[PATCH] libata-ncq: rename ap->qactive to ap->qc_allocated
[deliverable/linux.git] / drivers / scsi / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
35#include <linux/config.h>
36#include <linux/kernel.h>
37#include <linux/module.h>
38#include <linux/pci.h>
39#include <linux/init.h>
40#include <linux/list.h>
41#include <linux/mm.h>
42#include <linux/highmem.h>
43#include <linux/spinlock.h>
44#include <linux/blkdev.h>
45#include <linux/delay.h>
46#include <linux/timer.h>
47#include <linux/interrupt.h>
48#include <linux/completion.h>
49#include <linux/suspend.h>
50#include <linux/workqueue.h>
67846b30 51#include <linux/jiffies.h>
378f058c 52#include <linux/scatterlist.h>
1da177e4 53#include <scsi/scsi.h>
1da177e4 54#include "scsi_priv.h"
193515d5 55#include <scsi/scsi_cmnd.h>
1da177e4
LT
56#include <scsi/scsi_host.h>
57#include <linux/libata.h>
58#include <asm/io.h>
59#include <asm/semaphore.h>
60#include <asm/byteorder.h>
61
62#include "libata.h"
63
3373efd8
TH
64static unsigned int ata_dev_init_params(struct ata_device *dev,
65 u16 heads, u16 sectors);
66static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
67static void ata_dev_xfermask(struct ata_device *dev);
1da177e4
LT
68
69static unsigned int ata_unique_id = 1;
70static struct workqueue_struct *ata_wq;
71
418dc1f5 72int atapi_enabled = 1;
1623c81e
JG
73module_param(atapi_enabled, int, 0444);
74MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
75
95de719a
AL
76int atapi_dmadir = 0;
77module_param(atapi_dmadir, int, 0444);
78MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
79
c3c013a2
JG
80int libata_fua = 0;
81module_param_named(fua, libata_fua, int, 0444);
82MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
83
1da177e4
LT
84MODULE_AUTHOR("Jeff Garzik");
85MODULE_DESCRIPTION("Library module for ATA devices");
86MODULE_LICENSE("GPL");
87MODULE_VERSION(DRV_VERSION);
88
0baab86b 89
1da177e4
LT
90/**
91 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
92 * @tf: Taskfile to convert
93 * @fis: Buffer into which data will output
94 * @pmp: Port multiplier port
95 *
96 * Converts a standard ATA taskfile to a Serial ATA
97 * FIS structure (Register - Host to Device).
98 *
99 * LOCKING:
100 * Inherited from caller.
101 */
102
057ace5e 103void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
104{
105 fis[0] = 0x27; /* Register - Host to Device FIS */
106 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
107 bit 7 indicates Command FIS */
108 fis[2] = tf->command;
109 fis[3] = tf->feature;
110
111 fis[4] = tf->lbal;
112 fis[5] = tf->lbam;
113 fis[6] = tf->lbah;
114 fis[7] = tf->device;
115
116 fis[8] = tf->hob_lbal;
117 fis[9] = tf->hob_lbam;
118 fis[10] = tf->hob_lbah;
119 fis[11] = tf->hob_feature;
120
121 fis[12] = tf->nsect;
122 fis[13] = tf->hob_nsect;
123 fis[14] = 0;
124 fis[15] = tf->ctl;
125
126 fis[16] = 0;
127 fis[17] = 0;
128 fis[18] = 0;
129 fis[19] = 0;
130}
131
132/**
133 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
134 * @fis: Buffer from which data will be input
135 * @tf: Taskfile to output
136 *
e12a1be6 137 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
138 *
139 * LOCKING:
140 * Inherited from caller.
141 */
142
057ace5e 143void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
144{
145 tf->command = fis[2]; /* status */
146 tf->feature = fis[3]; /* error */
147
148 tf->lbal = fis[4];
149 tf->lbam = fis[5];
150 tf->lbah = fis[6];
151 tf->device = fis[7];
152
153 tf->hob_lbal = fis[8];
154 tf->hob_lbam = fis[9];
155 tf->hob_lbah = fis[10];
156
157 tf->nsect = fis[12];
158 tf->hob_nsect = fis[13];
159}
160
8cbd6df1
AL
161static const u8 ata_rw_cmds[] = {
162 /* pio multi */
163 ATA_CMD_READ_MULTI,
164 ATA_CMD_WRITE_MULTI,
165 ATA_CMD_READ_MULTI_EXT,
166 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
167 0,
168 0,
169 0,
170 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
171 /* pio */
172 ATA_CMD_PIO_READ,
173 ATA_CMD_PIO_WRITE,
174 ATA_CMD_PIO_READ_EXT,
175 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
176 0,
177 0,
178 0,
179 0,
8cbd6df1
AL
180 /* dma */
181 ATA_CMD_READ,
182 ATA_CMD_WRITE,
183 ATA_CMD_READ_EXT,
9a3dccc4
TH
184 ATA_CMD_WRITE_EXT,
185 0,
186 0,
187 0,
188 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 189};
1da177e4
LT
190
191/**
8cbd6df1
AL
192 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
193 * @qc: command to examine and configure
1da177e4 194 *
2e9edbf8 195 * Examine the device configuration and tf->flags to calculate
8cbd6df1 196 * the proper read/write commands and protocol to use.
1da177e4
LT
197 *
198 * LOCKING:
199 * caller.
200 */
9a3dccc4 201int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
1da177e4 202{
8cbd6df1
AL
203 struct ata_taskfile *tf = &qc->tf;
204 struct ata_device *dev = qc->dev;
9a3dccc4 205 u8 cmd;
1da177e4 206
9a3dccc4 207 int index, fua, lba48, write;
2e9edbf8 208
9a3dccc4 209 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
210 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
211 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 212
8cbd6df1
AL
213 if (dev->flags & ATA_DFLAG_PIO) {
214 tf->protocol = ATA_PROT_PIO;
9a3dccc4 215 index = dev->multi_count ? 0 : 8;
8d238e01
AC
216 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
217 /* Unable to use DMA due to host limitation */
218 tf->protocol = ATA_PROT_PIO;
0565c26d 219 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
220 } else {
221 tf->protocol = ATA_PROT_DMA;
9a3dccc4 222 index = 16;
8cbd6df1 223 }
1da177e4 224
9a3dccc4
TH
225 cmd = ata_rw_cmds[index + fua + lba48 + write];
226 if (cmd) {
227 tf->command = cmd;
228 return 0;
229 }
230 return -1;
1da177e4
LT
231}
232
cb95d562
TH
233/**
234 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
235 * @pio_mask: pio_mask
236 * @mwdma_mask: mwdma_mask
237 * @udma_mask: udma_mask
238 *
239 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
240 * unsigned int xfer_mask.
241 *
242 * LOCKING:
243 * None.
244 *
245 * RETURNS:
246 * Packed xfer_mask.
247 */
248static unsigned int ata_pack_xfermask(unsigned int pio_mask,
249 unsigned int mwdma_mask,
250 unsigned int udma_mask)
251{
252 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
253 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
254 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
255}
256
c0489e4e
TH
257/**
258 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
259 * @xfer_mask: xfer_mask to unpack
260 * @pio_mask: resulting pio_mask
261 * @mwdma_mask: resulting mwdma_mask
262 * @udma_mask: resulting udma_mask
263 *
264 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
265 * Any NULL distination masks will be ignored.
266 */
267static void ata_unpack_xfermask(unsigned int xfer_mask,
268 unsigned int *pio_mask,
269 unsigned int *mwdma_mask,
270 unsigned int *udma_mask)
271{
272 if (pio_mask)
273 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
274 if (mwdma_mask)
275 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
276 if (udma_mask)
277 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
278}
279
cb95d562 280static const struct ata_xfer_ent {
be9a50c8 281 int shift, bits;
cb95d562
TH
282 u8 base;
283} ata_xfer_tbl[] = {
284 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
285 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
286 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
287 { -1, },
288};
289
290/**
291 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
292 * @xfer_mask: xfer_mask of interest
293 *
294 * Return matching XFER_* value for @xfer_mask. Only the highest
295 * bit of @xfer_mask is considered.
296 *
297 * LOCKING:
298 * None.
299 *
300 * RETURNS:
301 * Matching XFER_* value, 0 if no match found.
302 */
303static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
304{
305 int highbit = fls(xfer_mask) - 1;
306 const struct ata_xfer_ent *ent;
307
308 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
309 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
310 return ent->base + highbit - ent->shift;
311 return 0;
312}
313
314/**
315 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
316 * @xfer_mode: XFER_* of interest
317 *
318 * Return matching xfer_mask for @xfer_mode.
319 *
320 * LOCKING:
321 * None.
322 *
323 * RETURNS:
324 * Matching xfer_mask, 0 if no match found.
325 */
326static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
327{
328 const struct ata_xfer_ent *ent;
329
330 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
331 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
332 return 1 << (ent->shift + xfer_mode - ent->base);
333 return 0;
334}
335
336/**
337 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
338 * @xfer_mode: XFER_* of interest
339 *
340 * Return matching xfer_shift for @xfer_mode.
341 *
342 * LOCKING:
343 * None.
344 *
345 * RETURNS:
346 * Matching xfer_shift, -1 if no match found.
347 */
348static int ata_xfer_mode2shift(unsigned int xfer_mode)
349{
350 const struct ata_xfer_ent *ent;
351
352 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
353 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
354 return ent->shift;
355 return -1;
356}
357
1da177e4 358/**
1da7b0d0
TH
359 * ata_mode_string - convert xfer_mask to string
360 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
361 *
362 * Determine string which represents the highest speed
1da7b0d0 363 * (highest bit in @modemask).
1da177e4
LT
364 *
365 * LOCKING:
366 * None.
367 *
368 * RETURNS:
369 * Constant C string representing highest speed listed in
1da7b0d0 370 * @mode_mask, or the constant C string "<n/a>".
1da177e4 371 */
1da7b0d0 372static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 373{
75f554bc
TH
374 static const char * const xfer_mode_str[] = {
375 "PIO0",
376 "PIO1",
377 "PIO2",
378 "PIO3",
379 "PIO4",
380 "MWDMA0",
381 "MWDMA1",
382 "MWDMA2",
383 "UDMA/16",
384 "UDMA/25",
385 "UDMA/33",
386 "UDMA/44",
387 "UDMA/66",
388 "UDMA/100",
389 "UDMA/133",
390 "UDMA7",
391 };
1da7b0d0 392 int highbit;
1da177e4 393
1da7b0d0
TH
394 highbit = fls(xfer_mask) - 1;
395 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
396 return xfer_mode_str[highbit];
1da177e4 397 return "<n/a>";
1da177e4
LT
398}
399
4c360c81
TH
400static const char *sata_spd_string(unsigned int spd)
401{
402 static const char * const spd_str[] = {
403 "1.5 Gbps",
404 "3.0 Gbps",
405 };
406
407 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
408 return "<unknown>";
409 return spd_str[spd - 1];
410}
411
3373efd8 412void ata_dev_disable(struct ata_device *dev)
0b8efb0a 413{
e1211e3f 414 if (ata_dev_enabled(dev)) {
f15a1daf 415 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
0b8efb0a
TH
416 dev->class++;
417 }
418}
419
1da177e4
LT
420/**
421 * ata_pio_devchk - PATA device presence detection
422 * @ap: ATA channel to examine
423 * @device: Device to examine (starting at zero)
424 *
425 * This technique was originally described in
426 * Hale Landis's ATADRVR (www.ata-atapi.com), and
427 * later found its way into the ATA/ATAPI spec.
428 *
429 * Write a pattern to the ATA shadow registers,
430 * and if a device is present, it will respond by
431 * correctly storing and echoing back the
432 * ATA shadow register contents.
433 *
434 * LOCKING:
435 * caller.
436 */
437
438static unsigned int ata_pio_devchk(struct ata_port *ap,
439 unsigned int device)
440{
441 struct ata_ioports *ioaddr = &ap->ioaddr;
442 u8 nsect, lbal;
443
444 ap->ops->dev_select(ap, device);
445
446 outb(0x55, ioaddr->nsect_addr);
447 outb(0xaa, ioaddr->lbal_addr);
448
449 outb(0xaa, ioaddr->nsect_addr);
450 outb(0x55, ioaddr->lbal_addr);
451
452 outb(0x55, ioaddr->nsect_addr);
453 outb(0xaa, ioaddr->lbal_addr);
454
455 nsect = inb(ioaddr->nsect_addr);
456 lbal = inb(ioaddr->lbal_addr);
457
458 if ((nsect == 0x55) && (lbal == 0xaa))
459 return 1; /* we found a device */
460
461 return 0; /* nothing found */
462}
463
464/**
465 * ata_mmio_devchk - PATA device presence detection
466 * @ap: ATA channel to examine
467 * @device: Device to examine (starting at zero)
468 *
469 * This technique was originally described in
470 * Hale Landis's ATADRVR (www.ata-atapi.com), and
471 * later found its way into the ATA/ATAPI spec.
472 *
473 * Write a pattern to the ATA shadow registers,
474 * and if a device is present, it will respond by
475 * correctly storing and echoing back the
476 * ATA shadow register contents.
477 *
478 * LOCKING:
479 * caller.
480 */
481
482static unsigned int ata_mmio_devchk(struct ata_port *ap,
483 unsigned int device)
484{
485 struct ata_ioports *ioaddr = &ap->ioaddr;
486 u8 nsect, lbal;
487
488 ap->ops->dev_select(ap, device);
489
490 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
491 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
492
493 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
494 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
495
496 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
497 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
498
499 nsect = readb((void __iomem *) ioaddr->nsect_addr);
500 lbal = readb((void __iomem *) ioaddr->lbal_addr);
501
502 if ((nsect == 0x55) && (lbal == 0xaa))
503 return 1; /* we found a device */
504
505 return 0; /* nothing found */
506}
507
508/**
509 * ata_devchk - PATA device presence detection
510 * @ap: ATA channel to examine
511 * @device: Device to examine (starting at zero)
512 *
513 * Dispatch ATA device presence detection, depending
514 * on whether we are using PIO or MMIO to talk to the
515 * ATA shadow registers.
516 *
517 * LOCKING:
518 * caller.
519 */
520
521static unsigned int ata_devchk(struct ata_port *ap,
522 unsigned int device)
523{
524 if (ap->flags & ATA_FLAG_MMIO)
525 return ata_mmio_devchk(ap, device);
526 return ata_pio_devchk(ap, device);
527}
528
529/**
530 * ata_dev_classify - determine device type based on ATA-spec signature
531 * @tf: ATA taskfile register set for device to be identified
532 *
533 * Determine from taskfile register contents whether a device is
534 * ATA or ATAPI, as per "Signature and persistence" section
535 * of ATA/PI spec (volume 1, sect 5.14).
536 *
537 * LOCKING:
538 * None.
539 *
540 * RETURNS:
541 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
542 * the event of failure.
543 */
544
057ace5e 545unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
546{
547 /* Apple's open source Darwin code hints that some devices only
548 * put a proper signature into the LBA mid/high registers,
549 * So, we only check those. It's sufficient for uniqueness.
550 */
551
552 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
553 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
554 DPRINTK("found ATA device by sig\n");
555 return ATA_DEV_ATA;
556 }
557
558 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
559 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
560 DPRINTK("found ATAPI device by sig\n");
561 return ATA_DEV_ATAPI;
562 }
563
564 DPRINTK("unknown device\n");
565 return ATA_DEV_UNKNOWN;
566}
567
568/**
569 * ata_dev_try_classify - Parse returned ATA device signature
570 * @ap: ATA channel to examine
571 * @device: Device to examine (starting at zero)
b4dc7623 572 * @r_err: Value of error register on completion
1da177e4
LT
573 *
574 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
575 * an ATA/ATAPI-defined set of values is placed in the ATA
576 * shadow registers, indicating the results of device detection
577 * and diagnostics.
578 *
579 * Select the ATA device, and read the values from the ATA shadow
580 * registers. Then parse according to the Error register value,
581 * and the spec-defined values examined by ata_dev_classify().
582 *
583 * LOCKING:
584 * caller.
b4dc7623
TH
585 *
586 * RETURNS:
587 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
588 */
589
b4dc7623
TH
590static unsigned int
591ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 592{
1da177e4
LT
593 struct ata_taskfile tf;
594 unsigned int class;
595 u8 err;
596
597 ap->ops->dev_select(ap, device);
598
599 memset(&tf, 0, sizeof(tf));
600
1da177e4 601 ap->ops->tf_read(ap, &tf);
0169e284 602 err = tf.feature;
b4dc7623
TH
603 if (r_err)
604 *r_err = err;
1da177e4
LT
605
606 /* see if device passed diags */
607 if (err == 1)
608 /* do nothing */ ;
609 else if ((device == 0) && (err == 0x81))
610 /* do nothing */ ;
611 else
b4dc7623 612 return ATA_DEV_NONE;
1da177e4 613
b4dc7623 614 /* determine if device is ATA or ATAPI */
1da177e4 615 class = ata_dev_classify(&tf);
b4dc7623 616
1da177e4 617 if (class == ATA_DEV_UNKNOWN)
b4dc7623 618 return ATA_DEV_NONE;
1da177e4 619 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
620 return ATA_DEV_NONE;
621 return class;
1da177e4
LT
622}
623
624/**
6a62a04d 625 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
626 * @id: IDENTIFY DEVICE results we will examine
627 * @s: string into which data is output
628 * @ofs: offset into identify device page
629 * @len: length of string to return. must be an even number.
630 *
631 * The strings in the IDENTIFY DEVICE page are broken up into
632 * 16-bit chunks. Run through the string, and output each
633 * 8-bit chunk linearly, regardless of platform.
634 *
635 * LOCKING:
636 * caller.
637 */
638
6a62a04d
TH
639void ata_id_string(const u16 *id, unsigned char *s,
640 unsigned int ofs, unsigned int len)
1da177e4
LT
641{
642 unsigned int c;
643
644 while (len > 0) {
645 c = id[ofs] >> 8;
646 *s = c;
647 s++;
648
649 c = id[ofs] & 0xff;
650 *s = c;
651 s++;
652
653 ofs++;
654 len -= 2;
655 }
656}
657
0e949ff3 658/**
6a62a04d 659 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
660 * @id: IDENTIFY DEVICE results we will examine
661 * @s: string into which data is output
662 * @ofs: offset into identify device page
663 * @len: length of string to return. must be an odd number.
664 *
6a62a04d 665 * This function is identical to ata_id_string except that it
0e949ff3
TH
666 * trims trailing spaces and terminates the resulting string with
667 * null. @len must be actual maximum length (even number) + 1.
668 *
669 * LOCKING:
670 * caller.
671 */
6a62a04d
TH
672void ata_id_c_string(const u16 *id, unsigned char *s,
673 unsigned int ofs, unsigned int len)
0e949ff3
TH
674{
675 unsigned char *p;
676
677 WARN_ON(!(len & 1));
678
6a62a04d 679 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
680
681 p = s + strnlen(s, len - 1);
682 while (p > s && p[-1] == ' ')
683 p--;
684 *p = '\0';
685}
0baab86b 686
2940740b
TH
687static u64 ata_id_n_sectors(const u16 *id)
688{
689 if (ata_id_has_lba(id)) {
690 if (ata_id_has_lba48(id))
691 return ata_id_u64(id, 100);
692 else
693 return ata_id_u32(id, 60);
694 } else {
695 if (ata_id_current_chs_valid(id))
696 return ata_id_u32(id, 57);
697 else
698 return id[1] * id[3] * id[6];
699 }
700}
701
0baab86b
EF
702/**
703 * ata_noop_dev_select - Select device 0/1 on ATA bus
704 * @ap: ATA channel to manipulate
705 * @device: ATA device (numbered from zero) to select
706 *
707 * This function performs no actual function.
708 *
709 * May be used as the dev_select() entry in ata_port_operations.
710 *
711 * LOCKING:
712 * caller.
713 */
1da177e4
LT
714void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
715{
716}
717
0baab86b 718
1da177e4
LT
719/**
720 * ata_std_dev_select - Select device 0/1 on ATA bus
721 * @ap: ATA channel to manipulate
722 * @device: ATA device (numbered from zero) to select
723 *
724 * Use the method defined in the ATA specification to
725 * make either device 0, or device 1, active on the
0baab86b
EF
726 * ATA channel. Works with both PIO and MMIO.
727 *
728 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
729 *
730 * LOCKING:
731 * caller.
732 */
733
734void ata_std_dev_select (struct ata_port *ap, unsigned int device)
735{
736 u8 tmp;
737
738 if (device == 0)
739 tmp = ATA_DEVICE_OBS;
740 else
741 tmp = ATA_DEVICE_OBS | ATA_DEV1;
742
743 if (ap->flags & ATA_FLAG_MMIO) {
744 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
745 } else {
746 outb(tmp, ap->ioaddr.device_addr);
747 }
748 ata_pause(ap); /* needed; also flushes, for mmio */
749}
750
751/**
752 * ata_dev_select - Select device 0/1 on ATA bus
753 * @ap: ATA channel to manipulate
754 * @device: ATA device (numbered from zero) to select
755 * @wait: non-zero to wait for Status register BSY bit to clear
756 * @can_sleep: non-zero if context allows sleeping
757 *
758 * Use the method defined in the ATA specification to
759 * make either device 0, or device 1, active on the
760 * ATA channel.
761 *
762 * This is a high-level version of ata_std_dev_select(),
763 * which additionally provides the services of inserting
764 * the proper pauses and status polling, where needed.
765 *
766 * LOCKING:
767 * caller.
768 */
769
770void ata_dev_select(struct ata_port *ap, unsigned int device,
771 unsigned int wait, unsigned int can_sleep)
772{
773 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
774 ap->id, device, wait);
775
776 if (wait)
777 ata_wait_idle(ap);
778
779 ap->ops->dev_select(ap, device);
780
781 if (wait) {
782 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
783 msleep(150);
784 ata_wait_idle(ap);
785 }
786}
787
788/**
789 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 790 * @id: IDENTIFY DEVICE page to dump
1da177e4 791 *
0bd3300a
TH
792 * Dump selected 16-bit words from the given IDENTIFY DEVICE
793 * page.
1da177e4
LT
794 *
795 * LOCKING:
796 * caller.
797 */
798
0bd3300a 799static inline void ata_dump_id(const u16 *id)
1da177e4
LT
800{
801 DPRINTK("49==0x%04x "
802 "53==0x%04x "
803 "63==0x%04x "
804 "64==0x%04x "
805 "75==0x%04x \n",
0bd3300a
TH
806 id[49],
807 id[53],
808 id[63],
809 id[64],
810 id[75]);
1da177e4
LT
811 DPRINTK("80==0x%04x "
812 "81==0x%04x "
813 "82==0x%04x "
814 "83==0x%04x "
815 "84==0x%04x \n",
0bd3300a
TH
816 id[80],
817 id[81],
818 id[82],
819 id[83],
820 id[84]);
1da177e4
LT
821 DPRINTK("88==0x%04x "
822 "93==0x%04x\n",
0bd3300a
TH
823 id[88],
824 id[93]);
1da177e4
LT
825}
826
cb95d562
TH
827/**
828 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
829 * @id: IDENTIFY data to compute xfer mask from
830 *
831 * Compute the xfermask for this device. This is not as trivial
832 * as it seems if we must consider early devices correctly.
