[PATCH] libata-eh-fw: add flags and operations for new EH
[deliverable/linux.git] / drivers / scsi / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
35#include <linux/config.h>
36#include <linux/kernel.h>
37#include <linux/module.h>
38#include <linux/pci.h>
39#include <linux/init.h>
40#include <linux/list.h>
41#include <linux/mm.h>
42#include <linux/highmem.h>
43#include <linux/spinlock.h>
44#include <linux/blkdev.h>
45#include <linux/delay.h>
46#include <linux/timer.h>
47#include <linux/interrupt.h>
48#include <linux/completion.h>
49#include <linux/suspend.h>
50#include <linux/workqueue.h>
67846b30 51#include <linux/jiffies.h>
378f058c 52#include <linux/scatterlist.h>
1da177e4 53#include <scsi/scsi.h>
1da177e4 54#include "scsi_priv.h"
193515d5 55#include <scsi/scsi_cmnd.h>
1da177e4
LT
56#include <scsi/scsi_host.h>
57#include <linux/libata.h>
58#include <asm/io.h>
59#include <asm/semaphore.h>
60#include <asm/byteorder.h>
61
62#include "libata.h"
63
3373efd8
TH
64static unsigned int ata_dev_init_params(struct ata_device *dev,
65 u16 heads, u16 sectors);
66static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
67static void ata_dev_xfermask(struct ata_device *dev);
1da177e4
LT
68
69static unsigned int ata_unique_id = 1;
70static struct workqueue_struct *ata_wq;
71
418dc1f5 72int atapi_enabled = 1;
1623c81e
JG
73module_param(atapi_enabled, int, 0444);
74MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
75
95de719a
AL
76int atapi_dmadir = 0;
77module_param(atapi_dmadir, int, 0444);
78MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
79
c3c013a2
JG
80int libata_fua = 0;
81module_param_named(fua, libata_fua, int, 0444);
82MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
83
1da177e4
LT
84MODULE_AUTHOR("Jeff Garzik");
85MODULE_DESCRIPTION("Library module for ATA devices");
86MODULE_LICENSE("GPL");
87MODULE_VERSION(DRV_VERSION);
88
0baab86b 89
1da177e4
LT
90/**
91 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
92 * @tf: Taskfile to convert
93 * @fis: Buffer into which data will output
94 * @pmp: Port multiplier port
95 *
96 * Converts a standard ATA taskfile to a Serial ATA
97 * FIS structure (Register - Host to Device).
98 *
99 * LOCKING:
100 * Inherited from caller.
101 */
102
057ace5e 103void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
104{
105 fis[0] = 0x27; /* Register - Host to Device FIS */
106 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
107 bit 7 indicates Command FIS */
108 fis[2] = tf->command;
109 fis[3] = tf->feature;
110
111 fis[4] = tf->lbal;
112 fis[5] = tf->lbam;
113 fis[6] = tf->lbah;
114 fis[7] = tf->device;
115
116 fis[8] = tf->hob_lbal;
117 fis[9] = tf->hob_lbam;
118 fis[10] = tf->hob_lbah;
119 fis[11] = tf->hob_feature;
120
121 fis[12] = tf->nsect;
122 fis[13] = tf->hob_nsect;
123 fis[14] = 0;
124 fis[15] = tf->ctl;
125
126 fis[16] = 0;
127 fis[17] = 0;
128 fis[18] = 0;
129 fis[19] = 0;
130}
131
132/**
133 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
134 * @fis: Buffer from which data will be input
135 * @tf: Taskfile to output
136 *
e12a1be6 137 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
138 *
139 * LOCKING:
140 * Inherited from caller.
141 */
142
057ace5e 143void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
144{
145 tf->command = fis[2]; /* status */
146 tf->feature = fis[3]; /* error */
147
148 tf->lbal = fis[4];
149 tf->lbam = fis[5];
150 tf->lbah = fis[6];
151 tf->device = fis[7];
152
153 tf->hob_lbal = fis[8];
154 tf->hob_lbam = fis[9];
155 tf->hob_lbah = fis[10];
156
157 tf->nsect = fis[12];
158 tf->hob_nsect = fis[13];
159}
160
8cbd6df1
AL
161static const u8 ata_rw_cmds[] = {
162 /* pio multi */
163 ATA_CMD_READ_MULTI,
164 ATA_CMD_WRITE_MULTI,
165 ATA_CMD_READ_MULTI_EXT,
166 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
167 0,
168 0,
169 0,
170 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
171 /* pio */
172 ATA_CMD_PIO_READ,
173 ATA_CMD_PIO_WRITE,
174 ATA_CMD_PIO_READ_EXT,
175 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
176 0,
177 0,
178 0,
179 0,
8cbd6df1
AL
180 /* dma */
181 ATA_CMD_READ,
182 ATA_CMD_WRITE,
183 ATA_CMD_READ_EXT,
9a3dccc4
TH
184 ATA_CMD_WRITE_EXT,
185 0,
186 0,
187 0,
188 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 189};
1da177e4
LT
190
191/**
8cbd6df1
AL
192 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
193 * @qc: command to examine and configure
1da177e4 194 *
2e9edbf8 195 * Examine the device configuration and tf->flags to calculate
8cbd6df1 196 * the proper read/write commands and protocol to use.
1da177e4
LT
197 *
198 * LOCKING:
199 * caller.
200 */
9a3dccc4 201int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
1da177e4 202{
8cbd6df1
AL
203 struct ata_taskfile *tf = &qc->tf;
204 struct ata_device *dev = qc->dev;
9a3dccc4 205 u8 cmd;
1da177e4 206
9a3dccc4 207 int index, fua, lba48, write;
2e9edbf8 208
9a3dccc4 209 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
210 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
211 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 212
8cbd6df1
AL
213 if (dev->flags & ATA_DFLAG_PIO) {
214 tf->protocol = ATA_PROT_PIO;
9a3dccc4 215 index = dev->multi_count ? 0 : 8;
8d238e01
AC
216 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
217 /* Unable to use DMA due to host limitation */
218 tf->protocol = ATA_PROT_PIO;
0565c26d 219 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
220 } else {
221 tf->protocol = ATA_PROT_DMA;
9a3dccc4 222 index = 16;
8cbd6df1 223 }
1da177e4 224
9a3dccc4
TH
225 cmd = ata_rw_cmds[index + fua + lba48 + write];
226 if (cmd) {
227 tf->command = cmd;
228 return 0;
229 }
230 return -1;
1da177e4
LT
231}
232
cb95d562
TH
233/**
234 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
235 * @pio_mask: pio_mask
236 * @mwdma_mask: mwdma_mask
237 * @udma_mask: udma_mask
238 *
239 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
240 * unsigned int xfer_mask.
241 *
242 * LOCKING:
243 * None.
244 *
245 * RETURNS:
246 * Packed xfer_mask.
247 */
248static unsigned int ata_pack_xfermask(unsigned int pio_mask,
249 unsigned int mwdma_mask,
250 unsigned int udma_mask)
251{
252 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
253 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
254 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
255}
256
c0489e4e
TH
257/**
258 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
259 * @xfer_mask: xfer_mask to unpack
260 * @pio_mask: resulting pio_mask
261 * @mwdma_mask: resulting mwdma_mask
262 * @udma_mask: resulting udma_mask
263 *
264 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
265 * Any NULL distination masks will be ignored.
266 */
267static void ata_unpack_xfermask(unsigned int xfer_mask,
268 unsigned int *pio_mask,
269 unsigned int *mwdma_mask,
270 unsigned int *udma_mask)
271{
272 if (pio_mask)
273 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
274 if (mwdma_mask)
275 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
276 if (udma_mask)
277 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
278}
279
cb95d562 280static const struct ata_xfer_ent {
be9a50c8 281 int shift, bits;
cb95d562
TH
282 u8 base;
283} ata_xfer_tbl[] = {
284 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
285 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
286 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
287 { -1, },
288};
289
290/**
291 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
292 * @xfer_mask: xfer_mask of interest
293 *
294 * Return matching XFER_* value for @xfer_mask. Only the highest
295 * bit of @xfer_mask is considered.
296 *
297 * LOCKING:
298 * None.
299 *
300 * RETURNS:
301 * Matching XFER_* value, 0 if no match found.
302 */
303static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
304{
305 int highbit = fls(xfer_mask) - 1;
306 const struct ata_xfer_ent *ent;
307
308 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
309 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
310 return ent->base + highbit - ent->shift;
311 return 0;
312}
313
314/**
315 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
316 * @xfer_mode: XFER_* of interest
317 *
318 * Return matching xfer_mask for @xfer_mode.
319 *
320 * LOCKING:
321 * None.
322 *
323 * RETURNS:
324 * Matching xfer_mask, 0 if no match found.
325 */
326static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
327{
328 const struct ata_xfer_ent *ent;
329
330 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
331 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
332 return 1 << (ent->shift + xfer_mode - ent->base);
333 return 0;
334}
335
336/**
337 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
338 * @xfer_mode: XFER_* of interest
339 *
340 * Return matching xfer_shift for @xfer_mode.
341 *
342 * LOCKING:
343 * None.
344 *
345 * RETURNS:
346 * Matching xfer_shift, -1 if no match found.
347 */
348static int ata_xfer_mode2shift(unsigned int xfer_mode)
349{
350 const struct ata_xfer_ent *ent;
351
352 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
353 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
354 return ent->shift;
355 return -1;
356}
357
1da177e4 358/**
1da7b0d0
TH
359 * ata_mode_string - convert xfer_mask to string
360 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
361 *
362 * Determine string which represents the highest speed
1da7b0d0 363 * (highest bit in @modemask).
1da177e4
LT
364 *
365 * LOCKING:
366 * None.
367 *
368 * RETURNS:
369 * Constant C string representing highest speed listed in
1da7b0d0 370 * @mode_mask, or the constant C string "<n/a>".
1da177e4 371 */
1da7b0d0 372static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 373{
75f554bc
TH
374 static const char * const xfer_mode_str[] = {
375 "PIO0",
376 "PIO1",
377 "PIO2",
378 "PIO3",
379 "PIO4",
380 "MWDMA0",
381 "MWDMA1",
382 "MWDMA2",
383 "UDMA/16",
384 "UDMA/25",
385 "UDMA/33",
386 "UDMA/44",
387 "UDMA/66",
388 "UDMA/100",
389 "UDMA/133",
390 "UDMA7",
391 };
1da7b0d0 392 int highbit;
1da177e4 393
1da7b0d0
TH
394 highbit = fls(xfer_mask) - 1;
395 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
396 return xfer_mode_str[highbit];
1da177e4 397 return "<n/a>";
1da177e4
LT
398}
399
4c360c81
TH
400static const char *sata_spd_string(unsigned int spd)
401{
402 static const char * const spd_str[] = {
403 "1.5 Gbps",
404 "3.0 Gbps",
405 };
406
407 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
408 return "<unknown>";
409 return spd_str[spd - 1];
410}
411
3373efd8 412void ata_dev_disable(struct ata_device *dev)
0b8efb0a 413{
e1211e3f 414 if (ata_dev_enabled(dev)) {
f15a1daf 415 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
0b8efb0a
TH
416 dev->class++;
417 }
418}
419
1da177e4
LT
420/**
421 * ata_pio_devchk - PATA device presence detection
422 * @ap: ATA channel to examine
423 * @device: Device to examine (starting at zero)
424 *
425 * This technique was originally described in
426 * Hale Landis's ATADRVR (www.ata-atapi.com), and
427 * later found its way into the ATA/ATAPI spec.
428 *
429 * Write a pattern to the ATA shadow registers,
430 * and if a device is present, it will respond by
431 * correctly storing and echoing back the
432 * ATA shadow register contents.
433 *
434 * LOCKING:
435 * caller.
436 */
437
438static unsigned int ata_pio_devchk(struct ata_port *ap,
439 unsigned int device)
440{
441 struct ata_ioports *ioaddr = &ap->ioaddr;
442 u8 nsect, lbal;
443
444 ap->ops->dev_select(ap, device);
445
446 outb(0x55, ioaddr->nsect_addr);
447 outb(0xaa, ioaddr->lbal_addr);
448
449 outb(0xaa, ioaddr->nsect_addr);
450 outb(0x55, ioaddr->lbal_addr);
451
452 outb(0x55, ioaddr->nsect_addr);
453 outb(0xaa, ioaddr->lbal_addr);
454
455 nsect = inb(ioaddr->nsect_addr);
456 lbal = inb(ioaddr->lbal_addr);
457
458 if ((nsect == 0x55) && (lbal == 0xaa))
459 return 1; /* we found a device */
460
461 return 0; /* nothing found */
462}
463
464/**
465 * ata_mmio_devchk - PATA device presence detection
466 * @ap: ATA channel to examine
467 * @device: Device to examine (starting at zero)
468 *
469 * This technique was originally described in
470 * Hale Landis's ATADRVR (www.ata-atapi.com), and
471 * later found its way into the ATA/ATAPI spec.
472 *
473 * Write a pattern to the ATA shadow registers,
474 * and if a device is present, it will respond by
475 * correctly storing and echoing back the
476 * ATA shadow register contents.
477 *
478 * LOCKING:
479 * caller.
480 */
481
482static unsigned int ata_mmio_devchk(struct ata_port *ap,
483 unsigned int device)
484{
485 struct ata_ioports *ioaddr = &ap->ioaddr;
486 u8 nsect, lbal;
487
488 ap->ops->dev_select(ap, device);
489
490 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
491 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
492
493 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
494 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
495
496 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
497 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
498
499 nsect = readb((void __iomem *) ioaddr->nsect_addr);
500 lbal = readb((void __iomem *) ioaddr->lbal_addr);
501
502 if ((nsect == 0x55) && (lbal == 0xaa))
503 return 1; /* we found a device */
504
505 return 0; /* nothing found */
506}
507
508/**
509 * ata_devchk - PATA device presence detection
510 * @ap: ATA channel to examine
511 * @device: Device to examine (starting at zero)
512 *
513 * Dispatch ATA device presence detection, depending
514 * on whether we are using PIO or MMIO to talk to the
515 * ATA shadow registers.
516 *
517 * LOCKING:
518 * caller.
519 */
520
521static unsigned int ata_devchk(struct ata_port *ap,
522 unsigned int device)
523{
524 if (ap->flags & ATA_FLAG_MMIO)
525 return ata_mmio_devchk(ap, device);
526 return ata_pio_devchk(ap, device);
527}
528
529/**
530 * ata_dev_classify - determine device type based on ATA-spec signature
531 * @tf: ATA taskfile register set for device to be identified
532 *
533 * Determine from taskfile register contents whether a device is
534 * ATA or ATAPI, as per "Signature and persistence" section
535 * of ATA/PI spec (volume 1, sect 5.14).
536 *
537 * LOCKING:
538 * None.
539 *
540 * RETURNS:
541 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
542 * the event of failure.
543 */
544
057ace5e 545unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
546{
547 /* Apple's open source Darwin code hints that some devices only
548 * put a proper signature into the LBA mid/high registers,
549 * So, we only check those. It's sufficient for uniqueness.
550 */
551
552 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
553 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
554 DPRINTK("found ATA device by sig\n");
555 return ATA_DEV_ATA;
556 }
557
558 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
559 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
560 DPRINTK("found ATAPI device by sig\n");
561 return ATA_DEV_ATAPI;
562 }
563
564 DPRINTK("unknown device\n");
565 return ATA_DEV_UNKNOWN;
566}
567
568/**
569 * ata_dev_try_classify - Parse returned ATA device signature
570 * @ap: ATA channel to examine
571 * @device: Device to examine (starting at zero)
b4dc7623 572 * @r_err: Value of error register on completion
1da177e4
LT
573 *
574 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
575 * an ATA/ATAPI-defined set of values is placed in the ATA
576 * shadow registers, indicating the results of device detection
577 * and diagnostics.
578 *
579 * Select the ATA device, and read the values from the ATA shadow
580 * registers. Then parse according to the Error register value,
581 * and the spec-defined values examined by ata_dev_classify().
582 *
583 * LOCKING:
584 * caller.
b4dc7623
TH
585 *
586 * RETURNS:
587 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
588 */
589
b4dc7623
TH
590static unsigned int
591ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 592{
1da177e4
LT
593 struct ata_taskfile tf;
594 unsigned int class;
595 u8 err;
596
597 ap->ops->dev_select(ap, device);
598
599 memset(&tf, 0, sizeof(tf));
600
1da177e4 601 ap->ops->tf_read(ap, &tf);
0169e284 602 err = tf.feature;
b4dc7623
TH
603 if (r_err)
604 *r_err = err;
1da177e4
LT
605
606 /* see if device passed diags */
607 if (err == 1)
608 /* do nothing */ ;
609 else if ((device == 0) && (err == 0x81))
610 /* do nothing */ ;
611 else
b4dc7623 612 return ATA_DEV_NONE;
1da177e4 613
b4dc7623 614 /* determine if device is ATA or ATAPI */
1da177e4 615 class = ata_dev_classify(&tf);
b4dc7623 616
1da177e4 617 if (class == ATA_DEV_UNKNOWN)
b4dc7623 618 return ATA_DEV_NONE;
1da177e4 619 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
620 return ATA_DEV_NONE;
621 return class;
1da177e4
LT
622}
623
624/**
6a62a04d 625 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
626 * @id: IDENTIFY DEVICE results we will examine
627 * @s: string into which data is output
628 * @ofs: offset into identify device page
629 * @len: length of string to return. must be an even number.
630 *
631 * The strings in the IDENTIFY DEVICE page are broken up into
632 * 16-bit chunks. Run through the string, and output each
633 * 8-bit chunk linearly, regardless of platform.
634 *
635 * LOCKING:
636 * caller.
637 */
638
6a62a04d
TH
639void ata_id_string(const u16 *id, unsigned char *s,
640 unsigned int ofs, unsigned int len)
1da177e4
LT
641{
642 unsigned int c;
643
644 while (len > 0) {
645 c = id[ofs] >> 8;
646 *s = c;
647 s++;
648
649 c = id[ofs] & 0xff;
650 *s = c;
651 s++;
652
653 ofs++;
654 len -= 2;
655 }
656}
657
0e949ff3 658/**
6a62a04d 659 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
660 * @id: IDENTIFY DEVICE results we will examine
661 * @s: string into which data is output
662 * @ofs: offset into identify device page
663 * @len: length of string to return. must be an odd number.
664 *
6a62a04d 665 * This function is identical to ata_id_string except that it
0e949ff3
TH
666 * trims trailing spaces and terminates the resulting string with
667 * null. @len must be actual maximum length (even number) + 1.
668 *
669 * LOCKING:
670 * caller.
671 */
6a62a04d
TH
672void ata_id_c_string(const u16 *id, unsigned char *s,
673 unsigned int ofs, unsigned int len)
0e949ff3
TH
674{
675 unsigned char *p;
676
677 WARN_ON(!(len & 1));
678
6a62a04d 679 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
680
681 p = s + strnlen(s, len - 1);
682 while (p > s && p[-1] == ' ')
683 p--;
684 *p = '\0';
685}
0baab86b 686
2940740b
TH
687static u64 ata_id_n_sectors(const u16 *id)
688{
689 if (ata_id_has_lba(id)) {
690 if (ata_id_has_lba48(id))
691 return ata_id_u64(id, 100);
692 else
693 return ata_id_u32(id, 60);
694 } else {
695 if (ata_id_current_chs_valid(id))
696 return ata_id_u32(id, 57);
697 else
698 return id[1] * id[3] * id[6];
699 }
700}
701
0baab86b
EF
702/**
703 * ata_noop_dev_select - Select device 0/1 on ATA bus
704 * @ap: ATA channel to manipulate
705 * @device: ATA device (numbered from zero) to select
706 *
707 * This function performs no actual function.
708 *
709 * May be used as the dev_select() entry in ata_port_operations.
710 *
711 * LOCKING:
712 * caller.
713 */
1da177e4
LT
714void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
715{
716}
717
0baab86b 718
1da177e4
LT
719/**
720 * ata_std_dev_select - Select device 0/1 on ATA bus
721 * @ap: ATA channel to manipulate
722 * @device: ATA device (numbered from zero) to select
723 *
724 * Use the method defined in the ATA specification to
725 * make either device 0, or device 1, active on the
0baab86b
EF
726 * ATA channel. Works with both PIO and MMIO.
727 *
728 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
729 *
730 * LOCKING:
731 * caller.
732 */
733
734void ata_std_dev_select (struct ata_port *ap, unsigned int device)
735{
736 u8 tmp;
737
738 if (device == 0)
739 tmp = ATA_DEVICE_OBS;
740 else
741 tmp = ATA_DEVICE_OBS | ATA_DEV1;
742
743 if (ap->flags & ATA_FLAG_MMIO) {
744 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
745 } else {
746 outb(tmp, ap->ioaddr.device_addr);
747 }
748 ata_pause(ap); /* needed; also flushes, for mmio */
749}
750
751/**
752 * ata_dev_select - Select device 0/1 on ATA bus
753 * @ap: ATA channel to manipulate
754 * @device: ATA device (numbered from zero) to select
755 * @wait: non-zero to wait for Status register BSY bit to clear
756 * @can_sleep: non-zero if context allows sleeping
757 *
758 * Use the method defined in the ATA specification to
759 * make either device 0, or device 1, active on the
760 * ATA channel.
761 *
762 * This is a high-level version of ata_std_dev_select(),
763 * which additionally provides the services of inserting
764 * the proper pauses and status polling, where needed.
765 *
766 * LOCKING:
767 * caller.
