spi/spi_s3c24xx: Use spi_bitbang_stop instead of spi_unregister_master in s3c24xx_spi...
[deliverable/linux.git] / drivers / spi / amba-pl022.c
CommitLineData
b43d65f7
LW
1/*
2 * drivers/spi/amba-pl022.c
3 *
4 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
5 *
6 * Copyright (C) 2008-2009 ST-Ericsson AB
7 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
8 *
9 * Author: Linus Walleij <linus.walleij@stericsson.com>
10 *
11 * Initial version inspired by:
12 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
13 * Initial adoption to PL022 by:
14 * Sachin Verma <sachin.verma@st.com>
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License as published by
18 * the Free Software Foundation; either version 2 of the License, or
19 * (at your option) any later version.
20 *
21 * This program is distributed in the hope that it will be useful,
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 * GNU General Public License for more details.
25 */
26
b43d65f7
LW
27#include <linux/init.h>
28#include <linux/module.h>
29#include <linux/device.h>
30#include <linux/ioport.h>
31#include <linux/errno.h>
32#include <linux/interrupt.h>
33#include <linux/spi/spi.h>
34#include <linux/workqueue.h>
b43d65f7
LW
35#include <linux/delay.h>
36#include <linux/clk.h>
37#include <linux/err.h>
38#include <linux/amba/bus.h>
39#include <linux/amba/pl022.h>
40#include <linux/io.h>
5a0e3ad6 41#include <linux/slab.h>
b1b6b9aa
LW
42#include <linux/dmaengine.h>
43#include <linux/dma-mapping.h>
44#include <linux/scatterlist.h>
b43d65f7
LW
45
46/*
47 * This macro is used to define some register default values.
48 * reg is masked with mask, the OR:ed with an (again masked)
49 * val shifted sb steps to the left.
50 */
51#define SSP_WRITE_BITS(reg, val, mask, sb) \
52 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
53
54/*
55 * This macro is also used to define some default values.
56 * It will just shift val by sb steps to the left and mask
57 * the result with mask.
58 */
59#define GEN_MASK_BITS(val, mask, sb) \
60 (((val)<<(sb)) & (mask))
61
62#define DRIVE_TX 0
63#define DO_NOT_DRIVE_TX 1
64
65#define DO_NOT_QUEUE_DMA 0
66#define QUEUE_DMA 1
67
68#define RX_TRANSFER 1
69#define TX_TRANSFER 2
70
71/*
72 * Macros to access SSP Registers with their offsets
73 */
74#define SSP_CR0(r) (r + 0x000)
75#define SSP_CR1(r) (r + 0x004)
76#define SSP_DR(r) (r + 0x008)
77#define SSP_SR(r) (r + 0x00C)
78#define SSP_CPSR(r) (r + 0x010)
79#define SSP_IMSC(r) (r + 0x014)
80#define SSP_RIS(r) (r + 0x018)
81#define SSP_MIS(r) (r + 0x01C)
82#define SSP_ICR(r) (r + 0x020)
83#define SSP_DMACR(r) (r + 0x024)
84#define SSP_ITCR(r) (r + 0x080)
85#define SSP_ITIP(r) (r + 0x084)
86#define SSP_ITOP(r) (r + 0x088)
87#define SSP_TDR(r) (r + 0x08C)
88
89#define SSP_PID0(r) (r + 0xFE0)
90#define SSP_PID1(r) (r + 0xFE4)
91#define SSP_PID2(r) (r + 0xFE8)
92#define SSP_PID3(r) (r + 0xFEC)
93
94#define SSP_CID0(r) (r + 0xFF0)
95#define SSP_CID1(r) (r + 0xFF4)
96#define SSP_CID2(r) (r + 0xFF8)
97#define SSP_CID3(r) (r + 0xFFC)
98
99/*
100 * SSP Control Register 0 - SSP_CR0
101 */
556f4aeb
LW
102#define SSP_CR0_MASK_DSS (0x0FUL << 0)
103#define SSP_CR0_MASK_FRF (0x3UL << 4)
b43d65f7
LW
104#define SSP_CR0_MASK_SPO (0x1UL << 6)
105#define SSP_CR0_MASK_SPH (0x1UL << 7)
106#define SSP_CR0_MASK_SCR (0xFFUL << 8)
556f4aeb
LW
107
108/*
109 * The ST version of this block moves som bits
110 * in SSP_CR0 and extends it to 32 bits
111 */
112#define SSP_CR0_MASK_DSS_ST (0x1FUL << 0)
113#define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
114#define SSP_CR0_MASK_CSS_ST (0x1FUL << 16)
115#define SSP_CR0_MASK_FRF_ST (0x3UL << 21)
116
b43d65f7
LW
117
118/*
119 * SSP Control Register 0 - SSP_CR1
120 */
121#define SSP_CR1_MASK_LBM (0x1UL << 0)
122#define SSP_CR1_MASK_SSE (0x1UL << 1)
123#define SSP_CR1_MASK_MS (0x1UL << 2)
124#define SSP_CR1_MASK_SOD (0x1UL << 3)
b43d65f7
LW
125
126/*
556f4aeb
LW
127 * The ST version of this block adds some bits
128 * in SSP_CR1
b43d65f7 129 */
556f4aeb
LW
130#define SSP_CR1_MASK_RENDN_ST (0x1UL << 4)
131#define SSP_CR1_MASK_TENDN_ST (0x1UL << 5)
132#define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6)
133#define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
134#define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
781c7b12
LW
135/* This one is only in the PL023 variant */
136#define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
b43d65f7
LW
137
138/*
139 * SSP Status Register - SSP_SR
140 */
141#define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
142#define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
143#define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
556f4aeb 144#define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
b43d65f7
LW
145#define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
146
147/*
148 * SSP Clock Prescale Register - SSP_CPSR
149 */
150#define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
151
152/*
153 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
154 */
155#define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
156#define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
157#define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
158#define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
159
160/*
161 * SSP Raw Interrupt Status Register - SSP_RIS
162 */
163/* Receive Overrun Raw Interrupt status */
164#define SSP_RIS_MASK_RORRIS (0x1UL << 0)
165/* Receive Timeout Raw Interrupt status */
166#define SSP_RIS_MASK_RTRIS (0x1UL << 1)
167/* Receive FIFO Raw Interrupt status */
168#define SSP_RIS_MASK_RXRIS (0x1UL << 2)
169/* Transmit FIFO Raw Interrupt status */
170#define SSP_RIS_MASK_TXRIS (0x1UL << 3)
171
172/*
173 * SSP Masked Interrupt Status Register - SSP_MIS
174 */
175/* Receive Overrun Masked Interrupt status */
176#define SSP_MIS_MASK_RORMIS (0x1UL << 0)
177/* Receive Timeout Masked Interrupt status */
178#define SSP_MIS_MASK_RTMIS (0x1UL << 1)
179/* Receive FIFO Masked Interrupt status */
180#define SSP_MIS_MASK_RXMIS (0x1UL << 2)
181/* Transmit FIFO Masked Interrupt status */
182#define SSP_MIS_MASK_TXMIS (0x1UL << 3)
183
184/*
185 * SSP Interrupt Clear Register - SSP_ICR
186 */
187/* Receive Overrun Raw Clear Interrupt bit */
188#define SSP_ICR_MASK_RORIC (0x1UL << 0)
189/* Receive Timeout Clear Interrupt bit */
190#define SSP_ICR_MASK_RTIC (0x1UL << 1)
191
192/*
193 * SSP DMA Control Register - SSP_DMACR
194 */
195/* Receive DMA Enable bit */
196#define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
197/* Transmit DMA Enable bit */
198#define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
199
200/*
201 * SSP Integration Test control Register - SSP_ITCR
202 */
203#define SSP_ITCR_MASK_ITEN (0x1UL << 0)
204#define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
205
206/*
207 * SSP Integration Test Input Register - SSP_ITIP
208 */
209#define ITIP_MASK_SSPRXD (0x1UL << 0)
210#define ITIP_MASK_SSPFSSIN (0x1UL << 1)
211#define ITIP_MASK_SSPCLKIN (0x1UL << 2)
212#define ITIP_MASK_RXDMAC (0x1UL << 3)
213#define ITIP_MASK_TXDMAC (0x1UL << 4)
214#define ITIP_MASK_SSPTXDIN (0x1UL << 5)
215
216/*
217 * SSP Integration Test output Register - SSP_ITOP
218 */
219#define ITOP_MASK_SSPTXD (0x1UL << 0)
220#define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
221#define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
222#define ITOP_MASK_SSPOEn (0x1UL << 3)
223#define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
224#define ITOP_MASK_RORINTR (0x1UL << 5)
225#define ITOP_MASK_RTINTR (0x1UL << 6)
226#define ITOP_MASK_RXINTR (0x1UL << 7)
227#define ITOP_MASK_TXINTR (0x1UL << 8)
228#define ITOP_MASK_INTR (0x1UL << 9)
229#define ITOP_MASK_RXDMABREQ (0x1UL << 10)
230#define ITOP_MASK_RXDMASREQ (0x1UL << 11)
231#define ITOP_MASK_TXDMABREQ (0x1UL << 12)
232#define ITOP_MASK_TXDMASREQ (0x1UL << 13)
233
234/*
235 * SSP Test Data Register - SSP_TDR
236 */
556f4aeb 237#define TDR_MASK_TESTDATA (0xFFFFFFFF)
b43d65f7
LW
238
239/*
240 * Message State
241 * we use the spi_message.state (void *) pointer to
242 * hold a single state value, that's why all this
243 * (void *) casting is done here.