833 *
834 * FIXME: pre IDE drive timing (do we care ?).
835 *
836 * LOCKING:
837 * None.
838 *
839 * RETURNS:
840 * Computed xfermask
841 */
842static unsigned int ata_id_xfermask(const u16 *id)
843{
844 unsigned int pio_mask, mwdma_mask, udma_mask;
845
846 /* Usual case. Word 53 indicates word 64 is valid */
847 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
848 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
849 pio_mask <<= 3;
850 pio_mask |= 0x7;
851 } else {
852 /* If word 64 isn't valid then Word 51 high byte holds
853 * the PIO timing number for the maximum. Turn it into
854 * a mask.
855 */
856 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
857
858 /* But wait.. there's more. Design your standards by
859 * committee and you too can get a free iordy field to
860 * process. However its the speeds not the modes that
861 * are supported... Note drivers using the timing API
862 * will get this right anyway
863 */
864 }
865
866 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0
TH
867
868 udma_mask = 0;
869 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
870 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
871
872 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
873}
874
86e45b6b
TH
875/**
876 * ata_port_queue_task - Queue port_task
877 * @ap: The ata_port to queue port_task for
878 *
879 * Schedule @fn(@data) for execution after @delay jiffies using
880 * port_task. There is one port_task per port and it's the
881 * user(low level driver)'s responsibility to make sure that only
882 * one task is active at any given time.
883 *
884 * libata core layer takes care of synchronization between
885 * port_task and EH. ata_port_queue_task() may be ignored for EH
886 * synchronization.
887 *
888 * LOCKING:
889 * Inherited from caller.
890 */
891void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
892 unsigned long delay)
893{
894 int rc;
895
2e755f68 896 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
86e45b6b
TH
897 return;
898
899 PREPARE_WORK(&ap->port_task, fn, data);
900
901 if (!delay)
902 rc = queue_work(ata_wq, &ap->port_task);
903 else
904 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
905
906 /* rc == 0 means that another user is using port task */
907 WARN_ON(rc == 0);
908}
909
910/**
911 * ata_port_flush_task - Flush port_task
912 * @ap: The ata_port to flush port_task for
913 *
914 * After this function completes, port_task is guranteed not to
915 * be running or scheduled.
916 *
917 * LOCKING:
918 * Kernel thread context (may sleep)
919 */
920void ata_port_flush_task(struct ata_port *ap)
921{
922 unsigned long flags;
923
924 DPRINTK("ENTER\n");
925
926 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 927 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
86e45b6b
TH
928 spin_unlock_irqrestore(&ap->host_set->lock, flags);
929
930 DPRINTK("flush #1\n");
931 flush_workqueue(ata_wq);
932
933 /*
934 * At this point, if a task is running, it's guaranteed to see
935 * the FLUSH flag; thus, it will never queue pio tasks again.
936 * Cancel and flush.
937 */
938 if (!cancel_delayed_work(&ap->port_task)) {
939 DPRINTK("flush #2\n");
940 flush_workqueue(ata_wq);
941 }
942
943 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 944 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
86e45b6b
TH
945 spin_unlock_irqrestore(&ap->host_set->lock, flags);
946
947 DPRINTK("EXIT\n");
948}
949
77853bf2 950void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 951{
77853bf2 952 struct completion *waiting = qc->private_data;
a2a7a662 953
a2a7a662 954 complete(waiting);
a2a7a662
TH
955}
956
957/**
958 * ata_exec_internal - execute libata internal command
a2a7a662
TH
959 * @dev: Device to which the command is sent
960 * @tf: Taskfile registers for the command and the result
d69cf37d 961 * @cdb: CDB for packet command
a2a7a662
TH
962 * @dma_dir: Data tranfer direction of the command
963 * @buf: Data buffer of the command
964 * @buflen: Length of data buffer
965 *
966 * Executes libata internal command with timeout. @tf contains
967 * command on entry and result on return. Timeout and error
968 * conditions are reported via return value. No recovery action
969 * is taken after a command times out. It's caller's duty to
970 * clean up after timeout.
971 *
972 * LOCKING:
973 * None. Should be called with kernel context, might sleep.
974 */
975
3373efd8 976unsigned ata_exec_internal(struct ata_device *dev,
1ad8e7f9
TH
977 struct ata_taskfile *tf, const u8 *cdb,
978 int dma_dir, void *buf, unsigned int buflen)
a2a7a662 979{
3373efd8 980 struct ata_port *ap = dev->ap;
a2a7a662
TH
981 u8 command = tf->command;
982 struct ata_queued_cmd *qc;
2ab7db1f 983 unsigned int tag, preempted_tag;
a2a7a662
TH
984 DECLARE_COMPLETION(wait);
985 unsigned long flags;
77853bf2 986 unsigned int err_mask;
d95a717f 987 int rc;
a2a7a662
TH
988
989 spin_lock_irqsave(&ap->host_set->lock, flags);
990
e3180499
TH
991 /* no internal command while frozen */
992 if (ap->flags & ATA_FLAG_FROZEN) {
993 spin_unlock_irqrestore(&ap->host_set->lock, flags);
994 return AC_ERR_SYSTEM;
995 }
996
2ab7db1f 997 /* initialize internal qc */
a2a7a662 998
2ab7db1f
TH
999 /* XXX: Tag 0 is used for drivers with legacy EH as some
1000 * drivers choke if any other tag is given. This breaks
1001 * ata_tag_internal() test for those drivers. Don't use new
1002 * EH stuff without converting to it.
1003 */
1004 if (ap->ops->error_handler)
1005 tag = ATA_TAG_INTERNAL;
1006 else
1007 tag = 0;
1008
6cec4a39 1009 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1010 BUG();
f69499f4 1011 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1012
1013 qc->tag = tag;
1014 qc->scsicmd = NULL;
1015 qc->ap = ap;
1016 qc->dev = dev;
1017 ata_qc_reinit(qc);
1018
1019 preempted_tag = ap->active_tag;
1020 ap->active_tag = ATA_TAG_POISON;
1021
1022 /* prepare & issue qc */
a2a7a662 1023 qc->tf = *tf;
d69cf37d
TH
1024 if (cdb)
1025 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1026 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1027 qc->dma_dir = dma_dir;
1028 if (dma_dir != DMA_NONE) {
1029 ata_sg_init_one(qc, buf, buflen);
1030 qc->nsect = buflen / ATA_SECT_SIZE;
1031 }
1032
77853bf2 1033 qc->private_data = &wait;
a2a7a662
TH
1034 qc->complete_fn = ata_qc_complete_internal;
1035
8e0e694a 1036 ata_qc_issue(qc);
a2a7a662
TH
1037
1038 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1039
d95a717f
TH
1040 rc = wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL);
1041
1042 ata_port_flush_task(ap);
41ade50c 1043
d95a717f 1044 if (!rc) {
a2a7a662
TH
1045 spin_lock_irqsave(&ap->host_set->lock, flags);
1046
1047 /* We're racing with irq here. If we lose, the
1048 * following test prevents us from completing the qc
d95a717f
TH
1049 * twice. If we win, the port is frozen and will be
1050 * cleaned up by ->post_internal_cmd().
a2a7a662 1051 */
77853bf2 1052 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1053 qc->err_mask |= AC_ERR_TIMEOUT;
1054
1055 if (ap->ops->error_handler)
1056 ata_port_freeze(ap);
1057 else
1058 ata_qc_complete(qc);
f15a1daf
TH
1059
1060 ata_dev_printk(dev, KERN_WARNING,
1061 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1062 }
1063
1064 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1065 }
1066
d95a717f
TH
1067 /* do post_internal_cmd */
1068 if (ap->ops->post_internal_cmd)
1069 ap->ops->post_internal_cmd(qc);
1070
1071 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
1072 ata_dev_printk(dev, KERN_WARNING, "zero err_mask for failed "
1073 "internal command, assuming AC_ERR_OTHER\n");
1074 qc->err_mask |= AC_ERR_OTHER;
1075 }
1076
15869303
TH
1077 /* finish up */
1078 spin_lock_irqsave(&ap->host_set->lock, flags);
1079
e61e0672 1080 *tf = qc->result_tf;
77853bf2
TH
1081 err_mask = qc->err_mask;
1082
1083 ata_qc_free(qc);
2ab7db1f 1084 ap->active_tag = preempted_tag;
77853bf2 1085
1f7dd3e9
TH
1086 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1087 * Until those drivers are fixed, we detect the condition
1088 * here, fail the command with AC_ERR_SYSTEM and reenable the
1089 * port.
1090 *
1091 * Note that this doesn't change any behavior as internal
1092 * command failure results in disabling the device in the
1093 * higher layer for LLDDs without new reset/EH callbacks.
1094 *
1095 * Kill the following code as soon as those drivers are fixed.
1096 */
198e0fed 1097 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1098 err_mask |= AC_ERR_SYSTEM;
1099 ata_port_probe(ap);
1100 }
1101
15869303
TH
1102 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1103
77853bf2 1104 return err_mask;
a2a7a662
TH
1105}
1106
1bc4ccff
AC
1107/**
1108 * ata_pio_need_iordy - check if iordy needed
1109 * @adev: ATA device
1110 *
1111 * Check if the current speed of the device requires IORDY. Used
1112 * by various controllers for chip configuration.
1113 */
1114
1115unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1116{
1117 int pio;
1118 int speed = adev->pio_mode - XFER_PIO_0;
1119
1120 if (speed < 2)
1121 return 0;
1122 if (speed > 2)
1123 return 1;
2e9edbf8 1124
1bc4ccff
AC
1125 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1126
1127 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1128 pio = adev->id[ATA_ID_EIDE_PIO];
1129 /* Is the speed faster than the drive allows non IORDY ? */
1130 if (pio) {
1131 /* This is cycle times not frequency - watch the logic! */
1132 if (pio > 240) /* PIO2 is 240nS per cycle */
1133 return 1;
1134 return 0;
1135 }
1136 }
1137 return 0;
1138}
1139
1da177e4 1140/**
49016aca 1141 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1142 * @dev: target device
1143 * @p_class: pointer to class of the target device (may be changed)
1144 * @post_reset: is this read ID post-reset?
fe635c7e 1145 * @id: buffer to read IDENTIFY data into
1da177e4 1146 *
49016aca
TH
1147 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1148 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1149 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1150 * for pre-ATA4 drives.
1da177e4
LT
1151 *
1152 * LOCKING:
49016aca
TH
1153 * Kernel thread context (may sleep)
1154 *
1155 * RETURNS:
1156 * 0 on success, -errno otherwise.
1da177e4 1157 */
3373efd8
TH
1158static int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1159 int post_reset, u16 *id)
1da177e4 1160{
3373efd8 1161 struct ata_port *ap = dev->ap;
49016aca 1162 unsigned int class = *p_class;
a0123703 1163 struct ata_taskfile tf;
49016aca
TH
1164 unsigned int err_mask = 0;
1165 const char *reason;
1166 int rc;
1da177e4 1167
49016aca 1168 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1169
49016aca 1170 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1da177e4 1171
49016aca 1172 retry:
3373efd8 1173 ata_tf_init(dev, &tf);
a0123703 1174
49016aca
TH
1175 switch (class) {
1176 case ATA_DEV_ATA:
a0123703 1177 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1178 break;
1179 case ATA_DEV_ATAPI:
a0123703 1180 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1181 break;
1182 default:
1183 rc = -ENODEV;
1184 reason = "unsupported class";
1185 goto err_out;
1da177e4
LT
1186 }
1187
a0123703 1188 tf.protocol = ATA_PROT_PIO;
1da177e4 1189
3373efd8 1190 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1191 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1192 if (err_mask) {
49016aca
TH
1193 rc = -EIO;
1194 reason = "I/O error";
1da177e4
LT
1195 goto err_out;
1196 }
1197
49016aca 1198 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1199
49016aca 1200 /* sanity check */
692785e7 1201 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
49016aca
TH
1202 rc = -EINVAL;
1203 reason = "device reports illegal type";
1204 goto err_out;
1205 }
1206
1207 if (post_reset && class == ATA_DEV_ATA) {
1208 /*
1209 * The exact sequence expected by certain pre-ATA4 drives is:
1210 * SRST RESET
1211 * IDENTIFY
1212 * INITIALIZE DEVICE PARAMETERS
1213 * anything else..
1214 * Some drives were very specific about that exact sequence.
1215 */
1216 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1217 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1218 if (err_mask) {
1219 rc = -EIO;
1220 reason = "INIT_DEV_PARAMS failed";
1221 goto err_out;
1222 }
1223
1224 /* current CHS translation info (id[53-58]) might be
1225 * changed. reread the identify device info.
1226 */
1227 post_reset = 0;
1228 goto retry;
1229 }
1230 }
1231
1232 *p_class = class;
fe635c7e 1233
49016aca
TH
1234 return 0;
1235
1236 err_out:
f15a1daf
TH
1237 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1238 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1239 return rc;
1240}
1241
3373efd8 1242static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1243{
3373efd8 1244 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1245}
1246
49016aca 1247/**
ffeae418 1248 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418 1249 * @dev: Target device to configure
4c2d721a 1250 * @print_info: Enable device info printout
ffeae418
TH
1251 *
1252 * Configure @dev according to @dev->id. Generic and low-level
1253 * driver specific fixups are also applied.
49016aca
TH
1254 *
1255 * LOCKING:
ffeae418
TH
1256 * Kernel thread context (may sleep)
1257 *
1258 * RETURNS:
1259 * 0 on success, -errno otherwise
49016aca 1260 */
3373efd8 1261static int ata_dev_configure(struct ata_device *dev, int print_info)
49016aca 1262{
3373efd8 1263 struct ata_port *ap = dev->ap;
1148c3a7 1264 const u16 *id = dev->id;
ff8854b2 1265 unsigned int xfer_mask;
49016aca
TH
1266 int i, rc;
1267
e1211e3f 1268 if (!ata_dev_enabled(dev)) {
49016aca 1269 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
ffeae418
TH
1270 ap->id, dev->devno);
1271 return 0;
49016aca
TH
1272 }
1273
ffeae418 1274 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1275
c39f5ebe
TH
1276 /* print device capabilities */
1277 if (print_info)
f15a1daf
TH
1278 ata_dev_printk(dev, KERN_DEBUG, "cfg 49:%04x 82:%04x 83:%04x "
1279 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1280 id[49], id[82], id[83], id[84],
1281 id[85], id[86], id[87], id[88]);
c39f5ebe 1282
208a9933 1283 /* initialize to-be-configured parameters */
ea1dd4e1 1284 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1285 dev->max_sectors = 0;
1286 dev->cdb_len = 0;
1287 dev->n_sectors = 0;
1288 dev->cylinders = 0;
1289 dev->heads = 0;
1290 dev->sectors = 0;
1291
1da177e4
LT
1292 /*
1293 * common ATA, ATAPI feature tests
1294 */
1295
ff8854b2 1296 /* find max transfer mode; for printk only */
1148c3a7 1297 xfer_mask = ata_id_xfermask(id);
1da177e4 1298
1148c3a7 1299 ata_dump_id(id);
1da177e4
LT
1300
1301 /* ATA-specific feature tests */
1302 if (dev->class == ATA_DEV_ATA) {
1148c3a7 1303 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1304
1148c3a7 1305 if (ata_id_has_lba(id)) {
4c2d721a 1306 const char *lba_desc;
8bf62ece 1307
4c2d721a
TH
1308 lba_desc = "LBA";
1309 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1310 if (ata_id_has_lba48(id)) {
8bf62ece 1311 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a
TH
1312 lba_desc = "LBA48";
1313 }
8bf62ece
AL
1314
1315 /* print device info to dmesg */
4c2d721a 1316 if (print_info)
f15a1daf
TH
1317 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1318 "max %s, %Lu sectors: %s\n",
1319 ata_id_major_version(id),
1320 ata_mode_string(xfer_mask),
1321 (unsigned long long)dev->n_sectors,
1322 lba_desc);
ffeae418 1323 } else {
8bf62ece
AL
1324 /* CHS */
1325
1326 /* Default translation */
1148c3a7
TH
1327 dev->cylinders = id[1];
1328 dev->heads = id[3];
1329 dev->sectors = id[6];
8bf62ece 1330
1148c3a7 1331 if (ata_id_current_chs_valid(id)) {
8bf62ece 1332 /* Current CHS translation is valid. */
1148c3a7
TH
1333 dev->cylinders = id[54];
1334 dev->heads = id[55];
1335 dev->sectors = id[56];
8bf62ece
AL
1336 }
1337
1338 /* print device info to dmesg */
4c2d721a 1339 if (print_info)
f15a1daf
TH
1340 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1341 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1342 ata_id_major_version(id),
1343 ata_mode_string(xfer_mask),
1344 (unsigned long long)dev->n_sectors,
1345 dev->cylinders, dev->heads, dev->sectors);
1da177e4
LT
1346 }
1347
07f6f7d0
AL
1348 if (dev->id[59] & 0x100) {
1349 dev->multi_count = dev->id[59] & 0xff;
1350 DPRINTK("ata%u: dev %u multi count %u\n",
999bb6f4 1351 ap->id, dev->devno, dev->multi_count);
07f6f7d0
AL
1352 }
1353
6e7846e9 1354 dev->cdb_len = 16;
1da177e4
LT
1355 }
1356
1357 /* ATAPI-specific feature tests */
2c13b7ce 1358 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1359 char *cdb_intr_string = "";
1360
1148c3a7 1361 rc = atapi_cdb_len(id);
1da177e4 1362 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
f15a1daf
TH
1363 ata_dev_printk(dev, KERN_WARNING,
1364 "unsupported CDB len\n");
ffeae418 1365 rc = -EINVAL;
1da177e4
LT
1366 goto err_out_nosup;
1367 }
6e7846e9 1368 dev->cdb_len = (unsigned int) rc;
1da177e4 1369
08a556db 1370 if (ata_id_cdb_intr(dev->id)) {
312f7da2 1371 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
1372 cdb_intr_string = ", CDB intr";
1373 }
312f7da2 1374
1da177e4 1375 /* print device info to dmesg */
4c2d721a 1376 if (print_info)
12436c30
TH
1377 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1378 ata_mode_string(xfer_mask),
1379 cdb_intr_string);
1da177e4
LT
1380 }
1381
6e7846e9
TH
1382 ap->host->max_cmd_len = 0;
1383 for (i = 0; i < ATA_MAX_DEVICES; i++)
1384 ap->host->max_cmd_len = max_t(unsigned int,
1385 ap->host->max_cmd_len,
1386 ap->device[i].cdb_len);
1387
4b2f3ede 1388 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 1389 if (ata_dev_knobble(dev)) {
4c2d721a 1390 if (print_info)
f15a1daf
TH
1391 ata_dev_printk(dev, KERN_INFO,
1392 "applying bridge limits\n");
5a529139 1393 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
1394 dev->max_sectors = ATA_MAX_SECTORS;
1395 }
1396
1397 if (ap->ops->dev_config)
1398 ap->ops->dev_config(ap, dev);
1399
1da177e4 1400 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
ffeae418 1401 return 0;
1da177e4
LT
1402
1403err_out_nosup:
1da177e4 1404 DPRINTK("EXIT, err\n");
ffeae418 1405 return rc;
1da177e4
LT
1406}
1407
1408/**
1409 * ata_bus_probe - Reset and probe ATA bus
1410 * @ap: Bus to probe
1411 *
0cba632b
JG
1412 * Master ATA bus probing function. Initiates a hardware-dependent
1413 * bus reset, then attempts to identify any devices found on
1414 * the bus.
1415 *
1da177e4 1416 * LOCKING:
0cba632b 1417 * PCI/etc. bus probe sem.
1da177e4
LT
1418 *
1419 * RETURNS:
96072e69 1420 * Zero on success, negative errno otherwise.
1da177e4
LT
1421 */
1422
1423static int ata_bus_probe(struct ata_port *ap)
1424{
28ca5c57 1425 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1
TH
1426 int tries[ATA_MAX_DEVICES];
1427 int i, rc, down_xfermask;
e82cbdb9 1428 struct ata_device *dev;
1da177e4 1429
28ca5c57 1430 ata_port_probe(ap);
c19ba8af 1431
14d2bac1
TH
1432 for (i = 0; i < ATA_MAX_DEVICES; i++)
1433 tries[i] = ATA_PROBE_MAX_TRIES;
1434
1435 retry:
1436 down_xfermask = 0;
1437
2044470c
TH
1438 /* reset and determine device classes */
1439 for (i = 0; i < ATA_MAX_DEVICES; i++)
1440 classes[i] = ATA_DEV_UNKNOWN;
2061a47a 1441
2044470c 1442 if (ap->ops->probe_reset) {
c19ba8af 1443 rc = ap->ops->probe_reset(ap, classes);
28ca5c57 1444 if (rc) {
f15a1daf
TH
1445 ata_port_printk(ap, KERN_ERR,
1446 "reset failed (errno=%d)\n", rc);
28ca5c57 1447 return rc;
c19ba8af 1448 }
28ca5c57 1449 } else {
c19ba8af
TH
1450 ap->ops->phy_reset(ap);
1451
f8c2c420
TH
1452 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1453 if (!(ap->flags & ATA_FLAG_DISABLED))
28ca5c57 1454 classes[i] = ap->device[i].class;
f8c2c420
TH
1455 ap->device[i].class = ATA_DEV_UNKNOWN;
1456 }
2044470c 1457
28ca5c57
TH
1458 ata_port_probe(ap);
1459 }
1da177e4 1460
2044470c
TH
1461 for (i = 0; i < ATA_MAX_DEVICES; i++)
1462 if (classes[i] == ATA_DEV_UNKNOWN)
1463 classes[i] = ATA_DEV_NONE;
1464
28ca5c57 1465 /* read IDENTIFY page and configure devices */
1da177e4 1466 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e82cbdb9 1467 dev = &ap->device[i];
28ca5c57 1468
ec573755
TH
1469 if (tries[i])
1470 dev->class = classes[i];
ffeae418 1471
14d2bac1 1472 if (!ata_dev_enabled(dev))
ffeae418 1473 continue;
ffeae418 1474
3373efd8 1475 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
14d2bac1
TH
1476 if (rc)
1477 goto fail;
1478
3373efd8 1479 rc = ata_dev_configure(dev, 1);
14d2bac1
TH
1480 if (rc)
1481 goto fail;
1da177e4
LT
1482 }
1483
e82cbdb9 1484 /* configure transfer mode */
3adcebb2 1485 rc = ata_set_mode(ap, &dev);
51713d35
TH
1486 if (rc) {
1487 down_xfermask = 1;
1488 goto fail;
e82cbdb9 1489 }
1da177e4 1490
e82cbdb9
TH
1491 for (i = 0; i < ATA_MAX_DEVICES; i++)
1492 if (ata_dev_enabled(&ap->device[i]))
1493 return 0;
1da177e4 1494
e82cbdb9
TH
1495 /* no device present, disable port */
1496 ata_port_disable(ap);
1da177e4 1497 ap->ops->port_disable(ap);
96072e69 1498 return -ENODEV;
14d2bac1
TH
1499
1500 fail:
1501 switch (rc) {
1502 case -EINVAL:
1503 case -ENODEV:
1504 tries[dev->devno] = 0;
1505 break;
1506 case -EIO:
3c567b7d 1507 sata_down_spd_limit(ap);
14d2bac1
TH
1508 /* fall through */
1509 default:
1510 tries[dev->devno]--;
1511 if (down_xfermask &&
3373efd8 1512 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
14d2bac1
TH
1513 tries[dev->devno] = 0;
1514 }
1515
ec573755 1516 if (!tries[dev->devno]) {
3373efd8
TH
1517 ata_down_xfermask_limit(dev, 1);
1518 ata_dev_disable(dev);
ec573755
TH
1519 }
1520
14d2bac1 1521 goto retry;
1da177e4
LT
1522}
1523
1524/**
0cba632b
JG
1525 * ata_port_probe - Mark port as enabled
1526 * @ap: Port for which we indicate enablement
1da177e4 1527 *
0cba632b
JG
1528 * Modify @ap data structure such that the system
1529 * thinks that the entire port is enabled.