768 */
769
770void ata_dev_select(struct ata_port *ap, unsigned int device,
771 unsigned int wait, unsigned int can_sleep)
772{
773 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
774 ap->id, device, wait);
775
776 if (wait)
777 ata_wait_idle(ap);
778
779 ap->ops->dev_select(ap, device);
780
781 if (wait) {
782 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
783 msleep(150);
784 ata_wait_idle(ap);
785 }
786}
787
788/**
789 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 790 * @id: IDENTIFY DEVICE page to dump
1da177e4 791 *
0bd3300a
TH
792 * Dump selected 16-bit words from the given IDENTIFY DEVICE
793 * page.
1da177e4
LT
794 *
795 * LOCKING:
796 * caller.
797 */
798
0bd3300a 799static inline void ata_dump_id(const u16 *id)
1da177e4
LT
800{
801 DPRINTK("49==0x%04x "
802 "53==0x%04x "
803 "63==0x%04x "
804 "64==0x%04x "
805 "75==0x%04x \n",
0bd3300a
TH
806 id[49],
807 id[53],
808 id[63],
809 id[64],
810 id[75]);
1da177e4
LT
811 DPRINTK("80==0x%04x "
812 "81==0x%04x "
813 "82==0x%04x "
814 "83==0x%04x "
815 "84==0x%04x \n",
0bd3300a
TH
816 id[80],
817 id[81],
818 id[82],
819 id[83],
820 id[84]);
1da177e4
LT
821 DPRINTK("88==0x%04x "
822 "93==0x%04x\n",
0bd3300a
TH
823 id[88],
824 id[93]);
1da177e4
LT
825}
826
cb95d562
TH
827/**
828 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
829 * @id: IDENTIFY data to compute xfer mask from
830 *
831 * Compute the xfermask for this device. This is not as trivial
832 * as it seems if we must consider early devices correctly.
833 *
834 * FIXME: pre IDE drive timing (do we care ?).
835 *
836 * LOCKING:
837 * None.
838 *
839 * RETURNS:
840 * Computed xfermask
841 */
842static unsigned int ata_id_xfermask(const u16 *id)
843{
844 unsigned int pio_mask, mwdma_mask, udma_mask;
845
846 /* Usual case. Word 53 indicates word 64 is valid */
847 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
848 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
849 pio_mask <<= 3;
850 pio_mask |= 0x7;
851 } else {
852 /* If word 64 isn't valid then Word 51 high byte holds
853 * the PIO timing number for the maximum. Turn it into
854 * a mask.
855 */
856 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
857
858 /* But wait.. there's more. Design your standards by
859 * committee and you too can get a free iordy field to
860 * process. However its the speeds not the modes that
861 * are supported... Note drivers using the timing API
862 * will get this right anyway
863 */
864 }
865
866 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0
TH
867
868 udma_mask = 0;
869 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
870 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
871
872 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
873}
874
86e45b6b
TH
875/**
876 * ata_port_queue_task - Queue port_task
877 * @ap: The ata_port to queue port_task for
878 *
879 * Schedule @fn(@data) for execution after @delay jiffies using
880 * port_task. There is one port_task per port and it's the
881 * user(low level driver)'s responsibility to make sure that only
882 * one task is active at any given time.
883 *
884 * libata core layer takes care of synchronization between
885 * port_task and EH. ata_port_queue_task() may be ignored for EH
886 * synchronization.
887 *
888 * LOCKING:
889 * Inherited from caller.
890 */
891void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
892 unsigned long delay)
893{
894 int rc;
895
2e755f68 896 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
86e45b6b
TH
897 return;
898
899 PREPARE_WORK(&ap->port_task, fn, data);
900
901 if (!delay)
902 rc = queue_work(ata_wq, &ap->port_task);
903 else
904 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
905
906 /* rc == 0 means that another user is using port task */
907 WARN_ON(rc == 0);
908}
909
910/**
911 * ata_port_flush_task - Flush port_task
912 * @ap: The ata_port to flush port_task for
913 *
914 * After this function completes, port_task is guranteed not to
915 * be running or scheduled.
916 *
917 * LOCKING:
918 * Kernel thread context (may sleep)
919 */
920void ata_port_flush_task(struct ata_port *ap)
921{
922 unsigned long flags;
923
924 DPRINTK("ENTER\n");
925
926 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 927 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
86e45b6b
TH
928 spin_unlock_irqrestore(&ap->host_set->lock, flags);
929
930 DPRINTK("flush #1\n");
931 flush_workqueue(ata_wq);
932
933 /*
934 * At this point, if a task is running, it's guaranteed to see
935 * the FLUSH flag; thus, it will never queue pio tasks again.
936 * Cancel and flush.
937 */
938 if (!cancel_delayed_work(&ap->port_task)) {
939 DPRINTK("flush #2\n");
940 flush_workqueue(ata_wq);
941 }
942
943 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 944 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
86e45b6b
TH
945 spin_unlock_irqrestore(&ap->host_set->lock, flags);
946
947 DPRINTK("EXIT\n");
948}
949
77853bf2 950void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 951{
77853bf2 952 struct completion *waiting = qc->private_data;
a2a7a662 953
a2a7a662 954 complete(waiting);
a2a7a662
TH
955}
956
957/**
958 * ata_exec_internal - execute libata internal command
a2a7a662
TH
959 * @dev: Device to which the command is sent
960 * @tf: Taskfile registers for the command and the result
d69cf37d 961 * @cdb: CDB for packet command
a2a7a662
TH
962 * @dma_dir: Data tranfer direction of the command
963 * @buf: Data buffer of the command
964 * @buflen: Length of data buffer
965 *
966 * Executes libata internal command with timeout. @tf contains
967 * command on entry and result on return. Timeout and error
968 * conditions are reported via return value. No recovery action
969 * is taken after a command times out. It's caller's duty to
970 * clean up after timeout.
971 *
972 * LOCKING:
973 * None. Should be called with kernel context, might sleep.
974 */
975
3373efd8 976unsigned ata_exec_internal(struct ata_device *dev,
1ad8e7f9
TH
977 struct ata_taskfile *tf, const u8 *cdb,
978 int dma_dir, void *buf, unsigned int buflen)
a2a7a662 979{
3373efd8 980 struct ata_port *ap = dev->ap;
a2a7a662
TH
981 u8 command = tf->command;
982 struct ata_queued_cmd *qc;
983 DECLARE_COMPLETION(wait);
984 unsigned long flags;
77853bf2 985 unsigned int err_mask;
a2a7a662
TH
986
987 spin_lock_irqsave(&ap->host_set->lock, flags);
988
3373efd8 989 qc = ata_qc_new_init(dev);
a2a7a662
TH
990 BUG_ON(qc == NULL);
991
992 qc->tf = *tf;
d69cf37d
TH
993 if (cdb)
994 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 995 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
996 qc->dma_dir = dma_dir;
997 if (dma_dir != DMA_NONE) {
998 ata_sg_init_one(qc, buf, buflen);
999 qc->nsect = buflen / ATA_SECT_SIZE;
1000 }
1001
77853bf2 1002 qc->private_data = &wait;
a2a7a662
TH
1003 qc->complete_fn = ata_qc_complete_internal;
1004
8e0e694a 1005 ata_qc_issue(qc);
a2a7a662
TH
1006
1007 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1008
1009 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
41ade50c
AL
1010 ata_port_flush_task(ap);
1011
a2a7a662
TH
1012 spin_lock_irqsave(&ap->host_set->lock, flags);
1013
1014 /* We're racing with irq here. If we lose, the
1015 * following test prevents us from completing the qc
1016 * again. If completion irq occurs after here but
1017 * before the caller cleans up, it will result in a
1018 * spurious interrupt. We can live with that.
1019 */
77853bf2 1020 if (qc->flags & ATA_QCFLAG_ACTIVE) {
11a56d24 1021 qc->err_mask = AC_ERR_TIMEOUT;
a2a7a662 1022 ata_qc_complete(qc);
f15a1daf
TH
1023
1024 ata_dev_printk(dev, KERN_WARNING,
1025 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1026 }
1027
1028 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1029 }
1030
15869303
TH
1031 /* finish up */
1032 spin_lock_irqsave(&ap->host_set->lock, flags);
1033
e61e0672 1034 *tf = qc->result_tf;
77853bf2
TH
1035 err_mask = qc->err_mask;
1036
1037 ata_qc_free(qc);
1038
1f7dd3e9
TH
1039 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1040 * Until those drivers are fixed, we detect the condition
1041 * here, fail the command with AC_ERR_SYSTEM and reenable the
1042 * port.
1043 *
1044 * Note that this doesn't change any behavior as internal
1045 * command failure results in disabling the device in the
1046 * higher layer for LLDDs without new reset/EH callbacks.
1047 *
1048 * Kill the following code as soon as those drivers are fixed.
1049 */
198e0fed 1050 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1051 err_mask |= AC_ERR_SYSTEM;
1052 ata_port_probe(ap);
1053 }
1054
15869303
TH
1055 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1056
77853bf2 1057 return err_mask;
a2a7a662
TH
1058}
1059
1bc4ccff
AC
1060/**
1061 * ata_pio_need_iordy - check if iordy needed
1062 * @adev: ATA device
1063 *
1064 * Check if the current speed of the device requires IORDY. Used
1065 * by various controllers for chip configuration.
1066 */
1067
1068unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1069{
1070 int pio;
1071 int speed = adev->pio_mode - XFER_PIO_0;
1072
1073 if (speed < 2)
1074 return 0;
1075 if (speed > 2)
1076 return 1;
2e9edbf8 1077
1bc4ccff
AC
1078 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1079
1080 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1081 pio = adev->id[ATA_ID_EIDE_PIO];
1082 /* Is the speed faster than the drive allows non IORDY ? */
1083 if (pio) {
1084 /* This is cycle times not frequency - watch the logic! */
1085 if (pio > 240) /* PIO2 is 240nS per cycle */
1086 return 1;
1087 return 0;
1088 }
1089 }
1090 return 0;
1091}
1092
1da177e4 1093/**
49016aca 1094 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1095 * @dev: target device
1096 * @p_class: pointer to class of the target device (may be changed)
1097 * @post_reset: is this read ID post-reset?
fe635c7e 1098 * @id: buffer to read IDENTIFY data into
1da177e4 1099 *
49016aca
TH
1100 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1101 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1102 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1103 * for pre-ATA4 drives.
1da177e4
LT
1104 *
1105 * LOCKING:
49016aca
TH
1106 * Kernel thread context (may sleep)
1107 *
1108 * RETURNS:
1109 * 0 on success, -errno otherwise.
1da177e4 1110 */
3373efd8
TH
1111static int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1112 int post_reset, u16 *id)
1da177e4 1113{
3373efd8 1114 struct ata_port *ap = dev->ap;
49016aca 1115 unsigned int class = *p_class;
a0123703 1116 struct ata_taskfile tf;
49016aca
TH
1117 unsigned int err_mask = 0;
1118 const char *reason;
1119 int rc;
1da177e4 1120
49016aca 1121 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1122
49016aca 1123 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1da177e4 1124
49016aca 1125 retry:
3373efd8 1126 ata_tf_init(dev, &tf);
a0123703 1127
49016aca
TH
1128 switch (class) {
1129 case ATA_DEV_ATA:
a0123703 1130 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1131 break;
1132 case ATA_DEV_ATAPI:
a0123703 1133 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1134 break;
1135 default:
1136 rc = -ENODEV;
1137 reason = "unsupported class";
1138 goto err_out;
1da177e4
LT
1139 }
1140
a0123703 1141 tf.protocol = ATA_PROT_PIO;
1da177e4 1142
3373efd8 1143 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1144 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1145 if (err_mask) {
49016aca
TH
1146 rc = -EIO;
1147 reason = "I/O error";
1da177e4
LT
1148 goto err_out;
1149 }
1150
49016aca 1151 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1152
49016aca 1153 /* sanity check */
692785e7 1154 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
49016aca
TH
1155 rc = -EINVAL;
1156 reason = "device reports illegal type";
1157 goto err_out;
1158 }
1159
1160 if (post_reset && class == ATA_DEV_ATA) {
1161 /*
1162 * The exact sequence expected by certain pre-ATA4 drives is:
1163 * SRST RESET
1164 * IDENTIFY
1165 * INITIALIZE DEVICE PARAMETERS
1166 * anything else..
1167 * Some drives were very specific about that exact sequence.
1168 */
1169 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1170 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1171 if (err_mask) {
1172 rc = -EIO;
1173 reason = "INIT_DEV_PARAMS failed";
1174 goto err_out;
1175 }
1176
1177 /* current CHS translation info (id[53-58]) might be
1178 * changed. reread the identify device info.
1179 */
1180 post_reset = 0;
1181 goto retry;
1182 }
1183 }
1184
1185 *p_class = class;
fe635c7e 1186
49016aca
TH
1187 return 0;
1188
1189 err_out:
f15a1daf
TH
1190 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1191 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1192 return rc;
1193}
1194
3373efd8 1195static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1196{
3373efd8 1197 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1198}
1199
49016aca 1200/**
ffeae418 1201 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418 1202 * @dev: Target device to configure
4c2d721a 1203 * @print_info: Enable device info printout
ffeae418
TH
1204 *
1205 * Configure @dev according to @dev->id. Generic and low-level
1206 * driver specific fixups are also applied.
49016aca
TH
1207 *
1208 * LOCKING:
ffeae418
TH
1209 * Kernel thread context (may sleep)
1210 *
1211 * RETURNS:
1212 * 0 on success, -errno otherwise
49016aca 1213 */
3373efd8 1214static int ata_dev_configure(struct ata_device *dev, int print_info)
49016aca 1215{
3373efd8 1216 struct ata_port *ap = dev->ap;
1148c3a7 1217 const u16 *id = dev->id;
ff8854b2 1218 unsigned int xfer_mask;
49016aca
TH
1219 int i, rc;
1220
e1211e3f 1221 if (!ata_dev_enabled(dev)) {
49016aca 1222 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
ffeae418
TH
1223 ap->id, dev->devno);
1224 return 0;
49016aca
TH
1225 }
1226
ffeae418 1227 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1228
c39f5ebe
TH
1229 /* print device capabilities */
1230 if (print_info)
f15a1daf
TH
1231 ata_dev_printk(dev, KERN_DEBUG, "cfg 49:%04x 82:%04x 83:%04x "
1232 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1233 id[49], id[82], id[83], id[84],
1234 id[85], id[86], id[87], id[88]);
c39f5ebe 1235
208a9933 1236 /* initialize to-be-configured parameters */
ea1dd4e1 1237 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1238 dev->max_sectors = 0;
1239 dev->cdb_len = 0;
1240 dev->n_sectors = 0;
1241 dev->cylinders = 0;
1242 dev->heads = 0;
1243 dev->sectors = 0;
1244
1da177e4
LT
1245 /*
1246 * common ATA, ATAPI feature tests
1247 */
1248
ff8854b2 1249 /* find max transfer mode; for printk only */
1148c3a7 1250 xfer_mask = ata_id_xfermask(id);
1da177e4 1251
1148c3a7 1252 ata_dump_id(id);
1da177e4
LT
1253
1254 /* ATA-specific feature tests */
1255 if (dev->class == ATA_DEV_ATA) {
1148c3a7 1256 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1257
1148c3a7 1258 if (ata_id_has_lba(id)) {
4c2d721a 1259 const char *lba_desc;
8bf62ece 1260
4c2d721a
TH
1261 lba_desc = "LBA";
1262 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1263 if (ata_id_has_lba48(id)) {
8bf62ece 1264 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a
TH
1265 lba_desc = "LBA48";
1266 }
8bf62ece
AL
1267
1268 /* print device info to dmesg */
4c2d721a 1269 if (print_info)
f15a1daf
TH
1270 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1271 "max %s, %Lu sectors: %s\n",
1272 ata_id_major_version(id),
1273 ata_mode_string(xfer_mask),
1274 (unsigned long long)dev->n_sectors,
1275 lba_desc);
ffeae418 1276 } else {
8bf62ece
AL
1277 /* CHS */
1278
1279 /* Default translation */
1148c3a7
TH
1280 dev->cylinders = id[1];
1281 dev->heads = id[3];
1282 dev->sectors = id[6];
8bf62ece 1283
1148c3a7 1284 if (ata_id_current_chs_valid(id)) {
8bf62ece 1285 /* Current CHS translation is valid. */
1148c3a7
TH
1286 dev->cylinders = id[54];
1287 dev->heads = id[55];
1288 dev->sectors = id[56];
8bf62ece
AL
1289 }
1290
1291 /* print device info to dmesg */
4c2d721a 1292 if (print_info)
f15a1daf
TH
1293 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1294 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1295 ata_id_major_version(id),
1296 ata_mode_string(xfer_mask),
1297 (unsigned long long)dev->n_sectors,
1298 dev->cylinders, dev->heads, dev->sectors);
1da177e4
LT
1299 }
1300
6e7846e9 1301 dev->cdb_len = 16;
1da177e4
LT
1302 }
1303
1304 /* ATAPI-specific feature tests */
2c13b7ce 1305 else if (dev->class == ATA_DEV_ATAPI) {
1148c3a7 1306 rc = atapi_cdb_len(id);
1da177e4 1307 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
f15a1daf
TH
1308 ata_dev_printk(dev, KERN_WARNING,
1309 "unsupported CDB len\n");
ffeae418 1310 rc = -EINVAL;
1da177e4
LT
1311 goto err_out_nosup;
1312 }
6e7846e9 1313 dev->cdb_len = (unsigned int) rc;
1da177e4
LT
1314
1315 /* print device info to dmesg */
4c2d721a 1316 if (print_info)
f15a1daf
TH
1317 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s\n",
1318 ata_mode_string(xfer_mask));
1da177e4
LT
1319 }
1320
6e7846e9
TH
1321 ap->host->max_cmd_len = 0;
1322 for (i = 0; i < ATA_MAX_DEVICES; i++)
1323 ap->host->max_cmd_len = max_t(unsigned int,
1324 ap->host->max_cmd_len,
1325 ap->device[i].cdb_len);
1326
4b2f3ede 1327 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 1328 if (ata_dev_knobble(dev)) {
4c2d721a 1329 if (print_info)
f15a1daf
TH
1330 ata_dev_printk(dev, KERN_INFO,
1331 "applying bridge limits\n");
5a529139 1332 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
1333 dev->max_sectors = ATA_MAX_SECTORS;
1334 }
1335
1336 if (ap->ops->dev_config)
1337 ap->ops->dev_config(ap, dev);
1338
1da177e4 1339 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
ffeae418 1340 return 0;
1da177e4
LT
1341
1342err_out_nosup:
1da177e4 1343 DPRINTK("EXIT, err\n");
ffeae418 1344 return rc;
1da177e4
LT
1345}
1346
1347/**
1348 * ata_bus_probe - Reset and probe ATA bus
1349 * @ap: Bus to probe
1350 *
0cba632b
JG
1351 * Master ATA bus probing function. Initiates a hardware-dependent
1352 * bus reset, then attempts to identify any devices found on
1353 * the bus.
1354 *
1da177e4 1355 * LOCKING:
0cba632b 1356 * PCI/etc. bus probe sem.
1da177e4
LT
1357 *
1358 * RETURNS:
96072e69 1359 * Zero on success, negative errno otherwise.
1da177e4
LT
1360 */
1361
1362static int ata_bus_probe(struct ata_port *ap)
1363{
28ca5c57 1364 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1
TH
1365 int tries[ATA_MAX_DEVICES];
1366 int i, rc, down_xfermask;
e82cbdb9 1367 struct ata_device *dev;
1da177e4 1368
28ca5c57 1369 ata_port_probe(ap);
c19ba8af 1370
14d2bac1
TH
1371 for (i = 0; i < ATA_MAX_DEVICES; i++)
1372 tries[i] = ATA_PROBE_MAX_TRIES;
1373
1374 retry:
1375 down_xfermask = 0;
1376
2044470c
TH
1377 /* reset and determine device classes */
1378 for (i = 0; i < ATA_MAX_DEVICES; i++)
1379 classes[i] = ATA_DEV_UNKNOWN;
2061a47a 1380
2044470c 1381 if (ap->ops->probe_reset) {
c19ba8af 1382 rc = ap->ops->probe_reset(ap, classes);
28ca5c57 1383 if (rc) {
f15a1daf
TH
1384 ata_port_printk(ap, KERN_ERR,
1385 "reset failed (errno=%d)\n", rc);
28ca5c57 1386 return rc;
c19ba8af 1387 }
28ca5c57 1388 } else {
c19ba8af
TH
1389 ap->ops->phy_reset(ap);
1390
f8c2c420
TH
1391 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1392 if (!(ap->flags & ATA_FLAG_DISABLED))
28ca5c57 1393 classes[i] = ap->device[i].class;
f8c2c420
TH
1394 ap->device[i].class = ATA_DEV_UNKNOWN;
1395 }
2044470c 1396
28ca5c57
TH
1397 ata_port_probe(ap);
1398 }
1da177e4 1399
2044470c
TH
1400 for (i = 0; i < ATA_MAX_DEVICES; i++)
1401 if (classes[i] == ATA_DEV_UNKNOWN)
1402 classes[i] = ATA_DEV_NONE;
1403
28ca5c57 1404 /* read IDENTIFY page and configure devices */
1da177e4 1405 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e82cbdb9 1406 dev = &ap->device[i];
28ca5c57 1407
ec573755
TH
1408 if (tries[i])
1409 dev->class = classes[i];
ffeae418 1410
14d2bac1 1411 if (!ata_dev_enabled(dev))
ffeae418 1412 continue;
ffeae418 1413
3373efd8 1414 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
14d2bac1
TH
1415 if (rc)
1416 goto fail;
1417
3373efd8 1418 rc = ata_dev_configure(dev, 1);
14d2bac1
TH
1419 if (rc)
1420 goto fail;
1da177e4
LT
1421 }
1422
e82cbdb9 1423 /* configure transfer mode */
3adcebb2 1424 rc = ata_set_mode(ap, &dev);
51713d35
TH
1425 if (rc) {
1426 down_xfermask = 1;
1427 goto fail;
e82cbdb9 1428 }
1da177e4 1429
e82cbdb9
TH
1430 for (i = 0; i < ATA_MAX_DEVICES; i++)
1431 if (ata_dev_enabled(&ap->device[i]))
1432 return 0;
1da177e4 1433
e82cbdb9
TH
1434 /* no device present, disable port */
1435 ata_port_disable(ap);
1da177e4 1436 ap->ops->port_disable(ap);
96072e69 1437 return -ENODEV;
14d2bac1
TH
1438
1439 fail:
1440 switch (rc) {
1441 case -EINVAL:
1442 case -ENODEV:
1443 tries[dev->devno] = 0;
1444 break;
1445 case -EIO:
3c567b7d 1446 sata_down_spd_limit(ap);
14d2bac1
TH
1447 /* fall through */
1448 default:
1449 tries[dev->devno]--;
1450 if (down_xfermask &&
3373efd8 1451 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
14d2bac1
TH
1452 tries[dev->devno] = 0;
1453 }
1454
ec573755 1455 if (!tries[dev->devno]) {
3373efd8
TH
1456 ata_down_xfermask_limit(dev, 1);
1457 ata_dev_disable(dev);
ec573755
TH
1458 }
1459
14d2bac1 1460 goto retry;
1da177e4
LT
1461}
1462
1463/**
0cba632b
JG
1464 * ata_port_probe - Mark port as enabled
1465 * @ap: Port for which we indicate enablement
1da177e4 1466 *
0cba632b
JG
1467 * Modify @ap data structure such that the system
1468 * thinks that the entire port is enabled.
