[SCSI] convert the remaining mid-layer pieces to scsi_execute_req
[deliverable/linux.git] / drivers / scsi / scsi_lib.c
CommitLineData
1da177e4
LT
1/*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
9
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/completion.h>
13#include <linux/kernel.h>
14#include <linux/mempool.h>
15#include <linux/slab.h>
16#include <linux/init.h>
17#include <linux/pci.h>
18#include <linux/delay.h>
19
20#include <scsi/scsi.h>
21#include <scsi/scsi_dbg.h>
22#include <scsi/scsi_device.h>
23#include <scsi/scsi_driver.h>
24#include <scsi/scsi_eh.h>
25#include <scsi/scsi_host.h>
26#include <scsi/scsi_request.h>
27
28#include "scsi_priv.h"
29#include "scsi_logging.h"
30
31
32#define SG_MEMPOOL_NR (sizeof(scsi_sg_pools)/sizeof(struct scsi_host_sg_pool))
33#define SG_MEMPOOL_SIZE 32
34
35struct scsi_host_sg_pool {
36 size_t size;
37 char *name;
38 kmem_cache_t *slab;
39 mempool_t *pool;
40};
41
42#if (SCSI_MAX_PHYS_SEGMENTS < 32)
43#error SCSI_MAX_PHYS_SEGMENTS is too small
44#endif
45
46#define SP(x) { x, "sgpool-" #x }
52c1da39 47static struct scsi_host_sg_pool scsi_sg_pools[] = {
1da177e4
LT
48 SP(8),
49 SP(16),
50 SP(32),
51#if (SCSI_MAX_PHYS_SEGMENTS > 32)
52 SP(64),
53#if (SCSI_MAX_PHYS_SEGMENTS > 64)
54 SP(128),
55#if (SCSI_MAX_PHYS_SEGMENTS > 128)
56 SP(256),
57#if (SCSI_MAX_PHYS_SEGMENTS > 256)
58#error SCSI_MAX_PHYS_SEGMENTS is too large
59#endif
60#endif
61#endif
62#endif
63};
64#undef SP
65
66
67/*
68 * Function: scsi_insert_special_req()
69 *
70 * Purpose: Insert pre-formed request into request queue.
71 *
72 * Arguments: sreq - request that is ready to be queued.
73 * at_head - boolean. True if we should insert at head
74 * of queue, false if we should insert at tail.
75 *
76 * Lock status: Assumed that lock is not held upon entry.
77 *
78 * Returns: Nothing
79 *
80 * Notes: This function is called from character device and from
81 * ioctl types of functions where the caller knows exactly
82 * what SCSI command needs to be issued. The idea is that
83 * we merely inject the command into the queue (at the head
84 * for now), and then call the queue request function to actually
85 * process it.
86 */
87int scsi_insert_special_req(struct scsi_request *sreq, int at_head)
88{
89 /*
90 * Because users of this function are apt to reuse requests with no
91 * modification, we have to sanitise the request flags here
92 */
93 sreq->sr_request->flags &= ~REQ_DONTPREP;
94 blk_insert_request(sreq->sr_device->request_queue, sreq->sr_request,
867d1191 95 at_head, sreq);
1da177e4
LT
96 return 0;
97}
98
a1bf9d1d
TH
99static void scsi_run_queue(struct request_queue *q);
100
1da177e4
LT
101/*
102 * Function: scsi_queue_insert()
103 *
104 * Purpose: Insert a command in the midlevel queue.
105 *
106 * Arguments: cmd - command that we are adding to queue.
107 * reason - why we are inserting command to queue.
108 *
109 * Lock status: Assumed that lock is not held upon entry.
110 *
111 * Returns: Nothing.
112 *
113 * Notes: We do this for one of two cases. Either the host is busy
114 * and it cannot accept any more commands for the time being,
115 * or the device returned QUEUE_FULL and can accept no more
116 * commands.
117 * Notes: This could be called either from an interrupt context or a
118 * normal process context.
119 */
120int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
121{
122 struct Scsi_Host *host = cmd->device->host;
123 struct scsi_device *device = cmd->device;
a1bf9d1d
TH
124 struct request_queue *q = device->request_queue;
125 unsigned long flags;
1da177e4
LT
126
127 SCSI_LOG_MLQUEUE(1,
128 printk("Inserting command %p into mlqueue\n", cmd));
129
130 /*
d8c37e7b 131 * Set the appropriate busy bit for the device/host.
1da177e4
LT
132 *
133 * If the host/device isn't busy, assume that something actually
134 * completed, and that we should be able to queue a command now.
135 *
136 * Note that the prior mid-layer assumption that any host could
137 * always queue at least one command is now broken. The mid-layer
138 * will implement a user specifiable stall (see
139 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
140 * if a command is requeued with no other commands outstanding
141 * either for the device or for the host.
142 */
143 if (reason == SCSI_MLQUEUE_HOST_BUSY)
144 host->host_blocked = host->max_host_blocked;
145 else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
146 device->device_blocked = device->max_device_blocked;
147
1da177e4
LT
148 /*
149 * Decrement the counters, since these commands are no longer
150 * active on the host/device.
151 */
152 scsi_device_unbusy(device);
153
154 /*
a1bf9d1d
TH
155 * Requeue this command. It will go before all other commands
156 * that are already in the queue.
1da177e4
LT
157 *
158 * NOTE: there is magic here about the way the queue is plugged if
159 * we have no outstanding commands.
160 *
a1bf9d1d 161 * Although we *don't* plug the queue, we call the request
1da177e4
LT
162 * function. The SCSI request function detects the blocked condition
163 * and plugs the queue appropriately.
a1bf9d1d
TH
164 */
165 spin_lock_irqsave(q->queue_lock, flags);
166 blk_requeue_request(q, cmd->request);
167 spin_unlock_irqrestore(q->queue_lock, flags);
168
169 scsi_run_queue(q);
170
1da177e4
LT
171 return 0;
172}
173
174/*
175 * Function: scsi_do_req
176 *
177 * Purpose: Queue a SCSI request
178 *
179 * Arguments: sreq - command descriptor.
180 * cmnd - actual SCSI command to be performed.
181 * buffer - data buffer.
182 * bufflen - size of data buffer.
183 * done - completion function to be run.
184 * timeout - how long to let it run before timeout.
185 * retries - number of retries we allow.
186 *
187 * Lock status: No locks held upon entry.
188 *
189 * Returns: Nothing.
190 *
191 * Notes: This function is only used for queueing requests for things
192 * like ioctls and character device requests - this is because
193 * we essentially just inject a request into the queue for the
194 * device.
195 *
196 * In order to support the scsi_device_quiesce function, we
197 * now inject requests on the *head* of the device queue
198 * rather than the tail.
199 */
200void scsi_do_req(struct scsi_request *sreq, const void *cmnd,
201 void *buffer, unsigned bufflen,
202 void (*done)(struct scsi_cmnd *),
203 int timeout, int retries)
204{
205 /*
206 * If the upper level driver is reusing these things, then
207 * we should release the low-level block now. Another one will
208 * be allocated later when this request is getting queued.
209 */
210 __scsi_release_request(sreq);
211
212 /*
213 * Our own function scsi_done (which marks the host as not busy,
214 * disables the timeout counter, etc) will be called by us or by the
215 * scsi_hosts[host].queuecommand() function needs to also call
216 * the completion function for the high level driver.
