchronization.
888 *
889 * LOCKING:
890 * Inherited from caller.
891 */
892void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
893 unsigned long delay)
894{
895 int rc;
896
2e755f68 897 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
86e45b6b
TH
898 return;
899
900 PREPARE_WORK(&ap->port_task, fn, data);
901
902 if (!delay)
903 rc = queue_work(ata_wq, &ap->port_task);
904 else
905 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
906
907 /* rc == 0 means that another user is using port task */
908 WARN_ON(rc == 0);
909}
910
911/**
912 * ata_port_flush_task - Flush port_task
913 * @ap: The ata_port to flush port_task for
914 *
915 * After this function completes, port_task is guranteed not to
916 * be running or scheduled.
917 *
918 * LOCKING:
919 * Kernel thread context (may sleep)
920 */
921void ata_port_flush_task(struct ata_port *ap)
922{
923 unsigned long flags;
924
925 DPRINTK("ENTER\n");
926
927 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 928 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
86e45b6b
TH
929 spin_unlock_irqrestore(&ap->host_set->lock, flags);
930
931 DPRINTK("flush #1\n");
932 flush_workqueue(ata_wq);
933
934 /*
935 * At this point, if a task is running, it's guaranteed to see
936 * the FLUSH flag; thus, it will never queue pio tasks again.
937 * Cancel and flush.
938 */
939 if (!cancel_delayed_work(&ap->port_task)) {
940 DPRINTK("flush #2\n");
941 flush_workqueue(ata_wq);
942 }
943
944 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 945 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
86e45b6b
TH
946 spin_unlock_irqrestore(&ap->host_set->lock, flags);
947
948 DPRINTK("EXIT\n");
949}
950
77853bf2 951void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 952{
77853bf2 953 struct completion *waiting = qc->private_data;
a2a7a662 954
a2a7a662 955 complete(waiting);
a2a7a662
TH
956}
957
958/**
959 * ata_exec_internal - execute libata internal command
a2a7a662
TH
960 * @dev: Device to which the command is sent
961 * @tf: Taskfile registers for the command and the result
d69cf37d 962 * @cdb: CDB for packet command
a2a7a662
TH
963 * @dma_dir: Data tranfer direction of the command
964 * @buf: Data buffer of the command
965 * @buflen: Length of data buffer
966 *
967 * Executes libata internal command with timeout. @tf contains
968 * command on entry and result on return. Timeout and error
969 * conditions are reported via return value. No recovery action
970 * is taken after a command times out. It's caller's duty to
971 * clean up after timeout.
972 *
973 * LOCKING:
974 * None. Should be called with kernel context, might sleep.
975 */
976
3373efd8 977unsigned ata_exec_internal(struct ata_device *dev,
1ad8e7f9
TH
978 struct ata_taskfile *tf, const u8 *cdb,
979 int dma_dir, void *buf, unsigned int buflen)
a2a7a662 980{
3373efd8 981 struct ata_port *ap = dev->ap;
a2a7a662
TH
982 u8 command = tf->command;
983 struct ata_queued_cmd *qc;
984 DECLARE_COMPLETION(wait);
985 unsigned long flags;
77853bf2 986 unsigned int err_mask;
a2a7a662
TH
987
988 spin_lock_irqsave(&ap->host_set->lock, flags);
989
3373efd8 990 qc = ata_qc_new_init(dev);
a2a7a662
TH
991 BUG_ON(qc == NULL);
992
993 qc->tf = *tf;
d69cf37d
TH
994 if (cdb)
995 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 996 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
997 qc->dma_dir = dma_dir;
998 if (dma_dir != DMA_NONE) {
999 ata_sg_init_one(qc, buf, buflen);
1000 qc->nsect = buflen / ATA_SECT_SIZE;
1001 }
1002
77853bf2 1003 qc->private_data = &wait;
a2a7a662
TH
1004 qc->complete_fn = ata_qc_complete_internal;
1005
8e0e694a 1006 ata_qc_issue(qc);
a2a7a662
TH
1007
1008 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1009
1010 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
41ade50c
AL
1011 ata_port_flush_task(ap);
1012
a2a7a662
TH
1013 spin_lock_irqsave(&ap->host_set->lock, flags);
1014
1015 /* We're racing with irq here. If we lose, the
1016 * following test prevents us from completing the qc
1017 * again. If completion irq occurs after here but
1018 * before the caller cleans up, it will result in a
1019 * spurious interrupt. We can live with that.
1020 */
77853bf2 1021 if (qc->flags & ATA_QCFLAG_ACTIVE) {
11a56d24 1022 qc->err_mask = AC_ERR_TIMEOUT;
a2a7a662
TH
1023 ata_qc_complete(qc);
1024 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
1025 ap->id, command);
1026 }
1027
1028 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1029 }
1030
15869303
TH
1031 /* finish up */
1032 spin_lock_irqsave(&ap->host_set->lock, flags);
1033
e61e0672 1034 *tf = qc->result_tf;
77853bf2
TH
1035 err_mask = qc->err_mask;
1036
1037 ata_qc_free(qc);
1038
1f7dd3e9
TH
1039 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1040 * Until those drivers are fixed, we detect the condition
1041 * here, fail the command with AC_ERR_SYSTEM and reenable the
1042 * port.
1043 *
1044 * Note that this doesn't change any behavior as internal
1045 * command failure results in disabling the device in the
1046 * higher layer for LLDDs without new reset/EH callbacks.
1047 *
1048 * Kill the following code as soon as those drivers are fixed.
1049 */
198e0fed 1050 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1051 err_mask |= AC_ERR_SYSTEM;
1052 ata_port_probe(ap);
1053 }
1054
15869303
TH
1055 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1056
77853bf2 1057 return err_mask;
a2a7a662
TH
1058}
1059
1bc4ccff
AC
1060/**
1061 * ata_pio_need_iordy - check if iordy needed
1062 * @adev: ATA device
1063 *
1064 * Check if the current speed of the device requires IORDY. Used
1065 * by various controllers for chip configuration.
1066 */
1067
1068unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1069{
1070 int pio;
1071 int speed = adev->pio_mode - XFER_PIO_0;
1072
1073 if (speed < 2)
1074 return 0;
1075 if (speed > 2)
1076 return 1;
2e9edbf8 1077
1bc4ccff
AC
1078 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1079
1080 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1081 pio = adev->id[ATA_ID_EIDE_PIO];
1082 /* Is the speed faster than the drive allows non IORDY ? */
1083 if (pio) {
1084 /* This is cycle times not frequency - watch the logic! */
1085 if (pio > 240) /* PIO2 is 240nS per cycle */
1086 return 1;
1087 return 0;
1088 }
1089 }
1090 return 0;
1091}
1092
1da177e4 1093/**
49016aca 1094 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1095 * @dev: target device
1096 * @p_class: pointer to class of the target device (may be changed)
1097 * @post_reset: is this read ID post-reset?
fe635c7e 1098 * @id: buffer to read IDENTIFY data into
1da177e4 1099 *
49016aca
TH
1100 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1101 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1102 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1103 * for pre-ATA4 drives.
1da177e4
LT
1104 *
1105 * LOCKING:
49016aca
TH
1106 * Kernel thread context (may sleep)
1107 *
1108 * RETURNS:
1109 * 0 on success, -errno otherwise.
1da177e4 1110 */
3373efd8
TH
1111static int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1112 int post_reset, u16 *id)
1da177e4 1113{
3373efd8 1114 struct ata_port *ap = dev->ap;
49016aca 1115 unsigned int class = *p_class;
a0123703 1116 struct ata_taskfile tf;
49016aca
TH
1117 unsigned int err_mask = 0;
1118 const char *reason;
1119 int rc;
1da177e4 1120
49016aca 1121 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1122
49016aca 1123 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1da177e4 1124
49016aca 1125 retry:
3373efd8 1126 ata_tf_init(dev, &tf);
a0123703 1127
49016aca
TH
1128 switch (class) {
1129 case ATA_DEV_ATA:
a0123703 1130 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1131 break;
1132 case ATA_DEV_ATAPI:
a0123703 1133 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1134 break;
1135 default:
1136 rc = -ENODEV;
1137 reason = "unsupported class";
1138 goto err_out;
1da177e4
LT
1139 }
1140
a0123703 1141 tf.protocol = ATA_PROT_PIO;
1da177e4 1142
3373efd8 1143 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1144 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1145 if (err_mask) {
49016aca
TH
1146 rc = -EIO;
1147 reason = "I/O error";
1da177e4
LT
1148 goto err_out;
1149 }
1150
49016aca 1151 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1152
49016aca 1153 /* sanity check */
692785e7 1154 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
49016aca
TH
1155 rc = -EINVAL;
1156 reason = "device reports illegal type";
1157 goto err_out;
1158 }
1159
1160 if (post_reset && class == ATA_DEV_ATA) {
1161 /*
1162 * The exact sequence expected by certain pre-ATA4 drives is:
1163 * SRST RESET
1164 * IDENTIFY
1165 * INITIALIZE DEVICE PARAMETERS
1166 * anything else..
1167 * Some drives were very specific about that exact sequence.
1168 */
1169 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1170 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1171 if (err_mask) {
1172 rc = -EIO;
1173 reason = "INIT_DEV_PARAMS failed";
1174 goto err_out;
1175 }
1176
1177 /* current CHS translation info (id[53-58]) might be
1178 * changed. reread the identify device info.
1179 */
1180 post_reset = 0;
1181 goto retry;
1182 }
1183 }
1184
1185 *p_class = class;
fe635c7e 1186
49016aca
TH
1187 return 0;
1188
1189 err_out:
1190 printk(KERN_WARNING "ata%u: dev %u failed to IDENTIFY (%s)\n",
1191 ap->id, dev->devno, reason);
49016aca
TH
1192 return rc;
1193}
1194
3373efd8 1195static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1196{
3373efd8 1197 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1198}
1199
49016aca 1200/**
ffeae418 1201 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418 1202 * @dev: Target device to configure
4c2d721a 1203 * @print_info: Enable device info printout
ffeae418
TH
1204 *
1205 * Configure @dev according to @dev->id. Generic and low-level
1206 * driver specific fixups are also applied.
49016aca
TH
1207 *
1208 * LOCKING:
ffeae418
TH
1209 * Kernel thread context (may sleep)
1210 *
1211 * RETURNS:
1212 * 0 on success, -errno otherwise
49016aca 1213 */
3373efd8 1214static int ata_dev_configure(struct ata_device *dev, int print_info)
49016aca 1215{
3373efd8 1216 struct ata_port *ap = dev->ap;
1148c3a7 1217 const u16 *id = dev->id;
ff8854b2 1218 unsigned int xfer_mask;
49016aca
TH
1219 int i, rc;
1220
e1211e3f 1221 if (!ata_dev_enabled(dev)) {
49016aca 1222 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
ffeae418
TH
1223 ap->id, dev->devno);
1224 return 0;
49016aca
TH
1225 }
1226
ffeae418 1227 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1228
c39f5ebe
TH
1229 /* print device capabilities */
1230 if (print_info)
1231 printk(KERN_DEBUG "ata%u: dev %u cfg 49:%04x 82:%04x 83:%04x "
1232 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1233 ap->id, dev->devno, id[49], id[82], id[83],
1234 id[84], id[85], id[86], id[87], id[88]);
1235
208a9933 1236 /* initialize to-be-configured parameters */
ea1dd4e1 1237 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1238 dev->max_sectors = 0;
1239 dev->cdb_len = 0;
1240 dev->n_sectors = 0;
1241 dev->cylinders = 0;
1242 dev->heads = 0;
1243 dev->sectors = 0;
1244
1da177e4
LT
1245 /*
1246 * common ATA, ATAPI feature tests
1247 */
1248
ff8854b2 1249 /* find max transfer mode; for printk only */
1148c3a7 1250 xfer_mask = ata_id_xfermask(id);
1da177e4 1251
1148c3a7 1252 ata_dump_id(id);
1da177e4
LT
1253
1254 /* ATA-specific feature tests */
1255 if (dev->class == ATA_DEV_ATA) {
1148c3a7 1256 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1257
1148c3a7 1258 if (ata_id_has_lba(id)) {
4c2d721a 1259 const char *lba_desc;
8bf62ece 1260
4c2d721a
TH
1261 lba_desc = "LBA";
1262 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1263 if (ata_id_has_lba48(id)) {
8bf62ece 1264 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a
TH
1265 lba_desc = "LBA48";
1266 }
8bf62ece
AL
1267
1268 /* print device info to dmesg */
4c2d721a
TH
1269 if (print_info)
1270 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1271 "max %s, %Lu sectors: %s\n",
1272 ap->id, dev->devno,
1148c3a7 1273 ata_id_major_version(id),
ff8854b2 1274 ata_mode_string(xfer_mask),
4c2d721a
TH
1275 (unsigned long long)dev->n_sectors,
1276 lba_desc);
ffeae418 1277 } else {
8bf62ece
AL
1278 /* CHS */
1279
1280 /* Default translation */
1148c3a7
TH
1281 dev->cylinders = id[1];
1282 dev->heads = id[3];
1283 dev->sectors = id[6];
8bf62ece 1284
1148c3a7 1285 if (ata_id_current_chs_valid(id)) {
8bf62ece 1286 /* Current CHS translation is valid. */
1148c3a7
TH
1287 dev->cylinders = id[54];
1288 dev->heads = id[55];
1289 dev->sectors = id[56];
8bf62ece
AL
1290 }
1291
1292 /* print device info to dmesg */
4c2d721a
TH
1293 if (print_info)
1294 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1295 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1296 ap->id, dev->devno,
1148c3a7 1297 ata_id_major_version(id),
ff8854b2 1298 ata_mode_string(xfer_mask),
4c2d721a
TH
1299 (unsigned long long)dev->n_sectors,
1300 dev->cylinders, dev->heads, dev->sectors);
1da177e4
LT
1301 }
1302
6e7846e9 1303 dev->cdb_len = 16;
1da177e4
LT
1304 }
1305
1306 /* ATAPI-specific feature tests */
2c13b7ce 1307 else if (dev->class == ATA_DEV_ATAPI) {
1148c3a7 1308 rc = atapi_cdb_len(id);
1da177e4
LT
1309 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1310 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
ffeae418 1311 rc = -EINVAL;
1da177e4
LT
1312 goto err_out_nosup;
1313 }
6e7846e9 1314 dev->cdb_len = (unsigned int) rc;
1da177e4
LT
1315
1316 /* print device info to dmesg */
4c2d721a
TH
1317 if (print_info)
1318 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
ff8854b2 1319 ap->id, dev->devno, ata_mode_string(xfer_mask));
1da177e4
LT
1320 }
1321
6e7846e9
TH
1322 ap->host->max_cmd_len = 0;
1323 for (i = 0; i < ATA_MAX_DEVICES; i++)
1324 ap->host->max_cmd_len = max_t(unsigned int,
1325 ap->host->max_cmd_len,
1326 ap->device[i].cdb_len);
1327
4b2f3ede 1328 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 1329 if (ata_dev_knobble(dev)) {
4c2d721a
TH
1330 if (print_info)
1331 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1332 ap->id, dev->devno);
5a529139 1333 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
1334 dev->max_sectors = ATA_MAX_SECTORS;
1335 }
1336
1337 if (ap->ops->dev_config)
1338 ap->ops->dev_config(ap, dev);
1339
1da177e4 1340 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
ffeae418 1341 return 0;
1da177e4
LT
1342
1343err_out_nosup:
1da177e4 1344 DPRINTK("EXIT, err\n");
ffeae418 1345 return rc;
1da177e4
LT
1346}
1347
1348/**
1349 * ata_bus_probe - Reset and probe ATA bus
1350 * @ap: Bus to probe
1351 *
0cba632b
JG
1352 * Master ATA bus probing function. Initiates a hardware-dependent
1353 * bus reset, then attempts to identify any devices found on
1354 * the bus.
1355 *
1da177e4 1356 * LOCKING:
0cba632b 1357 * PCI/etc. bus probe sem.
1da177e4
LT
1358 *
1359 * RETURNS:
96072e69 1360 * Zero on success, negative errno otherwise.
1da177e4
LT
1361 */
1362
1363static int ata_bus_probe(struct ata_port *ap)
1364{
28ca5c57 1365 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1
TH
1366 int tries[ATA_MAX_DEVICES];
1367 int i, rc, down_xfermask;
e82cbdb9 1368 struct ata_device *dev;
1da177e4 1369
28ca5c57 1370 ata_port_probe(ap);
c19ba8af 1371
14d2bac1
TH
1372 for (i = 0; i < ATA_MAX_DEVICES; i++)
1373 tries[i] = ATA_PROBE_MAX_TRIES;
1374
1375 retry:
1376 down_xfermask = 0;
1377
2044470c
TH
1378 /* reset and determine device classes */
1379 for (i = 0; i < ATA_MAX_DEVICES; i++)
1380 classes[i] = ATA_DEV_UNKNOWN;
2061a47a 1381
2044470c 1382 if (ap->ops->probe_reset) {
c19ba8af 1383 rc = ap->ops->probe_reset(ap, classes);
28ca5c57
TH
1384 if (rc) {
1385 printk("ata%u: reset failed (errno=%d)\n", ap->id, rc);
1386 return rc;
c19ba8af 1387 }
28ca5c57 1388 } else {
c19ba8af
TH
1389 ap->ops->phy_reset(ap);
1390
f8c2c420
TH
1391 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1392 if (!(ap->flags & ATA_FLAG_DISABLED))
28ca5c57 1393 classes[i] = ap->device[i].class;
f8c2c420
TH
1394 ap->device[i].class = ATA_DEV_UNKNOWN;
1395 }
2044470c 1396
28ca5c57
TH
1397 ata_port_probe(ap);
1398 }
1da177e4 1399
2044470c
TH
1400 for (i = 0; i < ATA_MAX_DEVICES; i++)
1401 if (classes[i] == ATA_DEV_UNKNOWN)
1402 classes[i] = ATA_DEV_NONE;
1403
28ca5c57 1404 /* read IDENTIFY page and configure devices */
1da177e4 1405 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e82cbdb9 1406 dev = &ap->device[i];
28ca5c57 1407
ec573755
TH
1408 if (tries[i])
1409 dev->class = classes[i];
ffeae418 1410
14d2bac1 1411 if (!ata_dev_enabled(dev))
ffeae418 1412 continue;
ffeae418 1413
3373efd8 1414 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
14d2bac1
TH
1415 if (rc)
1416 goto fail;
1417
3373efd8 1418 rc = ata_dev_configure(dev, 1);
14d2bac1
TH
1419 if (rc)
1420 goto fail;
1da177e4
LT
1421 }
1422
e82cbdb9 1423 /* configure transfer mode */
3adcebb2 1424 rc = ata_set_mode(ap, &dev);
51713d35
TH
1425 if (rc) {
1426 down_xfermask = 1;
1427 goto fail;
e82cbdb9 1428 }
1da177e4 1429
e82cbdb9
TH
1430 for (i = 0; i < ATA_MAX_DEVICES; i++)
1431 if (ata_dev_enabled(&ap->device[i]))
1432 return 0;
1da177e4 1433
e82cbdb9
TH
1434 /* no device present, disable port */
1435 ata_port_disable(ap);
1da177e4 1436 ap->ops->port_disable(ap);
96072e69 1437 return -ENODEV;
14d2bac1
TH
1438
1439 fail:
1440 switch (rc) {
1441 case -EINVAL:
1442 case -ENODEV:
1443 tries[dev->devno] = 0;
1444 break;
1445 case -EIO:
3c567b7d 1446 sata_down_spd_limit(ap);
14d2bac1
TH
1447 /* fall through */
1448 default:
1449 tries[dev->devno]--;
1450 if (down_xfermask &&
3373efd8 1451 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
14d2bac1
TH
1452 tries[dev->devno] = 0;
1453 }
1454
ec573755 1455 if (!tries[dev->devno]) {
3373efd8
TH
1456 ata_down_xfermask_limit(dev, 1);
1457 ata_dev_disable(dev);
ec573755
TH
1458 }
1459
14d2bac1 1460 goto retry;
1da177e4
LT
1461}
1462
1463/**
0cba632b
JG
1464 * ata_port_probe - Mark port as enabled
1465 * @ap: Port for which we indicate enablement
1da177e4 1466 *
0cba632b
JG
1467 * Modify @ap data structure such that the system
1468 * thinks that the entire port is enabled.
