[SCSI] megaraid_sas: frame count optimization
[deliverable/linux.git] / drivers / scsi / megaraid / megaraid_sas.c
CommitLineData
c4a3e0a5
BS
1/*
2 *
3 * Linux MegaRAID driver for SAS based RAID controllers
4 *
5 * Copyright (c) 2003-2005 LSI Logic Corporation.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 *
12 * FILE : megaraid_sas.c
0e98936c 13 * Version : v00.00.03.01
c4a3e0a5
BS
14 *
15 * Authors:
16 * Sreenivas Bagalkote <Sreenivas.Bagalkote@lsil.com>
17 * Sumant Patro <Sumant.Patro@lsil.com>
18 *
19 * List of supported controllers
20 *
21 * OEM Product Name VID DID SSVID SSID
22 * --- ------------ --- --- ---- ----
23 */
24
25#include <linux/kernel.h>
26#include <linux/types.h>
27#include <linux/pci.h>
28#include <linux/list.h>
c4a3e0a5
BS
29#include <linux/moduleparam.h>
30#include <linux/module.h>
31#include <linux/spinlock.h>
32#include <linux/interrupt.h>
33#include <linux/delay.h>
34#include <linux/uio.h>
35#include <asm/uaccess.h>
43399236 36#include <linux/fs.h>
c4a3e0a5 37#include <linux/compat.h>
0b950672 38#include <linux/mutex.h>
c4a3e0a5
BS
39
40#include <scsi/scsi.h>
41#include <scsi/scsi_cmnd.h>
42#include <scsi/scsi_device.h>
43#include <scsi/scsi_host.h>
44#include "megaraid_sas.h"
45
46MODULE_LICENSE("GPL");
47MODULE_VERSION(MEGASAS_VERSION);
48MODULE_AUTHOR("sreenivas.bagalkote@lsil.com");
49MODULE_DESCRIPTION("LSI Logic MegaRAID SAS Driver");
50
51/*
52 * PCI ID table for all supported controllers
53 */
54static struct pci_device_id megasas_pci_table[] = {
55
f3d7271c
HK
56 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1064R)},
57 /* xscale IOP */
58 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078R)},
59 /* ppc IOP */
60 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_VERDE_ZCR)},
61 /* xscale IOP, vega */
62 {PCI_DEVICE(PCI_VENDOR_ID_DELL, PCI_DEVICE_ID_DELL_PERC5)},
63 /* xscale IOP */
64 {}
c4a3e0a5
BS
65};
66
67MODULE_DEVICE_TABLE(pci, megasas_pci_table);
68
69static int megasas_mgmt_majorno;
70static struct megasas_mgmt_info megasas_mgmt_info;
71static struct fasync_struct *megasas_async_queue;
0b950672 72static DEFINE_MUTEX(megasas_async_queue_mutex);
c4a3e0a5
BS
73
74/**
75 * megasas_get_cmd - Get a command from the free pool
76 * @instance: Adapter soft state
77 *
78 * Returns a free command from the pool
79 */
858119e1 80static struct megasas_cmd *megasas_get_cmd(struct megasas_instance
c4a3e0a5
BS
81 *instance)
82{
83 unsigned long flags;
84 struct megasas_cmd *cmd = NULL;
85
86 spin_lock_irqsave(&instance->cmd_pool_lock, flags);
87
88 if (!list_empty(&instance->cmd_pool)) {
89 cmd = list_entry((&instance->cmd_pool)->next,
90 struct megasas_cmd, list);
91 list_del_init(&cmd->list);
92 } else {
93 printk(KERN_ERR "megasas: Command pool empty!\n");
94 }
95
96 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
97 return cmd;
98}
99
100/**
101 * megasas_return_cmd - Return a cmd to free command pool
102 * @instance: Adapter soft state
103 * @cmd: Command packet to be returned to free command pool
104 */
105static inline void
106megasas_return_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd)
107{
108 unsigned long flags;
109
110 spin_lock_irqsave(&instance->cmd_pool_lock, flags);
111
112 cmd->scmd = NULL;
113 list_add_tail(&cmd->list, &instance->cmd_pool);
114
115 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
116}
117
1341c939
SP
118
119/**
120* The following functions are defined for xscale
121* (deviceid : 1064R, PERC5) controllers
122*/
123
c4a3e0a5 124/**
1341c939 125 * megasas_enable_intr_xscale - Enables interrupts
c4a3e0a5
BS
126 * @regs: MFI register set
127 */
128static inline void
1341c939 129megasas_enable_intr_xscale(struct megasas_register_set __iomem * regs)
c4a3e0a5
BS
130{
131 writel(1, &(regs)->outbound_intr_mask);
132
133 /* Dummy readl to force pci flush */
134 readl(&regs->outbound_intr_mask);
135}
136
1341c939
SP
137/**
138 * megasas_read_fw_status_reg_xscale - returns the current FW status value
139 * @regs: MFI register set
140 */
141static u32
142megasas_read_fw_status_reg_xscale(struct megasas_register_set __iomem * regs)
143{
144 return readl(&(regs)->outbound_msg_0);
145}
146/**
147 * megasas_clear_interrupt_xscale - Check & clear interrupt
148 * @regs: MFI register set
149 */
150static int
151megasas_clear_intr_xscale(struct megasas_register_set __iomem * regs)
152{
153 u32 status;
154 /*
155 * Check if it is our interrupt
156 */
157 status = readl(&regs->outbound_intr_status);
158
159 if (!(status & MFI_OB_INTR_STATUS_MASK)) {
160 return 1;
161 }
162
163 /*
164 * Clear the interrupt by writing back the same value
165 */
166 writel(status, &regs->outbound_intr_status);
167
168 return 0;
169}
170
171/**
172 * megasas_fire_cmd_xscale - Sends command to the FW
173 * @frame_phys_addr : Physical address of cmd
174 * @frame_count : Number of frames for the command
175 * @regs : MFI register set
176 */
177static inline void
178megasas_fire_cmd_xscale(dma_addr_t frame_phys_addr,u32 frame_count, struct megasas_register_set __iomem *regs)
179{
180 writel((frame_phys_addr >> 3)|(frame_count),
181 &(regs)->inbound_queue_port);
182}
183
184static struct megasas_instance_template megasas_instance_template_xscale = {
185
186 .fire_cmd = megasas_fire_cmd_xscale,
187 .enable_intr = megasas_enable_intr_xscale,
188 .clear_intr = megasas_clear_intr_xscale,
189 .read_fw_status_reg = megasas_read_fw_status_reg_xscale,
190};
191
192/**
193* This is the end of set of functions & definitions specific
194* to xscale (deviceid : 1064R, PERC5) controllers
195*/
196
f9876f0b
SP
197/**
198* The following functions are defined for ppc (deviceid : 0x60)
199* controllers
200*/
201
202/**
203 * megasas_enable_intr_ppc - Enables interrupts
204 * @regs: MFI register set
205 */
206static inline void
207megasas_enable_intr_ppc(struct megasas_register_set __iomem * regs)
208{
209 writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear);
210
211 writel(~0x80000004, &(regs)->outbound_intr_mask);
212
213 /* Dummy readl to force pci flush */
214 readl(&regs->outbound_intr_mask);
215}
216
217/**
218 * megasas_read_fw_status_reg_ppc - returns the current FW status value
219 * @regs: MFI register set
220 */
221static u32
222megasas_read_fw_status_reg_ppc(struct megasas_register_set __iomem * regs)
223{
224 return readl(&(regs)->outbound_scratch_pad);
225}
226
227/**
228 * megasas_clear_interrupt_ppc - Check & clear interrupt
229 * @regs: MFI register set
230 */
231static int
232megasas_clear_intr_ppc(struct megasas_register_set __iomem * regs)
233{
234 u32 status;
235 /*
236 * Check if it is our interrupt
237 */
238 status = readl(&regs->outbound_intr_status);
239
240 if (!(status & MFI_REPLY_1078_MESSAGE_INTERRUPT)) {
241 return 1;
242 }
243
244 /*
245 * Clear the interrupt by writing back the same value
246 */
247 writel(status, &regs->outbound_doorbell_clear);
248
249 return 0;
250}
251/**
252 * megasas_fire_cmd_ppc - Sends command to the FW
253 * @frame_phys_addr : Physical address of cmd
254 * @frame_count : Number of frames for the command
255 * @regs : MFI register set
256 */
257static inline void
258megasas_fire_cmd_ppc(dma_addr_t frame_phys_addr, u32 frame_count, struct megasas_register_set __iomem *regs)
259{
260 writel((frame_phys_addr | (frame_count<<1))|1,
261 &(regs)->inbound_queue_port);
262}
263
264static struct megasas_instance_template megasas_instance_template_ppc = {
265
266 .fire_cmd = megasas_fire_cmd_ppc,
267 .enable_intr = megasas_enable_intr_ppc,
268 .clear_intr = megasas_clear_intr_ppc,
269 .read_fw_status_reg = megasas_read_fw_status_reg_ppc,
270};
271
272/**
273* This is the end of set of functions & definitions
274* specific to ppc (deviceid : 0x60) controllers
275*/
276
c4a3e0a5
BS
277/**
278 * megasas_disable_intr - Disables interrupts
279 * @regs: MFI register set
280 */
281static inline void
0e98936c 282megasas_disable_intr(struct megasas_instance *instance)
c4a3e0a5 283{
1341c939 284 u32 mask = 0x1f;
0e98936c
SP
285 struct megasas_register_set __iomem *regs = instance->reg_set;
286
287 if(instance->pdev->device == PCI_DEVICE_ID_LSI_SAS1078R)
288 mask = 0xffffffff;
289
c4a3e0a5
BS
290 writel(mask, &regs->outbound_intr_mask);
291
292 /* Dummy readl to force pci flush */
293 readl(&regs->outbound_intr_mask);
294}
295
296/**
297 * megasas_issue_polled - Issues a polling command
298 * @instance: Adapter soft state
299 * @cmd: Command packet to be issued
300 *
301 * For polling, MFI requires the cmd_status to be set to 0xFF before posting.
302 */
303static int
304megasas_issue_polled(struct megasas_instance *instance, struct megasas_cmd *cmd)
305{
306 int i;
307 u32 msecs = MFI_POLL_TIMEOUT_SECS * 1000;
308
309 struct megasas_header *frame_hdr = &cmd->frame->hdr;
310
311 frame_hdr->cmd_status = 0xFF;
312 frame_hdr->flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
313
314 /*
315 * Issue the frame using inbound queue port
316 */
1341c939 317 instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
c4a3e0a5
BS
318
319 /*
320 * Wait for cmd_status to change
321 */
322 for (i = 0; (i < msecs) && (frame_hdr->cmd_status == 0xff); i++) {
323 rmb();
324 msleep(1);
325 }
326
327 if (frame_hdr->cmd_status == 0xff)
328 return -ETIME;
329
330 return 0;
331}
332
333/**
334 * megasas_issue_blocked_cmd - Synchronous wrapper around regular FW cmds
335 * @instance: Adapter soft state
336 * @cmd: Command to be issued
337 *
338 * This function waits on an event for the command to be returned from ISR.
339 * Used to issue ioctl commands.
340 */
341static int
342megasas_issue_blocked_cmd(struct megasas_instance *instance,
343 struct megasas_cmd *cmd)
344{
345 cmd->cmd_status = ENODATA;
346
1341c939 347 instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
c4a3e0a5
BS
348
349 wait_event(instance->int_cmd_wait_q, (cmd->cmd_status != ENODATA));
350
351 return 0;
352}
353
354/**
355 * megasas_issue_blocked_abort_cmd - Aborts previously issued cmd
356 * @instance: Adapter soft state
357 * @cmd_to_abort: Previously issued cmd to be aborted
358 *
359 * MFI firmware can abort previously issued AEN comamnd (automatic event
360 * notification). The megasas_issue_blocked_abort_cmd() issues such abort
361 * cmd and blocks till it is completed.
362 */
363static int
364megasas_issue_blocked_abort_cmd(struct megasas_instance *instance,
365 struct megasas_cmd *cmd_to_abort)
366{
367 struct megasas_cmd *cmd;
368 struct megasas_abort_frame *abort_fr;
369
370 cmd = megasas_get_cmd(instance);
371
372 if (!cmd)
373 return -1;
374
375 abort_fr = &cmd->frame->abort;
376
377 /*
378 * Prepare and issue the abort frame
379 */
380 abort_fr->cmd = MFI_CMD_ABORT;
381 abort_fr->cmd_status = 0xFF;
382 abort_fr->flags = 0;
383 abort_fr->abort_context = cmd_to_abort->index;
384 abort_fr->abort_mfi_phys_addr_lo = cmd_to_abort->frame_phys_addr;
385 abort_fr->abort_mfi_phys_addr_hi = 0;
386
387 cmd->sync_cmd = 1;
388 cmd->cmd_status = 0xFF;
389
1341c939 390 instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
c4a3e0a5
BS
391
392 /*
393 * Wait for this cmd to complete
394 */
395 wait_event(instance->abort_cmd_wait_q, (cmd->cmd_status != 0xFF));
396
397 megasas_return_cmd(instance, cmd);
398 return 0;
399}
400
401/**
402 * megasas_make_sgl32 - Prepares 32-bit SGL
403 * @instance: Adapter soft state
404 * @scp: SCSI command from the mid-layer
405 * @mfi_sgl: SGL to be filled in
406 *
407 * If successful, this function returns the number of SG elements. Otherwise,
408 * it returnes -1.