244 */
556f4aeb
LW
245#define STATE_START ((void *) 0)
246#define STATE_RUNNING ((void *) 1)
247#define STATE_DONE ((void *) 2)
248#define STATE_ERROR ((void *) -1)
b43d65f7 249
b43d65f7
LW
250/*
251 * SSP State - Whether Enabled or Disabled
252 */
556f4aeb
LW
253#define SSP_DISABLED (0)
254#define SSP_ENABLED (1)
b43d65f7
LW
255
256/*
257 * SSP DMA State - Whether DMA Enabled or Disabled
258 */
556f4aeb
LW
259#define SSP_DMA_DISABLED (0)
260#define SSP_DMA_ENABLED (1)
b43d65f7
LW
261
262/*
263 * SSP Clock Defaults
264 */
556f4aeb
LW
265#define SSP_DEFAULT_CLKRATE 0x2
266#define SSP_DEFAULT_PRESCALE 0x40
b43d65f7
LW
267
268/*
269 * SSP Clock Parameter ranges
270 */
271#define CPSDVR_MIN 0x02
272#define CPSDVR_MAX 0xFE
273#define SCR_MIN 0x00
274#define SCR_MAX 0xFF
275
276/*
277 * SSP Interrupt related Macros
278 */
279#define DEFAULT_SSP_REG_IMSC 0x0UL
280#define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
281#define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
282
283#define CLEAR_ALL_INTERRUPTS 0x3
284
a18c266f
MT
285#define SPI_POLLING_TIMEOUT 1000
286
b43d65f7
LW
287
288/*
289 * The type of reading going on on this chip
290 */
291enum ssp_reading {
292 READING_NULL,
293 READING_U8,
294 READING_U16,
295 READING_U32
296};
297
298/**
299 * The type of writing going on on this chip
300 */
301enum ssp_writing {
302 WRITING_NULL,
303 WRITING_U8,
304 WRITING_U16,
305 WRITING_U32
306};
307
308/**
309 * struct vendor_data - vendor-specific config parameters
310 * for PL022 derivates
311 * @fifodepth: depth of FIFOs (both)
312 * @max_bpw: maximum number of bits per word
313 * @unidir: supports unidirection transfers
556f4aeb
LW
314 * @extended_cr: 32 bit wide control register 0 with extra
315 * features and extra features in CR1 as found in the ST variants
781c7b12 316 * @pl023: supports a subset of the ST extensions called "PL023"
b43d65f7
LW
317 */
318struct vendor_data {
319 int fifodepth;
320 int max_bpw;
321 bool unidir;
556f4aeb 322 bool extended_cr;
781c7b12 323 bool pl023;
06fb01fd 324 bool loopback;
b43d65f7
LW
325};
326
327/**
328 * struct pl022 - This is the private SSP driver data structure
329 * @adev: AMBA device model hookup
12e8b325
LW
330 * @vendor: vendor data for the IP block
331 * @phybase: the physical memory where the SSP device resides
332 * @virtbase: the virtual memory where the SSP is mapped
333 * @clk: outgoing clock "SPICLK" for the SPI bus
b43d65f7
LW
334 * @master: SPI framework hookup
335 * @master_info: controller-specific data from machine setup
b43d65f7 336 * @workqueue: a workqueue on which any spi_message request is queued
12e8b325
LW
337 * @pump_messages: work struct for scheduling work to the workqueue
338 * @queue_lock: spinlock to syncronise access to message queue
339 * @queue: message queue
b43d65f7 340 * @busy: workqueue is busy
5e8b821d 341 * @running: workqueue is running
b43d65f7
LW
342 * @pump_transfers: Tasklet used in Interrupt Transfer mode
343 * @cur_msg: Pointer to current spi_message being processed
344 * @cur_transfer: Pointer to current spi_transfer
345 * @cur_chip: pointer to current clients chip(assigned from controller_state)
346 * @tx: current position in TX buffer to be read
347 * @tx_end: end position in TX buffer to be read
348 * @rx: current position in RX buffer to be written
349 * @rx_end: end position in RX buffer to be written
12e8b325
LW
350 * @read: the type of read currently going on
351 * @write: the type of write currently going on
352 * @exp_fifo_level: expected FIFO level
353 * @dma_rx_channel: optional channel for RX DMA
354 * @dma_tx_channel: optional channel for TX DMA
355 * @sgt_rx: scattertable for the RX transfer
356 * @sgt_tx: scattertable for the TX transfer
357 * @dummypage: a dummy page used for driving data on the bus with DMA
b43d65f7
LW
358 */
359struct pl022 {
360 struct amba_device *adev;
361 struct vendor_data *vendor;
362 resource_size_t phybase;
363 void __iomem *virtbase;
364 struct clk *clk;
365 struct spi_master *master;
366 struct pl022_ssp_controller *master_info;
367 /* Driver message queue */
368 struct workqueue_struct *workqueue;
369 struct work_struct pump_messages;
370 spinlock_t queue_lock;
371 struct list_head queue;
dec5a581 372 bool busy;
5e8b821d 373 bool running;
b43d65f7
LW
374 /* Message transfer pump */
375 struct tasklet_struct pump_transfers;
376 struct spi_message *cur_msg;
377 struct spi_transfer *cur_transfer;
378 struct chip_data *cur_chip;
379 void *tx;
380 void *tx_end;
381 void *rx;
382 void *rx_end;
383 enum ssp_reading read;
384 enum ssp_writing write;
fc05475f 385 u32 exp_fifo_level;
b1b6b9aa
LW
386 /* DMA settings */
387#ifdef CONFIG_DMA_ENGINE
388 struct dma_chan *dma_rx_channel;
389 struct dma_chan *dma_tx_channel;
390 struct sg_table sgt_rx;
391 struct sg_table sgt_tx;
392 char *dummypage;
393#endif
b43d65f7
LW
394};
395
396/**
397 * struct chip_data - To maintain runtime state of SSP for each client chip
556f4aeb
LW
398 * @cr0: Value of control register CR0 of SSP - on later ST variants this
399 * register is 32 bits wide rather than just 16
b43d65f7
LW
400 * @cr1: Value of control register CR1 of SSP
401 * @dmacr: Value of DMA control Register of SSP
402 * @cpsr: Value of Clock prescale register
403 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
404 * @enable_dma: Whether to enable DMA or not
b43d65f7 405 * @read: function ptr to be used to read when doing xfer for this chip
12e8b325 406 * @write: function ptr to be used to write when doing xfer for this chip
b43d65f7
LW
407 * @cs_control: chip select callback provided by chip
408 * @xfer_type: polling/interrupt/DMA
409 *
410 * Runtime state of the SSP controller, maintained per chip,
411 * This would be set according to the current message that would be served
412 */
413struct chip_data {
556f4aeb 414 u32 cr0;
b43d65f7
LW
415 u16 cr1;
416 u16 dmacr;
417 u16 cpsr;
418 u8 n_bytes;
b1b6b9aa 419 bool enable_dma;
b43d65f7
LW
420 enum ssp_reading read;
421 enum ssp_writing write;
422 void (*cs_control) (u32 command);
423 int xfer_type;
424};
425
426/**
427 * null_cs_control - Dummy chip select function
428 * @command: select/delect the chip
429 *
430 * If no chip select function is provided by client this is used as dummy
431 * chip select
432 */
433static void null_cs_control(u32 command)
434{
435 pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
436}
437
438/**
439 * giveback - current spi_message is over, schedule next message and call
440 * callback of this message. Assumes that caller already
441 * set message->status; dma and pio irqs are blocked
442 * @pl022: SSP driver private data structure
443 */
444static void giveback(struct pl022 *pl022)
445{
446 struct spi_transfer *last_transfer;
447 unsigned long flags;
448 struct spi_message *msg;
449 void (*curr_cs_control) (u32 command);
450
451 /*
452 * This local reference to the chip select function
453 * is needed because we set curr_chip to NULL
454 * as a step toward termininating the message.
455 */
456 curr_cs_control = pl022->cur_chip->cs_control;
457 spin_lock_irqsave(&pl022->queue_lock, flags);
458 msg = pl022->cur_msg;
459 pl022->cur_msg = NULL;
460 pl022->cur_transfer = NULL;
461 pl022->cur_chip = NULL;
462 queue_work(pl022->workqueue, &pl022->pump_messages);
463 spin_unlock_irqrestore(&pl022->queue_lock, flags);
464
465 last_transfer = list_entry(msg->transfers.prev,
466 struct spi_transfer,
467 transfer_list);
468
469 /* Delay if requested before any change in chip select */
470 if (last_transfer->delay_usecs)
471 /*
472 * FIXME: This runs in interrupt context.
473 * Is this really smart?
474 */
475 udelay(last_transfer->delay_usecs);
476
477 /*
478 * Drop chip select UNLESS cs_change is true or we are returning
479 * a message with an error, or next message is for another chip
480 */
481 if (!last_transfer->cs_change)
482 curr_cs_control(SSP_CHIP_DESELECT);
483 else {
484 struct spi_message *next_msg;
485
486 /* Holding of cs was hinted, but we need to make sure
487 * the next message is for the same chip. Don't waste
488 * time with the following tests unless this was hinted.