1469 *
1470 * LOCKING: host_set lock, or some other form of
1471 * serialization.
1da177e4
LT
1472 */
1473
1474void ata_port_probe(struct ata_port *ap)
1475{
198e0fed 1476 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
1477}
1478
3be680b7
TH
1479/**
1480 * sata_print_link_status - Print SATA link status
1481 * @ap: SATA port to printk link status about
1482 *
1483 * This function prints link speed and status of a SATA link.
1484 *
1485 * LOCKING:
1486 * None.
1487 */
1488static void sata_print_link_status(struct ata_port *ap)
1489{
6d5f9732 1490 u32 sstatus, scontrol, tmp;
3be680b7 1491
81952c54 1492 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 1493 return;
81952c54 1494 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 1495
81952c54 1496 if (ata_port_online(ap)) {
3be680b7 1497 tmp = (sstatus >> 4) & 0xf;
f15a1daf
TH
1498 ata_port_printk(ap, KERN_INFO,
1499 "SATA link up %s (SStatus %X SControl %X)\n",
1500 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 1501 } else {
f15a1daf
TH
1502 ata_port_printk(ap, KERN_INFO,
1503 "SATA link down (SStatus %X SControl %X)\n",
1504 sstatus, scontrol);
3be680b7
TH
1505 }
1506}
1507
1da177e4 1508/**
780a87f7
JG
1509 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1510 * @ap: SATA port associated with target SATA PHY.
1da177e4 1511 *
780a87f7
JG
1512 * This function issues commands to standard SATA Sxxx
1513 * PHY registers, to wake up the phy (and device), and
1514 * clear any reset condition.
1da177e4
LT
1515 *
1516 * LOCKING:
0cba632b 1517 * PCI/etc. bus probe sem.
1da177e4
LT
1518 *
1519 */
1520void __sata_phy_reset(struct ata_port *ap)
1521{
1522 u32 sstatus;
1523 unsigned long timeout = jiffies + (HZ * 5);
1524
1525 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 1526 /* issue phy wake/reset */
81952c54 1527 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1528 /* Couldn't find anything in SATA I/II specs, but
1529 * AHCI-1.1 10.4.2 says at least 1 ms. */
1530 mdelay(1);
1da177e4 1531 }
81952c54
TH
1532 /* phy wake/clear reset */
1533 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
1534
1535 /* wait for phy to become ready, if necessary */
1536 do {
1537 msleep(200);
81952c54 1538 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
1539 if ((sstatus & 0xf) != 1)
1540 break;
1541 } while (time_before(jiffies, timeout));
1542
3be680b7
TH
1543 /* print link status */
1544 sata_print_link_status(ap);
656563e3 1545
3be680b7 1546 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 1547 if (!ata_port_offline(ap))
1da177e4 1548 ata_port_probe(ap);
3be680b7 1549 else
1da177e4 1550 ata_port_disable(ap);
1da177e4 1551
198e0fed 1552 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1553 return;
1554
1555 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1556 ata_port_disable(ap);
1557 return;
1558 }
1559
1560 ap->cbl = ATA_CBL_SATA;
1561}
1562
1563/**
780a87f7
JG
1564 * sata_phy_reset - Reset SATA bus.
1565 * @ap: SATA port associated with target SATA PHY.
1da177e4 1566 *
780a87f7
JG
1567 * This function resets the SATA bus, and then probes
1568 * the bus for devices.
1da177e4
LT
1569 *
1570 * LOCKING:
0cba632b 1571 * PCI/etc. bus probe sem.
1da177e4
LT
1572 *
1573 */
1574void sata_phy_reset(struct ata_port *ap)
1575{
1576 __sata_phy_reset(ap);
198e0fed 1577 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1578 return;
1579 ata_bus_reset(ap);
1580}
1581
ebdfca6e
AC
1582/**
1583 * ata_dev_pair - return other device on cable
ebdfca6e
AC
1584 * @adev: device
1585 *
1586 * Obtain the other device on the same cable, or if none is
1587 * present NULL is returned
1588 */
2e9edbf8 1589
3373efd8 1590struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 1591{
3373efd8 1592 struct ata_port *ap = adev->ap;
ebdfca6e 1593 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 1594 if (!ata_dev_enabled(pair))
ebdfca6e
AC
1595 return NULL;
1596 return pair;
1597}
1598
1da177e4 1599/**
780a87f7
JG
1600 * ata_port_disable - Disable port.
1601 * @ap: Port to be disabled.
1da177e4 1602 *
780a87f7
JG
1603 * Modify @ap data structure such that the system
1604 * thinks that the entire port is disabled, and should
1605 * never attempt to probe or communicate with devices
1606 * on this port.
1607 *
1608 * LOCKING: host_set lock, or some other form of
1609 * serialization.
1da177e4
LT
1610 */
1611
1612void ata_port_disable(struct ata_port *ap)
1613{
1614 ap->device[0].class = ATA_DEV_NONE;
1615 ap->device[1].class = ATA_DEV_NONE;
198e0fed 1616 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
1617}
1618
1c3fae4d 1619/**
3c567b7d 1620 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
1621 * @ap: Port to adjust SATA spd limit for
1622 *
1623 * Adjust SATA spd limit of @ap downward. Note that this
1624 * function only adjusts the limit. The change must be applied
3c567b7d 1625 * using sata_set_spd().
1c3fae4d
TH
1626 *
1627 * LOCKING:
1628 * Inherited from caller.
1629 *
1630 * RETURNS:
1631 * 0 on success, negative errno on failure
1632 */
3c567b7d 1633int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 1634{
81952c54
TH
1635 u32 sstatus, spd, mask;
1636 int rc, highbit;
1c3fae4d 1637
81952c54
TH
1638 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1639 if (rc)
1640 return rc;
1c3fae4d
TH
1641
1642 mask = ap->sata_spd_limit;
1643 if (mask <= 1)
1644 return -EINVAL;
1645 highbit = fls(mask) - 1;
1646 mask &= ~(1 << highbit);
1647
81952c54 1648 spd = (sstatus >> 4) & 0xf;
1c3fae4d
TH
1649 if (spd <= 1)
1650 return -EINVAL;
1651 spd--;
1652 mask &= (1 << spd) - 1;
1653 if (!mask)
1654 return -EINVAL;
1655
1656 ap->sata_spd_limit = mask;
1657
f15a1daf
TH
1658 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1659 sata_spd_string(fls(mask)));
1c3fae4d
TH
1660
1661 return 0;
1662}
1663
3c567b7d 1664static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
1665{
1666 u32 spd, limit;
1667
1668 if (ap->sata_spd_limit == UINT_MAX)
1669 limit = 0;
1670 else
1671 limit = fls(ap->sata_spd_limit);
1672
1673 spd = (*scontrol >> 4) & 0xf;
1674 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1675
1676 return spd != limit;
1677}
1678
1679/**
3c567b7d 1680 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
1681 * @ap: Port in question
1682 *
1683 * Test whether the spd limit in SControl matches
1684 * @ap->sata_spd_limit. This function is used to determine
1685 * whether hardreset is necessary to apply SATA spd
1686 * configuration.
1687 *
1688 * LOCKING:
1689 * Inherited from caller.
1690 *
1691 * RETURNS:
1692 * 1 if SATA spd configuration is needed, 0 otherwise.
1693 */
3c567b7d 1694int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
1695{
1696 u32 scontrol;
1697
81952c54 1698 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
1699 return 0;
1700
3c567b7d 1701 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
1702}
1703
1704/**
3c567b7d 1705 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
1706 * @ap: Port to set SATA spd for
1707 *
1708 * Set SATA spd of @ap according to sata_spd_limit.
1709 *
1710 * LOCKING:
1711 * Inherited from caller.
1712 *
1713 * RETURNS:
1714 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 1715 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 1716 */
3c567b7d 1717int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
1718{
1719 u32 scontrol;
81952c54 1720 int rc;
1c3fae4d 1721
81952c54
TH
1722 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1723 return rc;
1c3fae4d 1724
3c567b7d 1725 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
1726 return 0;
1727
81952c54
TH
1728 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1729 return rc;
1730
1c3fae4d
TH
1731 return 1;
1732}
1733
452503f9
AC
1734/*
1735 * This mode timing computation functionality is ported over from
1736 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1737 */
1738/*
1739 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1740 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1741 * for PIO 5, which is a nonstandard extension and UDMA6, which
2e9edbf8 1742 * is currently supported only by Maxtor drives.
452503f9
AC
1743 */
1744
1745static const struct ata_timing ata_timing[] = {
1746
1747 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1748 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1749 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1750 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1751
1752 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1753 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1754 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1755
1756/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 1757
452503f9
AC
1758 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1759 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1760 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 1761
452503f9
AC
1762 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1763 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1764 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1765
1766/* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1767 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1768 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1769
1770 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1771 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1772 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1773
1774/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1775
1776 { 0xFF }
1777};
1778
1779#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1780#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1781
1782static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1783{
1784 q->setup = EZ(t->setup * 1000, T);
1785 q->act8b = EZ(t->act8b * 1000, T);
1786 q->rec8b = EZ(t->rec8b * 1000, T);
1787 q->cyc8b = EZ(t->cyc8b * 1000, T);
1788 q->active = EZ(t->active * 1000, T);
1789 q->recover = EZ(t->recover * 1000, T);
1790 q->cycle = EZ(t->cycle * 1000, T);
1791 q->udma = EZ(t->udma * 1000, UT);
1792}
1793
1794void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1795 struct ata_timing *m, unsigned int what)
1796{
1797 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1798 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1799 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1800 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1801 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1802 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1803 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1804 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1805}
1806
1807static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1808{
1809 const struct ata_timing *t;
1810
1811 for (t = ata_timing; t->mode != speed; t++)
91190758 1812 if (t->mode == 0xFF)
452503f9 1813 return NULL;
2e9edbf8 1814 return t;
452503f9
AC
1815}
1816
1817int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1818 struct ata_timing *t, int T, int UT)
1819{
1820 const struct ata_timing *s;
1821 struct ata_timing p;
1822
1823 /*
2e9edbf8 1824 * Find the mode.
75b1f2f8 1825 */
452503f9
AC
1826
1827 if (!(s = ata_timing_find_mode(speed)))
1828 return -EINVAL;
1829
75b1f2f8
AL
1830 memcpy(t, s, sizeof(*s));
1831
452503f9
AC
1832 /*
1833 * If the drive is an EIDE drive, it can tell us it needs extended
1834 * PIO/MW_DMA cycle timing.
1835 */
1836
1837 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1838 memset(&p, 0, sizeof(p));
1839 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1840 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1841 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1842 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1843 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1844 }
1845 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1846 }
1847
1848 /*
1849 * Convert the timing to bus clock counts.
1850 */
1851
75b1f2f8 1852 ata_timing_quantize(t, t, T, UT);
452503f9
AC
1853
1854 /*
c893a3ae
RD
1855 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1856 * S.M.A.R.T * and some other commands. We have to ensure that the
1857 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
1858 */
1859
1860 if (speed > XFER_PIO_4) {
1861 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1862 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1863 }
1864
1865 /*
c893a3ae 1866 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
1867 */
1868
1869 if (t->act8b + t->rec8b < t->cyc8b) {
1870 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1871 t->rec8b = t->cyc8b - t->act8b;
1872 }
1873
1874 if (t->active + t->recover < t->cycle) {
1875 t->active += (t->cycle - (t->active + t->recover)) / 2;
1876 t->recover = t->cycle - t->active;
1877 }
1878
1879 return 0;
1880}
1881
cf176e1a
TH
1882/**
1883 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a
TH
1884 * @dev: Device to adjust xfer masks
1885 * @force_pio0: Force PIO0
1886 *
1887 * Adjust xfer masks of @dev downward. Note that this function
1888 * does not apply the change. Invoking ata_set_mode() afterwards
1889 * will apply the limit.
1890 *
1891 * LOCKING:
1892 * Inherited from caller.
1893 *
1894 * RETURNS:
1895 * 0 on success, negative errno on failure
1896 */
3373efd8 1897int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
cf176e1a
TH
1898{
1899 unsigned long xfer_mask;
1900 int highbit;
1901
1902 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
1903 dev->udma_mask);
1904
1905 if (!xfer_mask)
1906 goto fail;
1907 /* don't gear down to MWDMA from UDMA, go directly to PIO */
1908 if (xfer_mask & ATA_MASK_UDMA)
1909 xfer_mask &= ~ATA_MASK_MWDMA;
1910
1911 highbit = fls(xfer_mask) - 1;
1912 xfer_mask &= ~(1 << highbit);
1913 if (force_pio0)
1914 xfer_mask &= 1 << ATA_SHIFT_PIO;
1915 if (!xfer_mask)
1916 goto fail;
1917
1918 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
1919 &dev->udma_mask);
1920
f15a1daf
TH
1921 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
1922 ata_mode_string(xfer_mask));
cf176e1a
TH
1923
1924 return 0;
1925
1926 fail:
1927 return -EINVAL;
1928}
1929
3373efd8 1930static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 1931{
83206a29
TH
1932 unsigned int err_mask;
1933 int rc;
1da177e4 1934
e8384607 1935 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
1936 if (dev->xfer_shift == ATA_SHIFT_PIO)
1937 dev->flags |= ATA_DFLAG_PIO;
1938
3373efd8 1939 err_mask = ata_dev_set_xfermode(dev);
83206a29 1940 if (err_mask) {
f15a1daf
TH
1941 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
1942 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
1943 return -EIO;
1944 }
1da177e4 1945
3373efd8 1946 rc = ata_dev_revalidate(dev, 0);
5eb45c02 1947 if (rc)
83206a29 1948 return rc;
48a8a14f 1949
23e71c3d
TH
1950 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
1951 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 1952
f15a1daf
TH
1953 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1954 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 1955 return 0;
1da177e4
LT
1956}
1957
1da177e4
LT
1958/**
1959 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1960 * @ap: port on which timings will be programmed
e82cbdb9 1961 * @r_failed_dev: out paramter for failed device
1da177e4 1962 *
e82cbdb9
TH
1963 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
1964 * ata_set_mode() fails, pointer to the failing device is
1965 * returned in @r_failed_dev.
780a87f7 1966 *
1da177e4 1967 * LOCKING:
0cba632b 1968 * PCI/etc. bus probe sem.
e82cbdb9
TH
1969 *
1970 * RETURNS:
1971 * 0 on success, negative errno otherwise
1da177e4 1972 */
1ad8e7f9 1973int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 1974{
e8e0619f 1975 struct ata_device *dev;
e82cbdb9 1976 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 1977
3adcebb2
TH
1978 /* has private set_mode? */
1979 if (ap->ops->set_mode) {
1980 /* FIXME: make ->set_mode handle no device case and
1981 * return error code and failing device on failure.
1982 */
1983 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1984 if (ata_dev_enabled(&ap->device[i])) {
1985 ap->ops->set_mode(ap);
1986 break;
1987 }
1988 }
1989 return 0;
1990 }
1991
a6d5a51c
TH
1992 /* step 1: calculate xfer_mask */
1993 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 1994 unsigned int pio_mask, dma_mask;
a6d5a51c 1995
e8e0619f
TH
1996 dev = &ap->device[i];
1997
e1211e3f 1998 if (!ata_dev_enabled(dev))
a6d5a51c
TH
1999 continue;
2000
3373efd8 2001 ata_dev_xfermask(dev);
1da177e4 2002
acf356b1
TH
2003 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2004 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2005 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2006 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2007
4f65977d 2008 found = 1;
5444a6f4
AC
2009 if (dev->dma_mode)
2010 used_dma = 1;
a6d5a51c 2011 }
4f65977d 2012 if (!found)
e82cbdb9 2013 goto out;
a6d5a51c
TH
2014
2015 /* step 2: always set host PIO timings */
e8e0619f
TH
2016 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2017 dev = &ap->device[i];
2018 if (!ata_dev_enabled(dev))
2019 continue;
2020
2021 if (!dev->pio_mode) {
f15a1daf 2022 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2023 rc = -EINVAL;
e82cbdb9 2024 goto out;
e8e0619f
TH
2025 }
2026
2027 dev->xfer_mode = dev->pio_mode;
2028 dev->xfer_shift = ATA_SHIFT_PIO;
2029 if (ap->ops->set_piomode)
2030 ap->ops->set_piomode(ap, dev);
2031 }
1da177e4 2032
a6d5a51c 2033 /* step 3: set host DMA timings */
e8e0619f
TH
2034 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2035 dev = &ap->device[i];
2036
2037 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2038 continue;
2039
2040 dev->xfer_mode = dev->dma_mode;
2041 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2042 if (ap->ops->set_dmamode)
2043 ap->ops->set_dmamode(ap, dev);
2044 }
1da177e4
LT
2045
2046 /* step 4: update devices' xfer mode */
83206a29 2047 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2048 dev = &ap->device[i];
1da177e4 2049
e1211e3f 2050 if (!ata_dev_enabled(dev))
83206a29
TH
2051 continue;
2052
3373efd8 2053 rc = ata_dev_set_mode(dev);
5bbc53f4 2054 if (rc)
e82cbdb9 2055 goto out;
83206a29 2056 }
1da177e4 2057
e8e0619f
TH
2058 /* Record simplex status. If we selected DMA then the other
2059 * host channels are not permitted to do so.
5444a6f4 2060 */
5444a6f4
AC
2061 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2062 ap->host_set->simplex_claimed = 1;
2063
e8e0619f 2064 /* step5: chip specific finalisation */
1da177e4
LT
2065 if (ap->ops->post_set_mode)
2066 ap->ops->post_set_mode(ap);
2067
e82cbdb9
TH
2068 out:
2069 if (rc)
2070 *r_failed_dev = dev;
2071 return rc;
1da177e4
LT
2072}
2073
1fdffbce
JG
2074/**
2075 * ata_tf_to_host - issue ATA taskfile to host controller
2076 * @ap: port to which command is being issued
2077 * @tf: ATA taskfile register set
2078 *
2079 * Issues ATA taskfile register set to ATA host controller,
2080 * with proper synchronization with interrupt handler and
2081 * other threads.
2082 *
2083 * LOCKING:
2084 * spin_lock_irqsave(host_set lock)
2085 */
2086
2087static inline void ata_tf_to_host(struct ata_port *ap,
2088 const struct ata_taskfile *tf)
2089{
2090 ap->ops->tf_load(ap, tf);
2091 ap->ops->exec_command(ap, tf);
2092}
2093
1da177e4
LT
2094/**
2095 * ata_busy_sleep - sleep until BSY clears, or timeout
2096 * @ap: port containing status register to be polled
2097 * @tmout_pat: impatience timeout
2098 * @tmout: overall timeout
2099 *
780a87f7
JG
2100 * Sleep until ATA Status register bit BSY clears,
2101 * or a timeout occurs.
2102 *
2103 * LOCKING: None.