217 */
218 memcpy(sreq->sr_cmnd, cmnd, sizeof(sreq->sr_cmnd));
219 sreq->sr_bufflen = bufflen;
220 sreq->sr_buffer = buffer;
221 sreq->sr_allowed = retries;
222 sreq->sr_done = done;
223 sreq->sr_timeout_per_command = timeout;
224
225 if (sreq->sr_cmd_len == 0)
226 sreq->sr_cmd_len = COMMAND_SIZE(sreq->sr_cmnd[0]);
227
228 /*
229 * head injection *required* here otherwise quiesce won't work
230 */
231 scsi_insert_special_req(sreq, 1);
232}
233EXPORT_SYMBOL(scsi_do_req);
234
1da177e4
LT
235/* This is the end routine we get to if a command was never attached
236 * to the request. Simply complete the request without changing
237 * rq_status; this will cause a DRIVER_ERROR. */
238static void scsi_wait_req_end_io(struct request *req)
239{
240 BUG_ON(!req->waiting);
241
242 complete(req->waiting);
243}
244
245void scsi_wait_req(struct scsi_request *sreq, const void *cmnd, void *buffer,
246 unsigned bufflen, int timeout, int retries)
247{
248 DECLARE_COMPLETION(wait);
39216033 249 int write = (sreq->sr_data_direction == DMA_TO_DEVICE);
e537a36d
JB
250 struct request *req;
251
8e640118
JB
252 req = blk_get_request(sreq->sr_device->request_queue, write,
253 __GFP_WAIT);
254 if (bufflen && blk_rq_map_kern(sreq->sr_device->request_queue, req,
255 buffer, bufflen, __GFP_WAIT)) {
256 sreq->sr_result = DRIVER_ERROR << 24;
257 blk_put_request(req);
258 return;
259 }
260
e537a36d
JB
261 req->flags |= REQ_NOMERGE;
262 req->waiting = &wait;
263 req->end_io = scsi_wait_req_end_io;
264 req->cmd_len = COMMAND_SIZE(((u8 *)cmnd)[0]);
265 req->sense = sreq->sr_sense_buffer;
266 req->sense_len = 0;
267 memcpy(req->cmd, cmnd, req->cmd_len);
268 req->timeout = timeout;
269 req->flags |= REQ_BLOCK_PC;
270 req->rq_disk = NULL;
271 blk_insert_request(sreq->sr_device->request_queue, req,
272 sreq->sr_data_direction == DMA_TO_DEVICE, NULL);
1da177e4
LT
273 wait_for_completion(&wait);
274 sreq->sr_request->waiting = NULL;
e537a36d
JB
275 sreq->sr_result = req->errors;
276 if (req->errors)
1da177e4
LT
277 sreq->sr_result |= (DRIVER_ERROR << 24);
278
e537a36d 279 blk_put_request(req);
1da177e4 280}
e537a36d 281
1da177e4
LT
282EXPORT_SYMBOL(scsi_wait_req);
283
39216033
JB
284/**
285 * scsi_execute_req - insert request and wait for the result
286 * @sdev: scsi device
287 * @cmd: scsi command
288 * @data_direction: data direction
289 * @buffer: data buffer
290 * @bufflen: len of buffer
291 * @sense: optional sense buffer
292 * @timeout: request timeout in seconds
293 * @retries: number of times to retry request
294 *
295 * scsi_execute_req returns the req->errors value which is the
296 * the scsi_cmnd result field.
297 **/
298int scsi_execute_req(struct scsi_device *sdev, unsigned char *cmd,
299 int data_direction, void *buffer, unsigned bufflen,
300 unsigned char *sense, int timeout, int retries)
301{
302 struct request *req;
303 int write = (data_direction == DMA_TO_DEVICE);
304 int ret = DRIVER_ERROR << 24;
305
306 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
307
308 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
309 buffer, bufflen, __GFP_WAIT))
310 goto out;
311
312 req->cmd_len = COMMAND_SIZE(cmd[0]);
313 memcpy(req->cmd, cmd, req->cmd_len);
314 req->sense = sense;
315 req->sense_len = 0;
316 req->timeout = timeout;
317 req->flags |= REQ_BLOCK_PC | REQ_SPECIAL;
318
319 /*
320 * head injection *required* here otherwise quiesce won't work
321 */
322 blk_execute_rq(req->q, NULL, req, 1);
323
324 ret = req->errors;
325 out:
326 blk_put_request(req);
327
328 return ret;
329}
330
331EXPORT_SYMBOL(scsi_execute_req);
332
1da177e4
LT
333/*
334 * Function: scsi_init_cmd_errh()
335 *
336 * Purpose: Initialize cmd fields related to error handling.
337 *
338 * Arguments: cmd - command that is ready to be queued.
339 *
340 * Returns: Nothing
341 *
342 * Notes: This function has the job of initializing a number of
343 * fields related to error handling. Typically this will
344 * be called once for each command, as required.
345 */
346static int scsi_init_cmd_errh(struct scsi_cmnd *cmd)
347{
1da177e4 348 cmd->serial_number = 0;
1da177e4
LT
349
350 memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
351
352 if (cmd->cmd_len == 0)
353 cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
354
355 /*
356 * We need saved copies of a number of fields - this is because
357 * error handling may need to overwrite these with different values
358 * to run different commands, and once error handling is complete,
359 * we will need to restore these values prior to running the actual
360 * command.
361 */
362 cmd->old_use_sg = cmd->use_sg;
363 cmd->old_cmd_len = cmd->cmd_len;
364 cmd->sc_old_data_direction = cmd->sc_data_direction;
365 cmd->old_underflow = cmd->underflow;
366 memcpy(cmd->data_cmnd, cmd->cmnd, sizeof(cmd->cmnd));
367 cmd->buffer = cmd->request_buffer;
368 cmd->bufflen = cmd->request_bufflen;
1da177e4
LT
369
370 return 1;
371}
372
373/*
374 * Function: scsi_setup_cmd_retry()
375 *
376 * Purpose: Restore the command state for a retry
377 *
378 * Arguments: cmd - command to be restored
379 *
380 * Returns: Nothing
381 *
382 * Notes: Immediately prior to retrying a command, we need
383 * to restore certain fields that we saved above.
384 */
385void scsi_setup_cmd_retry(struct scsi_cmnd *cmd)
386{
387 memcpy(cmd->cmnd, cmd->data_cmnd, sizeof(cmd->data_cmnd));
388 cmd->request_buffer = cmd->buffer;
389 cmd->request_bufflen = cmd->bufflen;
390 cmd->use_sg = cmd->old_use_sg;
391 cmd->cmd_len = cmd->old_cmd_len;
392 cmd->sc_data_direction = cmd->sc_old_data_direction;
393 cmd->underflow = cmd->old_underflow;
394}
395
396void scsi_device_unbusy(struct scsi_device *sdev)
397{
398 struct Scsi_Host *shost = sdev->host;
399 unsigned long flags;
400
401 spin_lock_irqsave(shost->host_lock, flags);
402 shost->host_busy--;
d3301874 403 if (unlikely((shost->shost_state == SHOST_RECOVERY) &&
1da177e4
LT
404 shost->host_failed))
405 scsi_eh_wakeup(shost);
406 spin_unlock(shost->host_lock);
152587de 407 spin_lock(sdev->request_queue->queue_lock);
1da177e4 408 sdev->device_busy--;
152587de 409 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
1da177e4
LT
410}
411
412/*
413 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
414 * and call blk_run_queue for all the scsi_devices on the target -
415 * including current_sdev first.
416 *
417 * Called with *no* scsi locks held.
418 */
419static void scsi_single_lun_run(struct scsi_device *current_sdev)
420{
421 struct Scsi_Host *shost = current_sdev->host;
422 struct scsi_device *sdev, *tmp;
423 struct scsi_target *starget = scsi_target(current_sdev);
424 unsigned long flags;
425
426 spin_lock_irqsave(shost->host_lock, flags);
427 starget->starget_sdev_user = NULL;
428 spin_unlock_irqrestore(shost->host_lock, flags);
429
430 /*
431 * Call blk_run_queue for all LUNs on the target, starting with
432 * current_sdev. We race with others (to set starget_sdev_user),
433 * but in most cases, we will be first. Ideally, each LU on the
434 * target would get some limited time or requests on the target.
435 */
436 blk_run_queue(current_sdev->request_queue);
437
438 spin_lock_irqsave(shost->host_lock, flags);
439 if (starget->starget_sdev_user)
440 goto out;
441 list_for_each_entry_safe(sdev, tmp, &starget->devices,
442 same_target_siblings) {
443 if (sdev == current_sdev)
444 continue;
445 if (scsi_device_get(sdev))
446 continue;
447
448 spin_unlock_irqrestore(shost->host_lock, flags);
449 blk_run_queue(sdev->request_queue);
450 spin_lock_irqsave(shost->host_lock, flags);
451
452 scsi_device_put(sdev);
453 }
454 out:
455 spin_unlock_irqrestore(shost->host_lock, flags);
456}
457
458/*
459 * Function: scsi_run_queue()
460 *
461 * Purpose: Select a proper request queue to serve next
462 *
463 * Arguments: q - last request's queue
464 *
465 * Returns: Nothing
466 *
467 * Notes: The previous command was completely finished, start
468 * a new one if possible.
469 */
470static void scsi_run_queue(struct request_queue *q)
471{
472 struct scsi_device *sdev = q->queuedata;
473 struct Scsi_Host *shost = sdev->host;
474 unsigned long flags;
475
476 if (sdev->single_lun)
477 scsi_single_lun_run(sdev);
478
479 spin_lock_irqsave(shost->host_lock, flags);
480 while (!list_empty(&shost->starved_list) &&
481 !shost->host_blocked && !shost->host_self_blocked &&
482 !((shost->can_queue > 0) &&
483 (shost->host_busy >= shost->can_queue))) {
484 /*
485 * As long as shost is accepting commands and we have
486 * starved queues, call blk_run_queue. scsi_request_fn
487 * drops the queue_lock and can add us back to the
488 * starved_list.