489 *
490 * We cannot postpone this until pump_messages, because
491 * after calling msg->complete (below) the driver that
492 * sent the current message could be unloaded, which
493 * could invalidate the cs_control() callback...
494 */
495
496 /* get a pointer to the next message, if any */
497 spin_lock_irqsave(&pl022->queue_lock, flags);
498 if (list_empty(&pl022->queue))
499 next_msg = NULL;
500 else
501 next_msg = list_entry(pl022->queue.next,
502 struct spi_message, queue);
503 spin_unlock_irqrestore(&pl022->queue_lock, flags);
504
505 /* see if the next and current messages point
506 * to the same chip
507 */
508 if (next_msg && next_msg->spi != msg->spi)
509 next_msg = NULL;
510 if (!next_msg || msg->state == STATE_ERROR)
511 curr_cs_control(SSP_CHIP_DESELECT);
512 }
513 msg->state = NULL;
514 if (msg->complete)
515 msg->complete(msg->context);
808f1037 516 /* This message is completed, so let's turn off the clocks & power */
b43d65f7 517 clk_disable(pl022->clk);
545074fb 518 amba_pclk_disable(pl022->adev);
808f1037 519 amba_vcore_disable(pl022->adev);
b43d65f7
LW
520}
521
522/**
523 * flush - flush the FIFO to reach a clean state
524 * @pl022: SSP driver private data structure
525 */
526static int flush(struct pl022 *pl022)
527{
528 unsigned long limit = loops_per_jiffy << 1;
529
530 dev_dbg(&pl022->adev->dev, "flush\n");
531 do {
532 while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
533 readw(SSP_DR(pl022->virtbase));
534 } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
fc05475f
LW
535
536 pl022->exp_fifo_level = 0;
537
b43d65f7
LW
538 return limit;
539}
540
541/**
542 * restore_state - Load configuration of current chip
543 * @pl022: SSP driver private data structure
544 */
545static void restore_state(struct pl022 *pl022)
546{
547 struct chip_data *chip = pl022->cur_chip;
548
556f4aeb
LW
549 if (pl022->vendor->extended_cr)
550 writel(chip->cr0, SSP_CR0(pl022->virtbase));
551 else
552 writew(chip->cr0, SSP_CR0(pl022->virtbase));
b43d65f7
LW
553 writew(chip->cr1, SSP_CR1(pl022->virtbase));
554 writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
555 writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
556 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
557 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
558}
559
b43d65f7
LW
560/*
561 * Default SSP Register Values
562 */
563#define DEFAULT_SSP_REG_CR0 ( \
564 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
556f4aeb
LW
565 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
566 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
567 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
568 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
569)
570
571/* ST versions have slightly different bit layout */
572#define DEFAULT_SSP_REG_CR0_ST ( \
573 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
574 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
b43d65f7 575 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
ee2b805c 576 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
556f4aeb
LW
577 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
578 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \
579 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
b43d65f7
LW
580)
581
781c7b12
LW
582/* The PL023 version is slightly different again */
583#define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
584 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
585 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
586 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
587 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
588)
589
b43d65f7
LW
590#define DEFAULT_SSP_REG_CR1 ( \
591 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
592 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
593 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
556f4aeb 594 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
b43d65f7
LW
595)
596
556f4aeb
LW
597/* ST versions extend this register to use all 16 bits */
598#define DEFAULT_SSP_REG_CR1_ST ( \
599 DEFAULT_SSP_REG_CR1 | \
600 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
601 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
602 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
603 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
604 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
605)
606
781c7b12
LW
607/*
608 * The PL023 variant has further differences: no loopback mode, no microwire
609 * support, and a new clock feedback delay setting.
610 */
611#define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
612 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
613 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
614 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
615 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
616 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
617 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
618 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
619 GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
620)
556f4aeb 621
b43d65f7 622#define DEFAULT_SSP_REG_CPSR ( \
556f4aeb 623 GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
b43d65f7
LW
624)
625
626#define DEFAULT_SSP_REG_DMACR (\
627 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
628 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
629)
630
781c7b12
LW
631/**
632 * load_ssp_default_config - Load default configuration for SSP
633 * @pl022: SSP driver private data structure
634 */
b43d65f7
LW
635static void load_ssp_default_config(struct pl022 *pl022)
636{
781c7b12
LW
637 if (pl022->vendor->pl023) {
638 writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
639 writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
640 } else if (pl022->vendor->extended_cr) {
556f4aeb
LW
641 writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
642 writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
643 } else {
644 writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
645 writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
646 }
b43d65f7
LW
647 writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
648 writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
649 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
650 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
651}
652
653/**
654 * This will write to TX and read from RX according to the parameters
655 * set in pl022.
656 */
657static void readwriter(struct pl022 *pl022)
658{
659
660 /*
25985edc 661 * The FIFO depth is different between primecell variants.
b43d65f7
LW
662 * I believe filling in too much in the FIFO might cause
663 * errons in 8bit wide transfers on ARM variants (just 8 words
664 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
665 *
fc05475f
LW
666 * To prevent this issue, the TX FIFO is only filled to the
667 * unused RX FIFO fill length, regardless of what the TX
668 * FIFO status flag indicates.
b43d65f7
LW
669 */
670 dev_dbg(&pl022->adev->dev,
671 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
672 __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
673
674 /* Read as much as you can */
675 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
676 && (pl022->rx < pl022->rx_end)) {
677 switch (pl022->read) {
678 case READING_NULL:
679 readw(SSP_DR(pl022->virtbase));
680 break;
681 case READING_U8:
682 *(u8 *) (pl022->rx) =
683 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
684 break;
685 case READING_U16:
686 *(u16 *) (pl022->rx) =
687 (u16) readw(SSP_DR(pl022->virtbase));
688 break;
689 case READING_U32:
690 *(u32 *) (pl022->rx) =
691 readl(SSP_DR(pl022->virtbase));
692 break;
693 }
694 pl022->rx += (pl022->cur_chip->n_bytes);
fc05475f 695 pl022->exp_fifo_level--;
b43d65f7
LW
696 }
697 /*
fc05475f 698 * Write as much as possible up to the RX FIFO size
b43d65f7 699 */
fc05475f 700 while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
b43d65f7
LW
701 && (pl022->tx < pl022->tx_end)) {
702 switch (pl022->write) {
703 case WRITING_NULL:
704 writew(0x0, SSP_DR(pl022->virtbase));
705 break;
706 case WRITING_U8:
707 writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
708 break;
709 case WRITING_U16:
710 writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
711 break;
712 case WRITING_U32:
713 writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
714 break;
715 }
716 pl022->tx += (pl022->cur_chip->n_bytes);
fc05475f 717 pl022->exp_fifo_level++;
b43d65f7
LW
718 /*
719 * This inner reader takes care of things appearing in the RX
720 * FIFO as we're transmitting. This will happen a lot since the
721 * clock starts running when you put things into the TX FIFO,
25985edc 722 * and then things are continuously clocked into the RX FIFO.
b43d65f7
LW
723 */
724 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
725 && (pl022->rx < pl022->rx_end)) {
726 switch (pl022->read) {
727 case READING_NULL:
728 readw(SSP_DR(pl022->virtbase));
729 break;
730 case READING_U8:
731 *(u8 *) (pl022->rx) =
732 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
733 break;
734 case READING_U16:
735 *(u16 *) (pl022->rx) =
736 (u16) readw(SSP_DR(pl022->virtbase));
737 break;
738 case READING_U32:
739 *(u32 *) (pl022->rx) =
740 readl(SSP_DR(pl022->virtbase));
741 break;
742 }
743 pl022->rx += (pl022->cur_chip->n_bytes);
fc05475f 744 pl022->exp_fifo_level--;
b43d65f7
LW
745 }
746 }
747 /*
748 * When we exit here the TX FIFO should be full and the RX FIFO
749 * should be empty
750 */
751}
752
753
754/**
755 * next_transfer - Move to the Next transfer in the current spi message
756 * @pl022: SSP driver private data structure
757 *
758 * This function moves though the linked list of spi transfers in the
759 * current spi message and returns with the state of current spi
760 * message i.e whether its last transfer is done(STATE_DONE) or
761 * Next transfer is ready(STATE_RUNNING)
762 */
763static void *next_transfer(struct pl022 *pl022)
764{
765 struct spi_message *msg = pl022->cur_msg;
766 struct spi_transfer *trans = pl022->cur_transfer;
767
768 /* Move to next transfer */
769 if (trans->transfer_list.next != &msg->transfers) {
770 pl022->cur_transfer =
771 list_entry(trans->transfer_list.next,
772 struct spi_transfer, transfer_list);
773 return STATE_RUNNING;
774 }
775 return STATE_DONE;
776}
b1b6b9aa
LW
777
778/*
779 * This DMA functionality is only compiled in if we have
780 * access to the generic DMA devices/DMA engine.