1da177e4
LT
2104 */
2105
6f8b9958
TH
2106unsigned int ata_busy_sleep (struct ata_port *ap,
2107 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2108{
2109 unsigned long timer_start, timeout;
2110 u8 status;
2111
2112 status = ata_busy_wait(ap, ATA_BUSY, 300);
2113 timer_start = jiffies;
2114 timeout = timer_start + tmout_pat;
2115 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2116 msleep(50);
2117 status = ata_busy_wait(ap, ATA_BUSY, 3);
2118 }
2119
2120 if (status & ATA_BUSY)
f15a1daf
TH
2121 ata_port_printk(ap, KERN_WARNING,
2122 "port is slow to respond, please be patient\n");
1da177e4
LT
2123
2124 timeout = timer_start + tmout;
2125 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2126 msleep(50);
2127 status = ata_chk_status(ap);
2128 }
2129
2130 if (status & ATA_BUSY) {
f15a1daf
TH
2131 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2132 "(%lu secs)\n", tmout / HZ);
1da177e4
LT
2133 return 1;
2134 }
2135
2136 return 0;
2137}
2138
2139static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2140{
2141 struct ata_ioports *ioaddr = &ap->ioaddr;
2142 unsigned int dev0 = devmask & (1 << 0);
2143 unsigned int dev1 = devmask & (1 << 1);
2144 unsigned long timeout;
2145
2146 /* if device 0 was found in ata_devchk, wait for its
2147 * BSY bit to clear
2148 */
2149 if (dev0)
2150 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2151
2152 /* if device 1 was found in ata_devchk, wait for
2153 * register access, then wait for BSY to clear
2154 */
2155 timeout = jiffies + ATA_TMOUT_BOOT;
2156 while (dev1) {
2157 u8 nsect, lbal;
2158
2159 ap->ops->dev_select(ap, 1);
2160 if (ap->flags & ATA_FLAG_MMIO) {
2161 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2162 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2163 } else {
2164 nsect = inb(ioaddr->nsect_addr);
2165 lbal = inb(ioaddr->lbal_addr);
2166 }
2167 if ((nsect == 1) && (lbal == 1))
2168 break;
2169 if (time_after(jiffies, timeout)) {
2170 dev1 = 0;
2171 break;
2172 }
2173 msleep(50); /* give drive a breather */
2174 }
2175 if (dev1)
2176 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2177
2178 /* is all this really necessary? */
2179 ap->ops->dev_select(ap, 0);
2180 if (dev1)
2181 ap->ops->dev_select(ap, 1);
2182 if (dev0)
2183 ap->ops->dev_select(ap, 0);
2184}
2185
1da177e4
LT
2186static unsigned int ata_bus_softreset(struct ata_port *ap,
2187 unsigned int devmask)
2188{
2189 struct ata_ioports *ioaddr = &ap->ioaddr;
2190
2191 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2192
2193 /* software reset. causes dev0 to be selected */
2194 if (ap->flags & ATA_FLAG_MMIO) {
2195 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2196 udelay(20); /* FIXME: flush */
2197 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2198 udelay(20); /* FIXME: flush */
2199 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2200 } else {
2201 outb(ap->ctl, ioaddr->ctl_addr);
2202 udelay(10);
2203 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2204 udelay(10);
2205 outb(ap->ctl, ioaddr->ctl_addr);
2206 }
2207
2208 /* spec mandates ">= 2ms" before checking status.
2209 * We wait 150ms, because that was the magic delay used for
2210 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2211 * between when the ATA command register is written, and then
2212 * status is checked. Because waiting for "a while" before
2213 * checking status is fine, post SRST, we perform this magic
2214 * delay here as well.
09c7ad79
AC
2215 *
2216 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
2217 */
2218 msleep(150);
2219
2e9edbf8 2220 /* Before we perform post reset processing we want to see if
298a41ca
TH
2221 * the bus shows 0xFF because the odd clown forgets the D7
2222 * pulldown resistor.
2223 */
987d2f05 2224 if (ata_check_status(ap) == 0xFF) {
f15a1daf 2225 ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n");
298a41ca 2226 return AC_ERR_OTHER;
987d2f05 2227 }
09c7ad79 2228
1da177e4
LT
2229 ata_bus_post_reset(ap, devmask);
2230
2231 return 0;
2232}
2233
2234/**
2235 * ata_bus_reset - reset host port and associated ATA channel
2236 * @ap: port to reset
2237 *
2238 * This is typically the first time we actually start issuing
2239 * commands to the ATA channel. We wait for BSY to clear, then
2240 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2241 * result. Determine what devices, if any, are on the channel
2242 * by looking at the device 0/1 error register. Look at the signature
2243 * stored in each device's taskfile registers, to determine if
2244 * the device is ATA or ATAPI.
2245 *
2246 * LOCKING:
0cba632b
JG
2247 * PCI/etc. bus probe sem.
2248 * Obtains host_set lock.
1da177e4
LT
2249 *
2250 * SIDE EFFECTS:
198e0fed 2251 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
2252 */
2253
2254void ata_bus_reset(struct ata_port *ap)
2255{
2256 struct ata_ioports *ioaddr = &ap->ioaddr;
2257 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2258 u8 err;
aec5c3c1 2259 unsigned int dev0, dev1 = 0, devmask = 0;
1da177e4
LT
2260
2261 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2262
2263 /* determine if device 0/1 are present */
2264 if (ap->flags & ATA_FLAG_SATA_RESET)
2265 dev0 = 1;
2266 else {
2267 dev0 = ata_devchk(ap, 0);
2268 if (slave_possible)
2269 dev1 = ata_devchk(ap, 1);
2270 }
2271
2272 if (dev0)
2273 devmask |= (1 << 0);
2274 if (dev1)
2275 devmask |= (1 << 1);
2276
2277 /* select device 0 again */
2278 ap->ops->dev_select(ap, 0);
2279
2280 /* issue bus reset */
2281 if (ap->flags & ATA_FLAG_SRST)
aec5c3c1
TH
2282 if (ata_bus_softreset(ap, devmask))
2283 goto err_out;
1da177e4
LT
2284
2285 /*
2286 * determine by signature whether we have ATA or ATAPI devices
2287 */
b4dc7623 2288 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 2289 if ((slave_possible) && (err != 0x81))
b4dc7623 2290 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
2291
2292 /* re-enable interrupts */
2293 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2294 ata_irq_on(ap);
2295
2296 /* is double-select really necessary? */
2297 if (ap->device[1].class != ATA_DEV_NONE)
2298 ap->ops->dev_select(ap, 1);
2299 if (ap->device[0].class != ATA_DEV_NONE)
2300 ap->ops->dev_select(ap, 0);
2301
2302 /* if no devices were detected, disable this port */
2303 if ((ap->device[0].class == ATA_DEV_NONE) &&
2304 (ap->device[1].class == ATA_DEV_NONE))
2305 goto err_out;
2306
2307 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2308 /* set up device control for ATA_FLAG_SATA_RESET */
2309 if (ap->flags & ATA_FLAG_MMIO)
2310 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2311 else
2312 outb(ap->ctl, ioaddr->ctl_addr);
2313 }
2314
2315 DPRINTK("EXIT\n");
2316 return;
2317
2318err_out:
f15a1daf 2319 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
2320 ap->ops->port_disable(ap);
2321
2322 DPRINTK("EXIT\n");
2323}
2324
7a7921e8
TH
2325static int sata_phy_resume(struct ata_port *ap)
2326{
2327 unsigned long timeout = jiffies + (HZ * 5);
852ee16a 2328 u32 scontrol, sstatus;
81952c54
TH
2329 int rc;
2330
2331 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2332 return rc;
7a7921e8 2333
852ee16a 2334 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
2335
2336 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2337 return rc;
7a7921e8
TH
2338
2339 /* Wait for phy to become ready, if necessary. */
2340 do {
2341 msleep(200);
81952c54
TH
2342 if ((rc = sata_scr_read(ap, SCR_STATUS, &sstatus)))
2343 return rc;
7a7921e8
TH
2344 if ((sstatus & 0xf) != 1)
2345 return 0;
2346 } while (time_before(jiffies, timeout));
2347
81952c54 2348 return -EBUSY;
7a7921e8
TH
2349}
2350
8a19ac89
TH
2351/**
2352 * ata_std_probeinit - initialize probing
2353 * @ap: port to be probed
2354 *
2355 * @ap is about to be probed. Initialize it. This function is
2356 * to be used as standard callback for ata_drive_probe_reset().
3a39746a
TH
2357 *
2358 * NOTE!!! Do not use this function as probeinit if a low level
2359 * driver implements only hardreset. Just pass NULL as probeinit
2360 * in that case. Using this function is probably okay but doing
2361 * so makes reset sequence different from the original
2362 * ->phy_reset implementation and Jeff nervous. :-P
8a19ac89 2363 */
17efc5f7 2364void ata_std_probeinit(struct ata_port *ap)
8a19ac89 2365{
81952c54 2366 u32 scontrol;
1c3fae4d 2367
81952c54
TH
2368 /* resume link */
2369 sata_phy_resume(ap);
1c3fae4d 2370
81952c54
TH
2371 /* init sata_spd_limit to the current value */
2372 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
2373 int spd = (scontrol >> 4) & 0xf;
2374 ap->sata_spd_limit &= (1 << spd) - 1;
3a39746a 2375 }
81952c54
TH
2376
2377 /* wait for device */
2378 if (ata_port_online(ap))
2379 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
8a19ac89
TH
2380}
2381
c2bd5804
TH
2382/**
2383 * ata_std_softreset - reset host port via ATA SRST
2384 * @ap: port to reset
c2bd5804
TH
2385 * @classes: resulting classes of attached devices
2386 *
2387 * Reset host port using ATA SRST. This function is to be used
2388 * as standard callback for ata_drive_*_reset() functions.
2389 *
2390 * LOCKING:
2391 * Kernel thread context (may sleep)
2392 *
2393 * RETURNS:
2394 * 0 on success, -errno otherwise.
2395 */
2bf2cb26 2396int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
c2bd5804
TH
2397{
2398 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2399 unsigned int devmask = 0, err_mask;
2400 u8 err;
2401
2402 DPRINTK("ENTER\n");
2403
81952c54 2404 if (ata_port_offline(ap)) {
3a39746a
TH
2405 classes[0] = ATA_DEV_NONE;
2406 goto out;
2407 }
2408
c2bd5804
TH
2409 /* determine if device 0/1 are present */
2410 if (ata_devchk(ap, 0))
2411 devmask |= (1 << 0);
2412 if (slave_possible && ata_devchk(ap, 1))
2413 devmask |= (1 << 1);
2414
c2bd5804
TH
2415 /* select device 0 again */
2416 ap->ops->dev_select(ap, 0);
2417
2418 /* issue bus reset */
2419 DPRINTK("about to softreset, devmask=%x\n", devmask);
2420 err_mask = ata_bus_softreset(ap, devmask);
2421 if (err_mask) {
f15a1daf
TH
2422 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2423 err_mask);
c2bd5804
TH
2424 return -EIO;
2425 }
2426
2427 /* determine by signature whether we have ATA or ATAPI devices */
2428 classes[0] = ata_dev_try_classify(ap, 0, &err);
2429 if (slave_possible && err != 0x81)
2430 classes[1] = ata_dev_try_classify(ap, 1, &err);
2431
3a39746a 2432 out:
c2bd5804
TH
2433 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2434 return 0;
2435}
2436
2437/**
2438 * sata_std_hardreset - reset host port via SATA phy reset
2439 * @ap: port to reset
c2bd5804
TH
2440 * @class: resulting class of attached device
2441 *
2442 * SATA phy-reset host port using DET bits of SControl register.
2443 * This function is to be used as standard callback for
2444 * ata_drive_*_reset().
2445 *
2446 * LOCKING:
2447 * Kernel thread context (may sleep)
2448 *
2449 * RETURNS:
2450 * 0 on success, -errno otherwise.
2451 */
2bf2cb26 2452int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
c2bd5804 2453{
852ee16a 2454 u32 scontrol;
81952c54 2455 int rc;
852ee16a 2456
c2bd5804
TH
2457 DPRINTK("ENTER\n");
2458
3c567b7d 2459 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
2460 /* SATA spec says nothing about how to reconfigure
2461 * spd. To be on the safe side, turn off phy during
2462 * reconfiguration. This works for at least ICH7 AHCI
2463 * and Sil3124.
2464 */
81952c54
TH
2465 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2466 return rc;
2467
1c3fae4d 2468 scontrol = (scontrol & 0x0f0) | 0x302;
81952c54
TH
2469
2470 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2471 return rc;
1c3fae4d 2472
3c567b7d 2473 sata_set_spd(ap);
1c3fae4d
TH
2474 }
2475
2476 /* issue phy wake/reset */
81952c54
TH
2477 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2478 return rc;
2479
852ee16a 2480 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
2481
2482 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2483 return rc;
c2bd5804 2484
1c3fae4d 2485 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
2486 * 10.4.2 says at least 1 ms.
2487 */
2488 msleep(1);
2489
1c3fae4d 2490 /* bring phy back */
7a7921e8 2491 sata_phy_resume(ap);
c2bd5804 2492
c2bd5804 2493 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 2494 if (ata_port_offline(ap)) {
c2bd5804
TH
2495 *class = ATA_DEV_NONE;
2496 DPRINTK("EXIT, link offline\n");
2497 return 0;
2498 }
2499
2500 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
f15a1daf
TH
2501 ata_port_printk(ap, KERN_ERR,
2502 "COMRESET failed (device not ready)\n");
c2bd5804
TH
2503 return -EIO;
2504 }
2505
3a39746a
TH
2506 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2507
c2bd5804
TH
2508 *class = ata_dev_try_classify(ap, 0, NULL);
2509
2510 DPRINTK("EXIT, class=%u\n", *class);
2511 return 0;
2512}
2513
2514/**
2515 * ata_std_postreset - standard postreset callback
2516 * @ap: the target ata_port
2517 * @classes: classes of attached devices
2518 *
2519 * This function is invoked after a successful reset. Note that
2520 * the device might have been reset more than once using
2521 * different reset methods before postreset is invoked.
c2bd5804
TH
2522 *
2523 * This function is to be used as standard callback for
2524 * ata_drive_*_reset().
2525 *
2526 * LOCKING:
2527 * Kernel thread context (may sleep)
2528 */
2529void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2530{
2531 DPRINTK("ENTER\n");
2532
c2bd5804 2533 /* print link status */
81952c54 2534 sata_print_link_status(ap);
c2bd5804 2535
3a39746a
TH
2536 /* re-enable interrupts */
2537 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2538 ata_irq_on(ap);
c2bd5804
TH
2539
2540 /* is double-select really necessary? */
2541 if (classes[0] != ATA_DEV_NONE)
2542 ap->ops->dev_select(ap, 1);
2543 if (classes[1] != ATA_DEV_NONE)
2544 ap->ops->dev_select(ap, 0);
2545
3a39746a
TH
2546 /* bail out if no device is present */
2547 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2548 DPRINTK("EXIT, no device\n");
2549 return;
2550 }
2551
2552 /* set up device control */
2553 if (ap->ioaddr.ctl_addr) {
2554 if (ap->flags & ATA_FLAG_MMIO)
2555 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2556 else
2557 outb(ap->ctl, ap->ioaddr.ctl_addr);
2558 }
c2bd5804
TH
2559
2560 DPRINTK("EXIT\n");
2561}
2562
2563/**
2564 * ata_std_probe_reset - standard probe reset method
2565 * @ap: prot to perform probe-reset
2566 * @classes: resulting classes of attached devices
2567 *
2568 * The stock off-the-shelf ->probe_reset method.
2569 *
2570 * LOCKING:
2571 * Kernel thread context (may sleep)
2572 *
2573 * RETURNS:
2574 * 0 on success, -errno otherwise.
2575 */
2576int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2577{
2578 ata_reset_fn_t hardreset;
2579
2580 hardreset = NULL;
81952c54 2581 if (sata_scr_valid(ap))
c2bd5804
TH
2582 hardreset = sata_std_hardreset;
2583
8a19ac89 2584 return ata_drive_probe_reset(ap, ata_std_probeinit,
7944ea95 2585 ata_std_softreset, hardreset,
c2bd5804
TH
2586 ata_std_postreset, classes);
2587}
2588
2bf2cb26 2589int ata_do_reset(struct ata_port *ap, ata_reset_fn_t reset,
96bd39ec 2590 unsigned int *classes)
a62c0fc5
TH
2591{
2592 int i, rc;
2593
2594 for (i = 0; i < ATA_MAX_DEVICES; i++)
2595 classes[i] = ATA_DEV_UNKNOWN;
2596
2bf2cb26 2597 rc = reset(ap, classes);
a62c0fc5
TH
2598 if (rc)
2599 return rc;
2600
2601 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2602 * is complete and convert all ATA_DEV_UNKNOWN to
2603 * ATA_DEV_NONE.
2604 */
2605 for (i = 0; i < ATA_MAX_DEVICES; i++)
2606 if (classes[i] != ATA_DEV_UNKNOWN)
2607 break;
2608
2609 if (i < ATA_MAX_DEVICES)
2610 for (i = 0; i < ATA_MAX_DEVICES; i++)
2611 if (classes[i] == ATA_DEV_UNKNOWN)
2612 classes[i] = ATA_DEV_NONE;
2613
9974e7cc 2614 return 0;
a62c0fc5
TH
2615}
2616
2617/**
2618 * ata_drive_probe_reset - Perform probe reset with given methods
2619 * @ap: port to reset
7944ea95 2620 * @probeinit: probeinit method (can be NULL)
a62c0fc5
TH
2621 * @softreset: softreset method (can be NULL)
2622 * @hardreset: hardreset method (can be NULL)
2623 * @postreset: postreset method (can be NULL)
2624 * @classes: resulting classes of attached devices
2625 *
2626 * Reset the specified port and classify attached devices using
2627 * given methods. This function prefers softreset but tries all
2628 * possible reset sequences to reset and classify devices. This
2629 * function is intended to be used for constructing ->probe_reset
2630 * callback by low level drivers.
2631 *
2632 * Reset methods should follow the following rules.
2633 *
2634 * - Return 0 on sucess, -errno on failure.
2635 * - If classification is supported, fill classes[] with
2636 * recognized class codes.
2637 * - If classification is not supported, leave classes[] alone.
a62c0fc5
TH
2638 *
2639 * LOCKING:
2640 * Kernel thread context (may sleep)
2641 *
2642 * RETURNS:
2643 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2644 * if classification fails, and any error code from reset
2645 * methods.
2646 */
7944ea95 2647int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
a62c0fc5
TH
2648 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2649 ata_postreset_fn_t postreset, unsigned int *classes)
2650{
2651 int rc = -EINVAL;
2652
7944ea95
TH
2653 if (probeinit)
2654 probeinit(ap);
2655
3c567b7d 2656 if (softreset && !sata_set_spd_needed(ap)) {
96bd39ec 2657 rc = ata_do_reset(ap, softreset, classes);
9974e7cc
TH
2658 if (rc == 0 && classes[0] != ATA_DEV_UNKNOWN)
2659 goto done;
f15a1daf
TH
2660 ata_port_printk(ap, KERN_INFO, "softreset failed, "
2661 "will try hardreset in 5 secs\n");
edbabd86 2662 ssleep(5);
a62c0fc5
TH
2663 }
2664
2665 if (!hardreset)
9974e7cc 2666 goto done;
a62c0fc5 2667
90dac02c 2668 while (1) {
96bd39ec 2669 rc = ata_do_reset(ap, hardreset, classes);
90dac02c
TH
2670 if (rc == 0) {
2671 if (classes[0] != ATA_DEV_UNKNOWN)
2672 goto done;
2673 break;
2674 }
2675
3c567b7d 2676 if (sata_down_spd_limit(ap))
90dac02c 2677 goto done;
edbabd86 2678
f15a1daf
TH
2679 ata_port_printk(ap, KERN_INFO, "hardreset failed, "
2680 "will retry in 5 secs\n");
edbabd86 2681 ssleep(5);
90dac02c 2682 }
a62c0fc5 2683
edbabd86 2684 if (softreset) {
f15a1daf
TH
2685 ata_port_printk(ap, KERN_INFO,
2686 "hardreset succeeded without classification, "
2687 "will retry softreset in 5 secs\n");
edbabd86
TH
2688 ssleep(5);
2689
96bd39ec 2690 rc = ata_do_reset(ap, softreset, classes);
edbabd86 2691 }
a62c0fc5 2692
9974e7cc 2693 done:
96bd39ec
TH
2694 if (rc == 0) {
2695 if (postreset)
2696 postreset(ap, classes);
2697 if (classes[0] == ATA_DEV_UNKNOWN)
2698 rc = -ENODEV;
2699 }
a62c0fc5
TH
2700 return rc;
2701}
2702
623a3128
TH
2703/**
2704 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
2705 * @dev: device to compare against
2706 * @new_class: class of the new device
2707 * @new_id: IDENTIFY page of the new device
2708 *
2709 * Compare @new_class and @new_id against @dev and determine
2710 * whether @dev is the device indicated by @new_class and
2711 * @new_id.
2712 *
2713 * LOCKING:
2714 * None.
2715 *
2716 * RETURNS:
2717 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2718 */
3373efd8
TH
2719static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2720 const u16 *new_id)
623a3128
TH
2721{
2722 const u16 *old_id = dev->id;
2723 unsigned char model[2][41], serial[2][21];
2724 u64 new_n_sectors;
2725
2726 if (dev->class != new_class) {
f15a1daf
TH
2727 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2728 dev->class, new_class);
623a3128
TH
2729 return 0;
2730 }
2731
2732 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2733 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2734 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2735 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2736 new_n_sectors = ata_id_n_sectors(new_id);
2737
2738 if (strcmp(model[0], model[1])) {
f15a1daf
TH
2739 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
2740 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
2741 return 0;
2742 }
2743
2744 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
2745 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
2746 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
2747 return 0;
2748 }
2749
2750 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
f15a1daf
TH
2751 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
2752 "%llu != %llu\n",
2753 (unsigned long long)dev->n_sectors,
2754 (unsigned long long)new_n_sectors);
623a3128
TH
2755 return 0;
2756 }
2757
2758 return 1;
2759}
2760
2761/**
2762 * ata_dev_revalidate - Revalidate ATA device
623a3128
TH
2763 * @dev: device to revalidate
2764 * @post_reset: is this revalidation after reset?
2765 *
2766 * Re-read IDENTIFY page and make sure @dev is still attached to
2767 * the port.