489 *
490 * host_lock protects the starved_list and starved_entry.
491 * scsi_request_fn must get the host_lock before checking
492 * or modifying starved_list or starved_entry.
493 */
494 sdev = list_entry(shost->starved_list.next,
495 struct scsi_device, starved_entry);
496 list_del_init(&sdev->starved_entry);
497 spin_unlock_irqrestore(shost->host_lock, flags);
498
499 blk_run_queue(sdev->request_queue);
500
501 spin_lock_irqsave(shost->host_lock, flags);
502 if (unlikely(!list_empty(&sdev->starved_entry)))
503 /*
504 * sdev lost a race, and was put back on the
505 * starved list. This is unlikely but without this
506 * in theory we could loop forever.
507 */
508 break;
509 }
510 spin_unlock_irqrestore(shost->host_lock, flags);
511
512 blk_run_queue(q);
513}
514
515/*
516 * Function: scsi_requeue_command()
517 *
518 * Purpose: Handle post-processing of completed commands.
519 *
520 * Arguments: q - queue to operate on
521 * cmd - command that may need to be requeued.
522 *
523 * Returns: Nothing
524 *
525 * Notes: After command completion, there may be blocks left
526 * over which weren't finished by the previous command
527 * this can be for a number of reasons - the main one is
528 * I/O errors in the middle of the request, in which case
529 * we need to request the blocks that come after the bad
530 * sector.
531 */
532static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
533{
283369cc
TH
534 unsigned long flags;
535
1da177e4 536 cmd->request->flags &= ~REQ_DONTPREP;
283369cc
TH
537
538 spin_lock_irqsave(q->queue_lock, flags);
539 blk_requeue_request(q, cmd->request);
540 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4
LT
541
542 scsi_run_queue(q);
543}
544
545void scsi_next_command(struct scsi_cmnd *cmd)
546{
547 struct request_queue *q = cmd->device->request_queue;
548
549 scsi_put_command(cmd);
550 scsi_run_queue(q);
551}
552
553void scsi_run_host_queues(struct Scsi_Host *shost)
554{
555 struct scsi_device *sdev;
556
557 shost_for_each_device(sdev, shost)
558 scsi_run_queue(sdev->request_queue);
559}
560
561/*
562 * Function: scsi_end_request()
563 *
564 * Purpose: Post-processing of completed commands (usually invoked at end
565 * of upper level post-processing and scsi_io_completion).
566 *
567 * Arguments: cmd - command that is complete.
568 * uptodate - 1 if I/O indicates success, <= 0 for I/O error.
569 * bytes - number of bytes of completed I/O
570 * requeue - indicates whether we should requeue leftovers.
571 *
572 * Lock status: Assumed that lock is not held upon entry.
573 *
574 * Returns: cmd if requeue done or required, NULL otherwise
575 *
576 * Notes: This is called for block device requests in order to
577 * mark some number of sectors as complete.
578 *
579 * We are guaranteeing that the request queue will be goosed
580 * at some point during this call.
581 */
582static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
583 int bytes, int requeue)
584{
585 request_queue_t *q = cmd->device->request_queue;
586 struct request *req = cmd->request;
587 unsigned long flags;
588
589 /*
590 * If there are blocks left over at the end, set up the command
591 * to queue the remainder of them.
592 */
593 if (end_that_request_chunk(req, uptodate, bytes)) {
594 int leftover = (req->hard_nr_sectors << 9);
595
596 if (blk_pc_request(req))
597 leftover = req->data_len;
598
599 /* kill remainder if no retrys */
600 if (!uptodate && blk_noretry_request(req))
601 end_that_request_chunk(req, 0, leftover);
602 else {
603 if (requeue)
604 /*
605 * Bleah. Leftovers again. Stick the
606 * leftovers in the front of the
607 * queue, and goose the queue again.
608 */
609 scsi_requeue_command(q, cmd);
610
611 return cmd;
612 }
613 }
614
615 add_disk_randomness(req->rq_disk);
616
617 spin_lock_irqsave(q->queue_lock, flags);
618 if (blk_rq_tagged(req))
619 blk_queue_end_tag(q, req);
620 end_that_request_last(req);
621 spin_unlock_irqrestore(q->queue_lock, flags);
622
623 /*
624 * This will goose the queue request function at the end, so we don't
625 * need to worry about launching another command.
626 */
627 scsi_next_command(cmd);
628 return NULL;
629}
630
631static struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, int gfp_mask)
632{
633 struct scsi_host_sg_pool *sgp;
634 struct scatterlist *sgl;
635
636 BUG_ON(!cmd->use_sg);
637
638 switch (cmd->use_sg) {
639 case 1 ... 8:
640 cmd->sglist_len = 0;
641 break;
642 case 9 ... 16:
643 cmd->sglist_len = 1;
644 break;
645 case 17 ... 32:
646 cmd->sglist_len = 2;
647 break;
648#if (SCSI_MAX_PHYS_SEGMENTS > 32)
649 case 33 ... 64:
650 cmd->sglist_len = 3;
651 break;
652#if (SCSI_MAX_PHYS_SEGMENTS > 64)
653 case 65 ... 128:
654 cmd->sglist_len = 4;
655 break;
656#if (SCSI_MAX_PHYS_SEGMENTS > 128)
657 case 129 ... 256:
658 cmd->sglist_len = 5;
659 break;
660#endif
661#endif
662#endif
663 default:
664 return NULL;
665 }
666
667 sgp = scsi_sg_pools + cmd->sglist_len;
668 sgl = mempool_alloc(sgp->pool, gfp_mask);
1da177e4
LT
669 return sgl;
670}
671
672static void scsi_free_sgtable(struct scatterlist *sgl, int index)
673{
674 struct scsi_host_sg_pool *sgp;
675
a77e3362 676 BUG_ON(index >= SG_MEMPOOL_NR);
1da177e4
LT
677
678 sgp = scsi_sg_pools + index;
679 mempool_free(sgl, sgp->pool);
680}
681
682/*
683 * Function: scsi_release_buffers()
684 *
685 * Purpose: Completion processing for block device I/O requests.
686 *
687 * Arguments: cmd - command that we are bailing.
688 *
689 * Lock status: Assumed that no lock is held upon entry.
690 *
691 * Returns: Nothing
692 *
693 * Notes: In the event that an upper level driver rejects a
694 * command, we must release resources allocated during
695 * the __init_io() function. Primarily this would involve
696 * the scatter-gather table, and potentially any bounce
697 * buffers.
698 */
699static void scsi_release_buffers(struct scsi_cmnd *cmd)
700{
701 struct request *req = cmd->request;
702
703 /*
704 * Free up any indirection buffers we allocated for DMA purposes.
705 */
706 if (cmd->use_sg)
707 scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len);
708 else if (cmd->request_buffer != req->buffer)
709 kfree(cmd->request_buffer);
710
711 /*
712 * Zero these out. They now point to freed memory, and it is
713 * dangerous to hang onto the pointers.
714 */
715 cmd->buffer = NULL;
716 cmd->bufflen = 0;
717 cmd->request_buffer = NULL;
718 cmd->request_bufflen = 0;
719}
720
721/*
722 * Function: scsi_io_completion()
723 *
724 * Purpose: Completion processing for block device I/O requests.
725 *
726 * Arguments: cmd - command that is finished.
727 *
728 * Lock status: Assumed that no lock is held upon entry.
729 *
730 * Returns: Nothing
731 *
732 * Notes: This function is matched in terms of capabilities to
733 * the function that created the scatter-gather list.
734 * In other words, if there are no bounce buffers
735 * (the normal case for most drivers), we don't need
736 * the logic to deal with cleaning up afterwards.
737 *
738 * We must do one of several things here:
739 *
740 * a) Call scsi_end_request. This will finish off the
741 * specified number of sectors. If we are done, the
742 * command block will be released, and the queue
743 * function will be goosed. If we are not done, then
744 * scsi_end_request will directly goose the queue.
745 *
746 * b) We can just use scsi_requeue_command() here. This would
747 * be used if we just wanted to retry, for example.
748 */
749void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes,
750 unsigned int block_bytes)
751{
752 int result = cmd->result;
753 int this_count = cmd->bufflen;
754 request_queue_t *q = cmd->device->request_queue;
755 struct request *req = cmd->request;
756 int clear_errors = 1;
757 struct scsi_sense_hdr sshdr;
758 int sense_valid = 0;
759 int sense_deferred = 0;
760
761 if (blk_complete_barrier_rq(q, req, good_bytes >> 9))
762 return;
763
764 /*
765 * Free up any indirection buffers we allocated for DMA purposes.