1469 *
1470 * LOCKING: host_set lock, or some other form of
1471 * serialization.
1da177e4
LT
1472 */
1473
1474void ata_port_probe(struct ata_port *ap)
1475{
198e0fed 1476 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
1477}
1478
3be680b7
TH
1479/**
1480 * sata_print_link_status - Print SATA link status
1481 * @ap: SATA port to printk link status about
1482 *
1483 * This function prints link speed and status of a SATA link.
1484 *
1485 * LOCKING:
1486 * None.
1487 */
1488static void sata_print_link_status(struct ata_port *ap)
1489{
6d5f9732 1490 u32 sstatus, scontrol, tmp;
3be680b7 1491
81952c54 1492 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 1493 return;
81952c54 1494 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 1495
81952c54 1496 if (ata_port_online(ap)) {
3be680b7 1497 tmp = (sstatus >> 4) & 0xf;
6d5f9732
TH
1498 printk(KERN_INFO
1499 "ata%u: SATA link up %s (SStatus %X SControl %X)\n",
1500 ap->id, sata_spd_string(tmp), sstatus, scontrol);
3be680b7 1501 } else {
6d5f9732
TH
1502 printk(KERN_INFO
1503 "ata%u: SATA link down (SStatus %X SControl %X)\n",
1504 ap->id, sstatus, scontrol);
3be680b7
TH
1505 }
1506}
1507
1da177e4 1508/**
780a87f7
JG
1509 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1510 * @ap: SATA port associated with target SATA PHY.
1da177e4 1511 *
780a87f7
JG
1512 * This function issues commands to standard SATA Sxxx
1513 * PHY registers, to wake up the phy (and device), and
1514 * clear any reset condition.
1da177e4
LT
1515 *
1516 * LOCKING:
0cba632b 1517 * PCI/etc. bus probe sem.
1da177e4
LT
1518 *
1519 */
1520void __sata_phy_reset(struct ata_port *ap)
1521{
1522 u32 sstatus;
1523 unsigned long timeout = jiffies + (HZ * 5);
1524
1525 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 1526 /* issue phy wake/reset */
81952c54 1527 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1528 /* Couldn't find anything in SATA I/II specs, but
1529 * AHCI-1.1 10.4.2 says at least 1 ms. */
1530 mdelay(1);
1da177e4 1531 }
81952c54
TH
1532 /* phy wake/clear reset */
1533 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
1534
1535 /* wait for phy to become ready, if necessary */
1536 do {
1537 msleep(200);
81952c54 1538 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
1539 if ((sstatus & 0xf) != 1)
1540 break;
1541 } while (time_before(jiffies, timeout));
1542
3be680b7
TH
1543 /* print link status */
1544 sata_print_link_status(ap);
656563e3 1545
3be680b7 1546 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 1547 if (!ata_port_offline(ap))
1da177e4 1548 ata_port_probe(ap);
3be680b7 1549 else
1da177e4 1550 ata_port_disable(ap);
1da177e4 1551
198e0fed 1552 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1553 return;
1554
1555 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1556 ata_port_disable(ap);
1557 return;
1558 }
1559
1560 ap->cbl = ATA_CBL_SATA;
1561}
1562
1563/**
780a87f7
JG
1564 * sata_phy_reset - Reset SATA bus.
1565 * @ap: SATA port associated with target SATA PHY.
1da177e4 1566 *
780a87f7
JG
1567 * This function resets the SATA bus, and then probes
1568 * the bus for devices.
1da177e4
LT
1569 *
1570 * LOCKING:
0cba632b 1571 * PCI/etc. bus probe sem.
1da177e4
LT
1572 *
1573 */
1574void sata_phy_reset(struct ata_port *ap)
1575{
1576 __sata_phy_reset(ap);
198e0fed 1577 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1578 return;
1579 ata_bus_reset(ap);
1580}
1581
ebdfca6e
AC
1582/**
1583 * ata_dev_pair - return other device on cable
ebdfca6e
AC
1584 * @adev: device
1585 *
1586 * Obtain the other device on the same cable, or if none is
1587 * present NULL is returned
1588 */
2e9edbf8 1589
3373efd8 1590struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 1591{
3373efd8 1592 struct ata_port *ap = adev->ap;
ebdfca6e 1593 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 1594 if (!ata_dev_enabled(pair))
ebdfca6e
AC
1595 return NULL;
1596 return pair;
1597}
1598
1da177e4 1599/**
780a87f7
JG
1600 * ata_port_disable - Disable port.
1601 * @ap: Port to be disabled.
1da177e4 1602 *
780a87f7
JG
1603 * Modify @ap data structure such that the system
1604 * thinks that the entire port is disabled, and should
1605 * never attempt to probe or communicate with devices
1606 * on this port.
1607 *
1608 * LOCKING: host_set lock, or some other form of
1609 * serialization.
1da177e4
LT
1610 */
1611
1612void ata_port_disable(struct ata_port *ap)
1613{
1614 ap->device[0].class = ATA_DEV_NONE;
1615 ap->device[1].class = ATA_DEV_NONE;
198e0fed 1616 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
1617}
1618
1c3fae4d 1619/**
3c567b7d 1620 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
1621 * @ap: Port to adjust SATA spd limit for
1622 *
1623 * Adjust SATA spd limit of @ap downward. Note that this
1624 * function only adjusts the limit. The change must be applied
3c567b7d 1625 * using sata_set_spd().
1c3fae4d
TH
1626 *
1627 * LOCKING:
1628 * Inherited from caller.
1629 *
1630 * RETURNS:
1631 * 0 on success, negative errno on failure
1632 */
3c567b7d 1633int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 1634{
81952c54
TH
1635 u32 sstatus, spd, mask;
1636 int rc, highbit;
1c3fae4d 1637
81952c54
TH
1638 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1639 if (rc)
1640 return rc;
1c3fae4d
TH
1641
1642 mask = ap->sata_spd_limit;
1643 if (mask <= 1)
1644 return -EINVAL;
1645 highbit = fls(mask) - 1;
1646 mask &= ~(1 << highbit);
1647
81952c54 1648 spd = (sstatus >> 4) & 0xf;
1c3fae4d
TH
1649 if (spd <= 1)
1650 return -EINVAL;
1651 spd--;
1652 mask &= (1 << spd) - 1;
1653 if (!mask)
1654 return -EINVAL;
1655
1656 ap->sata_spd_limit = mask;
1657
1658 printk(KERN_WARNING "ata%u: limiting SATA link speed to %s\n",
1659 ap->id, sata_spd_string(fls(mask)));
1660
1661 return 0;
1662}
1663
3c567b7d 1664static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
1665{
1666 u32 spd, limit;
1667
1668 if (ap->sata_spd_limit == UINT_MAX)
1669 limit = 0;
1670 else
1671 limit = fls(ap->sata_spd_limit);
1672
1673 spd = (*scontrol >> 4) & 0xf;
1674 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1675
1676 return spd != limit;
1677}
1678
1679/**
3c567b7d 1680 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
1681 * @ap: Port in question
1682 *
1683 * Test whether the spd limit in SControl matches
1684 * @ap->sata_spd_limit. This function is used to determine
1685 * whether hardreset is necessary to apply SATA spd
1686 * configuration.
1687 *
1688 * LOCKING:
1689 * Inherited from caller.
1690 *
1691 * RETURNS:
1692 * 1 if SATA spd configuration is needed, 0 otherwise.
1693 */
3c567b7d 1694int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
1695{
1696 u32 scontrol;
1697
81952c54 1698 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
1699 return 0;
1700
3c567b7d 1701 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
1702}
1703
1704/**
3c567b7d 1705 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
1706 * @ap: Port to set SATA spd for
1707 *
1708 * Set SATA spd of @ap according to sata_spd_limit.
1709 *
1710 * LOCKING:
1711 * Inherited from caller.
1712 *
1713 * RETURNS:
1714 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 1715 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 1716 */
3c567b7d 1717int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
1718{
1719 u32 scontrol;
81952c54 1720 int rc;
1c3fae4d 1721
81952c54
TH
1722 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1723 return rc;
1c3fae4d 1724
3c567b7d 1725 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
1726 return 0;
1727
81952c54
TH
1728 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1729 return rc;
1730
1c3fae4d
TH
1731 return 1;
1732}
1733
452503f9
AC
1734/*
1735 * This mode timing computation functionality is ported over from
1736 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1737 */
1738/*
1739 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1740 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1741 * for PIO 5, which is a nonstandard extension and UDMA6, which
2e9edbf8 1742 * is currently supported only by Maxtor drives.
452503f9
AC
1743 */
1744
1745static const struct ata_timing ata_timing[] = {
1746
1747 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1748 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1749 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1750 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1751
1752 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1753 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1754 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1755
1756/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 1757
452503f9
AC
1758 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1759 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1760 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 1761
452503f9
AC
1762 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1763 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1764 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1765
1766/* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1767 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1768 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1769
1770 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1771 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1772 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1773
1774/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1775
1776 { 0xFF }
1777};
1778
1779#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1780#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1781
1782static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1783{
1784 q->setup = EZ(t->setup * 1000, T);
1785 q->act8b = EZ(t->act8b * 1000, T);
1786 q->rec8b = EZ(t->rec8b * 1000, T);
1787 q->cyc8b = EZ(t->cyc8b * 1000, T);
1788 q->active = EZ(t->active * 1000, T);
1789 q->recover = EZ(t->recover * 1000, T);
1790 q->cycle = EZ(t->cycle * 1000, T);
1791 q->udma = EZ(t->udma * 1000, UT);
1792}
1793
1794void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1795 struct ata_timing *m, unsigned int what)
1796{
1797 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1798 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1799 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1800 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1801 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1802 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1803 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1804 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1805}
1806
1807static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1808{
1809 const struct ata_timing *t;
1810
1811 for (t = ata_timing; t->mode != speed; t++)
91190758 1812 if (t->mode == 0xFF)
452503f9 1813 return NULL;
2e9edbf8 1814 return t;
452503f9
AC
1815}
1816
1817int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1818 struct ata_timing *t, int T, int UT)
1819{
1820 const struct ata_timing *s;
1821 struct ata_timing p;
1822
1823 /*
2e9edbf8 1824 * Find the mode.
75b1f2f8 1825 */
452503f9
AC
1826
1827 if (!(s = ata_timing_find_mode(speed)))
1828 return -EINVAL;
1829
75b1f2f8
AL
1830 memcpy(t, s, sizeof(*s));
1831
452503f9
AC
1832 /*
1833 * If the drive is an EIDE drive, it can tell us it needs extended
1834 * PIO/MW_DMA cycle timing.
1835 */
1836
1837 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1838 memset(&p, 0, sizeof(p));
1839 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1840 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1841 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1842 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1843 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1844 }
1845 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1846 }
1847
1848 /*
1849 * Convert the timing to bus clock counts.
1850 */
1851
75b1f2f8 1852 ata_timing_quantize(t, t, T, UT);
452503f9
AC
1853
1854 /*
c893a3ae
RD
1855 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1856 * S.M.A.R.T * and some other commands. We have to ensure that the
1857 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
1858 */
1859
1860 if (speed > XFER_PIO_4) {
1861 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1862 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1863 }
1864
1865 /*
c893a3ae 1866 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
1867 */
1868
1869 if (t->act8b + t->rec8b < t->cyc8b) {
1870 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1871 t->rec8b = t->cyc8b - t->act8b;
1872 }
1873
1874 if (t->active + t->recover < t->cycle) {
1875 t->active += (t->cycle - (t->active + t->recover)) / 2;
1876 t->recover = t->cycle - t->active;
1877 }
1878
1879 return 0;
1880}
1881
cf176e1a
TH
1882/**
1883 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a
TH
1884 * @dev: Device to adjust xfer masks
1885 * @force_pio0: Force PIO0
1886 *
1887 * Adjust xfer masks of @dev downward. Note that this function
1888 * does not apply the change. Invoking ata_set_mode() afterwards
1889 * will apply the limit.
1890 *
1891 * LOCKING:
1892 * Inherited from caller.
1893 *
1894 * RETURNS:
1895 * 0 on success, negative errno on failure
1896 */
3373efd8 1897int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
cf176e1a 1898{
3373efd8 1899 struct ata_port *ap = dev->ap;
cf176e1a
TH
1900 unsigned long xfer_mask;
1901 int highbit;
1902
1903 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
1904 dev->udma_mask);
1905
1906 if (!xfer_mask)
1907 goto fail;
1908 /* don't gear down to MWDMA from UDMA, go directly to PIO */
1909 if (xfer_mask & ATA_MASK_UDMA)
1910 xfer_mask &= ~ATA_MASK_MWDMA;
1911
1912 highbit = fls(xfer_mask) - 1;
1913 xfer_mask &= ~(1 << highbit);
1914 if (force_pio0)
1915 xfer_mask &= 1 << ATA_SHIFT_PIO;
1916 if (!xfer_mask)
1917 goto fail;
1918
1919 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
1920 &dev->udma_mask);
1921
1922 printk(KERN_WARNING "ata%u: dev %u limiting speed to %s\n",
1923 ap->id, dev->devno, ata_mode_string(xfer_mask));
1924
1925 return 0;
1926
1927 fail:
1928 return -EINVAL;
1929}
1930
3373efd8 1931static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 1932{
3373efd8 1933 struct ata_port *ap = dev->ap;
83206a29
TH
1934 unsigned int err_mask;
1935 int rc;
1da177e4 1936
e8384607 1937 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
1938 if (dev->xfer_shift == ATA_SHIFT_PIO)
1939 dev->flags |= ATA_DFLAG_PIO;
1940
3373efd8 1941 err_mask = ata_dev_set_xfermode(dev);
83206a29
TH
1942 if (err_mask) {
1943 printk(KERN_ERR
1944 "ata%u: failed to set xfermode (err_mask=0x%x)\n",
1945 ap->id, err_mask);
1946 return -EIO;
1947 }
1da177e4 1948
3373efd8 1949 rc = ata_dev_revalidate(dev, 0);
5eb45c02 1950 if (rc)
83206a29 1951 return rc;
48a8a14f 1952
23e71c3d
TH
1953 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
1954 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4
LT
1955
1956 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
23e71c3d
TH
1957 ap->id, dev->devno,
1958 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 1959 return 0;
1da177e4
LT
1960}
1961
1da177e4
LT
1962/**
1963 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1964 * @ap: port on which timings will be programmed
e82cbdb9 1965 * @r_failed_dev: out paramter for failed device
1da177e4 1966 *
e82cbdb9
TH
1967 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
1968 * ata_set_mode() fails, pointer to the failing device is
1969 * returned in @r_failed_dev.
780a87f7 1970 *
1da177e4 1971 * LOCKING:
0cba632b 1972 * PCI/etc. bus probe sem.
e82cbdb9
TH
1973 *
1974 * RETURNS:
1975 * 0 on success, negative errno otherwise
1da177e4 1976 */
1ad8e7f9 1977int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 1978{
e8e0619f 1979 struct ata_device *dev;
e82cbdb9 1980 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 1981
3adcebb2
TH
1982 /* has private set_mode? */
1983 if (ap->ops->set_mode) {
1984 /* FIXME: make ->set_mode handle no device case and
1985 * return error code and failing device on failure.
1986 */
1987 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1988 if (ata_dev_enabled(&ap->device[i])) {
1989 ap->ops->set_mode(ap);
1990 break;
1991 }
1992 }
1993 return 0;
1994 }
1995
a6d5a51c
TH
1996 /* step 1: calculate xfer_mask */
1997 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 1998 unsigned int pio_mask, dma_mask;
a6d5a51c 1999
e8e0619f
TH
2000 dev = &ap->device[i];
2001
e1211e3f 2002 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2003 continue;
2004
3373efd8 2005 ata_dev_xfermask(dev);
1da177e4 2006
acf356b1
TH
2007 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2008 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2009 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2010 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2011
4f65977d 2012 found = 1;
5444a6f4
AC
2013 if (dev->dma_mode)
2014 used_dma = 1;
a6d5a51c 2015 }
4f65977d 2016 if (!found)
e82cbdb9 2017 goto out;
a6d5a51c
TH
2018
2019 /* step 2: always set host PIO timings */
e8e0619f
TH
2020 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2021 dev = &ap->device[i];
2022 if (!ata_dev_enabled(dev))
2023 continue;
2024
2025 if (!dev->pio_mode) {
2026 printk(KERN_WARNING "ata%u: dev %u no PIO support\n",
2027 ap->id, dev->devno);
2028 rc = -EINVAL;
e82cbdb9 2029 goto out;
e8e0619f
TH
2030 }
2031
2032 dev->xfer_mode = dev->pio_mode;
2033 dev->xfer_shift = ATA_SHIFT_PIO;
2034 if (ap->ops->set_piomode)
2035 ap->ops->set_piomode(ap, dev);
2036 }
1da177e4 2037
a6d5a51c 2038 /* step 3: set host DMA timings */
e8e0619f
TH
2039 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2040 dev = &ap->device[i];
2041
2042 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2043 continue;
2044
2045 dev->xfer_mode = dev->dma_mode;
2046 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2047 if (ap->ops->set_dmamode)
2048 ap->ops->set_dmamode(ap, dev);
2049 }
1da177e4
LT
2050
2051 /* step 4: update devices' xfer mode */
83206a29 2052 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2053 dev = &ap->device[i];
1da177e4 2054
e1211e3f 2055 if (!ata_dev_enabled(dev))
83206a29
TH
2056 continue;
2057
3373efd8 2058 rc = ata_dev_set_mode(dev);
5bbc53f4 2059 if (rc)
e82cbdb9 2060 goto out;
83206a29 2061 }
1da177e4 2062
e8e0619f
TH
2063 /* Record simplex status. If we selected DMA then the other
2064 * host channels are not permitted to do so.