2768 *
2769 * LOCKING:
2770 * Kernel thread context (may sleep)
2771 *
2772 * RETURNS:
2773 * 0 on success, negative errno otherwise
2774 */
3373efd8 2775int ata_dev_revalidate(struct ata_device *dev, int post_reset)
623a3128 2776{
5eb45c02 2777 unsigned int class = dev->class;
f15a1daf 2778 u16 *id = (void *)dev->ap->sector_buf;
623a3128
TH
2779 int rc;
2780
5eb45c02
TH
2781 if (!ata_dev_enabled(dev)) {
2782 rc = -ENODEV;
2783 goto fail;
2784 }
623a3128 2785
fe635c7e 2786 /* read ID data */
3373efd8 2787 rc = ata_dev_read_id(dev, &class, post_reset, id);
623a3128
TH
2788 if (rc)
2789 goto fail;
2790
2791 /* is the device still there? */
3373efd8 2792 if (!ata_dev_same_device(dev, class, id)) {
623a3128
TH
2793 rc = -ENODEV;
2794 goto fail;
2795 }
2796
fe635c7e 2797 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
623a3128
TH
2798
2799 /* configure device according to the new ID */
3373efd8 2800 rc = ata_dev_configure(dev, 0);
5eb45c02
TH
2801 if (rc == 0)
2802 return 0;
623a3128
TH
2803
2804 fail:
f15a1daf 2805 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
2806 return rc;
2807}
2808
98ac62de 2809static const char * const ata_dma_blacklist [] = {
f4b15fef
AC
2810 "WDC AC11000H", NULL,
2811 "WDC AC22100H", NULL,
2812 "WDC AC32500H", NULL,
2813 "WDC AC33100H", NULL,
2814 "WDC AC31600H", NULL,
2815 "WDC AC32100H", "24.09P07",
2816 "WDC AC23200L", "21.10N21",
2817 "Compaq CRD-8241B", NULL,
2818 "CRD-8400B", NULL,
2819 "CRD-8480B", NULL,
2820 "CRD-8482B", NULL,
2821 "CRD-84", NULL,
2822 "SanDisk SDP3B", NULL,
2823 "SanDisk SDP3B-64", NULL,
2824 "SANYO CD-ROM CRD", NULL,
2825 "HITACHI CDR-8", NULL,
2e9edbf8 2826 "HITACHI CDR-8335", NULL,
f4b15fef 2827 "HITACHI CDR-8435", NULL,
2e9edbf8
JG
2828 "Toshiba CD-ROM XM-6202B", NULL,
2829 "TOSHIBA CD-ROM XM-1702BC", NULL,
2830 "CD-532E-A", NULL,
2831 "E-IDE CD-ROM CR-840", NULL,
2832 "CD-ROM Drive/F5A", NULL,
2833 "WPI CDD-820", NULL,
f4b15fef 2834 "SAMSUNG CD-ROM SC-148C", NULL,
2e9edbf8 2835 "SAMSUNG CD-ROM SC", NULL,
f4b15fef
AC
2836 "SanDisk SDP3B-64", NULL,
2837 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2838 "_NEC DV5800A", NULL,
2839 "SAMSUNG CD-ROM SN-124", "N001"
1da177e4 2840};
2e9edbf8 2841
f4b15fef
AC
2842static int ata_strim(char *s, size_t len)
2843{
2844 len = strnlen(s, len);
2845
2846 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2847 while ((len > 0) && (s[len - 1] == ' ')) {
2848 len--;
2849 s[len] = 0;
2850 }
2851 return len;
2852}
1da177e4 2853
057ace5e 2854static int ata_dma_blacklisted(const struct ata_device *dev)
1da177e4 2855{
f4b15fef
AC
2856 unsigned char model_num[40];
2857 unsigned char model_rev[16];
2858 unsigned int nlen, rlen;
1da177e4
LT
2859 int i;
2860
f4b15fef
AC
2861 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2862 sizeof(model_num));
2863 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2864 sizeof(model_rev));
2865 nlen = ata_strim(model_num, sizeof(model_num));
2866 rlen = ata_strim(model_rev, sizeof(model_rev));
1da177e4 2867
f4b15fef
AC
2868 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2869 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2870 if (ata_dma_blacklist[i+1] == NULL)
2871 return 1;
2872 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2873 return 1;
2874 }
2875 }
1da177e4
LT
2876 return 0;
2877}
2878
a6d5a51c
TH
2879/**
2880 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
2881 * @dev: Device to compute xfermask for
2882 *
acf356b1
TH
2883 * Compute supported xfermask of @dev and store it in
2884 * dev->*_mask. This function is responsible for applying all
2885 * known limits including host controller limits, device
2886 * blacklist, etc...
a6d5a51c 2887 *
600511e8
TH
2888 * FIXME: The current implementation limits all transfer modes to
2889 * the fastest of the lowested device on the port. This is not
05c8e0ac 2890 * required on most controllers.
600511e8 2891 *
a6d5a51c
TH
2892 * LOCKING:
2893 * None.
a6d5a51c 2894 */
3373efd8 2895static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 2896{
3373efd8 2897 struct ata_port *ap = dev->ap;
5444a6f4 2898 struct ata_host_set *hs = ap->host_set;
a6d5a51c
TH
2899 unsigned long xfer_mask;
2900 int i;
1da177e4 2901
565083e1
TH
2902 xfer_mask = ata_pack_xfermask(ap->pio_mask,
2903 ap->mwdma_mask, ap->udma_mask);
2904
2905 /* Apply cable rule here. Don't apply it early because when
2906 * we handle hot plug the cable type can itself change.
2907 */
2908 if (ap->cbl == ATA_CBL_PATA40)
2909 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
1da177e4 2910
5444a6f4 2911 /* FIXME: Use port-wide xfermask for now */
a6d5a51c
TH
2912 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2913 struct ata_device *d = &ap->device[i];
565083e1
TH
2914
2915 if (ata_dev_absent(d))
2916 continue;
2917
2918 if (ata_dev_disabled(d)) {
2919 /* to avoid violating device selection timing */
2920 xfer_mask &= ata_pack_xfermask(d->pio_mask,
2921 UINT_MAX, UINT_MAX);
a6d5a51c 2922 continue;
565083e1
TH
2923 }
2924
2925 xfer_mask &= ata_pack_xfermask(d->pio_mask,
2926 d->mwdma_mask, d->udma_mask);
a6d5a51c
TH
2927 xfer_mask &= ata_id_xfermask(d->id);
2928 if (ata_dma_blacklisted(d))
2929 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
1da177e4
LT
2930 }
2931
a6d5a51c 2932 if (ata_dma_blacklisted(dev))
f15a1daf
TH
2933 ata_dev_printk(dev, KERN_WARNING,
2934 "device is on DMA blacklist, disabling DMA\n");
a6d5a51c 2935
5444a6f4
AC
2936 if (hs->flags & ATA_HOST_SIMPLEX) {
2937 if (hs->simplex_claimed)
2938 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2939 }
565083e1 2940
5444a6f4
AC
2941 if (ap->ops->mode_filter)
2942 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
2943
565083e1
TH
2944 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
2945 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
2946}
2947
1da177e4
LT
2948/**
2949 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
2950 * @dev: Device to which command will be sent
2951 *
780a87f7
JG
2952 * Issue SET FEATURES - XFER MODE command to device @dev
2953 * on port @ap.
2954 *
1da177e4 2955 * LOCKING:
0cba632b 2956 * PCI/etc. bus probe sem.
83206a29
TH
2957 *
2958 * RETURNS:
2959 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
2960 */
2961
3373efd8 2962static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 2963{
a0123703 2964 struct ata_taskfile tf;
83206a29 2965 unsigned int err_mask;
1da177e4
LT
2966
2967 /* set up set-features taskfile */
2968 DPRINTK("set features - xfer mode\n");
2969
3373efd8 2970 ata_tf_init(dev, &tf);
a0123703
TH
2971 tf.command = ATA_CMD_SET_FEATURES;
2972 tf.feature = SETFEATURES_XFER;
2973 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2974 tf.protocol = ATA_PROT_NODATA;
2975 tf.nsect = dev->xfer_mode;
1da177e4 2976
3373efd8 2977 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 2978
83206a29
TH
2979 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2980 return err_mask;
1da177e4
LT
2981}
2982
8bf62ece
AL
2983/**
2984 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 2985 * @dev: Device to which command will be sent
3373efd8
TH
2986 * @heads: Number of heads
2987 * @sectors: Number of sectors
8bf62ece
AL
2988 *
2989 * LOCKING:
6aff8f1f
TH
2990 * Kernel thread context (may sleep)
2991 *
2992 * RETURNS:
2993 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 2994 */
3373efd8
TH
2995static unsigned int ata_dev_init_params(struct ata_device *dev,
2996 u16 heads, u16 sectors)
8bf62ece 2997{
a0123703 2998 struct ata_taskfile tf;
6aff8f1f 2999 unsigned int err_mask;
8bf62ece
AL
3000
3001 /* Number of sectors per track 1-255. Number of heads 1-16 */
3002 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3003 return AC_ERR_INVALID;
8bf62ece
AL
3004
3005 /* set up init dev params taskfile */
3006 DPRINTK("init dev params \n");
3007
3373efd8 3008 ata_tf_init(dev, &tf);
a0123703
TH
3009 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3010 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3011 tf.protocol = ATA_PROT_NODATA;
3012 tf.nsect = sectors;
3013 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3014
3373efd8 3015 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3016
6aff8f1f
TH
3017 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3018 return err_mask;
8bf62ece
AL
3019}
3020
1da177e4 3021/**
0cba632b
JG
3022 * ata_sg_clean - Unmap DMA memory associated with command
3023 * @qc: Command containing DMA memory to be released
3024 *
3025 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3026 *
3027 * LOCKING:
0cba632b 3028 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3029 */
3030
3031static void ata_sg_clean(struct ata_queued_cmd *qc)
3032{
3033 struct ata_port *ap = qc->ap;
cedc9a47 3034 struct scatterlist *sg = qc->__sg;
1da177e4 3035 int dir = qc->dma_dir;
cedc9a47 3036 void *pad_buf = NULL;
1da177e4 3037
a4631474
TH
3038 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3039 WARN_ON(sg == NULL);
1da177e4
LT
3040
3041 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 3042 WARN_ON(qc->n_elem > 1);
1da177e4 3043
2c13b7ce 3044 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 3045
cedc9a47
JG
3046 /* if we padded the buffer out to 32-bit bound, and data
3047 * xfer direction is from-device, we must copy from the
3048 * pad buffer back into the supplied buffer
3049 */
3050 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3051 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3052
3053 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 3054 if (qc->n_elem)
2f1f610b 3055 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
3056 /* restore last sg */
3057 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3058 if (pad_buf) {
3059 struct scatterlist *psg = &qc->pad_sgent;
3060 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3061 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 3062 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3063 }
3064 } else {
2e242fa9 3065 if (qc->n_elem)
2f1f610b 3066 dma_unmap_single(ap->dev,
e1410f2d
JG
3067 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3068 dir);
cedc9a47
JG
3069 /* restore sg */
3070 sg->length += qc->pad_len;
3071 if (pad_buf)
3072 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3073 pad_buf, qc->pad_len);
3074 }
1da177e4
LT
3075
3076 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 3077 qc->__sg = NULL;
1da177e4
LT
3078}
3079
3080/**
3081 * ata_fill_sg - Fill PCI IDE PRD table
3082 * @qc: Metadata associated with taskfile to be transferred
3083 *
780a87f7
JG
3084 * Fill PCI IDE PRD (scatter-gather) table with segments
3085 * associated with the current disk command.
3086 *
1da177e4 3087 * LOCKING:
780a87f7 3088 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3089 *
3090 */
3091static void ata_fill_sg(struct ata_queued_cmd *qc)
3092{
1da177e4 3093 struct ata_port *ap = qc->ap;
cedc9a47
JG
3094 struct scatterlist *sg;
3095 unsigned int idx;
1da177e4 3096
a4631474 3097 WARN_ON(qc->__sg == NULL);
f131883e 3098 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
3099
3100 idx = 0;
cedc9a47 3101 ata_for_each_sg(sg, qc) {
1da177e4
LT
3102 u32 addr, offset;
3103 u32 sg_len, len;
3104
3105 /* determine if physical DMA addr spans 64K boundary.
3106 * Note h/w doesn't support 64-bit, so we unconditionally
3107 * truncate dma_addr_t to u32.
3108 */
3109 addr = (u32) sg_dma_address(sg);
3110 sg_len = sg_dma_len(sg);
3111
3112 while (sg_len) {
3113 offset = addr & 0xffff;
3114 len = sg_len;
3115 if ((offset + sg_len) > 0x10000)
3116 len = 0x10000 - offset;
3117
3118 ap->prd[idx].addr = cpu_to_le32(addr);
3119 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3120 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3121
3122 idx++;
3123 sg_len -= len;
3124 addr += len;
3125 }
3126 }
3127
3128 if (idx)
3129 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3130}
3131/**
3132 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3133 * @qc: Metadata associated with taskfile to check
3134 *
780a87f7
JG
3135 * Allow low-level driver to filter ATA PACKET commands, returning
3136 * a status indicating whether or not it is OK to use DMA for the
3137 * supplied PACKET command.
3138 *
1da177e4 3139 * LOCKING:
0cba632b
JG
3140 * spin_lock_irqsave(host_set lock)
3141 *
1da177e4
LT
3142 * RETURNS: 0 when ATAPI DMA can be used
3143 * nonzero otherwise
3144 */
3145int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3146{
3147 struct ata_port *ap = qc->ap;
3148 int rc = 0; /* Assume ATAPI DMA is OK by default */
3149
3150 if (ap->ops->check_atapi_dma)
3151 rc = ap->ops->check_atapi_dma(qc);
3152
3153 return rc;
3154}
3155/**
3156 * ata_qc_prep - Prepare taskfile for submission
3157 * @qc: Metadata associated with taskfile to be prepared
3158 *
780a87f7
JG
3159 * Prepare ATA taskfile for submission.
3160 *
1da177e4
LT
3161 * LOCKING:
3162 * spin_lock_irqsave(host_set lock)
3163 */
3164void ata_qc_prep(struct ata_queued_cmd *qc)
3165{
3166 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3167 return;
3168
3169 ata_fill_sg(qc);
3170}
3171
e46834cd
BK
3172void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3173
0cba632b
JG
3174/**
3175 * ata_sg_init_one - Associate command with memory buffer
3176 * @qc: Command to be associated
3177 * @buf: Memory buffer
3178 * @buflen: Length of memory buffer, in bytes.
3179 *
3180 * Initialize the data-related elements of queued_cmd @qc
3181 * to point to a single memory buffer, @buf of byte length @buflen.
3182 *
3183 * LOCKING:
3184 * spin_lock_irqsave(host_set lock)
3185 */
3186
1da177e4
LT
3187void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3188{
3189 struct scatterlist *sg;
3190
3191 qc->flags |= ATA_QCFLAG_SINGLE;
3192
3193 memset(&qc->sgent, 0, sizeof(qc->sgent));
cedc9a47 3194 qc->__sg = &qc->sgent;
1da177e4 3195 qc->n_elem = 1;
cedc9a47 3196 qc->orig_n_elem = 1;
1da177e4
LT
3197 qc->buf_virt = buf;
3198
cedc9a47 3199 sg = qc->__sg;
f0612bbc 3200 sg_init_one(sg, buf, buflen);
1da177e4
LT
3201}
3202
0cba632b
JG
3203/**
3204 * ata_sg_init - Associate command with scatter-gather table.
3205 * @qc: Command to be associated
3206 * @sg: Scatter-gather table.
3207 * @n_elem: Number of elements in s/g table.
3208 *
3209 * Initialize the data-related elements of queued_cmd @qc
3210 * to point to a scatter-gather table @sg, containing @n_elem
3211 * elements.
3212 *
3213 * LOCKING:
3214 * spin_lock_irqsave(host_set lock)
3215 */
3216
1da177e4
LT
3217void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3218 unsigned int n_elem)
3219{
3220 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 3221 qc->__sg = sg;
1da177e4 3222 qc->n_elem = n_elem;
cedc9a47 3223 qc->orig_n_elem = n_elem;
1da177e4
LT
3224}
3225
3226/**
0cba632b
JG
3227 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3228 * @qc: Command with memory buffer to be mapped.
3229 *
3230 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
3231 *
3232 * LOCKING:
3233 * spin_lock_irqsave(host_set lock)
3234 *
3235 * RETURNS:
0cba632b 3236 * Zero on success, negative on error.
1da177e4
LT
3237 */
3238
3239static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3240{
3241 struct ata_port *ap = qc->ap;
3242 int dir = qc->dma_dir;
cedc9a47 3243 struct scatterlist *sg = qc->__sg;
1da177e4 3244 dma_addr_t dma_address;
2e242fa9 3245 int trim_sg = 0;
1da177e4 3246
cedc9a47
JG
3247 /* we must lengthen transfers to end on a 32-bit boundary */
3248 qc->pad_len = sg->length & 3;
3249 if (qc->pad_len) {
3250 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3251 struct scatterlist *psg = &qc->pad_sgent;
3252
a4631474 3253 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3254
3255 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3256
3257 if (qc->tf.flags & ATA_TFLAG_WRITE)
3258 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3259 qc->pad_len);
3260
3261 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3262 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3263 /* trim sg */
3264 sg->length -= qc->pad_len;
2e242fa9
TH
3265 if (sg->length == 0)
3266 trim_sg = 1;
cedc9a47
JG
3267
3268 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3269 sg->length, qc->pad_len);
3270 }
3271
2e242fa9
TH
3272 if (trim_sg) {
3273 qc->n_elem--;
e1410f2d
JG
3274 goto skip_map;
3275 }
3276
2f1f610b 3277 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 3278 sg->length, dir);
537a95d9
TH
3279 if (dma_mapping_error(dma_address)) {
3280 /* restore sg */
3281 sg->length += qc->pad_len;
1da177e4 3282 return -1;
537a95d9 3283 }
1da177e4
LT
3284
3285 sg_dma_address(sg) = dma_address;
32529e01 3286 sg_dma_len(sg) = sg->length;
1da177e4 3287
2e242fa9 3288skip_map:
1da177e4
LT
3289 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3290 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3291
3292 return 0;
3293}
3294
3295/**
0cba632b
JG
3296 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3297 * @qc: Command with scatter-gather table to be mapped.
3298 *
3299 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
3300 *
3301 * LOCKING:
3302 * spin_lock_irqsave(host_set lock)
3303 *
3304 * RETURNS:
0cba632b 3305 * Zero on success, negative on error.
1da177e4
LT
3306 *
3307 */
3308
3309static int ata_sg_setup(struct ata_queued_cmd *qc)
3310{
3311 struct ata_port *ap = qc->ap;
cedc9a47
JG
3312 struct scatterlist *sg = qc->__sg;
3313 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 3314 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
3315
3316 VPRINTK("ENTER, ata%u\n", ap->id);
a4631474 3317 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 3318
cedc9a47
JG
3319 /* we must lengthen transfers to end on a 32-bit boundary */
3320 qc->pad_len = lsg->length & 3;
3321 if (qc->pad_len) {
3322 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3323 struct scatterlist *psg = &qc->pad_sgent;
3324 unsigned int offset;
3325
a4631474 3326 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3327
3328 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3329
3330 /*
3331 * psg->page/offset are used to copy to-be-written
3332 * data in this function or read data in ata_sg_clean.