766 * For the case of a READ, we need to copy the data out of the
767 * bounce buffer and into the real buffer.
768 */
769 if (cmd->use_sg)
770 scsi_free_sgtable(cmd->buffer, cmd->sglist_len);
771 else if (cmd->buffer != req->buffer) {
772 if (rq_data_dir(req) == READ) {
773 unsigned long flags;
774 char *to = bio_kmap_irq(req->bio, &flags);
775 memcpy(to, cmd->buffer, cmd->bufflen);
776 bio_kunmap_irq(to, &flags);
777 }
778 kfree(cmd->buffer);
779 }
780
781 if (result) {
782 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
783 if (sense_valid)
784 sense_deferred = scsi_sense_is_deferred(&sshdr);
785 }
786 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
787 req->errors = result;
788 if (result) {
789 clear_errors = 0;
790 if (sense_valid && req->sense) {
791 /*
792 * SG_IO wants current and deferred errors
793 */
794 int len = 8 + cmd->sense_buffer[7];
795
796 if (len > SCSI_SENSE_BUFFERSIZE)
797 len = SCSI_SENSE_BUFFERSIZE;
798 memcpy(req->sense, cmd->sense_buffer, len);
799 req->sense_len = len;
800 }
801 } else
802 req->data_len = cmd->resid;
803 }
804
805 /*
806 * Zero these out. They now point to freed memory, and it is
807 * dangerous to hang onto the pointers.
808 */
809 cmd->buffer = NULL;
810 cmd->bufflen = 0;
811 cmd->request_buffer = NULL;
812 cmd->request_bufflen = 0;
813
814 /*
815 * Next deal with any sectors which we were able to correctly
816 * handle.
817 */
818 if (good_bytes >= 0) {
819 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, %d bytes done.\n",
820 req->nr_sectors, good_bytes));
821 SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
822
823 if (clear_errors)
824 req->errors = 0;
825 /*
826 * If multiple sectors are requested in one buffer, then
827 * they will have been finished off by the first command.
828 * If not, then we have a multi-buffer command.
829 *
830 * If block_bytes != 0, it means we had a medium error
831 * of some sort, and that we want to mark some number of
832 * sectors as not uptodate. Thus we want to inhibit
833 * requeueing right here - we will requeue down below
834 * when we handle the bad sectors.
835 */
836 cmd = scsi_end_request(cmd, 1, good_bytes, result == 0);
837
838 /*
839 * If the command completed without error, then either finish off the
840 * rest of the command, or start a new one.
841 */
842 if (result == 0 || cmd == NULL ) {
843 return;
844 }
845 }
846 /*
847 * Now, if we were good little boys and girls, Santa left us a request
848 * sense buffer. We can extract information from this, so we
849 * can choose a block to remap, etc.
850 */
851 if (sense_valid && !sense_deferred) {
852 switch (sshdr.sense_key) {
853 case UNIT_ATTENTION:
854 if (cmd->device->removable) {
855 /* detected disc change. set a bit
856 * and quietly refuse further access.
857 */
858 cmd->device->changed = 1;
859 cmd = scsi_end_request(cmd, 0,
860 this_count, 1);
861 return;
862 } else {
863 /*
864 * Must have been a power glitch, or a
865 * bus reset. Could not have been a
866 * media change, so we just retry the
867 * request and see what happens.
868 */
869 scsi_requeue_command(q, cmd);
870 return;
871 }
872 break;
873 case ILLEGAL_REQUEST:
874 /*
875 * If we had an ILLEGAL REQUEST returned, then we may
876 * have performed an unsupported command. The only
877 * thing this should be would be a ten byte read where
878 * only a six byte read was supported. Also, on a
879 * system where READ CAPACITY failed, we may have read
880 * past the end of the disk.
881 */
882 if (cmd->device->use_10_for_rw &&
883 (cmd->cmnd[0] == READ_10 ||
884 cmd->cmnd[0] == WRITE_10)) {
885 cmd->device->use_10_for_rw = 0;
886 /*
887 * This will cause a retry with a 6-byte
888 * command.
889 */
890 scsi_requeue_command(q, cmd);
891 result = 0;
892 } else {
893 cmd = scsi_end_request(cmd, 0, this_count, 1);
894 return;
895 }
896 break;
897 case NOT_READY:
898 /*
899 * If the device is in the process of becoming ready,
900 * retry.
901 */
902 if (sshdr.asc == 0x04 && sshdr.ascq == 0x01) {
903 scsi_requeue_command(q, cmd);
904 return;
905 }
906 printk(KERN_INFO "Device %s not ready.\n",
907 req->rq_disk ? req->rq_disk->disk_name : "");
908 cmd = scsi_end_request(cmd, 0, this_count, 1);
909 return;
910 case VOLUME_OVERFLOW:
911 printk(KERN_INFO "Volume overflow <%d %d %d %d> CDB: ",
912 cmd->device->host->host_no,
913 (int)cmd->device->channel,
914 (int)cmd->device->id, (int)cmd->device->lun);
915 __scsi_print_command(cmd->data_cmnd);
916 scsi_print_sense("", cmd);
917 cmd = scsi_end_request(cmd, 0, block_bytes, 1);
918 return;
919 default:
920 break;
921 }
922 } /* driver byte != 0 */
923 if (host_byte(result) == DID_RESET) {
924 /*
925 * Third party bus reset or reset for error
926 * recovery reasons. Just retry the request
927 * and see what happens.
928 */
929 scsi_requeue_command(q, cmd);
930 return;
931 }
932 if (result) {
e537a36d
JB
933 if (!(req->flags & REQ_SPECIAL))
934 printk(KERN_INFO "SCSI error : <%d %d %d %d> return code "
935 "= 0x%x\n", cmd->device->host->host_no,
936 cmd->device->channel,
937 cmd->device->id,
938 cmd->device->lun, result);
1da177e4
LT
939
940 if (driver_byte(result) & DRIVER_SENSE)
941 scsi_print_sense("", cmd);
942 /*
943 * Mark a single buffer as not uptodate. Queue the remainder.
944 * We sometimes get this cruft in the event that a medium error
945 * isn't properly reported.
946 */
947 block_bytes = req->hard_cur_sectors << 9;
948 if (!block_bytes)
949 block_bytes = req->data_len;
950 cmd = scsi_end_request(cmd, 0, block_bytes, 1);
951 }
952}
953EXPORT_SYMBOL(scsi_io_completion);
954
955/*
956 * Function: scsi_init_io()
957 *
958 * Purpose: SCSI I/O initialize function.
959 *
960 * Arguments: cmd - Command descriptor we wish to initialize
961 *
962 * Returns: 0 on success
963 * BLKPREP_DEFER if the failure is retryable
964 * BLKPREP_KILL if the failure is fatal
965 */
966static int scsi_init_io(struct scsi_cmnd *cmd)
967{
968 struct request *req = cmd->request;
969 struct scatterlist *sgpnt;
970 int count;
971
972 /*
973 * if this is a rq->data based REQ_BLOCK_PC, setup for a non-sg xfer
974 */
975 if ((req->flags & REQ_BLOCK_PC) && !req->bio) {
976 cmd->request_bufflen = req->data_len;
977 cmd->request_buffer = req->data;
978 req->buffer = req->data;
979 cmd->use_sg = 0;
980 return 0;
981 }
982
983 /*
984 * we used to not use scatter-gather for single segment request,
985 * but now we do (it makes highmem I/O easier to support without
986 * kmapping pages)
987 */
988 cmd->use_sg = req->nr_phys_segments;
989
990 /*
991 * if sg table allocation fails, requeue request later.
992 */
993 sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
beb6617d 994 if (unlikely(!sgpnt))
1da177e4 995 return BLKPREP_DEFER;
1da177e4
LT
996
997 cmd->request_buffer = (char *) sgpnt;
998 cmd->request_bufflen = req->nr_sectors << 9;
999 if (blk_pc_request(req))
1000 cmd->request_bufflen = req->data_len;
1001 req->buffer = NULL;
1002
1003 /*
1004 * Next, walk the list, and fill in the addresses and sizes of
1005 * each segment.