5444a6f4 2065 */
5444a6f4
AC
2066 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2067 ap->host_set->simplex_claimed = 1;
2068
e8e0619f 2069 /* step5: chip specific finalisation */
1da177e4
LT
2070 if (ap->ops->post_set_mode)
2071 ap->ops->post_set_mode(ap);
2072
e82cbdb9
TH
2073 out:
2074 if (rc)
2075 *r_failed_dev = dev;
2076 return rc;
1da177e4
LT
2077}
2078
1fdffbce
JG
2079/**
2080 * ata_tf_to_host - issue ATA taskfile to host controller
2081 * @ap: port to which command is being issued
2082 * @tf: ATA taskfile register set
2083 *
2084 * Issues ATA taskfile register set to ATA host controller,
2085 * with proper synchronization with interrupt handler and
2086 * other threads.
2087 *
2088 * LOCKING:
2089 * spin_lock_irqsave(host_set lock)
2090 */
2091
2092static inline void ata_tf_to_host(struct ata_port *ap,
2093 const struct ata_taskfile *tf)
2094{
2095 ap->ops->tf_load(ap, tf);
2096 ap->ops->exec_command(ap, tf);
2097}
2098
1da177e4
LT
2099/**
2100 * ata_busy_sleep - sleep until BSY clears, or timeout
2101 * @ap: port containing status register to be polled
2102 * @tmout_pat: impatience timeout
2103 * @tmout: overall timeout
2104 *
780a87f7
JG
2105 * Sleep until ATA Status register bit BSY clears,
2106 * or a timeout occurs.
2107 *
2108 * LOCKING: None.
1da177e4
LT
2109 */
2110
6f8b9958
TH
2111unsigned int ata_busy_sleep (struct ata_port *ap,
2112 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2113{
2114 unsigned long timer_start, timeout;
2115 u8 status;
2116
2117 status = ata_busy_wait(ap, ATA_BUSY, 300);
2118 timer_start = jiffies;
2119 timeout = timer_start + tmout_pat;
2120 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2121 msleep(50);
2122 status = ata_busy_wait(ap, ATA_BUSY, 3);
2123 }
2124
2125 if (status & ATA_BUSY)
2126 printk(KERN_WARNING "ata%u is slow to respond, "
2127 "please be patient\n", ap->id);
2128
2129 timeout = timer_start + tmout;
2130 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2131 msleep(50);
2132 status = ata_chk_status(ap);
2133 }
2134
2135 if (status & ATA_BUSY) {
2136 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
2137 ap->id, tmout / HZ);
2138 return 1;
2139 }
2140
2141 return 0;
2142}
2143
2144static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2145{
2146 struct ata_ioports *ioaddr = &ap->ioaddr;
2147 unsigned int dev0 = devmask & (1 << 0);
2148 unsigned int dev1 = devmask & (1 << 1);
2149 unsigned long timeout;
2150
2151 /* if device 0 was found in ata_devchk, wait for its
2152 * BSY bit to clear
2153 */
2154 if (dev0)
2155 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2156
2157 /* if device 1 was found in ata_devchk, wait for
2158 * register access, then wait for BSY to clear
2159 */
2160 timeout = jiffies + ATA_TMOUT_BOOT;
2161 while (dev1) {
2162 u8 nsect, lbal;
2163
2164 ap->ops->dev_select(ap, 1);
2165 if (ap->flags & ATA_FLAG_MMIO) {
2166 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2167 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2168 } else {
2169 nsect = inb(ioaddr->nsect_addr);
2170 lbal = inb(ioaddr->lbal_addr);
2171 }
2172 if ((nsect == 1) && (lbal == 1))
2173 break;
2174 if (time_after(jiffies, timeout)) {
2175 dev1 = 0;
2176 break;
2177 }
2178 msleep(50); /* give drive a breather */
2179 }
2180 if (dev1)
2181 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2182
2183 /* is all this really necessary? */
2184 ap->ops->dev_select(ap, 0);
2185 if (dev1)
2186 ap->ops->dev_select(ap, 1);
2187 if (dev0)
2188 ap->ops->dev_select(ap, 0);
2189}
2190
1da177e4
LT
2191static unsigned int ata_bus_softreset(struct ata_port *ap,
2192 unsigned int devmask)
2193{
2194 struct ata_ioports *ioaddr = &ap->ioaddr;
2195
2196 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2197
2198 /* software reset. causes dev0 to be selected */
2199 if (ap->flags & ATA_FLAG_MMIO) {
2200 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2201 udelay(20); /* FIXME: flush */
2202 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2203 udelay(20); /* FIXME: flush */
2204 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2205 } else {
2206 outb(ap->ctl, ioaddr->ctl_addr);
2207 udelay(10);
2208 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2209 udelay(10);
2210 outb(ap->ctl, ioaddr->ctl_addr);
2211 }
2212
2213 /* spec mandates ">= 2ms" before checking status.
2214 * We wait 150ms, because that was the magic delay used for
2215 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2216 * between when the ATA command register is written, and then
2217 * status is checked. Because waiting for "a while" before
2218 * checking status is fine, post SRST, we perform this magic
2219 * delay here as well.
09c7ad79
AC
2220 *
2221 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
2222 */
2223 msleep(150);
2224
2e9edbf8 2225 /* Before we perform post reset processing we want to see if
298a41ca
TH
2226 * the bus shows 0xFF because the odd clown forgets the D7
2227 * pulldown resistor.
2228 */
987d2f05
TH
2229 if (ata_check_status(ap) == 0xFF) {
2230 printk(KERN_ERR "ata%u: SRST failed (status 0xFF)\n", ap->id);
298a41ca 2231 return AC_ERR_OTHER;
987d2f05 2232 }
09c7ad79 2233
1da177e4
LT
2234 ata_bus_post_reset(ap, devmask);
2235
2236 return 0;
2237}
2238
2239/**
2240 * ata_bus_reset - reset host port and associated ATA channel
2241 * @ap: port to reset
2242 *
2243 * This is typically the first time we actually start issuing
2244 * commands to the ATA channel. We wait for BSY to clear, then
2245 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2246 * result. Determine what devices, if any, are on the channel
2247 * by looking at the device 0/1 error register. Look at the signature
2248 * stored in each device's taskfile registers, to determine if
2249 * the device is ATA or ATAPI.
2250 *
2251 * LOCKING:
0cba632b
JG
2252 * PCI/etc. bus probe sem.
2253 * Obtains host_set lock.
1da177e4
LT
2254 *
2255 * SIDE EFFECTS:
198e0fed 2256 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
2257 */
2258
2259void ata_bus_reset(struct ata_port *ap)
2260{
2261 struct ata_ioports *ioaddr = &ap->ioaddr;
2262 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2263 u8 err;
aec5c3c1 2264 unsigned int dev0, dev1 = 0, devmask = 0;
1da177e4
LT
2265
2266 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2267
2268 /* determine if device 0/1 are present */
2269 if (ap->flags & ATA_FLAG_SATA_RESET)
2270 dev0 = 1;
2271 else {
2272 dev0 = ata_devchk(ap, 0);
2273 if (slave_possible)
2274 dev1 = ata_devchk(ap, 1);
2275 }
2276
2277 if (dev0)
2278 devmask |= (1 << 0);
2279 if (dev1)
2280 devmask |= (1 << 1);
2281
2282 /* select device 0 again */
2283 ap->ops->dev_select(ap, 0);
2284
2285 /* issue bus reset */
2286 if (ap->flags & ATA_FLAG_SRST)
aec5c3c1
TH
2287 if (ata_bus_softreset(ap, devmask))
2288 goto err_out;
1da177e4
LT
2289
2290 /*
2291 * determine by signature whether we have ATA or ATAPI devices
2292 */
b4dc7623 2293 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 2294 if ((slave_possible) && (err != 0x81))
b4dc7623 2295 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
2296
2297 /* re-enable interrupts */
2298 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2299 ata_irq_on(ap);
2300
2301 /* is double-select really necessary? */
2302 if (ap->device[1].class != ATA_DEV_NONE)
2303 ap->ops->dev_select(ap, 1);
2304 if (ap->device[0].class != ATA_DEV_NONE)
2305 ap->ops->dev_select(ap, 0);
2306
2307 /* if no devices were detected, disable this port */
2308 if ((ap->device[0].class == ATA_DEV_NONE) &&
2309 (ap->device[1].class == ATA_DEV_NONE))
2310 goto err_out;
2311
2312 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2313 /* set up device control for ATA_FLAG_SATA_RESET */
2314 if (ap->flags & ATA_FLAG_MMIO)
2315 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2316 else
2317 outb(ap->ctl, ioaddr->ctl_addr);
2318 }
2319
2320 DPRINTK("EXIT\n");
2321 return;
2322
2323err_out:
2324 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2325 ap->ops->port_disable(ap);
2326
2327 DPRINTK("EXIT\n");
2328}
2329
7a7921e8
TH
2330static int sata_phy_resume(struct ata_port *ap)
2331{
2332 unsigned long timeout = jiffies + (HZ * 5);
852ee16a 2333 u32 scontrol, sstatus;
81952c54
TH
2334 int rc;
2335
2336 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2337 return rc;
7a7921e8 2338
852ee16a 2339 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
2340
2341 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2342 return rc;
7a7921e8
TH
2343
2344 /* Wait for phy to become ready, if necessary. */
2345 do {
2346 msleep(200);
81952c54
TH
2347 if ((rc = sata_scr_read(ap, SCR_STATUS, &sstatus)))
2348 return rc;
7a7921e8
TH
2349 if ((sstatus & 0xf) != 1)
2350 return 0;
2351 } while (time_before(jiffies, timeout));
2352
81952c54 2353 return -EBUSY;
7a7921e8
TH
2354}
2355
8a19ac89
TH
2356/**
2357 * ata_std_probeinit - initialize probing
2358 * @ap: port to be probed
2359 *
2360 * @ap is about to be probed. Initialize it. This function is
2361 * to be used as standard callback for ata_drive_probe_reset().
3a39746a
TH
2362 *
2363 * NOTE!!! Do not use this function as probeinit if a low level
2364 * driver implements only hardreset. Just pass NULL as probeinit
2365 * in that case. Using this function is probably okay but doing
2366 * so makes reset sequence different from the original
2367 * ->phy_reset implementation and Jeff nervous. :-P
8a19ac89 2368 */
17efc5f7 2369void ata_std_probeinit(struct ata_port *ap)
8a19ac89 2370{
81952c54 2371 u32 scontrol;
1c3fae4d 2372
81952c54
TH
2373 /* resume link */
2374 sata_phy_resume(ap);
1c3fae4d 2375
81952c54
TH
2376 /* init sata_spd_limit to the current value */
2377 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
2378 int spd = (scontrol >> 4) & 0xf;
2379 ap->sata_spd_limit &= (1 << spd) - 1;
3a39746a 2380 }
81952c54
TH
2381
2382 /* wait for device */
2383 if (ata_port_online(ap))
2384 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
8a19ac89
TH
2385}
2386
c2bd5804
TH
2387/**
2388 * ata_std_softreset - reset host port via ATA SRST
2389 * @ap: port to reset
c2bd5804
TH
2390 * @classes: resulting classes of attached devices
2391 *
2392 * Reset host port using ATA SRST. This function is to be used
2393 * as standard callback for ata_drive_*_reset() functions.
2394 *
2395 * LOCKING:
2396 * Kernel thread context (may sleep)
2397 *
2398 * RETURNS:
2399 * 0 on success, -errno otherwise.
2400 */
2bf2cb26 2401int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
c2bd5804
TH
2402{
2403 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2404 unsigned int devmask = 0, err_mask;
2405 u8 err;
2406
2407 DPRINTK("ENTER\n");
2408
81952c54 2409 if (ata_port_offline(ap)) {
3a39746a
TH
2410 classes[0] = ATA_DEV_NONE;
2411 goto out;
2412 }
2413
c2bd5804
TH
2414 /* determine if device 0/1 are present */
2415 if (ata_devchk(ap, 0))
2416 devmask |= (1 << 0);
2417 if (slave_possible && ata_devchk(ap, 1))
2418 devmask |= (1 << 1);
2419
c2bd5804
TH
2420 /* select device 0 again */
2421 ap->ops->dev_select(ap, 0);
2422
2423 /* issue bus reset */
2424 DPRINTK("about to softreset, devmask=%x\n", devmask);
2425 err_mask = ata_bus_softreset(ap, devmask);
2426 if (err_mask) {
2bf2cb26
TH
2427 printk(KERN_ERR "ata%u: SRST failed (err_mask=0x%x)\n",
2428 ap->id, err_mask);
c2bd5804
TH
2429 return -EIO;
2430 }
2431
2432 /* determine by signature whether we have ATA or ATAPI devices */
2433 classes[0] = ata_dev_try_classify(ap, 0, &err);
2434 if (slave_possible && err != 0x81)
2435 classes[1] = ata_dev_try_classify(ap, 1, &err);
2436
3a39746a 2437 out:
c2bd5804
TH
2438 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2439 return 0;
2440}
2441
2442/**
2443 * sata_std_hardreset - reset host port via SATA phy reset
2444 * @ap: port to reset
c2bd5804
TH
2445 * @class: resulting class of attached device
2446 *
2447 * SATA phy-reset host port using DET bits of SControl register.
2448 * This function is to be used as standard callback for
2449 * ata_drive_*_reset().
2450 *
2451 * LOCKING:
2452 * Kernel thread context (may sleep)
2453 *
2454 * RETURNS:
2455 * 0 on success, -errno otherwise.
2456 */
2bf2cb26 2457int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
c2bd5804 2458{
852ee16a 2459 u32 scontrol;
81952c54 2460 int rc;
852ee16a 2461
c2bd5804
TH
2462 DPRINTK("ENTER\n");
2463
3c567b7d 2464 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
2465 /* SATA spec says nothing about how to reconfigure
2466 * spd. To be on the safe side, turn off phy during
2467 * reconfiguration. This works for at least ICH7 AHCI
2468 * and Sil3124.
2469 */
81952c54
TH
2470 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2471 return rc;
2472
1c3fae4d 2473 scontrol = (scontrol & 0x0f0) | 0x302;
81952c54
TH
2474
2475 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2476 return rc;
1c3fae4d 2477
3c567b7d 2478 sata_set_spd(ap);
1c3fae4d
TH
2479 }
2480
2481 /* issue phy wake/reset */
81952c54
TH
2482 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2483 return rc;
2484
852ee16a 2485 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
2486
2487 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2488 return rc;
c2bd5804 2489
1c3fae4d 2490 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
2491 * 10.4.2 says at least 1 ms.
2492 */
2493 msleep(1);
2494
1c3fae4d 2495 /* bring phy back */
7a7921e8 2496 sata_phy_resume(ap);
c2bd5804 2497
c2bd5804 2498 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 2499 if (ata_port_offline(ap)) {
c2bd5804
TH
2500 *class = ATA_DEV_NONE;
2501 DPRINTK("EXIT, link offline\n");
2502 return 0;
2503 }
2504
2505 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
987d2f05
TH
2506 printk(KERN_ERR
2507 "ata%u: COMRESET failed (device not ready)\n", ap->id);
c2bd5804
TH
2508 return -EIO;
2509 }
2510
3a39746a
TH
2511 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2512
c2bd5804
TH
2513 *class = ata_dev_try_classify(ap, 0, NULL);
2514
2515 DPRINTK("EXIT, class=%u\n", *class);
2516 return 0;
2517}
2518
2519/**
2520 * ata_std_postreset - standard postreset callback
2521 * @ap: the target ata_port
2522 * @classes: classes of attached devices
2523 *
2524 * This function is invoked after a successful reset. Note that
2525 * the device might have been reset more than once using
2526 * different reset methods before postreset is invoked.
c2bd5804
TH
2527 *
2528 * This function is to be used as standard callback for
2529 * ata_drive_*_reset().
2530 *
2531 * LOCKING:
2532 * Kernel thread context (may sleep)
2533 */
2534void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2535{
2536 DPRINTK("ENTER\n");
2537
c2bd5804 2538 /* print link status */
81952c54 2539 sata_print_link_status(ap);
c2bd5804 2540
3a39746a
TH
2541 /* re-enable interrupts */
2542 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2543 ata_irq_on(ap);
c2bd5804
TH
2544
2545 /* is double-select really necessary? */
2546 if (classes[0] != ATA_DEV_NONE)
2547 ap->ops->dev_select(ap, 1);
2548 if (classes[1] != ATA_DEV_NONE)
2549 ap->ops->dev_select(ap, 0);
2550
3a39746a
TH
2551 /* bail out if no device is present */
2552 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2553 DPRINTK("EXIT, no device\n");
2554 return;
2555 }
2556
2557 /* set up device control */
2558 if (ap->ioaddr.ctl_addr) {
2559 if (ap->flags & ATA_FLAG_MMIO)
2560 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2561 else
2562 outb(ap->ctl, ap->ioaddr.ctl_addr);
2563 }
c2bd5804
TH
2564
2565 DPRINTK("EXIT\n");
2566}
2567
2568/**
2569 * ata_std_probe_reset - standard probe reset method
2570 * @ap: prot to perform probe-reset
2571 * @classes: resulting classes of attached devices
2572 *
2573 * The stock off-the-shelf ->probe_reset method.
2574 *
2575 * LOCKING:
2576 * Kernel thread context (may sleep)
2577 *
2578 * RETURNS:
2579 * 0 on success, -errno otherwise.