409 */
858119e1 410static int
c4a3e0a5
BS
411megasas_make_sgl32(struct megasas_instance *instance, struct scsi_cmnd *scp,
412 union megasas_sgl *mfi_sgl)
413{
414 int i;
415 int sge_count;
416 struct scatterlist *os_sgl;
417
418 /*
419 * Return 0 if there is no data transfer
420 */
421 if (!scp->request_buffer || !scp->request_bufflen)
422 return 0;
423
424 if (!scp->use_sg) {
425 mfi_sgl->sge32[0].phys_addr = pci_map_single(instance->pdev,
426 scp->
427 request_buffer,
428 scp->
429 request_bufflen,
430 scp->
431 sc_data_direction);
432 mfi_sgl->sge32[0].length = scp->request_bufflen;
433
434 return 1;
435 }
436
437 os_sgl = (struct scatterlist *)scp->request_buffer;
438 sge_count = pci_map_sg(instance->pdev, os_sgl, scp->use_sg,
439 scp->sc_data_direction);
440
441 for (i = 0; i < sge_count; i++, os_sgl++) {
442 mfi_sgl->sge32[i].length = sg_dma_len(os_sgl);
443 mfi_sgl->sge32[i].phys_addr = sg_dma_address(os_sgl);
444 }
445
446 return sge_count;
447}
448
449/**
450 * megasas_make_sgl64 - Prepares 64-bit SGL
451 * @instance: Adapter soft state
452 * @scp: SCSI command from the mid-layer
453 * @mfi_sgl: SGL to be filled in
454 *
455 * If successful, this function returns the number of SG elements. Otherwise,
456 * it returnes -1.
457 */
858119e1 458static int
c4a3e0a5
BS
459megasas_make_sgl64(struct megasas_instance *instance, struct scsi_cmnd *scp,
460 union megasas_sgl *mfi_sgl)
461{
462 int i;
463 int sge_count;
464 struct scatterlist *os_sgl;
465
466 /*
467 * Return 0 if there is no data transfer
468 */
469 if (!scp->request_buffer || !scp->request_bufflen)
470 return 0;
471
472 if (!scp->use_sg) {
473 mfi_sgl->sge64[0].phys_addr = pci_map_single(instance->pdev,
474 scp->
475 request_buffer,
476 scp->
477 request_bufflen,
478 scp->
479 sc_data_direction);
480
481 mfi_sgl->sge64[0].length = scp->request_bufflen;
482
483 return 1;
484 }
485
486 os_sgl = (struct scatterlist *)scp->request_buffer;
487 sge_count = pci_map_sg(instance->pdev, os_sgl, scp->use_sg,
488 scp->sc_data_direction);
489
490 for (i = 0; i < sge_count; i++, os_sgl++) {
491 mfi_sgl->sge64[i].length = sg_dma_len(os_sgl);
492 mfi_sgl->sge64[i].phys_addr = sg_dma_address(os_sgl);
493 }
494
495 return sge_count;
496}
497
b1df99d9
SP
498 /**
499 * megasas_get_frame_count - Computes the number of frames
500 * @sge_count : number of sg elements
501 *
502 * Returns the number of frames required for numnber of sge's (sge_count)
503 */
504
505u32 megasas_get_frame_count(u8 sge_count)
506{
507 int num_cnt;
508 int sge_bytes;
509 u32 sge_sz;
510 u32 frame_count=0;
511
512 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
513 sizeof(struct megasas_sge32);
514
515 /*
516 * Main frame can contain 2 SGEs for 64-bit SGLs and
517 * 3 SGEs for 32-bit SGLs
518 */
519 if (IS_DMA64)
520 num_cnt = sge_count - 2;
521 else
522 num_cnt = sge_count - 3;
523
524 if(num_cnt>0){
525 sge_bytes = sge_sz * num_cnt;
526
527 frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
528 ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) ;
529 }
530 /* Main frame */
531 frame_count +=1;
532
533 if (frame_count > 7)
534 frame_count = 8;
535 return frame_count;
536}
537
c4a3e0a5
BS
538/**
539 * megasas_build_dcdb - Prepares a direct cdb (DCDB) command
540 * @instance: Adapter soft state
541 * @scp: SCSI command
542 * @cmd: Command to be prepared in
543 *
544 * This function prepares CDB commands. These are typcially pass-through
545 * commands to the devices.
546 */
858119e1 547static int
c4a3e0a5
BS
548megasas_build_dcdb(struct megasas_instance *instance, struct scsi_cmnd *scp,
549 struct megasas_cmd *cmd)
550{
c4a3e0a5
BS
551 u32 is_logical;
552 u32 device_id;
553 u16 flags = 0;
554 struct megasas_pthru_frame *pthru;
555
556 is_logical = MEGASAS_IS_LOGICAL(scp);
557 device_id = MEGASAS_DEV_INDEX(instance, scp);
558 pthru = (struct megasas_pthru_frame *)cmd->frame;
559
560 if (scp->sc_data_direction == PCI_DMA_TODEVICE)
561 flags = MFI_FRAME_DIR_WRITE;
562 else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
563 flags = MFI_FRAME_DIR_READ;
564 else if (scp->sc_data_direction == PCI_DMA_NONE)
565 flags = MFI_FRAME_DIR_NONE;
566
567 /*
568 * Prepare the DCDB frame
569 */
570 pthru->cmd = (is_logical) ? MFI_CMD_LD_SCSI_IO : MFI_CMD_PD_SCSI_IO;
571 pthru->cmd_status = 0x0;
572 pthru->scsi_status = 0x0;
573 pthru->target_id = device_id;
574 pthru->lun = scp->device->lun;
575 pthru->cdb_len = scp->cmd_len;
576 pthru->timeout = 0;
577 pthru->flags = flags;
578 pthru->data_xfer_len = scp->request_bufflen;
579
580 memcpy(pthru->cdb, scp->cmnd, scp->cmd_len);
581
582 /*
583 * Construct SGL
584 */
c4a3e0a5
BS
585 if (IS_DMA64) {
586 pthru->flags |= MFI_FRAME_SGL64;
587 pthru->sge_count = megasas_make_sgl64(instance, scp,
588 &pthru->sgl);
589 } else
590 pthru->sge_count = megasas_make_sgl32(instance, scp,
591 &pthru->sgl);
592
593 /*
594 * Sense info specific
595 */
596 pthru->sense_len = SCSI_SENSE_BUFFERSIZE;
597 pthru->sense_buf_phys_addr_hi = 0;
598 pthru->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
599
c4a3e0a5
BS
600 /*
601 * Compute the total number of frames this command consumes. FW uses
602 * this number to pull sufficient number of frames from host memory.
603 */
b1df99d9 604 cmd->frame_count = megasas_get_frame_count(pthru->sge_count);
c4a3e0a5
BS
605
606 return cmd->frame_count;
607}
608
609/**
610 * megasas_build_ldio - Prepares IOs to logical devices
611 * @instance: Adapter soft state
612 * @scp: SCSI command
613 * @cmd: Command to to be prepared
614 *
615 * Frames (and accompanying SGLs) for regular SCSI IOs use this function.
616 */
858119e1 617static int
c4a3e0a5
BS
618megasas_build_ldio(struct megasas_instance *instance, struct scsi_cmnd *scp,
619 struct megasas_cmd *cmd)
620{
c4a3e0a5
BS
621 u32 device_id;
622 u8 sc = scp->cmnd[0];
623 u16 flags = 0;
624 struct megasas_io_frame *ldio;
625
626 device_id = MEGASAS_DEV_INDEX(instance, scp);
627 ldio = (struct megasas_io_frame *)cmd->frame;
628
629 if (scp->sc_data_direction == PCI_DMA_TODEVICE)
630 flags = MFI_FRAME_DIR_WRITE;
631 else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
632 flags = MFI_FRAME_DIR_READ;
633
634 /*
b1df99d9 635 * Prepare the Logical IO frame: 2nd bit is zero for all read cmds
c4a3e0a5
BS
636 */
637 ldio->cmd = (sc & 0x02) ? MFI_CMD_LD_WRITE : MFI_CMD_LD_READ;
638 ldio->cmd_status = 0x0;
639 ldio->scsi_status = 0x0;
640 ldio->target_id = device_id;
641 ldio->timeout = 0;
642 ldio->reserved_0 = 0;
643 ldio->pad_0 = 0;
644 ldio->flags = flags;
645 ldio->start_lba_hi = 0;
646 ldio->access_byte = (scp->cmd_len != 6) ? scp->cmnd[1] : 0;
647
648 /*
649 * 6-byte READ(0x08) or WRITE(0x0A) cdb
650 */
651 if (scp->cmd_len == 6) {
652 ldio->lba_count = (u32) scp->cmnd[4];
653 ldio->start_lba_lo = ((u32) scp->cmnd[1] << 16) |
654 ((u32) scp->cmnd[2] << 8) | (u32) scp->cmnd[3];
655
656 ldio->start_lba_lo &= 0x1FFFFF;
657 }
658
659 /*
660 * 10-byte READ(0x28) or WRITE(0x2A) cdb
661 */
662 else if (scp->cmd_len == 10) {
663 ldio->lba_count = (u32) scp->cmnd[8] |
664 ((u32) scp->cmnd[7] << 8);
665 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
666 ((u32) scp->cmnd[3] << 16) |
667 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
668 }
669
670 /*
671 * 12-byte READ(0xA8) or WRITE(0xAA) cdb
672 */
673 else if (scp->cmd_len == 12) {
674 ldio->lba_count = ((u32) scp->cmnd[6] << 24) |
675 ((u32) scp->cmnd[7] << 16) |
676 ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
677
678 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
679 ((u32) scp->cmnd[3] << 16) |
680 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
681 }
682
683 /*
684 * 16-byte READ(0x88) or WRITE(0x8A) cdb
685 */
686 else if (scp->cmd_len == 16) {
687 ldio->lba_count = ((u32) scp->cmnd[10] << 24) |
688 ((u32) scp->cmnd[11] << 16) |
689 ((u32) scp->cmnd[12] << 8) | (u32) scp->cmnd[13];
690
691 ldio->start_lba_lo = ((u32) scp->cmnd[6] << 24) |
692 ((u32) scp->cmnd[7] << 16) |
693 ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
694
695 ldio->start_lba_hi = ((u32) scp->cmnd[2] << 24) |
696 ((u32) scp->cmnd[3] << 16) |
697 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
698
699 }
700
701 /*
702 * Construct SGL
703 */
c4a3e0a5
BS
704 if (IS_DMA64) {
705 ldio->flags |= MFI_FRAME_SGL64;
706 ldio->sge_count = megasas_make_sgl64(instance, scp, &ldio->sgl);
707 } else
708 ldio->sge_count = megasas_make_sgl32(instance, scp, &ldio->sgl);
709
710 /*
711 * Sense info specific
712 */
713 ldio->sense_len = SCSI_SENSE_BUFFERSIZE;
714 ldio->sense_buf_phys_addr_hi = 0;
715 ldio->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
716
b1df99d9
SP
717 /*
718 * Compute the total number of frames this command consumes. FW uses
719 * this number to pull sufficient number of frames from host memory.