781 */
782#ifdef CONFIG_DMA_ENGINE
783static void unmap_free_dma_scatter(struct pl022 *pl022)
784{
785 /* Unmap and free the SG tables */
b7298896 786 dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
b1b6b9aa 787 pl022->sgt_tx.nents, DMA_TO_DEVICE);
b7298896 788 dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
b1b6b9aa
LW
789 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
790 sg_free_table(&pl022->sgt_rx);
791 sg_free_table(&pl022->sgt_tx);
792}
793
794static void dma_callback(void *data)
795{
796 struct pl022 *pl022 = data;
797 struct spi_message *msg = pl022->cur_msg;
798
799 BUG_ON(!pl022->sgt_rx.sgl);
800
801#ifdef VERBOSE_DEBUG
802 /*
803 * Optionally dump out buffers to inspect contents, this is
804 * good if you want to convince yourself that the loopback
805 * read/write contents are the same, when adopting to a new
806 * DMA engine.
807 */
808 {
809 struct scatterlist *sg;
810 unsigned int i;
811
812 dma_sync_sg_for_cpu(&pl022->adev->dev,
813 pl022->sgt_rx.sgl,
814 pl022->sgt_rx.nents,
815 DMA_FROM_DEVICE);
816
817 for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
818 dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
819 print_hex_dump(KERN_ERR, "SPI RX: ",
820 DUMP_PREFIX_OFFSET,
821 16,
822 1,
823 sg_virt(sg),
824 sg_dma_len(sg),
825 1);
826 }
827 for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
828 dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
829 print_hex_dump(KERN_ERR, "SPI TX: ",
830 DUMP_PREFIX_OFFSET,
831 16,
832 1,
833 sg_virt(sg),
834 sg_dma_len(sg),
835 1);
836 }
837 }
838#endif
839
840 unmap_free_dma_scatter(pl022);
841
25985edc 842 /* Update total bytes transferred */
b1b6b9aa
LW
843 msg->actual_length += pl022->cur_transfer->len;
844 if (pl022->cur_transfer->cs_change)
845 pl022->cur_chip->
846 cs_control(SSP_CHIP_DESELECT);
847
848 /* Move to next transfer */
849 msg->state = next_transfer(pl022);
850 tasklet_schedule(&pl022->pump_transfers);
851}
852
853static void setup_dma_scatter(struct pl022 *pl022,
854 void *buffer,
855 unsigned int length,
856 struct sg_table *sgtab)
857{
858 struct scatterlist *sg;
859 int bytesleft = length;
860 void *bufp = buffer;
861 int mapbytes;
862 int i;
863
864 if (buffer) {
865 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
866 /*
867 * If there are less bytes left than what fits
868 * in the current page (plus page alignment offset)
869 * we just feed in this, else we stuff in as much
870 * as we can.
871 */
872 if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
873 mapbytes = bytesleft;
874 else
875 mapbytes = PAGE_SIZE - offset_in_page(bufp);
876 sg_set_page(sg, virt_to_page(bufp),
877 mapbytes, offset_in_page(bufp));
878 bufp += mapbytes;
879 bytesleft -= mapbytes;
880 dev_dbg(&pl022->adev->dev,
881 "set RX/TX target page @ %p, %d bytes, %d left\n",
882 bufp, mapbytes, bytesleft);
883 }
884 } else {
885 /* Map the dummy buffer on every page */
886 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
887 if (bytesleft < PAGE_SIZE)
888 mapbytes = bytesleft;
889 else
890 mapbytes = PAGE_SIZE;
891 sg_set_page(sg, virt_to_page(pl022->dummypage),
892 mapbytes, 0);
893 bytesleft -= mapbytes;
894 dev_dbg(&pl022->adev->dev,
895 "set RX/TX to dummy page %d bytes, %d left\n",
896 mapbytes, bytesleft);
897
898 }
899 }
900 BUG_ON(bytesleft);
901}
902
903/**
904 * configure_dma - configures the channels for the next transfer
905 * @pl022: SSP driver's private data structure
906 */
907static int configure_dma(struct pl022 *pl022)
908{
909 struct dma_slave_config rx_conf = {
910 .src_addr = SSP_DR(pl022->phybase),
911 .direction = DMA_FROM_DEVICE,
912 .src_maxburst = pl022->vendor->fifodepth >> 1,
913 };
914 struct dma_slave_config tx_conf = {
915 .dst_addr = SSP_DR(pl022->phybase),
916 .direction = DMA_TO_DEVICE,
917 .dst_maxburst = pl022->vendor->fifodepth >> 1,
918 };
919 unsigned int pages;
920 int ret;
082086f2 921 int rx_sglen, tx_sglen;
b1b6b9aa
LW
922 struct dma_chan *rxchan = pl022->dma_rx_channel;
923 struct dma_chan *txchan = pl022->dma_tx_channel;
924 struct dma_async_tx_descriptor *rxdesc;
925 struct dma_async_tx_descriptor *txdesc;
b1b6b9aa
LW
926
927 /* Check that the channels are available */
928 if (!rxchan || !txchan)
929 return -ENODEV;
930
931 switch (pl022->read) {
932 case READING_NULL:
933 /* Use the same as for writing */
934 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
935 break;
936 case READING_U8:
937 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
938 break;
939 case READING_U16:
940 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
941 break;
942 case READING_U32:
943 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
944 break;
945 }
946
947 switch (pl022->write) {
948 case WRITING_NULL:
949 /* Use the same as for reading */
950 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
951 break;
952 case WRITING_U8:
953 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
954 break;
955 case WRITING_U16:
956 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
957 break;
958 case WRITING_U32:
bc3f67a3 959 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
b1b6b9aa
LW
960 break;
961 }
962
963 /* SPI pecularity: we need to read and write the same width */
964 if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
965 rx_conf.src_addr_width = tx_conf.dst_addr_width;
966 if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
967 tx_conf.dst_addr_width = rx_conf.src_addr_width;
968 BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
969
ecd442fd
LW
970 dmaengine_slave_config(rxchan, &rx_conf);
971 dmaengine_slave_config(txchan, &tx_conf);
b1b6b9aa
LW
972
973 /* Create sglists for the transfers */
974 pages = (pl022->cur_transfer->len >> PAGE_SHIFT) + 1;
975 dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
976
977 ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_KERNEL);
978 if (ret)
979 goto err_alloc_rx_sg;
980
981 ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_KERNEL);
982 if (ret)
983 goto err_alloc_tx_sg;
984
985 /* Fill in the scatterlists for the RX+TX buffers */
986 setup_dma_scatter(pl022, pl022->rx,
987 pl022->cur_transfer->len, &pl022->sgt_rx);
988 setup_dma_scatter(pl022, pl022->tx,
989 pl022->cur_transfer->len, &pl022->sgt_tx);
990
991 /* Map DMA buffers */
082086f2 992 rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
b1b6b9aa 993 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
082086f2 994 if (!rx_sglen)
b1b6b9aa
LW
995 goto err_rx_sgmap;
996
082086f2 997 tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
b1b6b9aa 998 pl022->sgt_tx.nents, DMA_TO_DEVICE);
082086f2 999 if (!tx_sglen)
b1b6b9aa
LW
1000 goto err_tx_sgmap;
1001
1002 /* Send both scatterlists */
1003 rxdesc = rxchan->device->device_prep_slave_sg(rxchan,
1004 pl022->sgt_rx.sgl,
082086f2 1005 rx_sglen,
b1b6b9aa
LW
1006 DMA_FROM_DEVICE,
1007 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1008 if (!rxdesc)
1009 goto err_rxdesc;
1010
1011 txdesc = txchan->device->device_prep_slave_sg(txchan,
1012 pl022->sgt_tx.sgl,
082086f2 1013 tx_sglen,
b1b6b9aa
LW
1014 DMA_TO_DEVICE,
1015 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1016 if (!txdesc)
1017 goto err_txdesc;
1018
1019 /* Put the callback on the RX transfer only, that should finish last */
1020 rxdesc->callback = dma_callback;
1021 rxdesc->callback_param = pl022;
1022
1023 /* Submit and fire RX and TX with TX last so we're ready to read! */
ecd442fd
LW
1024 dmaengine_submit(rxdesc);
1025 dmaengine_submit(txdesc);
1026 dma_async_issue_pending(rxchan);
1027 dma_async_issue_pending(txchan);
b1b6b9aa
LW
1028
1029 return 0;
1030
b1b6b9aa 1031err_txdesc:
ecd442fd 1032 dmaengine_terminate_all(txchan);
b1b6b9aa 1033err_rxdesc:
ecd442fd 1034 dmaengine_terminate_all(rxchan);
b7298896 1035 dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
b1b6b9aa
LW
1036 pl022->sgt_tx.nents, DMA_TO_DEVICE);
1037err_tx_sgmap:
b7298896 1038 dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
b1b6b9aa
LW
1039 pl022->sgt_tx.nents, DMA_FROM_DEVICE);
1040err_rx_sgmap:
1041 sg_free_table(&pl022->sgt_tx);
1042err_alloc_tx_sg:
1043 sg_free_table(&pl022->sgt_rx);
1044err_alloc_rx_sg:
1045 return -ENOMEM;
1046}
1047
1048static int __init pl022_dma_probe(struct pl022 *pl022)
1049{
1050 dma_cap_mask_t mask;
1051
1052 /* Try to acquire a generic DMA engine slave channel */
1053 dma_cap_zero(mask);
1054 dma_cap_set(DMA_SLAVE, mask);
1055 /*
1056 * We need both RX and TX channels to do DMA, else do none
1057 * of them.