2580 */
2581int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2582{
2583 ata_reset_fn_t hardreset;
2584
2585 hardreset = NULL;
81952c54 2586 if (sata_scr_valid(ap))
c2bd5804
TH
2587 hardreset = sata_std_hardreset;
2588
8a19ac89 2589 return ata_drive_probe_reset(ap, ata_std_probeinit,
7944ea95 2590 ata_std_softreset, hardreset,
c2bd5804
TH
2591 ata_std_postreset, classes);
2592}
2593
2bf2cb26 2594int ata_do_reset(struct ata_port *ap, ata_reset_fn_t reset,
96bd39ec 2595 unsigned int *classes)
a62c0fc5
TH
2596{
2597 int i, rc;
2598
2599 for (i = 0; i < ATA_MAX_DEVICES; i++)
2600 classes[i] = ATA_DEV_UNKNOWN;
2601
2bf2cb26 2602 rc = reset(ap, classes);
a62c0fc5
TH
2603 if (rc)
2604 return rc;
2605
2606 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2607 * is complete and convert all ATA_DEV_UNKNOWN to
2608 * ATA_DEV_NONE.
2609 */
2610 for (i = 0; i < ATA_MAX_DEVICES; i++)
2611 if (classes[i] != ATA_DEV_UNKNOWN)
2612 break;
2613
2614 if (i < ATA_MAX_DEVICES)
2615 for (i = 0; i < ATA_MAX_DEVICES; i++)
2616 if (classes[i] == ATA_DEV_UNKNOWN)
2617 classes[i] = ATA_DEV_NONE;
2618
9974e7cc 2619 return 0;
a62c0fc5
TH
2620}
2621
2622/**
2623 * ata_drive_probe_reset - Perform probe reset with given methods
2624 * @ap: port to reset
7944ea95 2625 * @probeinit: probeinit method (can be NULL)
a62c0fc5
TH
2626 * @softreset: softreset method (can be NULL)
2627 * @hardreset: hardreset method (can be NULL)
2628 * @postreset: postreset method (can be NULL)
2629 * @classes: resulting classes of attached devices
2630 *
2631 * Reset the specified port and classify attached devices using
2632 * given methods. This function prefers softreset but tries all
2633 * possible reset sequences to reset and classify devices. This
2634 * function is intended to be used for constructing ->probe_reset
2635 * callback by low level drivers.
2636 *
2637 * Reset methods should follow the following rules.
2638 *
2639 * - Return 0 on sucess, -errno on failure.
2640 * - If classification is supported, fill classes[] with
2641 * recognized class codes.
2642 * - If classification is not supported, leave classes[] alone.
a62c0fc5
TH
2643 *
2644 * LOCKING:
2645 * Kernel thread context (may sleep)
2646 *
2647 * RETURNS:
2648 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2649 * if classification fails, and any error code from reset
2650 * methods.
2651 */
7944ea95 2652int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
a62c0fc5
TH
2653 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2654 ata_postreset_fn_t postreset, unsigned int *classes)
2655{
2656 int rc = -EINVAL;
2657
7944ea95
TH
2658 if (probeinit)
2659 probeinit(ap);
2660
3c567b7d 2661 if (softreset && !sata_set_spd_needed(ap)) {
96bd39ec 2662 rc = ata_do_reset(ap, softreset, classes);
9974e7cc
TH
2663 if (rc == 0 && classes[0] != ATA_DEV_UNKNOWN)
2664 goto done;
edbabd86
TH
2665 printk(KERN_INFO "ata%u: softreset failed, will try "
2666 "hardreset in 5 secs\n", ap->id);
2667 ssleep(5);
a62c0fc5
TH
2668 }
2669
2670 if (!hardreset)
9974e7cc 2671 goto done;
a62c0fc5 2672
90dac02c 2673 while (1) {
96bd39ec 2674 rc = ata_do_reset(ap, hardreset, classes);
90dac02c
TH
2675 if (rc == 0) {
2676 if (classes[0] != ATA_DEV_UNKNOWN)
2677 goto done;
2678 break;
2679 }
2680
3c567b7d 2681 if (sata_down_spd_limit(ap))
90dac02c 2682 goto done;
edbabd86
TH
2683
2684 printk(KERN_INFO "ata%u: hardreset failed, will retry "
2685 "in 5 secs\n", ap->id);
2686 ssleep(5);
90dac02c 2687 }
a62c0fc5 2688
edbabd86
TH
2689 if (softreset) {
2690 printk(KERN_INFO "ata%u: hardreset succeeded without "
2691 "classification, will retry softreset in 5 secs\n",
2692 ap->id);
2693 ssleep(5);
2694
96bd39ec 2695 rc = ata_do_reset(ap, softreset, classes);
edbabd86 2696 }
a62c0fc5 2697
9974e7cc 2698 done:
96bd39ec
TH
2699 if (rc == 0) {
2700 if (postreset)
2701 postreset(ap, classes);
2702 if (classes[0] == ATA_DEV_UNKNOWN)
2703 rc = -ENODEV;
2704 }
a62c0fc5
TH
2705 return rc;
2706}
2707
623a3128
TH
2708/**
2709 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
2710 * @dev: device to compare against
2711 * @new_class: class of the new device
2712 * @new_id: IDENTIFY page of the new device
2713 *
2714 * Compare @new_class and @new_id against @dev and determine
2715 * whether @dev is the device indicated by @new_class and
2716 * @new_id.
2717 *
2718 * LOCKING:
2719 * None.
2720 *
2721 * RETURNS:
2722 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2723 */
3373efd8
TH
2724static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2725 const u16 *new_id)
623a3128 2726{
3373efd8 2727 struct ata_port *ap = dev->ap;
623a3128
TH
2728 const u16 *old_id = dev->id;
2729 unsigned char model[2][41], serial[2][21];
2730 u64 new_n_sectors;
2731
2732 if (dev->class != new_class) {
2733 printk(KERN_INFO
2734 "ata%u: dev %u class mismatch %d != %d\n",
2735 ap->id, dev->devno, dev->class, new_class);
2736 return 0;
2737 }
2738
2739 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2740 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2741 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2742 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2743 new_n_sectors = ata_id_n_sectors(new_id);
2744
2745 if (strcmp(model[0], model[1])) {
2746 printk(KERN_INFO
2747 "ata%u: dev %u model number mismatch '%s' != '%s'\n",
2748 ap->id, dev->devno, model[0], model[1]);
2749 return 0;
2750 }
2751
2752 if (strcmp(serial[0], serial[1])) {
2753 printk(KERN_INFO
2754 "ata%u: dev %u serial number mismatch '%s' != '%s'\n",
2755 ap->id, dev->devno, serial[0], serial[1]);
2756 return 0;
2757 }
2758
2759 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2760 printk(KERN_INFO
2761 "ata%u: dev %u n_sectors mismatch %llu != %llu\n",
2762 ap->id, dev->devno, (unsigned long long)dev->n_sectors,
2763 (unsigned long long)new_n_sectors);
2764 return 0;
2765 }
2766
2767 return 1;
2768}
2769
2770/**
2771 * ata_dev_revalidate - Revalidate ATA device
623a3128
TH
2772 * @dev: device to revalidate
2773 * @post_reset: is this revalidation after reset?
2774 *
2775 * Re-read IDENTIFY page and make sure @dev is still attached to
2776 * the port.
2777 *
2778 * LOCKING:
2779 * Kernel thread context (may sleep)
2780 *
2781 * RETURNS:
2782 * 0 on success, negative errno otherwise
2783 */
3373efd8 2784int ata_dev_revalidate(struct ata_device *dev, int post_reset)
623a3128 2785{
3373efd8 2786 struct ata_port *ap = dev->ap;
5eb45c02 2787 unsigned int class = dev->class;
fe635c7e 2788 u16 *id = (void *)ap->sector_buf;
623a3128
TH
2789 int rc;
2790
5eb45c02
TH
2791 if (!ata_dev_enabled(dev)) {
2792 rc = -ENODEV;
2793 goto fail;
2794 }
623a3128 2795
fe635c7e 2796 /* read ID data */
3373efd8 2797 rc = ata_dev_read_id(dev, &class, post_reset, id);
623a3128
TH
2798 if (rc)
2799 goto fail;
2800
2801 /* is the device still there? */
3373efd8 2802 if (!ata_dev_same_device(dev, class, id)) {
623a3128
TH
2803 rc = -ENODEV;
2804 goto fail;
2805 }
2806
fe635c7e 2807 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
623a3128
TH
2808
2809 /* configure device according to the new ID */
3373efd8 2810 rc = ata_dev_configure(dev, 0);
5eb45c02
TH
2811 if (rc == 0)
2812 return 0;
623a3128
TH
2813
2814 fail:
2815 printk(KERN_ERR "ata%u: dev %u revalidation failed (errno=%d)\n",
2816 ap->id, dev->devno, rc);
623a3128
TH
2817 return rc;
2818}
2819
98ac62de 2820static const char * const ata_dma_blacklist [] = {
f4b15fef
AC
2821 "WDC AC11000H", NULL,
2822 "WDC AC22100H", NULL,
2823 "WDC AC32500H", NULL,
2824 "WDC AC33100H", NULL,
2825 "WDC AC31600H", NULL,
2826 "WDC AC32100H", "24.09P07",
2827 "WDC AC23200L", "21.10N21",
2828 "Compaq CRD-8241B", NULL,
2829 "CRD-8400B", NULL,
2830 "CRD-8480B", NULL,
2831 "CRD-8482B", NULL,
2832 "CRD-84", NULL,
2833 "SanDisk SDP3B", NULL,
2834 "SanDisk SDP3B-64", NULL,
2835 "SANYO CD-ROM CRD", NULL,
2836 "HITACHI CDR-8", NULL,
2e9edbf8 2837 "HITACHI CDR-8335", NULL,
f4b15fef 2838 "HITACHI CDR-8435", NULL,
2e9edbf8
JG
2839 "Toshiba CD-ROM XM-6202B", NULL,
2840 "TOSHIBA CD-ROM XM-1702BC", NULL,
2841 "CD-532E-A", NULL,
2842 "E-IDE CD-ROM CR-840", NULL,
2843 "CD-ROM Drive/F5A", NULL,
2844 "WPI CDD-820", NULL,
f4b15fef 2845 "SAMSUNG CD-ROM SC-148C", NULL,
2e9edbf8 2846 "SAMSUNG CD-ROM SC", NULL,
f4b15fef
AC
2847 "SanDisk SDP3B-64", NULL,
2848 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2849 "_NEC DV5800A", NULL,
2850 "SAMSUNG CD-ROM SN-124", "N001"
1da177e4 2851};
2e9edbf8 2852
f4b15fef
AC
2853static int ata_strim(char *s, size_t len)
2854{
2855 len = strnlen(s, len);
2856
2857 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2858 while ((len > 0) && (s[len - 1] == ' ')) {
2859 len--;
2860 s[len] = 0;
2861 }
2862 return len;
2863}
1da177e4 2864
057ace5e 2865static int ata_dma_blacklisted(const struct ata_device *dev)
1da177e4 2866{
f4b15fef
AC
2867 unsigned char model_num[40];
2868 unsigned char model_rev[16];
2869 unsigned int nlen, rlen;
1da177e4
LT
2870 int i;
2871
f4b15fef
AC
2872 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2873 sizeof(model_num));
2874 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2875 sizeof(model_rev));
2876 nlen = ata_strim(model_num, sizeof(model_num));
2877 rlen = ata_strim(model_rev, sizeof(model_rev));
1da177e4 2878
f4b15fef
AC
2879 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2880 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2881 if (ata_dma_blacklist[i+1] == NULL)
2882 return 1;
2883 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2884 return 1;
2885 }
2886 }
1da177e4
LT
2887 return 0;
2888}
2889
a6d5a51c
TH
2890/**
2891 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
2892 * @dev: Device to compute xfermask for
2893 *
acf356b1
TH
2894 * Compute supported xfermask of @dev and store it in
2895 * dev->*_mask. This function is responsible for applying all
2896 * known limits including host controller limits, device
2897 * blacklist, etc...
a6d5a51c 2898 *
600511e8
TH
2899 * FIXME: The current implementation limits all transfer modes to
2900 * the fastest of the lowested device on the port. This is not
05c8e0ac 2901 * required on most controllers.
600511e8 2902 *
a6d5a51c
TH
2903 * LOCKING:
2904 * None.
a6d5a51c 2905 */
3373efd8 2906static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 2907{
3373efd8 2908 struct ata_port *ap = dev->ap;
5444a6f4 2909 struct ata_host_set *hs = ap->host_set;
a6d5a51c
TH
2910 unsigned long xfer_mask;
2911 int i;
1da177e4 2912
565083e1
TH
2913 xfer_mask = ata_pack_xfermask(ap->pio_mask,
2914 ap->mwdma_mask, ap->udma_mask);
2915
2916 /* Apply cable rule here. Don't apply it early because when
2917 * we handle hot plug the cable type can itself change.
2918 */
2919 if (ap->cbl == ATA_CBL_PATA40)
2920 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
1da177e4 2921
5444a6f4 2922 /* FIXME: Use port-wide xfermask for now */
a6d5a51c
TH
2923 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2924 struct ata_device *d = &ap->device[i];
565083e1
TH
2925
2926 if (ata_dev_absent(d))
2927 continue;
2928
2929 if (ata_dev_disabled(d)) {
2930 /* to avoid violating device selection timing */
2931 xfer_mask &= ata_pack_xfermask(d->pio_mask,
2932 UINT_MAX, UINT_MAX);
a6d5a51c 2933 continue;
565083e1
TH
2934 }
2935
2936 xfer_mask &= ata_pack_xfermask(d->pio_mask,
2937 d->mwdma_mask, d->udma_mask);
a6d5a51c
TH
2938 xfer_mask &= ata_id_xfermask(d->id);
2939 if (ata_dma_blacklisted(d))
2940 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
1da177e4
LT
2941 }
2942
a6d5a51c
TH
2943 if (ata_dma_blacklisted(dev))
2944 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, "
2945 "disabling DMA\n", ap->id, dev->devno);
2946
5444a6f4
AC
2947 if (hs->flags & ATA_HOST_SIMPLEX) {
2948 if (hs->simplex_claimed)
2949 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2950 }
565083e1 2951
5444a6f4
AC
2952 if (ap->ops->mode_filter)
2953 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
2954
565083e1
TH
2955 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
2956 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
2957}
2958
1da177e4
LT
2959/**
2960 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
2961 * @dev: Device to which command will be sent
2962 *
780a87f7
JG
2963 * Issue SET FEATURES - XFER MODE command to device @dev
2964 * on port @ap.
2965 *
1da177e4 2966 * LOCKING:
0cba632b 2967 * PCI/etc. bus probe sem.
83206a29
TH
2968 *
2969 * RETURNS:
2970 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
2971 */
2972
3373efd8 2973static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 2974{
a0123703 2975 struct ata_taskfile tf;
83206a29 2976 unsigned int err_mask;
1da177e4
LT
2977
2978 /* set up set-features taskfile */
2979 DPRINTK("set features - xfer mode\n");
2980
3373efd8 2981 ata_tf_init(dev, &tf);
a0123703
TH
2982 tf.command = ATA_CMD_SET_FEATURES;
2983 tf.feature = SETFEATURES_XFER;
2984 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2985 tf.protocol = ATA_PROT_NODATA;
2986 tf.nsect = dev->xfer_mode;
1da177e4 2987
3373efd8 2988 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 2989
83206a29
TH
2990 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2991 return err_mask;
1da177e4
LT
2992}
2993
8bf62ece
AL
2994/**
2995 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 2996 * @dev: Device to which command will be sent
3373efd8
TH
2997 * @heads: Number of heads
2998 * @sectors: Number of sectors
8bf62ece
AL
2999 *
3000 * LOCKING:
6aff8f1f
TH
3001 * Kernel thread context (may sleep)
3002 *
3003 * RETURNS:
3004 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3005 */
3373efd8
TH
3006static unsigned int ata_dev_init_params(struct ata_device *dev,
3007 u16 heads, u16 sectors)
8bf62ece 3008{
a0123703 3009 struct ata_taskfile tf;
6aff8f1f 3010 unsigned int err_mask;
8bf62ece
AL
3011
3012 /* Number of sectors per track 1-255. Number of heads 1-16 */
3013 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3014 return AC_ERR_INVALID;
8bf62ece
AL
3015
3016 /* set up init dev params taskfile */
3017 DPRINTK("init dev params \n");
3018
3373efd8 3019 ata_tf_init(dev, &tf);
a0123703
TH
3020 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3021 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3022 tf.protocol = ATA_PROT_NODATA;
3023 tf.nsect = sectors;
3024 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3025
3373efd8 3026 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3027
6aff8f1f
TH
3028 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3029 return err_mask;
8bf62ece
AL
3030}
3031
1da177e4 3032/**
0cba632b
JG
3033 * ata_sg_clean - Unmap DMA memory associated with command
3034 * @qc: Command containing DMA memory to be released
3035 *
3036 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3037 *
3038 * LOCKING:
0cba632b 3039 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3040 */
3041
3042static void ata_sg_clean(struct ata_queued_cmd *qc)
3043{
3044 struct ata_port *ap = qc->ap;
cedc9a47 3045 struct scatterlist *sg = qc->__sg;
1da177e4 3046 int dir = qc->dma_dir;
cedc9a47 3047 void *pad_buf = NULL;
1da177e4 3048
a4631474
TH
3049 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3050 WARN_ON(sg == NULL);
1da177e4
LT
3051
3052 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 3053 WARN_ON(qc->n_elem > 1);
1da177e4 3054
2c13b7ce 3055 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 3056
cedc9a47
JG
3057 /* if we padded the buffer out to 32-bit bound, and data
3058 * xfer direction is from-device, we must copy from the
3059 * pad buffer back into the supplied buffer
3060 */
3061 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3062 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3063
3064 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 3065 if (qc->n_elem)
2f1f610b 3066 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
3067 /* restore last sg */
3068 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3069 if (pad_buf) {
3070 struct scatterlist *psg = &qc->pad_sgent;
3071 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3072 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 3073 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3074 }
3075 } else {
2e242fa9 3076 if (qc->n_elem)
2f1f610b 3077 dma_unmap_single(ap->dev,
e1410f2d
JG
3078 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3079 dir);
cedc9a47
JG
3080 /* restore sg */
3081 sg->length += qc->pad_len;
3082 if (pad_buf)
3083 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3084 pad_buf, qc->pad_len);
3085 }
1da177e4
LT
3086
3087 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 3088 qc->__sg = NULL;
1da177e4
LT
3089}
3090
3091/**
3092 * ata_fill_sg - Fill PCI IDE PRD table
3093 * @qc: Metadata associated with taskfile to be transferred
3094 *
780a87f7
JG
3095 * Fill PCI IDE PRD (scatter-gather) table with segments
3096 * associated with the current disk command.