720 */
721 cmd->frame_count = megasas_get_frame_count(ldio->sge_count);
c4a3e0a5
BS
722
723 return cmd->frame_count;
724}
725
726/**
cb59aa6a
SP
727 * megasas_is_ldio - Checks if the cmd is for logical drive
728 * @scmd: SCSI command
729 *
730 * Called by megasas_queue_command to find out if the command to be queued
731 * is a logical drive command
c4a3e0a5 732 */
cb59aa6a 733static inline int megasas_is_ldio(struct scsi_cmnd *cmd)
c4a3e0a5 734{
cb59aa6a
SP
735 if (!MEGASAS_IS_LOGICAL(cmd))
736 return 0;
737 switch (cmd->cmnd[0]) {
738 case READ_10:
739 case WRITE_10:
740 case READ_12:
741 case WRITE_12:
742 case READ_6:
743 case WRITE_6:
744 case READ_16:
745 case WRITE_16:
746 return 1;
747 default:
748 return 0;
c4a3e0a5 749 }
c4a3e0a5
BS
750}
751
752/**
753 * megasas_queue_command - Queue entry point
754 * @scmd: SCSI command to be queued
755 * @done: Callback entry point
756 */
757static int
758megasas_queue_command(struct scsi_cmnd *scmd, void (*done) (struct scsi_cmnd *))
759{
760 u32 frame_count;
c4a3e0a5
BS
761 struct megasas_cmd *cmd;
762 struct megasas_instance *instance;
763
764 instance = (struct megasas_instance *)
765 scmd->device->host->hostdata;
766 scmd->scsi_done = done;
767 scmd->result = 0;
768
cb59aa6a
SP
769 if (MEGASAS_IS_LOGICAL(scmd) &&
770 (scmd->device->id >= MEGASAS_MAX_LD || scmd->device->lun)) {
771 scmd->result = DID_BAD_TARGET << 16;
772 goto out_done;
c4a3e0a5
BS
773 }
774
cb59aa6a
SP
775 cmd = megasas_get_cmd(instance);
776 if (!cmd)
777 return SCSI_MLQUEUE_HOST_BUSY;
778
779 /*
780 * Logical drive command
781 */
782 if (megasas_is_ldio(scmd))
783 frame_count = megasas_build_ldio(instance, scmd, cmd);
784 else
785 frame_count = megasas_build_dcdb(instance, scmd, cmd);
786
787 if (!frame_count)
788 goto out_return_cmd;
789
c4a3e0a5 790 cmd->scmd = scmd;
c4a3e0a5
BS
791
792 /*
793 * Issue the command to the FW
794 */
e4a082c7 795 atomic_inc(&instance->fw_outstanding);
c4a3e0a5 796
1341c939 797 instance->instancet->fire_cmd(cmd->frame_phys_addr ,cmd->frame_count-1,instance->reg_set);
c4a3e0a5
BS
798
799 return 0;
cb59aa6a
SP
800
801 out_return_cmd:
802 megasas_return_cmd(instance, cmd);
803 out_done:
804 done(scmd);
805 return 0;
c4a3e0a5
BS
806}
807
147aab6a
CH
808static int megasas_slave_configure(struct scsi_device *sdev)
809{
810 /*
811 * Don't export physical disk devices to the disk driver.
812 *
813 * FIXME: Currently we don't export them to the midlayer at all.
814 * That will be fixed once LSI engineers have audited the
815 * firmware for possible issues.
816 */
817 if (sdev->channel < MEGASAS_MAX_PD_CHANNELS && sdev->type == TYPE_DISK)
818 return -ENXIO;
e5b3a65f
CH
819
820 /*
821 * The RAID firmware may require extended timeouts.
822 */
823 if (sdev->channel >= MEGASAS_MAX_PD_CHANNELS)
824 sdev->timeout = 90 * HZ;
147aab6a
CH
825 return 0;
826}
827
c4a3e0a5
BS
828/**
829 * megasas_wait_for_outstanding - Wait for all outstanding cmds
830 * @instance: Adapter soft state
831 *
832 * This function waits for upto MEGASAS_RESET_WAIT_TIME seconds for FW to
833 * complete all its outstanding commands. Returns error if one or more IOs
834 * are pending after this time period. It also marks the controller dead.
835 */
836static int megasas_wait_for_outstanding(struct megasas_instance *instance)
837{
838 int i;
839 u32 wait_time = MEGASAS_RESET_WAIT_TIME;
840
841 for (i = 0; i < wait_time; i++) {
842
e4a082c7
SP
843 int outstanding = atomic_read(&instance->fw_outstanding);
844
845 if (!outstanding)
c4a3e0a5
BS
846 break;
847
848 if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
849 printk(KERN_NOTICE "megasas: [%2d]waiting for %d "
e4a082c7 850 "commands to complete\n",i,outstanding);
c4a3e0a5
BS
851 }
852
853 msleep(1000);
854 }
855
e4a082c7 856 if (atomic_read(&instance->fw_outstanding)) {
e3bbff9f
SP
857 /*
858 * Send signal to FW to stop processing any pending cmds.
859 * The controller will be taken offline by the OS now.
860 */
861 writel(MFI_STOP_ADP,
862 &instance->reg_set->inbound_doorbell);
c4a3e0a5
BS
863 instance->hw_crit_error = 1;
864 return FAILED;
865 }
866
867 return SUCCESS;
868}
869
870/**
871 * megasas_generic_reset - Generic reset routine
872 * @scmd: Mid-layer SCSI command
873 *
874 * This routine implements a generic reset handler for device, bus and host
875 * reset requests. Device, bus and host specific reset handlers can use this
876 * function after they do their specific tasks.
877 */
878static int megasas_generic_reset(struct scsi_cmnd *scmd)
879{
880 int ret_val;
881 struct megasas_instance *instance;
882
883 instance = (struct megasas_instance *)scmd->device->host->hostdata;
884
017560fc
JG
885 scmd_printk(KERN_NOTICE, scmd, "megasas: RESET -%ld cmd=%x\n",
886 scmd->serial_number, scmd->cmnd[0]);
c4a3e0a5
BS
887
888 if (instance->hw_crit_error) {
889 printk(KERN_ERR "megasas: cannot recover from previous reset "
890 "failures\n");
891 return FAILED;
892 }
893
c4a3e0a5 894 ret_val = megasas_wait_for_outstanding(instance);
c4a3e0a5
BS
895 if (ret_val == SUCCESS)
896 printk(KERN_NOTICE "megasas: reset successful \n");
897 else
898 printk(KERN_ERR "megasas: failed to do reset\n");
899
c4a3e0a5
BS
900 return ret_val;
901}
902
c4a3e0a5
BS
903/**
904 * megasas_reset_device - Device reset handler entry point
905 */
906static int megasas_reset_device(struct scsi_cmnd *scmd)
907{
908 int ret;
909
910 /*
911 * First wait for all commands to complete
912 */
913 ret = megasas_generic_reset(scmd);
914
915 return ret;
916}
917
918/**
919 * megasas_reset_bus_host - Bus & host reset handler entry point
920 */
921static int megasas_reset_bus_host(struct scsi_cmnd *scmd)
922{
923 int ret;
924
925 /*
80682fa9 926 * First wait for all commands to complete
c4a3e0a5
BS
927 */
928 ret = megasas_generic_reset(scmd);
929
930 return ret;
931}
932
933/**
934 * megasas_service_aen - Processes an event notification
935 * @instance: Adapter soft state
936 * @cmd: AEN command completed by the ISR
937 *
938 * For AEN, driver sends a command down to FW that is held by the FW till an
939 * event occurs. When an event of interest occurs, FW completes the command
940 * that it was previously holding.
941 *
942 * This routines sends SIGIO signal to processes that have registered with the
943 * driver for AEN.
944 */
945static void
946megasas_service_aen(struct megasas_instance *instance, struct megasas_cmd *cmd)
947{
948 /*
949 * Don't signal app if it is just an aborted previously registered aen
950 */
951 if (!cmd->abort_aen)
952 kill_fasync(&megasas_async_queue, SIGIO, POLL_IN);
953 else
954 cmd->abort_aen = 0;
955
956 instance->aen_cmd = NULL;
957 megasas_return_cmd(instance, cmd);
958}
959
960/*
961 * Scsi host template for megaraid_sas driver
962 */
963static struct scsi_host_template megasas_template = {
964
965 .module = THIS_MODULE,
966 .name = "LSI Logic SAS based MegaRAID driver",
967 .proc_name = "megaraid_sas",
147aab6a 968 .slave_configure = megasas_slave_configure,
c4a3e0a5
BS
969 .queuecommand = megasas_queue_command,
970 .eh_device_reset_handler = megasas_reset_device,
971 .eh_bus_reset_handler = megasas_reset_bus_host,
972 .eh_host_reset_handler = megasas_reset_bus_host,
c4a3e0a5
BS
973 .use_clustering = ENABLE_CLUSTERING,
974};
975
976/**
977 * megasas_complete_int_cmd - Completes an internal command
978 * @instance: Adapter soft state
979 * @cmd: Command to be completed
980 *
981 * The megasas_issue_blocked_cmd() function waits for a command to complete
982 * after it issues a command. This function wakes up that waiting routine by
983 * calling wake_up() on the wait queue.
984 */
985static void
986megasas_complete_int_cmd(struct megasas_instance *instance,
987 struct megasas_cmd *cmd)
988{
989 cmd->cmd_status = cmd->frame->io.cmd_status;
990
991 if (cmd->cmd_status == ENODATA) {
992 cmd->cmd_status = 0;
993 }
994 wake_up(&instance->int_cmd_wait_q);
995}
996
997/**
998 * megasas_complete_abort - Completes aborting a command
999 * @instance: Adapter soft state
1000 * @cmd: Cmd that was issued to abort another cmd
1001 *
1002 * The megasas_issue_blocked_abort_cmd() function waits on abort_cmd_wait_q
1003 * after it issues an abort on a previously issued command. This function
1004 * wakes up all functions waiting on the same wait queue.
1005 */
1006static void
1007megasas_complete_abort(struct megasas_instance *instance,
1008 struct megasas_cmd *cmd)
1009{
1010 if (cmd->sync_cmd) {
1011 cmd->sync_cmd = 0;
1012 cmd->cmd_status = 0;
1013 wake_up(&instance->abort_cmd_wait_q);
1014 }
1015
1016 return;
1017}
1018
1019/**
1020 * megasas_unmap_sgbuf - Unmap SG buffers
1021 * @instance: Adapter soft state
1022 * @cmd: Completed command
1023 */
858119e1 1024static void
c4a3e0a5
BS
1025megasas_unmap_sgbuf(struct megasas_instance *instance, struct megasas_cmd *cmd)
1026{
1027 dma_addr_t buf_h;
1028 u8 opcode;
1029
1030 if (cmd->scmd->use_sg) {
1031 pci_unmap_sg(instance->pdev, cmd->scmd->request_buffer,
1032 cmd->scmd->use_sg, cmd->scmd->sc_data_direction);
1033 return;
1034 }
1035
1036 if (!cmd->scmd->request_bufflen)
1037 return;
1038
1039 opcode = cmd->frame->hdr.cmd;
1040
1041 if ((opcode == MFI_CMD_LD_READ) || (opcode == MFI_CMD_LD_WRITE)) {
1042 if (IS_DMA64)
1043 buf_h = cmd->frame->io.sgl.sge64[0].phys_addr;
1044 else
1045 buf_h = cmd->frame->io.sgl.sge32[0].phys_addr;
1046 } else {
1047 if (IS_DMA64)
1048 buf_h = cmd->frame->pthru.sgl.sge64[0].phys_addr;
1049 else
1050 buf_h = cmd->frame->pthru.sgl.sge32[0].phys_addr;
1051 }
1052
1053 pci_unmap_single(instance->pdev, buf_h, cmd->scmd->request_bufflen,
1054 cmd->scmd->sc_data_direction);
1055 return;
1056}
1057
1058/**
1059 * megasas_complete_cmd - Completes a command
1060 * @instance: Adapter soft state
1061 * @cmd: Command to be completed
1062 * @alt_status: If non-zero, use this value as status to
1063 * SCSI mid-layer instead of the value returned
1064 * by the FW. This should be used if caller wants
1065 * an alternate status (as in the case of aborted
1066 * commands)
1067 */
858119e1 1068static void
c4a3e0a5
BS
1069megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
1070 u8 alt_status)
1071{
1072 int exception = 0;
1073 struct megasas_header *hdr = &cmd->frame->hdr;
c4a3e0a5
BS
1074
1075 if (cmd->scmd) {
1076 cmd->scmd->SCp.ptr = (char *)0;
1077 }
1078
1079 switch (hdr->cmd) {
1080
1081 case MFI_CMD_PD_SCSI_IO:
1082 case MFI_CMD_LD_SCSI_IO:
1083
1084 /*
1085 * MFI_CMD_PD_SCSI_IO and MFI_CMD_LD_SCSI_IO could have been
1086 * issued either through an IO path or an IOCTL path. If it
1087 * was via IOCTL, we will send it to internal completion.