1058 */
1059 pl022->dma_rx_channel = dma_request_channel(mask,
1060 pl022->master_info->dma_filter,
1061 pl022->master_info->dma_rx_param);
1062 if (!pl022->dma_rx_channel) {
1063 dev_err(&pl022->adev->dev, "no RX DMA channel!\n");
1064 goto err_no_rxchan;
1065 }
1066
1067 pl022->dma_tx_channel = dma_request_channel(mask,
1068 pl022->master_info->dma_filter,
1069 pl022->master_info->dma_tx_param);
1070 if (!pl022->dma_tx_channel) {
1071 dev_err(&pl022->adev->dev, "no TX DMA channel!\n");
1072 goto err_no_txchan;
1073 }
1074
1075 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1076 if (!pl022->dummypage) {
1077 dev_err(&pl022->adev->dev, "no DMA dummypage!\n");
1078 goto err_no_dummypage;
1079 }
1080
1081 dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1082 dma_chan_name(pl022->dma_rx_channel),
1083 dma_chan_name(pl022->dma_tx_channel));
1084
1085 return 0;
1086
1087err_no_dummypage:
1088 dma_release_channel(pl022->dma_tx_channel);
1089err_no_txchan:
1090 dma_release_channel(pl022->dma_rx_channel);
1091 pl022->dma_rx_channel = NULL;
1092err_no_rxchan:
1093 return -ENODEV;
1094}
1095
1096static void terminate_dma(struct pl022 *pl022)
1097{
1098 struct dma_chan *rxchan = pl022->dma_rx_channel;
1099 struct dma_chan *txchan = pl022->dma_tx_channel;
1100
ecd442fd
LW
1101 dmaengine_terminate_all(rxchan);
1102 dmaengine_terminate_all(txchan);
b1b6b9aa
LW
1103 unmap_free_dma_scatter(pl022);
1104}
1105
1106static void pl022_dma_remove(struct pl022 *pl022)
1107{
1108 if (pl022->busy)
1109 terminate_dma(pl022);
1110 if (pl022->dma_tx_channel)
1111 dma_release_channel(pl022->dma_tx_channel);
1112 if (pl022->dma_rx_channel)
1113 dma_release_channel(pl022->dma_rx_channel);
1114 kfree(pl022->dummypage);
1115}
1116
1117#else
1118static inline int configure_dma(struct pl022 *pl022)
1119{
1120 return -ENODEV;
1121}
1122
1123static inline int pl022_dma_probe(struct pl022 *pl022)
1124{
1125 return 0;
1126}
1127
1128static inline void pl022_dma_remove(struct pl022 *pl022)
1129{
1130}
1131#endif
1132
b43d65f7
LW
1133/**
1134 * pl022_interrupt_handler - Interrupt handler for SSP controller
1135 *
1136 * This function handles interrupts generated for an interrupt based transfer.
1137 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1138 * current message's state as STATE_ERROR and schedule the tasklet
1139 * pump_transfers which will do the postprocessing of the current message by
1140 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1141 * more data, and writes data in TX FIFO till it is not full. If we complete
1142 * the transfer we move to the next transfer and schedule the tasklet.
1143 */
1144static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1145{
1146 struct pl022 *pl022 = dev_id;
1147 struct spi_message *msg = pl022->cur_msg;
1148 u16 irq_status = 0;
1149 u16 flag = 0;
1150
1151 if (unlikely(!msg)) {
1152 dev_err(&pl022->adev->dev,
1153 "bad message state in interrupt handler");
1154 /* Never fail */
1155 return IRQ_HANDLED;
1156 }
1157
1158 /* Read the Interrupt Status Register */
1159 irq_status = readw(SSP_MIS(pl022->virtbase));
1160
1161 if (unlikely(!irq_status))
1162 return IRQ_NONE;
1163
b1b6b9aa
LW
1164 /*
1165 * This handles the FIFO interrupts, the timeout
1166 * interrupts are flatly ignored, they cannot be
1167 * trusted.
1168 */
b43d65f7
LW
1169 if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1170 /*
1171 * Overrun interrupt - bail out since our Data has been
1172 * corrupted
1173 */
b1b6b9aa 1174 dev_err(&pl022->adev->dev, "FIFO overrun\n");
b43d65f7
LW
1175 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1176 dev_err(&pl022->adev->dev,
1177 "RXFIFO is full\n");
1178 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF)
1179 dev_err(&pl022->adev->dev,
1180 "TXFIFO is full\n");
1181
1182 /*
1183 * Disable and clear interrupts, disable SSP,
1184 * mark message with bad status so it can be
1185 * retried.
1186 */
1187 writew(DISABLE_ALL_INTERRUPTS,
1188 SSP_IMSC(pl022->virtbase));
1189 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1190 writew((readw(SSP_CR1(pl022->virtbase)) &
1191 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1192 msg->state = STATE_ERROR;
1193
1194 /* Schedule message queue handler */
1195 tasklet_schedule(&pl022->pump_transfers);
1196 return IRQ_HANDLED;
1197 }
1198
1199 readwriter(pl022);
1200
1201 if ((pl022->tx == pl022->tx_end) && (flag == 0)) {
1202 flag = 1;
1203 /* Disable Transmit interrupt */
1204 writew(readw(SSP_IMSC(pl022->virtbase)) &
1205 (~SSP_IMSC_MASK_TXIM),
1206 SSP_IMSC(pl022->virtbase));
1207 }
1208
1209 /*
1210 * Since all transactions must write as much as shall be read,
1211 * we can conclude the entire transaction once RX is complete.
1212 * At this point, all TX will always be finished.
1213 */
1214 if (pl022->rx >= pl022->rx_end) {
1215 writew(DISABLE_ALL_INTERRUPTS,
1216 SSP_IMSC(pl022->virtbase));
1217 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1218 if (unlikely(pl022->rx > pl022->rx_end)) {
1219 dev_warn(&pl022->adev->dev, "read %u surplus "
1220 "bytes (did you request an odd "
1221 "number of bytes on a 16bit bus?)\n",
1222 (u32) (pl022->rx - pl022->rx_end));
1223 }
25985edc 1224 /* Update total bytes transferred */
b43d65f7
LW
1225 msg->actual_length += pl022->cur_transfer->len;
1226 if (pl022->cur_transfer->cs_change)
1227 pl022->cur_chip->
1228 cs_control(SSP_CHIP_DESELECT);
1229 /* Move to next transfer */
1230 msg->state = next_transfer(pl022);
1231 tasklet_schedule(&pl022->pump_transfers);
1232 return IRQ_HANDLED;
1233 }
1234
1235 return IRQ_HANDLED;
1236}
1237
1238/**
1239 * This sets up the pointers to memory for the next message to
1240 * send out on the SPI bus.
1241 */
1242static int set_up_next_transfer(struct pl022 *pl022,
1243 struct spi_transfer *transfer)
1244{
1245 int residue;
1246
1247 /* Sanity check the message for this bus width */
1248 residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1249 if (unlikely(residue != 0)) {
1250 dev_err(&pl022->adev->dev,
1251 "message of %u bytes to transmit but the current "
1252 "chip bus has a data width of %u bytes!\n",
1253 pl022->cur_transfer->len,
1254 pl022->cur_chip->n_bytes);
1255 dev_err(&pl022->adev->dev, "skipping this message\n");
1256 return -EIO;
1257 }
1258 pl022->tx = (void *)transfer->tx_buf;
1259 pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1260 pl022->rx = (void *)transfer->rx_buf;
1261 pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1262 pl022->write =
1263 pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1264 pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1265 return 0;
1266}
1267
1268/**
b1b6b9aa
LW
1269 * pump_transfers - Tasklet function which schedules next transfer
1270 * when running in interrupt or DMA transfer mode.
b43d65f7
LW
1271 * @data: SSP driver private data structure
1272 *
1273 */
1274static void pump_transfers(unsigned long data)
1275{
1276 struct pl022 *pl022 = (struct pl022 *) data;
1277 struct spi_message *message = NULL;
1278 struct spi_transfer *transfer = NULL;
1279 struct spi_transfer *previous = NULL;
1280
1281 /* Get current state information */
1282 message = pl022->cur_msg;
1283 transfer = pl022->cur_transfer;
1284
1285 /* Handle for abort */
1286 if (message->state == STATE_ERROR) {
1287 message->status = -EIO;
1288 giveback(pl022);
1289 return;
1290 }
1291
1292 /* Handle end of message */
1293 if (message->state == STATE_DONE) {
1294 message->status = 0;
1295 giveback(pl022);
1296 return;
1297 }
1298
1299 /* Delay if requested at end of transfer before CS change */
1300 if (message->state == STATE_RUNNING) {
1301 previous = list_entry(transfer->transfer_list.prev,
1302 struct spi_transfer,
1303 transfer_list);
1304 if (previous->delay_usecs)
1305 /*
1306 * FIXME: This runs in interrupt context.
1307 * Is this really smart?