3097 *
1da177e4 3098 * LOCKING:
780a87f7 3099 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3100 *
3101 */
3102static void ata_fill_sg(struct ata_queued_cmd *qc)
3103{
1da177e4 3104 struct ata_port *ap = qc->ap;
cedc9a47
JG
3105 struct scatterlist *sg;
3106 unsigned int idx;
1da177e4 3107
a4631474 3108 WARN_ON(qc->__sg == NULL);
f131883e 3109 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
3110
3111 idx = 0;
cedc9a47 3112 ata_for_each_sg(sg, qc) {
1da177e4
LT
3113 u32 addr, offset;
3114 u32 sg_len, len;
3115
3116 /* determine if physical DMA addr spans 64K boundary.
3117 * Note h/w doesn't support 64-bit, so we unconditionally
3118 * truncate dma_addr_t to u32.
3119 */
3120 addr = (u32) sg_dma_address(sg);
3121 sg_len = sg_dma_len(sg);
3122
3123 while (sg_len) {
3124 offset = addr & 0xffff;
3125 len = sg_len;
3126 if ((offset + sg_len) > 0x10000)
3127 len = 0x10000 - offset;
3128
3129 ap->prd[idx].addr = cpu_to_le32(addr);
3130 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3131 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3132
3133 idx++;
3134 sg_len -= len;
3135 addr += len;
3136 }
3137 }
3138
3139 if (idx)
3140 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3141}
3142/**
3143 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3144 * @qc: Metadata associated with taskfile to check
3145 *
780a87f7
JG
3146 * Allow low-level driver to filter ATA PACKET commands, returning
3147 * a status indicating whether or not it is OK to use DMA for the
3148 * supplied PACKET command.
3149 *
1da177e4 3150 * LOCKING:
0cba632b
JG
3151 * spin_lock_irqsave(host_set lock)
3152 *
1da177e4
LT
3153 * RETURNS: 0 when ATAPI DMA can be used
3154 * nonzero otherwise
3155 */
3156int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3157{
3158 struct ata_port *ap = qc->ap;
3159 int rc = 0; /* Assume ATAPI DMA is OK by default */
3160
3161 if (ap->ops->check_atapi_dma)
3162 rc = ap->ops->check_atapi_dma(qc);
3163
3164 return rc;
3165}
3166/**
3167 * ata_qc_prep - Prepare taskfile for submission
3168 * @qc: Metadata associated with taskfile to be prepared
3169 *
780a87f7
JG
3170 * Prepare ATA taskfile for submission.
3171 *
1da177e4
LT
3172 * LOCKING:
3173 * spin_lock_irqsave(host_set lock)
3174 */
3175void ata_qc_prep(struct ata_queued_cmd *qc)
3176{
3177 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3178 return;
3179
3180 ata_fill_sg(qc);
3181}
3182
e46834cd
BK
3183void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3184
0cba632b
JG
3185/**
3186 * ata_sg_init_one - Associate command with memory buffer
3187 * @qc: Command to be associated
3188 * @buf: Memory buffer
3189 * @buflen: Length of memory buffer, in bytes.
3190 *
3191 * Initialize the data-related elements of queued_cmd @qc
3192 * to point to a single memory buffer, @buf of byte length @buflen.
3193 *
3194 * LOCKING:
3195 * spin_lock_irqsave(host_set lock)
3196 */
3197
1da177e4
LT
3198void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3199{
3200 struct scatterlist *sg;
3201
3202 qc->flags |= ATA_QCFLAG_SINGLE;
3203
3204 memset(&qc->sgent, 0, sizeof(qc->sgent));
cedc9a47 3205 qc->__sg = &qc->sgent;
1da177e4 3206 qc->n_elem = 1;
cedc9a47 3207 qc->orig_n_elem = 1;
1da177e4
LT
3208 qc->buf_virt = buf;
3209
cedc9a47 3210 sg = qc->__sg;
f0612bbc 3211 sg_init_one(sg, buf, buflen);
1da177e4
LT
3212}
3213
0cba632b
JG
3214/**
3215 * ata_sg_init - Associate command with scatter-gather table.
3216 * @qc: Command to be associated
3217 * @sg: Scatter-gather table.
3218 * @n_elem: Number of elements in s/g table.
3219 *
3220 * Initialize the data-related elements of queued_cmd @qc
3221 * to point to a scatter-gather table @sg, containing @n_elem
3222 * elements.
3223 *
3224 * LOCKING:
3225 * spin_lock_irqsave(host_set lock)
3226 */
3227
1da177e4
LT
3228void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3229 unsigned int n_elem)
3230{
3231 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 3232 qc->__sg = sg;
1da177e4 3233 qc->n_elem = n_elem;
cedc9a47 3234 qc->orig_n_elem = n_elem;
1da177e4
LT
3235}
3236
3237/**
0cba632b
JG
3238 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3239 * @qc: Command with memory buffer to be mapped.
3240 *
3241 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
3242 *
3243 * LOCKING:
3244 * spin_lock_irqsave(host_set lock)
3245 *
3246 * RETURNS:
0cba632b 3247 * Zero on success, negative on error.
1da177e4
LT
3248 */
3249
3250static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3251{
3252 struct ata_port *ap = qc->ap;
3253 int dir = qc->dma_dir;
cedc9a47 3254 struct scatterlist *sg = qc->__sg;
1da177e4 3255 dma_addr_t dma_address;
2e242fa9 3256 int trim_sg = 0;
1da177e4 3257
cedc9a47
JG
3258 /* we must lengthen transfers to end on a 32-bit boundary */
3259 qc->pad_len = sg->length & 3;
3260 if (qc->pad_len) {
3261 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3262 struct scatterlist *psg = &qc->pad_sgent;
3263
a4631474 3264 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3265
3266 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3267
3268 if (qc->tf.flags & ATA_TFLAG_WRITE)
3269 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3270 qc->pad_len);
3271
3272 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3273 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3274 /* trim sg */
3275 sg->length -= qc->pad_len;
2e242fa9
TH
3276 if (sg->length == 0)
3277 trim_sg = 1;
cedc9a47
JG
3278
3279 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3280 sg->length, qc->pad_len);
3281 }
3282
2e242fa9
TH
3283 if (trim_sg) {
3284 qc->n_elem--;
e1410f2d
JG
3285 goto skip_map;
3286 }
3287
2f1f610b 3288 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 3289 sg->length, dir);
537a95d9
TH
3290 if (dma_mapping_error(dma_address)) {
3291 /* restore sg */
3292 sg->length += qc->pad_len;
1da177e4 3293 return -1;
537a95d9 3294 }
1da177e4
LT
3295
3296 sg_dma_address(sg) = dma_address;
32529e01 3297 sg_dma_len(sg) = sg->length;
1da177e4 3298
2e242fa9 3299skip_map:
1da177e4
LT
3300 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3301 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3302
3303 return 0;
3304}
3305
3306/**
0cba632b
JG
3307 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3308 * @qc: Command with scatter-gather table to be mapped.
3309 *
3310 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
3311 *
3312 * LOCKING:
3313 * spin_lock_irqsave(host_set lock)
3314 *
3315 * RETURNS:
0cba632b 3316 * Zero on success, negative on error.
1da177e4
LT
3317 *
3318 */
3319
3320static int ata_sg_setup(struct ata_queued_cmd *qc)
3321{
3322 struct ata_port *ap = qc->ap;
cedc9a47
JG
3323 struct scatterlist *sg = qc->__sg;
3324 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 3325 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
3326
3327 VPRINTK("ENTER, ata%u\n", ap->id);
a4631474 3328 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 3329
cedc9a47
JG
3330 /* we must lengthen transfers to end on a 32-bit boundary */
3331 qc->pad_len = lsg->length & 3;
3332 if (qc->pad_len) {
3333 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3334 struct scatterlist *psg = &qc->pad_sgent;
3335 unsigned int offset;
3336
a4631474 3337 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3338
3339 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3340
3341 /*
3342 * psg->page/offset are used to copy to-be-written
3343 * data in this function or read data in ata_sg_clean.
3344 */
3345 offset = lsg->offset + lsg->length - qc->pad_len;
3346 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3347 psg->offset = offset_in_page(offset);
3348
3349 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3350 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3351 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 3352 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3353 }
3354
3355 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3356 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3357 /* trim last sg */
3358 lsg->length -= qc->pad_len;
e1410f2d
JG
3359 if (lsg->length == 0)
3360 trim_sg = 1;
cedc9a47
JG
3361
3362 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3363 qc->n_elem - 1, lsg->length, qc->pad_len);
3364 }
3365
e1410f2d
JG
3366 pre_n_elem = qc->n_elem;
3367 if (trim_sg && pre_n_elem)
3368 pre_n_elem--;
3369
3370 if (!pre_n_elem) {
3371 n_elem = 0;
3372 goto skip_map;
3373 }
3374
1da177e4 3375 dir = qc->dma_dir;
2f1f610b 3376 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
3377 if (n_elem < 1) {
3378 /* restore last sg */
3379 lsg->length += qc->pad_len;
1da177e4 3380 return -1;
537a95d9 3381 }
1da177e4
LT
3382
3383 DPRINTK("%d sg elements mapped\n", n_elem);
3384
e1410f2d 3385skip_map:
1da177e4
LT
3386 qc->n_elem = n_elem;
3387
3388 return 0;
3389}
3390
40e8c82c
TH
3391/**
3392 * ata_poll_qc_complete - turn irq back on and finish qc
3393 * @qc: Command to complete
8e8b77dd 3394 * @err_mask: ATA status register content
40e8c82c
TH
3395 *
3396 * LOCKING:
3397 * None. (grabs host lock)
3398 */
3399
a22e2eb0 3400void ata_poll_qc_complete(struct ata_queued_cmd *qc)
40e8c82c
TH
3401{
3402 struct ata_port *ap = qc->ap;
b8f6153e 3403 unsigned long flags;
40e8c82c 3404
b8f6153e 3405 spin_lock_irqsave(&ap->host_set->lock, flags);
40e8c82c
TH
3406 ap->flags &= ~ATA_FLAG_NOINTR;
3407 ata_irq_on(ap);
a22e2eb0 3408 ata_qc_complete(qc);
b8f6153e 3409 spin_unlock_irqrestore(&ap->host_set->lock, flags);
40e8c82c
TH
3410}
3411
1da177e4 3412/**
c893a3ae 3413 * ata_pio_poll - poll using PIO, depending on current state
c91af2c8 3414 * @qc: qc in progress
1da177e4
LT
3415 *
3416 * LOCKING:
0cba632b 3417 * None. (executing in kernel thread context)
1da177e4
LT
3418 *
3419 * RETURNS:
6f0ef4fa 3420 * timeout value to use
1da177e4 3421 */
c91af2c8 3422static unsigned long ata_pio_poll(struct ata_queued_cmd *qc)
1da177e4 3423{
c91af2c8 3424 struct ata_port *ap = qc->ap;
1da177e4 3425 u8 status;
14be71f4
AL
3426 unsigned int poll_state = HSM_ST_UNKNOWN;
3427 unsigned int reg_state = HSM_ST_UNKNOWN;
14be71f4
AL
3428
3429 switch (ap->hsm_task_state) {
3430 case HSM_ST:
3431 case HSM_ST_POLL:
3432 poll_state = HSM_ST_POLL;
3433 reg_state = HSM_ST;
1da177e4 3434 break;
14be71f4
AL
3435 case HSM_ST_LAST:
3436 case HSM_ST_LAST_POLL:
3437 poll_state = HSM_ST_LAST_POLL;
3438 reg_state = HSM_ST_LAST;
1da177e4
LT
3439 break;
3440 default:
3441 BUG();
3442 break;
3443 }
3444
3445 status = ata_chk_status(ap);
3446 if (status & ATA_BUSY) {
3447 if (time_after(jiffies, ap->pio_task_timeout)) {
11a56d24 3448 qc->err_mask |= AC_ERR_TIMEOUT;
7c398335 3449 ap->hsm_task_state = HSM_ST_TMOUT;
1da177e4
LT
3450 return 0;
3451 }
14be71f4 3452 ap->hsm_task_state = poll_state;
1da177e4
LT
3453 return ATA_SHORT_PAUSE;
3454 }
3455
14be71f4 3456 ap->hsm_task_state = reg_state;
1da177e4
LT
3457 return 0;
3458}
3459
3460/**
6f0ef4fa 3461 * ata_pio_complete - check if drive is busy or idle
c91af2c8 3462 * @qc: qc to complete
1da177e4
LT
3463 *
3464 * LOCKING:
0cba632b 3465 * None. (executing in kernel thread context)
7fb6ec28
JG
3466 *
3467 * RETURNS:
3468 * Non-zero if qc completed, zero otherwise.
1da177e4 3469 */
c91af2c8 3470static int ata_pio_complete(struct ata_queued_cmd *qc)
1da177e4 3471{
c91af2c8 3472 struct ata_port *ap = qc->ap;
1da177e4
LT
3473 u8 drv_stat;
3474
3475 /*
31433ea3
AC
3476 * This is purely heuristic. This is a fast path. Sometimes when
3477 * we enter, BSY will be cleared in a chk-status or two. If not,
3478 * the drive is probably seeking or something. Snooze for a couple
3479 * msecs, then chk-status again. If still busy, fall back to
14be71f4 3480 * HSM_ST_POLL state.
1da177e4 3481 */
fe79e683
AL
3482 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3483 if (drv_stat & ATA_BUSY) {
1da177e4 3484 msleep(2);
fe79e683
AL
3485 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3486 if (drv_stat & ATA_BUSY) {
14be71f4 3487 ap->hsm_task_state = HSM_ST_LAST_POLL;
1da177e4 3488 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
7fb6ec28 3489 return 0;
1da177e4
LT
3490 }
3491 }
3492
3493 drv_stat = ata_wait_idle(ap);
3494 if (!ata_ok(drv_stat)) {
1c848984 3495 qc->err_mask |= __ac_err_mask(drv_stat);
14be71f4 3496 ap->hsm_task_state = HSM_ST_ERR;
7fb6ec28 3497 return 0;
1da177e4
LT
3498 }
3499
14be71f4 3500 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 3501
a4631474 3502 WARN_ON(qc->err_mask);
a22e2eb0 3503 ata_poll_qc_complete(qc);
7fb6ec28
JG
3504
3505 /* another command may start at this point */
3506
3507 return 1;
1da177e4
LT
3508}
3509
0baab86b
EF
3510
3511/**
c893a3ae 3512 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
3513 * @buf: Buffer to swap
3514 * @buf_words: Number of 16-bit words in buffer.
3515 *
3516 * Swap halves of 16-bit words if needed to convert from
3517 * little-endian byte order to native cpu byte order, or
3518 * vice-versa.
3519 *
3520 * LOCKING:
6f0ef4fa 3521 * Inherited from caller.
0baab86b 3522 */
1da177e4
LT
3523void swap_buf_le16(u16 *buf, unsigned int buf_words)
3524{
3525#ifdef __BIG_ENDIAN
3526 unsigned int i;
3527
3528 for (i = 0; i < buf_words; i++)
3529 buf[i] = le16_to_cpu(buf[i]);
3530#endif /* __BIG_ENDIAN */
3531}
3532
6ae4cfb5
AL
3533/**
3534 * ata_mmio_data_xfer - Transfer data by MMIO
3535 * @ap: port to read/write
3536 * @buf: data buffer
3537 * @buflen: buffer length
344babaa 3538 * @write_data: read/write
6ae4cfb5
AL
3539 *
3540 * Transfer data from/to the device data register by MMIO.
3541 *
3542 * LOCKING:
3543 * Inherited from caller.
6ae4cfb5
AL
3544 */
3545
1da177e4
LT
3546static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3547 unsigned int buflen, int write_data)
3548{
3549 unsigned int i;
3550 unsigned int words = buflen >> 1;
3551 u16 *buf16 = (u16 *) buf;
3552 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3553
6ae4cfb5 3554 /* Transfer multiple of 2 bytes */
1da177e4
LT
3555 if (write_data) {
3556 for (i = 0; i < words; i++)
3557 writew(le16_to_cpu(buf16[i]), mmio);
3558 } else {
3559 for (i = 0; i < words; i++)
3560 buf16[i] = cpu_to_le16(readw(mmio));
3561 }
6ae4cfb5
AL
3562
3563 /* Transfer trailing 1 byte, if any. */
3564 if (unlikely(buflen & 0x01)) {
3565 u16 align_buf[1] = { 0 };
3566 unsigned char *trailing_buf = buf + buflen - 1;
3567
3568 if (write_data) {
3569 memcpy(align_buf, trailing_buf, 1);
3570 writew(le16_to_cpu(align_buf[0]), mmio);
3571 } else {
3572 align_buf[0] = cpu_to_le16(readw(mmio));
3573 memcpy(trailing_buf, align_buf, 1);
3574 }
3575 }
1da177e4
LT
3576}
3577
6ae4cfb5
AL
3578/**
3579 * ata_pio_data_xfer - Transfer data by PIO
3580 * @ap: port to read/write
3581 * @buf: data buffer
3582 * @buflen: buffer length
344babaa 3583 * @write_data: read/write
6ae4cfb5
AL
3584 *
3585 * Transfer data from/to the device data register by PIO.
3586 *
3587 * LOCKING:
3588 * Inherited from caller.
6ae4cfb5
AL
3589 */
3590
1da177e4
LT
3591static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3592 unsigned int buflen, int write_data)
3593{
6ae4cfb5 3594 unsigned int words = buflen >> 1;
1da177e4 3595
6ae4cfb5 3596 /* Transfer multiple of 2 bytes */
1da177e4 3597 if (write_data)
6ae4cfb5 3598 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 3599 else
6ae4cfb5
AL
3600 insw(ap->ioaddr.data_addr, buf, words);
3601
3602 /* Transfer trailing 1 byte, if any. */
3603 if (unlikely(buflen & 0x01)) {
3604 u16 align_buf[1] = { 0 };
3605 unsigned char *trailing_buf = buf + buflen - 1;
3606
3607 if (write_data) {
3608 memcpy(align_buf, trailing_buf, 1);
3609 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3610 } else {
3611 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3612 memcpy(trailing_buf, align_buf, 1);
3613 }
3614 }
1da177e4
LT
3615}
3616
6ae4cfb5
AL
3617/**
3618 * ata_data_xfer - Transfer data from/to the data register.
3619 * @ap: port to read/write
3620 * @buf: data buffer
3621 * @buflen: buffer length
3622 * @do_write: read/write
3623 *
3624 * Transfer data from/to the device data register.
3625 *
3626 * LOCKING:
3627 * Inherited from caller.