1530 *
1531 * LOCKING: host_set lock, or some other form of
1532 * serialization.
1da177e4
LT
1533 */
1534
1535void ata_port_probe(struct ata_port *ap)
1536{
198e0fed 1537 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
1538}
1539
3be680b7
TH
1540/**
1541 * sata_print_link_status - Print SATA link status
1542 * @ap: SATA port to printk link status about
1543 *
1544 * This function prints link speed and status of a SATA link.
1545 *
1546 * LOCKING:
1547 * None.
1548 */
1549static void sata_print_link_status(struct ata_port *ap)
1550{
6d5f9732 1551 u32 sstatus, scontrol, tmp;
3be680b7 1552
81952c54 1553 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 1554 return;
81952c54 1555 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 1556
81952c54 1557 if (ata_port_online(ap)) {
3be680b7 1558 tmp = (sstatus >> 4) & 0xf;
f15a1daf
TH
1559 ata_port_printk(ap, KERN_INFO,
1560 "SATA link up %s (SStatus %X SControl %X)\n",
1561 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 1562 } else {
f15a1daf
TH
1563 ata_port_printk(ap, KERN_INFO,
1564 "SATA link down (SStatus %X SControl %X)\n",
1565 sstatus, scontrol);
3be680b7
TH
1566 }
1567}
1568
1da177e4 1569/**
780a87f7
JG
1570 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1571 * @ap: SATA port associated with target SATA PHY.
1da177e4 1572 *
780a87f7
JG
1573 * This function issues commands to standard SATA Sxxx
1574 * PHY registers, to wake up the phy (and device), and
1575 * clear any reset condition.
1da177e4
LT
1576 *
1577 * LOCKING:
0cba632b 1578 * PCI/etc. bus probe sem.
1da177e4
LT
1579 *
1580 */
1581void __sata_phy_reset(struct ata_port *ap)
1582{
1583 u32 sstatus;
1584 unsigned long timeout = jiffies + (HZ * 5);
1585
1586 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 1587 /* issue phy wake/reset */
81952c54 1588 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1589 /* Couldn't find anything in SATA I/II specs, but
1590 * AHCI-1.1 10.4.2 says at least 1 ms. */
1591 mdelay(1);
1da177e4 1592 }
81952c54
TH
1593 /* phy wake/clear reset */
1594 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
1595
1596 /* wait for phy to become ready, if necessary */
1597 do {
1598 msleep(200);
81952c54 1599 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
1600 if ((sstatus & 0xf) != 1)
1601 break;
1602 } while (time_before(jiffies, timeout));
1603
3be680b7
TH
1604 /* print link status */
1605 sata_print_link_status(ap);
656563e3 1606
3be680b7 1607 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 1608 if (!ata_port_offline(ap))
1da177e4 1609 ata_port_probe(ap);
3be680b7 1610 else
1da177e4 1611 ata_port_disable(ap);
1da177e4 1612
198e0fed 1613 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1614 return;
1615
1616 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1617 ata_port_disable(ap);
1618 return;
1619 }
1620
1621 ap->cbl = ATA_CBL_SATA;
1622}
1623
1624/**
780a87f7
JG
1625 * sata_phy_reset - Reset SATA bus.
1626 * @ap: SATA port associated with target SATA PHY.
1da177e4 1627 *
780a87f7
JG
1628 * This function resets the SATA bus, and then probes
1629 * the bus for devices.
1da177e4
LT
1630 *
1631 * LOCKING:
0cba632b 1632 * PCI/etc. bus probe sem.
1da177e4
LT
1633 *
1634 */
1635void sata_phy_reset(struct ata_port *ap)
1636{
1637 __sata_phy_reset(ap);
198e0fed 1638 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1639 return;
1640 ata_bus_reset(ap);
1641}
1642
ebdfca6e
AC
1643/**
1644 * ata_dev_pair - return other device on cable
ebdfca6e
AC
1645 * @adev: device
1646 *
1647 * Obtain the other device on the same cable, or if none is
1648 * present NULL is returned
1649 */
2e9edbf8 1650
3373efd8 1651struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 1652{
3373efd8 1653 struct ata_port *ap = adev->ap;
ebdfca6e 1654 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 1655 if (!ata_dev_enabled(pair))
ebdfca6e
AC
1656 return NULL;
1657 return pair;
1658}
1659
1da177e4 1660/**
780a87f7
JG
1661 * ata_port_disable - Disable port.
1662 * @ap: Port to be disabled.
1da177e4 1663 *
780a87f7
JG
1664 * Modify @ap data structure such that the system
1665 * thinks that the entire port is disabled, and should
1666 * never attempt to probe or communicate with devices
1667 * on this port.
1668 *
1669 * LOCKING: host_set lock, or some other form of
1670 * serialization.
1da177e4
LT
1671 */
1672
1673void ata_port_disable(struct ata_port *ap)
1674{
1675 ap->device[0].class = ATA_DEV_NONE;
1676 ap->device[1].class = ATA_DEV_NONE;
198e0fed 1677 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
1678}
1679
1c3fae4d 1680/**
3c567b7d 1681 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
1682 * @ap: Port to adjust SATA spd limit for
1683 *
1684 * Adjust SATA spd limit of @ap downward. Note that this
1685 * function only adjusts the limit. The change must be applied
3c567b7d 1686 * using sata_set_spd().
1c3fae4d
TH
1687 *
1688 * LOCKING:
1689 * Inherited from caller.
1690 *
1691 * RETURNS:
1692 * 0 on success, negative errno on failure
1693 */
3c567b7d 1694int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 1695{
81952c54
TH
1696 u32 sstatus, spd, mask;
1697 int rc, highbit;
1c3fae4d 1698
81952c54
TH
1699 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1700 if (rc)
1701 return rc;
1c3fae4d
TH
1702
1703 mask = ap->sata_spd_limit;
1704 if (mask <= 1)
1705 return -EINVAL;
1706 highbit = fls(mask) - 1;
1707 mask &= ~(1 << highbit);
1708
81952c54 1709 spd = (sstatus >> 4) & 0xf;
1c3fae4d
TH
1710 if (spd <= 1)
1711 return -EINVAL;
1712 spd--;
1713 mask &= (1 << spd) - 1;
1714 if (!mask)
1715 return -EINVAL;
1716
1717 ap->sata_spd_limit = mask;
1718
f15a1daf
TH
1719 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1720 sata_spd_string(fls(mask)));
1c3fae4d
TH
1721
1722 return 0;
1723}
1724
3c567b7d 1725static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
1726{
1727 u32 spd, limit;
1728
1729 if (ap->sata_spd_limit == UINT_MAX)
1730 limit = 0;
1731 else
1732 limit = fls(ap->sata_spd_limit);
1733
1734 spd = (*scontrol >> 4) & 0xf;
1735 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1736
1737 return spd != limit;
1738}
1739
1740/**
3c567b7d 1741 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
1742 * @ap: Port in question
1743 *
1744 * Test whether the spd limit in SControl matches
1745 * @ap->sata_spd_limit. This function is used to determine
1746 * whether hardreset is necessary to apply SATA spd
1747 * configuration.
1748 *
1749 * LOCKING:
1750 * Inherited from caller.
1751 *
1752 * RETURNS:
1753 * 1 if SATA spd configuration is needed, 0 otherwise.
1754 */
3c567b7d 1755int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
1756{
1757 u32 scontrol;
1758
81952c54 1759 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
1760 return 0;
1761
3c567b7d 1762 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
1763}
1764
1765/**
3c567b7d 1766 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
1767 * @ap: Port to set SATA spd for
1768 *
1769 * Set SATA spd of @ap according to sata_spd_limit.
1770 *
1771 * LOCKING:
1772 * Inherited from caller.
1773 *
1774 * RETURNS:
1775 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 1776 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 1777 */
3c567b7d 1778int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
1779{
1780 u32 scontrol;
81952c54 1781 int rc;
1c3fae4d 1782
81952c54
TH
1783 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1784 return rc;
1c3fae4d 1785
3c567b7d 1786 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
1787 return 0;
1788
81952c54
TH
1789 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1790 return rc;
1791
1c3fae4d
TH
1792 return 1;
1793}
1794
452503f9
AC
1795/*
1796 * This mode timing computation functionality is ported over from
1797 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1798 */
1799/*
1800 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1801 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1802 * for PIO 5, which is a nonstandard extension and UDMA6, which
2e9edbf8 1803 * is currently supported only by Maxtor drives.
452503f9
AC
1804 */
1805
1806static const struct ata_timing ata_timing[] = {
1807
1808 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1809 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1810 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1811 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1812
1813 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1814 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1815 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1816
1817/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 1818
452503f9
AC
1819 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1820 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1821 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 1822
452503f9
AC
1823 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1824 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1825 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1826
1827/* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1828 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1829 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1830
1831 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1832 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1833 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1834
1835/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1836
1837 { 0xFF }
1838};
1839
1840#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1841#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1842
1843static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1844{
1845 q->setup = EZ(t->setup * 1000, T);
1846 q->act8b = EZ(t->act8b * 1000, T);
1847 q->rec8b = EZ(t->rec8b * 1000, T);
1848 q->cyc8b = EZ(t->cyc8b * 1000, T);
1849 q->active = EZ(t->active * 1000, T);
1850 q->recover = EZ(t->recover * 1000, T);
1851 q->cycle = EZ(t->cycle * 1000, T);
1852 q->udma = EZ(t->udma * 1000, UT);
1853}
1854
1855void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1856 struct ata_timing *m, unsigned int what)
1857{
1858 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1859 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1860 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1861 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1862 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1863 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1864 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1865 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1866}
1867
1868static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1869{
1870 const struct ata_timing *t;
1871
1872 for (t = ata_timing; t->mode != speed; t++)
91190758 1873 if (t->mode == 0xFF)
452503f9 1874 return NULL;
2e9edbf8 1875 return t;
452503f9
AC
1876}
1877
1878int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1879 struct ata_timing *t, int T, int UT)
1880{
1881 const struct ata_timing *s;
1882 struct ata_timing p;
1883
1884 /*
2e9edbf8 1885 * Find the mode.
75b1f2f8 1886 */
452503f9
AC
1887
1888 if (!(s = ata_timing_find_mode(speed)))
1889 return -EINVAL;
1890
75b1f2f8
AL
1891 memcpy(t, s, sizeof(*s));
1892
452503f9
AC
1893 /*
1894 * If the drive is an EIDE drive, it can tell us it needs extended
1895 * PIO/MW_DMA cycle timing.
1896 */
1897
1898 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1899 memset(&p, 0, sizeof(p));
1900 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1901 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1902 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1903 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1904 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1905 }
1906 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1907 }
1908
1909 /*
1910 * Convert the timing to bus clock counts.
1911 */
1912
75b1f2f8 1913 ata_timing_quantize(t, t, T, UT);
452503f9
AC
1914
1915 /*
c893a3ae
RD
1916 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1917 * S.M.A.R.T * and some other commands. We have to ensure that the
1918 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
1919 */
1920
1921 if (speed > XFER_PIO_4) {
1922 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1923 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1924 }
1925
1926 /*
c893a3ae 1927 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
1928 */
1929
1930 if (t->act8b + t->rec8b < t->cyc8b) {
1931 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1932 t->rec8b = t->cyc8b - t->act8b;
1933 }
1934
1935 if (t->active + t->recover < t->cycle) {
1936 t->active += (t->cycle - (t->active + t->recover)) / 2;
1937 t->recover = t->cycle - t->active;
1938 }
1939
1940 return 0;
1941}
1942
cf176e1a
TH
1943/**
1944 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a
TH
1945 * @dev: Device to adjust xfer masks
1946 * @force_pio0: Force PIO0
1947 *
1948 * Adjust xfer masks of @dev downward. Note that this function
1949 * does not apply the change. Invoking ata_set_mode() afterwards
1950 * will apply the limit.
1951 *
1952 * LOCKING:
1953 * Inherited from caller.
1954 *
1955 * RETURNS:
1956 * 0 on success, negative errno on failure
1957 */
3373efd8 1958int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
cf176e1a
TH
1959{
1960 unsigned long xfer_mask;
1961 int highbit;
1962
1963 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
1964 dev->udma_mask);
1965
1966 if (!xfer_mask)
1967 goto fail;
1968 /* don't gear down to MWDMA from UDMA, go directly to PIO */
1969 if (xfer_mask & ATA_MASK_UDMA)
1970 xfer_mask &= ~ATA_MASK_MWDMA;
1971
1972 highbit = fls(xfer_mask) - 1;
1973 xfer_mask &= ~(1 << highbit);
1974 if (force_pio0)
1975 xfer_mask &= 1 << ATA_SHIFT_PIO;
1976 if (!xfer_mask)
1977 goto fail;
1978
1979 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
1980 &dev->udma_mask);
1981
f15a1daf
TH
1982 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
1983 ata_mode_string(xfer_mask));
cf176e1a
TH
1984
1985 return 0;
1986
1987 fail:
1988 return -EINVAL;
1989}
1990
3373efd8 1991static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 1992{
83206a29
TH
1993 unsigned int err_mask;
1994 int rc;
1da177e4 1995
e8384607 1996 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
1997 if (dev->xfer_shift == ATA_SHIFT_PIO)
1998 dev->flags |= ATA_DFLAG_PIO;
1999
3373efd8 2000 err_mask = ata_dev_set_xfermode(dev);
83206a29 2001 if (err_mask) {
f15a1daf
TH
2002 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2003 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2004 return -EIO;
2005 }
1da177e4 2006
3373efd8 2007 rc = ata_dev_revalidate(dev, 0);
5eb45c02 2008 if (rc)
83206a29 2009 return rc;
48a8a14f 2010
23e71c3d
TH
2011 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2012 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2013
f15a1daf
TH
2014 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2015 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2016 return 0;
1da177e4
LT
2017}
2018
1da177e4
LT
2019/**
2020 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2021 * @ap: port on which timings will be programmed
e82cbdb9 2022 * @r_failed_dev: out paramter for failed device
1da177e4 2023 *
e82cbdb9
TH
2024 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2025 * ata_set_mode() fails, pointer to the failing device is
2026 * returned in @r_failed_dev.
780a87f7 2027 *
1da177e4 2028 * LOCKING:
0cba632b 2029 * PCI/etc. bus probe sem.
e82cbdb9
TH
2030 *
2031 * RETURNS:
2032 * 0 on success, negative errno otherwise
1da177e4 2033 */
1ad8e7f9 2034int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 2035{
e8e0619f 2036 struct ata_device *dev;
e82cbdb9 2037 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2038
3adcebb2
TH
2039 /* has private set_mode? */
2040 if (ap->ops->set_mode) {
2041 /* FIXME: make ->set_mode handle no device case and
2042 * return error code and failing device on failure.
2043 */
2044 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2045 if (ata_dev_enabled(&ap->device[i])) {
2046 ap->ops->set_mode(ap);
2047 break;
2048 }
2049 }
2050 return 0;
2051 }
2052
a6d5a51c
TH
2053 /* step 1: calculate xfer_mask */
2054 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2055 unsigned int pio_mask, dma_mask;
a6d5a51c 2056
e8e0619f
TH
2057 dev = &ap->device[i];
2058
e1211e3f 2059 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2060 continue;
2061
3373efd8 2062 ata_dev_xfermask(dev);
1da177e4 2063
acf356b1
TH
2064 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2065 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2066 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2067 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2068
4f65977d 2069 found = 1;
5444a6f4
AC
2070 if (dev->dma_mode)
2071 used_dma = 1;
a6d5a51c 2072 }
4f65977d 2073 if (!found)
e82cbdb9 2074 goto out;
a6d5a51c
TH
2075
2076 /* step 2: always set host PIO timings */
e8e0619f
TH
2077 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2078 dev = &ap->device[i];
2079 if (!ata_dev_enabled(dev))
2080 continue;
2081
2082 if (!dev->pio_mode) {
f15a1daf 2083 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2084 rc = -EINVAL;
e82cbdb9 2085 goto out;
e8e0619f
TH
2086 }
2087
2088 dev->xfer_mode = dev->pio_mode;
2089 dev->xfer_shift = ATA_SHIFT_PIO;
2090 if (ap->ops->set_piomode)
2091 ap->ops->set_piomode(ap, dev);
2092 }
1da177e4 2093
a6d5a51c 2094 /* step 3: set host DMA timings */
e8e0619f
TH
2095 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2096 dev = &ap->device[i];
2097
2098 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2099 continue;
2100
2101 dev->xfer_mode = dev->dma_mode;
2102 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2103 if (ap->ops->set_dmamode)
2104 ap->ops->set_dmamode(ap, dev);
2105 }
1da177e4
LT
2106
2107 /* step 4: update devices' xfer mode */
83206a29 2108 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2109 dev = &ap->device[i];
1da177e4 2110
e1211e3f 2111 if (!ata_dev_enabled(dev))
83206a29
TH
2112 continue;
2113
3373efd8 2114 rc = ata_dev_set_mode(dev);
5bbc53f4 2115 if (rc)
e82cbdb9 2116 goto out;
83206a29 2117 }
1da177e4 2118
e8e0619f
TH
2119 /* Record simplex status. If we selected DMA then the other
2120 * host channels are not permitted to do so.
5444a6f4 2121 */
5444a6f4
AC
2122 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2123 ap->host_set->simplex_claimed = 1;
2124
e8e0619f 2125 /* step5: chip specific finalisation */
1da177e4
LT
2126 if (ap->ops->post_set_mode)
2127 ap->ops->post_set_mode(ap);
2128
e82cbdb9
TH
2129 out:
2130 if (rc)
2131 *r_failed_dev = dev;
2132 return rc;
1da177e4
LT
2133}
2134
1fdffbce
JG
2135/**
2136 * ata_tf_to_host - issue ATA taskfile to host controller
2137 * @ap: port to which command is being issued
2138 * @tf: ATA taskfile register set
2139 *
2140 * Issues ATA taskfile register set to ATA host controller,
2141 * with proper synchronization with interrupt handler and
2142 * other threads.
2143 *
2144 * LOCKING:
2145 * spin_lock_irqsave(host_set lock)
2146 */
2147
2148static inline void ata_tf_to_host(struct ata_port *ap,
2149 const struct ata_taskfile *tf)
2150{
2151 ap->ops->tf_load(ap, tf);
2152 ap->ops->exec_command(ap, tf);
2153}
2154
1da177e4
LT
2155/**
2156 * ata_busy_sleep - sleep until BSY clears, or timeout
2157 * @ap: port containing status register to be polled
2158 * @tmout_pat: impatience timeout
2159 * @tmout: overall timeout
2160 *
780a87f7
JG
2161 * Sleep until ATA Status register bit BSY clears,
2162 * or a timeout occurs.
2163 *
2164 * LOCKING: None.
1da177e4
LT
2165 */
2166
6f8b9958
TH
2167unsigned int ata_busy_sleep (struct ata_port *ap,
2168 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2169{
2170 unsigned long timer_start, timeout;
2171 u8 status;
2172
2173 status = ata_busy_wait(ap, ATA_BUSY, 300);
2174 timer_start = jiffies;
2175 timeout = timer_start + tmout_pat;
2176 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2177 msleep(50);
2178 status = ata_busy_wait(ap, ATA_BUSY, 3);
2179 }
2180
2181 if (status & ATA_BUSY)
f15a1daf
TH
2182 ata_port_printk(ap, KERN_WARNING,
2183 "port is slow to respond, please be patient\n");
1da177e4
LT
2184
2185 timeout = timer_start + tmout;
2186 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2187 msleep(50);
2188 status = ata_chk_status(ap);
2189 }
2190
2191 if (status & ATA_BUSY) {
f15a1daf
TH
2192 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2193 "(%lu secs)\n", tmout / HZ);
1da177e4
LT
2194 return 1;
2195 }
2196
2197 return 0;
2198}
2199
2200static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2201{
2202 struct ata_ioports *ioaddr = &ap->ioaddr;
2203 unsigned int dev0 = devmask & (1 << 0);
2204 unsigned int dev1 = devmask & (1 << 1);
2205 unsigned long timeout;
2206
2207 /* if device 0 was found in ata_devchk, wait for its
2208 * BSY bit to clear
2209 */
2210 if (dev0)
2211 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2212
2213 /* if device 1 was found in ata_devchk, wait for
2214 * register access, then wait for BSY to clear
2215 */
2216 timeout = jiffies + ATA_TMOUT_BOOT;
2217 while (dev1) {
2218 u8 nsect, lbal;
2219
2220 ap->ops->dev_select(ap, 1);
2221 if (ap->flags & ATA_FLAG_MMIO) {
2222 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2223 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2224 } else {
2225 nsect = inb(ioaddr->nsect_addr);
2226 lbal = inb(ioaddr->lbal_addr);
2227 }
2228 if ((nsect == 1) && (lbal == 1))
2229 break;
2230 if (time_after(jiffies, timeout)) {
2231 dev1 = 0;
2232 break;
2233 }
2234 msleep(50); /* give drive a breather */
2235 }
2236 if (dev1)
2237 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2238
2239 /* is all this really necessary? */
2240 ap->ops->dev_select(ap, 0);
2241 if (dev1)
2242 ap->ops->dev_select(ap, 1);
2243 if (dev0)
2244 ap->ops->dev_select(ap, 0);
2245}
2246
1da177e4
LT
2247static unsigned int ata_bus_softreset(struct ata_port *ap,
2248 unsigned int devmask)
2249{
2250 struct ata_ioports *ioaddr = &ap->ioaddr;
2251
2252 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2253
2254 /* software reset. causes dev0 to be selected */
2255 if (ap->flags & ATA_FLAG_MMIO) {
2256 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2257 udelay(20); /* FIXME: flush */
2258 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2259 udelay(20); /* FIXME: flush */
2260 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2261 } else {
2262 outb(ap->ctl, ioaddr->ctl_addr);
2263 udelay(10);
2264 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2265 udelay(10);
2266 outb(ap->ctl, ioaddr->ctl_addr);
2267 }
2268
2269 /* spec mandates ">= 2ms" before checking status.