1088 */
1089 if (cmd->sync_cmd) {
1090 cmd->sync_cmd = 0;
1091 megasas_complete_int_cmd(instance, cmd);
1092 break;
1093 }
1094
c4a3e0a5
BS
1095 case MFI_CMD_LD_READ:
1096 case MFI_CMD_LD_WRITE:
1097
1098 if (alt_status) {
1099 cmd->scmd->result = alt_status << 16;
1100 exception = 1;
1101 }
1102
1103 if (exception) {
1104
e4a082c7 1105 atomic_dec(&instance->fw_outstanding);
c4a3e0a5
BS
1106
1107 megasas_unmap_sgbuf(instance, cmd);
1108 cmd->scmd->scsi_done(cmd->scmd);
1109 megasas_return_cmd(instance, cmd);
1110
1111 break;
1112 }
1113
1114 switch (hdr->cmd_status) {
1115
1116 case MFI_STAT_OK:
1117 cmd->scmd->result = DID_OK << 16;
1118 break;
1119
1120 case MFI_STAT_SCSI_IO_FAILED:
1121 case MFI_STAT_LD_INIT_IN_PROGRESS:
1122 cmd->scmd->result =
1123 (DID_ERROR << 16) | hdr->scsi_status;
1124 break;
1125
1126 case MFI_STAT_SCSI_DONE_WITH_ERROR:
1127
1128 cmd->scmd->result = (DID_OK << 16) | hdr->scsi_status;
1129
1130 if (hdr->scsi_status == SAM_STAT_CHECK_CONDITION) {
1131 memset(cmd->scmd->sense_buffer, 0,
1132 SCSI_SENSE_BUFFERSIZE);
1133 memcpy(cmd->scmd->sense_buffer, cmd->sense,
1134 hdr->sense_len);
1135
1136 cmd->scmd->result |= DRIVER_SENSE << 24;
1137 }
1138
1139 break;
1140
1141 case MFI_STAT_LD_OFFLINE:
1142 case MFI_STAT_DEVICE_NOT_FOUND:
1143 cmd->scmd->result = DID_BAD_TARGET << 16;
1144 break;
1145
1146 default:
1147 printk(KERN_DEBUG "megasas: MFI FW status %#x\n",
1148 hdr->cmd_status);
1149 cmd->scmd->result = DID_ERROR << 16;
1150 break;
1151 }
1152
e4a082c7 1153 atomic_dec(&instance->fw_outstanding);
c4a3e0a5
BS
1154
1155 megasas_unmap_sgbuf(instance, cmd);
1156 cmd->scmd->scsi_done(cmd->scmd);
1157 megasas_return_cmd(instance, cmd);
1158
1159 break;
1160
1161 case MFI_CMD_SMP:
1162 case MFI_CMD_STP:
1163 case MFI_CMD_DCMD:
1164
1165 /*
1166 * See if got an event notification
1167 */
1168 if (cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_WAIT)
1169 megasas_service_aen(instance, cmd);
1170 else
1171 megasas_complete_int_cmd(instance, cmd);
1172
1173 break;
1174
1175 case MFI_CMD_ABORT:
1176 /*
1177 * Cmd issued to abort another cmd returned
1178 */
1179 megasas_complete_abort(instance, cmd);
1180 break;
1181
1182 default:
1183 printk("megasas: Unknown command completed! [0x%X]\n",
1184 hdr->cmd);
1185 break;
1186 }
1187}
1188
1189/**
1190 * megasas_deplete_reply_queue - Processes all completed commands
1191 * @instance: Adapter soft state
1192 * @alt_status: Alternate status to be returned to
1193 * SCSI mid-layer instead of the status
1194 * returned by the FW
1195 */
858119e1 1196static int
c4a3e0a5
BS
1197megasas_deplete_reply_queue(struct megasas_instance *instance, u8 alt_status)
1198{
c4a3e0a5
BS
1199 u32 producer;
1200 u32 consumer;
1201 u32 context;
1202 struct megasas_cmd *cmd;
1203
1204 /*
1205 * Check if it is our interrupt
1341c939 1206 * Clear the interrupt
c4a3e0a5 1207 */
1341c939 1208 if(instance->instancet->clear_intr(instance->reg_set))
c4a3e0a5 1209 return IRQ_NONE;
c4a3e0a5
BS
1210
1211 producer = *instance->producer;
1212 consumer = *instance->consumer;
1213
1214 while (consumer != producer) {
1215 context = instance->reply_queue[consumer];
1216
1217 cmd = instance->cmd_list[context];
1218
1219 megasas_complete_cmd(instance, cmd, alt_status);
1220
1221 consumer++;
1222 if (consumer == (instance->max_fw_cmds + 1)) {
1223 consumer = 0;
1224 }
1225 }
1226
1227 *instance->consumer = producer;
1228
1229 return IRQ_HANDLED;
1230}
1231
1232/**
1233 * megasas_isr - isr entry point
1234 */
1235static irqreturn_t megasas_isr(int irq, void *devp, struct pt_regs *regs)
1236{
1237 return megasas_deplete_reply_queue((struct megasas_instance *)devp,
1238 DID_OK);
1239}
1240
1241/**
1242 * megasas_transition_to_ready - Move the FW to READY state
1341c939 1243 * @instance: Adapter soft state
c4a3e0a5
BS
1244 *
1245 * During the initialization, FW passes can potentially be in any one of
1246 * several possible states. If the FW in operational, waiting-for-handshake
1247 * states, driver must take steps to bring it to ready state. Otherwise, it
1248 * has to wait for the ready state.
1249 */
1250static int
1341c939 1251megasas_transition_to_ready(struct megasas_instance* instance)
c4a3e0a5
BS
1252{
1253 int i;
1254 u8 max_wait;
1255 u32 fw_state;
1256 u32 cur_state;
1257
1341c939 1258 fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) & MFI_STATE_MASK;
c4a3e0a5 1259
e3bbff9f
SP
1260 if (fw_state != MFI_STATE_READY)
1261 printk(KERN_INFO "megasas: Waiting for FW to come to ready"
1262 " state\n");
1263
c4a3e0a5
BS
1264 while (fw_state != MFI_STATE_READY) {
1265
c4a3e0a5
BS
1266 switch (fw_state) {
1267
1268 case MFI_STATE_FAULT:
1269
1270 printk(KERN_DEBUG "megasas: FW in FAULT state!!\n");
1271 return -ENODEV;
1272
1273 case MFI_STATE_WAIT_HANDSHAKE:
1274 /*
1275 * Set the CLR bit in inbound doorbell
1276 */
e3bbff9f 1277 writel(MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG,
1341c939 1278 &instance->reg_set->inbound_doorbell);
c4a3e0a5
BS
1279
1280 max_wait = 2;
1281 cur_state = MFI_STATE_WAIT_HANDSHAKE;
1282 break;
1283
e3bbff9f
SP
1284 case MFI_STATE_BOOT_MESSAGE_PENDING:
1285 writel(MFI_INIT_HOTPLUG,
1286 &instance->reg_set->inbound_doorbell);
1287
1288 max_wait = 10;
1289 cur_state = MFI_STATE_BOOT_MESSAGE_PENDING;
1290 break;
1291
c4a3e0a5
BS
1292 case MFI_STATE_OPERATIONAL:
1293 /*
e3bbff9f 1294 * Bring it to READY state; assuming max wait 10 secs
c4a3e0a5 1295 */
0e98936c 1296 megasas_disable_intr(instance);
e3bbff9f 1297 writel(MFI_RESET_FLAGS, &instance->reg_set->inbound_doorbell);
c4a3e0a5
BS
1298
1299 max_wait = 10;
1300 cur_state = MFI_STATE_OPERATIONAL;
1301 break;
1302
1303 case MFI_STATE_UNDEFINED:
1304 /*
1305 * This state should not last for more than 2 seconds
1306 */
1307 max_wait = 2;
1308 cur_state = MFI_STATE_UNDEFINED;
1309 break;
1310
1311 case MFI_STATE_BB_INIT:
1312 max_wait = 2;
1313 cur_state = MFI_STATE_BB_INIT;
1314 break;
1315
1316 case MFI_STATE_FW_INIT:
1317 max_wait = 20;
1318 cur_state = MFI_STATE_FW_INIT;
1319 break;
1320
1321 case MFI_STATE_FW_INIT_2:
1322 max_wait = 20;
1323 cur_state = MFI_STATE_FW_INIT_2;
1324 break;
1325
1326 case MFI_STATE_DEVICE_SCAN:
1327 max_wait = 20;
1328 cur_state = MFI_STATE_DEVICE_SCAN;
1329 break;
1330
1331 case MFI_STATE_FLUSH_CACHE:
1332 max_wait = 20;
1333 cur_state = MFI_STATE_FLUSH_CACHE;
1334 break;
1335
1336 default:
1337 printk(KERN_DEBUG "megasas: Unknown state 0x%x\n",
1338 fw_state);
1339 return -ENODEV;
1340 }
1341
1342 /*
1343 * The cur_state should not last for more than max_wait secs
1344 */
1345 for (i = 0; i < (max_wait * 1000); i++) {
1341c939
SP
1346 fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) &
1347 MFI_STATE_MASK ;
c4a3e0a5
BS
1348
1349 if (fw_state == cur_state) {
1350 msleep(1);
1351 } else
1352 break;
1353 }
1354
1355 /*
1356 * Return error if fw_state hasn't changed after max_wait
1357 */
1358 if (fw_state == cur_state) {
1359 printk(KERN_DEBUG "FW state [%d] hasn't changed "
1360 "in %d secs\n", fw_state, max_wait);
1361 return -ENODEV;
1362 }
1363 };
e3bbff9f 1364 printk(KERN_INFO "megasas: FW now in Ready state\n");
c4a3e0a5
BS
1365
1366 return 0;
1367}
1368
1369/**
1370 * megasas_teardown_frame_pool - Destroy the cmd frame DMA pool
1371 * @instance: Adapter soft state
1372 */
1373static void megasas_teardown_frame_pool(struct megasas_instance *instance)
1374{
1375 int i;
1376 u32 max_cmd = instance->max_fw_cmds;
1377 struct megasas_cmd *cmd;
1378
1379 if (!instance->frame_dma_pool)
1380 return;
1381
1382 /*
1383 * Return all frames to pool
1384 */
1385 for (i = 0; i < max_cmd; i++) {
1386
1387 cmd = instance->cmd_list[i];
1388
1389 if (cmd->frame)
1390 pci_pool_free(instance->frame_dma_pool, cmd->frame,
1391 cmd->frame_phys_addr);
1392
1393 if (cmd->sense)
e3bbff9f 1394 pci_pool_free(instance->sense_dma_pool, cmd->sense,
c4a3e0a5
BS
1395 cmd->sense_phys_addr);
1396 }
1397
1398 /*
1399 * Now destroy the pool itself
1400 */
1401 pci_pool_destroy(instance->frame_dma_pool);
1402 pci_pool_destroy(instance->sense_dma_pool);
1403
1404 instance->frame_dma_pool = NULL;
1405 instance->sense_dma_pool = NULL;
1406}
1407
1408/**
1409 * megasas_create_frame_pool - Creates DMA pool for cmd frames
1410 * @instance: Adapter soft state
1411 *
1412 * Each command packet has an embedded DMA memory buffer that is used for
1413 * filling MFI frame and the SG list that immediately follows the frame. This
1414 * function creates those DMA memory buffers for each command packet by using
1415 * PCI pool facility.
1416 */
1417static int megasas_create_frame_pool(struct megasas_instance *instance)
1418{
1419 int i;
1420 u32 max_cmd;
1421 u32 sge_sz;
1422 u32 sgl_sz;
1423 u32 total_sz;
1424 u32 frame_count;
1425 struct megasas_cmd *cmd;
1426
1427 max_cmd = instance->max_fw_cmds;
1428
1429 /*
1430 * Size of our frame is 64 bytes for MFI frame, followed by max SG
1431 * elements and finally SCSI_SENSE_BUFFERSIZE bytes for sense buffer
1432 */
1433 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
1434 sizeof(struct megasas_sge32);
1435
1436 /*
1437 * Calculated the number of 64byte frames required for SGL
1438 */
1439 sgl_sz = sge_sz * instance->max_num_sge;
1440 frame_count = (sgl_sz + MEGAMFI_FRAME_SIZE - 1) / MEGAMFI_FRAME_SIZE;
1441
1442 /*
1443 * We need one extra frame for the MFI command
1444 */
1445 frame_count++;
1446
1447 total_sz = MEGAMFI_FRAME_SIZE * frame_count;
1448 /*
1449 * Use DMA pool facility provided by PCI layer
1450 */
1451 instance->frame_dma_pool = pci_pool_create("megasas frame pool",
1452 instance->pdev, total_sz, 64,
1453 0);
1454
1455 if (!instance->frame_dma_pool) {
1456 printk(KERN_DEBUG "megasas: failed to setup frame pool\n");
1457 return -ENOMEM;
1458 }
1459
1460 instance->sense_dma_pool = pci_pool_create("megasas sense pool",
1461 instance->pdev, 128, 4, 0);
1462
1463 if (!instance->sense_dma_pool) {
1464 printk(KERN_DEBUG "megasas: failed to setup sense pool\n");
1465
1466 pci_pool_destroy(instance->frame_dma_pool);
1467 instance->frame_dma_pool = NULL;
1468
1469 return -ENOMEM;
1470 }
1471
1472 /*
1473 * Allocate and attach a frame to each of the commands in cmd_list.