3333 */
3334 offset = lsg->offset + lsg->length - qc->pad_len;
3335 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3336 psg->offset = offset_in_page(offset);
3337
3338 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3339 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3340 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 3341 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3342 }
3343
3344 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3345 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3346 /* trim last sg */
3347 lsg->length -= qc->pad_len;
e1410f2d
JG
3348 if (lsg->length == 0)
3349 trim_sg = 1;
cedc9a47
JG
3350
3351 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3352 qc->n_elem - 1, lsg->length, qc->pad_len);
3353 }
3354
e1410f2d
JG
3355 pre_n_elem = qc->n_elem;
3356 if (trim_sg && pre_n_elem)
3357 pre_n_elem--;
3358
3359 if (!pre_n_elem) {
3360 n_elem = 0;
3361 goto skip_map;
3362 }
3363
1da177e4 3364 dir = qc->dma_dir;
2f1f610b 3365 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
3366 if (n_elem < 1) {
3367 /* restore last sg */
3368 lsg->length += qc->pad_len;
1da177e4 3369 return -1;
537a95d9 3370 }
1da177e4
LT
3371
3372 DPRINTK("%d sg elements mapped\n", n_elem);
3373
e1410f2d 3374skip_map:
1da177e4
LT
3375 qc->n_elem = n_elem;
3376
3377 return 0;
3378}
3379
40e8c82c
TH
3380/**
3381 * ata_poll_qc_complete - turn irq back on and finish qc
3382 * @qc: Command to complete
8e8b77dd 3383 * @err_mask: ATA status register content
40e8c82c
TH
3384 *
3385 * LOCKING:
3386 * None. (grabs host lock)
3387 */
3388
a22e2eb0 3389void ata_poll_qc_complete(struct ata_queued_cmd *qc)
40e8c82c
TH
3390{
3391 struct ata_port *ap = qc->ap;
b8f6153e 3392 unsigned long flags;
40e8c82c 3393
b8f6153e 3394 spin_lock_irqsave(&ap->host_set->lock, flags);
40e8c82c
TH
3395 ap->flags &= ~ATA_FLAG_NOINTR;
3396 ata_irq_on(ap);
a22e2eb0 3397 ata_qc_complete(qc);
b8f6153e 3398 spin_unlock_irqrestore(&ap->host_set->lock, flags);
40e8c82c
TH
3399}
3400
1da177e4 3401/**
c893a3ae 3402 * ata_pio_poll - poll using PIO, depending on current state
c91af2c8 3403 * @qc: qc in progress
1da177e4
LT
3404 *
3405 * LOCKING:
0cba632b 3406 * None. (executing in kernel thread context)
1da177e4
LT
3407 *
3408 * RETURNS:
6f0ef4fa 3409 * timeout value to use
1da177e4 3410 */
c91af2c8 3411static unsigned long ata_pio_poll(struct ata_queued_cmd *qc)
1da177e4 3412{
c91af2c8 3413 struct ata_port *ap = qc->ap;
1da177e4 3414 u8 status;
14be71f4
AL
3415 unsigned int poll_state = HSM_ST_UNKNOWN;
3416 unsigned int reg_state = HSM_ST_UNKNOWN;
14be71f4
AL
3417
3418 switch (ap->hsm_task_state) {
3419 case HSM_ST:
3420 case HSM_ST_POLL:
3421 poll_state = HSM_ST_POLL;
3422 reg_state = HSM_ST;
1da177e4 3423 break;
14be71f4
AL
3424 case HSM_ST_LAST:
3425 case HSM_ST_LAST_POLL:
3426 poll_state = HSM_ST_LAST_POLL;
3427 reg_state = HSM_ST_LAST;
1da177e4
LT
3428 break;
3429 default:
3430 BUG();
3431 break;
3432 }
3433
3434 status = ata_chk_status(ap);
3435 if (status & ATA_BUSY) {
3436 if (time_after(jiffies, ap->pio_task_timeout)) {
11a56d24 3437 qc->err_mask |= AC_ERR_TIMEOUT;
7c398335 3438 ap->hsm_task_state = HSM_ST_TMOUT;
1da177e4
LT
3439 return 0;
3440 }
14be71f4 3441 ap->hsm_task_state = poll_state;
1da177e4
LT
3442 return ATA_SHORT_PAUSE;
3443 }
3444
14be71f4 3445 ap->hsm_task_state = reg_state;
1da177e4
LT
3446 return 0;
3447}
3448
3449/**
6f0ef4fa 3450 * ata_pio_complete - check if drive is busy or idle
c91af2c8 3451 * @qc: qc to complete
1da177e4
LT
3452 *
3453 * LOCKING:
0cba632b 3454 * None. (executing in kernel thread context)
7fb6ec28
JG
3455 *
3456 * RETURNS:
3457 * Non-zero if qc completed, zero otherwise.
1da177e4 3458 */
c91af2c8 3459static int ata_pio_complete(struct ata_queued_cmd *qc)
1da177e4 3460{
c91af2c8 3461 struct ata_port *ap = qc->ap;
1da177e4
LT
3462 u8 drv_stat;
3463
3464 /*
31433ea3
AC
3465 * This is purely heuristic. This is a fast path. Sometimes when
3466 * we enter, BSY will be cleared in a chk-status or two. If not,
3467 * the drive is probably seeking or something. Snooze for a couple
3468 * msecs, then chk-status again. If still busy, fall back to
14be71f4 3469 * HSM_ST_POLL state.
1da177e4 3470 */
fe79e683
AL
3471 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3472 if (drv_stat & ATA_BUSY) {
1da177e4 3473 msleep(2);
fe79e683
AL
3474 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3475 if (drv_stat & ATA_BUSY) {
14be71f4 3476 ap->hsm_task_state = HSM_ST_LAST_POLL;
1da177e4 3477 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
7fb6ec28 3478 return 0;
1da177e4
LT
3479 }
3480 }
3481
3482 drv_stat = ata_wait_idle(ap);
3483 if (!ata_ok(drv_stat)) {
1c848984 3484 qc->err_mask |= __ac_err_mask(drv_stat);
14be71f4 3485 ap->hsm_task_state = HSM_ST_ERR;
7fb6ec28 3486 return 0;
1da177e4
LT
3487 }
3488
14be71f4 3489 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 3490
a4631474 3491 WARN_ON(qc->err_mask);
a22e2eb0 3492 ata_poll_qc_complete(qc);
7fb6ec28
JG
3493
3494 /* another command may start at this point */
3495
3496 return 1;
1da177e4
LT
3497}
3498
0baab86b
EF
3499
3500/**
c893a3ae 3501 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
3502 * @buf: Buffer to swap
3503 * @buf_words: Number of 16-bit words in buffer.
3504 *
3505 * Swap halves of 16-bit words if needed to convert from
3506 * little-endian byte order to native cpu byte order, or
3507 * vice-versa.
3508 *
3509 * LOCKING:
6f0ef4fa 3510 * Inherited from caller.
0baab86b 3511 */
1da177e4
LT
3512void swap_buf_le16(u16 *buf, unsigned int buf_words)
3513{
3514#ifdef __BIG_ENDIAN
3515 unsigned int i;
3516
3517 for (i = 0; i < buf_words; i++)
3518 buf[i] = le16_to_cpu(buf[i]);
3519#endif /* __BIG_ENDIAN */
3520}
3521
6ae4cfb5
AL
3522/**
3523 * ata_mmio_data_xfer - Transfer data by MMIO
3524 * @ap: port to read/write
3525 * @buf: data buffer
3526 * @buflen: buffer length
344babaa 3527 * @write_data: read/write
6ae4cfb5
AL
3528 *
3529 * Transfer data from/to the device data register by MMIO.
3530 *
3531 * LOCKING:
3532 * Inherited from caller.
6ae4cfb5
AL
3533 */
3534
1da177e4
LT
3535static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3536 unsigned int buflen, int write_data)
3537{
3538 unsigned int i;
3539 unsigned int words = buflen >> 1;
3540 u16 *buf16 = (u16 *) buf;
3541 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3542
6ae4cfb5 3543 /* Transfer multiple of 2 bytes */
1da177e4
LT
3544 if (write_data) {
3545 for (i = 0; i < words; i++)
3546 writew(le16_to_cpu(buf16[i]), mmio);
3547 } else {
3548 for (i = 0; i < words; i++)
3549 buf16[i] = cpu_to_le16(readw(mmio));
3550 }
6ae4cfb5
AL
3551
3552 /* Transfer trailing 1 byte, if any. */
3553 if (unlikely(buflen & 0x01)) {
3554 u16 align_buf[1] = { 0 };
3555 unsigned char *trailing_buf = buf + buflen - 1;
3556
3557 if (write_data) {
3558 memcpy(align_buf, trailing_buf, 1);
3559 writew(le16_to_cpu(align_buf[0]), mmio);
3560 } else {
3561 align_buf[0] = cpu_to_le16(readw(mmio));
3562 memcpy(trailing_buf, align_buf, 1);
3563 }
3564 }
1da177e4
LT
3565}
3566
6ae4cfb5
AL
3567/**
3568 * ata_pio_data_xfer - Transfer data by PIO
3569 * @ap: port to read/write
3570 * @buf: data buffer
3571 * @buflen: buffer length
344babaa 3572 * @write_data: read/write
6ae4cfb5
AL
3573 *
3574 * Transfer data from/to the device data register by PIO.
3575 *
3576 * LOCKING:
3577 * Inherited from caller.
6ae4cfb5
AL
3578 */
3579
1da177e4
LT
3580static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3581 unsigned int buflen, int write_data)
3582{
6ae4cfb5 3583 unsigned int words = buflen >> 1;
1da177e4 3584
6ae4cfb5 3585 /* Transfer multiple of 2 bytes */
1da177e4 3586 if (write_data)
6ae4cfb5 3587 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 3588 else
6ae4cfb5
AL
3589 insw(ap->ioaddr.data_addr, buf, words);
3590
3591 /* Transfer trailing 1 byte, if any. */
3592 if (unlikely(buflen & 0x01)) {
3593 u16 align_buf[1] = { 0 };
3594 unsigned char *trailing_buf = buf + buflen - 1;
3595
3596 if (write_data) {
3597 memcpy(align_buf, trailing_buf, 1);
3598 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3599 } else {
3600 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3601 memcpy(trailing_buf, align_buf, 1);
3602 }
3603 }
1da177e4
LT
3604}
3605
6ae4cfb5
AL
3606/**
3607 * ata_data_xfer - Transfer data from/to the data register.
3608 * @ap: port to read/write
3609 * @buf: data buffer
3610 * @buflen: buffer length
3611 * @do_write: read/write
3612 *
3613 * Transfer data from/to the device data register.
3614 *
3615 * LOCKING:
3616 * Inherited from caller.
6ae4cfb5
AL
3617 */
3618
1da177e4
LT
3619static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3620 unsigned int buflen, int do_write)
3621{
a1bd9e68
AC
3622 /* Make the crap hardware pay the costs not the good stuff */
3623 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3624 unsigned long flags;
3625 local_irq_save(flags);
3626 if (ap->flags & ATA_FLAG_MMIO)
3627 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3628 else
3629 ata_pio_data_xfer(ap, buf, buflen, do_write);
3630 local_irq_restore(flags);
3631 } else {
3632 if (ap->flags & ATA_FLAG_MMIO)
3633 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3634 else
3635 ata_pio_data_xfer(ap, buf, buflen, do_write);
3636 }
1da177e4
LT
3637}
3638
6ae4cfb5
AL
3639/**
3640 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3641 * @qc: Command on going
3642 *
3643 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3644 *
3645 * LOCKING:
3646 * Inherited from caller.
3647 */
3648
1da177e4
LT
3649static void ata_pio_sector(struct ata_queued_cmd *qc)
3650{
3651 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3652 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3653 struct ata_port *ap = qc->ap;
3654 struct page *page;
3655 unsigned int offset;
3656 unsigned char *buf;
3657
3658 if (qc->cursect == (qc->nsect - 1))
14be71f4 3659 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3660
3661 page = sg[qc->cursg].page;
3662 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3663
3664 /* get the current page and offset */
3665 page = nth_page(page, (offset >> PAGE_SHIFT));
3666 offset %= PAGE_SIZE;
3667
3668 buf = kmap(page) + offset;
3669
3670 qc->cursect++;
3671 qc->cursg_ofs++;
3672
32529e01 3673 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
1da177e4
LT
3674 qc->cursg++;
3675 qc->cursg_ofs = 0;
3676 }
3677
3678 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3679
3680 /* do the actual data transfer */
3681 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3682 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3683
3684 kunmap(page);
3685}
3686
6ae4cfb5
AL
3687/**
3688 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3689 * @qc: Command on going
3690 * @bytes: number of bytes
3691 *
3692 * Transfer Transfer data from/to the ATAPI device.
3693 *
3694 * LOCKING:
3695 * Inherited from caller.
3696 *
3697 */
3698
1da177e4
LT
3699static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3700{
3701 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3702 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3703 struct ata_port *ap = qc->ap;
3704 struct page *page;
3705 unsigned char *buf;
3706 unsigned int offset, count;
3707
563a6e1f 3708 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 3709 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3710
3711next_sg:
563a6e1f 3712 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 3713 /*
563a6e1f
AL
3714 * The end of qc->sg is reached and the device expects
3715 * more data to transfer. In order not to overrun qc->sg
3716 * and fulfill length specified in the byte count register,
3717 * - for read case, discard trailing data from the device
3718 * - for write case, padding zero data to the device
3719 */
3720 u16 pad_buf[1] = { 0 };
3721 unsigned int words = bytes >> 1;
3722 unsigned int i;
3723
3724 if (words) /* warning if bytes > 1 */
f15a1daf
TH
3725 ata_dev_printk(qc->dev, KERN_WARNING,
3726 "%u bytes trailing data\n", bytes);
563a6e1f
AL
3727
3728 for (i = 0; i < words; i++)
3729 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3730
14be71f4 3731 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
3732 return;
3733 }
3734
cedc9a47 3735 sg = &qc->__sg[qc->cursg];
1da177e4 3736
1da177e4
LT
3737 page = sg->page;
3738 offset = sg->offset + qc->cursg_ofs;
3739
3740 /* get the current page and offset */
3741 page = nth_page(page, (offset >> PAGE_SHIFT));
3742 offset %= PAGE_SIZE;
3743
6952df03 3744 /* don't overrun current sg */
32529e01 3745 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
3746
3747 /* don't cross page boundaries */
3748 count = min(count, (unsigned int)PAGE_SIZE - offset);
3749
3750 buf = kmap(page) + offset;
3751
3752 bytes -= count;
3753 qc->curbytes += count;
3754 qc->cursg_ofs += count;
3755
32529e01 3756 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
3757 qc->cursg++;
3758 qc->cursg_ofs = 0;
3759 }
3760
3761 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3762
3763 /* do the actual data transfer */
3764 ata_data_xfer(ap, buf, count, do_write);
3765
3766 kunmap(page);
3767
563a6e1f 3768 if (bytes)
1da177e4 3769 goto next_sg;
1da177e4
LT
3770}
3771
6ae4cfb5
AL
3772/**
3773 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3774 * @qc: Command on going
3775 *
3776 * Transfer Transfer data from/to the ATAPI device.
3777 *
3778 * LOCKING:
3779 * Inherited from caller.
6ae4cfb5
AL
3780 */
3781
1da177e4
LT
3782static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3783{
3784 struct ata_port *ap = qc->ap;
3785 struct ata_device *dev = qc->dev;
3786 unsigned int ireason, bc_lo, bc_hi, bytes;
3787 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3788
3789 ap->ops->tf_read(ap, &qc->tf);
3790 ireason = qc->tf.nsect;
3791 bc_lo = qc->tf.lbam;
3792 bc_hi = qc->tf.lbah;
3793 bytes = (bc_hi << 8) | bc_lo;
3794
3795 /* shall be cleared to zero, indicating xfer of data */
3796 if (ireason & (1 << 0))
3797 goto err_out;
3798
3799 /* make sure transfer direction matches expected */
3800 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3801 if (do_write != i_write)
3802 goto err_out;
3803
3804 __atapi_pio_bytes(qc, bytes);
3805
3806 return;
3807
3808err_out:
f15a1daf 3809 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 3810 qc->err_mask |= AC_ERR_HSM;
14be71f4 3811 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3812}
3813
3814/**
6f0ef4fa 3815 * ata_pio_block - start PIO on a block
c91af2c8 3816 * @qc: qc to transfer block for
1da177e4
LT
3817 *
3818 * LOCKING:
0cba632b 3819 * None. (executing in kernel thread context)
1da177e4 3820 */
c91af2c8 3821static void ata_pio_block(struct ata_queued_cmd *qc)
1da177e4 3822{
c91af2c8 3823 struct ata_port *ap = qc->ap;
1da177e4
LT
3824 u8 status;
3825
3826 /*
6f0ef4fa 3827 * This is purely heuristic. This is a fast path.
1da177e4
LT
3828 * Sometimes when we enter, BSY will be cleared in
3829 * a chk-status or two. If not, the drive is probably seeking
3830 * or something. Snooze for a couple msecs, then
3831 * chk-status again. If still busy, fall back to
14be71f4 3832 * HSM_ST_POLL state.
1da177e4
LT
3833 */
3834 status = ata_busy_wait(ap, ATA_BUSY, 5);
3835 if (status & ATA_BUSY) {
3836 msleep(2);
3837 status = ata_busy_wait(ap, ATA_BUSY, 10);
3838 if (status & ATA_BUSY) {
14be71f4 3839 ap->hsm_task_state = HSM_ST_POLL;
1da177e4
LT
3840 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3841 return;
3842 }
3843 }
3844
fe79e683
AL
3845 /* check error */
3846 if (status & (ATA_ERR | ATA_DF)) {
3847 qc->err_mask |= AC_ERR_DEV;
3848 ap->hsm_task_state = HSM_ST_ERR;
3849 return;
3850 }
3851
3852 /* transfer data if any */
1da177e4 3853 if (is_atapi_taskfile(&qc->tf)) {
fe79e683 3854 /* DRQ=0 means no more data to transfer */
1da177e4 3855 if ((status & ATA_DRQ) == 0) {
14be71f4 3856 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3857 return;
3858 }
3859
3860 atapi_pio_bytes(qc);
3861 } else {
3862 /* handle BSY=0, DRQ=0 as error */
3863 if ((status & ATA_DRQ) == 0) {
11a56d24 3864 qc->err_mask |= AC_ERR_HSM;
14be71f4 3865 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3866 return;
3867 }
3868
3869 ata_pio_sector(qc);
3870 }
3871}
3872
c91af2c8 3873static void ata_pio_error(struct ata_queued_cmd *qc)
1da177e4 3874{
c91af2c8 3875 struct ata_port *ap = qc->ap;
1da177e4 3876
0565c26d 3877 if (qc->tf.command != ATA_CMD_PACKET)
f15a1daf 3878 ata_dev_printk(qc->dev, KERN_WARNING, "PIO error\n");
0565c26d 3879
2e9edbf8 3880 /* make sure qc->err_mask is available to
1c848984
AL
3881 * know what's wrong and recover
3882 */
a4631474 3883 WARN_ON(qc->err_mask == 0);
1c848984 3884
14be71f4 3885 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 3886
a22e2eb0 3887 ata_poll_qc_complete(qc);
1da177e4
LT
3888}
3889
3890static void ata_pio_task(void *_data)
3891{
c91af2c8
TH
3892 struct ata_queued_cmd *qc = _data;
3893 struct ata_port *ap = qc->ap;
7fb6ec28
JG
3894 unsigned long timeout;
3895 int qc_completed;
3896
3897fsm_start:
3898 timeout = 0;
3899 qc_completed = 0;
1da177e4 3900
14be71f4
AL
3901 switch (ap->hsm_task_state) {
3902 case HSM_ST_IDLE:
1da177e4
LT
3903 return;
3904
14be71f4 3905 case HSM_ST:
c91af2c8 3906 ata_pio_block(qc);
1da177e4
LT
3907 break;
3908
14be71f4 3909 case HSM_ST_LAST:
c91af2c8 3910 qc_completed = ata_pio_complete(qc);
1da177e4
LT
3911 break;
3912
14be71f4
AL
3913 case HSM_ST_POLL:
3914 case HSM_ST_LAST_POLL:
c91af2c8 3915 timeout = ata_pio_poll(qc);
1da177e4
LT
3916 break;
3917
14be71f4
AL
3918 case HSM_ST_TMOUT:
3919 case HSM_ST_ERR:
c91af2c8 3920 ata_pio_error(qc);
1da177e4
LT
3921 return;
3922 }
3923
3924 if (timeout)
c91af2c8 3925 ata_port_queue_task(ap, ata_pio_task, qc, timeout);
7fb6ec28
JG
3926 else if (!qc_completed)
3927 goto fsm_start;
1da177e4
LT
3928}
3929
8061f5f0
TH
3930/**
3931 * atapi_packet_task - Write CDB bytes to hardware
c91af2c8 3932 * @_data: qc in progress
8061f5f0
TH
3933 *
3934 * When device has indicated its readiness to accept
3935 * a CDB, this function is called. Send the CDB.
3936 * If DMA is to be performed, exit immediately.
3937 * Otherwise, we are in polling mode, so poll
3938 * status under operation succeeds or fails.
3939 *
3940 * LOCKING:
3941 * Kernel thread context (may sleep)
3942 */
8061f5f0
TH
3943static void atapi_packet_task(void *_data)
3944{
c91af2c8
TH
3945 struct ata_queued_cmd *qc = _data;
3946 struct ata_port *ap = qc->ap;
8061f5f0
TH
3947 u8 status;
3948
8061f5f0
TH
3949 /* sleep-wait for BSY to clear */
3950 DPRINTK("busy wait\n");
3951 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
3952 qc->err_mask |= AC_ERR_TIMEOUT;
3953 goto err_out;
3954 }
3955
3956 /* make sure DRQ is set */
3957 status = ata_chk_status(ap);
3958 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
3959 qc->err_mask |= AC_ERR_HSM;
3960 goto err_out;
3961 }
3962
3963 /* send SCSI cdb */
3964 DPRINTK("send cdb\n");
3965 WARN_ON(qc->dev->cdb_len < 12);
3966
3967 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
3968 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
3969 unsigned long flags;
3970
3971 /* Once we're done issuing command and kicking bmdma,
3972 * irq handler takes over. To not lose irq, we need
3973 * to clear NOINTR flag before sending cdb, but
3974 * interrupt handler shouldn't be invoked before we're
3975 * finished. Hence, the following locking.
3976 */
3977 spin_lock_irqsave(&ap->host_set->lock, flags);
3978 ap->flags &= ~ATA_FLAG_NOINTR;
3979 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
3980 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
3981 ap->ops->bmdma_start(qc); /* initiate bmdma */
3982 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3983 } else {
3984 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
3985
3986 /* PIO commands are handled by polling */
3987 ap->hsm_task_state = HSM_ST;
c91af2c8 3988 ata_port_queue_task(ap, ata_pio_task, qc, 0);
8061f5f0
TH
3989 }
3990
3991 return;
3992
3993err_out:
3994 ata_poll_qc_complete(qc);
3995}
3996
1da177e4
LT
3997/**
3998 * ata_qc_new - Request an available ATA command, for queueing
3999 * @ap: Port associated with device @dev
4000 * @dev: Device from whom we request an available command structure
4001 *
4002 * LOCKING:
0cba632b 4003 * None.
1da177e4
LT
4004 */
4005
4006static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4007{
4008 struct ata_queued_cmd *qc = NULL;
4009 unsigned int i;
4010
4011 for (i = 0; i < ATA_MAX_QUEUE; i++)
4012 if (!test_and_set_bit(i, &ap->qactive)) {
4013 qc = ata_qc_from_tag(ap, i);
4014 break;
4015 }
4016
4017 if (qc)
4018 qc->tag = i;
4019
4020 return qc;
4021}
4022
4023/**
4024 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
4025 * @dev: Device from whom we request an available command structure
4026 *
4027 * LOCKING:
0cba632b 4028 * None.