2270 * We wait 150ms, because that was the magic delay used for
2271 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2272 * between when the ATA command register is written, and then
2273 * status is checked. Because waiting for "a while" before
2274 * checking status is fine, post SRST, we perform this magic
2275 * delay here as well.
09c7ad79
AC
2276 *
2277 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
2278 */
2279 msleep(150);
2280
2e9edbf8 2281 /* Before we perform post reset processing we want to see if
298a41ca
TH
2282 * the bus shows 0xFF because the odd clown forgets the D7
2283 * pulldown resistor.
2284 */
987d2f05 2285 if (ata_check_status(ap) == 0xFF) {
f15a1daf 2286 ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n");
298a41ca 2287 return AC_ERR_OTHER;
987d2f05 2288 }
09c7ad79 2289
1da177e4
LT
2290 ata_bus_post_reset(ap, devmask);
2291
2292 return 0;
2293}
2294
2295/**
2296 * ata_bus_reset - reset host port and associated ATA channel
2297 * @ap: port to reset
2298 *
2299 * This is typically the first time we actually start issuing
2300 * commands to the ATA channel. We wait for BSY to clear, then
2301 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2302 * result. Determine what devices, if any, are on the channel
2303 * by looking at the device 0/1 error register. Look at the signature
2304 * stored in each device's taskfile registers, to determine if
2305 * the device is ATA or ATAPI.
2306 *
2307 * LOCKING:
0cba632b
JG
2308 * PCI/etc. bus probe sem.
2309 * Obtains host_set lock.
1da177e4
LT
2310 *
2311 * SIDE EFFECTS:
198e0fed 2312 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
2313 */
2314
2315void ata_bus_reset(struct ata_port *ap)
2316{
2317 struct ata_ioports *ioaddr = &ap->ioaddr;
2318 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2319 u8 err;
aec5c3c1 2320 unsigned int dev0, dev1 = 0, devmask = 0;
1da177e4
LT
2321
2322 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2323
2324 /* determine if device 0/1 are present */
2325 if (ap->flags & ATA_FLAG_SATA_RESET)
2326 dev0 = 1;
2327 else {
2328 dev0 = ata_devchk(ap, 0);
2329 if (slave_possible)
2330 dev1 = ata_devchk(ap, 1);
2331 }
2332
2333 if (dev0)
2334 devmask |= (1 << 0);
2335 if (dev1)
2336 devmask |= (1 << 1);
2337
2338 /* select device 0 again */
2339 ap->ops->dev_select(ap, 0);
2340
2341 /* issue bus reset */
2342 if (ap->flags & ATA_FLAG_SRST)
aec5c3c1
TH
2343 if (ata_bus_softreset(ap, devmask))
2344 goto err_out;
1da177e4
LT
2345
2346 /*
2347 * determine by signature whether we have ATA or ATAPI devices
2348 */
b4dc7623 2349 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 2350 if ((slave_possible) && (err != 0x81))
b4dc7623 2351 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
2352
2353 /* re-enable interrupts */
2354 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2355 ata_irq_on(ap);
2356
2357 /* is double-select really necessary? */
2358 if (ap->device[1].class != ATA_DEV_NONE)
2359 ap->ops->dev_select(ap, 1);
2360 if (ap->device[0].class != ATA_DEV_NONE)
2361 ap->ops->dev_select(ap, 0);
2362
2363 /* if no devices were detected, disable this port */
2364 if ((ap->device[0].class == ATA_DEV_NONE) &&
2365 (ap->device[1].class == ATA_DEV_NONE))
2366 goto err_out;
2367
2368 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2369 /* set up device control for ATA_FLAG_SATA_RESET */
2370 if (ap->flags & ATA_FLAG_MMIO)
2371 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2372 else
2373 outb(ap->ctl, ioaddr->ctl_addr);
2374 }
2375
2376 DPRINTK("EXIT\n");
2377 return;
2378
2379err_out:
f15a1daf 2380 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
2381 ap->ops->port_disable(ap);
2382
2383 DPRINTK("EXIT\n");
2384}
2385
7a7921e8
TH
2386static int sata_phy_resume(struct ata_port *ap)
2387{
2388 unsigned long timeout = jiffies + (HZ * 5);
852ee16a 2389 u32 scontrol, sstatus;
81952c54
TH
2390 int rc;
2391
2392 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2393 return rc;
7a7921e8 2394
852ee16a 2395 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
2396
2397 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2398 return rc;
7a7921e8
TH
2399
2400 /* Wait for phy to become ready, if necessary. */
2401 do {
2402 msleep(200);
81952c54
TH
2403 if ((rc = sata_scr_read(ap, SCR_STATUS, &sstatus)))
2404 return rc;
7a7921e8
TH
2405 if ((sstatus & 0xf) != 1)
2406 return 0;
2407 } while (time_before(jiffies, timeout));
2408
81952c54 2409 return -EBUSY;
7a7921e8
TH
2410}
2411
8a19ac89
TH
2412/**
2413 * ata_std_probeinit - initialize probing
2414 * @ap: port to be probed
2415 *
2416 * @ap is about to be probed. Initialize it. This function is
2417 * to be used as standard callback for ata_drive_probe_reset().
3a39746a
TH
2418 *
2419 * NOTE!!! Do not use this function as probeinit if a low level
2420 * driver implements only hardreset. Just pass NULL as probeinit
2421 * in that case. Using this function is probably okay but doing
2422 * so makes reset sequence different from the original
2423 * ->phy_reset implementation and Jeff nervous. :-P
8a19ac89 2424 */
17efc5f7 2425void ata_std_probeinit(struct ata_port *ap)
8a19ac89 2426{
81952c54 2427 u32 scontrol;
1c3fae4d 2428
81952c54
TH
2429 /* resume link */
2430 sata_phy_resume(ap);
1c3fae4d 2431
81952c54
TH
2432 /* init sata_spd_limit to the current value */
2433 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
2434 int spd = (scontrol >> 4) & 0xf;
2435 ap->sata_spd_limit &= (1 << spd) - 1;
3a39746a 2436 }
81952c54
TH
2437
2438 /* wait for device */
2439 if (ata_port_online(ap))
2440 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
8a19ac89
TH
2441}
2442
c2bd5804
TH
2443/**
2444 * ata_std_softreset - reset host port via ATA SRST
2445 * @ap: port to reset
c2bd5804
TH
2446 * @classes: resulting classes of attached devices
2447 *
2448 * Reset host port using ATA SRST. This function is to be used
2449 * as standard callback for ata_drive_*_reset() functions.
2450 *
2451 * LOCKING:
2452 * Kernel thread context (may sleep)
2453 *
2454 * RETURNS:
2455 * 0 on success, -errno otherwise.
2456 */
2bf2cb26 2457int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
c2bd5804
TH
2458{
2459 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2460 unsigned int devmask = 0, err_mask;
2461 u8 err;
2462
2463 DPRINTK("ENTER\n");
2464
81952c54 2465 if (ata_port_offline(ap)) {
3a39746a
TH
2466 classes[0] = ATA_DEV_NONE;
2467 goto out;
2468 }
2469
c2bd5804
TH
2470 /* determine if device 0/1 are present */
2471 if (ata_devchk(ap, 0))
2472 devmask |= (1 << 0);
2473 if (slave_possible && ata_devchk(ap, 1))
2474 devmask |= (1 << 1);
2475
c2bd5804
TH
2476 /* select device 0 again */
2477 ap->ops->dev_select(ap, 0);
2478
2479 /* issue bus reset */
2480 DPRINTK("about to softreset, devmask=%x\n", devmask);
2481 err_mask = ata_bus_softreset(ap, devmask);
2482 if (err_mask) {
f15a1daf
TH
2483 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2484 err_mask);
c2bd5804
TH
2485 return -EIO;
2486 }
2487
2488 /* determine by signature whether we have ATA or ATAPI devices */
2489 classes[0] = ata_dev_try_classify(ap, 0, &err);
2490 if (slave_possible && err != 0x81)
2491 classes[1] = ata_dev_try_classify(ap, 1, &err);
2492
3a39746a 2493 out:
c2bd5804
TH
2494 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2495 return 0;
2496}
2497
2498/**
2499 * sata_std_hardreset - reset host port via SATA phy reset
2500 * @ap: port to reset
c2bd5804
TH
2501 * @class: resulting class of attached device
2502 *
2503 * SATA phy-reset host port using DET bits of SControl register.
2504 * This function is to be used as standard callback for
2505 * ata_drive_*_reset().
2506 *
2507 * LOCKING:
2508 * Kernel thread context (may sleep)
2509 *
2510 * RETURNS:
2511 * 0 on success, -errno otherwise.
2512 */
2bf2cb26 2513int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
c2bd5804 2514{
852ee16a 2515 u32 scontrol;
81952c54 2516 int rc;
852ee16a 2517
c2bd5804
TH
2518 DPRINTK("ENTER\n");
2519
3c567b7d 2520 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
2521 /* SATA spec says nothing about how to reconfigure
2522 * spd. To be on the safe side, turn off phy during
2523 * reconfiguration. This works for at least ICH7 AHCI
2524 * and Sil3124.
2525 */
81952c54
TH
2526 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2527 return rc;
2528
1c3fae4d 2529 scontrol = (scontrol & 0x0f0) | 0x302;
81952c54
TH
2530
2531 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2532 return rc;
1c3fae4d 2533
3c567b7d 2534 sata_set_spd(ap);
1c3fae4d
TH
2535 }
2536
2537 /* issue phy wake/reset */
81952c54
TH
2538 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2539 return rc;
2540
852ee16a 2541 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
2542
2543 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2544 return rc;
c2bd5804 2545
1c3fae4d 2546 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
2547 * 10.4.2 says at least 1 ms.
2548 */
2549 msleep(1);
2550
1c3fae4d 2551 /* bring phy back */
7a7921e8 2552 sata_phy_resume(ap);
c2bd5804 2553
c2bd5804 2554 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 2555 if (ata_port_offline(ap)) {
c2bd5804
TH
2556 *class = ATA_DEV_NONE;
2557 DPRINTK("EXIT, link offline\n");
2558 return 0;
2559 }
2560
2561 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
f15a1daf
TH
2562 ata_port_printk(ap, KERN_ERR,
2563 "COMRESET failed (device not ready)\n");
c2bd5804
TH
2564 return -EIO;
2565 }
2566
3a39746a
TH
2567 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2568
c2bd5804
TH
2569 *class = ata_dev_try_classify(ap, 0, NULL);
2570
2571 DPRINTK("EXIT, class=%u\n", *class);
2572 return 0;
2573}
2574
2575/**
2576 * ata_std_postreset - standard postreset callback
2577 * @ap: the target ata_port
2578 * @classes: classes of attached devices
2579 *
2580 * This function is invoked after a successful reset. Note that
2581 * the device might have been reset more than once using
2582 * different reset methods before postreset is invoked.
c2bd5804
TH
2583 *
2584 * This function is to be used as standard callback for
2585 * ata_drive_*_reset().
2586 *
2587 * LOCKING:
2588 * Kernel thread context (may sleep)
2589 */
2590void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2591{
dc2b3515
TH
2592 u32 serror;
2593
c2bd5804
TH
2594 DPRINTK("ENTER\n");
2595
c2bd5804 2596 /* print link status */
81952c54 2597 sata_print_link_status(ap);
c2bd5804 2598
dc2b3515
TH
2599 /* clear SError */
2600 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2601 sata_scr_write(ap, SCR_ERROR, serror);
2602
3a39746a 2603 /* re-enable interrupts */
e3180499
TH
2604 if (!ap->ops->error_handler) {
2605 /* FIXME: hack. create a hook instead */
2606 if (ap->ioaddr.ctl_addr)
2607 ata_irq_on(ap);
2608 }
c2bd5804
TH
2609
2610 /* is double-select really necessary? */
2611 if (classes[0] != ATA_DEV_NONE)
2612 ap->ops->dev_select(ap, 1);
2613 if (classes[1] != ATA_DEV_NONE)
2614 ap->ops->dev_select(ap, 0);
2615
3a39746a
TH
2616 /* bail out if no device is present */
2617 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2618 DPRINTK("EXIT, no device\n");
2619 return;
2620 }
2621
2622 /* set up device control */
2623 if (ap->ioaddr.ctl_addr) {
2624 if (ap->flags & ATA_FLAG_MMIO)
2625 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2626 else
2627 outb(ap->ctl, ap->ioaddr.ctl_addr);
2628 }
c2bd5804
TH
2629
2630 DPRINTK("EXIT\n");
2631}
2632
2633/**
2634 * ata_std_probe_reset - standard probe reset method
2635 * @ap: prot to perform probe-reset
2636 * @classes: resulting classes of attached devices
2637 *
2638 * The stock off-the-shelf ->probe_reset method.
2639 *
2640 * LOCKING:
2641 * Kernel thread context (may sleep)
2642 *
2643 * RETURNS:
2644 * 0 on success, -errno otherwise.
2645 */
2646int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2647{
2648 ata_reset_fn_t hardreset;
2649
2650 hardreset = NULL;
81952c54 2651 if (sata_scr_valid(ap))
c2bd5804
TH
2652 hardreset = sata_std_hardreset;
2653
8a19ac89 2654 return ata_drive_probe_reset(ap, ata_std_probeinit,
7944ea95 2655 ata_std_softreset, hardreset,
c2bd5804
TH
2656 ata_std_postreset, classes);
2657}
2658
2bf2cb26 2659int ata_do_reset(struct ata_port *ap, ata_reset_fn_t reset,
96bd39ec 2660 unsigned int *classes)
a62c0fc5
TH
2661{
2662 int i, rc;
2663
2664 for (i = 0; i < ATA_MAX_DEVICES; i++)
2665 classes[i] = ATA_DEV_UNKNOWN;
2666
2bf2cb26 2667 rc = reset(ap, classes);
a62c0fc5
TH
2668 if (rc)
2669 return rc;
2670
2671 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2672 * is complete and convert all ATA_DEV_UNKNOWN to
2673 * ATA_DEV_NONE.
2674 */
2675 for (i = 0; i < ATA_MAX_DEVICES; i++)
2676 if (classes[i] != ATA_DEV_UNKNOWN)
2677 break;
2678
2679 if (i < ATA_MAX_DEVICES)
2680 for (i = 0; i < ATA_MAX_DEVICES; i++)
2681 if (classes[i] == ATA_DEV_UNKNOWN)
2682 classes[i] = ATA_DEV_NONE;
2683
9974e7cc 2684 return 0;
a62c0fc5
TH
2685}
2686
2687/**
2688 * ata_drive_probe_reset - Perform probe reset with given methods
2689 * @ap: port to reset
7944ea95 2690 * @probeinit: probeinit method (can be NULL)
a62c0fc5
TH
2691 * @softreset: softreset method (can be NULL)
2692 * @hardreset: hardreset method (can be NULL)
2693 * @postreset: postreset method (can be NULL)
2694 * @classes: resulting classes of attached devices
2695 *
2696 * Reset the specified port and classify attached devices using
2697 * given methods. This function prefers softreset but tries all
2698 * possible reset sequences to reset and classify devices. This
2699 * function is intended to be used for constructing ->probe_reset
2700 * callback by low level drivers.
2701 *
2702 * Reset methods should follow the following rules.
2703 *
2704 * - Return 0 on sucess, -errno on failure.
2705 * - If classification is supported, fill classes[] with
2706 * recognized class codes.
2707 * - If classification is not supported, leave classes[] alone.
a62c0fc5
TH
2708 *
2709 * LOCKING:
2710 * Kernel thread context (may sleep)
2711 *
2712 * RETURNS:
2713 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2714 * if classification fails, and any error code from reset
2715 * methods.
2716 */
7944ea95 2717int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
a62c0fc5
TH
2718 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2719 ata_postreset_fn_t postreset, unsigned int *classes)
2720{
2721 int rc = -EINVAL;
2722
e3180499
TH
2723 ata_eh_freeze_port(ap);
2724
7944ea95
TH
2725 if (probeinit)
2726 probeinit(ap);
2727
3c567b7d 2728 if (softreset && !sata_set_spd_needed(ap)) {
96bd39ec 2729 rc = ata_do_reset(ap, softreset, classes);
9974e7cc
TH
2730 if (rc == 0 && classes[0] != ATA_DEV_UNKNOWN)
2731 goto done;
f15a1daf
TH
2732 ata_port_printk(ap, KERN_INFO, "softreset failed, "
2733 "will try hardreset in 5 secs\n");
edbabd86 2734 ssleep(5);
a62c0fc5
TH
2735 }
2736
2737 if (!hardreset)
9974e7cc 2738 goto done;
a62c0fc5 2739
90dac02c 2740 while (1) {
96bd39ec 2741 rc = ata_do_reset(ap, hardreset, classes);
90dac02c
TH
2742 if (rc == 0) {
2743 if (classes[0] != ATA_DEV_UNKNOWN)
2744 goto done;
2745 break;
2746 }
2747
3c567b7d 2748 if (sata_down_spd_limit(ap))
90dac02c 2749 goto done;
edbabd86 2750
f15a1daf
TH
2751 ata_port_printk(ap, KERN_INFO, "hardreset failed, "
2752 "will retry in 5 secs\n");
edbabd86 2753 ssleep(5);
90dac02c 2754 }
a62c0fc5 2755
edbabd86 2756 if (softreset) {
f15a1daf
TH
2757 ata_port_printk(ap, KERN_INFO,
2758 "hardreset succeeded without classification, "
2759 "will retry softreset in 5 secs\n");
edbabd86
TH
2760 ssleep(5);
2761
96bd39ec 2762 rc = ata_do_reset(ap, softreset, classes);
edbabd86 2763 }
a62c0fc5 2764
9974e7cc 2765 done:
96bd39ec
TH
2766 if (rc == 0) {
2767 if (postreset)
2768 postreset(ap, classes);
e3180499
TH
2769
2770 ata_eh_thaw_port(ap);
2771
96bd39ec
TH
2772 if (classes[0] == ATA_DEV_UNKNOWN)
2773 rc = -ENODEV;
2774 }
a62c0fc5
TH
2775 return rc;
2776}
2777
623a3128
TH
2778/**
2779 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
2780 * @dev: device to compare against
2781 * @new_class: class of the new device
2782 * @new_id: IDENTIFY page of the new device
2783 *
2784 * Compare @new_class and @new_id against @dev and determine
2785 * whether @dev is the device indicated by @new_class and
2786 * @new_id.
2787 *
2788 * LOCKING:
2789 * None.
2790 *
2791 * RETURNS:
2792 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2793 */
3373efd8
TH
2794static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2795 const u16 *new_id)
623a3128
TH
2796{
2797 const u16 *old_id = dev->id;
2798 unsigned char model[2][41], serial[2][21];
2799 u64 new_n_sectors;
2800
2801 if (dev->class != new_class) {
f15a1daf
TH
2802 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2803 dev->class, new_class);
623a3128
TH
2804 return 0;
2805 }
2806
2807 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2808 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2809 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2810 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2811 new_n_sectors = ata_id_n_sectors(new_id);
2812
2813 if (strcmp(model[0], model[1])) {
f15a1daf
TH
2814 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
2815 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
2816 return 0;
2817 }
2818
2819 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
2820 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
2821 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
2822 return 0;
2823 }
2824
2825 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
f15a1daf
TH
2826 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
2827 "%llu != %llu\n",
2828 (unsigned long long)dev->n_sectors,
2829 (unsigned long long)new_n_sectors);
623a3128
TH
2830 return 0;
2831 }
2832
2833 return 1;
2834}
2835
2836/**
2837 * ata_dev_revalidate - Revalidate ATA device
623a3128
TH
2838 * @dev: device to revalidate
2839 * @post_reset: is this revalidation after reset?
2840 *
2841 * Re-read IDENTIFY page and make sure @dev is still attached to
2842 * the port.