1474 * By making cmd->index as the context instead of the &cmd, we can
1475 * always use 32bit context regardless of the architecture
1476 */
1477 for (i = 0; i < max_cmd; i++) {
1478
1479 cmd = instance->cmd_list[i];
1480
1481 cmd->frame = pci_pool_alloc(instance->frame_dma_pool,
1482 GFP_KERNEL, &cmd->frame_phys_addr);
1483
1484 cmd->sense = pci_pool_alloc(instance->sense_dma_pool,
1485 GFP_KERNEL, &cmd->sense_phys_addr);
1486
1487 /*
1488 * megasas_teardown_frame_pool() takes care of freeing
1489 * whatever has been allocated
1490 */
1491 if (!cmd->frame || !cmd->sense) {
1492 printk(KERN_DEBUG "megasas: pci_pool_alloc failed \n");
1493 megasas_teardown_frame_pool(instance);
1494 return -ENOMEM;
1495 }
1496
1497 cmd->frame->io.context = cmd->index;
1498 }
1499
1500 return 0;
1501}
1502
1503/**
1504 * megasas_free_cmds - Free all the cmds in the free cmd pool
1505 * @instance: Adapter soft state
1506 */
1507static void megasas_free_cmds(struct megasas_instance *instance)
1508{
1509 int i;
1510 /* First free the MFI frame pool */
1511 megasas_teardown_frame_pool(instance);
1512
1513 /* Free all the commands in the cmd_list */
1514 for (i = 0; i < instance->max_fw_cmds; i++)
1515 kfree(instance->cmd_list[i]);
1516
1517 /* Free the cmd_list buffer itself */
1518 kfree(instance->cmd_list);
1519 instance->cmd_list = NULL;
1520
1521 INIT_LIST_HEAD(&instance->cmd_pool);
1522}
1523
1524/**
1525 * megasas_alloc_cmds - Allocates the command packets
1526 * @instance: Adapter soft state
1527 *
1528 * Each command that is issued to the FW, whether IO commands from the OS or
1529 * internal commands like IOCTLs, are wrapped in local data structure called
1530 * megasas_cmd. The frame embedded in this megasas_cmd is actually issued to
1531 * the FW.
1532 *
1533 * Each frame has a 32-bit field called context (tag). This context is used
1534 * to get back the megasas_cmd from the frame when a frame gets completed in
1535 * the ISR. Typically the address of the megasas_cmd itself would be used as
1536 * the context. But we wanted to keep the differences between 32 and 64 bit
1537 * systems to the mininum. We always use 32 bit integers for the context. In
1538 * this driver, the 32 bit values are the indices into an array cmd_list.
1539 * This array is used only to look up the megasas_cmd given the context. The
1540 * free commands themselves are maintained in a linked list called cmd_pool.
1541 */
1542static int megasas_alloc_cmds(struct megasas_instance *instance)
1543{
1544 int i;
1545 int j;
1546 u32 max_cmd;
1547 struct megasas_cmd *cmd;
1548
1549 max_cmd = instance->max_fw_cmds;
1550
1551 /*
1552 * instance->cmd_list is an array of struct megasas_cmd pointers.
1553 * Allocate the dynamic array first and then allocate individual
1554 * commands.
1555 */
1556 instance->cmd_list = kmalloc(sizeof(struct megasas_cmd *) * max_cmd,
1557 GFP_KERNEL);
1558
1559 if (!instance->cmd_list) {
1560 printk(KERN_DEBUG "megasas: out of memory\n");
1561 return -ENOMEM;
1562 }
1563
1564 memset(instance->cmd_list, 0, sizeof(struct megasas_cmd *) * max_cmd);
1565
1566 for (i = 0; i < max_cmd; i++) {
1567 instance->cmd_list[i] = kmalloc(sizeof(struct megasas_cmd),
1568 GFP_KERNEL);
1569
1570 if (!instance->cmd_list[i]) {
1571
1572 for (j = 0; j < i; j++)
1573 kfree(instance->cmd_list[j]);
1574
1575 kfree(instance->cmd_list);
1576 instance->cmd_list = NULL;
1577
1578 return -ENOMEM;
1579 }
1580 }
1581
1582 /*
1583 * Add all the commands to command pool (instance->cmd_pool)
1584 */
1585 for (i = 0; i < max_cmd; i++) {
1586 cmd = instance->cmd_list[i];
1587 memset(cmd, 0, sizeof(struct megasas_cmd));
1588 cmd->index = i;
1589 cmd->instance = instance;
1590
1591 list_add_tail(&cmd->list, &instance->cmd_pool);
1592 }
1593
1594 /*
1595 * Create a frame pool and assign one frame to each cmd
1596 */
1597 if (megasas_create_frame_pool(instance)) {
1598 printk(KERN_DEBUG "megasas: Error creating frame DMA pool\n");
1599 megasas_free_cmds(instance);
1600 }
1601
1602 return 0;
1603}
1604
1605/**
1606 * megasas_get_controller_info - Returns FW's controller structure
1607 * @instance: Adapter soft state
1608 * @ctrl_info: Controller information structure
1609 *
1610 * Issues an internal command (DCMD) to get the FW's controller structure.
1611 * This information is mainly used to find out the maximum IO transfer per
1612 * command supported by the FW.
1613 */
1614static int
1615megasas_get_ctrl_info(struct megasas_instance *instance,
1616 struct megasas_ctrl_info *ctrl_info)
1617{
1618 int ret = 0;
1619 struct megasas_cmd *cmd;
1620 struct megasas_dcmd_frame *dcmd;
1621 struct megasas_ctrl_info *ci;
1622 dma_addr_t ci_h = 0;
1623
1624 cmd = megasas_get_cmd(instance);
1625
1626 if (!cmd) {
1627 printk(KERN_DEBUG "megasas: Failed to get a free cmd\n");
1628 return -ENOMEM;
1629 }
1630
1631 dcmd = &cmd->frame->dcmd;
1632
1633 ci = pci_alloc_consistent(instance->pdev,
1634 sizeof(struct megasas_ctrl_info), &ci_h);
1635
1636 if (!ci) {
1637 printk(KERN_DEBUG "Failed to alloc mem for ctrl info\n");
1638 megasas_return_cmd(instance, cmd);
1639 return -ENOMEM;
1640 }
1641
1642 memset(ci, 0, sizeof(*ci));
1643 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
1644
1645 dcmd->cmd = MFI_CMD_DCMD;
1646 dcmd->cmd_status = 0xFF;
1647 dcmd->sge_count = 1;
1648 dcmd->flags = MFI_FRAME_DIR_READ;
1649 dcmd->timeout = 0;
1650 dcmd->data_xfer_len = sizeof(struct megasas_ctrl_info);
1651 dcmd->opcode = MR_DCMD_CTRL_GET_INFO;
1652 dcmd->sgl.sge32[0].phys_addr = ci_h;
1653 dcmd->sgl.sge32[0].length = sizeof(struct megasas_ctrl_info);
1654
1655 if (!megasas_issue_polled(instance, cmd)) {
1656 ret = 0;
1657 memcpy(ctrl_info, ci, sizeof(struct megasas_ctrl_info));
1658 } else {
1659 ret = -1;
1660 }
1661
1662 pci_free_consistent(instance->pdev, sizeof(struct megasas_ctrl_info),
1663 ci, ci_h);
1664
1665 megasas_return_cmd(instance, cmd);
1666 return ret;
1667}
1668
1669/**
1670 * megasas_init_mfi - Initializes the FW
1671 * @instance: Adapter soft state
1672 *
1673 * This is the main function for initializing MFI firmware.
1674 */
1675static int megasas_init_mfi(struct megasas_instance *instance)
1676{
1677 u32 context_sz;
1678 u32 reply_q_sz;
1679 u32 max_sectors_1;
1680 u32 max_sectors_2;
1681 struct megasas_register_set __iomem *reg_set;
1682
1683 struct megasas_cmd *cmd;
1684 struct megasas_ctrl_info *ctrl_info;
1685
1686 struct megasas_init_frame *init_frame;
1687 struct megasas_init_queue_info *initq_info;
1688 dma_addr_t init_frame_h;
1689 dma_addr_t initq_info_h;
1690
1691 /*
1692 * Map the message registers
1693 */
1694 instance->base_addr = pci_resource_start(instance->pdev, 0);
1695
1696 if (pci_request_regions(instance->pdev, "megasas: LSI Logic")) {
1697 printk(KERN_DEBUG "megasas: IO memory region busy!\n");
1698 return -EBUSY;
1699 }
1700
1701 instance->reg_set = ioremap_nocache(instance->base_addr, 8192);
1702
1703 if (!instance->reg_set) {
1704 printk(KERN_DEBUG "megasas: Failed to map IO mem\n");
1705 goto fail_ioremap;
1706 }
1707
1708 reg_set = instance->reg_set;
1709
f9876f0b
SP
1710 switch(instance->pdev->device)
1711 {
1712 case PCI_DEVICE_ID_LSI_SAS1078R:
1713 instance->instancet = &megasas_instance_template_ppc;
1714 break;
1715 case PCI_DEVICE_ID_LSI_SAS1064R:
1716 case PCI_DEVICE_ID_DELL_PERC5:
1717 default:
1718 instance->instancet = &megasas_instance_template_xscale;
1719 break;
1720 }
1341c939 1721
c4a3e0a5
BS
1722 /*
1723 * We expect the FW state to be READY
1724 */
1341c939 1725 if (megasas_transition_to_ready(instance))
c4a3e0a5
BS
1726 goto fail_ready_state;
1727
1728 /*
1729 * Get various operational parameters from status register
1730 */
1341c939 1731 instance->max_fw_cmds = instance->instancet->read_fw_status_reg(reg_set) & 0x00FFFF;
e3bbff9f
SP
1732 /*
1733 * Reduce the max supported cmds by 1. This is to ensure that the
1734 * reply_q_sz (1 more than the max cmd that driver may send)
1735 * does not exceed max cmds that the FW can support
1736 */
1737 instance->max_fw_cmds = instance->max_fw_cmds-1;
1341c939
SP
1738 instance->max_num_sge = (instance->instancet->read_fw_status_reg(reg_set) & 0xFF0000) >>
1739 0x10;
c4a3e0a5
BS
1740 /*
1741 * Create a pool of commands
1742 */
1743 if (megasas_alloc_cmds(instance))
1744 goto fail_alloc_cmds;
1745
1746 /*
1747 * Allocate memory for reply queue. Length of reply queue should
1748 * be _one_ more than the maximum commands handled by the firmware.
1749 *
1750 * Note: When FW completes commands, it places corresponding contex
1751 * values in this circular reply queue. This circular queue is a fairly
1752 * typical producer-consumer queue. FW is the producer (of completed
1753 * commands) and the driver is the consumer.
1754 */
1755 context_sz = sizeof(u32);
1756 reply_q_sz = context_sz * (instance->max_fw_cmds + 1);
1757
1758 instance->reply_queue = pci_alloc_consistent(instance->pdev,
1759 reply_q_sz,
1760 &instance->reply_queue_h);
1761
1762 if (!instance->reply_queue) {
1763 printk(KERN_DEBUG "megasas: Out of DMA mem for reply queue\n");
1764 goto fail_reply_queue;
1765 }
1766
1767 /*
1768 * Prepare a init frame. Note the init frame points to queue info
1769 * structure. Each frame has SGL allocated after first 64 bytes. For
1770 * this frame - since we don't need any SGL - we use SGL's space as
1771 * queue info structure
1772 *
1773 * We will not get a NULL command below. We just created the pool.
1774 */
1775 cmd = megasas_get_cmd(instance);
1776
1777 init_frame = (struct megasas_init_frame *)cmd->frame;
1778 initq_info = (struct megasas_init_queue_info *)
1779 ((unsigned long)init_frame + 64);
1780
1781 init_frame_h = cmd->frame_phys_addr;
1782 initq_info_h = init_frame_h + 64;
1783
1784 memset(init_frame, 0, MEGAMFI_FRAME_SIZE);
1785 memset(initq_info, 0, sizeof(struct megasas_init_queue_info));
1786
1787 initq_info->reply_queue_entries = instance->max_fw_cmds + 1;
1788 initq_info->reply_queue_start_phys_addr_lo = instance->reply_queue_h;
1789
1790 initq_info->producer_index_phys_addr_lo = instance->producer_h;
1791 initq_info->consumer_index_phys_addr_lo = instance->consumer_h;
1792
1793 init_frame->cmd = MFI_CMD_INIT;
1794 init_frame->cmd_status = 0xFF;
1795 init_frame->queue_info_new_phys_addr_lo = initq_info_h;
1796
1797 init_frame->data_xfer_len = sizeof(struct megasas_init_queue_info);
1798
0e98936c
SP
1799 /*
1800 * disable the intr before firing the init frame to FW
1801 */
1802 megasas_disable_intr(instance);
1803
c4a3e0a5
BS
1804 /*
1805 * Issue the init frame in polled mode
1806 */
1807 if (megasas_issue_polled(instance, cmd)) {
1808 printk(KERN_DEBUG "megasas: Failed to init firmware\n");
1809 goto fail_fw_init;
1810 }
1811
1812 megasas_return_cmd(instance, cmd);
1813
1814 ctrl_info = kmalloc(sizeof(struct megasas_ctrl_info), GFP_KERNEL);
1815
1816 /*
1817 * Compute the max allowed sectors per IO: The controller info has two
1818 * limits on max sectors. Driver should use the minimum of these two.