1006 */
1007 count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1008
1009 /*
1010 * mapped well, send it off
1011 */
1012 if (likely(count <= cmd->use_sg)) {
1013 cmd->use_sg = count;
1014 return 0;
1015 }
1016
1017 printk(KERN_ERR "Incorrect number of segments after building list\n");
1018 printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1019 printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1020 req->current_nr_sectors);
1021
1022 /* release the command and kill it */
1023 scsi_release_buffers(cmd);
1024 scsi_put_command(cmd);
1025 return BLKPREP_KILL;
1026}
1027
1028static int scsi_prepare_flush_fn(request_queue_t *q, struct request *rq)
1029{
1030 struct scsi_device *sdev = q->queuedata;
1031 struct scsi_driver *drv;
1032
1033 if (sdev->sdev_state == SDEV_RUNNING) {
1034 drv = *(struct scsi_driver **) rq->rq_disk->private_data;
1035
1036 if (drv->prepare_flush)
1037 return drv->prepare_flush(q, rq);
1038 }
1039
1040 return 0;
1041}
1042
1043static void scsi_end_flush_fn(request_queue_t *q, struct request *rq)
1044{
1045 struct scsi_device *sdev = q->queuedata;
1046 struct request *flush_rq = rq->end_io_data;
1047 struct scsi_driver *drv;
1048
1049 if (flush_rq->errors) {
1050 printk("scsi: barrier error, disabling flush support\n");
1051 blk_queue_ordered(q, QUEUE_ORDERED_NONE);
1052 }
1053
1054 if (sdev->sdev_state == SDEV_RUNNING) {
1055 drv = *(struct scsi_driver **) rq->rq_disk->private_data;
1056 drv->end_flush(q, rq);
1057 }
1058}
1059
1060static int scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
1061 sector_t *error_sector)
1062{
1063 struct scsi_device *sdev = q->queuedata;
1064 struct scsi_driver *drv;
1065
1066 if (sdev->sdev_state != SDEV_RUNNING)
1067 return -ENXIO;
1068
1069 drv = *(struct scsi_driver **) disk->private_data;
1070 if (drv->issue_flush)
1071 return drv->issue_flush(&sdev->sdev_gendev, error_sector);
1072
1073 return -EOPNOTSUPP;
1074}
1075
e537a36d
JB
1076static void scsi_generic_done(struct scsi_cmnd *cmd)
1077{
1078 BUG_ON(!blk_pc_request(cmd->request));
1079 scsi_io_completion(cmd, cmd->result == 0 ? cmd->bufflen : 0, 0);
1080}
1081
1da177e4
LT
1082static int scsi_prep_fn(struct request_queue *q, struct request *req)
1083{
1084 struct scsi_device *sdev = q->queuedata;
1085 struct scsi_cmnd *cmd;
1086 int specials_only = 0;
1087
1088 /*
1089 * Just check to see if the device is online. If it isn't, we
1090 * refuse to process any commands. The device must be brought
1091 * online before trying any recovery commands
1092 */
1093 if (unlikely(!scsi_device_online(sdev))) {
1094 printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to offline device\n",
1095 sdev->host->host_no, sdev->id, sdev->lun);
1096 return BLKPREP_KILL;
1097 }
1098 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1099 /* OK, we're not in a running state don't prep
1100 * user commands */
1101 if (sdev->sdev_state == SDEV_DEL) {
1102 /* Device is fully deleted, no commands
1103 * at all allowed down */
1104 printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to dead device\n",
1105 sdev->host->host_no, sdev->id, sdev->lun);
1106 return BLKPREP_KILL;
1107 }
1108 /* OK, we only allow special commands (i.e. not
1109 * user initiated ones */
1110 specials_only = sdev->sdev_state;
1111 }
1112
1113 /*
1114 * Find the actual device driver associated with this command.
1115 * The SPECIAL requests are things like character device or
1116 * ioctls, which did not originate from ll_rw_blk. Note that
1117 * the special field is also used to indicate the cmd for
1118 * the remainder of a partially fulfilled request that can
1119 * come up when there is a medium error. We have to treat
1120 * these two cases differently. We differentiate by looking
1121 * at request->cmd, as this tells us the real story.
1122 */
e537a36d 1123 if (req->flags & REQ_SPECIAL && req->special) {
1da177e4
LT
1124 struct scsi_request *sreq = req->special;
1125
1126 if (sreq->sr_magic == SCSI_REQ_MAGIC) {
1127 cmd = scsi_get_command(sreq->sr_device, GFP_ATOMIC);
1128 if (unlikely(!cmd))
1129 goto defer;
1130 scsi_init_cmd_from_req(cmd, sreq);
1131 } else
1132 cmd = req->special;
1133 } else if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1134
e537a36d 1135 if(unlikely(specials_only) && !(req->flags & REQ_SPECIAL)) {
1da177e4
LT
1136 if(specials_only == SDEV_QUIESCE ||
1137 specials_only == SDEV_BLOCK)
1138 return BLKPREP_DEFER;
1139
1140 printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to device being removed\n",
1141 sdev->host->host_no, sdev->id, sdev->lun);
1142 return BLKPREP_KILL;
1143 }
1144
1145
1146 /*
1147 * Now try and find a command block that we can use.
1148 */
1149 if (!req->special) {
1150 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1151 if (unlikely(!cmd))
1152 goto defer;
1153 } else
1154 cmd = req->special;
1155
1156 /* pull a tag out of the request if we have one */
1157 cmd->tag = req->tag;
1158 } else {
1159 blk_dump_rq_flags(req, "SCSI bad req");
1160 return BLKPREP_KILL;
1161 }
1162
1163 /* note the overloading of req->special. When the tag
1164 * is active it always means cmd. If the tag goes
1165 * back for re-queueing, it may be reset */
1166 req->special = cmd;
1167 cmd->request = req;
1168
1169 /*
1170 * FIXME: drop the lock here because the functions below
1171 * expect to be called without the queue lock held. Also,
1172 * previously, we dequeued the request before dropping the
1173 * lock. We hope REQ_STARTED prevents anything untoward from
1174 * happening now.
1175 */
1176 if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1177 struct scsi_driver *drv;
1178 int ret;
1179
1180 /*
1181 * This will do a couple of things:
1182 * 1) Fill in the actual SCSI command.
1183 * 2) Fill in any other upper-level specific fields
1184 * (timeout).
1185 *
1186 * If this returns 0, it means that the request failed
1187 * (reading past end of disk, reading offline device,
1188 * etc). This won't actually talk to the device, but
1189 * some kinds of consistency checking may cause the
1190 * request to be rejected immediately.
1191 */
1192
1193 /*
1194 * This sets up the scatter-gather table (allocating if
1195 * required).
1196 */
1197 ret = scsi_init_io(cmd);
1198 if (ret) /* BLKPREP_KILL return also releases the command */
1199 return ret;
1200
1201 /*
1202 * Initialize the actual SCSI command for this request.
1203 */
e537a36d
JB
1204 if (req->rq_disk) {
1205 drv = *(struct scsi_driver **)req->rq_disk->private_data;
1206 if (unlikely(!drv->init_command(cmd))) {
1207 scsi_release_buffers(cmd);
1208 scsi_put_command(cmd);
1209 return BLKPREP_KILL;
1210 }
1211 } else {
1212 memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1213 if (rq_data_dir(req) == WRITE)
1214 cmd->sc_data_direction = DMA_TO_DEVICE;
1215 else if (req->data_len)
1216 cmd->sc_data_direction = DMA_FROM_DEVICE;
1217 else
1218 cmd->sc_data_direction = DMA_NONE;
1219
1220 cmd->transfersize = req->data_len;
1221 cmd->allowed = 3;
1222 cmd->timeout_per_command = req->timeout;
1223 cmd->done = scsi_generic_done;
1da177e4
LT
1224 }
1225 }
1226
1227 /*
1228 * The request is now prepped, no need to come back here
1229 */
1230 req->flags |= REQ_DONTPREP;
1231 return BLKPREP_OK;
1232
1233 defer:
1234 /* If we defer, the elv_next_request() returns NULL, but the
1235 * queue must be restarted, so we plug here if no returning
1236 * command will automatically do that. */
1237 if (sdev->device_busy == 0)
1238 blk_plug_device(q);
1239 return BLKPREP_DEFER;
1240}
1241
1242/*
1243 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1244 * return 0.
1245 *
1246 * Called with the queue_lock held.
1247 */
1248static inline int scsi_dev_queue_ready(struct request_queue *q,
1249 struct scsi_device *sdev)
1250{
1251 if (sdev->device_busy >= sdev->queue_depth)
1252 return 0;
1253 if (sdev->device_busy == 0 && sdev->device_blocked) {
1254 /*
1255 * unblock after device_blocked iterates to zero
1256 */
1257 if (--sdev->device_blocked == 0) {
1258 SCSI_LOG_MLQUEUE(3,
1259 printk("scsi%d (%d:%d) unblocking device at"
1260 " zero depth\n", sdev->host->host_no,
1261 sdev->id, sdev->lun));
1262 } else {
1263 blk_plug_device(q);
1264 return 0;
1265 }
1266 }
1267 if (sdev->device_blocked)
1268 return 0;
1269
1270 return 1;
1271}
1272
1273/*
1274 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1275 * return 0. We must end up running the queue again whenever 0 is
1276 * returned, else IO can hang.