1da177e4
LT
4029 */
4030
3373efd8 4031struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 4032{
3373efd8 4033 struct ata_port *ap = dev->ap;
1da177e4
LT
4034 struct ata_queued_cmd *qc;
4035
4036 qc = ata_qc_new(ap);
4037 if (qc) {
1da177e4
LT
4038 qc->scsicmd = NULL;
4039 qc->ap = ap;
4040 qc->dev = dev;
1da177e4 4041
2c13b7ce 4042 ata_qc_reinit(qc);
1da177e4
LT
4043 }
4044
4045 return qc;
4046}
4047
1da177e4
LT
4048/**
4049 * ata_qc_free - free unused ata_queued_cmd
4050 * @qc: Command to complete
4051 *
4052 * Designed to free unused ata_queued_cmd object
4053 * in case something prevents using it.
4054 *
4055 * LOCKING:
0cba632b 4056 * spin_lock_irqsave(host_set lock)
1da177e4
LT
4057 */
4058void ata_qc_free(struct ata_queued_cmd *qc)
4059{
4ba946e9
TH
4060 struct ata_port *ap = qc->ap;
4061 unsigned int tag;
4062
a4631474 4063 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 4064
4ba946e9
TH
4065 qc->flags = 0;
4066 tag = qc->tag;
4067 if (likely(ata_tag_valid(tag))) {
4ba946e9
TH
4068 qc->tag = ATA_TAG_POISON;
4069 clear_bit(tag, &ap->qactive);
4070 }
1da177e4
LT
4071}
4072
76014427 4073void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4074{
a4631474
TH
4075 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4076 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
4077
4078 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4079 ata_sg_clean(qc);
4080
7401abf2
TH
4081 /* command should be marked inactive atomically with qc completion */
4082 qc->ap->active_tag = ATA_TAG_POISON;
4083
3f3791d3
AL
4084 /* atapi: mark qc as inactive to prevent the interrupt handler
4085 * from completing the command twice later, before the error handler
4086 * is called. (when rc != 0 and atapi request sense is needed)
4087 */
4088 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4089
1da177e4 4090 /* call completion callback */
77853bf2 4091 qc->complete_fn(qc);
1da177e4
LT
4092}
4093
4094static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4095{
4096 struct ata_port *ap = qc->ap;
4097
4098 switch (qc->tf.protocol) {
4099 case ATA_PROT_DMA:
4100 case ATA_PROT_ATAPI_DMA:
4101 return 1;
4102
4103 case ATA_PROT_ATAPI:
4104 case ATA_PROT_PIO:
1da177e4
LT
4105 if (ap->flags & ATA_FLAG_PIO_DMA)
4106 return 1;
4107
4108 /* fall through */
4109
4110 default:
4111 return 0;
4112 }
4113
4114 /* never reached */
4115}
4116
4117/**
4118 * ata_qc_issue - issue taskfile to device
4119 * @qc: command to issue to device
4120 *
4121 * Prepare an ATA command to submission to device.
4122 * This includes mapping the data into a DMA-able
4123 * area, filling in the S/G table, and finally
4124 * writing the taskfile to hardware, starting the command.
4125 *
4126 * LOCKING:
4127 * spin_lock_irqsave(host_set lock)
1da177e4 4128 */
8e0e694a 4129void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4130{
4131 struct ata_port *ap = qc->ap;
4132
e4a70e76
TH
4133 qc->ap->active_tag = qc->tag;
4134 qc->flags |= ATA_QCFLAG_ACTIVE;
4135
1da177e4
LT
4136 if (ata_should_dma_map(qc)) {
4137 if (qc->flags & ATA_QCFLAG_SG) {
4138 if (ata_sg_setup(qc))
8e436af9 4139 goto sg_err;
1da177e4
LT
4140 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4141 if (ata_sg_setup_one(qc))
8e436af9 4142 goto sg_err;
1da177e4
LT
4143 }
4144 } else {
4145 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4146 }
4147
4148 ap->ops->qc_prep(qc);
4149
8e0e694a
TH
4150 qc->err_mask |= ap->ops->qc_issue(qc);
4151 if (unlikely(qc->err_mask))
4152 goto err;
4153 return;
1da177e4 4154
8e436af9
TH
4155sg_err:
4156 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
4157 qc->err_mask |= AC_ERR_SYSTEM;
4158err:
4159 ata_qc_complete(qc);
1da177e4
LT
4160}
4161
4162/**
4163 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4164 * @qc: command to issue to device
4165 *
4166 * Using various libata functions and hooks, this function
4167 * starts an ATA command. ATA commands are grouped into
4168 * classes called "protocols", and issuing each type of protocol
4169 * is slightly different.
4170 *
0baab86b
EF
4171 * May be used as the qc_issue() entry in ata_port_operations.
4172 *
1da177e4
LT
4173 * LOCKING:
4174 * spin_lock_irqsave(host_set lock)
4175 *
4176 * RETURNS:
9a3d9eb0 4177 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
4178 */
4179
9a3d9eb0 4180unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
4181{
4182 struct ata_port *ap = qc->ap;
4183
4184 ata_dev_select(ap, qc->dev->devno, 1, 0);
4185
4186 switch (qc->tf.protocol) {
4187 case ATA_PROT_NODATA:
e5338254 4188 ata_tf_to_host(ap, &qc->tf);
1da177e4
LT
4189 break;
4190
4191 case ATA_PROT_DMA:
4192 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4193 ap->ops->bmdma_setup(qc); /* set up bmdma */
4194 ap->ops->bmdma_start(qc); /* initiate bmdma */
4195 break;
4196
4197 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
4198 ata_qc_set_polling(qc);
e5338254 4199 ata_tf_to_host(ap, &qc->tf);
14be71f4 4200 ap->hsm_task_state = HSM_ST;
c91af2c8 4201 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
4202 break;
4203
4204 case ATA_PROT_ATAPI:
4205 ata_qc_set_polling(qc);
e5338254 4206 ata_tf_to_host(ap, &qc->tf);
c91af2c8 4207 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
1da177e4
LT
4208 break;
4209
4210 case ATA_PROT_ATAPI_NODATA:
c1389503 4211 ap->flags |= ATA_FLAG_NOINTR;
e5338254 4212 ata_tf_to_host(ap, &qc->tf);
c91af2c8 4213 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
1da177e4
LT
4214 break;
4215
4216 case ATA_PROT_ATAPI_DMA:
c1389503 4217 ap->flags |= ATA_FLAG_NOINTR;
1da177e4
LT
4218 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4219 ap->ops->bmdma_setup(qc); /* set up bmdma */
c91af2c8 4220 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
1da177e4
LT
4221 break;
4222
4223 default:
4224 WARN_ON(1);
9a3d9eb0 4225 return AC_ERR_SYSTEM;
1da177e4
LT
4226 }
4227
4228 return 0;
4229}
4230
1da177e4
LT
4231/**
4232 * ata_host_intr - Handle host interrupt for given (port, task)
4233 * @ap: Port on which interrupt arrived (possibly...)
4234 * @qc: Taskfile currently active in engine
4235 *
4236 * Handle host interrupt for given queued command. Currently,
4237 * only DMA interrupts are handled. All other commands are
4238 * handled via polling with interrupts disabled (nIEN bit).
4239 *
4240 * LOCKING:
4241 * spin_lock_irqsave(host_set lock)
4242 *
4243 * RETURNS:
4244 * One if interrupt was handled, zero if not (shared irq).
4245 */
4246
4247inline unsigned int ata_host_intr (struct ata_port *ap,
4248 struct ata_queued_cmd *qc)
4249{
4250 u8 status, host_stat;
4251
4252 switch (qc->tf.protocol) {
4253
4254 case ATA_PROT_DMA:
4255 case ATA_PROT_ATAPI_DMA:
4256 case ATA_PROT_ATAPI:
4257 /* check status of DMA engine */
4258 host_stat = ap->ops->bmdma_status(ap);
4259 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4260
4261 /* if it's not our irq... */
4262 if (!(host_stat & ATA_DMA_INTR))
4263 goto idle_irq;
4264
4265 /* before we do anything else, clear DMA-Start bit */
b73fc89f 4266 ap->ops->bmdma_stop(qc);
1da177e4
LT
4267
4268 /* fall through */
4269
4270 case ATA_PROT_ATAPI_NODATA:
4271 case ATA_PROT_NODATA:
4272 /* check altstatus */
4273 status = ata_altstatus(ap);
4274 if (status & ATA_BUSY)
4275 goto idle_irq;
4276
4277 /* check main status, clearing INTRQ */
4278 status = ata_chk_status(ap);
4279 if (unlikely(status & ATA_BUSY))
4280 goto idle_irq;
4281 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4282 ap->id, qc->tf.protocol, status);
4283
4284 /* ack bmdma irq events */
4285 ap->ops->irq_clear(ap);
4286
4287 /* complete taskfile transaction */
a22e2eb0
AL
4288 qc->err_mask |= ac_err_mask(status);
4289 ata_qc_complete(qc);
1da177e4
LT
4290 break;
4291
4292 default:
4293 goto idle_irq;
4294 }
4295
4296 return 1; /* irq handled */
4297
4298idle_irq:
4299 ap->stats.idle_irq++;
4300
4301#ifdef ATA_IRQ_TRAP
4302 if ((ap->stats.idle_irq % 1000) == 0) {
1da177e4 4303 ata_irq_ack(ap, 0); /* debug trap */
f15a1daf 4304 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 4305 return 1;
1da177e4
LT
4306 }
4307#endif
4308 return 0; /* irq not handled */
4309}
4310
4311/**
4312 * ata_interrupt - Default ATA host interrupt handler
0cba632b
JG
4313 * @irq: irq line (unused)
4314 * @dev_instance: pointer to our ata_host_set information structure
1da177e4
LT
4315 * @regs: unused
4316 *
0cba632b
JG
4317 * Default interrupt handler for PCI IDE devices. Calls
4318 * ata_host_intr() for each port that is not disabled.
4319 *
1da177e4 4320 * LOCKING:
0cba632b 4321 * Obtains host_set lock during operation.
1da177e4
LT
4322 *
4323 * RETURNS:
0cba632b 4324 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
4325 */
4326
4327irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4328{
4329 struct ata_host_set *host_set = dev_instance;
4330 unsigned int i;
4331 unsigned int handled = 0;
4332 unsigned long flags;
4333
4334 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4335 spin_lock_irqsave(&host_set->lock, flags);
4336
4337 for (i = 0; i < host_set->n_ports; i++) {
4338 struct ata_port *ap;
4339
4340 ap = host_set->ports[i];
c1389503 4341 if (ap &&
198e0fed 4342 !(ap->flags & (ATA_FLAG_DISABLED | ATA_FLAG_NOINTR))) {
1da177e4
LT
4343 struct ata_queued_cmd *qc;
4344
4345 qc = ata_qc_from_tag(ap, ap->active_tag);
21b1ed74
AL
4346 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4347 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
4348 handled |= ata_host_intr(ap, qc);
4349 }
4350 }
4351
4352 spin_unlock_irqrestore(&host_set->lock, flags);
4353
4354 return IRQ_RETVAL(handled);
4355}
4356
34bf2170
TH
4357/**
4358 * sata_scr_valid - test whether SCRs are accessible
4359 * @ap: ATA port to test SCR accessibility for
4360 *
4361 * Test whether SCRs are accessible for @ap.
4362 *
4363 * LOCKING:
4364 * None.
4365 *
4366 * RETURNS:
4367 * 1 if SCRs are accessible, 0 otherwise.
4368 */
4369int sata_scr_valid(struct ata_port *ap)
4370{
4371 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4372}
4373
4374/**
4375 * sata_scr_read - read SCR register of the specified port
4376 * @ap: ATA port to read SCR for
4377 * @reg: SCR to read
4378 * @val: Place to store read value
4379 *
4380 * Read SCR register @reg of @ap into *@val. This function is
4381 * guaranteed to succeed if the cable type of the port is SATA
4382 * and the port implements ->scr_read.
4383 *
4384 * LOCKING:
4385 * None.
4386 *
4387 * RETURNS:
4388 * 0 on success, negative errno on failure.
4389 */
4390int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
4391{
4392 if (sata_scr_valid(ap)) {
4393 *val = ap->ops->scr_read(ap, reg);
4394 return 0;
4395 }
4396 return -EOPNOTSUPP;
4397}
4398
4399/**
4400 * sata_scr_write - write SCR register of the specified port
4401 * @ap: ATA port to write SCR for
4402 * @reg: SCR to write
4403 * @val: value to write
4404 *
4405 * Write @val to SCR register @reg of @ap. This function is
4406 * guaranteed to succeed if the cable type of the port is SATA
4407 * and the port implements ->scr_read.
4408 *
4409 * LOCKING:
4410 * None.
4411 *
4412 * RETURNS:
4413 * 0 on success, negative errno on failure.
4414 */
4415int sata_scr_write(struct ata_port *ap, int reg, u32 val)
4416{
4417 if (sata_scr_valid(ap)) {
4418 ap->ops->scr_write(ap, reg, val);
4419 return 0;
4420 }
4421 return -EOPNOTSUPP;
4422}
4423
4424/**
4425 * sata_scr_write_flush - write SCR register of the specified port and flush
4426 * @ap: ATA port to write SCR for
4427 * @reg: SCR to write
4428 * @val: value to write
4429 *
4430 * This function is identical to sata_scr_write() except that this
4431 * function performs flush after writing to the register.
4432 *
4433 * LOCKING:
4434 * None.
4435 *
4436 * RETURNS:
4437 * 0 on success, negative errno on failure.
4438 */
4439int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
4440{
4441 if (sata_scr_valid(ap)) {
4442 ap->ops->scr_write(ap, reg, val);
4443 ap->ops->scr_read(ap, reg);
4444 return 0;
4445 }
4446 return -EOPNOTSUPP;
4447}
4448
4449/**
4450 * ata_port_online - test whether the given port is online
4451 * @ap: ATA port to test
4452 *
4453 * Test whether @ap is online. Note that this function returns 0
4454 * if online status of @ap cannot be obtained, so
4455 * ata_port_online(ap) != !ata_port_offline(ap).
4456 *
4457 * LOCKING:
4458 * None.
4459 *
4460 * RETURNS:
4461 * 1 if the port online status is available and online.
4462 */
4463int ata_port_online(struct ata_port *ap)
4464{
4465 u32 sstatus;
4466
4467 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
4468 return 1;
4469 return 0;
4470}
4471
4472/**
4473 * ata_port_offline - test whether the given port is offline
4474 * @ap: ATA port to test
4475 *
4476 * Test whether @ap is offline. Note that this function returns
4477 * 0 if offline status of @ap cannot be obtained, so
4478 * ata_port_online(ap) != !ata_port_offline(ap).
4479 *
4480 * LOCKING:
4481 * None.
4482 *
4483 * RETURNS:
4484 * 1 if the port offline status is available and offline.
4485 */
4486int ata_port_offline(struct ata_port *ap)
4487{
4488 u32 sstatus;
4489
4490 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
4491 return 1;
4492 return 0;
4493}
0baab86b 4494
9b847548
JA
4495/*
4496 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4497 * without filling any other registers
4498 */
3373efd8 4499static int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
9b847548
JA
4500{
4501 struct ata_taskfile tf;
4502 int err;
4503
3373efd8 4504 ata_tf_init(dev, &tf);
9b847548
JA
4505
4506 tf.command = cmd;
4507 tf.flags |= ATA_TFLAG_DEVICE;
4508 tf.protocol = ATA_PROT_NODATA;
4509
3373efd8 4510 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
9b847548 4511 if (err)
f15a1daf
TH
4512 ata_dev_printk(dev, KERN_ERR, "%s: ata command failed: %d\n",
4513 __FUNCTION__, err);
9b847548
JA
4514
4515 return err;
4516}
4517
3373efd8 4518static int ata_flush_cache(struct ata_device *dev)
9b847548
JA
4519{
4520 u8 cmd;
4521
4522 if (!ata_try_flush_cache(dev))
4523 return 0;
4524
4525 if (ata_id_has_flush_ext(dev->id))
4526 cmd = ATA_CMD_FLUSH_EXT;
4527 else
4528 cmd = ATA_CMD_FLUSH;
4529
3373efd8 4530 return ata_do_simple_cmd(dev, cmd);
9b847548
JA
4531}
4532
3373efd8 4533static int ata_standby_drive(struct ata_device *dev)
9b847548 4534{
3373efd8 4535 return ata_do_simple_cmd(dev, ATA_CMD_STANDBYNOW1);
9b847548
JA
4536}
4537
3373efd8 4538static int ata_start_drive(struct ata_device *dev)
9b847548 4539{
3373efd8 4540 return ata_do_simple_cmd(dev, ATA_CMD_IDLEIMMEDIATE);
9b847548
JA
4541}
4542
4543/**
4544 * ata_device_resume - wakeup a previously suspended devices
c893a3ae 4545 * @dev: the device to resume
9b847548
JA
4546 *
4547 * Kick the drive back into action, by sending it an idle immediate
4548 * command and making sure its transfer mode matches between drive
4549 * and host.
4550 *
4551 */
3373efd8 4552int ata_device_resume(struct ata_device *dev)
9b847548 4553{
3373efd8
TH
4554 struct ata_port *ap = dev->ap;
4555
9b847548 4556 if (ap->flags & ATA_FLAG_SUSPENDED) {
e82cbdb9 4557 struct ata_device *failed_dev;
9b847548 4558 ap->flags &= ~ATA_FLAG_SUSPENDED;
e82cbdb9 4559 while (ata_set_mode(ap, &failed_dev))
3373efd8 4560 ata_dev_disable(failed_dev);
9b847548 4561 }
e1211e3f 4562 if (!ata_dev_enabled(dev))
9b847548
JA
4563 return 0;
4564 if (dev->class == ATA_DEV_ATA)
3373efd8 4565 ata_start_drive(dev);
9b847548
JA
4566
4567 return 0;
4568}
4569
4570/**
4571 * ata_device_suspend - prepare a device for suspend
c893a3ae 4572 * @dev: the device to suspend
9b847548
JA
4573 *
4574 * Flush the cache on the drive, if appropriate, then issue a
4575 * standbynow command.
9b847548 4576 */
3373efd8 4577int ata_device_suspend(struct ata_device *dev, pm_message_t state)
9b847548 4578{
3373efd8
TH
4579 struct ata_port *ap = dev->ap;
4580
e1211e3f 4581 if (!ata_dev_enabled(dev))
9b847548
JA
4582 return 0;
4583 if (dev->class == ATA_DEV_ATA)
3373efd8 4584 ata_flush_cache(dev);
9b847548 4585
082776e4 4586 if (state.event != PM_EVENT_FREEZE)
3373efd8 4587 ata_standby_drive(dev);
9b847548
JA
4588 ap->flags |= ATA_FLAG_SUSPENDED;
4589 return 0;
4590}
4591
c893a3ae
RD
4592/**
4593 * ata_port_start - Set port up for dma.
4594 * @ap: Port to initialize
4595 *
4596 * Called just after data structures for each port are
4597 * initialized. Allocates space for PRD table.
4598 *
4599 * May be used as the port_start() entry in ata_port_operations.
4600 *
4601 * LOCKING:
4602 * Inherited from caller.
4603 */
4604
1da177e4
LT
4605int ata_port_start (struct ata_port *ap)
4606{
2f1f610b 4607 struct device *dev = ap->dev;
6037d6bb 4608 int rc;
1da177e4
LT
4609
4610 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4611 if (!ap->prd)
4612 return -ENOMEM;
4613
6037d6bb
JG
4614 rc = ata_pad_alloc(ap, dev);
4615 if (rc) {
cedc9a47 4616 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4617 return rc;
cedc9a47
JG
4618 }
4619
1da177e4
LT
4620 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4621
4622 return 0;
4623}
4624
0baab86b
EF
4625
4626/**
4627 * ata_port_stop - Undo ata_port_start()
4628 * @ap: Port to shut down
4629 *
4630 * Frees the PRD table.
4631 *
4632 * May be used as the port_stop() entry in ata_port_operations.
4633 *
4634 * LOCKING:
6f0ef4fa 4635 * Inherited from caller.
0baab86b
EF
4636 */
4637
1da177e4
LT
4638void ata_port_stop (struct ata_port *ap)
4639{
2f1f610b 4640 struct device *dev = ap->dev;
1da177e4
LT
4641
4642 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4643 ata_pad_free(ap, dev);
1da177e4
LT
4644}
4645
aa8f0dc6
JG
4646void ata_host_stop (struct ata_host_set *host_set)
4647{
4648 if (host_set->mmio_base)
4649 iounmap(host_set->mmio_base);
4650}
4651
4652
1da177e4
LT
4653/**
4654 * ata_host_remove - Unregister SCSI host structure with upper layers
4655 * @ap: Port to unregister
4656 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4657 *
4658 * LOCKING:
6f0ef4fa 4659 * Inherited from caller.
1da177e4
LT
4660 */
4661
4662static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4663{
4664 struct Scsi_Host *sh = ap->host;
4665
4666 DPRINTK("ENTER\n");
4667
4668 if (do_unregister)
4669 scsi_remove_host(sh);
4670
4671 ap->ops->port_stop(ap);
4672}
4673
4674/**
4675 * ata_host_init - Initialize an ata_port structure
4676 * @ap: Structure to initialize
4677 * @host: associated SCSI mid-layer structure
4678 * @host_set: Collection of hosts to which @ap belongs
4679 * @ent: Probe information provided by low-level driver
4680 * @port_no: Port number associated with this ata_port
4681 *
0cba632b
JG
4682 * Initialize a new ata_port structure, and its associated
4683 * scsi_host.