1819 *
1820 * 1 << stripe_sz_ops.min = max sectors per strip
1821 *
1822 * Note that older firmwares ( < FW ver 30) didn't report information
1823 * to calculate max_sectors_1. So the number ended up as zero always.
1824 */
1825 if (ctrl_info && !megasas_get_ctrl_info(instance, ctrl_info)) {
1826
1827 max_sectors_1 = (1 << ctrl_info->stripe_sz_ops.min) *
1828 ctrl_info->max_strips_per_io;
1829 max_sectors_2 = ctrl_info->max_request_size;
1830
1831 instance->max_sectors_per_req = (max_sectors_1 < max_sectors_2)
1832 ? max_sectors_1 : max_sectors_2;
1833 } else
1834 instance->max_sectors_per_req = instance->max_num_sge *
1835 PAGE_SIZE / 512;
1836
1837 kfree(ctrl_info);
1838
1839 return 0;
1840
1841 fail_fw_init:
1842 megasas_return_cmd(instance, cmd);
1843
1844 pci_free_consistent(instance->pdev, reply_q_sz,
1845 instance->reply_queue, instance->reply_queue_h);
1846 fail_reply_queue:
1847 megasas_free_cmds(instance);
1848
1849 fail_alloc_cmds:
1850 fail_ready_state:
1851 iounmap(instance->reg_set);
1852
1853 fail_ioremap:
1854 pci_release_regions(instance->pdev);
1855
1856 return -EINVAL;
1857}
1858
1859/**
1860 * megasas_release_mfi - Reverses the FW initialization
1861 * @intance: Adapter soft state
1862 */
1863static void megasas_release_mfi(struct megasas_instance *instance)
1864{
1865 u32 reply_q_sz = sizeof(u32) * (instance->max_fw_cmds + 1);
1866
1867 pci_free_consistent(instance->pdev, reply_q_sz,
1868 instance->reply_queue, instance->reply_queue_h);
1869
1870 megasas_free_cmds(instance);
1871
1872 iounmap(instance->reg_set);
1873
1874 pci_release_regions(instance->pdev);
1875}
1876
1877/**
1878 * megasas_get_seq_num - Gets latest event sequence numbers
1879 * @instance: Adapter soft state
1880 * @eli: FW event log sequence numbers information
1881 *
1882 * FW maintains a log of all events in a non-volatile area. Upper layers would
1883 * usually find out the latest sequence number of the events, the seq number at
1884 * the boot etc. They would "read" all the events below the latest seq number
1885 * by issuing a direct fw cmd (DCMD). For the future events (beyond latest seq
1886 * number), they would subsribe to AEN (asynchronous event notification) and
1887 * wait for the events to happen.
1888 */
1889static int
1890megasas_get_seq_num(struct megasas_instance *instance,
1891 struct megasas_evt_log_info *eli)
1892{
1893 struct megasas_cmd *cmd;
1894 struct megasas_dcmd_frame *dcmd;
1895 struct megasas_evt_log_info *el_info;
1896 dma_addr_t el_info_h = 0;
1897
1898 cmd = megasas_get_cmd(instance);
1899
1900 if (!cmd) {
1901 return -ENOMEM;
1902 }
1903
1904 dcmd = &cmd->frame->dcmd;
1905 el_info = pci_alloc_consistent(instance->pdev,
1906 sizeof(struct megasas_evt_log_info),
1907 &el_info_h);
1908
1909 if (!el_info) {
1910 megasas_return_cmd(instance, cmd);
1911 return -ENOMEM;
1912 }
1913
1914 memset(el_info, 0, sizeof(*el_info));
1915 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
1916
1917 dcmd->cmd = MFI_CMD_DCMD;
1918 dcmd->cmd_status = 0x0;
1919 dcmd->sge_count = 1;
1920 dcmd->flags = MFI_FRAME_DIR_READ;
1921 dcmd->timeout = 0;
1922 dcmd->data_xfer_len = sizeof(struct megasas_evt_log_info);
1923 dcmd->opcode = MR_DCMD_CTRL_EVENT_GET_INFO;
1924 dcmd->sgl.sge32[0].phys_addr = el_info_h;
1925 dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_log_info);
1926
1927 megasas_issue_blocked_cmd(instance, cmd);
1928
1929 /*
1930 * Copy the data back into callers buffer
1931 */
1932 memcpy(eli, el_info, sizeof(struct megasas_evt_log_info));
1933
1934 pci_free_consistent(instance->pdev, sizeof(struct megasas_evt_log_info),
1935 el_info, el_info_h);
1936
1937 megasas_return_cmd(instance, cmd);
1938
1939 return 0;
1940}
1941
1942/**
1943 * megasas_register_aen - Registers for asynchronous event notification
1944 * @instance: Adapter soft state
1945 * @seq_num: The starting sequence number
1946 * @class_locale: Class of the event
1947 *
1948 * This function subscribes for AEN for events beyond the @seq_num. It requests
1949 * to be notified if and only if the event is of type @class_locale
1950 */
1951static int
1952megasas_register_aen(struct megasas_instance *instance, u32 seq_num,
1953 u32 class_locale_word)
1954{
1955 int ret_val;
1956 struct megasas_cmd *cmd;
1957 struct megasas_dcmd_frame *dcmd;
1958 union megasas_evt_class_locale curr_aen;
1959 union megasas_evt_class_locale prev_aen;
1960
1961 /*
1962 * If there an AEN pending already (aen_cmd), check if the
1963 * class_locale of that pending AEN is inclusive of the new
1964 * AEN request we currently have. If it is, then we don't have
1965 * to do anything. In other words, whichever events the current
1966 * AEN request is subscribing to, have already been subscribed
1967 * to.
1968 *
1969 * If the old_cmd is _not_ inclusive, then we have to abort
1970 * that command, form a class_locale that is superset of both
1971 * old and current and re-issue to the FW
1972 */
1973
1974 curr_aen.word = class_locale_word;
1975
1976 if (instance->aen_cmd) {
1977
1978 prev_aen.word = instance->aen_cmd->frame->dcmd.mbox.w[1];
1979
1980 /*
1981 * A class whose enum value is smaller is inclusive of all
1982 * higher values. If a PROGRESS (= -1) was previously
1983 * registered, then a new registration requests for higher
1984 * classes need not be sent to FW. They are automatically
1985 * included.
1986 *
1987 * Locale numbers don't have such hierarchy. They are bitmap
1988 * values
1989 */
1990 if ((prev_aen.members.class <= curr_aen.members.class) &&
1991 !((prev_aen.members.locale & curr_aen.members.locale) ^
1992 curr_aen.members.locale)) {
1993 /*
1994 * Previously issued event registration includes
1995 * current request. Nothing to do.
1996 */
1997 return 0;
1998 } else {
1999 curr_aen.members.locale |= prev_aen.members.locale;
2000
2001 if (prev_aen.members.class < curr_aen.members.class)
2002 curr_aen.members.class = prev_aen.members.class;
2003
2004 instance->aen_cmd->abort_aen = 1;
2005 ret_val = megasas_issue_blocked_abort_cmd(instance,
2006 instance->
2007 aen_cmd);
2008
2009 if (ret_val) {
2010 printk(KERN_DEBUG "megasas: Failed to abort "
2011 "previous AEN command\n");
2012 return ret_val;
2013 }
2014 }
2015 }
2016
2017 cmd = megasas_get_cmd(instance);
2018
2019 if (!cmd)
2020 return -ENOMEM;
2021
2022 dcmd = &cmd->frame->dcmd;
2023
2024 memset(instance->evt_detail, 0, sizeof(struct megasas_evt_detail));
2025
2026 /*
2027 * Prepare DCMD for aen registration
2028 */
2029 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2030
2031 dcmd->cmd = MFI_CMD_DCMD;
2032 dcmd->cmd_status = 0x0;
2033 dcmd->sge_count = 1;
2034 dcmd->flags = MFI_FRAME_DIR_READ;
2035 dcmd->timeout = 0;
2036 dcmd->data_xfer_len = sizeof(struct megasas_evt_detail);
2037 dcmd->opcode = MR_DCMD_CTRL_EVENT_WAIT;
2038 dcmd->mbox.w[0] = seq_num;
2039 dcmd->mbox.w[1] = curr_aen.word;
2040 dcmd->sgl.sge32[0].phys_addr = (u32) instance->evt_detail_h;
2041 dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_detail);
2042
2043 /*
2044 * Store reference to the cmd used to register for AEN. When an
2045 * application wants us to register for AEN, we have to abort this
2046 * cmd and re-register with a new EVENT LOCALE supplied by that app
2047 */
2048 instance->aen_cmd = cmd;
2049
2050 /*
2051 * Issue the aen registration frame
2052 */
1341c939 2053 instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
c4a3e0a5
BS
2054
2055 return 0;
2056}
2057
2058/**
2059 * megasas_start_aen - Subscribes to AEN during driver load time
2060 * @instance: Adapter soft state
2061 */
2062static int megasas_start_aen(struct megasas_instance *instance)
2063{
2064 struct megasas_evt_log_info eli;
2065 union megasas_evt_class_locale class_locale;
2066
2067 /*
2068 * Get the latest sequence number from FW
2069 */
2070 memset(&eli, 0, sizeof(eli));
2071
2072 if (megasas_get_seq_num(instance, &eli))
2073 return -1;
2074
2075 /*
2076 * Register AEN with FW for latest sequence number plus 1
2077 */
2078 class_locale.members.reserved = 0;
2079 class_locale.members.locale = MR_EVT_LOCALE_ALL;
2080 class_locale.members.class = MR_EVT_CLASS_DEBUG;
2081
2082 return megasas_register_aen(instance, eli.newest_seq_num + 1,
2083 class_locale.word);
2084}
2085
2086/**
2087 * megasas_io_attach - Attaches this driver to SCSI mid-layer
2088 * @instance: Adapter soft state
2089 */
2090static int megasas_io_attach(struct megasas_instance *instance)
2091{
2092 struct Scsi_Host *host = instance->host;
2093
2094 /*
2095 * Export parameters required by SCSI mid-layer
2096 */
2097 host->irq = instance->pdev->irq;
2098 host->unique_id = instance->unique_id;
2099 host->can_queue = instance->max_fw_cmds - MEGASAS_INT_CMDS;
2100 host->this_id = instance->init_id;
2101 host->sg_tablesize = instance->max_num_sge;
2102 host->max_sectors = instance->max_sectors_per_req;
2103 host->cmd_per_lun = 128;
2104 host->max_channel = MEGASAS_MAX_CHANNELS - 1;
2105 host->max_id = MEGASAS_MAX_DEV_PER_CHANNEL;
2106 host->max_lun = MEGASAS_MAX_LUN;
122da302 2107 host->max_cmd_len = 16;
c4a3e0a5
BS
2108
2109 /*
2110 * Notify the mid-layer about the new controller
2111 */
2112 if (scsi_add_host(host, &instance->pdev->dev)) {
2113 printk(KERN_DEBUG "megasas: scsi_add_host failed\n");
2114 return -ENODEV;
2115 }
2116
2117 /*
2118 * Trigger SCSI to scan our drives
2119 */
2120 scsi_scan_host(host);
2121 return 0;
2122}
2123
2124/**
2125 * megasas_probe_one - PCI hotplug entry point
2126 * @pdev: PCI device structure
2127 * @id: PCI ids of supported hotplugged adapter
2128 */
2129static int __devinit
2130megasas_probe_one(struct pci_dev *pdev, const struct pci_device_id *id)
2131{
2132 int rval;
2133 struct Scsi_Host *host;
2134 struct megasas_instance *instance;
2135
2136 /*
2137 * Announce PCI information
2138 */
2139 printk(KERN_INFO "megasas: %#4.04x:%#4.04x:%#4.04x:%#4.04x: ",
2140 pdev->vendor, pdev->device, pdev->subsystem_vendor,
2141 pdev->subsystem_device);
2142
2143 printk("bus %d:slot %d:func %d\n",
2144 pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2145
2146 /*
2147 * PCI prepping: enable device set bus mastering and dma mask
2148 */
2149 rval = pci_enable_device(pdev);
2150
2151 if (rval) {
2152 return rval;
2153 }
2154
2155 pci_set_master(pdev);
2156
2157 /*
2158 * All our contollers are capable of performing 64-bit DMA
2159 */
2160 if (IS_DMA64) {
2161 if (pci_set_dma_mask(pdev, DMA_64BIT_MASK) != 0) {
2162
2163 if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2164 goto fail_set_dma_mask;
2165 }
2166 } else {