1277 *
1278 * Called with host_lock held.
1279 */
1280static inline int scsi_host_queue_ready(struct request_queue *q,
1281 struct Scsi_Host *shost,
1282 struct scsi_device *sdev)
1283{
d3301874 1284 if (shost->shost_state == SHOST_RECOVERY)
1da177e4
LT
1285 return 0;
1286 if (shost->host_busy == 0 && shost->host_blocked) {
1287 /*
1288 * unblock after host_blocked iterates to zero
1289 */
1290 if (--shost->host_blocked == 0) {
1291 SCSI_LOG_MLQUEUE(3,
1292 printk("scsi%d unblocking host at zero depth\n",
1293 shost->host_no));
1294 } else {
1295 blk_plug_device(q);
1296 return 0;
1297 }
1298 }
1299 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1300 shost->host_blocked || shost->host_self_blocked) {
1301 if (list_empty(&sdev->starved_entry))
1302 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1303 return 0;
1304 }
1305
1306 /* We're OK to process the command, so we can't be starved */
1307 if (!list_empty(&sdev->starved_entry))
1308 list_del_init(&sdev->starved_entry);
1309
1310 return 1;
1311}
1312
1313/*
1314 * Kill requests for a dead device
1315 */
1316static void scsi_kill_requests(request_queue_t *q)
1317{
1318 struct request *req;
1319
1320 while ((req = elv_next_request(q)) != NULL) {
1321 blkdev_dequeue_request(req);
1322 req->flags |= REQ_QUIET;
1323 while (end_that_request_first(req, 0, req->nr_sectors))
1324 ;
1325 end_that_request_last(req);
1326 }
1327}
1328
1329/*
1330 * Function: scsi_request_fn()
1331 *
1332 * Purpose: Main strategy routine for SCSI.
1333 *
1334 * Arguments: q - Pointer to actual queue.
1335 *
1336 * Returns: Nothing
1337 *
1338 * Lock status: IO request lock assumed to be held when called.
1339 */
1340static void scsi_request_fn(struct request_queue *q)
1341{
1342 struct scsi_device *sdev = q->queuedata;
1343 struct Scsi_Host *shost;
1344 struct scsi_cmnd *cmd;
1345 struct request *req;
1346
1347 if (!sdev) {
1348 printk("scsi: killing requests for dead queue\n");
1349 scsi_kill_requests(q);
1350 return;
1351 }
1352
1353 if(!get_device(&sdev->sdev_gendev))
1354 /* We must be tearing the block queue down already */
1355 return;
1356
1357 /*
1358 * To start with, we keep looping until the queue is empty, or until
1359 * the host is no longer able to accept any more requests.
1360 */
1361 shost = sdev->host;
1362 while (!blk_queue_plugged(q)) {
1363 int rtn;
1364 /*
1365 * get next queueable request. We do this early to make sure
1366 * that the request is fully prepared even if we cannot
1367 * accept it.
1368 */
1369 req = elv_next_request(q);
1370 if (!req || !scsi_dev_queue_ready(q, sdev))
1371 break;
1372
1373 if (unlikely(!scsi_device_online(sdev))) {
1374 printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to offline device\n",
1375 sdev->host->host_no, sdev->id, sdev->lun);
1376 blkdev_dequeue_request(req);
1377 req->flags |= REQ_QUIET;
1378 while (end_that_request_first(req, 0, req->nr_sectors))
1379 ;
1380 end_that_request_last(req);
1381 continue;
1382 }
1383
1384
1385 /*
1386 * Remove the request from the request list.
1387 */
1388 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1389 blkdev_dequeue_request(req);
1390 sdev->device_busy++;
1391
1392 spin_unlock(q->queue_lock);
1393 spin_lock(shost->host_lock);
1394
1395 if (!scsi_host_queue_ready(q, shost, sdev))
1396 goto not_ready;
1397 if (sdev->single_lun) {
1398 if (scsi_target(sdev)->starget_sdev_user &&
1399 scsi_target(sdev)->starget_sdev_user != sdev)
1400 goto not_ready;
1401 scsi_target(sdev)->starget_sdev_user = sdev;
1402 }
1403 shost->host_busy++;
1404
1405 /*
1406 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1407 * take the lock again.
1408 */
1409 spin_unlock_irq(shost->host_lock);
1410
1411 cmd = req->special;
1412 if (unlikely(cmd == NULL)) {
1413 printk(KERN_CRIT "impossible request in %s.\n"
1414 "please mail a stack trace to "
1415 "linux-scsi@vger.kernel.org",
1416 __FUNCTION__);
1417 BUG();
1418 }
1419
1420 /*
1421 * Finally, initialize any error handling parameters, and set up
1422 * the timers for timeouts.
1423 */
1424 scsi_init_cmd_errh(cmd);
1425
1426 /*
1427 * Dispatch the command to the low-level driver.
1428 */
1429 rtn = scsi_dispatch_cmd(cmd);
1430 spin_lock_irq(q->queue_lock);
1431 if(rtn) {
1432 /* we're refusing the command; because of
1433 * the way locks get dropped, we need to
1434 * check here if plugging is required */
1435 if(sdev->device_busy == 0)
1436 blk_plug_device(q);
1437
1438 break;
1439 }
1440 }
1441
1442 goto out;
1443
1444 not_ready:
1445 spin_unlock_irq(shost->host_lock);
1446
1447 /*
1448 * lock q, handle tag, requeue req, and decrement device_busy. We
1449 * must return with queue_lock held.
1450 *
1451 * Decrementing device_busy without checking it is OK, as all such
1452 * cases (host limits or settings) should run the queue at some
1453 * later time.
1454 */
1455 spin_lock_irq(q->queue_lock);
1456 blk_requeue_request(q, req);
1457 sdev->device_busy--;
1458 if(sdev->device_busy == 0)
1459 blk_plug_device(q);
1460 out:
1461 /* must be careful here...if we trigger the ->remove() function
1462 * we cannot be holding the q lock */
1463 spin_unlock_irq(q->queue_lock);
1464 put_device(&sdev->sdev_gendev);
1465 spin_lock_irq(q->queue_lock);
1466}
1467
1468u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1469{
1470 struct device *host_dev;
1471 u64 bounce_limit = 0xffffffff;
1472
1473 if (shost->unchecked_isa_dma)
1474 return BLK_BOUNCE_ISA;
1475 /*
1476 * Platforms with virtual-DMA translation
1477 * hardware have no practical limit.
1478 */
1479 if (!PCI_DMA_BUS_IS_PHYS)
1480 return BLK_BOUNCE_ANY;
1481
1482 host_dev = scsi_get_device(shost);
1483 if (host_dev && host_dev->dma_mask)
1484 bounce_limit = *host_dev->dma_mask;
1485
1486 return bounce_limit;
1487}
1488EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1489
1490struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1491{
1492 struct Scsi_Host *shost = sdev->host;
1493 struct request_queue *q;
1494
152587de 1495 q = blk_init_queue(scsi_request_fn, NULL);
1da177e4
LT
1496 if (!q)
1497 return NULL;
1498
1499 blk_queue_prep_rq(q, scsi_prep_fn);
1500
1501 blk_queue_max_hw_segments(q, shost->sg_tablesize);
1502 blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1503 blk_queue_max_sectors(q, shost->max_sectors);
1504 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1505 blk_queue_segment_boundary(q, shost->dma_boundary);
1506 blk_queue_issue_flush_fn(q, scsi_issue_flush_fn);
1507
1508 /*
1509 * ordered tags are superior to flush ordering
1510 */
1511 if (shost->ordered_tag)
1512 blk_queue_ordered(q, QUEUE_ORDERED_TAG);
1513 else if (shost->ordered_flush) {
1514 blk_queue_ordered(q, QUEUE_ORDERED_FLUSH);
1515 q->prepare_flush_fn = scsi_prepare_flush_fn;
1516 q->end_flush_fn = scsi_end_flush_fn;
1517 }
1518
1519 if (!shost->use_clustering)
1520 clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1521 return q;
1522}
1523
1524void scsi_free_queue(struct request_queue *q)
1525{
1526 blk_cleanup_queue(q);
1527}
1528
1529/*
1530 * Function: scsi_block_requests()
1531 *
1532 * Purpose: Utility function used by low-level drivers to prevent further
1533 * commands from being queued to the device.