1308 */
1309 udelay(previous->delay_usecs);
1310
1311 /* Drop chip select only if cs_change is requested */
1312 if (previous->cs_change)
1313 pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1314 } else {
1315 /* STATE_START */
1316 message->state = STATE_RUNNING;
1317 }
1318
1319 if (set_up_next_transfer(pl022, transfer)) {
1320 message->state = STATE_ERROR;
1321 message->status = -EIO;
1322 giveback(pl022);
1323 return;
1324 }
1325 /* Flush the FIFOs and let's go! */
1326 flush(pl022);
b43d65f7 1327
b1b6b9aa
LW
1328 if (pl022->cur_chip->enable_dma) {
1329 if (configure_dma(pl022)) {
1330 dev_dbg(&pl022->adev->dev,
1331 "configuration of DMA failed, fall back to interrupt mode\n");
1332 goto err_config_dma;
1333 }
b43d65f7
LW
1334 return;
1335 }
b43d65f7 1336
b1b6b9aa
LW
1337err_config_dma:
1338 writew(ENABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
b43d65f7
LW
1339}
1340
b1b6b9aa 1341static void do_interrupt_dma_transfer(struct pl022 *pl022)
b43d65f7 1342{
b1b6b9aa 1343 u32 irqflags = ENABLE_ALL_INTERRUPTS;
b43d65f7
LW
1344
1345 /* Enable target chip */
1346 pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1347 if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1348 /* Error path */
1349 pl022->cur_msg->state = STATE_ERROR;
1350 pl022->cur_msg->status = -EIO;
1351 giveback(pl022);
1352 return;
1353 }
b1b6b9aa
LW
1354 /* If we're using DMA, set up DMA here */
1355 if (pl022->cur_chip->enable_dma) {
1356 /* Configure DMA transfer */
1357 if (configure_dma(pl022)) {
1358 dev_dbg(&pl022->adev->dev,
1359 "configuration of DMA failed, fall back to interrupt mode\n");
1360 goto err_config_dma;
1361 }
1362 /* Disable interrupts in DMA mode, IRQ from DMA controller */
1363 irqflags = DISABLE_ALL_INTERRUPTS;
1364 }
1365err_config_dma:
b43d65f7
LW
1366 /* Enable SSP, turn on interrupts */
1367 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1368 SSP_CR1(pl022->virtbase));
b1b6b9aa 1369 writew(irqflags, SSP_IMSC(pl022->virtbase));
b43d65f7
LW
1370}
1371
b1b6b9aa 1372static void do_polling_transfer(struct pl022 *pl022)
b43d65f7 1373{
b43d65f7
LW
1374 struct spi_message *message = NULL;
1375 struct spi_transfer *transfer = NULL;
1376 struct spi_transfer *previous = NULL;
1377 struct chip_data *chip;
a18c266f 1378 unsigned long time, timeout;
b43d65f7
LW
1379
1380 chip = pl022->cur_chip;
1381 message = pl022->cur_msg;
1382
1383 while (message->state != STATE_DONE) {
1384 /* Handle for abort */
1385 if (message->state == STATE_ERROR)
1386 break;
1387 transfer = pl022->cur_transfer;
1388
1389 /* Delay if requested at end of transfer */
1390 if (message->state == STATE_RUNNING) {
1391 previous =
1392 list_entry(transfer->transfer_list.prev,
1393 struct spi_transfer, transfer_list);
1394 if (previous->delay_usecs)
1395 udelay(previous->delay_usecs);
1396 if (previous->cs_change)
1397 pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1398 } else {
1399 /* STATE_START */
1400 message->state = STATE_RUNNING;
1401 pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1402 }
1403
1404 /* Configuration Changing Per Transfer */
1405 if (set_up_next_transfer(pl022, transfer)) {
1406 /* Error path */
1407 message->state = STATE_ERROR;
1408 break;
1409 }
1410 /* Flush FIFOs and enable SSP */
1411 flush(pl022);
1412 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1413 SSP_CR1(pl022->virtbase));
1414
556f4aeb 1415 dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
a18c266f
MT
1416
1417 timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1418 while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1419 time = jiffies;
b43d65f7 1420 readwriter(pl022);
a18c266f
MT
1421 if (time_after(time, timeout)) {
1422 dev_warn(&pl022->adev->dev,
1423 "%s: timeout!\n", __func__);
1424 message->state = STATE_ERROR;
1425 goto out;
1426 }
521999bd 1427 cpu_relax();
a18c266f 1428 }
b43d65f7 1429
25985edc 1430 /* Update total byte transferred */
b43d65f7
LW
1431 message->actual_length += pl022->cur_transfer->len;
1432 if (pl022->cur_transfer->cs_change)
1433 pl022->cur_chip->cs_control(SSP_CHIP_DESELECT);
1434 /* Move to next transfer */
1435 message->state = next_transfer(pl022);
1436 }
a18c266f 1437out:
b43d65f7
LW
1438 /* Handle end of message */
1439 if (message->state == STATE_DONE)
1440 message->status = 0;
1441 else
1442 message->status = -EIO;
1443
1444 giveback(pl022);
1445 return;
1446}
1447
1448/**
1449 * pump_messages - Workqueue function which processes spi message queue
1450 * @data: pointer to private data of SSP driver
1451 *
1452 * This function checks if there is any spi message in the queue that
1453 * needs processing and delegate control to appropriate function
b1b6b9aa 1454 * do_polling_transfer()/do_interrupt_dma_transfer()
b43d65f7
LW
1455 * based on the kind of the transfer
1456 *
1457 */
1458static void pump_messages(struct work_struct *work)
1459{
1460 struct pl022 *pl022 =
1461 container_of(work, struct pl022, pump_messages);
1462 unsigned long flags;
1463
1464 /* Lock queue and check for queue work */
1465 spin_lock_irqsave(&pl022->queue_lock, flags);
5e8b821d 1466 if (list_empty(&pl022->queue) || !pl022->running) {
dec5a581 1467 pl022->busy = false;
b43d65f7
LW
1468 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1469 return;
1470 }
1471 /* Make sure we are not already running a message */
1472 if (pl022->cur_msg) {
1473 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1474 return;
1475 }
1476 /* Extract head of queue */
1477 pl022->cur_msg =
1478 list_entry(pl022->queue.next, struct spi_message, queue);
1479
1480 list_del_init(&pl022->cur_msg->queue);
dec5a581 1481 pl022->busy = true;
b43d65f7
LW
1482 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1483
1484 /* Initial message state */
1485 pl022->cur_msg->state = STATE_START;
1486 pl022->cur_transfer = list_entry(pl022->cur_msg->transfers.next,
1487 struct spi_transfer,
1488 transfer_list);
1489
1490 /* Setup the SPI using the per chip configuration */
1491 pl022->cur_chip = spi_get_ctldata(pl022->cur_msg->spi);
1492 /*
808f1037
LW
1493 * We enable the core voltage and clocks here, then the clocks
1494 * and core will be disabled when giveback() is called in each method
1495 * (poll/interrupt/DMA)
b43d65f7 1496 */
808f1037 1497 amba_vcore_enable(pl022->adev);
545074fb 1498 amba_pclk_enable(pl022->adev);
b43d65f7
LW
1499 clk_enable(pl022->clk);
1500 restore_state(pl022);
1501 flush(pl022);
1502
1503 if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1504 do_polling_transfer(pl022);
b43d65f7 1505 else
b1b6b9aa 1506 do_interrupt_dma_transfer(pl022);
b43d65f7
LW
1507}
1508
1509
1510static int __init init_queue(struct pl022 *pl022)
1511{
1512 INIT_LIST_HEAD(&pl022->queue);
1513 spin_lock_init(&pl022->queue_lock);
1514
5e8b821d 1515 pl022->running = false;
dec5a581 1516 pl022->busy = false;
b43d65f7
LW
1517
1518 tasklet_init(&pl022->pump_transfers,
1519 pump_transfers, (unsigned long)pl022);
1520
1521 INIT_WORK(&pl022->pump_messages, pump_messages);
1522 pl022->workqueue = create_singlethread_workqueue(
1523 dev_name(pl022->master->dev.parent));
1524 if (pl022->workqueue == NULL)
1525 return -EBUSY;
1526
1527 return 0;
1528}
1529
1530
1531static int start_queue(struct pl022 *pl022)
1532{
1533 unsigned long flags;
1534
1535 spin_lock_irqsave(&pl022->queue_lock, flags);
1536
5e8b821d 1537 if (pl022->running || pl022->busy) {
b43d65f7
LW
1538 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1539 return -EBUSY;
1540 }
1541
5e8b821d 1542 pl022->running = true;
b43d65f7
LW
1543 pl022->cur_msg = NULL;
1544 pl022->cur_transfer = NULL;
1545 pl022->cur_chip = NULL;
1546 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1547
1548 queue_work(pl022->workqueue, &pl022->pump_messages);
1549
1550 return 0;
1551}
1552
1553
1554static int stop_queue(struct pl022 *pl022)
1555{
1556 unsigned long flags;
1557 unsigned limit = 500;
1558 int status = 0;
1559
1560 spin_lock_irqsave(&pl022->queue_lock, flags);
1561
1562 /* This is a bit lame, but is optimized for the common execution path.