6ae4cfb5
AL
3628 */
3629
1da177e4
LT
3630static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3631 unsigned int buflen, int do_write)
3632{
a1bd9e68
AC
3633 /* Make the crap hardware pay the costs not the good stuff */
3634 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3635 unsigned long flags;
3636 local_irq_save(flags);
3637 if (ap->flags & ATA_FLAG_MMIO)
3638 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3639 else
3640 ata_pio_data_xfer(ap, buf, buflen, do_write);
3641 local_irq_restore(flags);
3642 } else {
3643 if (ap->flags & ATA_FLAG_MMIO)
3644 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3645 else
3646 ata_pio_data_xfer(ap, buf, buflen, do_write);
3647 }
1da177e4
LT
3648}
3649
6ae4cfb5
AL
3650/**
3651 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3652 * @qc: Command on going
3653 *
3654 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3655 *
3656 * LOCKING:
3657 * Inherited from caller.
3658 */
3659
1da177e4
LT
3660static void ata_pio_sector(struct ata_queued_cmd *qc)
3661{
3662 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3663 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3664 struct ata_port *ap = qc->ap;
3665 struct page *page;
3666 unsigned int offset;
3667 unsigned char *buf;
3668
3669 if (qc->cursect == (qc->nsect - 1))
14be71f4 3670 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3671
3672 page = sg[qc->cursg].page;
3673 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3674
3675 /* get the current page and offset */
3676 page = nth_page(page, (offset >> PAGE_SHIFT));
3677 offset %= PAGE_SIZE;
3678
3679 buf = kmap(page) + offset;
3680
3681 qc->cursect++;
3682 qc->cursg_ofs++;
3683
32529e01 3684 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
1da177e4
LT
3685 qc->cursg++;
3686 qc->cursg_ofs = 0;
3687 }
3688
3689 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3690
3691 /* do the actual data transfer */
3692 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3693 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3694
3695 kunmap(page);
3696}
3697
6ae4cfb5
AL
3698/**
3699 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3700 * @qc: Command on going
3701 * @bytes: number of bytes
3702 *
3703 * Transfer Transfer data from/to the ATAPI device.
3704 *
3705 * LOCKING:
3706 * Inherited from caller.
3707 *
3708 */
3709
1da177e4
LT
3710static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3711{
3712 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3713 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3714 struct ata_port *ap = qc->ap;
3715 struct page *page;
3716 unsigned char *buf;
3717 unsigned int offset, count;
3718
563a6e1f 3719 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 3720 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3721
3722next_sg:
563a6e1f 3723 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 3724 /*
563a6e1f
AL
3725 * The end of qc->sg is reached and the device expects
3726 * more data to transfer. In order not to overrun qc->sg
3727 * and fulfill length specified in the byte count register,
3728 * - for read case, discard trailing data from the device
3729 * - for write case, padding zero data to the device
3730 */
3731 u16 pad_buf[1] = { 0 };
3732 unsigned int words = bytes >> 1;
3733 unsigned int i;
3734
3735 if (words) /* warning if bytes > 1 */
7fb6ec28 3736 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
563a6e1f
AL
3737 ap->id, bytes);
3738
3739 for (i = 0; i < words; i++)
3740 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3741
14be71f4 3742 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
3743 return;
3744 }
3745
cedc9a47 3746 sg = &qc->__sg[qc->cursg];
1da177e4 3747
1da177e4
LT
3748 page = sg->page;
3749 offset = sg->offset + qc->cursg_ofs;
3750
3751 /* get the current page and offset */
3752 page = nth_page(page, (offset >> PAGE_SHIFT));
3753 offset %= PAGE_SIZE;
3754
6952df03 3755 /* don't overrun current sg */
32529e01 3756 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
3757
3758 /* don't cross page boundaries */
3759 count = min(count, (unsigned int)PAGE_SIZE - offset);
3760
3761 buf = kmap(page) + offset;
3762
3763 bytes -= count;
3764 qc->curbytes += count;
3765 qc->cursg_ofs += count;
3766
32529e01 3767 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
3768 qc->cursg++;
3769 qc->cursg_ofs = 0;
3770 }
3771
3772 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3773
3774 /* do the actual data transfer */
3775 ata_data_xfer(ap, buf, count, do_write);
3776
3777 kunmap(page);
3778
563a6e1f 3779 if (bytes)
1da177e4 3780 goto next_sg;
1da177e4
LT
3781}
3782
6ae4cfb5
AL
3783/**
3784 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3785 * @qc: Command on going
3786 *
3787 * Transfer Transfer data from/to the ATAPI device.
3788 *
3789 * LOCKING:
3790 * Inherited from caller.
6ae4cfb5
AL
3791 */
3792
1da177e4
LT
3793static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3794{
3795 struct ata_port *ap = qc->ap;
3796 struct ata_device *dev = qc->dev;
3797 unsigned int ireason, bc_lo, bc_hi, bytes;
3798 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3799
3800 ap->ops->tf_read(ap, &qc->tf);
3801 ireason = qc->tf.nsect;
3802 bc_lo = qc->tf.lbam;
3803 bc_hi = qc->tf.lbah;
3804 bytes = (bc_hi << 8) | bc_lo;
3805
3806 /* shall be cleared to zero, indicating xfer of data */
3807 if (ireason & (1 << 0))
3808 goto err_out;
3809
3810 /* make sure transfer direction matches expected */
3811 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3812 if (do_write != i_write)
3813 goto err_out;
3814
3815 __atapi_pio_bytes(qc, bytes);
3816
3817 return;
3818
3819err_out:
3820 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3821 ap->id, dev->devno);
11a56d24 3822 qc->err_mask |= AC_ERR_HSM;
14be71f4 3823 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3824}
3825
3826/**
6f0ef4fa 3827 * ata_pio_block - start PIO on a block
c91af2c8 3828 * @qc: qc to transfer block for
1da177e4
LT
3829 *
3830 * LOCKING:
0cba632b 3831 * None. (executing in kernel thread context)
1da177e4 3832 */
c91af2c8 3833static void ata_pio_block(struct ata_queued_cmd *qc)
1da177e4 3834{
c91af2c8 3835 struct ata_port *ap = qc->ap;
1da177e4
LT
3836 u8 status;
3837
3838 /*
6f0ef4fa 3839 * This is purely heuristic. This is a fast path.
1da177e4
LT
3840 * Sometimes when we enter, BSY will be cleared in
3841 * a chk-status or two. If not, the drive is probably seeking
3842 * or something. Snooze for a couple msecs, then
3843 * chk-status again. If still busy, fall back to
14be71f4 3844 * HSM_ST_POLL state.
1da177e4
LT
3845 */
3846 status = ata_busy_wait(ap, ATA_BUSY, 5);
3847 if (status & ATA_BUSY) {
3848 msleep(2);
3849 status = ata_busy_wait(ap, ATA_BUSY, 10);
3850 if (status & ATA_BUSY) {
14be71f4 3851 ap->hsm_task_state = HSM_ST_POLL;
1da177e4
LT
3852 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3853 return;
3854 }
3855 }
3856
fe79e683
AL
3857 /* check error */
3858 if (status & (ATA_ERR | ATA_DF)) {
3859 qc->err_mask |= AC_ERR_DEV;
3860 ap->hsm_task_state = HSM_ST_ERR;
3861 return;
3862 }
3863
3864 /* transfer data if any */
1da177e4 3865 if (is_atapi_taskfile(&qc->tf)) {
fe79e683 3866 /* DRQ=0 means no more data to transfer */
1da177e4 3867 if ((status & ATA_DRQ) == 0) {
14be71f4 3868 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3869 return;
3870 }
3871
3872 atapi_pio_bytes(qc);
3873 } else {
3874 /* handle BSY=0, DRQ=0 as error */
3875 if ((status & ATA_DRQ) == 0) {
11a56d24 3876 qc->err_mask |= AC_ERR_HSM;
14be71f4 3877 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3878 return;
3879 }
3880
3881 ata_pio_sector(qc);
3882 }
3883}
3884
c91af2c8 3885static void ata_pio_error(struct ata_queued_cmd *qc)
1da177e4 3886{
c91af2c8 3887 struct ata_port *ap = qc->ap;
1da177e4 3888
0565c26d 3889 if (qc->tf.command != ATA_CMD_PACKET)
d63cb4a6
TH
3890 printk(KERN_WARNING "ata%u: dev %u PIO error\n",
3891 ap->id, qc->dev->devno);
0565c26d 3892
2e9edbf8 3893 /* make sure qc->err_mask is available to
1c848984
AL
3894 * know what's wrong and recover
3895 */
a4631474 3896 WARN_ON(qc->err_mask == 0);
1c848984 3897
14be71f4 3898 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 3899
a22e2eb0 3900 ata_poll_qc_complete(qc);
1da177e4
LT
3901}
3902
3903static void ata_pio_task(void *_data)
3904{
c91af2c8
TH
3905 struct ata_queued_cmd *qc = _data;
3906 struct ata_port *ap = qc->ap;
7fb6ec28
JG
3907 unsigned long timeout;
3908 int qc_completed;
3909
3910fsm_start:
3911 timeout = 0;
3912 qc_completed = 0;
1da177e4 3913
14be71f4
AL
3914 switch (ap->hsm_task_state) {
3915 case HSM_ST_IDLE:
1da177e4
LT
3916 return;
3917
14be71f4 3918 case HSM_ST:
c91af2c8 3919 ata_pio_block(qc);
1da177e4
LT
3920 break;
3921
14be71f4 3922 case HSM_ST_LAST:
c91af2c8 3923 qc_completed = ata_pio_complete(qc);
1da177e4
LT
3924 break;
3925
14be71f4
AL
3926 case HSM_ST_POLL:
3927 case HSM_ST_LAST_POLL:
c91af2c8 3928 timeout = ata_pio_poll(qc);
1da177e4
LT
3929 break;
3930
14be71f4
AL
3931 case HSM_ST_TMOUT:
3932 case HSM_ST_ERR:
c91af2c8 3933 ata_pio_error(qc);
1da177e4
LT
3934 return;
3935 }
3936
3937 if (timeout)
c91af2c8 3938 ata_port_queue_task(ap, ata_pio_task, qc, timeout);
7fb6ec28
JG
3939 else if (!qc_completed)
3940 goto fsm_start;
1da177e4
LT
3941}
3942
8061f5f0
TH
3943/**
3944 * atapi_packet_task - Write CDB bytes to hardware
c91af2c8 3945 * @_data: qc in progress
8061f5f0
TH
3946 *
3947 * When device has indicated its readiness to accept
3948 * a CDB, this function is called. Send the CDB.
3949 * If DMA is to be performed, exit immediately.
3950 * Otherwise, we are in polling mode, so poll
3951 * status under operation succeeds or fails.
3952 *
3953 * LOCKING:
3954 * Kernel thread context (may sleep)
3955 */
8061f5f0
TH
3956static void atapi_packet_task(void *_data)
3957{
c91af2c8
TH
3958 struct ata_queued_cmd *qc = _data;
3959 struct ata_port *ap = qc->ap;
8061f5f0
TH
3960 u8 status;
3961
8061f5f0
TH
3962 /* sleep-wait for BSY to clear */
3963 DPRINTK("busy wait\n");
3964 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
3965 qc->err_mask |= AC_ERR_TIMEOUT;
3966 goto err_out;
3967 }
3968
3969 /* make sure DRQ is set */
3970 status = ata_chk_status(ap);
3971 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
3972 qc->err_mask |= AC_ERR_HSM;
3973 goto err_out;
3974 }
3975
3976 /* send SCSI cdb */
3977 DPRINTK("send cdb\n");
3978 WARN_ON(qc->dev->cdb_len < 12);
3979
3980 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
3981 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
3982 unsigned long flags;
3983
3984 /* Once we're done issuing command and kicking bmdma,
3985 * irq handler takes over. To not lose irq, we need
3986 * to clear NOINTR flag before sending cdb, but
3987 * interrupt handler shouldn't be invoked before we're
3988 * finished. Hence, the following locking.
3989 */
3990 spin_lock_irqsave(&ap->host_set->lock, flags);
3991 ap->flags &= ~ATA_FLAG_NOINTR;
3992 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
3993 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
3994 ap->ops->bmdma_start(qc); /* initiate bmdma */
3995 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3996 } else {
3997 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
3998
3999 /* PIO commands are handled by polling */
4000 ap->hsm_task_state = HSM_ST;
c91af2c8 4001 ata_port_queue_task(ap, ata_pio_task, qc, 0);
8061f5f0
TH
4002 }
4003
4004 return;
4005
4006err_out:
4007 ata_poll_qc_complete(qc);
4008}
4009
1da177e4
LT
4010/**
4011 * ata_qc_new - Request an available ATA command, for queueing
4012 * @ap: Port associated with device @dev
4013 * @dev: Device from whom we request an available command structure
4014 *
4015 * LOCKING:
0cba632b 4016 * None.
1da177e4
LT
4017 */
4018
4019static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4020{
4021 struct ata_queued_cmd *qc = NULL;
4022 unsigned int i;
4023
4024 for (i = 0; i < ATA_MAX_QUEUE; i++)
4025 if (!test_and_set_bit(i, &ap->qactive)) {
4026 qc = ata_qc_from_tag(ap, i);
4027 break;
4028 }
4029
4030 if (qc)
4031 qc->tag = i;
4032
4033 return qc;
4034}
4035
4036/**
4037 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
4038 * @dev: Device from whom we request an available command structure
4039 *
4040 * LOCKING:
0cba632b 4041 * None.
1da177e4
LT
4042 */
4043
3373efd8 4044struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 4045{
3373efd8 4046 struct ata_port *ap = dev->ap;
1da177e4
LT
4047 struct ata_queued_cmd *qc;
4048
4049 qc = ata_qc_new(ap);
4050 if (qc) {
1da177e4
LT
4051 qc->scsicmd = NULL;
4052 qc->ap = ap;
4053 qc->dev = dev;
1da177e4 4054
2c13b7ce 4055 ata_qc_reinit(qc);
1da177e4
LT
4056 }
4057
4058 return qc;
4059}
4060
1da177e4
LT
4061/**
4062 * ata_qc_free - free unused ata_queued_cmd
4063 * @qc: Command to complete
4064 *
4065 * Designed to free unused ata_queued_cmd object
4066 * in case something prevents using it.
4067 *
4068 * LOCKING:
0cba632b 4069 * spin_lock_irqsave(host_set lock)
1da177e4
LT
4070 */
4071void ata_qc_free(struct ata_queued_cmd *qc)
4072{
4ba946e9
TH
4073 struct ata_port *ap = qc->ap;
4074 unsigned int tag;
4075
a4631474 4076 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 4077
4ba946e9
TH
4078 qc->flags = 0;
4079 tag = qc->tag;
4080 if (likely(ata_tag_valid(tag))) {
4ba946e9
TH
4081 qc->tag = ATA_TAG_POISON;
4082 clear_bit(tag, &ap->qactive);
4083 }
1da177e4
LT
4084}
4085
76014427 4086void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4087{
a4631474
TH
4088 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4089 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
4090
4091 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4092 ata_sg_clean(qc);
4093
7401abf2
TH
4094 /* command should be marked inactive atomically with qc completion */
4095 qc->ap->active_tag = ATA_TAG_POISON;
4096
3f3791d3
AL
4097 /* atapi: mark qc as inactive to prevent the interrupt handler
4098 * from completing the command twice later, before the error handler
4099 * is called. (when rc != 0 and atapi request sense is needed)
4100 */
4101 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4102
1da177e4 4103 /* call completion callback */
77853bf2 4104 qc->complete_fn(qc);
1da177e4
LT
4105}
4106
4107static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4108{
4109 struct ata_port *ap = qc->ap;
4110
4111 switch (qc->tf.protocol) {
4112 case ATA_PROT_DMA:
4113 case ATA_PROT_ATAPI_DMA:
4114 return 1;
4115
4116 case ATA_PROT_ATAPI:
4117 case ATA_PROT_PIO:
1da177e4
LT
4118 if (ap->flags & ATA_FLAG_PIO_DMA)
4119 return 1;
4120
4121 /* fall through */
4122
4123 default:
4124 return 0;
4125 }
4126
4127 /* never reached */
4128}
4129
4130/**
4131 * ata_qc_issue - issue taskfile to device
4132 * @qc: command to issue to device
4133 *
4134 * Prepare an ATA command to submission to device.
4135 * This includes mapping the data into a DMA-able
4136 * area, filling in the S/G table, and finally
4137 * writing the taskfile to hardware, starting the command.
4138 *
4139 * LOCKING:
4140 * spin_lock_irqsave(host_set lock)
1da177e4 4141 */
8e0e694a 4142void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4143{
4144 struct ata_port *ap = qc->ap;
4145
e4a70e76
TH
4146 qc->ap->active_tag = qc->tag;
4147 qc->flags |= ATA_QCFLAG_ACTIVE;
4148
1da177e4
LT
4149 if (ata_should_dma_map(qc)) {
4150 if (qc->flags & ATA_QCFLAG_SG) {
4151 if (ata_sg_setup(qc))
8e436af9 4152 goto sg_err;
1da177e4
LT
4153 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4154 if (ata_sg_setup_one(qc))
8e436af9 4155 goto sg_err;
1da177e4
LT
4156 }
4157 } else {
4158 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4159 }
4160
4161 ap->ops->qc_prep(qc);
4162
8e0e694a
TH
4163 qc->err_mask |= ap->ops->qc_issue(qc);
4164 if (unlikely(qc->err_mask))
4165 goto err;
4166 return;
1da177e4 4167
8e436af9
TH
4168sg_err:
4169 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
4170 qc->err_mask |= AC_ERR_SYSTEM;
4171err:
4172 ata_qc_complete(qc);
1da177e4
LT
4173}
4174
4175/**
4176 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4177 * @qc: command to issue to device
4178 *
4179 * Using various libata functions and hooks, this function
4180 * starts an ATA command. ATA commands are grouped into
4181 * classes called "protocols", and issuing each type of protocol
4182 * is slightly different.
4183 *
0baab86b
EF
4184 * May be used as the qc_issue() entry in ata_port_operations.