1534 *
1535 * Arguments: shost - Host in question
1536 *
1537 * Returns: Nothing
1538 *
1539 * Lock status: No locks are assumed held.
1540 *
1541 * Notes: There is no timer nor any other means by which the requests
1542 * get unblocked other than the low-level driver calling
1543 * scsi_unblock_requests().
1544 */
1545void scsi_block_requests(struct Scsi_Host *shost)
1546{
1547 shost->host_self_blocked = 1;
1548}
1549EXPORT_SYMBOL(scsi_block_requests);
1550
1551/*
1552 * Function: scsi_unblock_requests()
1553 *
1554 * Purpose: Utility function used by low-level drivers to allow further
1555 * commands from being queued to the device.
1556 *
1557 * Arguments: shost - Host in question
1558 *
1559 * Returns: Nothing
1560 *
1561 * Lock status: No locks are assumed held.
1562 *
1563 * Notes: There is no timer nor any other means by which the requests
1564 * get unblocked other than the low-level driver calling
1565 * scsi_unblock_requests().
1566 *
1567 * This is done as an API function so that changes to the
1568 * internals of the scsi mid-layer won't require wholesale
1569 * changes to drivers that use this feature.
1570 */
1571void scsi_unblock_requests(struct Scsi_Host *shost)
1572{
1573 shost->host_self_blocked = 0;
1574 scsi_run_host_queues(shost);
1575}
1576EXPORT_SYMBOL(scsi_unblock_requests);
1577
1578int __init scsi_init_queue(void)
1579{
1580 int i;
1581
1582 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1583 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1584 int size = sgp->size * sizeof(struct scatterlist);
1585
1586 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1587 SLAB_HWCACHE_ALIGN, NULL, NULL);
1588 if (!sgp->slab) {
1589 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1590 sgp->name);
1591 }
1592
1593 sgp->pool = mempool_create(SG_MEMPOOL_SIZE,
1594 mempool_alloc_slab, mempool_free_slab,
1595 sgp->slab);
1596 if (!sgp->pool) {
1597 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1598 sgp->name);
1599 }
1600 }
1601
1602 return 0;
1603}
1604
1605void scsi_exit_queue(void)
1606{
1607 int i;
1608
1609 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1610 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1611 mempool_destroy(sgp->pool);
1612 kmem_cache_destroy(sgp->slab);
1613 }
1614}
1615/**
1616 * __scsi_mode_sense - issue a mode sense, falling back from 10 to
1617 * six bytes if necessary.
1cf72699 1618 * @sdev: SCSI device to be queried
1da177e4
LT
1619 * @dbd: set if mode sense will allow block descriptors to be returned
1620 * @modepage: mode page being requested
1621 * @buffer: request buffer (may not be smaller than eight bytes)
1622 * @len: length of request buffer.
1623 * @timeout: command timeout
1624 * @retries: number of retries before failing
1625 * @data: returns a structure abstracting the mode header data
1cf72699
JB
1626 * @sense: place to put sense data (or NULL if no sense to be collected).
1627 * must be SCSI_SENSE_BUFFERSIZE big.
1da177e4
LT
1628 *
1629 * Returns zero if unsuccessful, or the header offset (either 4
1630 * or 8 depending on whether a six or ten byte command was
1631 * issued) if successful.
1632 **/
1633int
1cf72699 1634scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1da177e4 1635 unsigned char *buffer, int len, int timeout, int retries,
1cf72699 1636 struct scsi_mode_data *data, char *sense) {
1da177e4
LT
1637 unsigned char cmd[12];
1638 int use_10_for_ms;
1639 int header_length;
1cf72699
JB
1640 int result;
1641 char *sense_buffer = NULL;
1da177e4
LT
1642
1643 memset(data, 0, sizeof(*data));
1644 memset(&cmd[0], 0, 12);
1645 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1646 cmd[2] = modepage;
1647
1cf72699
JB
1648 if (!sense) {
1649 sense_buffer = kmalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
1650 if (!sense_buffer) {
1651 dev_printk(KERN_ERR, &sdev->sdev_gendev, "failed to allocate sense buffer\n");
1652 return 0;
1653 }
1654 sense = sense_buffer;
1655 }
1da177e4 1656 retry:
1cf72699 1657 use_10_for_ms = sdev->use_10_for_ms;
1da177e4
LT
1658
1659 if (use_10_for_ms) {
1660 if (len < 8)
1661 len = 8;
1662
1663 cmd[0] = MODE_SENSE_10;
1664 cmd[8] = len;
1665 header_length = 8;
1666 } else {
1667 if (len < 4)
1668 len = 4;
1669
1670 cmd[0] = MODE_SENSE;
1671 cmd[4] = len;
1672 header_length = 4;
1673 }
1674
1cf72699 1675 memset(sense, 0, SCSI_SENSE_BUFFERSIZE);
1da177e4
LT
1676
1677 memset(buffer, 0, len);
1678
1cf72699
JB
1679 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1680 sense, timeout, retries);
1da177e4
LT
1681
1682 /* This code looks awful: what it's doing is making sure an
1683 * ILLEGAL REQUEST sense return identifies the actual command
1684 * byte as the problem. MODE_SENSE commands can return
1685 * ILLEGAL REQUEST if the code page isn't supported */
1686
1cf72699
JB
1687 if (use_10_for_ms && !scsi_status_is_good(result) &&
1688 (driver_byte(result) & DRIVER_SENSE)) {
1da177e4
LT
1689 struct scsi_sense_hdr sshdr;
1690
1cf72699 1691 if (scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, &sshdr)) {
1da177e4
LT
1692 if ((sshdr.sense_key == ILLEGAL_REQUEST) &&
1693 (sshdr.asc == 0x20) && (sshdr.ascq == 0)) {
1694 /*
1695 * Invalid command operation code
1696 */
1cf72699 1697 sdev->use_10_for_ms = 0;
1da177e4
LT
1698 goto retry;
1699 }
1700 }
1701 }
1702
1cf72699 1703 if(scsi_status_is_good(result)) {
1da177e4
LT
1704 data->header_length = header_length;
1705 if(use_10_for_ms) {
1706 data->length = buffer[0]*256 + buffer[1] + 2;
1707 data->medium_type = buffer[2];
1708 data->device_specific = buffer[3];
1709 data->longlba = buffer[4] & 0x01;
1710 data->block_descriptor_length = buffer[6]*256
1711 + buffer[7];
1712 } else {
1713 data->length = buffer[0] + 1;
1714 data->medium_type = buffer[1];
1715 data->device_specific = buffer[2];
1716 data->block_descriptor_length = buffer[3];
1717 }
1718 }
1719
1cf72699
JB
1720 kfree(sense_buffer);
1721 return result;
1da177e4
LT
1722}
1723EXPORT_SYMBOL(scsi_mode_sense);
1724
1725int
1726scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1727{
1da177e4
LT
1728 char cmd[] = {
1729 TEST_UNIT_READY, 0, 0, 0, 0, 0,
1730 };
1cf72699 1731 char sense[SCSI_SENSE_BUFFERSIZE];
1da177e4
LT
1732 int result;
1733
1cf72699
JB
1734 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sense,
1735 timeout, retries);
1da177e4 1736
1cf72699 1737 if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1da177e4
LT
1738 struct scsi_sense_hdr sshdr;
1739
1cf72699
JB
1740 if ((scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE,
1741 &sshdr)) &&
1da177e4
LT
1742 ((sshdr.sense_key == UNIT_ATTENTION) ||
1743 (sshdr.sense_key == NOT_READY))) {
1744 sdev->changed = 1;
1cf72699 1745 result = 0;
1da177e4
LT
1746 }
1747 }
1da177e4
LT
1748 return result;
1749}
1750EXPORT_SYMBOL(scsi_test_unit_ready);
1751
1752/**
1753 * scsi_device_set_state - Take the given device through the device
1754 * state model.
1755 * @sdev: scsi device to change the state of.
1756 * @state: state to change to.
1757 *
1758 * Returns zero if unsuccessful or an error if the requested
1759 * transition is illegal.