2167 if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2168 goto fail_set_dma_mask;
2169 }
2170
2171 host = scsi_host_alloc(&megasas_template,
2172 sizeof(struct megasas_instance));
2173
2174 if (!host) {
2175 printk(KERN_DEBUG "megasas: scsi_host_alloc failed\n");
2176 goto fail_alloc_instance;
2177 }
2178
2179 instance = (struct megasas_instance *)host->hostdata;
2180 memset(instance, 0, sizeof(*instance));
2181
2182 instance->producer = pci_alloc_consistent(pdev, sizeof(u32),
2183 &instance->producer_h);
2184 instance->consumer = pci_alloc_consistent(pdev, sizeof(u32),
2185 &instance->consumer_h);
2186
2187 if (!instance->producer || !instance->consumer) {
2188 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2189 "producer, consumer\n");
2190 goto fail_alloc_dma_buf;
2191 }
2192
2193 *instance->producer = 0;
2194 *instance->consumer = 0;
2195
2196 instance->evt_detail = pci_alloc_consistent(pdev,
2197 sizeof(struct
2198 megasas_evt_detail),
2199 &instance->evt_detail_h);
2200
2201 if (!instance->evt_detail) {
2202 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2203 "event detail structure\n");
2204 goto fail_alloc_dma_buf;
2205 }
2206
2207 /*
2208 * Initialize locks and queues
2209 */
2210 INIT_LIST_HEAD(&instance->cmd_pool);
2211
e4a082c7
SP
2212 atomic_set(&instance->fw_outstanding,0);
2213
c4a3e0a5
BS
2214 init_waitqueue_head(&instance->int_cmd_wait_q);
2215 init_waitqueue_head(&instance->abort_cmd_wait_q);
2216
2217 spin_lock_init(&instance->cmd_pool_lock);
c4a3e0a5
BS
2218
2219 sema_init(&instance->aen_mutex, 1);
2220 sema_init(&instance->ioctl_sem, MEGASAS_INT_CMDS);
2221
2222 /*
2223 * Initialize PCI related and misc parameters
2224 */
2225 instance->pdev = pdev;
2226 instance->host = host;
2227 instance->unique_id = pdev->bus->number << 8 | pdev->devfn;
2228 instance->init_id = MEGASAS_DEFAULT_INIT_ID;
2229
2230 /*
2231 * Initialize MFI Firmware
2232 */
2233 if (megasas_init_mfi(instance))
2234 goto fail_init_mfi;
2235
2236 /*
2237 * Register IRQ
2238 */
1d6f359a 2239 if (request_irq(pdev->irq, megasas_isr, IRQF_SHARED, "megasas", instance)) {
c4a3e0a5
BS
2240 printk(KERN_DEBUG "megasas: Failed to register IRQ\n");
2241 goto fail_irq;
2242 }
2243
1341c939 2244 instance->instancet->enable_intr(instance->reg_set);
c4a3e0a5
BS
2245
2246 /*
2247 * Store instance in PCI softstate
2248 */
2249 pci_set_drvdata(pdev, instance);
2250
2251 /*
2252 * Add this controller to megasas_mgmt_info structure so that it
2253 * can be exported to management applications
2254 */
2255 megasas_mgmt_info.count++;
2256 megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = instance;
2257 megasas_mgmt_info.max_index++;
2258
2259 /*
2260 * Initiate AEN (Asynchronous Event Notification)
2261 */
2262 if (megasas_start_aen(instance)) {
2263 printk(KERN_DEBUG "megasas: start aen failed\n");
2264 goto fail_start_aen;
2265 }
2266
2267 /*
2268 * Register with SCSI mid-layer
2269 */
2270 if (megasas_io_attach(instance))
2271 goto fail_io_attach;
2272
2273 return 0;
2274
2275 fail_start_aen:
2276 fail_io_attach:
2277 megasas_mgmt_info.count--;
2278 megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = NULL;
2279 megasas_mgmt_info.max_index--;
2280
2281 pci_set_drvdata(pdev, NULL);
0e98936c 2282 megasas_disable_intr(instance);
c4a3e0a5
BS
2283 free_irq(instance->pdev->irq, instance);
2284
2285 megasas_release_mfi(instance);
2286
2287 fail_irq:
2288 fail_init_mfi:
2289 fail_alloc_dma_buf:
2290 if (instance->evt_detail)
2291 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2292 instance->evt_detail,
2293 instance->evt_detail_h);
2294
2295 if (instance->producer)
2296 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2297 instance->producer_h);
2298 if (instance->consumer)
2299 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2300 instance->consumer_h);
2301 scsi_host_put(host);
2302
2303 fail_alloc_instance:
2304 fail_set_dma_mask:
2305 pci_disable_device(pdev);
2306
2307 return -ENODEV;
2308}
2309
2310/**
2311 * megasas_flush_cache - Requests FW to flush all its caches
2312 * @instance: Adapter soft state
2313 */
2314static void megasas_flush_cache(struct megasas_instance *instance)
2315{
2316 struct megasas_cmd *cmd;
2317 struct megasas_dcmd_frame *dcmd;
2318
2319 cmd = megasas_get_cmd(instance);
2320
2321 if (!cmd)
2322 return;
2323
2324 dcmd = &cmd->frame->dcmd;
2325
2326 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2327
2328 dcmd->cmd = MFI_CMD_DCMD;
2329 dcmd->cmd_status = 0x0;
2330 dcmd->sge_count = 0;
2331 dcmd->flags = MFI_FRAME_DIR_NONE;
2332 dcmd->timeout = 0;
2333 dcmd->data_xfer_len = 0;
2334 dcmd->opcode = MR_DCMD_CTRL_CACHE_FLUSH;
2335 dcmd->mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
2336
2337 megasas_issue_blocked_cmd(instance, cmd);
2338
2339 megasas_return_cmd(instance, cmd);
2340
2341 return;
2342}
2343
2344/**
2345 * megasas_shutdown_controller - Instructs FW to shutdown the controller
2346 * @instance: Adapter soft state
2347 */
2348static void megasas_shutdown_controller(struct megasas_instance *instance)
2349{
2350 struct megasas_cmd *cmd;
2351 struct megasas_dcmd_frame *dcmd;
2352
2353 cmd = megasas_get_cmd(instance);
2354
2355 if (!cmd)
2356 return;
2357
2358 if (instance->aen_cmd)
2359 megasas_issue_blocked_abort_cmd(instance, instance->aen_cmd);
2360
2361 dcmd = &cmd->frame->dcmd;
2362
2363 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2364
2365 dcmd->cmd = MFI_CMD_DCMD;
2366 dcmd->cmd_status = 0x0;
2367 dcmd->sge_count = 0;
2368 dcmd->flags = MFI_FRAME_DIR_NONE;
2369 dcmd->timeout = 0;
2370 dcmd->data_xfer_len = 0;
2371 dcmd->opcode = MR_DCMD_CTRL_SHUTDOWN;
2372
2373 megasas_issue_blocked_cmd(instance, cmd);
2374
2375 megasas_return_cmd(instance, cmd);
2376
2377 return;
2378}
2379
2380/**
2381 * megasas_detach_one - PCI hot"un"plug entry point
2382 * @pdev: PCI device structure
2383 */
2384static void megasas_detach_one(struct pci_dev *pdev)
2385{
2386 int i;
2387 struct Scsi_Host *host;
2388 struct megasas_instance *instance;
2389
2390 instance = pci_get_drvdata(pdev);
2391 host = instance->host;
2392
2393 scsi_remove_host(instance->host);
2394 megasas_flush_cache(instance);
2395 megasas_shutdown_controller(instance);
2396
2397 /*
2398 * Take the instance off the instance array. Note that we will not
2399 * decrement the max_index. We let this array be sparse array
2400 */
2401 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
2402 if (megasas_mgmt_info.instance[i] == instance) {
2403 megasas_mgmt_info.count--;
2404 megasas_mgmt_info.instance[i] = NULL;
2405
2406 break;
2407 }
2408 }
2409
2410 pci_set_drvdata(instance->pdev, NULL);
2411
0e98936c 2412 megasas_disable_intr(instance);
c4a3e0a5
BS
2413
2414 free_irq(instance->pdev->irq, instance);
2415
2416 megasas_release_mfi(instance);
2417
2418 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2419 instance->evt_detail, instance->evt_detail_h);
2420
2421 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2422 instance->producer_h);
2423
2424 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2425 instance->consumer_h);
2426
2427 scsi_host_put(host);
2428
2429 pci_set_drvdata(pdev, NULL);
2430
2431 pci_disable_device(pdev);
2432
2433 return;
2434}
2435
2436/**
2437 * megasas_shutdown - Shutdown entry point
2438 * @device: Generic device structure
2439 */
2440static void megasas_shutdown(struct pci_dev *pdev)
2441{
2442 struct megasas_instance *instance = pci_get_drvdata(pdev);
2443 megasas_flush_cache(instance);
2444}
2445
2446/**
2447 * megasas_mgmt_open - char node "open" entry point
2448 */
2449static int megasas_mgmt_open(struct inode *inode, struct file *filep)
2450{
2451 /*
2452 * Allow only those users with admin rights
2453 */
2454 if (!capable(CAP_SYS_ADMIN))
2455 return -EACCES;
2456
2457 return 0;
2458}
2459
2460/**
2461 * megasas_mgmt_release - char node "release" entry point
2462 */
2463static int megasas_mgmt_release(struct inode *inode, struct file *filep)
2464{
2465 filep->private_data = NULL;
2466 fasync_helper(-1, filep, 0, &megasas_async_queue);
2467
2468 return 0;
2469}
2470
2471/**
2472 * megasas_mgmt_fasync - Async notifier registration from applications
2473 *
2474 * This function adds the calling process to a driver global queue. When an
2475 * event occurs, SIGIO will be sent to all processes in this queue.
2476 */
2477static int megasas_mgmt_fasync(int fd, struct file *filep, int mode)
2478{
2479 int rc;
2480
0b950672 2481 mutex_lock(&megasas_async_queue_mutex);
c4a3e0a5
BS
2482
2483 rc = fasync_helper(fd, filep, mode, &megasas_async_queue);
2484
0b950672 2485 mutex_unlock(&megasas_async_queue_mutex);
c4a3e0a5
BS
2486
2487 if (rc >= 0) {
2488 /* For sanity check when we get ioctl */
2489 filep->private_data = filep;
2490 return 0;
2491 }
2492
2493 printk(KERN_DEBUG "megasas: fasync_helper failed [%d]\n", rc);
2494
2495 return rc;
2496}
2497
2498/**
2499 * megasas_mgmt_fw_ioctl - Issues management ioctls to FW
2500 * @instance: Adapter soft state
2501 * @argp: User's ioctl packet
2502 */
2503static int
2504megasas_mgmt_fw_ioctl(struct megasas_instance *instance,
2505 struct megasas_iocpacket __user * user_ioc,
2506 struct megasas_iocpacket *ioc)
2507{
2508 struct megasas_sge32 *kern_sge32;
2509 struct megasas_cmd *cmd;
2510 void *kbuff_arr[MAX_IOCTL_SGE];
2511 dma_addr_t buf_handle = 0;
2512 int error = 0, i;
2513 void *sense = NULL;
2514 dma_addr_t sense_handle;
2515 u32 *sense_ptr;
2516
2517 memset(kbuff_arr, 0, sizeof(kbuff_arr));
2518
2519 if (ioc->sge_count > MAX_IOCTL_SGE) {
2520 printk(KERN_DEBUG "megasas: SGE count [%d] > max limit [%d]\n",
2521 ioc->sge_count, MAX_IOCTL_SGE);
2522 return -EINVAL;
2523 }
2524
2525 cmd = megasas_get_cmd(instance);
2526 if (!cmd) {
2527 printk(KERN_DEBUG "megasas: Failed to get a cmd packet\n");
2528 return -ENOMEM;
2529 }
2530
2531 /*
2532 * User's IOCTL packet has 2 frames (maximum). Copy those two
2533 * frames into our cmd's frames. cmd->frame's context will get
2534 * overwritten when we copy from user's frames. So set that value
2535 * alone separately
2536 */
2537 memcpy(cmd->frame, ioc->frame.raw, 2 * MEGAMFI_FRAME_SIZE);
2538 cmd->frame->hdr.context = cmd->index;
2539
2540 /*
2541 * The management interface between applications and the fw uses
2542 * MFI frames. E.g, RAID configuration changes, LD property changes
2543 * etc are accomplishes through different kinds of MFI frames. The
2544 * driver needs to care only about substituting user buffers with
2545 * kernel buffers in SGLs. The location of SGL is embedded in the
2546 * struct iocpacket itself.