2843 *
2844 * LOCKING:
2845 * Kernel thread context (may sleep)
2846 *
2847 * RETURNS:
2848 * 0 on success, negative errno otherwise
2849 */
3373efd8 2850int ata_dev_revalidate(struct ata_device *dev, int post_reset)
623a3128 2851{
5eb45c02 2852 unsigned int class = dev->class;
f15a1daf 2853 u16 *id = (void *)dev->ap->sector_buf;
623a3128
TH
2854 int rc;
2855
5eb45c02
TH
2856 if (!ata_dev_enabled(dev)) {
2857 rc = -ENODEV;
2858 goto fail;
2859 }
623a3128 2860
fe635c7e 2861 /* read ID data */
3373efd8 2862 rc = ata_dev_read_id(dev, &class, post_reset, id);
623a3128
TH
2863 if (rc)
2864 goto fail;
2865
2866 /* is the device still there? */
3373efd8 2867 if (!ata_dev_same_device(dev, class, id)) {
623a3128
TH
2868 rc = -ENODEV;
2869 goto fail;
2870 }
2871
fe635c7e 2872 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
623a3128
TH
2873
2874 /* configure device according to the new ID */
3373efd8 2875 rc = ata_dev_configure(dev, 0);
5eb45c02
TH
2876 if (rc == 0)
2877 return 0;
623a3128
TH
2878
2879 fail:
f15a1daf 2880 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
2881 return rc;
2882}
2883
98ac62de 2884static const char * const ata_dma_blacklist [] = {
f4b15fef
AC
2885 "WDC AC11000H", NULL,
2886 "WDC AC22100H", NULL,
2887 "WDC AC32500H", NULL,
2888 "WDC AC33100H", NULL,
2889 "WDC AC31600H", NULL,
2890 "WDC AC32100H", "24.09P07",
2891 "WDC AC23200L", "21.10N21",
2892 "Compaq CRD-8241B", NULL,
2893 "CRD-8400B", NULL,
2894 "CRD-8480B", NULL,
2895 "CRD-8482B", NULL,
2896 "CRD-84", NULL,
2897 "SanDisk SDP3B", NULL,
2898 "SanDisk SDP3B-64", NULL,
2899 "SANYO CD-ROM CRD", NULL,
2900 "HITACHI CDR-8", NULL,
2e9edbf8 2901 "HITACHI CDR-8335", NULL,
f4b15fef 2902 "HITACHI CDR-8435", NULL,
2e9edbf8
JG
2903 "Toshiba CD-ROM XM-6202B", NULL,
2904 "TOSHIBA CD-ROM XM-1702BC", NULL,
2905 "CD-532E-A", NULL,
2906 "E-IDE CD-ROM CR-840", NULL,
2907 "CD-ROM Drive/F5A", NULL,
2908 "WPI CDD-820", NULL,
f4b15fef 2909 "SAMSUNG CD-ROM SC-148C", NULL,
2e9edbf8 2910 "SAMSUNG CD-ROM SC", NULL,
f4b15fef
AC
2911 "SanDisk SDP3B-64", NULL,
2912 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2913 "_NEC DV5800A", NULL,
2914 "SAMSUNG CD-ROM SN-124", "N001"
1da177e4 2915};
2e9edbf8 2916
f4b15fef
AC
2917static int ata_strim(char *s, size_t len)
2918{
2919 len = strnlen(s, len);
2920
2921 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2922 while ((len > 0) && (s[len - 1] == ' ')) {
2923 len--;
2924 s[len] = 0;
2925 }
2926 return len;
2927}
1da177e4 2928
057ace5e 2929static int ata_dma_blacklisted(const struct ata_device *dev)
1da177e4 2930{
f4b15fef
AC
2931 unsigned char model_num[40];
2932 unsigned char model_rev[16];
2933 unsigned int nlen, rlen;
1da177e4
LT
2934 int i;
2935
f4b15fef
AC
2936 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2937 sizeof(model_num));
2938 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2939 sizeof(model_rev));
2940 nlen = ata_strim(model_num, sizeof(model_num));
2941 rlen = ata_strim(model_rev, sizeof(model_rev));
1da177e4 2942
f4b15fef
AC
2943 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2944 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2945 if (ata_dma_blacklist[i+1] == NULL)
2946 return 1;
2947 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2948 return 1;
2949 }
2950 }
1da177e4
LT
2951 return 0;
2952}
2953
a6d5a51c
TH
2954/**
2955 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
2956 * @dev: Device to compute xfermask for
2957 *
acf356b1
TH
2958 * Compute supported xfermask of @dev and store it in
2959 * dev->*_mask. This function is responsible for applying all
2960 * known limits including host controller limits, device
2961 * blacklist, etc...
a6d5a51c 2962 *
600511e8
TH
2963 * FIXME: The current implementation limits all transfer modes to
2964 * the fastest of the lowested device on the port. This is not
05c8e0ac 2965 * required on most controllers.
600511e8 2966 *
a6d5a51c
TH
2967 * LOCKING:
2968 * None.
a6d5a51c 2969 */
3373efd8 2970static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 2971{
3373efd8 2972 struct ata_port *ap = dev->ap;
5444a6f4 2973 struct ata_host_set *hs = ap->host_set;
a6d5a51c
TH
2974 unsigned long xfer_mask;
2975 int i;
1da177e4 2976
565083e1
TH
2977 xfer_mask = ata_pack_xfermask(ap->pio_mask,
2978 ap->mwdma_mask, ap->udma_mask);
2979
2980 /* Apply cable rule here. Don't apply it early because when
2981 * we handle hot plug the cable type can itself change.
2982 */
2983 if (ap->cbl == ATA_CBL_PATA40)
2984 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
1da177e4 2985
5444a6f4 2986 /* FIXME: Use port-wide xfermask for now */
a6d5a51c
TH
2987 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2988 struct ata_device *d = &ap->device[i];
565083e1
TH
2989
2990 if (ata_dev_absent(d))
2991 continue;
2992
2993 if (ata_dev_disabled(d)) {
2994 /* to avoid violating device selection timing */
2995 xfer_mask &= ata_pack_xfermask(d->pio_mask,
2996 UINT_MAX, UINT_MAX);
a6d5a51c 2997 continue;
565083e1
TH
2998 }
2999
3000 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3001 d->mwdma_mask, d->udma_mask);
a6d5a51c
TH
3002 xfer_mask &= ata_id_xfermask(d->id);
3003 if (ata_dma_blacklisted(d))
3004 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
1da177e4
LT
3005 }
3006
a6d5a51c 3007 if (ata_dma_blacklisted(dev))
f15a1daf
TH
3008 ata_dev_printk(dev, KERN_WARNING,
3009 "device is on DMA blacklist, disabling DMA\n");
a6d5a51c 3010
5444a6f4
AC
3011 if (hs->flags & ATA_HOST_SIMPLEX) {
3012 if (hs->simplex_claimed)
3013 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3014 }
565083e1 3015
5444a6f4
AC
3016 if (ap->ops->mode_filter)
3017 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3018
565083e1
TH
3019 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3020 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3021}
3022
1da177e4
LT
3023/**
3024 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3025 * @dev: Device to which command will be sent
3026 *
780a87f7
JG
3027 * Issue SET FEATURES - XFER MODE command to device @dev
3028 * on port @ap.
3029 *
1da177e4 3030 * LOCKING:
0cba632b 3031 * PCI/etc. bus probe sem.
83206a29
TH
3032 *
3033 * RETURNS:
3034 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3035 */
3036
3373efd8 3037static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3038{
a0123703 3039 struct ata_taskfile tf;
83206a29 3040 unsigned int err_mask;
1da177e4
LT
3041
3042 /* set up set-features taskfile */
3043 DPRINTK("set features - xfer mode\n");
3044
3373efd8 3045 ata_tf_init(dev, &tf);
a0123703
TH
3046 tf.command = ATA_CMD_SET_FEATURES;
3047 tf.feature = SETFEATURES_XFER;
3048 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3049 tf.protocol = ATA_PROT_NODATA;
3050 tf.nsect = dev->xfer_mode;
1da177e4 3051
3373efd8 3052 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3053
83206a29
TH
3054 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3055 return err_mask;
1da177e4
LT
3056}
3057
8bf62ece
AL
3058/**
3059 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3060 * @dev: Device to which command will be sent
3373efd8
TH
3061 * @heads: Number of heads
3062 * @sectors: Number of sectors
8bf62ece
AL
3063 *
3064 * LOCKING:
6aff8f1f
TH
3065 * Kernel thread context (may sleep)
3066 *
3067 * RETURNS:
3068 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3069 */
3373efd8
TH
3070static unsigned int ata_dev_init_params(struct ata_device *dev,
3071 u16 heads, u16 sectors)
8bf62ece 3072{
a0123703 3073 struct ata_taskfile tf;
6aff8f1f 3074 unsigned int err_mask;
8bf62ece
AL
3075
3076 /* Number of sectors per track 1-255. Number of heads 1-16 */
3077 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3078 return AC_ERR_INVALID;
8bf62ece
AL
3079
3080 /* set up init dev params taskfile */
3081 DPRINTK("init dev params \n");
3082
3373efd8 3083 ata_tf_init(dev, &tf);
a0123703
TH
3084 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3085 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3086 tf.protocol = ATA_PROT_NODATA;
3087 tf.nsect = sectors;
3088 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3089
3373efd8 3090 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3091
6aff8f1f
TH
3092 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3093 return err_mask;
8bf62ece
AL
3094}
3095
1da177e4 3096/**
0cba632b
JG
3097 * ata_sg_clean - Unmap DMA memory associated with command
3098 * @qc: Command containing DMA memory to be released
3099 *
3100 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3101 *
3102 * LOCKING:
0cba632b 3103 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3104 */
3105
3106static void ata_sg_clean(struct ata_queued_cmd *qc)
3107{
3108 struct ata_port *ap = qc->ap;
cedc9a47 3109 struct scatterlist *sg = qc->__sg;
1da177e4 3110 int dir = qc->dma_dir;
cedc9a47 3111 void *pad_buf = NULL;
1da177e4 3112
a4631474
TH
3113 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3114 WARN_ON(sg == NULL);
1da177e4
LT
3115
3116 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 3117 WARN_ON(qc->n_elem > 1);
1da177e4 3118
2c13b7ce 3119 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 3120
cedc9a47
JG
3121 /* if we padded the buffer out to 32-bit bound, and data
3122 * xfer direction is from-device, we must copy from the
3123 * pad buffer back into the supplied buffer
3124 */
3125 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3126 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3127
3128 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 3129 if (qc->n_elem)
2f1f610b 3130 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
3131 /* restore last sg */
3132 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3133 if (pad_buf) {
3134 struct scatterlist *psg = &qc->pad_sgent;
3135 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3136 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 3137 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3138 }
3139 } else {
2e242fa9 3140 if (qc->n_elem)
2f1f610b 3141 dma_unmap_single(ap->dev,
e1410f2d
JG
3142 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3143 dir);
cedc9a47
JG
3144 /* restore sg */
3145 sg->length += qc->pad_len;
3146 if (pad_buf)
3147 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3148 pad_buf, qc->pad_len);
3149 }
1da177e4
LT
3150
3151 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 3152 qc->__sg = NULL;
1da177e4
LT
3153}
3154
3155/**
3156 * ata_fill_sg - Fill PCI IDE PRD table
3157 * @qc: Metadata associated with taskfile to be transferred
3158 *
780a87f7
JG
3159 * Fill PCI IDE PRD (scatter-gather) table with segments
3160 * associated with the current disk command.
3161 *
1da177e4 3162 * LOCKING:
780a87f7 3163 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3164 *
3165 */
3166static void ata_fill_sg(struct ata_queued_cmd *qc)
3167{
1da177e4 3168 struct ata_port *ap = qc->ap;
cedc9a47
JG
3169 struct scatterlist *sg;
3170 unsigned int idx;
1da177e4 3171
a4631474 3172 WARN_ON(qc->__sg == NULL);
f131883e 3173 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
3174
3175 idx = 0;
cedc9a47 3176 ata_for_each_sg(sg, qc) {
1da177e4
LT
3177 u32 addr, offset;
3178 u32 sg_len, len;
3179
3180 /* determine if physical DMA addr spans 64K boundary.
3181 * Note h/w doesn't support 64-bit, so we unconditionally
3182 * truncate dma_addr_t to u32.
3183 */
3184 addr = (u32) sg_dma_address(sg);
3185 sg_len = sg_dma_len(sg);
3186
3187 while (sg_len) {
3188 offset = addr & 0xffff;
3189 len = sg_len;
3190 if ((offset + sg_len) > 0x10000)
3191 len = 0x10000 - offset;
3192
3193 ap->prd[idx].addr = cpu_to_le32(addr);
3194 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3195 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3196
3197 idx++;
3198 sg_len -= len;
3199 addr += len;
3200 }
3201 }
3202
3203 if (idx)
3204 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3205}
3206/**
3207 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3208 * @qc: Metadata associated with taskfile to check
3209 *
780a87f7
JG
3210 * Allow low-level driver to filter ATA PACKET commands, returning
3211 * a status indicating whether or not it is OK to use DMA for the
3212 * supplied PACKET command.
3213 *
1da177e4 3214 * LOCKING:
0cba632b
JG
3215 * spin_lock_irqsave(host_set lock)
3216 *
1da177e4
LT
3217 * RETURNS: 0 when ATAPI DMA can be used
3218 * nonzero otherwise
3219 */
3220int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3221{
3222 struct ata_port *ap = qc->ap;
3223 int rc = 0; /* Assume ATAPI DMA is OK by default */
3224
3225 if (ap->ops->check_atapi_dma)
3226 rc = ap->ops->check_atapi_dma(qc);
3227
c2bbc551
AL
3228 /* We don't support polling DMA.
3229 * Use PIO if the LLDD handles only interrupts in
3230 * the HSM_ST_LAST state and the ATAPI device
3231 * generates CDB interrupts.
3232 */
3233 if ((ap->flags & ATA_FLAG_PIO_POLLING) &&
3234 (qc->dev->flags & ATA_DFLAG_CDB_INTR))
3235 rc = 1;
3236
1da177e4
LT
3237 return rc;
3238}
3239/**
3240 * ata_qc_prep - Prepare taskfile for submission
3241 * @qc: Metadata associated with taskfile to be prepared
3242 *
780a87f7
JG
3243 * Prepare ATA taskfile for submission.
3244 *
1da177e4
LT
3245 * LOCKING:
3246 * spin_lock_irqsave(host_set lock)
3247 */
3248void ata_qc_prep(struct ata_queued_cmd *qc)
3249{
3250 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3251 return;
3252
3253 ata_fill_sg(qc);
3254}
3255
e46834cd
BK
3256void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3257
0cba632b
JG
3258/**
3259 * ata_sg_init_one - Associate command with memory buffer
3260 * @qc: Command to be associated
3261 * @buf: Memory buffer
3262 * @buflen: Length of memory buffer, in bytes.
3263 *
3264 * Initialize the data-related elements of queued_cmd @qc
3265 * to point to a single memory buffer, @buf of byte length @buflen.
3266 *
3267 * LOCKING:
3268 * spin_lock_irqsave(host_set lock)
3269 */
3270
1da177e4
LT
3271void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3272{
3273 struct scatterlist *sg;
3274
3275 qc->flags |= ATA_QCFLAG_SINGLE;
3276
3277 memset(&qc->sgent, 0, sizeof(qc->sgent));
cedc9a47 3278 qc->__sg = &qc->sgent;
1da177e4 3279 qc->n_elem = 1;
cedc9a47 3280 qc->orig_n_elem = 1;
1da177e4
LT
3281 qc->buf_virt = buf;
3282
cedc9a47 3283 sg = qc->__sg;
f0612bbc 3284 sg_init_one(sg, buf, buflen);
1da177e4
LT
3285}
3286
0cba632b
JG
3287/**
3288 * ata_sg_init - Associate command with scatter-gather table.
3289 * @qc: Command to be associated
3290 * @sg: Scatter-gather table.
3291 * @n_elem: Number of elements in s/g table.
3292 *
3293 * Initialize the data-related elements of queued_cmd @qc
3294 * to point to a scatter-gather table @sg, containing @n_elem
3295 * elements.
3296 *
3297 * LOCKING:
3298 * spin_lock_irqsave(host_set lock)
3299 */
3300
1da177e4
LT
3301void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3302 unsigned int n_elem)
3303{
3304 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 3305 qc->__sg = sg;
1da177e4 3306 qc->n_elem = n_elem;
cedc9a47 3307 qc->orig_n_elem = n_elem;
1da177e4
LT
3308}
3309
3310/**
0cba632b
JG
3311 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3312 * @qc: Command with memory buffer to be mapped.
3313 *
3314 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
3315 *
3316 * LOCKING:
3317 * spin_lock_irqsave(host_set lock)
3318 *
3319 * RETURNS:
0cba632b 3320 * Zero on success, negative on error.
1da177e4
LT
3321 */
3322
3323static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3324{
3325 struct ata_port *ap = qc->ap;
3326 int dir = qc->dma_dir;
cedc9a47 3327 struct scatterlist *sg = qc->__sg;
1da177e4 3328 dma_addr_t dma_address;
2e242fa9 3329 int trim_sg = 0;
1da177e4 3330
cedc9a47
JG
3331 /* we must lengthen transfers to end on a 32-bit boundary */
3332 qc->pad_len = sg->length & 3;
3333 if (qc->pad_len) {
3334 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3335 struct scatterlist *psg = &qc->pad_sgent;
3336
a4631474 3337 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3338
3339 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3340
3341 if (qc->tf.flags & ATA_TFLAG_WRITE)
3342 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3343 qc->pad_len);
3344
3345 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3346 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3347 /* trim sg */
3348 sg->length -= qc->pad_len;
2e242fa9
TH
3349 if (sg->length == 0)
3350 trim_sg = 1;
cedc9a47
JG
3351
3352 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3353 sg->length, qc->pad_len);
3354 }
3355
2e242fa9
TH
3356 if (trim_sg) {
3357 qc->n_elem--;
e1410f2d
JG
3358 goto skip_map;
3359 }
3360
2f1f610b 3361 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 3362 sg->length, dir);
537a95d9
TH
3363 if (dma_mapping_error(dma_address)) {
3364 /* restore sg */
3365 sg->length += qc->pad_len;
1da177e4 3366 return -1;
537a95d9 3367 }
1da177e4
LT
3368
3369 sg_dma_address(sg) = dma_address;
32529e01 3370 sg_dma_len(sg) = sg->length;
1da177e4 3371
2e242fa9 3372skip_map:
1da177e4
LT
3373 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3374 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3375
3376 return 0;
3377}
3378
3379/**
0cba632b
JG
3380 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3381 * @qc: Command with scatter-gather table to be mapped.
3382 *
3383 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
3384 *
3385 * LOCKING:
3386 * spin_lock_irqsave(host_set lock)
3387 *
3388 * RETURNS:
0cba632b 3389 * Zero on success, negative on error.
1da177e4
LT
3390 *
3391 */
3392
3393static int ata_sg_setup(struct ata_queued_cmd *qc)
3394{
3395 struct ata_port *ap = qc->ap;
cedc9a47
JG
3396 struct scatterlist *sg = qc->__sg;
3397 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 3398 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
3399
3400 VPRINTK("ENTER, ata%u\n", ap->id);
a4631474 3401 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 3402
cedc9a47
JG
3403 /* we must lengthen transfers to end on a 32-bit boundary */
3404 qc->pad_len = lsg->length & 3;
3405 if (qc->pad_len) {
3406 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3407 struct scatterlist *psg = &qc->pad_sgent;
3408 unsigned int offset;
3409
a4631474 3410 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3411
3412 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3413
3414 /*
3415 * psg->page/offset are used to copy to-be-written
3416 * data in this function or read data in ata_sg_clean.
3417 */
3418 offset = lsg->offset + lsg->length - qc->pad_len;
3419 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3420 psg->offset = offset_in_page(offset);
3421
3422 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3423 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3424 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 3425 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3426 }
3427
3428 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3429 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3430 /* trim last sg */
3431 lsg->length -= qc->pad_len;
e1410f2d
JG
3432 if (lsg->length == 0)
3433 trim_sg = 1;
cedc9a47
JG
3434
3435 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3436 qc->n_elem - 1, lsg->length, qc->pad_len);
3437 }
3438
e1410f2d
JG
3439 pre_n_elem = qc->n_elem;
3440 if (trim_sg && pre_n_elem)
3441 pre_n_elem--;
3442
3443 if (!pre_n_elem) {
3444 n_elem = 0;
3445 goto skip_map;
3446 }
3447
1da177e4 3448 dir = qc->dma_dir;
2f1f610b 3449 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
3450 if (n_elem < 1) {
3451 /* restore last sg */
3452 lsg->length += qc->pad_len;
1da177e4 3453 return -1;
537a95d9 3454 }
1da177e4
LT
3455
3456 DPRINTK("%d sg elements mapped\n", n_elem);
3457
e1410f2d 3458skip_map:
1da177e4
LT
3459 qc->n_elem = n_elem;
3460
3461 return 0;
3462}
3463
0baab86b 3464/**
c893a3ae 3465 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
3466 * @buf: Buffer to swap
3467 * @buf_words: Number of 16-bit words in buffer.
3468 *
3469 * Swap halves of 16-bit words if needed to convert from
3470 * little-endian byte order to native cpu byte order, or
3471 * vice-versa.
3472 *
3473 * LOCKING:
6f0ef4fa 3474 * Inherited from caller.
0baab86b 3475 */
1da177e4
LT
3476void swap_buf_le16(u16 *buf, unsigned int buf_words)
3477{
3478#ifdef __BIG_ENDIAN
3479 unsigned int i;
3480
3481 for (i = 0; i < buf_words; i++)
3482 buf[i] = le16_to_cpu(buf[i]);
3483#endif /* __BIG_ENDIAN */
3484}
3485
6ae4cfb5
AL
3486/**
3487 * ata_mmio_data_xfer - Transfer data by MMIO
3488 * @ap: port to read/write
3489 * @buf: data buffer
3490 * @buflen: buffer length
344babaa 3491 * @write_data: read/write
6ae4cfb5
AL
3492 *
3493 * Transfer data from/to the device data register by MMIO.
3494 *
3495 * LOCKING:
3496 * Inherited from caller.
6ae4cfb5
AL
3497 */
3498
1da177e4
LT
3499static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3500 unsigned int buflen, int write_data)
3501{
3502 unsigned int i;
3503 unsigned int words = buflen >> 1;
3504 u16 *buf16 = (u16 *) buf;
3505 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3506
6ae4cfb5 3507 /* Transfer multiple of 2 bytes */
1da177e4
LT
3508 if (write_data) {
3509 for (i = 0; i < words; i++)
3510 writew(le16_to_cpu(buf16[i]), mmio);
3511 } else {
3512 for (i = 0; i < words; i++)
3513 buf16[i] = cpu_to_le16(readw(mmio));
3514 }
6ae4cfb5
AL
3515
3516 /* Transfer trailing 1 byte, if any. */
3517 if (unlikely(buflen & 0x01)) {
3518 u16 align_buf[1] = { 0 };
3519 unsigned char *trailing_buf = buf + buflen - 1;
3520
3521 if (write_data) {
3522 memcpy(align_buf, trailing_buf, 1);
3523 writew(le16_to_cpu(align_buf[0]), mmio);
3524 } else {
3525 align_buf[0] = cpu_to_le16(readw(mmio));
3526 memcpy(trailing_buf, align_buf, 1);
3527 }
3528 }
1da177e4
LT
3529}
3530
6ae4cfb5
AL
3531/**
3532 * ata_pio_data_xfer - Transfer data by PIO
3533 * @ap: port to read/write
3534 * @buf: data buffer
3535 * @buflen: buffer length
344babaa 3536 * @write_data: read/write
6ae4cfb5
AL
3537 *
3538 * Transfer data from/to the device data register by PIO.
3539 *
3540 * LOCKING:
3541 * Inherited from caller.
6ae4cfb5
AL
3542 */
3543
1da177e4
LT
3544static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3545 unsigned int buflen, int write_data)
3546{
6ae4cfb5 3547 unsigned int words = buflen >> 1;
1da177e4 3548
6ae4cfb5 3549 /* Transfer multiple of 2 bytes */
1da177e4 3550 if (write_data)
6ae4cfb5 3551 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 3552 else
6ae4cfb5
AL
3553 insw(ap->ioaddr.data_addr, buf, words);
3554
3555 /* Transfer trailing 1 byte, if any. */
3556 if (unlikely(buflen & 0x01)) {
3557 u16 align_buf[1] = { 0 };
3558 unsigned char *trailing_buf = buf + buflen - 1;
3559
3560 if (write_data) {
3561 memcpy(align_buf, trailing_buf, 1);
3562 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3563 } else {
3564 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3565 memcpy(trailing_buf, align_buf, 1);
3566 }
3567 }
1da177e4
LT
3568}
3569
6ae4cfb5
AL
3570/**
3571 * ata_data_xfer - Transfer data from/to the data register.
3572 * @ap: port to read/write
3573 * @buf: data buffer
3574 * @buflen: buffer length
3575 * @do_write: read/write
3576 *
3577 * Transfer data from/to the device data register.