1760 **/
1761int
1762scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1763{
1764 enum scsi_device_state oldstate = sdev->sdev_state;
1765
1766 if (state == oldstate)
1767 return 0;
1768
1769 switch (state) {
1770 case SDEV_CREATED:
1771 /* There are no legal states that come back to
1772 * created. This is the manually initialised start
1773 * state */
1774 goto illegal;
1775
1776 case SDEV_RUNNING:
1777 switch (oldstate) {
1778 case SDEV_CREATED:
1779 case SDEV_OFFLINE:
1780 case SDEV_QUIESCE:
1781 case SDEV_BLOCK:
1782 break;
1783 default:
1784 goto illegal;
1785 }
1786 break;
1787
1788 case SDEV_QUIESCE:
1789 switch (oldstate) {
1790 case SDEV_RUNNING:
1791 case SDEV_OFFLINE:
1792 break;
1793 default:
1794 goto illegal;
1795 }
1796 break;
1797
1798 case SDEV_OFFLINE:
1799 switch (oldstate) {
1800 case SDEV_CREATED:
1801 case SDEV_RUNNING:
1802 case SDEV_QUIESCE:
1803 case SDEV_BLOCK:
1804 break;
1805 default:
1806 goto illegal;
1807 }
1808 break;
1809
1810 case SDEV_BLOCK:
1811 switch (oldstate) {
1812 case SDEV_CREATED:
1813 case SDEV_RUNNING:
1814 break;
1815 default:
1816 goto illegal;
1817 }
1818 break;
1819
1820 case SDEV_CANCEL:
1821 switch (oldstate) {
1822 case SDEV_CREATED:
1823 case SDEV_RUNNING:
1824 case SDEV_OFFLINE:
1825 case SDEV_BLOCK:
1826 break;
1827 default:
1828 goto illegal;
1829 }
1830 break;
1831
1832 case SDEV_DEL:
1833 switch (oldstate) {
1834 case SDEV_CANCEL:
1835 break;
1836 default:
1837 goto illegal;
1838 }
1839 break;
1840
1841 }
1842 sdev->sdev_state = state;
1843 return 0;
1844
1845 illegal:
1846 SCSI_LOG_ERROR_RECOVERY(1,
1847 dev_printk(KERN_ERR, &sdev->sdev_gendev,
1848 "Illegal state transition %s->%s\n",
1849 scsi_device_state_name(oldstate),
1850 scsi_device_state_name(state))
1851 );
1852 return -EINVAL;
1853}
1854EXPORT_SYMBOL(scsi_device_set_state);
1855
1856/**
1857 * scsi_device_quiesce - Block user issued commands.
1858 * @sdev: scsi device to quiesce.
1859 *
1860 * This works by trying to transition to the SDEV_QUIESCE state
1861 * (which must be a legal transition). When the device is in this
1862 * state, only special requests will be accepted, all others will
1863 * be deferred. Since special requests may also be requeued requests,
1864 * a successful return doesn't guarantee the device will be
1865 * totally quiescent.
1866 *
1867 * Must be called with user context, may sleep.
1868 *
1869 * Returns zero if unsuccessful or an error if not.
1870 **/
1871int
1872scsi_device_quiesce(struct scsi_device *sdev)
1873{
1874 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
1875 if (err)
1876 return err;
1877
1878 scsi_run_queue(sdev->request_queue);
1879 while (sdev->device_busy) {
1880 msleep_interruptible(200);
1881 scsi_run_queue(sdev->request_queue);
1882 }
1883 return 0;
1884}
1885EXPORT_SYMBOL(scsi_device_quiesce);
1886
1887/**
1888 * scsi_device_resume - Restart user issued commands to a quiesced device.
1889 * @sdev: scsi device to resume.
1890 *
1891 * Moves the device from quiesced back to running and restarts the
1892 * queues.
1893 *
1894 * Must be called with user context, may sleep.
1895 **/
1896void
1897scsi_device_resume(struct scsi_device *sdev)
1898{
1899 if(scsi_device_set_state(sdev, SDEV_RUNNING))
1900 return;
1901 scsi_run_queue(sdev->request_queue);
1902}
1903EXPORT_SYMBOL(scsi_device_resume);
1904
1905static void
1906device_quiesce_fn(struct scsi_device *sdev, void *data)
1907{
1908 scsi_device_quiesce(sdev);
1909}
1910
1911void
1912scsi_target_quiesce(struct scsi_target *starget)
1913{
1914 starget_for_each_device(starget, NULL, device_quiesce_fn);
1915}
1916EXPORT_SYMBOL(scsi_target_quiesce);
1917
1918static void
1919device_resume_fn(struct scsi_device *sdev, void *data)
1920{
1921 scsi_device_resume(sdev);
1922}
1923
1924void
1925scsi_target_resume(struct scsi_target *starget)
1926{
1927 starget_for_each_device(starget, NULL, device_resume_fn);
1928}
1929EXPORT_SYMBOL(scsi_target_resume);
1930
1931/**
1932 * scsi_internal_device_block - internal function to put a device
1933 * temporarily into the SDEV_BLOCK state
1934 * @sdev: device to block
1935 *
1936 * Block request made by scsi lld's to temporarily stop all
1937 * scsi commands on the specified device. Called from interrupt
1938 * or normal process context.
1939 *
1940 * Returns zero if successful or error if not
1941 *
1942 * Notes:
1943 * This routine transitions the device to the SDEV_BLOCK state
1944 * (which must be a legal transition). When the device is in this
1945 * state, all commands are deferred until the scsi lld reenables
1946 * the device with scsi_device_unblock or device_block_tmo fires.
1947 * This routine assumes the host_lock is held on entry.
1948 **/
1949int
1950scsi_internal_device_block(struct scsi_device *sdev)
1951{
1952 request_queue_t *q = sdev->request_queue;
1953 unsigned long flags;
1954 int err = 0;
1955
1956 err = scsi_device_set_state(sdev, SDEV_BLOCK);
1957 if (err)
1958 return err;
1959
1960 /*
1961 * The device has transitioned to SDEV_BLOCK. Stop the
1962 * block layer from calling the midlayer with this device's
1963 * request queue.
1964 */
1965 spin_lock_irqsave(q->queue_lock, flags);
1966 blk_stop_queue(q);
1967 spin_unlock_irqrestore(q->queue_lock, flags);
1968
1969 return 0;
1970}
1971EXPORT_SYMBOL_GPL(scsi_internal_device_block);
1972
1973/**
1974 * scsi_internal_device_unblock - resume a device after a block request
1975 * @sdev: device to resume
1976 *
1977 * Called by scsi lld's or the midlayer to restart the device queue
1978 * for the previously suspended scsi device. Called from interrupt or
1979 * normal process context.
1980 *
1981 * Returns zero if successful or error if not.
1982 *
1983 * Notes:
1984 * This routine transitions the device to the SDEV_RUNNING state
1985 * (which must be a legal transition) allowing the midlayer to
1986 * goose the queue for this device. This routine assumes the
1987 * host_lock is held upon entry.
1988 **/
1989int
1990scsi_internal_device_unblock(struct scsi_device *sdev)
1991{
1992 request_queue_t *q = sdev->request_queue;
1993 int err;
1994 unsigned long flags;
1995
1996 /*
1997 * Try to transition the scsi device to SDEV_RUNNING
1998 * and goose the device queue if successful.
1999 */
2000 err = scsi_device_set_state(sdev, SDEV_RUNNING);
2001 if (err)
2002 return err;
2003
2004 spin_lock_irqsave(q->queue_lock, flags);
2005 blk_start_queue(q);
2006 spin_unlock_irqrestore(q->queue_lock, flags);
2007
2008 return 0;
2009}
2010EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2011
2012static void
2013device_block(struct scsi_device *sdev, void *data)
2014{
2015 scsi_internal_device_block(sdev);
2016}
2017
2018static int
2019target_block(struct device *dev, void *data)
2020{
2021 if (scsi_is_target_device(dev))
2022 starget_for_each_device(to_scsi_target(dev), NULL,
2023 device_block);
2024 return 0;
2025}
2026
2027void
2028scsi_target_block(struct device *dev)
2029{
2030 if (scsi_is_target_device(dev))
2031 starget_for_each_device(to_scsi_target(dev), NULL,
2032 device_block);
2033 else
2034 device_for_each_child(dev, NULL, target_block);
2035}
2036EXPORT_SYMBOL_GPL(scsi_target_block);
2037
2038static void
2039device_unblock(struct scsi_device *sdev, void *data)
2040{
2041 scsi_internal_device_unblock(sdev);
2042}
2043
2044static int
2045target_unblock(struct device *dev, void *data)
2046{
2047 if (scsi_is_target_device(dev))
2048 starget_for_each_device(to_scsi_target(dev), NULL,
2049 device_unblock);
2050 return 0;
2051}
2052
2053void
2054scsi_target_unblock(struct device *dev)
2055{
2056 if (scsi_is_target_device(dev))
2057 starget_for_each_device(to_scsi_target(dev), NULL,
2058 device_unblock);
2059 else
2060 device_for_each_child(dev, NULL, target_unblock);
2061}
2062EXPORT_SYMBOL_GPL(scsi_target_unblock);
This page took 0.152791 seconds and 5 git commands to generate.