1563 * A wait_queue on the pl022->busy could be used, but then the common
1564 * execution path (pump_messages) would be required to call wake_up or
1565 * friends on every SPI message. Do this instead */
850a28ec 1566 while ((!list_empty(&pl022->queue) || pl022->busy) && limit--) {
b43d65f7
LW
1567 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1568 msleep(10);
1569 spin_lock_irqsave(&pl022->queue_lock, flags);
1570 }
1571
1572 if (!list_empty(&pl022->queue) || pl022->busy)
1573 status = -EBUSY;
5e8b821d
LW
1574 else
1575 pl022->running = false;
b43d65f7
LW
1576
1577 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1578
1579 return status;
1580}
1581
1582static int destroy_queue(struct pl022 *pl022)
1583{
1584 int status;
1585
1586 status = stop_queue(pl022);
1587 /* we are unloading the module or failing to load (only two calls
1588 * to this routine), and neither call can handle a return value.
1589 * However, destroy_workqueue calls flush_workqueue, and that will
1590 * block until all work is done. If the reason that stop_queue
1591 * timed out is that the work will never finish, then it does no
1592 * good to call destroy_workqueue, so return anyway. */
1593 if (status != 0)
1594 return status;
1595
1596 destroy_workqueue(pl022->workqueue);
1597
1598 return 0;
1599}
1600
1601static int verify_controller_parameters(struct pl022 *pl022,
f9d629c7 1602 struct pl022_config_chip const *chip_info)
b43d65f7 1603{
b43d65f7
LW
1604 if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1605 || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
5a1c98be 1606 dev_err(&pl022->adev->dev,
b43d65f7
LW
1607 "interface is configured incorrectly\n");
1608 return -EINVAL;
1609 }
1610 if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1611 (!pl022->vendor->unidir)) {
5a1c98be 1612 dev_err(&pl022->adev->dev,
b43d65f7
LW
1613 "unidirectional mode not supported in this "
1614 "hardware version\n");
1615 return -EINVAL;
1616 }
1617 if ((chip_info->hierarchy != SSP_MASTER)
1618 && (chip_info->hierarchy != SSP_SLAVE)) {
5a1c98be 1619 dev_err(&pl022->adev->dev,
b43d65f7
LW
1620 "hierarchy is configured incorrectly\n");
1621 return -EINVAL;
1622 }
b43d65f7
LW
1623 if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1624 && (chip_info->com_mode != DMA_TRANSFER)
1625 && (chip_info->com_mode != POLLING_TRANSFER)) {
5a1c98be 1626 dev_err(&pl022->adev->dev,
b43d65f7
LW
1627 "Communication mode is configured incorrectly\n");
1628 return -EINVAL;
1629 }
1630 if ((chip_info->rx_lev_trig < SSP_RX_1_OR_MORE_ELEM)
1631 || (chip_info->rx_lev_trig > SSP_RX_32_OR_MORE_ELEM)) {
5a1c98be 1632 dev_err(&pl022->adev->dev,
b43d65f7
LW
1633 "RX FIFO Trigger Level is configured incorrectly\n");
1634 return -EINVAL;
1635 }
1636 if ((chip_info->tx_lev_trig < SSP_TX_1_OR_MORE_EMPTY_LOC)
1637 || (chip_info->tx_lev_trig > SSP_TX_32_OR_MORE_EMPTY_LOC)) {
5a1c98be 1638 dev_err(&pl022->adev->dev,
b43d65f7
LW
1639 "TX FIFO Trigger Level is configured incorrectly\n");
1640 return -EINVAL;
1641 }
b43d65f7
LW
1642 if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1643 if ((chip_info->ctrl_len < SSP_BITS_4)
1644 || (chip_info->ctrl_len > SSP_BITS_32)) {
5a1c98be 1645 dev_err(&pl022->adev->dev,
b43d65f7
LW
1646 "CTRL LEN is configured incorrectly\n");
1647 return -EINVAL;
1648 }
1649 if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1650 && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
5a1c98be 1651 dev_err(&pl022->adev->dev,
b43d65f7
LW
1652 "Wait State is configured incorrectly\n");
1653 return -EINVAL;
1654 }
556f4aeb
LW
1655 /* Half duplex is only available in the ST Micro version */
1656 if (pl022->vendor->extended_cr) {
1657 if ((chip_info->duplex !=
1658 SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1659 && (chip_info->duplex !=
4a4fd471 1660 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
5a1c98be 1661 dev_err(&pl022->adev->dev,
556f4aeb
LW
1662 "Microwire duplex mode is configured incorrectly\n");
1663 return -EINVAL;
4a4fd471 1664 }
556f4aeb
LW
1665 } else {
1666 if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
5a1c98be 1667 dev_err(&pl022->adev->dev,
556f4aeb
LW
1668 "Microwire half duplex mode requested,"
1669 " but this is only available in the"
1670 " ST version of PL022\n");
b43d65f7
LW
1671 return -EINVAL;
1672 }
1673 }
b43d65f7
LW
1674 return 0;
1675}
1676
1677/**
1678 * pl022_transfer - transfer function registered to SPI master framework
1679 * @spi: spi device which is requesting transfer
1680 * @msg: spi message which is to handled is queued to driver queue
1681 *
1682 * This function is registered to the SPI framework for this SPI master
1683 * controller. It will queue the spi_message in the queue of driver if
1684 * the queue is not stopped and return.
1685 */
1686static int pl022_transfer(struct spi_device *spi, struct spi_message *msg)
1687{
1688 struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1689 unsigned long flags;
1690
1691 spin_lock_irqsave(&pl022->queue_lock, flags);
1692
5e8b821d 1693 if (!pl022->running) {
b43d65f7
LW
1694 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1695 return -ESHUTDOWN;
1696 }
1697 msg->actual_length = 0;
1698 msg->status = -EINPROGRESS;
1699 msg->state = STATE_START;
1700
1701 list_add_tail(&msg->queue, &pl022->queue);
5e8b821d 1702 if (pl022->running && !pl022->busy)
b43d65f7
LW
1703 queue_work(pl022->workqueue, &pl022->pump_messages);
1704
1705 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1706 return 0;
1707}
1708
1709static int calculate_effective_freq(struct pl022 *pl022,
1710 int freq,
1711 struct ssp_clock_params *clk_freq)
1712{
1713 /* Lets calculate the frequency parameters */
1714 u16 cpsdvsr = 2;
1715 u16 scr = 0;
1716 bool freq_found = false;
1717 u32 rate;
1718 u32 max_tclk;
1719 u32 min_tclk;
1720
1721 rate = clk_get_rate(pl022->clk);
1722 /* cpsdvscr = 2 & scr 0 */
1723 max_tclk = (rate / (CPSDVR_MIN * (1 + SCR_MIN)));
1724 /* cpsdvsr = 254 & scr = 255 */
1725 min_tclk = (rate / (CPSDVR_MAX * (1 + SCR_MAX)));
1726
1727 if ((freq <= max_tclk) && (freq >= min_tclk)) {
1728 while (cpsdvsr <= CPSDVR_MAX && !freq_found) {
1729 while (scr <= SCR_MAX && !freq_found) {
1730 if ((rate /
1731 (cpsdvsr * (1 + scr))) > freq)
1732 scr += 1;
1733 else {
1734 /*
1735 * This bool is made true when
1736 * effective frequency >=
1737 * target frequency is found
1738 */
1739 freq_found = true;
1740 if ((rate /
1741 (cpsdvsr * (1 + scr))) != freq) {
1742 if (scr == SCR_MIN) {
1743 cpsdvsr -= 2;
1744 scr = SCR_MAX;
1745 } else
1746 scr -= 1;
1747 }
1748 }
1749 }
1750 if (!freq_found) {
1751 cpsdvsr += 2;
1752 scr = SCR_MIN;
1753 }
1754 }
1755 if (cpsdvsr != 0) {
1756 dev_dbg(&pl022->adev->dev,
1757 "SSP Effective Frequency is %u\n",
1758 (rate / (cpsdvsr * (1 + scr))));
1759 clk_freq->cpsdvsr = (u8) (cpsdvsr & 0xFF);
1760 clk_freq->scr = (u8) (scr & 0xFF);
1761 dev_dbg(&pl022->adev->dev,
1762 "SSP cpsdvsr = %d, scr = %d\n",
1763 clk_freq->cpsdvsr, clk_freq->scr);
1764 }
1765 } else {
1766 dev_err(&pl022->adev->dev,
1767 "controller data is incorrect: out of range frequency");
1768 return -EINVAL;
1769 }
1770 return 0;
1771}
1772
f9d629c7
LW
1773
1774/*
1775 * A piece of default chip info unless the platform
1776 * supplies it.
1777 */
1778static const struct pl022_config_chip pl022_default_chip_info = {
1779 .com_mode = POLLING_TRANSFER,
1780 .iface = SSP_INTERFACE_MOTOROLA_SPI,
1781 .hierarchy = SSP_SLAVE,
1782 .slave_tx_disable = DO_NOT_DRIVE_TX,
1783 .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1784 .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1785 .ctrl_len = SSP_BITS_8,
1786 .wait_state = SSP_MWIRE_WAIT_ZERO,
1787 .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1788 .cs_control = null_cs_control,
1789};
1790
1791
b43d65f7
LW
1792/**
1793 * pl022_setup - setup function registered to SPI master framework
1794 * @spi: spi device which is requesting setup
1795 *
1796 * This function is registered to the SPI framework for this SPI master
1797 * controller. If it is the first time when setup is called by this device,
1798 * this function will initialize the runtime state for this chip and save
1799 * the same in the device structure. Else it will update the runtime info
1800 * with the updated chip info. Nothing is really being written to the
1801 * controller hardware here, that is not done until the actual transfer
1802 * commence.