4185 *
1da177e4
LT
4186 * LOCKING:
4187 * spin_lock_irqsave(host_set lock)
4188 *
4189 * RETURNS:
9a3d9eb0 4190 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
4191 */
4192
9a3d9eb0 4193unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
4194{
4195 struct ata_port *ap = qc->ap;
4196
4197 ata_dev_select(ap, qc->dev->devno, 1, 0);
4198
4199 switch (qc->tf.protocol) {
4200 case ATA_PROT_NODATA:
e5338254 4201 ata_tf_to_host(ap, &qc->tf);
1da177e4
LT
4202 break;
4203
4204 case ATA_PROT_DMA:
4205 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4206 ap->ops->bmdma_setup(qc); /* set up bmdma */
4207 ap->ops->bmdma_start(qc); /* initiate bmdma */
4208 break;
4209
4210 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
4211 ata_qc_set_polling(qc);
e5338254 4212 ata_tf_to_host(ap, &qc->tf);
14be71f4 4213 ap->hsm_task_state = HSM_ST;
c91af2c8 4214 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
4215 break;
4216
4217 case ATA_PROT_ATAPI:
4218 ata_qc_set_polling(qc);
e5338254 4219 ata_tf_to_host(ap, &qc->tf);
c91af2c8 4220 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
1da177e4
LT
4221 break;
4222
4223 case ATA_PROT_ATAPI_NODATA:
c1389503 4224 ap->flags |= ATA_FLAG_NOINTR;
e5338254 4225 ata_tf_to_host(ap, &qc->tf);
c91af2c8 4226 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
1da177e4
LT
4227 break;
4228
4229 case ATA_PROT_ATAPI_DMA:
c1389503 4230 ap->flags |= ATA_FLAG_NOINTR;
1da177e4
LT
4231 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4232 ap->ops->bmdma_setup(qc); /* set up bmdma */
c91af2c8 4233 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
1da177e4
LT
4234 break;
4235
4236 default:
4237 WARN_ON(1);
9a3d9eb0 4238 return AC_ERR_SYSTEM;
1da177e4
LT
4239 }
4240
4241 return 0;
4242}
4243
1da177e4
LT
4244/**
4245 * ata_host_intr - Handle host interrupt for given (port, task)
4246 * @ap: Port on which interrupt arrived (possibly...)
4247 * @qc: Taskfile currently active in engine
4248 *
4249 * Handle host interrupt for given queued command. Currently,
4250 * only DMA interrupts are handled. All other commands are
4251 * handled via polling with interrupts disabled (nIEN bit).
4252 *
4253 * LOCKING:
4254 * spin_lock_irqsave(host_set lock)
4255 *
4256 * RETURNS:
4257 * One if interrupt was handled, zero if not (shared irq).
4258 */
4259
4260inline unsigned int ata_host_intr (struct ata_port *ap,
4261 struct ata_queued_cmd *qc)
4262{
4263 u8 status, host_stat;
4264
4265 switch (qc->tf.protocol) {
4266
4267 case ATA_PROT_DMA:
4268 case ATA_PROT_ATAPI_DMA:
4269 case ATA_PROT_ATAPI:
4270 /* check status of DMA engine */
4271 host_stat = ap->ops->bmdma_status(ap);
4272 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4273
4274 /* if it's not our irq... */
4275 if (!(host_stat & ATA_DMA_INTR))
4276 goto idle_irq;
4277
4278 /* before we do anything else, clear DMA-Start bit */
b73fc89f 4279 ap->ops->bmdma_stop(qc);
1da177e4
LT
4280
4281 /* fall through */
4282
4283 case ATA_PROT_ATAPI_NODATA:
4284 case ATA_PROT_NODATA:
4285 /* check altstatus */
4286 status = ata_altstatus(ap);
4287 if (status & ATA_BUSY)
4288 goto idle_irq;
4289
4290 /* check main status, clearing INTRQ */
4291 status = ata_chk_status(ap);
4292 if (unlikely(status & ATA_BUSY))
4293 goto idle_irq;
4294 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4295 ap->id, qc->tf.protocol, status);
4296
4297 /* ack bmdma irq events */
4298 ap->ops->irq_clear(ap);
4299
4300 /* complete taskfile transaction */
a22e2eb0
AL
4301 qc->err_mask |= ac_err_mask(status);
4302 ata_qc_complete(qc);
1da177e4
LT
4303 break;
4304
4305 default:
4306 goto idle_irq;
4307 }
4308
4309 return 1; /* irq handled */
4310
4311idle_irq:
4312 ap->stats.idle_irq++;
4313
4314#ifdef ATA_IRQ_TRAP
4315 if ((ap->stats.idle_irq % 1000) == 0) {
1da177e4
LT
4316 ata_irq_ack(ap, 0); /* debug trap */
4317 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
23cfce89 4318 return 1;
1da177e4
LT
4319 }
4320#endif
4321 return 0; /* irq not handled */
4322}
4323
4324/**
4325 * ata_interrupt - Default ATA host interrupt handler
0cba632b
JG
4326 * @irq: irq line (unused)
4327 * @dev_instance: pointer to our ata_host_set information structure
1da177e4
LT
4328 * @regs: unused
4329 *
0cba632b
JG
4330 * Default interrupt handler for PCI IDE devices. Calls
4331 * ata_host_intr() for each port that is not disabled.
4332 *
1da177e4 4333 * LOCKING:
0cba632b 4334 * Obtains host_set lock during operation.
1da177e4
LT
4335 *
4336 * RETURNS:
0cba632b 4337 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
4338 */
4339
4340irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4341{
4342 struct ata_host_set *host_set = dev_instance;
4343 unsigned int i;
4344 unsigned int handled = 0;
4345 unsigned long flags;
4346
4347 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4348 spin_lock_irqsave(&host_set->lock, flags);
4349
4350 for (i = 0; i < host_set->n_ports; i++) {
4351 struct ata_port *ap;
4352
4353 ap = host_set->ports[i];
c1389503 4354 if (ap &&
198e0fed 4355 !(ap->flags & (ATA_FLAG_DISABLED | ATA_FLAG_NOINTR))) {
1da177e4
LT
4356 struct ata_queued_cmd *qc;
4357
4358 qc = ata_qc_from_tag(ap, ap->active_tag);
21b1ed74
AL
4359 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4360 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
4361 handled |= ata_host_intr(ap, qc);
4362 }
4363 }
4364
4365 spin_unlock_irqrestore(&host_set->lock, flags);
4366
4367 return IRQ_RETVAL(handled);
4368}
4369
34bf2170
TH
4370/**
4371 * sata_scr_valid - test whether SCRs are accessible
4372 * @ap: ATA port to test SCR accessibility for
4373 *
4374 * Test whether SCRs are accessible for @ap.
4375 *
4376 * LOCKING:
4377 * None.
4378 *
4379 * RETURNS:
4380 * 1 if SCRs are accessible, 0 otherwise.
4381 */
4382int sata_scr_valid(struct ata_port *ap)
4383{
4384 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4385}
4386
4387/**
4388 * sata_scr_read - read SCR register of the specified port
4389 * @ap: ATA port to read SCR for
4390 * @reg: SCR to read
4391 * @val: Place to store read value
4392 *
4393 * Read SCR register @reg of @ap into *@val. This function is
4394 * guaranteed to succeed if the cable type of the port is SATA
4395 * and the port implements ->scr_read.
4396 *
4397 * LOCKING:
4398 * None.
4399 *
4400 * RETURNS:
4401 * 0 on success, negative errno on failure.
4402 */
4403int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
4404{
4405 if (sata_scr_valid(ap)) {
4406 *val = ap->ops->scr_read(ap, reg);
4407 return 0;
4408 }
4409 return -EOPNOTSUPP;
4410}
4411
4412/**
4413 * sata_scr_write - write SCR register of the specified port
4414 * @ap: ATA port to write SCR for
4415 * @reg: SCR to write
4416 * @val: value to write
4417 *
4418 * Write @val to SCR register @reg of @ap. This function is
4419 * guaranteed to succeed if the cable type of the port is SATA
4420 * and the port implements ->scr_read.
4421 *
4422 * LOCKING:
4423 * None.
4424 *
4425 * RETURNS:
4426 * 0 on success, negative errno on failure.
4427 */
4428int sata_scr_write(struct ata_port *ap, int reg, u32 val)
4429{
4430 if (sata_scr_valid(ap)) {
4431 ap->ops->scr_write(ap, reg, val);
4432 return 0;
4433 }
4434 return -EOPNOTSUPP;
4435}
4436
4437/**
4438 * sata_scr_write_flush - write SCR register of the specified port and flush
4439 * @ap: ATA port to write SCR for
4440 * @reg: SCR to write
4441 * @val: value to write
4442 *
4443 * This function is identical to sata_scr_write() except that this
4444 * function performs flush after writing to the register.
4445 *
4446 * LOCKING:
4447 * None.
4448 *
4449 * RETURNS:
4450 * 0 on success, negative errno on failure.
4451 */
4452int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
4453{
4454 if (sata_scr_valid(ap)) {
4455 ap->ops->scr_write(ap, reg, val);
4456 ap->ops->scr_read(ap, reg);
4457 return 0;
4458 }
4459 return -EOPNOTSUPP;
4460}
4461
4462/**
4463 * ata_port_online - test whether the given port is online
4464 * @ap: ATA port to test
4465 *
4466 * Test whether @ap is online. Note that this function returns 0
4467 * if online status of @ap cannot be obtained, so
4468 * ata_port_online(ap) != !ata_port_offline(ap).
4469 *
4470 * LOCKING:
4471 * None.
4472 *
4473 * RETURNS:
4474 * 1 if the port online status is available and online.
4475 */
4476int ata_port_online(struct ata_port *ap)
4477{
4478 u32 sstatus;
4479
4480 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
4481 return 1;
4482 return 0;
4483}
4484
4485/**
4486 * ata_port_offline - test whether the given port is offline
4487 * @ap: ATA port to test
4488 *
4489 * Test whether @ap is offline. Note that this function returns
4490 * 0 if offline status of @ap cannot be obtained, so
4491 * ata_port_online(ap) != !ata_port_offline(ap).
4492 *
4493 * LOCKING:
4494 * None.
4495 *
4496 * RETURNS:
4497 * 1 if the port offline status is available and offline.
4498 */
4499int ata_port_offline(struct ata_port *ap)
4500{
4501 u32 sstatus;
4502
4503 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
4504 return 1;
4505 return 0;
4506}
0baab86b 4507
9b847548
JA
4508/*
4509 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4510 * without filling any other registers
4511 */
3373efd8 4512static int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
9b847548
JA
4513{
4514 struct ata_taskfile tf;
4515 int err;
4516
3373efd8 4517 ata_tf_init(dev, &tf);
9b847548
JA
4518
4519 tf.command = cmd;
4520 tf.flags |= ATA_TFLAG_DEVICE;
4521 tf.protocol = ATA_PROT_NODATA;
4522
3373efd8 4523 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
9b847548
JA
4524 if (err)
4525 printk(KERN_ERR "%s: ata command failed: %d\n",
4526 __FUNCTION__, err);
4527
4528 return err;
4529}
4530
3373efd8 4531static int ata_flush_cache(struct ata_device *dev)
9b847548
JA
4532{
4533 u8 cmd;
4534
4535 if (!ata_try_flush_cache(dev))
4536 return 0;
4537
4538 if (ata_id_has_flush_ext(dev->id))
4539 cmd = ATA_CMD_FLUSH_EXT;
4540 else
4541 cmd = ATA_CMD_FLUSH;
4542
3373efd8 4543 return ata_do_simple_cmd(dev, cmd);
9b847548
JA
4544}
4545
3373efd8 4546static int ata_standby_drive(struct ata_device *dev)
9b847548 4547{
3373efd8 4548 return ata_do_simple_cmd(dev, ATA_CMD_STANDBYNOW1);
9b847548
JA
4549}
4550
3373efd8 4551static int ata_start_drive(struct ata_device *dev)
9b847548 4552{
3373efd8 4553 return ata_do_simple_cmd(dev, ATA_CMD_IDLEIMMEDIATE);
9b847548
JA
4554}
4555
4556/**
4557 * ata_device_resume - wakeup a previously suspended devices
c893a3ae 4558 * @dev: the device to resume
9b847548
JA
4559 *
4560 * Kick the drive back into action, by sending it an idle immediate
4561 * command and making sure its transfer mode matches between drive
4562 * and host.
4563 *
4564 */
3373efd8 4565int ata_device_resume(struct ata_device *dev)
9b847548 4566{
3373efd8
TH
4567 struct ata_port *ap = dev->ap;
4568
9b847548 4569 if (ap->flags & ATA_FLAG_SUSPENDED) {
e82cbdb9 4570 struct ata_device *failed_dev;
9b847548 4571 ap->flags &= ~ATA_FLAG_SUSPENDED;
e82cbdb9 4572 while (ata_set_mode(ap, &failed_dev))
3373efd8 4573 ata_dev_disable(failed_dev);
9b847548 4574 }
e1211e3f 4575 if (!ata_dev_enabled(dev))
9b847548
JA
4576 return 0;
4577 if (dev->class == ATA_DEV_ATA)
3373efd8 4578 ata_start_drive(dev);
9b847548
JA
4579
4580 return 0;
4581}
4582
4583/**
4584 * ata_device_suspend - prepare a device for suspend
c893a3ae 4585 * @dev: the device to suspend
9b847548
JA
4586 *
4587 * Flush the cache on the drive, if appropriate, then issue a
4588 * standbynow command.
9b847548 4589 */
3373efd8 4590int ata_device_suspend(struct ata_device *dev, pm_message_t state)
9b847548 4591{
3373efd8
TH
4592 struct ata_port *ap = dev->ap;
4593
e1211e3f 4594 if (!ata_dev_enabled(dev))
9b847548
JA
4595 return 0;
4596 if (dev->class == ATA_DEV_ATA)
3373efd8 4597 ata_flush_cache(dev);
9b847548 4598
082776e4 4599 if (state.event != PM_EVENT_FREEZE)
3373efd8 4600 ata_standby_drive(dev);
9b847548
JA
4601 ap->flags |= ATA_FLAG_SUSPENDED;
4602 return 0;
4603}
4604
c893a3ae
RD
4605/**
4606 * ata_port_start - Set port up for dma.
4607 * @ap: Port to initialize
4608 *
4609 * Called just after data structures for each port are
4610 * initialized. Allocates space for PRD table.
4611 *
4612 * May be used as the port_start() entry in ata_port_operations.
4613 *
4614 * LOCKING:
4615 * Inherited from caller.
4616 */
4617
1da177e4
LT
4618int ata_port_start (struct ata_port *ap)
4619{
2f1f610b 4620 struct device *dev = ap->dev;
6037d6bb 4621 int rc;
1da177e4
LT
4622
4623 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4624 if (!ap->prd)
4625 return -ENOMEM;
4626
6037d6bb
JG
4627 rc = ata_pad_alloc(ap, dev);
4628 if (rc) {
cedc9a47 4629 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4630 return rc;
cedc9a47
JG
4631 }
4632
1da177e4
LT
4633 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4634
4635 return 0;
4636}
4637
0baab86b
EF
4638
4639/**
4640 * ata_port_stop - Undo ata_port_start()
4641 * @ap: Port to shut down
4642 *
4643 * Frees the PRD table.
4644 *
4645 * May be used as the port_stop() entry in ata_port_operations.
4646 *
4647 * LOCKING:
6f0ef4fa 4648 * Inherited from caller.
0baab86b
EF
4649 */
4650
1da177e4
LT
4651void ata_port_stop (struct ata_port *ap)
4652{
2f1f610b 4653 struct device *dev = ap->dev;
1da177e4
LT
4654
4655 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4656 ata_pad_free(ap, dev);
1da177e4
LT
4657}
4658
aa8f0dc6
JG
4659void ata_host_stop (struct ata_host_set *host_set)
4660{
4661 if (host_set->mmio_base)
4662 iounmap(host_set->mmio_base);
4663}
4664
4665
1da177e4
LT
4666/**
4667 * ata_host_remove - Unregister SCSI host structure with upper layers
4668 * @ap: Port to unregister
4669 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4670 *
4671 * LOCKING:
6f0ef4fa 4672 * Inherited from caller.
1da177e4
LT
4673 */
4674
4675static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4676{
4677 struct Scsi_Host *sh = ap->host;
4678
4679 DPRINTK("ENTER\n");
4680
4681 if (do_unregister)
4682 scsi_remove_host(sh);
4683
4684 ap->ops->port_stop(ap);
4685}
4686
4687/**
4688 * ata_host_init - Initialize an ata_port structure
4689 * @ap: Structure to initialize
4690 * @host: associated SCSI mid-layer structure
4691 * @host_set: Collection of hosts to which @ap belongs
4692 * @ent: Probe information provided by low-level driver
4693 * @port_no: Port number associated with this ata_port
4694 *
0cba632b
JG
4695 * Initialize a new ata_port structure, and its associated
4696 * scsi_host.
4697 *
1da177e4 4698 * LOCKING:
0cba632b 4699 * Inherited from caller.
1da177e4
LT
4700 */
4701
4702static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4703 struct ata_host_set *host_set,
057ace5e 4704 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
4705{
4706 unsigned int i;
4707
4708 host->max_id = 16;
4709 host->max_lun = 1;
4710 host->max_channel = 1;
4711 host->unique_id = ata_unique_id++;
4712 host->max_cmd_len = 12;
12413197 4713
198e0fed 4714 ap->flags = ATA_FLAG_DISABLED;
1da177e4
LT
4715 ap->id = host->unique_id;
4716 ap->host = host;
4717 ap->ctl = ATA_DEVCTL_OBS;
4718 ap->host_set = host_set;
2f1f610b 4719 ap->dev = ent->dev;
1da177e4
LT
4720 ap->port_no = port_no;
4721 ap->hard_port_no =
4722 ent->legacy_mode ? ent->hard_port_no : port_no;
4723 ap->pio_mask = ent->pio_mask;
4724 ap->mwdma_mask = ent->mwdma_mask;
4725 ap->udma_mask = ent->udma_mask;
4726 ap->flags |= ent->host_flags;
4727 ap->ops = ent->port_ops;
1c3fae4d 4728 ap->sata_spd_limit = UINT_MAX;
1da177e4
LT
4729 ap->active_tag = ATA_TAG_POISON;
4730 ap->last_ctl = 0xFF;
4731
86e45b6b 4732 INIT_WORK(&ap->port_task, NULL, NULL);
a72ec4ce 4733 INIT_LIST_HEAD(&ap->eh_done_q);
1da177e4 4734
838df628
TH
4735 /* set cable type */
4736 ap->cbl = ATA_CBL_NONE;
4737 if (ap->flags & ATA_FLAG_SATA)
4738 ap->cbl = ATA_CBL_SATA;
4739
acf356b1
TH
4740 for (i = 0; i < ATA_MAX_DEVICES; i++) {
4741 struct ata_device *dev = &ap->device[i];
38d87234 4742 dev->ap = ap;
acf356b1
TH
4743 dev->devno = i;
4744 dev->pio_mask = UINT_MAX;
4745 dev->mwdma_mask = UINT_MAX;
4746 dev->udma_mask = UINT_MAX;
4747 }
1da177e4
LT
4748
4749#ifdef ATA_IRQ_TRAP
4750 ap->stats.unhandled_irq = 1;
4751 ap->stats.idle_irq = 1;
4752#endif
4753
4754 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4755}
4756
4757/**
4758 * ata_host_add - Attach low-level ATA driver to system
4759 * @ent: Information provided by low-level driver
4760 * @host_set: Collections of ports to which we add
4761 * @port_no: Port number associated with this host
4762 *
0cba632b
JG
4763 * Attach low-level ATA driver to system.