3578 *
3579 * LOCKING:
3580 * Inherited from caller.
6ae4cfb5
AL
3581 */
3582
1da177e4
LT
3583static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3584 unsigned int buflen, int do_write)
3585{
a1bd9e68
AC
3586 /* Make the crap hardware pay the costs not the good stuff */
3587 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3588 unsigned long flags;
3589 local_irq_save(flags);
3590 if (ap->flags & ATA_FLAG_MMIO)
3591 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3592 else
3593 ata_pio_data_xfer(ap, buf, buflen, do_write);
3594 local_irq_restore(flags);
3595 } else {
3596 if (ap->flags & ATA_FLAG_MMIO)
3597 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3598 else
3599 ata_pio_data_xfer(ap, buf, buflen, do_write);
3600 }
1da177e4
LT
3601}
3602
6ae4cfb5
AL
3603/**
3604 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3605 * @qc: Command on going
3606 *
3607 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3608 *
3609 * LOCKING:
3610 * Inherited from caller.
3611 */
3612
1da177e4
LT
3613static void ata_pio_sector(struct ata_queued_cmd *qc)
3614{
3615 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3616 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3617 struct ata_port *ap = qc->ap;
3618 struct page *page;
3619 unsigned int offset;
3620 unsigned char *buf;
3621
3622 if (qc->cursect == (qc->nsect - 1))
14be71f4 3623 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3624
3625 page = sg[qc->cursg].page;
3626 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3627
3628 /* get the current page and offset */
3629 page = nth_page(page, (offset >> PAGE_SHIFT));
3630 offset %= PAGE_SIZE;
3631
1da177e4
LT
3632 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3633
91b8b313
AL
3634 if (PageHighMem(page)) {
3635 unsigned long flags;
3636
3637 local_irq_save(flags);
3638 buf = kmap_atomic(page, KM_IRQ0);
083958d3 3639
91b8b313
AL
3640 /* do the actual data transfer */
3641 ata_data_xfer(ap, buf + offset, ATA_SECT_SIZE, do_write);
1da177e4 3642
91b8b313
AL
3643 kunmap_atomic(buf, KM_IRQ0);
3644 local_irq_restore(flags);
3645 } else {
3646 buf = page_address(page);
3647 ata_data_xfer(ap, buf + offset, ATA_SECT_SIZE, do_write);
3648 }
1da177e4
LT
3649
3650 qc->cursect++;
3651 qc->cursg_ofs++;
3652
32529e01 3653 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
1da177e4
LT
3654 qc->cursg++;
3655 qc->cursg_ofs = 0;
3656 }
1da177e4 3657}
1da177e4 3658
07f6f7d0
AL
3659/**
3660 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3661 * @qc: Command on going
3662 *
3663 * Transfer one or many ATA_SECT_SIZE of data from/to the
3664 * ATA device for the DRQ request.
3665 *
3666 * LOCKING:
3667 * Inherited from caller.
3668 */
1da177e4 3669
07f6f7d0
AL
3670static void ata_pio_sectors(struct ata_queued_cmd *qc)
3671{
3672 if (is_multi_taskfile(&qc->tf)) {
3673 /* READ/WRITE MULTIPLE */
3674 unsigned int nsect;
3675
587005de 3676 WARN_ON(qc->dev->multi_count == 0);
1da177e4 3677
07f6f7d0
AL
3678 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3679 while (nsect--)
3680 ata_pio_sector(qc);
3681 } else
3682 ata_pio_sector(qc);
3683}
3684
c71c1857
AL
3685/**
3686 * atapi_send_cdb - Write CDB bytes to hardware
3687 * @ap: Port to which ATAPI device is attached.
3688 * @qc: Taskfile currently active
3689 *
3690 * When device has indicated its readiness to accept
3691 * a CDB, this function is called. Send the CDB.
3692 *
3693 * LOCKING:
3694 * caller.
3695 */
3696
3697static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3698{
3699 /* send SCSI cdb */
3700 DPRINTK("send cdb\n");
db024d53 3701 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 3702
db024d53 3703 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
3704 ata_altstatus(ap); /* flush */
3705
3706 switch (qc->tf.protocol) {
3707 case ATA_PROT_ATAPI:
3708 ap->hsm_task_state = HSM_ST;
3709 break;
3710 case ATA_PROT_ATAPI_NODATA:
3711 ap->hsm_task_state = HSM_ST_LAST;
3712 break;
3713 case ATA_PROT_ATAPI_DMA:
3714 ap->hsm_task_state = HSM_ST_LAST;
3715 /* initiate bmdma */
3716 ap->ops->bmdma_start(qc);
3717 break;
3718 }
1da177e4
LT
3719}
3720
6ae4cfb5
AL
3721/**
3722 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3723 * @qc: Command on going
3724 * @bytes: number of bytes
3725 *
3726 * Transfer Transfer data from/to the ATAPI device.
3727 *
3728 * LOCKING:
3729 * Inherited from caller.
3730 *
3731 */
3732
1da177e4
LT
3733static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3734{
3735 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3736 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3737 struct ata_port *ap = qc->ap;
3738 struct page *page;
3739 unsigned char *buf;
3740 unsigned int offset, count;
3741
563a6e1f 3742 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 3743 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3744
3745next_sg:
563a6e1f 3746 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 3747 /*
563a6e1f
AL
3748 * The end of qc->sg is reached and the device expects
3749 * more data to transfer. In order not to overrun qc->sg
3750 * and fulfill length specified in the byte count register,
3751 * - for read case, discard trailing data from the device
3752 * - for write case, padding zero data to the device
3753 */
3754 u16 pad_buf[1] = { 0 };
3755 unsigned int words = bytes >> 1;
3756 unsigned int i;
3757
3758 if (words) /* warning if bytes > 1 */
f15a1daf
TH
3759 ata_dev_printk(qc->dev, KERN_WARNING,
3760 "%u bytes trailing data\n", bytes);
563a6e1f
AL
3761
3762 for (i = 0; i < words; i++)
3763 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3764
14be71f4 3765 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
3766 return;
3767 }
3768
cedc9a47 3769 sg = &qc->__sg[qc->cursg];
1da177e4 3770
1da177e4
LT
3771 page = sg->page;
3772 offset = sg->offset + qc->cursg_ofs;
3773
3774 /* get the current page and offset */
3775 page = nth_page(page, (offset >> PAGE_SHIFT));
3776 offset %= PAGE_SIZE;
3777
6952df03 3778 /* don't overrun current sg */
32529e01 3779 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
3780
3781 /* don't cross page boundaries */
3782 count = min(count, (unsigned int)PAGE_SIZE - offset);
3783
7282aa4b
AL
3784 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3785
91b8b313
AL
3786 if (PageHighMem(page)) {
3787 unsigned long flags;
3788
3789 local_irq_save(flags);
3790 buf = kmap_atomic(page, KM_IRQ0);
083958d3 3791
91b8b313
AL
3792 /* do the actual data transfer */
3793 ata_data_xfer(ap, buf + offset, count, do_write);
7282aa4b 3794
91b8b313
AL
3795 kunmap_atomic(buf, KM_IRQ0);
3796 local_irq_restore(flags);
3797 } else {
3798 buf = page_address(page);
3799 ata_data_xfer(ap, buf + offset, count, do_write);
3800 }
1da177e4
LT
3801
3802 bytes -= count;
3803 qc->curbytes += count;
3804 qc->cursg_ofs += count;
3805
32529e01 3806 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
3807 qc->cursg++;
3808 qc->cursg_ofs = 0;
3809 }
3810
563a6e1f 3811 if (bytes)
1da177e4 3812 goto next_sg;
1da177e4
LT
3813}
3814
6ae4cfb5
AL
3815/**
3816 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3817 * @qc: Command on going
3818 *
3819 * Transfer Transfer data from/to the ATAPI device.
3820 *
3821 * LOCKING:
3822 * Inherited from caller.
6ae4cfb5
AL
3823 */
3824
1da177e4
LT
3825static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3826{
3827 struct ata_port *ap = qc->ap;
3828 struct ata_device *dev = qc->dev;
3829 unsigned int ireason, bc_lo, bc_hi, bytes;
3830 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3831
3832 ap->ops->tf_read(ap, &qc->tf);
3833 ireason = qc->tf.nsect;
3834 bc_lo = qc->tf.lbam;
3835 bc_hi = qc->tf.lbah;
3836 bytes = (bc_hi << 8) | bc_lo;
3837
3838 /* shall be cleared to zero, indicating xfer of data */
3839 if (ireason & (1 << 0))
3840 goto err_out;
3841
3842 /* make sure transfer direction matches expected */
3843 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3844 if (do_write != i_write)
3845 goto err_out;
3846
312f7da2
AL
3847 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
3848
1da177e4
LT
3849 __atapi_pio_bytes(qc, bytes);
3850
3851 return;
3852
3853err_out:
f15a1daf 3854 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 3855 qc->err_mask |= AC_ERR_HSM;
14be71f4 3856 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3857}
3858
3859/**
c234fb00
AL
3860 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
3861 * @ap: the target ata_port
3862 * @qc: qc on going
1da177e4 3863 *
c234fb00
AL
3864 * RETURNS:
3865 * 1 if ok in workqueue, 0 otherwise.
1da177e4 3866 */
c234fb00
AL
3867
3868static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 3869{
c234fb00
AL
3870 if (qc->tf.flags & ATA_TFLAG_POLLING)
3871 return 1;
1da177e4 3872
c234fb00
AL
3873 if (ap->hsm_task_state == HSM_ST_FIRST) {
3874 if (qc->tf.protocol == ATA_PROT_PIO &&
3875 (qc->tf.flags & ATA_TFLAG_WRITE))
3876 return 1;
1da177e4 3877
c234fb00
AL
3878 if (is_atapi_taskfile(&qc->tf) &&
3879 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
3880 return 1;
fe79e683
AL
3881 }
3882
c234fb00
AL
3883 return 0;
3884}
1da177e4 3885
c17ea20d
TH
3886/**
3887 * ata_hsm_qc_complete - finish a qc running on standard HSM
3888 * @qc: Command to complete
3889 * @in_wq: 1 if called from workqueue, 0 otherwise
3890 *
3891 * Finish @qc which is running on standard HSM.
3892 *
3893 * LOCKING:
3894 * If @in_wq is zero, spin_lock_irqsave(host_set lock).
3895 * Otherwise, none on entry and grabs host lock.
3896 */
3897static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
3898{
3899 struct ata_port *ap = qc->ap;
3900 unsigned long flags;
3901
3902 if (ap->ops->error_handler) {
3903 if (in_wq) {
3904 spin_lock_irqsave(&ap->host_set->lock, flags);
3905
3906 /* EH might have kicked in while host_set lock
3907 * is released.
3908 */
3909 qc = ata_qc_from_tag(ap, qc->tag);
3910 if (qc) {
3911 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
3912 ata_irq_on(ap);
3913 ata_qc_complete(qc);
3914 } else
3915 ata_port_freeze(ap);
3916 }
3917
3918 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3919 } else {
3920 if (likely(!(qc->err_mask & AC_ERR_HSM)))
3921 ata_qc_complete(qc);
3922 else
3923 ata_port_freeze(ap);
3924 }
3925 } else {
3926 if (in_wq) {
3927 spin_lock_irqsave(&ap->host_set->lock, flags);
3928 ata_irq_on(ap);
3929 ata_qc_complete(qc);
3930 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3931 } else
3932 ata_qc_complete(qc);
3933 }
3934}
3935
bb5cb290
AL
3936/**
3937 * ata_hsm_move - move the HSM to the next state.
3938 * @ap: the target ata_port
3939 * @qc: qc on going
3940 * @status: current device status
3941 * @in_wq: 1 if called from workqueue, 0 otherwise
3942 *
3943 * RETURNS:
3944 * 1 when poll next status needed, 0 otherwise.
3945 */
3946
3947static int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
3948 u8 status, int in_wq)
e2cec771 3949{
bb5cb290
AL
3950 unsigned long flags = 0;
3951 int poll_next;
3952
6912ccd5
AL
3953 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
3954
bb5cb290
AL
3955 /* Make sure ata_qc_issue_prot() does not throw things
3956 * like DMA polling into the workqueue. Notice that
3957 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
3958 */
c234fb00 3959 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 3960
e2cec771 3961fsm_start:
999bb6f4
AL
3962 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
3963 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
3964
e2cec771
AL
3965 switch (ap->hsm_task_state) {
3966 case HSM_ST_FIRST:
bb5cb290
AL
3967 /* Send first data block or PACKET CDB */
3968
3969 /* If polling, we will stay in the work queue after
3970 * sending the data. Otherwise, interrupt handler
3971 * takes over after sending the data.
3972 */
3973 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
3974
e2cec771
AL
3975 /* check device status */
3976 if (unlikely((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ)) {
3977 /* Wrong status. Let EH handle this */
11a56d24 3978 qc->err_mask |= AC_ERR_HSM;
14be71f4 3979 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 3980 goto fsm_start;
1da177e4
LT
3981 }
3982
71601958
AL
3983 /* Device should not ask for data transfer (DRQ=1)
3984 * when it finds something wrong.
eee6c32f
AL
3985 * We ignore DRQ here and stop the HSM by
3986 * changing hsm_task_state to HSM_ST_ERR and
3987 * let the EH abort the command or reset the device.
71601958
AL
3988 */
3989 if (unlikely(status & (ATA_ERR | ATA_DF))) {
3990 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
3991 ap->id, status);
3992 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
3993 ap->hsm_task_state = HSM_ST_ERR;
3994 goto fsm_start;
71601958 3995 }
1da177e4 3996
bb5cb290
AL
3997 /* Send the CDB (atapi) or the first data block (ata pio out).
3998 * During the state transition, interrupt handler shouldn't
3999 * be invoked before the data transfer is complete and
4000 * hsm_task_state is changed. Hence, the following locking.
4001 */
4002 if (in_wq)
4003 spin_lock_irqsave(&ap->host_set->lock, flags);
1da177e4 4004
bb5cb290
AL
4005 if (qc->tf.protocol == ATA_PROT_PIO) {
4006 /* PIO data out protocol.
4007 * send first data block.
4008 */
0565c26d 4009
bb5cb290
AL
4010 /* ata_pio_sectors() might change the state
4011 * to HSM_ST_LAST. so, the state is changed here
4012 * before ata_pio_sectors().
4013 */
4014 ap->hsm_task_state = HSM_ST;
4015 ata_pio_sectors(qc);
4016 ata_altstatus(ap); /* flush */
4017 } else
4018 /* send CDB */
4019 atapi_send_cdb(ap, qc);
4020
4021 if (in_wq)
4022 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4023
4024 /* if polling, ata_pio_task() handles the rest.
4025 * otherwise, interrupt handler takes over from here.
4026 */
e2cec771 4027 break;
1c848984 4028
e2cec771
AL
4029 case HSM_ST:
4030 /* complete command or read/write the data register */
4031 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4032 /* ATAPI PIO protocol */
4033 if ((status & ATA_DRQ) == 0) {
4034 /* no more data to transfer */
4035 ap->hsm_task_state = HSM_ST_LAST;
4036 goto fsm_start;
4037 }
1da177e4 4038
71601958
AL
4039 /* Device should not ask for data transfer (DRQ=1)
4040 * when it finds something wrong.
eee6c32f
AL
4041 * We ignore DRQ here and stop the HSM by
4042 * changing hsm_task_state to HSM_ST_ERR and
4043 * let the EH abort the command or reset the device.
71601958
AL
4044 */
4045 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4046 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4047 ap->id, status);
4048 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
4049 ap->hsm_task_state = HSM_ST_ERR;
4050 goto fsm_start;
71601958 4051 }
1da177e4 4052
e2cec771 4053 atapi_pio_bytes(qc);
7fb6ec28 4054
e2cec771
AL
4055 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4056 /* bad ireason reported by device */
4057 goto fsm_start;
1da177e4 4058
e2cec771
AL
4059 } else {
4060 /* ATA PIO protocol */
4061 if (unlikely((status & ATA_DRQ) == 0)) {
4062 /* handle BSY=0, DRQ=0 as error */
4063 qc->err_mask |= AC_ERR_HSM;
4064 ap->hsm_task_state = HSM_ST_ERR;
4065 goto fsm_start;
4066 }
1da177e4 4067
eee6c32f
AL
4068 /* For PIO reads, some devices may ask for
4069 * data transfer (DRQ=1) alone with ERR=1.
4070 * We respect DRQ here and transfer one
4071 * block of junk data before changing the
4072 * hsm_task_state to HSM_ST_ERR.
4073 *
4074 * For PIO writes, ERR=1 DRQ=1 doesn't make
4075 * sense since the data block has been
4076 * transferred to the device.
71601958
AL
4077 */
4078 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
4079 /* data might be corrputed */
4080 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
4081
4082 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4083 ata_pio_sectors(qc);
4084 ata_altstatus(ap);
4085 status = ata_wait_idle(ap);
4086 }
4087
4088 /* ata_pio_sectors() might change the
4089 * state to HSM_ST_LAST. so, the state
4090 * is changed after ata_pio_sectors().
4091 */
4092 ap->hsm_task_state = HSM_ST_ERR;
4093 goto fsm_start;
71601958
AL
4094 }
4095
e2cec771
AL
4096 ata_pio_sectors(qc);
4097
4098 if (ap->hsm_task_state == HSM_ST_LAST &&
4099 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4100 /* all data read */
4101 ata_altstatus(ap);
52a32205 4102 status = ata_wait_idle(ap);
e2cec771
AL
4103 goto fsm_start;
4104 }
4105 }
4106
4107 ata_altstatus(ap); /* flush */
bb5cb290 4108 poll_next = 1;
1da177e4
LT
4109 break;
4110
14be71f4 4111 case HSM_ST_LAST:
6912ccd5
AL
4112 if (unlikely(!ata_ok(status))) {
4113 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
4114 ap->hsm_task_state = HSM_ST_ERR;
4115 goto fsm_start;
4116 }
4117
4118 /* no more data to transfer */
4332a771
AL
4119 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4120 ap->id, qc->dev->devno, status);
e2cec771 4121
6912ccd5
AL
4122 WARN_ON(qc->err_mask);
4123
e2cec771 4124 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 4125
e2cec771 4126 /* complete taskfile transaction */
c17ea20d 4127 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4128
4129 poll_next = 0;
1da177e4
LT
4130 break;
4131
14be71f4 4132 case HSM_ST_ERR:
e2cec771
AL
4133 /* make sure qc->err_mask is available to
4134 * know what's wrong and recover
4135 */
4136 WARN_ON(qc->err_mask == 0);
4137
4138 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 4139
999bb6f4 4140 /* complete taskfile transaction */
c17ea20d 4141 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4142
4143 poll_next = 0;
e2cec771
AL
4144 break;
4145 default:
bb5cb290 4146 poll_next = 0;
6912ccd5 4147 BUG();
1da177e4
LT
4148 }
4149
bb5cb290 4150 return poll_next;
1da177e4
LT
4151}
4152
1da177e4 4153static void ata_pio_task(void *_data)
8061f5f0 4154{
c91af2c8
TH
4155 struct ata_queued_cmd *qc = _data;
4156 struct ata_port *ap = qc->ap;
8061f5f0 4157 u8 status;
a1af3734 4158 int poll_next;
8061f5f0 4159
7fb6ec28 4160fsm_start:
a1af3734 4161 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 4162
a1af3734
AL
4163 /*
4164 * This is purely heuristic. This is a fast path.
4165 * Sometimes when we enter, BSY will be cleared in
4166 * a chk-status or two. If not, the drive is probably seeking
4167 * or something. Snooze for a couple msecs, then
4168 * chk-status again. If still busy, queue delayed work.
4169 */
4170 status = ata_busy_wait(ap, ATA_BUSY, 5);
4171 if (status & ATA_BUSY) {
4172 msleep(2);
4173 status = ata_busy_wait(ap, ATA_BUSY, 10);
4174 if (status & ATA_BUSY) {
31ce6dae 4175 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
4176 return;
4177 }
8061f5f0
TH
4178 }
4179
a1af3734
AL
4180 /* move the HSM */
4181 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 4182
a1af3734
AL
4183 /* another command or interrupt handler
4184 * may be running at this point.
4185 */
4186 if (poll_next)
7fb6ec28 4187 goto fsm_start;
8061f5f0
TH
4188}
4189
1da177e4
LT
4190/**
4191 * ata_qc_new - Request an available ATA command, for queueing
4192 * @ap: Port associated with device @dev
4193 * @dev: Device from whom we request an available command structure
4194 *
4195 * LOCKING:
0cba632b 4196 * None.
1da177e4
LT
4197 */
4198
4199static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4200{
4201 struct ata_queued_cmd *qc = NULL;
4202 unsigned int i;
4203
e3180499
TH
4204 /* no command while frozen */
4205 if (unlikely(ap->flags & ATA_FLAG_FROZEN))
4206 return NULL;
4207
2ab7db1f
TH
4208 /* the last tag is reserved for internal command. */
4209 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 4210 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 4211 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
4212 break;
4213 }
4214
4215 if (qc)
4216 qc->tag = i;
4217
4218 return qc;
4219}
4220
4221/**
4222 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
4223 * @dev: Device from whom we request an available command structure
4224 *
4225 * LOCKING:
0cba632b 4226 * None.
1da177e4
LT
4227 */
4228
3373efd8 4229struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 4230{
3373efd8 4231 struct ata_port *ap = dev->ap;
1da177e4
LT
4232 struct ata_queued_cmd *qc;
4233
4234 qc = ata_qc_new(ap);
4235 if (qc) {
1da177e4
LT
4236 qc->scsicmd = NULL;
4237 qc->ap = ap;
4238 qc->dev = dev;
1da177e4 4239
2c13b7ce 4240 ata_qc_reinit(qc);
1da177e4
LT
4241 }
4242
4243 return qc;
4244}
4245
1da177e4
LT
4246/**
4247 * ata_qc_free - free unused ata_queued_cmd
4248 * @qc: Command to complete
4249 *
4250 * Designed to free unused ata_queued_cmd object
4251 * in case something prevents using it.
4252 *
4253 * LOCKING:
0cba632b 4254 * spin_lock_irqsave(host_set lock)
1da177e4
LT
4255 */
4256void ata_qc_free(struct ata_queued_cmd *qc)
4257{
4ba946e9
TH
4258 struct ata_port *ap = qc->ap;
4259 unsigned int tag;
4260
a4631474 4261 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 4262
4ba946e9
TH
4263 qc->flags = 0;
4264 tag = qc->tag;
4265 if (likely(ata_tag_valid(tag))) {
4ba946e9 4266 qc->tag = ATA_TAG_POISON;
6cec4a39 4267 clear_bit(tag, &ap->qc_allocated);
4ba946e9 4268 }
1da177e4
LT
4269}
4270
76014427 4271void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4272{
a4631474
TH
4273 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4274 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
4275
4276 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4277 ata_sg_clean(qc);
4278
7401abf2
TH
4279 /* command should be marked inactive atomically with qc completion */
4280 qc->ap->active_tag = ATA_TAG_POISON;
4281
3f3791d3
AL
4282 /* atapi: mark qc as inactive to prevent the interrupt handler
4283 * from completing the command twice later, before the error handler
4284 * is called. (when rc != 0 and atapi request sense is needed)
4285 */
4286 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4287
1da177e4 4288 /* call completion callback */
77853bf2 4289 qc->complete_fn(qc);
1da177e4
LT
4290}
4291
f686bcb8
TH
4292/**
4293 * ata_qc_complete - Complete an active ATA command
4294 * @qc: Command to complete
4295 * @err_mask: ATA Status register contents
4296 *
4297 * Indicate to the mid and upper layers that an ATA
4298 * command has completed, with either an ok or not-ok status.