4684 *
1da177e4 4685 * LOCKING:
0cba632b 4686 * Inherited from caller.
1da177e4
LT
4687 */
4688
4689static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4690 struct ata_host_set *host_set,
057ace5e 4691 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
4692{
4693 unsigned int i;
4694
4695 host->max_id = 16;
4696 host->max_lun = 1;
4697 host->max_channel = 1;
4698 host->unique_id = ata_unique_id++;
4699 host->max_cmd_len = 12;
12413197 4700
198e0fed 4701 ap->flags = ATA_FLAG_DISABLED;
1da177e4
LT
4702 ap->id = host->unique_id;
4703 ap->host = host;
4704 ap->ctl = ATA_DEVCTL_OBS;
4705 ap->host_set = host_set;
2f1f610b 4706 ap->dev = ent->dev;
1da177e4
LT
4707 ap->port_no = port_no;
4708 ap->hard_port_no =
4709 ent->legacy_mode ? ent->hard_port_no : port_no;
4710 ap->pio_mask = ent->pio_mask;
4711 ap->mwdma_mask = ent->mwdma_mask;
4712 ap->udma_mask = ent->udma_mask;
4713 ap->flags |= ent->host_flags;
4714 ap->ops = ent->port_ops;
1c3fae4d 4715 ap->sata_spd_limit = UINT_MAX;
1da177e4
LT
4716 ap->active_tag = ATA_TAG_POISON;
4717 ap->last_ctl = 0xFF;
4718
86e45b6b 4719 INIT_WORK(&ap->port_task, NULL, NULL);
a72ec4ce 4720 INIT_LIST_HEAD(&ap->eh_done_q);
1da177e4 4721
838df628
TH
4722 /* set cable type */
4723 ap->cbl = ATA_CBL_NONE;
4724 if (ap->flags & ATA_FLAG_SATA)
4725 ap->cbl = ATA_CBL_SATA;
4726
acf356b1
TH
4727 for (i = 0; i < ATA_MAX_DEVICES; i++) {
4728 struct ata_device *dev = &ap->device[i];
38d87234 4729 dev->ap = ap;
acf356b1
TH
4730 dev->devno = i;
4731 dev->pio_mask = UINT_MAX;
4732 dev->mwdma_mask = UINT_MAX;
4733 dev->udma_mask = UINT_MAX;
4734 }
1da177e4
LT
4735
4736#ifdef ATA_IRQ_TRAP
4737 ap->stats.unhandled_irq = 1;
4738 ap->stats.idle_irq = 1;
4739#endif
4740
4741 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4742}
4743
4744/**
4745 * ata_host_add - Attach low-level ATA driver to system
4746 * @ent: Information provided by low-level driver
4747 * @host_set: Collections of ports to which we add
4748 * @port_no: Port number associated with this host
4749 *
0cba632b
JG
4750 * Attach low-level ATA driver to system.
4751 *
1da177e4 4752 * LOCKING:
0cba632b 4753 * PCI/etc. bus probe sem.
1da177e4
LT
4754 *
4755 * RETURNS:
0cba632b 4756 * New ata_port on success, for NULL on error.
1da177e4
LT
4757 */
4758
057ace5e 4759static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
1da177e4
LT
4760 struct ata_host_set *host_set,
4761 unsigned int port_no)
4762{
4763 struct Scsi_Host *host;
4764 struct ata_port *ap;
4765 int rc;
4766
4767 DPRINTK("ENTER\n");
aec5c3c1
TH
4768
4769 if (!ent->port_ops->probe_reset &&
4770 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
4771 printk(KERN_ERR "ata%u: no reset mechanism available\n",
4772 port_no);
4773 return NULL;
4774 }
4775
1da177e4
LT
4776 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4777 if (!host)
4778 return NULL;
4779
30afc84c
TH
4780 host->transportt = &ata_scsi_transport_template;
4781
35bb94b1 4782 ap = ata_shost_to_port(host);
1da177e4
LT
4783
4784 ata_host_init(ap, host, host_set, ent, port_no);
4785
4786 rc = ap->ops->port_start(ap);
4787 if (rc)
4788 goto err_out;
4789
4790 return ap;
4791
4792err_out:
4793 scsi_host_put(host);
4794 return NULL;
4795}
4796
4797/**
0cba632b
JG
4798 * ata_device_add - Register hardware device with ATA and SCSI layers
4799 * @ent: Probe information describing hardware device to be registered
4800 *
4801 * This function processes the information provided in the probe
4802 * information struct @ent, allocates the necessary ATA and SCSI
4803 * host information structures, initializes them, and registers
4804 * everything with requisite kernel subsystems.
4805 *
4806 * This function requests irqs, probes the ATA bus, and probes
4807 * the SCSI bus.
1da177e4
LT
4808 *
4809 * LOCKING:
0cba632b 4810 * PCI/etc. bus probe sem.
1da177e4
LT
4811 *
4812 * RETURNS:
0cba632b 4813 * Number of ports registered. Zero on error (no ports registered).
1da177e4
LT
4814 */
4815
057ace5e 4816int ata_device_add(const struct ata_probe_ent *ent)
1da177e4
LT
4817{
4818 unsigned int count = 0, i;
4819 struct device *dev = ent->dev;
4820 struct ata_host_set *host_set;
4821
4822 DPRINTK("ENTER\n");
4823 /* alloc a container for our list of ATA ports (buses) */
57f3bda8 4824 host_set = kzalloc(sizeof(struct ata_host_set) +
1da177e4
LT
4825 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4826 if (!host_set)
4827 return 0;
1da177e4
LT
4828 spin_lock_init(&host_set->lock);
4829
4830 host_set->dev = dev;
4831 host_set->n_ports = ent->n_ports;
4832 host_set->irq = ent->irq;
4833 host_set->mmio_base = ent->mmio_base;
4834 host_set->private_data = ent->private_data;
4835 host_set->ops = ent->port_ops;
5444a6f4 4836 host_set->flags = ent->host_set_flags;
1da177e4
LT
4837
4838 /* register each port bound to this device */
4839 for (i = 0; i < ent->n_ports; i++) {
4840 struct ata_port *ap;
4841 unsigned long xfer_mode_mask;
4842
4843 ap = ata_host_add(ent, host_set, i);
4844 if (!ap)
4845 goto err_out;
4846
4847 host_set->ports[i] = ap;
4848 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4849 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4850 (ap->pio_mask << ATA_SHIFT_PIO);
4851
4852 /* print per-port info to dmesg */
f15a1daf
TH
4853 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
4854 "ctl 0x%lX bmdma 0x%lX irq %lu\n",
4855 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4856 ata_mode_string(xfer_mode_mask),
4857 ap->ioaddr.cmd_addr,
4858 ap->ioaddr.ctl_addr,
4859 ap->ioaddr.bmdma_addr,
4860 ent->irq);
1da177e4
LT
4861
4862 ata_chk_status(ap);
4863 host_set->ops->irq_clear(ap);
4864 count++;
4865 }
4866
57f3bda8
RD
4867 if (!count)
4868 goto err_free_ret;
1da177e4
LT
4869
4870 /* obtain irq, that is shared between channels */
4871 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4872 DRV_NAME, host_set))
4873 goto err_out;
4874
4875 /* perform each probe synchronously */
4876 DPRINTK("probe begin\n");
4877 for (i = 0; i < count; i++) {
4878 struct ata_port *ap;
4879 int rc;
4880
4881 ap = host_set->ports[i];
4882
c893a3ae 4883 DPRINTK("ata%u: bus probe begin\n", ap->id);
1da177e4 4884 rc = ata_bus_probe(ap);
c893a3ae 4885 DPRINTK("ata%u: bus probe end\n", ap->id);
1da177e4
LT
4886
4887 if (rc) {
4888 /* FIXME: do something useful here?
4889 * Current libata behavior will
4890 * tear down everything when
4891 * the module is removed
4892 * or the h/w is unplugged.
4893 */
4894 }
4895
4896 rc = scsi_add_host(ap->host, dev);
4897 if (rc) {
f15a1daf 4898 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
1da177e4
LT
4899 /* FIXME: do something useful here */
4900 /* FIXME: handle unconditional calls to
4901 * scsi_scan_host and ata_host_remove, below,
4902 * at the very least
4903 */
4904 }
4905 }
4906
4907 /* probes are done, now scan each port's disk(s) */
c893a3ae 4908 DPRINTK("host probe begin\n");
1da177e4
LT
4909 for (i = 0; i < count; i++) {
4910 struct ata_port *ap = host_set->ports[i];
4911
644dd0cc 4912 ata_scsi_scan_host(ap);
1da177e4
LT
4913 }
4914
4915 dev_set_drvdata(dev, host_set);
4916
4917 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4918 return ent->n_ports; /* success */
4919
4920err_out:
4921 for (i = 0; i < count; i++) {
4922 ata_host_remove(host_set->ports[i], 1);
4923 scsi_host_put(host_set->ports[i]->host);
4924 }
57f3bda8 4925err_free_ret:
1da177e4
LT
4926 kfree(host_set);
4927 VPRINTK("EXIT, returning 0\n");
4928 return 0;
4929}
4930
17b14451
AC
4931/**
4932 * ata_host_set_remove - PCI layer callback for device removal
4933 * @host_set: ATA host set that was removed
4934 *
2e9edbf8 4935 * Unregister all objects associated with this host set. Free those
17b14451
AC
4936 * objects.
4937 *
4938 * LOCKING:
4939 * Inherited from calling layer (may sleep).
4940 */
4941
17b14451
AC
4942void ata_host_set_remove(struct ata_host_set *host_set)
4943{
4944 struct ata_port *ap;
4945 unsigned int i;
4946
4947 for (i = 0; i < host_set->n_ports; i++) {
4948 ap = host_set->ports[i];
4949 scsi_remove_host(ap->host);
4950 }
4951
4952 free_irq(host_set->irq, host_set);
4953
4954 for (i = 0; i < host_set->n_ports; i++) {
4955 ap = host_set->ports[i];
4956
4957 ata_scsi_release(ap->host);
4958
4959 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4960 struct ata_ioports *ioaddr = &ap->ioaddr;
4961
4962 if (ioaddr->cmd_addr == 0x1f0)
4963 release_region(0x1f0, 8);
4964 else if (ioaddr->cmd_addr == 0x170)
4965 release_region(0x170, 8);
4966 }
4967
4968 scsi_host_put(ap->host);
4969 }
4970
4971 if (host_set->ops->host_stop)
4972 host_set->ops->host_stop(host_set);
4973
4974 kfree(host_set);
4975}
4976
1da177e4
LT
4977/**
4978 * ata_scsi_release - SCSI layer callback hook for host unload
4979 * @host: libata host to be unloaded
4980 *
4981 * Performs all duties necessary to shut down a libata port...
4982 * Kill port kthread, disable port, and release resources.
4983 *
4984 * LOCKING:
4985 * Inherited from SCSI layer.
4986 *
4987 * RETURNS:
4988 * One.
4989 */
4990
4991int ata_scsi_release(struct Scsi_Host *host)
4992{
35bb94b1 4993 struct ata_port *ap = ata_shost_to_port(host);
1da177e4
LT
4994
4995 DPRINTK("ENTER\n");
4996
4997 ap->ops->port_disable(ap);
4998 ata_host_remove(ap, 0);
4999
5000 DPRINTK("EXIT\n");
5001 return 1;
5002}
5003
5004/**
5005 * ata_std_ports - initialize ioaddr with standard port offsets.
5006 * @ioaddr: IO address structure to be initialized
0baab86b
EF
5007 *
5008 * Utility function which initializes data_addr, error_addr,
5009 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5010 * device_addr, status_addr, and command_addr to standard offsets
5011 * relative to cmd_addr.
5012 *
5013 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 5014 */
0baab86b 5015
1da177e4
LT
5016void ata_std_ports(struct ata_ioports *ioaddr)
5017{
5018 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5019 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5020 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5021 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5022 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5023 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5024 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5025 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5026 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5027 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5028}
5029
0baab86b 5030
374b1873
JG
5031#ifdef CONFIG_PCI
5032
5033void ata_pci_host_stop (struct ata_host_set *host_set)
5034{
5035 struct pci_dev *pdev = to_pci_dev(host_set->dev);
5036
5037 pci_iounmap(pdev, host_set->mmio_base);
5038}
5039
1da177e4
LT
5040/**
5041 * ata_pci_remove_one - PCI layer callback for device removal
5042 * @pdev: PCI device that was removed
5043 *
5044 * PCI layer indicates to libata via this hook that
6f0ef4fa 5045 * hot-unplug or module unload event has occurred.
1da177e4
LT
5046 * Handle this by unregistering all objects associated
5047 * with this PCI device. Free those objects. Then finally
5048 * release PCI resources and disable device.
5049 *
5050 * LOCKING:
5051 * Inherited from PCI layer (may sleep).
5052 */
5053
5054void ata_pci_remove_one (struct pci_dev *pdev)
5055{
5056 struct device *dev = pci_dev_to_dev(pdev);
5057 struct ata_host_set *host_set = dev_get_drvdata(dev);
1da177e4 5058
17b14451 5059 ata_host_set_remove(host_set);
1da177e4
LT
5060 pci_release_regions(pdev);
5061 pci_disable_device(pdev);
5062 dev_set_drvdata(dev, NULL);
5063}
5064
5065/* move to PCI subsystem */
057ace5e 5066int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
5067{
5068 unsigned long tmp = 0;
5069
5070 switch (bits->width) {
5071 case 1: {
5072 u8 tmp8 = 0;
5073 pci_read_config_byte(pdev, bits->reg, &tmp8);
5074 tmp = tmp8;
5075 break;
5076 }
5077 case 2: {
5078 u16 tmp16 = 0;
5079 pci_read_config_word(pdev, bits->reg, &tmp16);
5080 tmp = tmp16;
5081 break;
5082 }
5083 case 4: {
5084 u32 tmp32 = 0;
5085 pci_read_config_dword(pdev, bits->reg, &tmp32);
5086 tmp = tmp32;
5087 break;
5088 }
5089
5090 default:
5091 return -EINVAL;
5092 }
5093
5094 tmp &= bits->mask;
5095
5096 return (tmp == bits->val) ? 1 : 0;
5097}
9b847548
JA
5098
5099int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5100{
5101 pci_save_state(pdev);
5102 pci_disable_device(pdev);
5103 pci_set_power_state(pdev, PCI_D3hot);
5104 return 0;
5105}
5106
5107int ata_pci_device_resume(struct pci_dev *pdev)
5108{
5109 pci_set_power_state(pdev, PCI_D0);
5110 pci_restore_state(pdev);
5111 pci_enable_device(pdev);
5112 pci_set_master(pdev);
5113 return 0;
5114}
1da177e4
LT
5115#endif /* CONFIG_PCI */
5116
5117
1da177e4
LT
5118static int __init ata_init(void)
5119{
5120 ata_wq = create_workqueue("ata");
5121 if (!ata_wq)
5122 return -ENOMEM;
5123
5124 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5125 return 0;
5126}
5127
5128static void __exit ata_exit(void)
5129{
5130 destroy_workqueue(ata_wq);
5131}
5132
5133module_init(ata_init);
5134module_exit(ata_exit);
5135
67846b30
JG
5136static unsigned long ratelimit_time;
5137static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5138
5139int ata_ratelimit(void)
5140{
5141 int rc;
5142 unsigned long flags;
5143
5144 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5145
5146 if (time_after(jiffies, ratelimit_time)) {
5147 rc = 1;
5148 ratelimit_time = jiffies + (HZ/5);
5149 } else
5150 rc = 0;
5151
5152 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5153
5154 return rc;
5155}
5156
c22daff4
TH
5157/**
5158 * ata_wait_register - wait until register value changes
5159 * @reg: IO-mapped register
5160 * @mask: Mask to apply to read register value
5161 * @val: Wait condition
5162 * @interval_msec: polling interval in milliseconds
5163 * @timeout_msec: timeout in milliseconds
5164 *
5165 * Waiting for some bits of register to change is a common
5166 * operation for ATA controllers. This function reads 32bit LE
5167 * IO-mapped register @reg and tests for the following condition.
5168 *
5169 * (*@reg & mask) != val
5170 *
5171 * If the condition is met, it returns; otherwise, the process is
5172 * repeated after @interval_msec until timeout.
5173 *
5174 * LOCKING:
5175 * Kernel thread context (may sleep)
5176 *
5177 * RETURNS:
5178 * The final register value.
5179 */
5180u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
5181 unsigned long interval_msec,
5182 unsigned long timeout_msec)
5183{
5184 unsigned long timeout;
5185 u32 tmp;
5186
5187 tmp = ioread32(reg);
5188
5189 /* Calculate timeout _after_ the first read to make sure
5190 * preceding writes reach the controller before starting to
5191 * eat away the timeout.
5192 */
5193 timeout = jiffies + (timeout_msec * HZ) / 1000;
5194
5195 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
5196 msleep(interval_msec);
5197 tmp = ioread32(reg);
5198 }
5199
5200 return tmp;
5201}
5202
1da177e4
LT
5203/*
5204 * libata is essentially a library of internal helper functions for
5205 * low-level ATA host controller drivers. As such, the API/ABI is
5206 * likely to change as new drivers are added and updated.
5207 * Do not depend on ABI/API stability.
5208 */
5209
5210EXPORT_SYMBOL_GPL(ata_std_bios_param);
5211EXPORT_SYMBOL_GPL(ata_std_ports);
5212EXPORT_SYMBOL_GPL(ata_device_add);
17b14451 5213EXPORT_SYMBOL_GPL(ata_host_set_remove);
1da177e4
LT
5214EXPORT_SYMBOL_GPL(ata_sg_init);
5215EXPORT_SYMBOL_GPL(ata_sg_init_one);
76014427 5216EXPORT_SYMBOL_GPL(__ata_qc_complete);
1da177e4 5217EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
5218EXPORT_SYMBOL_GPL(ata_tf_load);
5219EXPORT_SYMBOL_GPL(ata_tf_read);
5220EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5221EXPORT_SYMBOL_GPL(ata_std_dev_select);
5222EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5223EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5224EXPORT_SYMBOL_GPL(ata_check_status);
5225EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
5226EXPORT_SYMBOL_GPL(ata_exec_command);
5227EXPORT_SYMBOL_GPL(ata_port_start);
5228EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 5229EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4
LT
5230EXPORT_SYMBOL_GPL(ata_interrupt);
5231EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 5232EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
5233EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5234EXPORT_SYMBOL_GPL(ata_bmdma_start);
5235EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5236EXPORT_SYMBOL_GPL(ata_bmdma_status);
5237EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5238EXPORT_SYMBOL_GPL(ata_port_probe);
3c567b7d 5239EXPORT_SYMBOL_GPL(sata_set_spd);
1da177e4
LT
5240EXPORT_SYMBOL_GPL(sata_phy_reset);
5241EXPORT_SYMBOL_GPL(__sata_phy_reset);
5242EXPORT_SYMBOL_GPL(ata_bus_reset);
8a19ac89 5243EXPORT_SYMBOL_GPL(ata_std_probeinit);
c2bd5804
TH
5244EXPORT_SYMBOL_GPL(ata_std_softreset);
5245EXPORT_SYMBOL_GPL(sata_std_hardreset);
5246EXPORT_SYMBOL_GPL(ata_std_postreset);
5247EXPORT_SYMBOL_GPL(ata_std_probe_reset);
a62c0fc5 5248EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
623a3128 5249EXPORT_SYMBOL_GPL(ata_dev_revalidate);
2e9edbf8
JG
5250EXPORT_SYMBOL_GPL(ata_dev_classify);
5251EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 5252EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 5253EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 5254EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 5255EXPORT_SYMBOL_GPL(ata_busy_sleep);
86e45b6b 5256EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
5257EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5258EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4
LT
5259EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5260EXPORT_SYMBOL_GPL(ata_scsi_release);
5261EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
5262EXPORT_SYMBOL_GPL(sata_scr_valid);
5263EXPORT_SYMBOL_GPL(sata_scr_read);
5264EXPORT_SYMBOL_GPL(sata_scr_write);
5265EXPORT_SYMBOL_GPL(sata_scr_write_flush);
5266EXPORT_SYMBOL_GPL(ata_port_online);
5267EXPORT_SYMBOL_GPL(ata_port_offline);
6a62a04d
TH
5268EXPORT_SYMBOL_GPL(ata_id_string);
5269EXPORT_SYMBOL_GPL(ata_id_c_string);
1da177e4
LT
5270EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5271
1bc4ccff 5272EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
5273EXPORT_SYMBOL_GPL(ata_timing_compute);
5274EXPORT_SYMBOL_GPL(ata_timing_merge);
5275
1da177e4
LT
5276#ifdef CONFIG_PCI
5277EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 5278EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
5279EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5280EXPORT_SYMBOL_GPL(ata_pci_init_one);
5281EXPORT_SYMBOL_GPL(ata_pci_remove_one);
9b847548
JA
5282EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5283EXPORT_SYMBOL_GPL(ata_pci_device_resume);
67951ade
AC
5284EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5285EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 5286#endif /* CONFIG_PCI */
9b847548
JA
5287
5288EXPORT_SYMBOL_GPL(ata_device_suspend);
5289EXPORT_SYMBOL_GPL(ata_device_resume);
5290EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5291EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
ece1d636 5292
ece1d636
TH
5293EXPORT_SYMBOL_GPL(ata_eng_timeout);
5294EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5295EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
This page took 0.815727 seconds and 5 git commands to generate.