4764 *
1da177e4 4765 * LOCKING:
0cba632b 4766 * PCI/etc. bus probe sem.
1da177e4
LT
4767 *
4768 * RETURNS:
0cba632b 4769 * New ata_port on success, for NULL on error.
1da177e4
LT
4770 */
4771
057ace5e 4772static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
1da177e4
LT
4773 struct ata_host_set *host_set,
4774 unsigned int port_no)
4775{
4776 struct Scsi_Host *host;
4777 struct ata_port *ap;
4778 int rc;
4779
4780 DPRINTK("ENTER\n");
aec5c3c1
TH
4781
4782 if (!ent->port_ops->probe_reset &&
4783 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
4784 printk(KERN_ERR "ata%u: no reset mechanism available\n",
4785 port_no);
4786 return NULL;
4787 }
4788
1da177e4
LT
4789 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4790 if (!host)
4791 return NULL;
4792
30afc84c
TH
4793 host->transportt = &ata_scsi_transport_template;
4794
35bb94b1 4795 ap = ata_shost_to_port(host);
1da177e4
LT
4796
4797 ata_host_init(ap, host, host_set, ent, port_no);
4798
4799 rc = ap->ops->port_start(ap);
4800 if (rc)
4801 goto err_out;
4802
4803 return ap;
4804
4805err_out:
4806 scsi_host_put(host);
4807 return NULL;
4808}
4809
4810/**
0cba632b
JG
4811 * ata_device_add - Register hardware device with ATA and SCSI layers
4812 * @ent: Probe information describing hardware device to be registered
4813 *
4814 * This function processes the information provided in the probe
4815 * information struct @ent, allocates the necessary ATA and SCSI
4816 * host information structures, initializes them, and registers
4817 * everything with requisite kernel subsystems.
4818 *
4819 * This function requests irqs, probes the ATA bus, and probes
4820 * the SCSI bus.
1da177e4
LT
4821 *
4822 * LOCKING:
0cba632b 4823 * PCI/etc. bus probe sem.
1da177e4
LT
4824 *
4825 * RETURNS:
0cba632b 4826 * Number of ports registered. Zero on error (no ports registered).
1da177e4
LT
4827 */
4828
057ace5e 4829int ata_device_add(const struct ata_probe_ent *ent)
1da177e4
LT
4830{
4831 unsigned int count = 0, i;
4832 struct device *dev = ent->dev;
4833 struct ata_host_set *host_set;
4834
4835 DPRINTK("ENTER\n");
4836 /* alloc a container for our list of ATA ports (buses) */
57f3bda8 4837 host_set = kzalloc(sizeof(struct ata_host_set) +
1da177e4
LT
4838 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4839 if (!host_set)
4840 return 0;
1da177e4
LT
4841 spin_lock_init(&host_set->lock);
4842
4843 host_set->dev = dev;
4844 host_set->n_ports = ent->n_ports;
4845 host_set->irq = ent->irq;
4846 host_set->mmio_base = ent->mmio_base;
4847 host_set->private_data = ent->private_data;
4848 host_set->ops = ent->port_ops;
5444a6f4 4849 host_set->flags = ent->host_set_flags;
1da177e4
LT
4850
4851 /* register each port bound to this device */
4852 for (i = 0; i < ent->n_ports; i++) {
4853 struct ata_port *ap;
4854 unsigned long xfer_mode_mask;
4855
4856 ap = ata_host_add(ent, host_set, i);
4857 if (!ap)
4858 goto err_out;
4859
4860 host_set->ports[i] = ap;
4861 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4862 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4863 (ap->pio_mask << ATA_SHIFT_PIO);
4864
4865 /* print per-port info to dmesg */
4866 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4867 "bmdma 0x%lX irq %lu\n",
4868 ap->id,
4869 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4870 ata_mode_string(xfer_mode_mask),
4871 ap->ioaddr.cmd_addr,
4872 ap->ioaddr.ctl_addr,
4873 ap->ioaddr.bmdma_addr,
4874 ent->irq);
4875
4876 ata_chk_status(ap);
4877 host_set->ops->irq_clear(ap);
4878 count++;
4879 }
4880
57f3bda8
RD
4881 if (!count)
4882 goto err_free_ret;
1da177e4
LT
4883
4884 /* obtain irq, that is shared between channels */
4885 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4886 DRV_NAME, host_set))
4887 goto err_out;
4888
4889 /* perform each probe synchronously */
4890 DPRINTK("probe begin\n");
4891 for (i = 0; i < count; i++) {
4892 struct ata_port *ap;
4893 int rc;
4894
4895 ap = host_set->ports[i];
4896
c893a3ae 4897 DPRINTK("ata%u: bus probe begin\n", ap->id);
1da177e4 4898 rc = ata_bus_probe(ap);
c893a3ae 4899 DPRINTK("ata%u: bus probe end\n", ap->id);
1da177e4
LT
4900
4901 if (rc) {
4902 /* FIXME: do something useful here?
4903 * Current libata behavior will
4904 * tear down everything when
4905 * the module is removed
4906 * or the h/w is unplugged.
4907 */
4908 }
4909
4910 rc = scsi_add_host(ap->host, dev);
4911 if (rc) {
4912 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4913 ap->id);
4914 /* FIXME: do something useful here */
4915 /* FIXME: handle unconditional calls to
4916 * scsi_scan_host and ata_host_remove, below,
4917 * at the very least
4918 */
4919 }
4920 }
4921
4922 /* probes are done, now scan each port's disk(s) */
c893a3ae 4923 DPRINTK("host probe begin\n");
1da177e4
LT
4924 for (i = 0; i < count; i++) {
4925 struct ata_port *ap = host_set->ports[i];
4926
644dd0cc 4927 ata_scsi_scan_host(ap);
1da177e4
LT
4928 }
4929
4930 dev_set_drvdata(dev, host_set);
4931
4932 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4933 return ent->n_ports; /* success */
4934
4935err_out:
4936 for (i = 0; i < count; i++) {
4937 ata_host_remove(host_set->ports[i], 1);
4938 scsi_host_put(host_set->ports[i]->host);
4939 }
57f3bda8 4940err_free_ret:
1da177e4
LT
4941 kfree(host_set);
4942 VPRINTK("EXIT, returning 0\n");
4943 return 0;
4944}
4945
17b14451
AC
4946/**
4947 * ata_host_set_remove - PCI layer callback for device removal
4948 * @host_set: ATA host set that was removed
4949 *
2e9edbf8 4950 * Unregister all objects associated with this host set. Free those
17b14451
AC
4951 * objects.
4952 *
4953 * LOCKING:
4954 * Inherited from calling layer (may sleep).
4955 */
4956
17b14451
AC
4957void ata_host_set_remove(struct ata_host_set *host_set)
4958{
4959 struct ata_port *ap;
4960 unsigned int i;
4961
4962 for (i = 0; i < host_set->n_ports; i++) {
4963 ap = host_set->ports[i];
4964 scsi_remove_host(ap->host);
4965 }
4966
4967 free_irq(host_set->irq, host_set);
4968
4969 for (i = 0; i < host_set->n_ports; i++) {
4970 ap = host_set->ports[i];
4971
4972 ata_scsi_release(ap->host);
4973
4974 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4975 struct ata_ioports *ioaddr = &ap->ioaddr;
4976
4977 if (ioaddr->cmd_addr == 0x1f0)
4978 release_region(0x1f0, 8);
4979 else if (ioaddr->cmd_addr == 0x170)
4980 release_region(0x170, 8);
4981 }
4982
4983 scsi_host_put(ap->host);
4984 }
4985
4986 if (host_set->ops->host_stop)
4987 host_set->ops->host_stop(host_set);
4988
4989 kfree(host_set);
4990}
4991
1da177e4
LT
4992/**
4993 * ata_scsi_release - SCSI layer callback hook for host unload
4994 * @host: libata host to be unloaded
4995 *
4996 * Performs all duties necessary to shut down a libata port...
4997 * Kill port kthread, disable port, and release resources.
4998 *
4999 * LOCKING:
5000 * Inherited from SCSI layer.
5001 *
5002 * RETURNS:
5003 * One.
5004 */
5005
5006int ata_scsi_release(struct Scsi_Host *host)
5007{
35bb94b1 5008 struct ata_port *ap = ata_shost_to_port(host);
1da177e4
LT
5009
5010 DPRINTK("ENTER\n");
5011
5012 ap->ops->port_disable(ap);
5013 ata_host_remove(ap, 0);
5014
5015 DPRINTK("EXIT\n");
5016 return 1;
5017}
5018
5019/**
5020 * ata_std_ports - initialize ioaddr with standard port offsets.
5021 * @ioaddr: IO address structure to be initialized
0baab86b
EF
5022 *
5023 * Utility function which initializes data_addr, error_addr,
5024 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5025 * device_addr, status_addr, and command_addr to standard offsets
5026 * relative to cmd_addr.
5027 *
5028 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 5029 */
0baab86b 5030
1da177e4
LT
5031void ata_std_ports(struct ata_ioports *ioaddr)
5032{
5033 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5034 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5035 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5036 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5037 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5038 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5039 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5040 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5041 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5042 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5043}
5044
0baab86b 5045
374b1873
JG
5046#ifdef CONFIG_PCI
5047
5048void ata_pci_host_stop (struct ata_host_set *host_set)
5049{
5050 struct pci_dev *pdev = to_pci_dev(host_set->dev);
5051
5052 pci_iounmap(pdev, host_set->mmio_base);
5053}
5054
1da177e4
LT
5055/**
5056 * ata_pci_remove_one - PCI layer callback for device removal
5057 * @pdev: PCI device that was removed
5058 *
5059 * PCI layer indicates to libata via this hook that
6f0ef4fa 5060 * hot-unplug or module unload event has occurred.
1da177e4
LT
5061 * Handle this by unregistering all objects associated
5062 * with this PCI device. Free those objects. Then finally
5063 * release PCI resources and disable device.
5064 *
5065 * LOCKING:
5066 * Inherited from PCI layer (may sleep).
5067 */
5068
5069void ata_pci_remove_one (struct pci_dev *pdev)
5070{
5071 struct device *dev = pci_dev_to_dev(pdev);
5072 struct ata_host_set *host_set = dev_get_drvdata(dev);
1da177e4 5073
17b14451 5074 ata_host_set_remove(host_set);
1da177e4
LT
5075 pci_release_regions(pdev);
5076 pci_disable_device(pdev);
5077 dev_set_drvdata(dev, NULL);
5078}
5079
5080/* move to PCI subsystem */
057ace5e 5081int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
5082{
5083 unsigned long tmp = 0;
5084
5085 switch (bits->width) {
5086 case 1: {
5087 u8 tmp8 = 0;
5088 pci_read_config_byte(pdev, bits->reg, &tmp8);
5089 tmp = tmp8;
5090 break;
5091 }
5092 case 2: {
5093 u16 tmp16 = 0;
5094 pci_read_config_word(pdev, bits->reg, &tmp16);
5095 tmp = tmp16;
5096 break;
5097 }
5098 case 4: {
5099 u32 tmp32 = 0;
5100 pci_read_config_dword(pdev, bits->reg, &tmp32);
5101 tmp = tmp32;
5102 break;
5103 }
5104
5105 default:
5106 return -EINVAL;
5107 }
5108
5109 tmp &= bits->mask;
5110
5111 return (tmp == bits->val) ? 1 : 0;
5112}
9b847548
JA
5113
5114int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5115{
5116 pci_save_state(pdev);
5117 pci_disable_device(pdev);
5118 pci_set_power_state(pdev, PCI_D3hot);
5119 return 0;
5120}
5121
5122int ata_pci_device_resume(struct pci_dev *pdev)
5123{
5124 pci_set_power_state(pdev, PCI_D0);
5125 pci_restore_state(pdev);
5126 pci_enable_device(pdev);
5127 pci_set_master(pdev);
5128 return 0;
5129}
1da177e4
LT
5130#endif /* CONFIG_PCI */
5131
5132
1da177e4
LT
5133static int __init ata_init(void)
5134{
5135 ata_wq = create_workqueue("ata");
5136 if (!ata_wq)
5137 return -ENOMEM;
5138
5139 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5140 return 0;
5141}
5142
5143static void __exit ata_exit(void)
5144{
5145 destroy_workqueue(ata_wq);
5146}
5147
5148module_init(ata_init);
5149module_exit(ata_exit);
5150
67846b30
JG
5151static unsigned long ratelimit_time;
5152static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5153
5154int ata_ratelimit(void)
5155{
5156 int rc;
5157 unsigned long flags;
5158
5159 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5160
5161 if (time_after(jiffies, ratelimit_time)) {
5162 rc = 1;
5163 ratelimit_time = jiffies + (HZ/5);
5164 } else
5165 rc = 0;
5166
5167 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5168
5169 return rc;
5170}
5171
c22daff4
TH
5172/**
5173 * ata_wait_register - wait until register value changes
5174 * @reg: IO-mapped register
5175 * @mask: Mask to apply to read register value
5176 * @val: Wait condition
5177 * @interval_msec: polling interval in milliseconds
5178 * @timeout_msec: timeout in milliseconds
5179 *
5180 * Waiting for some bits of register to change is a common
5181 * operation for ATA controllers. This function reads 32bit LE
5182 * IO-mapped register @reg and tests for the following condition.
5183 *
5184 * (*@reg & mask) != val
5185 *
5186 * If the condition is met, it returns; otherwise, the process is
5187 * repeated after @interval_msec until timeout.
5188 *
5189 * LOCKING:
5190 * Kernel thread context (may sleep)
5191 *
5192 * RETURNS:
5193 * The final register value.
5194 */
5195u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
5196 unsigned long interval_msec,
5197 unsigned long timeout_msec)
5198{
5199 unsigned long timeout;
5200 u32 tmp;
5201
5202 tmp = ioread32(reg);
5203
5204 /* Calculate timeout _after_ the first read to make sure
5205 * preceding writes reach the controller before starting to
5206 * eat away the timeout.
5207 */
5208 timeout = jiffies + (timeout_msec * HZ) / 1000;
5209
5210 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
5211 msleep(interval_msec);
5212 tmp = ioread32(reg);
5213 }
5214
5215 return tmp;
5216}
5217
1da177e4
LT
5218/*
5219 * libata is essentially a library of internal helper functions for
5220 * low-level ATA host controller drivers. As such, the API/ABI is
5221 * likely to change as new drivers are added and updated.
5222 * Do not depend on ABI/API stability.
5223 */
5224
5225EXPORT_SYMBOL_GPL(ata_std_bios_param);
5226EXPORT_SYMBOL_GPL(ata_std_ports);
5227EXPORT_SYMBOL_GPL(ata_device_add);
17b14451 5228EXPORT_SYMBOL_GPL(ata_host_set_remove);
1da177e4
LT
5229EXPORT_SYMBOL_GPL(ata_sg_init);
5230EXPORT_SYMBOL_GPL(ata_sg_init_one);
76014427 5231EXPORT_SYMBOL_GPL(__ata_qc_complete);
1da177e4 5232EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
5233EXPORT_SYMBOL_GPL(ata_tf_load);
5234EXPORT_SYMBOL_GPL(ata_tf_read);
5235EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5236EXPORT_SYMBOL_GPL(ata_std_dev_select);
5237EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5238EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5239EXPORT_SYMBOL_GPL(ata_check_status);
5240EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
5241EXPORT_SYMBOL_GPL(ata_exec_command);
5242EXPORT_SYMBOL_GPL(ata_port_start);
5243EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 5244EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4
LT
5245EXPORT_SYMBOL_GPL(ata_interrupt);
5246EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 5247EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
5248EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5249EXPORT_SYMBOL_GPL(ata_bmdma_start);
5250EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5251EXPORT_SYMBOL_GPL(ata_bmdma_status);
5252EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5253EXPORT_SYMBOL_GPL(ata_port_probe);
3c567b7d 5254EXPORT_SYMBOL_GPL(sata_set_spd);
1da177e4
LT
5255EXPORT_SYMBOL_GPL(sata_phy_reset);
5256EXPORT_SYMBOL_GPL(__sata_phy_reset);
5257EXPORT_SYMBOL_GPL(ata_bus_reset);
8a19ac89 5258EXPORT_SYMBOL_GPL(ata_std_probeinit);
c2bd5804
TH
5259EXPORT_SYMBOL_GPL(ata_std_softreset);
5260EXPORT_SYMBOL_GPL(sata_std_hardreset);
5261EXPORT_SYMBOL_GPL(ata_std_postreset);
5262EXPORT_SYMBOL_GPL(ata_std_probe_reset);
a62c0fc5 5263EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
623a3128 5264EXPORT_SYMBOL_GPL(ata_dev_revalidate);
2e9edbf8
JG
5265EXPORT_SYMBOL_GPL(ata_dev_classify);
5266EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 5267EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 5268EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 5269EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 5270EXPORT_SYMBOL_GPL(ata_busy_sleep);
86e45b6b 5271EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
5272EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5273EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4
LT
5274EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5275EXPORT_SYMBOL_GPL(ata_scsi_release);
5276EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
5277EXPORT_SYMBOL_GPL(sata_scr_valid);
5278EXPORT_SYMBOL_GPL(sata_scr_read);
5279EXPORT_SYMBOL_GPL(sata_scr_write);
5280EXPORT_SYMBOL_GPL(sata_scr_write_flush);
5281EXPORT_SYMBOL_GPL(ata_port_online);
5282EXPORT_SYMBOL_GPL(ata_port_offline);
6a62a04d
TH
5283EXPORT_SYMBOL_GPL(ata_id_string);
5284EXPORT_SYMBOL_GPL(ata_id_c_string);
1da177e4
LT
5285EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5286
1bc4ccff 5287EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
5288EXPORT_SYMBOL_GPL(ata_timing_compute);
5289EXPORT_SYMBOL_GPL(ata_timing_merge);
5290
1da177e4
LT
5291#ifdef CONFIG_PCI
5292EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 5293EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
5294EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5295EXPORT_SYMBOL_GPL(ata_pci_init_one);
5296EXPORT_SYMBOL_GPL(ata_pci_remove_one);
9b847548
JA
5297EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5298EXPORT_SYMBOL_GPL(ata_pci_device_resume);
67951ade
AC
5299EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5300EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 5301#endif /* CONFIG_PCI */
9b847548
JA
5302
5303EXPORT_SYMBOL_GPL(ata_device_suspend);
5304EXPORT_SYMBOL_GPL(ata_device_resume);
5305EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5306EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
ece1d636 5307
ece1d636
TH
5308EXPORT_SYMBOL_GPL(ata_eng_timeout);
5309EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5310EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
This page took 0.463284 seconds and 5 git commands to generate.