4299 *
4300 * LOCKING:
4301 * spin_lock_irqsave(host_set lock)
4302 */
4303void ata_qc_complete(struct ata_queued_cmd *qc)
4304{
4305 struct ata_port *ap = qc->ap;
4306
4307 /* XXX: New EH and old EH use different mechanisms to
4308 * synchronize EH with regular execution path.
4309 *
4310 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4311 * Normal execution path is responsible for not accessing a
4312 * failed qc. libata core enforces the rule by returning NULL
4313 * from ata_qc_from_tag() for failed qcs.
4314 *
4315 * Old EH depends on ata_qc_complete() nullifying completion
4316 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4317 * not synchronize with interrupt handler. Only PIO task is
4318 * taken care of.
4319 */
4320 if (ap->ops->error_handler) {
4321 WARN_ON(ap->flags & ATA_FLAG_FROZEN);
4322
4323 if (unlikely(qc->err_mask))
4324 qc->flags |= ATA_QCFLAG_FAILED;
4325
4326 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4327 if (!ata_tag_internal(qc->tag)) {
4328 /* always fill result TF for failed qc */
4329 ap->ops->tf_read(ap, &qc->result_tf);
4330 ata_qc_schedule_eh(qc);
4331 return;
4332 }
4333 }
4334
4335 /* read result TF if requested */
4336 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4337 ap->ops->tf_read(ap, &qc->result_tf);
4338
4339 __ata_qc_complete(qc);
4340 } else {
4341 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4342 return;
4343
4344 /* read result TF if failed or requested */
4345 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4346 ap->ops->tf_read(ap, &qc->result_tf);
4347
4348 __ata_qc_complete(qc);
4349 }
4350}
4351
1da177e4
LT
4352static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4353{
4354 struct ata_port *ap = qc->ap;
4355
4356 switch (qc->tf.protocol) {
4357 case ATA_PROT_DMA:
4358 case ATA_PROT_ATAPI_DMA:
4359 return 1;
4360
4361 case ATA_PROT_ATAPI:
4362 case ATA_PROT_PIO:
1da177e4
LT
4363 if (ap->flags & ATA_FLAG_PIO_DMA)
4364 return 1;
4365
4366 /* fall through */
4367
4368 default:
4369 return 0;
4370 }
4371
4372 /* never reached */
4373}
4374
4375/**
4376 * ata_qc_issue - issue taskfile to device
4377 * @qc: command to issue to device
4378 *
4379 * Prepare an ATA command to submission to device.
4380 * This includes mapping the data into a DMA-able
4381 * area, filling in the S/G table, and finally
4382 * writing the taskfile to hardware, starting the command.
4383 *
4384 * LOCKING:
4385 * spin_lock_irqsave(host_set lock)
1da177e4 4386 */
8e0e694a 4387void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4388{
4389 struct ata_port *ap = qc->ap;
4390
e4a70e76
TH
4391 qc->ap->active_tag = qc->tag;
4392 qc->flags |= ATA_QCFLAG_ACTIVE;
4393
1da177e4
LT
4394 if (ata_should_dma_map(qc)) {
4395 if (qc->flags & ATA_QCFLAG_SG) {
4396 if (ata_sg_setup(qc))
8e436af9 4397 goto sg_err;
1da177e4
LT
4398 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4399 if (ata_sg_setup_one(qc))
8e436af9 4400 goto sg_err;
1da177e4
LT
4401 }
4402 } else {
4403 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4404 }
4405
4406 ap->ops->qc_prep(qc);
4407
8e0e694a
TH
4408 qc->err_mask |= ap->ops->qc_issue(qc);
4409 if (unlikely(qc->err_mask))
4410 goto err;
4411 return;
1da177e4 4412
8e436af9
TH
4413sg_err:
4414 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
4415 qc->err_mask |= AC_ERR_SYSTEM;
4416err:
4417 ata_qc_complete(qc);
1da177e4
LT
4418}
4419
4420/**
4421 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4422 * @qc: command to issue to device
4423 *
4424 * Using various libata functions and hooks, this function
4425 * starts an ATA command. ATA commands are grouped into
4426 * classes called "protocols", and issuing each type of protocol
4427 * is slightly different.
4428 *
0baab86b
EF
4429 * May be used as the qc_issue() entry in ata_port_operations.
4430 *
1da177e4
LT
4431 * LOCKING:
4432 * spin_lock_irqsave(host_set lock)
4433 *
4434 * RETURNS:
9a3d9eb0 4435 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
4436 */
4437
9a3d9eb0 4438unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
4439{
4440 struct ata_port *ap = qc->ap;
4441
e50362ec
AL
4442 /* Use polling pio if the LLD doesn't handle
4443 * interrupt driven pio and atapi CDB interrupt.
4444 */
4445 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4446 switch (qc->tf.protocol) {
4447 case ATA_PROT_PIO:
4448 case ATA_PROT_ATAPI:
4449 case ATA_PROT_ATAPI_NODATA:
4450 qc->tf.flags |= ATA_TFLAG_POLLING;
4451 break;
4452 case ATA_PROT_ATAPI_DMA:
4453 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
c2bbc551 4454 /* see ata_check_atapi_dma() */
e50362ec
AL
4455 BUG();
4456 break;
4457 default:
4458 break;
4459 }
4460 }
4461
312f7da2 4462 /* select the device */
1da177e4
LT
4463 ata_dev_select(ap, qc->dev->devno, 1, 0);
4464
312f7da2 4465 /* start the command */
1da177e4
LT
4466 switch (qc->tf.protocol) {
4467 case ATA_PROT_NODATA:
312f7da2
AL
4468 if (qc->tf.flags & ATA_TFLAG_POLLING)
4469 ata_qc_set_polling(qc);
4470
e5338254 4471 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
4472 ap->hsm_task_state = HSM_ST_LAST;
4473
4474 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 4475 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 4476
1da177e4
LT
4477 break;
4478
4479 case ATA_PROT_DMA:
587005de 4480 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 4481
1da177e4
LT
4482 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4483 ap->ops->bmdma_setup(qc); /* set up bmdma */
4484 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 4485 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4486 break;
4487
312f7da2
AL
4488 case ATA_PROT_PIO:
4489 if (qc->tf.flags & ATA_TFLAG_POLLING)
4490 ata_qc_set_polling(qc);
1da177e4 4491
e5338254 4492 ata_tf_to_host(ap, &qc->tf);
312f7da2 4493
54f00389
AL
4494 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4495 /* PIO data out protocol */
4496 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 4497 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
4498
4499 /* always send first data block using
e27486db 4500 * the ata_pio_task() codepath.
54f00389 4501 */
312f7da2 4502 } else {
54f00389
AL
4503 /* PIO data in protocol */
4504 ap->hsm_task_state = HSM_ST;
4505
4506 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 4507 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
4508
4509 /* if polling, ata_pio_task() handles the rest.
4510 * otherwise, interrupt handler takes over from here.
4511 */
312f7da2
AL
4512 }
4513
1da177e4
LT
4514 break;
4515
1da177e4 4516 case ATA_PROT_ATAPI:
1da177e4 4517 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
4518 if (qc->tf.flags & ATA_TFLAG_POLLING)
4519 ata_qc_set_polling(qc);
4520
e5338254 4521 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 4522
312f7da2
AL
4523 ap->hsm_task_state = HSM_ST_FIRST;
4524
4525 /* send cdb by polling if no cdb interrupt */
4526 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4527 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 4528 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
4529 break;
4530
4531 case ATA_PROT_ATAPI_DMA:
587005de 4532 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 4533
1da177e4
LT
4534 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4535 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
4536 ap->hsm_task_state = HSM_ST_FIRST;
4537
4538 /* send cdb by polling if no cdb interrupt */
4539 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 4540 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
4541 break;
4542
4543 default:
4544 WARN_ON(1);
9a3d9eb0 4545 return AC_ERR_SYSTEM;
1da177e4
LT
4546 }
4547
4548 return 0;
4549}
4550
1da177e4
LT
4551/**
4552 * ata_host_intr - Handle host interrupt for given (port, task)
4553 * @ap: Port on which interrupt arrived (possibly...)
4554 * @qc: Taskfile currently active in engine
4555 *
4556 * Handle host interrupt for given queued command. Currently,
4557 * only DMA interrupts are handled. All other commands are
4558 * handled via polling with interrupts disabled (nIEN bit).
4559 *
4560 * LOCKING:
4561 * spin_lock_irqsave(host_set lock)
4562 *
4563 * RETURNS:
4564 * One if interrupt was handled, zero if not (shared irq).
4565 */
4566
4567inline unsigned int ata_host_intr (struct ata_port *ap,
4568 struct ata_queued_cmd *qc)
4569{
312f7da2 4570 u8 status, host_stat = 0;
1da177e4 4571
312f7da2
AL
4572 VPRINTK("ata%u: protocol %d task_state %d\n",
4573 ap->id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 4574
312f7da2
AL
4575 /* Check whether we are expecting interrupt in this state */
4576 switch (ap->hsm_task_state) {
4577 case HSM_ST_FIRST:
6912ccd5
AL
4578 /* Some pre-ATAPI-4 devices assert INTRQ
4579 * at this state when ready to receive CDB.
4580 */
1da177e4 4581
312f7da2
AL
4582 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4583 * The flag was turned on only for atapi devices.
4584 * No need to check is_atapi_taskfile(&qc->tf) again.
4585 */
4586 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 4587 goto idle_irq;
1da177e4 4588 break;
312f7da2
AL
4589 case HSM_ST_LAST:
4590 if (qc->tf.protocol == ATA_PROT_DMA ||
4591 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4592 /* check status of DMA engine */
4593 host_stat = ap->ops->bmdma_status(ap);
4594 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4595
4596 /* if it's not our irq... */
4597 if (!(host_stat & ATA_DMA_INTR))
4598 goto idle_irq;
4599
4600 /* before we do anything else, clear DMA-Start bit */
4601 ap->ops->bmdma_stop(qc);
a4f16610
AL
4602
4603 if (unlikely(host_stat & ATA_DMA_ERR)) {
4604 /* error when transfering data to/from memory */
4605 qc->err_mask |= AC_ERR_HOST_BUS;
4606 ap->hsm_task_state = HSM_ST_ERR;
4607 }
312f7da2
AL
4608 }
4609 break;
4610 case HSM_ST:
4611 break;
1da177e4
LT
4612 default:
4613 goto idle_irq;
4614 }
4615
312f7da2
AL
4616 /* check altstatus */
4617 status = ata_altstatus(ap);
4618 if (status & ATA_BUSY)
4619 goto idle_irq;
1da177e4 4620
312f7da2
AL
4621 /* check main status, clearing INTRQ */
4622 status = ata_chk_status(ap);
4623 if (unlikely(status & ATA_BUSY))
4624 goto idle_irq;
1da177e4 4625
312f7da2
AL
4626 /* ack bmdma irq events */
4627 ap->ops->irq_clear(ap);
1da177e4 4628
bb5cb290 4629 ata_hsm_move(ap, qc, status, 0);
1da177e4
LT
4630 return 1; /* irq handled */
4631
4632idle_irq:
4633 ap->stats.idle_irq++;
4634
4635#ifdef ATA_IRQ_TRAP
4636 if ((ap->stats.idle_irq % 1000) == 0) {
1da177e4 4637 ata_irq_ack(ap, 0); /* debug trap */
f15a1daf 4638 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 4639 return 1;
1da177e4
LT
4640 }
4641#endif
4642 return 0; /* irq not handled */
4643}
4644
4645/**
4646 * ata_interrupt - Default ATA host interrupt handler
0cba632b
JG
4647 * @irq: irq line (unused)
4648 * @dev_instance: pointer to our ata_host_set information structure
1da177e4
LT
4649 * @regs: unused
4650 *
0cba632b
JG
4651 * Default interrupt handler for PCI IDE devices. Calls
4652 * ata_host_intr() for each port that is not disabled.
4653 *
1da177e4 4654 * LOCKING:
0cba632b 4655 * Obtains host_set lock during operation.
1da177e4
LT
4656 *
4657 * RETURNS:
0cba632b 4658 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
4659 */
4660
4661irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4662{
4663 struct ata_host_set *host_set = dev_instance;
4664 unsigned int i;
4665 unsigned int handled = 0;
4666 unsigned long flags;
4667
4668 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4669 spin_lock_irqsave(&host_set->lock, flags);
4670
4671 for (i = 0; i < host_set->n_ports; i++) {
4672 struct ata_port *ap;
4673
4674 ap = host_set->ports[i];
c1389503 4675 if (ap &&
029f5468 4676 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
4677 struct ata_queued_cmd *qc;
4678
4679 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 4680 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 4681 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
4682 handled |= ata_host_intr(ap, qc);
4683 }
4684 }
4685
4686 spin_unlock_irqrestore(&host_set->lock, flags);
4687
4688 return IRQ_RETVAL(handled);
4689}
4690
34bf2170
TH
4691/**
4692 * sata_scr_valid - test whether SCRs are accessible
4693 * @ap: ATA port to test SCR accessibility for
4694 *
4695 * Test whether SCRs are accessible for @ap.
4696 *
4697 * LOCKING:
4698 * None.
4699 *
4700 * RETURNS:
4701 * 1 if SCRs are accessible, 0 otherwise.
4702 */
4703int sata_scr_valid(struct ata_port *ap)
4704{
4705 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4706}
4707
4708/**
4709 * sata_scr_read - read SCR register of the specified port
4710 * @ap: ATA port to read SCR for
4711 * @reg: SCR to read
4712 * @val: Place to store read value
4713 *
4714 * Read SCR register @reg of @ap into *@val. This function is
4715 * guaranteed to succeed if the cable type of the port is SATA
4716 * and the port implements ->scr_read.
4717 *
4718 * LOCKING:
4719 * None.
4720 *
4721 * RETURNS:
4722 * 0 on success, negative errno on failure.
4723 */
4724int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
4725{
4726 if (sata_scr_valid(ap)) {
4727 *val = ap->ops->scr_read(ap, reg);
4728 return 0;
4729 }
4730 return -EOPNOTSUPP;
4731}
4732
4733/**
4734 * sata_scr_write - write SCR register of the specified port
4735 * @ap: ATA port to write SCR for
4736 * @reg: SCR to write
4737 * @val: value to write
4738 *
4739 * Write @val to SCR register @reg of @ap. This function is
4740 * guaranteed to succeed if the cable type of the port is SATA
4741 * and the port implements ->scr_read.
4742 *
4743 * LOCKING:
4744 * None.
4745 *
4746 * RETURNS:
4747 * 0 on success, negative errno on failure.
4748 */
4749int sata_scr_write(struct ata_port *ap, int reg, u32 val)
4750{
4751 if (sata_scr_valid(ap)) {
4752 ap->ops->scr_write(ap, reg, val);
4753 return 0;
4754 }
4755 return -EOPNOTSUPP;
4756}
4757
4758/**
4759 * sata_scr_write_flush - write SCR register of the specified port and flush
4760 * @ap: ATA port to write SCR for
4761 * @reg: SCR to write
4762 * @val: value to write
4763 *
4764 * This function is identical to sata_scr_write() except that this
4765 * function performs flush after writing to the register.
4766 *
4767 * LOCKING:
4768 * None.
4769 *
4770 * RETURNS:
4771 * 0 on success, negative errno on failure.
4772 */
4773int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
4774{
4775 if (sata_scr_valid(ap)) {
4776 ap->ops->scr_write(ap, reg, val);
4777 ap->ops->scr_read(ap, reg);
4778 return 0;
4779 }
4780 return -EOPNOTSUPP;
4781}
4782
4783/**
4784 * ata_port_online - test whether the given port is online
4785 * @ap: ATA port to test
4786 *
4787 * Test whether @ap is online. Note that this function returns 0
4788 * if online status of @ap cannot be obtained, so
4789 * ata_port_online(ap) != !ata_port_offline(ap).
4790 *
4791 * LOCKING:
4792 * None.
4793 *
4794 * RETURNS:
4795 * 1 if the port online status is available and online.
4796 */
4797int ata_port_online(struct ata_port *ap)
4798{
4799 u32 sstatus;
4800
4801 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
4802 return 1;
4803 return 0;
4804}
4805
4806/**
4807 * ata_port_offline - test whether the given port is offline
4808 * @ap: ATA port to test
4809 *
4810 * Test whether @ap is offline. Note that this function returns
4811 * 0 if offline status of @ap cannot be obtained, so
4812 * ata_port_online(ap) != !ata_port_offline(ap).
4813 *
4814 * LOCKING:
4815 * None.
4816 *
4817 * RETURNS:
4818 * 1 if the port offline status is available and offline.
4819 */
4820int ata_port_offline(struct ata_port *ap)
4821{
4822 u32 sstatus;
4823
4824 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
4825 return 1;
4826 return 0;
4827}
0baab86b 4828
9b847548
JA
4829/*
4830 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4831 * without filling any other registers
4832 */
3373efd8 4833static int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
9b847548
JA
4834{
4835 struct ata_taskfile tf;
4836 int err;
4837
3373efd8 4838 ata_tf_init(dev, &tf);
9b847548
JA
4839
4840 tf.command = cmd;
4841 tf.flags |= ATA_TFLAG_DEVICE;
4842 tf.protocol = ATA_PROT_NODATA;
4843
3373efd8 4844 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
9b847548 4845 if (err)
f15a1daf
TH
4846 ata_dev_printk(dev, KERN_ERR, "%s: ata command failed: %d\n",
4847 __FUNCTION__, err);
9b847548
JA
4848
4849 return err;
4850}
4851
3373efd8 4852static int ata_flush_cache(struct ata_device *dev)
9b847548
JA
4853{
4854 u8 cmd;
4855
4856 if (!ata_try_flush_cache(dev))
4857 return 0;
4858
4859 if (ata_id_has_flush_ext(dev->id))
4860 cmd = ATA_CMD_FLUSH_EXT;
4861 else
4862 cmd = ATA_CMD_FLUSH;
4863
3373efd8 4864 return ata_do_simple_cmd(dev, cmd);
9b847548
JA
4865}
4866
3373efd8 4867static int ata_standby_drive(struct ata_device *dev)
9b847548 4868{
3373efd8 4869 return ata_do_simple_cmd(dev, ATA_CMD_STANDBYNOW1);
9b847548
JA
4870}
4871
3373efd8 4872static int ata_start_drive(struct ata_device *dev)
9b847548 4873{
3373efd8 4874 return ata_do_simple_cmd(dev, ATA_CMD_IDLEIMMEDIATE);
9b847548
JA
4875}
4876
4877/**
4878 * ata_device_resume - wakeup a previously suspended devices
c893a3ae 4879 * @dev: the device to resume
9b847548
JA
4880 *
4881 * Kick the drive back into action, by sending it an idle immediate
4882 * command and making sure its transfer mode matches between drive
4883 * and host.
4884 *
4885 */
3373efd8 4886int ata_device_resume(struct ata_device *dev)
9b847548 4887{
3373efd8
TH
4888 struct ata_port *ap = dev->ap;
4889
9b847548 4890 if (ap->flags & ATA_FLAG_SUSPENDED) {
e82cbdb9 4891 struct ata_device *failed_dev;
9b847548 4892 ap->flags &= ~ATA_FLAG_SUSPENDED;
e82cbdb9 4893 while (ata_set_mode(ap, &failed_dev))
3373efd8 4894 ata_dev_disable(failed_dev);
9b847548 4895 }
e1211e3f 4896 if (!ata_dev_enabled(dev))
9b847548
JA
4897 return 0;
4898 if (dev->class == ATA_DEV_ATA)
3373efd8 4899 ata_start_drive(dev);
9b847548
JA
4900
4901 return 0;
4902}
4903
4904/**
4905 * ata_device_suspend - prepare a device for suspend
c893a3ae 4906 * @dev: the device to suspend
9b847548
JA
4907 *
4908 * Flush the cache on the drive, if appropriate, then issue a
4909 * standbynow command.
9b847548 4910 */
3373efd8 4911int ata_device_suspend(struct ata_device *dev, pm_message_t state)
9b847548 4912{
3373efd8
TH
4913 struct ata_port *ap = dev->ap;
4914
e1211e3f 4915 if (!ata_dev_enabled(dev))
9b847548
JA
4916 return 0;
4917 if (dev->class == ATA_DEV_ATA)
3373efd8 4918 ata_flush_cache(dev);
9b847548 4919
082776e4 4920 if (state.event != PM_EVENT_FREEZE)
3373efd8 4921 ata_standby_drive(dev);
9b847548
JA
4922 ap->flags |= ATA_FLAG_SUSPENDED;
4923 return 0;
4924}
4925
c893a3ae
RD
4926/**
4927 * ata_port_start - Set port up for dma.
4928 * @ap: Port to initialize
4929 *
4930 * Called just after data structures for each port are
4931 * initialized. Allocates space for PRD table.
4932 *
4933 * May be used as the port_start() entry in ata_port_operations.
4934 *
4935 * LOCKING:
4936 * Inherited from caller.
4937 */
4938
1da177e4
LT
4939int ata_port_start (struct ata_port *ap)
4940{
2f1f610b 4941 struct device *dev = ap->dev;
6037d6bb 4942 int rc;
1da177e4
LT
4943
4944 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4945 if (!ap->prd)
4946 return -ENOMEM;
4947
6037d6bb
JG
4948 rc = ata_pad_alloc(ap, dev);
4949 if (rc) {
cedc9a47 4950 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4951 return rc;
cedc9a47
JG
4952 }
4953
1da177e4
LT
4954 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4955
4956 return 0;
4957}
4958
0baab86b
EF
4959
4960/**
4961 * ata_port_stop - Undo ata_port_start()
4962 * @ap: Port to shut down
4963 *
4964 * Frees the PRD table.
4965 *
4966 * May be used as the port_stop() entry in ata_port_operations.
4967 *
4968 * LOCKING:
6f0ef4fa 4969 * Inherited from caller.