2547 */
2548 kern_sge32 = (struct megasas_sge32 *)
2549 ((unsigned long)cmd->frame + ioc->sgl_off);
2550
2551 /*
2552 * For each user buffer, create a mirror buffer and copy in
2553 */
2554 for (i = 0; i < ioc->sge_count; i++) {
2555 kbuff_arr[i] = pci_alloc_consistent(instance->pdev,
2556 ioc->sgl[i].iov_len,
2557 &buf_handle);
2558 if (!kbuff_arr[i]) {
2559 printk(KERN_DEBUG "megasas: Failed to alloc "
2560 "kernel SGL buffer for IOCTL \n");
2561 error = -ENOMEM;
2562 goto out;
2563 }
2564
2565 /*
2566 * We don't change the dma_coherent_mask, so
2567 * pci_alloc_consistent only returns 32bit addresses
2568 */
2569 kern_sge32[i].phys_addr = (u32) buf_handle;
2570 kern_sge32[i].length = ioc->sgl[i].iov_len;
2571
2572 /*
2573 * We created a kernel buffer corresponding to the
2574 * user buffer. Now copy in from the user buffer
2575 */
2576 if (copy_from_user(kbuff_arr[i], ioc->sgl[i].iov_base,
2577 (u32) (ioc->sgl[i].iov_len))) {
2578 error = -EFAULT;
2579 goto out;
2580 }
2581 }
2582
2583 if (ioc->sense_len) {
2584 sense = pci_alloc_consistent(instance->pdev, ioc->sense_len,
2585 &sense_handle);
2586 if (!sense) {
2587 error = -ENOMEM;
2588 goto out;
2589 }
2590
2591 sense_ptr =
2592 (u32 *) ((unsigned long)cmd->frame + ioc->sense_off);
2593 *sense_ptr = sense_handle;
2594 }
2595
2596 /*
2597 * Set the sync_cmd flag so that the ISR knows not to complete this
2598 * cmd to the SCSI mid-layer
2599 */
2600 cmd->sync_cmd = 1;
2601 megasas_issue_blocked_cmd(instance, cmd);
2602 cmd->sync_cmd = 0;
2603
2604 /*
2605 * copy out the kernel buffers to user buffers
2606 */
2607 for (i = 0; i < ioc->sge_count; i++) {
2608 if (copy_to_user(ioc->sgl[i].iov_base, kbuff_arr[i],
2609 ioc->sgl[i].iov_len)) {
2610 error = -EFAULT;
2611 goto out;
2612 }
2613 }
2614
2615 /*
2616 * copy out the sense
2617 */
2618 if (ioc->sense_len) {
2619 /*
2620 * sense_ptr points to the location that has the user
2621 * sense buffer address
2622 */
2623 sense_ptr = (u32 *) ((unsigned long)ioc->frame.raw +
2624 ioc->sense_off);
2625
2626 if (copy_to_user((void __user *)((unsigned long)(*sense_ptr)),
2627 sense, ioc->sense_len)) {
2628 error = -EFAULT;
2629 goto out;
2630 }
2631 }
2632
2633 /*
2634 * copy the status codes returned by the fw
2635 */
2636 if (copy_to_user(&user_ioc->frame.hdr.cmd_status,
2637 &cmd->frame->hdr.cmd_status, sizeof(u8))) {
2638 printk(KERN_DEBUG "megasas: Error copying out cmd_status\n");
2639 error = -EFAULT;
2640 }
2641
2642 out:
2643 if (sense) {
2644 pci_free_consistent(instance->pdev, ioc->sense_len,
2645 sense, sense_handle);
2646 }
2647
2648 for (i = 0; i < ioc->sge_count && kbuff_arr[i]; i++) {
2649 pci_free_consistent(instance->pdev,
2650 kern_sge32[i].length,
2651 kbuff_arr[i], kern_sge32[i].phys_addr);
2652 }
2653
2654 megasas_return_cmd(instance, cmd);
2655 return error;
2656}
2657
2658static struct megasas_instance *megasas_lookup_instance(u16 host_no)
2659{
2660 int i;
2661
2662 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
2663
2664 if ((megasas_mgmt_info.instance[i]) &&
2665 (megasas_mgmt_info.instance[i]->host->host_no == host_no))
2666 return megasas_mgmt_info.instance[i];
2667 }
2668
2669 return NULL;
2670}
2671
2672static int megasas_mgmt_ioctl_fw(struct file *file, unsigned long arg)
2673{
2674 struct megasas_iocpacket __user *user_ioc =
2675 (struct megasas_iocpacket __user *)arg;
2676 struct megasas_iocpacket *ioc;
2677 struct megasas_instance *instance;
2678 int error;
2679
2680 ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
2681 if (!ioc)
2682 return -ENOMEM;
2683
2684 if (copy_from_user(ioc, user_ioc, sizeof(*ioc))) {
2685 error = -EFAULT;
2686 goto out_kfree_ioc;
2687 }
2688
2689 instance = megasas_lookup_instance(ioc->host_no);
2690 if (!instance) {
2691 error = -ENODEV;
2692 goto out_kfree_ioc;
2693 }
2694
2695 /*
2696 * We will allow only MEGASAS_INT_CMDS number of parallel ioctl cmds
2697 */
2698 if (down_interruptible(&instance->ioctl_sem)) {
2699 error = -ERESTARTSYS;
2700 goto out_kfree_ioc;
2701 }
2702 error = megasas_mgmt_fw_ioctl(instance, user_ioc, ioc);
2703 up(&instance->ioctl_sem);
2704
2705 out_kfree_ioc:
2706 kfree(ioc);
2707 return error;
2708}
2709
2710static int megasas_mgmt_ioctl_aen(struct file *file, unsigned long arg)
2711{
2712 struct megasas_instance *instance;
2713 struct megasas_aen aen;
2714 int error;
2715
2716 if (file->private_data != file) {
2717 printk(KERN_DEBUG "megasas: fasync_helper was not "
2718 "called first\n");
2719 return -EINVAL;
2720 }
2721
2722 if (copy_from_user(&aen, (void __user *)arg, sizeof(aen)))
2723 return -EFAULT;
2724
2725 instance = megasas_lookup_instance(aen.host_no);
2726
2727 if (!instance)
2728 return -ENODEV;
2729
2730 down(&instance->aen_mutex);
2731 error = megasas_register_aen(instance, aen.seq_num,
2732 aen.class_locale_word);
2733 up(&instance->aen_mutex);
2734 return error;
2735}
2736
2737/**
2738 * megasas_mgmt_ioctl - char node ioctl entry point
2739 */
2740static long
2741megasas_mgmt_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2742{
2743 switch (cmd) {
2744 case MEGASAS_IOC_FIRMWARE:
2745 return megasas_mgmt_ioctl_fw(file, arg);
2746
2747 case MEGASAS_IOC_GET_AEN:
2748 return megasas_mgmt_ioctl_aen(file, arg);
2749 }
2750
2751 return -ENOTTY;
2752}
2753
2754#ifdef CONFIG_COMPAT
2755static int megasas_mgmt_compat_ioctl_fw(struct file *file, unsigned long arg)
2756{
2757 struct compat_megasas_iocpacket __user *cioc =
2758 (struct compat_megasas_iocpacket __user *)arg;
2759 struct megasas_iocpacket __user *ioc =
2760 compat_alloc_user_space(sizeof(struct megasas_iocpacket));
2761 int i;
2762 int error = 0;
2763
2764 clear_user(ioc, sizeof(*ioc));
2765
2766 if (copy_in_user(&ioc->host_no, &cioc->host_no, sizeof(u16)) ||
2767 copy_in_user(&ioc->sgl_off, &cioc->sgl_off, sizeof(u32)) ||
2768 copy_in_user(&ioc->sense_off, &cioc->sense_off, sizeof(u32)) ||
2769 copy_in_user(&ioc->sense_len, &cioc->sense_len, sizeof(u32)) ||
2770 copy_in_user(ioc->frame.raw, cioc->frame.raw, 128) ||
2771 copy_in_user(&ioc->sge_count, &cioc->sge_count, sizeof(u32)))
2772 return -EFAULT;
2773
2774 for (i = 0; i < MAX_IOCTL_SGE; i++) {
2775 compat_uptr_t ptr;
2776
2777 if (get_user(ptr, &cioc->sgl[i].iov_base) ||
2778 put_user(compat_ptr(ptr), &ioc->sgl[i].iov_base) ||
2779 copy_in_user(&ioc->sgl[i].iov_len,
2780 &cioc->sgl[i].iov_len, sizeof(compat_size_t)))
2781 return -EFAULT;
2782 }
2783
2784 error = megasas_mgmt_ioctl_fw(file, (unsigned long)ioc);
2785
2786 if (copy_in_user(&cioc->frame.hdr.cmd_status,
2787 &ioc->frame.hdr.cmd_status, sizeof(u8))) {
2788 printk(KERN_DEBUG "megasas: error copy_in_user cmd_status\n");
2789 return -EFAULT;
2790 }
2791 return error;
2792}
2793
2794static long
2795megasas_mgmt_compat_ioctl(struct file *file, unsigned int cmd,
2796 unsigned long arg)
2797{
2798 switch (cmd) {
cb59aa6a
SP
2799 case MEGASAS_IOC_FIRMWARE32:
2800 return megasas_mgmt_compat_ioctl_fw(file, arg);
c4a3e0a5
BS
2801 case MEGASAS_IOC_GET_AEN:
2802 return megasas_mgmt_ioctl_aen(file, arg);
2803 }
2804
2805 return -ENOTTY;
2806}
2807#endif
2808
2809/*
2810 * File operations structure for management interface
2811 */
2812static struct file_operations megasas_mgmt_fops = {
2813 .owner = THIS_MODULE,
2814 .open = megasas_mgmt_open,
2815 .release = megasas_mgmt_release,
2816 .fasync = megasas_mgmt_fasync,
2817 .unlocked_ioctl = megasas_mgmt_ioctl,
2818#ifdef CONFIG_COMPAT
2819 .compat_ioctl = megasas_mgmt_compat_ioctl,
2820#endif
2821};
2822
2823/*
2824 * PCI hotplug support registration structure
2825 */
2826static struct pci_driver megasas_pci_driver = {
2827
2828 .name = "megaraid_sas",
2829 .id_table = megasas_pci_table,
2830 .probe = megasas_probe_one,
2831 .remove = __devexit_p(megasas_detach_one),
2832 .shutdown = megasas_shutdown,
2833};
2834
2835/*
2836 * Sysfs driver attributes
2837 */
2838static ssize_t megasas_sysfs_show_version(struct device_driver *dd, char *buf)
2839{
2840 return snprintf(buf, strlen(MEGASAS_VERSION) + 2, "%s\n",
2841 MEGASAS_VERSION);
2842}
2843
2844static DRIVER_ATTR(version, S_IRUGO, megasas_sysfs_show_version, NULL);
2845
2846static ssize_t
2847megasas_sysfs_show_release_date(struct device_driver *dd, char *buf)
2848{
2849 return snprintf(buf, strlen(MEGASAS_RELDATE) + 2, "%s\n",
2850 MEGASAS_RELDATE);
2851}
2852
2853static DRIVER_ATTR(release_date, S_IRUGO, megasas_sysfs_show_release_date,
2854 NULL);
2855
2856/**
2857 * megasas_init - Driver load entry point
2858 */
2859static int __init megasas_init(void)
2860{
2861 int rval;
2862
2863 /*
2864 * Announce driver version and other information
2865 */
2866 printk(KERN_INFO "megasas: %s %s\n", MEGASAS_VERSION,
2867 MEGASAS_EXT_VERSION);
2868
2869 memset(&megasas_mgmt_info, 0, sizeof(megasas_mgmt_info));
2870
2871 /*
2872 * Register character device node
2873 */
2874 rval = register_chrdev(0, "megaraid_sas_ioctl", &megasas_mgmt_fops);
2875
2876 if (rval < 0) {
2877 printk(KERN_DEBUG "megasas: failed to open device node\n");
2878 return rval;
2879 }
2880
2881 megasas_mgmt_majorno = rval;
2882
2883 /*
2884 * Register ourselves as PCI hotplug module
2885 */
4041b9cd 2886 rval = pci_register_driver(&megasas_pci_driver);
c4a3e0a5
BS
2887
2888 if (rval) {
2889 printk(KERN_DEBUG "megasas: PCI hotplug regisration failed \n");
2890 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
2891 }
2892
2893 driver_create_file(&megasas_pci_driver.driver, &driver_attr_version);
2894 driver_create_file(&megasas_pci_driver.driver,
2895 &driver_attr_release_date);
2896
2897 return rval;
2898}
2899
2900/**
2901 * megasas_exit - Driver unload entry point
2902 */
2903static void __exit megasas_exit(void)
2904{
2905 driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
2906 driver_remove_file(&megasas_pci_driver.driver,
2907 &driver_attr_release_date);
2908
2909 pci_unregister_driver(&megasas_pci_driver);
2910 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
2911}
2912
2913module_init(megasas_init);
2914module_exit(megasas_exit);
This page took 0.224181 seconds and 5 git commands to generate.