0baab86b
EF
4970 */
4971
1da177e4
LT
4972void ata_port_stop (struct ata_port *ap)
4973{
2f1f610b 4974 struct device *dev = ap->dev;
1da177e4
LT
4975
4976 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4977 ata_pad_free(ap, dev);
1da177e4
LT
4978}
4979
aa8f0dc6
JG
4980void ata_host_stop (struct ata_host_set *host_set)
4981{
4982 if (host_set->mmio_base)
4983 iounmap(host_set->mmio_base);
4984}
4985
4986
1da177e4
LT
4987/**
4988 * ata_host_remove - Unregister SCSI host structure with upper layers
4989 * @ap: Port to unregister
4990 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4991 *
4992 * LOCKING:
6f0ef4fa 4993 * Inherited from caller.
1da177e4
LT
4994 */
4995
4996static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4997{
4998 struct Scsi_Host *sh = ap->host;
4999
5000 DPRINTK("ENTER\n");
5001
5002 if (do_unregister)
5003 scsi_remove_host(sh);
5004
5005 ap->ops->port_stop(ap);
5006}
5007
5008/**
5009 * ata_host_init - Initialize an ata_port structure
5010 * @ap: Structure to initialize
5011 * @host: associated SCSI mid-layer structure
5012 * @host_set: Collection of hosts to which @ap belongs
5013 * @ent: Probe information provided by low-level driver
5014 * @port_no: Port number associated with this ata_port
5015 *
0cba632b
JG
5016 * Initialize a new ata_port structure, and its associated
5017 * scsi_host.
5018 *
1da177e4 5019 * LOCKING:
0cba632b 5020 * Inherited from caller.
1da177e4
LT
5021 */
5022
5023static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
5024 struct ata_host_set *host_set,
057ace5e 5025 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
5026{
5027 unsigned int i;
5028
5029 host->max_id = 16;
5030 host->max_lun = 1;
5031 host->max_channel = 1;
5032 host->unique_id = ata_unique_id++;
5033 host->max_cmd_len = 12;
12413197 5034
198e0fed 5035 ap->flags = ATA_FLAG_DISABLED;
1da177e4
LT
5036 ap->id = host->unique_id;
5037 ap->host = host;
5038 ap->ctl = ATA_DEVCTL_OBS;
5039 ap->host_set = host_set;
2f1f610b 5040 ap->dev = ent->dev;
1da177e4
LT
5041 ap->port_no = port_no;
5042 ap->hard_port_no =
5043 ent->legacy_mode ? ent->hard_port_no : port_no;
5044 ap->pio_mask = ent->pio_mask;
5045 ap->mwdma_mask = ent->mwdma_mask;
5046 ap->udma_mask = ent->udma_mask;
5047 ap->flags |= ent->host_flags;
5048 ap->ops = ent->port_ops;
1c3fae4d 5049 ap->sata_spd_limit = UINT_MAX;
1da177e4
LT
5050 ap->active_tag = ATA_TAG_POISON;
5051 ap->last_ctl = 0xFF;
5052
86e45b6b 5053 INIT_WORK(&ap->port_task, NULL, NULL);
a72ec4ce 5054 INIT_LIST_HEAD(&ap->eh_done_q);
1da177e4 5055
838df628
TH
5056 /* set cable type */
5057 ap->cbl = ATA_CBL_NONE;
5058 if (ap->flags & ATA_FLAG_SATA)
5059 ap->cbl = ATA_CBL_SATA;
5060
acf356b1
TH
5061 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5062 struct ata_device *dev = &ap->device[i];
38d87234 5063 dev->ap = ap;
acf356b1
TH
5064 dev->devno = i;
5065 dev->pio_mask = UINT_MAX;
5066 dev->mwdma_mask = UINT_MAX;
5067 dev->udma_mask = UINT_MAX;
5068 }
1da177e4
LT
5069
5070#ifdef ATA_IRQ_TRAP
5071 ap->stats.unhandled_irq = 1;
5072 ap->stats.idle_irq = 1;
5073#endif
5074
5075 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5076}
5077
5078/**
5079 * ata_host_add - Attach low-level ATA driver to system
5080 * @ent: Information provided by low-level driver
5081 * @host_set: Collections of ports to which we add
5082 * @port_no: Port number associated with this host
5083 *
0cba632b
JG
5084 * Attach low-level ATA driver to system.
5085 *
1da177e4 5086 * LOCKING:
0cba632b 5087 * PCI/etc. bus probe sem.
1da177e4
LT
5088 *
5089 * RETURNS:
0cba632b 5090 * New ata_port on success, for NULL on error.
1da177e4
LT
5091 */
5092
057ace5e 5093static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
1da177e4
LT
5094 struct ata_host_set *host_set,
5095 unsigned int port_no)
5096{
5097 struct Scsi_Host *host;
5098 struct ata_port *ap;
5099 int rc;
5100
5101 DPRINTK("ENTER\n");
aec5c3c1
TH
5102
5103 if (!ent->port_ops->probe_reset &&
5104 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5105 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5106 port_no);
5107 return NULL;
5108 }
5109
1da177e4
LT
5110 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5111 if (!host)
5112 return NULL;
5113
30afc84c
TH
5114 host->transportt = &ata_scsi_transport_template;
5115
35bb94b1 5116 ap = ata_shost_to_port(host);
1da177e4
LT
5117
5118 ata_host_init(ap, host, host_set, ent, port_no);
5119
5120 rc = ap->ops->port_start(ap);
5121 if (rc)
5122 goto err_out;
5123
5124 return ap;
5125
5126err_out:
5127 scsi_host_put(host);
5128 return NULL;
5129}
5130
5131/**
0cba632b
JG
5132 * ata_device_add - Register hardware device with ATA and SCSI layers
5133 * @ent: Probe information describing hardware device to be registered
5134 *
5135 * This function processes the information provided in the probe
5136 * information struct @ent, allocates the necessary ATA and SCSI
5137 * host information structures, initializes them, and registers
5138 * everything with requisite kernel subsystems.
5139 *
5140 * This function requests irqs, probes the ATA bus, and probes
5141 * the SCSI bus.
1da177e4
LT
5142 *
5143 * LOCKING:
0cba632b 5144 * PCI/etc. bus probe sem.
1da177e4
LT
5145 *
5146 * RETURNS:
0cba632b 5147 * Number of ports registered. Zero on error (no ports registered).
1da177e4
LT
5148 */
5149
057ace5e 5150int ata_device_add(const struct ata_probe_ent *ent)
1da177e4
LT
5151{
5152 unsigned int count = 0, i;
5153 struct device *dev = ent->dev;
5154 struct ata_host_set *host_set;
5155
5156 DPRINTK("ENTER\n");
5157 /* alloc a container for our list of ATA ports (buses) */
57f3bda8 5158 host_set = kzalloc(sizeof(struct ata_host_set) +
1da177e4
LT
5159 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5160 if (!host_set)
5161 return 0;
1da177e4
LT
5162 spin_lock_init(&host_set->lock);
5163
5164 host_set->dev = dev;
5165 host_set->n_ports = ent->n_ports;
5166 host_set->irq = ent->irq;
5167 host_set->mmio_base = ent->mmio_base;
5168 host_set->private_data = ent->private_data;
5169 host_set->ops = ent->port_ops;
5444a6f4 5170 host_set->flags = ent->host_set_flags;
1da177e4
LT
5171
5172 /* register each port bound to this device */
5173 for (i = 0; i < ent->n_ports; i++) {
5174 struct ata_port *ap;
5175 unsigned long xfer_mode_mask;
5176
5177 ap = ata_host_add(ent, host_set, i);
5178 if (!ap)
5179 goto err_out;
5180
5181 host_set->ports[i] = ap;
5182 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5183 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5184 (ap->pio_mask << ATA_SHIFT_PIO);
5185
5186 /* print per-port info to dmesg */
f15a1daf
TH
5187 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
5188 "ctl 0x%lX bmdma 0x%lX irq %lu\n",
5189 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5190 ata_mode_string(xfer_mode_mask),
5191 ap->ioaddr.cmd_addr,
5192 ap->ioaddr.ctl_addr,
5193 ap->ioaddr.bmdma_addr,
5194 ent->irq);
1da177e4
LT
5195
5196 ata_chk_status(ap);
5197 host_set->ops->irq_clear(ap);
e3180499 5198 ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */
1da177e4
LT
5199 count++;
5200 }
5201
57f3bda8
RD
5202 if (!count)
5203 goto err_free_ret;
1da177e4
LT
5204
5205 /* obtain irq, that is shared between channels */
5206 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
5207 DRV_NAME, host_set))
5208 goto err_out;
5209
5210 /* perform each probe synchronously */
5211 DPRINTK("probe begin\n");
5212 for (i = 0; i < count; i++) {
5213 struct ata_port *ap;
5214 int rc;
5215
5216 ap = host_set->ports[i];
5217
c893a3ae 5218 DPRINTK("ata%u: bus probe begin\n", ap->id);
1da177e4 5219 rc = ata_bus_probe(ap);
c893a3ae 5220 DPRINTK("ata%u: bus probe end\n", ap->id);
1da177e4
LT
5221
5222 if (rc) {
5223 /* FIXME: do something useful here?
5224 * Current libata behavior will
5225 * tear down everything when
5226 * the module is removed
5227 * or the h/w is unplugged.
5228 */
5229 }
5230
5231 rc = scsi_add_host(ap->host, dev);
5232 if (rc) {
f15a1daf 5233 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
1da177e4
LT
5234 /* FIXME: do something useful here */
5235 /* FIXME: handle unconditional calls to
5236 * scsi_scan_host and ata_host_remove, below,
5237 * at the very least
5238 */
5239 }
5240 }
5241
5242 /* probes are done, now scan each port's disk(s) */
c893a3ae 5243 DPRINTK("host probe begin\n");
1da177e4
LT
5244 for (i = 0; i < count; i++) {
5245 struct ata_port *ap = host_set->ports[i];
5246
644dd0cc 5247 ata_scsi_scan_host(ap);
1da177e4
LT
5248 }
5249
5250 dev_set_drvdata(dev, host_set);
5251
5252 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5253 return ent->n_ports; /* success */
5254
5255err_out:
5256 for (i = 0; i < count; i++) {
5257 ata_host_remove(host_set->ports[i], 1);
5258 scsi_host_put(host_set->ports[i]->host);
5259 }
57f3bda8 5260err_free_ret:
1da177e4
LT
5261 kfree(host_set);
5262 VPRINTK("EXIT, returning 0\n");
5263 return 0;
5264}
5265
17b14451
AC
5266/**
5267 * ata_host_set_remove - PCI layer callback for device removal
5268 * @host_set: ATA host set that was removed
5269 *
2e9edbf8 5270 * Unregister all objects associated with this host set. Free those
17b14451
AC
5271 * objects.
5272 *
5273 * LOCKING:
5274 * Inherited from calling layer (may sleep).
5275 */
5276
17b14451
AC
5277void ata_host_set_remove(struct ata_host_set *host_set)
5278{
5279 struct ata_port *ap;
5280 unsigned int i;
5281
5282 for (i = 0; i < host_set->n_ports; i++) {
5283 ap = host_set->ports[i];
5284 scsi_remove_host(ap->host);
5285 }
5286
5287 free_irq(host_set->irq, host_set);
5288
5289 for (i = 0; i < host_set->n_ports; i++) {
5290 ap = host_set->ports[i];
5291
5292 ata_scsi_release(ap->host);
5293
5294 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5295 struct ata_ioports *ioaddr = &ap->ioaddr;
5296
5297 if (ioaddr->cmd_addr == 0x1f0)
5298 release_region(0x1f0, 8);
5299 else if (ioaddr->cmd_addr == 0x170)
5300 release_region(0x170, 8);
5301 }
5302
5303 scsi_host_put(ap->host);
5304 }
5305
5306 if (host_set->ops->host_stop)
5307 host_set->ops->host_stop(host_set);
5308
5309 kfree(host_set);
5310}
5311
1da177e4
LT
5312/**
5313 * ata_scsi_release - SCSI layer callback hook for host unload
5314 * @host: libata host to be unloaded
5315 *
5316 * Performs all duties necessary to shut down a libata port...
5317 * Kill port kthread, disable port, and release resources.
5318 *
5319 * LOCKING:
5320 * Inherited from SCSI layer.
5321 *
5322 * RETURNS:
5323 * One.
5324 */
5325
5326int ata_scsi_release(struct Scsi_Host *host)
5327{
35bb94b1 5328 struct ata_port *ap = ata_shost_to_port(host);
1da177e4
LT
5329
5330 DPRINTK("ENTER\n");
5331
5332 ap->ops->port_disable(ap);
5333 ata_host_remove(ap, 0);
5334
5335 DPRINTK("EXIT\n");
5336 return 1;
5337}
5338
5339/**
5340 * ata_std_ports - initialize ioaddr with standard port offsets.
5341 * @ioaddr: IO address structure to be initialized
0baab86b
EF
5342 *
5343 * Utility function which initializes data_addr, error_addr,
5344 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5345 * device_addr, status_addr, and command_addr to standard offsets
5346 * relative to cmd_addr.
5347 *
5348 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 5349 */
0baab86b 5350
1da177e4
LT
5351void ata_std_ports(struct ata_ioports *ioaddr)
5352{
5353 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5354 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5355 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5356 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5357 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5358 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5359 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5360 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5361 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5362 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5363}
5364
0baab86b 5365
374b1873
JG
5366#ifdef CONFIG_PCI
5367
5368void ata_pci_host_stop (struct ata_host_set *host_set)
5369{
5370 struct pci_dev *pdev = to_pci_dev(host_set->dev);
5371
5372 pci_iounmap(pdev, host_set->mmio_base);
5373}
5374
1da177e4
LT
5375/**
5376 * ata_pci_remove_one - PCI layer callback for device removal
5377 * @pdev: PCI device that was removed
5378 *
5379 * PCI layer indicates to libata via this hook that
6f0ef4fa 5380 * hot-unplug or module unload event has occurred.
1da177e4
LT
5381 * Handle this by unregistering all objects associated
5382 * with this PCI device. Free those objects. Then finally
5383 * release PCI resources and disable device.
5384 *
5385 * LOCKING:
5386 * Inherited from PCI layer (may sleep).
5387 */
5388
5389void ata_pci_remove_one (struct pci_dev *pdev)
5390{
5391 struct device *dev = pci_dev_to_dev(pdev);
5392 struct ata_host_set *host_set = dev_get_drvdata(dev);
1da177e4 5393
17b14451 5394 ata_host_set_remove(host_set);
1da177e4
LT
5395 pci_release_regions(pdev);
5396 pci_disable_device(pdev);
5397 dev_set_drvdata(dev, NULL);
5398}
5399
5400/* move to PCI subsystem */
057ace5e 5401int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
5402{
5403 unsigned long tmp = 0;
5404
5405 switch (bits->width) {
5406 case 1: {
5407 u8 tmp8 = 0;
5408 pci_read_config_byte(pdev, bits->reg, &tmp8);
5409 tmp = tmp8;
5410 break;
5411 }
5412 case 2: {
5413 u16 tmp16 = 0;
5414 pci_read_config_word(pdev, bits->reg, &tmp16);
5415 tmp = tmp16;
5416 break;
5417 }
5418 case 4: {
5419 u32 tmp32 = 0;
5420 pci_read_config_dword(pdev, bits->reg, &tmp32);
5421 tmp = tmp32;
5422 break;
5423 }
5424
5425 default:
5426 return -EINVAL;
5427 }
5428
5429 tmp &= bits->mask;
5430
5431 return (tmp == bits->val) ? 1 : 0;
5432}
9b847548
JA
5433
5434int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5435{
5436 pci_save_state(pdev);
5437 pci_disable_device(pdev);
5438 pci_set_power_state(pdev, PCI_D3hot);
5439 return 0;
5440}
5441
5442int ata_pci_device_resume(struct pci_dev *pdev)
5443{
5444 pci_set_power_state(pdev, PCI_D0);
5445 pci_restore_state(pdev);
5446 pci_enable_device(pdev);
5447 pci_set_master(pdev);
5448 return 0;
5449}
1da177e4
LT
5450#endif /* CONFIG_PCI */
5451
5452
1da177e4
LT
5453static int __init ata_init(void)
5454{
5455 ata_wq = create_workqueue("ata");
5456 if (!ata_wq)
5457 return -ENOMEM;
5458
5459 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5460 return 0;
5461}
5462
5463static void __exit ata_exit(void)
5464{
5465 destroy_workqueue(ata_wq);
5466}
5467
5468module_init(ata_init);
5469module_exit(ata_exit);
5470
67846b30
JG
5471static unsigned long ratelimit_time;
5472static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5473
5474int ata_ratelimit(void)
5475{
5476 int rc;
5477 unsigned long flags;
5478
5479 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5480
5481 if (time_after(jiffies, ratelimit_time)) {
5482 rc = 1;
5483 ratelimit_time = jiffies + (HZ/5);
5484 } else
5485 rc = 0;
5486
5487 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5488
5489 return rc;
5490}
5491
c22daff4
TH
5492/**
5493 * ata_wait_register - wait until register value changes
5494 * @reg: IO-mapped register
5495 * @mask: Mask to apply to read register value
5496 * @val: Wait condition
5497 * @interval_msec: polling interval in milliseconds
5498 * @timeout_msec: timeout in milliseconds
5499 *
5500 * Waiting for some bits of register to change is a common
5501 * operation for ATA controllers. This function reads 32bit LE
5502 * IO-mapped register @reg and tests for the following condition.
5503 *
5504 * (*@reg & mask) != val
5505 *
5506 * If the condition is met, it returns; otherwise, the process is
5507 * repeated after @interval_msec until timeout.
5508 *
5509 * LOCKING:
5510 * Kernel thread context (may sleep)
5511 *
5512 * RETURNS:
5513 * The final register value.
5514 */
5515u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
5516 unsigned long interval_msec,
5517 unsigned long timeout_msec)
5518{
5519 unsigned long timeout;
5520 u32 tmp;
5521
5522 tmp = ioread32(reg);
5523
5524 /* Calculate timeout _after_ the first read to make sure
5525 * preceding writes reach the controller before starting to
5526 * eat away the timeout.
5527 */
5528 timeout = jiffies + (timeout_msec * HZ) / 1000;
5529
5530 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
5531 msleep(interval_msec);
5532 tmp = ioread32(reg);
5533 }
5534
5535 return tmp;
5536}
5537
1da177e4
LT
5538/*
5539 * libata is essentially a library of internal helper functions for
5540 * low-level ATA host controller drivers. As such, the API/ABI is
5541 * likely to change as new drivers are added and updated.
5542 * Do not depend on ABI/API stability.
5543 */
5544
5545EXPORT_SYMBOL_GPL(ata_std_bios_param);
5546EXPORT_SYMBOL_GPL(ata_std_ports);
5547EXPORT_SYMBOL_GPL(ata_device_add);
17b14451 5548EXPORT_SYMBOL_GPL(ata_host_set_remove);
1da177e4
LT
5549EXPORT_SYMBOL_GPL(ata_sg_init);
5550EXPORT_SYMBOL_GPL(ata_sg_init_one);
f686bcb8 5551EXPORT_SYMBOL_GPL(ata_qc_complete);
1da177e4 5552EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
5553EXPORT_SYMBOL_GPL(ata_tf_load);
5554EXPORT_SYMBOL_GPL(ata_tf_read);
5555EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5556EXPORT_SYMBOL_GPL(ata_std_dev_select);
5557EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5558EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5559EXPORT_SYMBOL_GPL(ata_check_status);
5560EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
5561EXPORT_SYMBOL_GPL(ata_exec_command);
5562EXPORT_SYMBOL_GPL(ata_port_start);
5563EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 5564EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4
LT
5565EXPORT_SYMBOL_GPL(ata_interrupt);
5566EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 5567EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
5568EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5569EXPORT_SYMBOL_GPL(ata_bmdma_start);
5570EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5571EXPORT_SYMBOL_GPL(ata_bmdma_status);
5572EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
5573EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
5574EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
5575EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
5576EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
5577EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 5578EXPORT_SYMBOL_GPL(ata_port_probe);
3c567b7d 5579EXPORT_SYMBOL_GPL(sata_set_spd);
1da177e4
LT
5580EXPORT_SYMBOL_GPL(sata_phy_reset);
5581EXPORT_SYMBOL_GPL(__sata_phy_reset);
5582EXPORT_SYMBOL_GPL(ata_bus_reset);
8a19ac89 5583EXPORT_SYMBOL_GPL(ata_std_probeinit);
c2bd5804
TH
5584EXPORT_SYMBOL_GPL(ata_std_softreset);
5585EXPORT_SYMBOL_GPL(sata_std_hardreset);
5586EXPORT_SYMBOL_GPL(ata_std_postreset);
5587EXPORT_SYMBOL_GPL(ata_std_probe_reset);
a62c0fc5 5588EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
623a3128 5589EXPORT_SYMBOL_GPL(ata_dev_revalidate);
2e9edbf8
JG
5590EXPORT_SYMBOL_GPL(ata_dev_classify);
5591EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 5592EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 5593EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 5594EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 5595EXPORT_SYMBOL_GPL(ata_busy_sleep);
86e45b6b 5596EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
5597EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5598EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4
LT
5599EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5600EXPORT_SYMBOL_GPL(ata_scsi_release);
5601EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
5602EXPORT_SYMBOL_GPL(sata_scr_valid);
5603EXPORT_SYMBOL_GPL(sata_scr_read);
5604EXPORT_SYMBOL_GPL(sata_scr_write);
5605EXPORT_SYMBOL_GPL(sata_scr_write_flush);
5606EXPORT_SYMBOL_GPL(ata_port_online);
5607EXPORT_SYMBOL_GPL(ata_port_offline);
6a62a04d
TH
5608EXPORT_SYMBOL_GPL(ata_id_string);
5609EXPORT_SYMBOL_GPL(ata_id_c_string);
1da177e4
LT
5610EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5611
1bc4ccff 5612EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
5613EXPORT_SYMBOL_GPL(ata_timing_compute);
5614EXPORT_SYMBOL_GPL(ata_timing_merge);
5615
1da177e4
LT
5616#ifdef CONFIG_PCI
5617EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 5618EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
5619EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5620EXPORT_SYMBOL_GPL(ata_pci_init_one);
5621EXPORT_SYMBOL_GPL(ata_pci_remove_one);
9b847548
JA
5622EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5623EXPORT_SYMBOL_GPL(ata_pci_device_resume);
67951ade
AC
5624EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5625EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 5626#endif /* CONFIG_PCI */
9b847548
JA
5627
5628EXPORT_SYMBOL_GPL(ata_device_suspend);
5629EXPORT_SYMBOL_GPL(ata_device_resume);
5630EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5631EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
ece1d636 5632
ece1d636 5633EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03
TH
5634EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
5635EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
5636EXPORT_SYMBOL_GPL(ata_port_freeze);
5637EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
5638EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
5639EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5640EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 5641EXPORT_SYMBOL_GPL(ata_do_eh);
This page took 0.618809 seconds and 5 git commands to generate.