1803 */
b43d65f7
LW
1804static int pl022_setup(struct spi_device *spi)
1805{
f9d629c7 1806 struct pl022_config_chip const *chip_info;
b43d65f7 1807 struct chip_data *chip;
94a1b6d8 1808 struct ssp_clock_params clk_freq = {0, };
b43d65f7
LW
1809 int status = 0;
1810 struct pl022 *pl022 = spi_master_get_devdata(spi->master);
bde435a9
KW
1811 unsigned int bits = spi->bits_per_word;
1812 u32 tmp;
b43d65f7
LW
1813
1814 if (!spi->max_speed_hz)
1815 return -EINVAL;
1816
1817 /* Get controller_state if one is supplied */
1818 chip = spi_get_ctldata(spi);
1819
1820 if (chip == NULL) {
1821 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1822 if (!chip) {
1823 dev_err(&spi->dev,
1824 "cannot allocate controller state\n");
1825 return -ENOMEM;
1826 }
1827 dev_dbg(&spi->dev,
1828 "allocated memory for controller's runtime state\n");
1829 }
1830
1831 /* Get controller data if one is supplied */
1832 chip_info = spi->controller_data;
1833
1834 if (chip_info == NULL) {
f9d629c7 1835 chip_info = &pl022_default_chip_info;
b43d65f7
LW
1836 /* spi_board_info.controller_data not is supplied */
1837 dev_dbg(&spi->dev,
1838 "using default controller_data settings\n");
f9d629c7 1839 } else
b43d65f7
LW
1840 dev_dbg(&spi->dev,
1841 "using user supplied controller_data settings\n");
b43d65f7
LW
1842
1843 /*
1844 * We can override with custom divisors, else we use the board
1845 * frequency setting
1846 */
1847 if ((0 == chip_info->clk_freq.cpsdvsr)
1848 && (0 == chip_info->clk_freq.scr)) {
1849 status = calculate_effective_freq(pl022,
1850 spi->max_speed_hz,
f9d629c7 1851 &clk_freq);
b43d65f7
LW
1852 if (status < 0)
1853 goto err_config_params;
1854 } else {
f9d629c7
LW
1855 memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1856 if ((clk_freq.cpsdvsr % 2) != 0)
1857 clk_freq.cpsdvsr =
1858 clk_freq.cpsdvsr - 1;
b43d65f7 1859 }
f9d629c7
LW
1860 if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1861 || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1862 dev_err(&spi->dev,
1863 "cpsdvsr is configured incorrectly\n");
1864 goto err_config_params;
1865 }
1866
1867
b43d65f7
LW
1868 status = verify_controller_parameters(pl022, chip_info);
1869 if (status) {
1870 dev_err(&spi->dev, "controller data is incorrect");
1871 goto err_config_params;
1872 }
f9d629c7 1873
b43d65f7
LW
1874 /* Now set controller state based on controller data */
1875 chip->xfer_type = chip_info->com_mode;
f9d629c7
LW
1876 if (!chip_info->cs_control) {
1877 chip->cs_control = null_cs_control;
1878 dev_warn(&spi->dev,
1879 "chip select function is NULL for this chip\n");
1880 } else
1881 chip->cs_control = chip_info->cs_control;
b43d65f7 1882
bde435a9
KW
1883 if (bits <= 3) {
1884 /* PL022 doesn't support less than 4-bits */
1885 status = -ENOTSUPP;
1886 goto err_config_params;
1887 } else if (bits <= 8) {
1888 dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
b43d65f7
LW
1889 chip->n_bytes = 1;
1890 chip->read = READING_U8;
1891 chip->write = WRITING_U8;
bde435a9 1892 } else if (bits <= 16) {
b43d65f7
LW
1893 dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1894 chip->n_bytes = 2;
1895 chip->read = READING_U16;
1896 chip->write = WRITING_U16;
1897 } else {
1898 if (pl022->vendor->max_bpw >= 32) {
1899 dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1900 chip->n_bytes = 4;
1901 chip->read = READING_U32;
1902 chip->write = WRITING_U32;
1903 } else {
1904 dev_err(&spi->dev,
1905 "illegal data size for this controller!\n");
1906 dev_err(&spi->dev,
1907 "a standard pl022 can only handle "
1908 "1 <= n <= 16 bit words\n");
bde435a9 1909 status = -ENOTSUPP;
b43d65f7
LW
1910 goto err_config_params;
1911 }
1912 }
1913
1914 /* Now Initialize all register settings required for this chip */
1915 chip->cr0 = 0;
1916 chip->cr1 = 0;
1917 chip->dmacr = 0;
1918 chip->cpsr = 0;
1919 if ((chip_info->com_mode == DMA_TRANSFER)
1920 && ((pl022->master_info)->enable_dma)) {
b1b6b9aa 1921 chip->enable_dma = true;
b43d65f7 1922 dev_dbg(&spi->dev, "DMA mode set in controller state\n");
b43d65f7
LW
1923 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1924 SSP_DMACR_MASK_RXDMAE, 0);
1925 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1926 SSP_DMACR_MASK_TXDMAE, 1);
1927 } else {
b1b6b9aa 1928 chip->enable_dma = false;
b43d65f7
LW
1929 dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1930 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1931 SSP_DMACR_MASK_RXDMAE, 0);
1932 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1933 SSP_DMACR_MASK_TXDMAE, 1);
1934 }
1935
f9d629c7 1936 chip->cpsr = clk_freq.cpsdvsr;
b43d65f7 1937
556f4aeb
LW
1938 /* Special setup for the ST micro extended control registers */
1939 if (pl022->vendor->extended_cr) {
bde435a9
KW
1940 u32 etx;
1941
781c7b12
LW
1942 if (pl022->vendor->pl023) {
1943 /* These bits are only in the PL023 */
1944 SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
1945 SSP_CR1_MASK_FBCLKDEL_ST, 13);
1946 } else {
1947 /* These bits are in the PL022 but not PL023 */
1948 SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
1949 SSP_CR0_MASK_HALFDUP_ST, 5);
1950 SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
1951 SSP_CR0_MASK_CSS_ST, 16);
1952 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1953 SSP_CR0_MASK_FRF_ST, 21);
1954 SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
1955 SSP_CR1_MASK_MWAIT_ST, 6);
1956 }
bde435a9 1957 SSP_WRITE_BITS(chip->cr0, bits - 1,
556f4aeb 1958 SSP_CR0_MASK_DSS_ST, 0);
bde435a9
KW
1959
1960 if (spi->mode & SPI_LSB_FIRST) {
1961 tmp = SSP_RX_LSB;
1962 etx = SSP_TX_LSB;
1963 } else {
1964 tmp = SSP_RX_MSB;
1965 etx = SSP_TX_MSB;
1966 }
1967 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
1968 SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
556f4aeb
LW
1969 SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
1970 SSP_CR1_MASK_RXIFLSEL_ST, 7);
1971 SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
1972 SSP_CR1_MASK_TXIFLSEL_ST, 10);
1973 } else {
bde435a9 1974 SSP_WRITE_BITS(chip->cr0, bits - 1,
556f4aeb
LW
1975 SSP_CR0_MASK_DSS, 0);
1976 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1977 SSP_CR0_MASK_FRF, 4);
1978 }
bde435a9 1979
556f4aeb 1980 /* Stuff that is common for all versions */
bde435a9
KW
1981 if (spi->mode & SPI_CPOL)
1982 tmp = SSP_CLK_POL_IDLE_HIGH;
1983 else
1984 tmp = SSP_CLK_POL_IDLE_LOW;
1985 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
1986
1987 if (spi->mode & SPI_CPHA)
1988 tmp = SSP_CLK_SECOND_EDGE;
1989 else
1990 tmp = SSP_CLK_FIRST_EDGE;
1991 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
1992
f9d629c7 1993 SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
781c7b12 1994 /* Loopback is available on all versions except PL023 */
06fb01fd 1995 if (pl022->vendor->loopback) {
bde435a9
KW
1996 if (spi->mode & SPI_LOOP)
1997 tmp = LOOPBACK_ENABLED;
1998 else
1999 tmp = LOOPBACK_DISABLED;
2000 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
2001 }
b43d65f7
LW
2002 SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
2003 SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
2004 SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD, 3);
b43d65f7
LW
2005
2006 /* Save controller_state */
2007 spi_set_ctldata(spi, chip);
2008 return status;
2009 err_config_params:
bde435a9 2010 spi_set_ctldata(spi, NULL);
b43d65f7
LW
2011 kfree(chip);
2012 return status;
2013}
2014
2015/**
2016 * pl022_cleanup - cleanup function registered to SPI master framework
2017 * @spi: spi device which is requesting cleanup
2018 *
2019 * This function is registered to the SPI framework for this SPI master
2020 * controller. It will free the runtime state of chip.
2021 */
2022static void pl022_cleanup(struct spi_device *spi)
2023{
2024 struct chip_data *chip = spi_get_ctldata(spi);
2025
2026 spi_set_ctldata(spi, NULL);
2027 kfree(chip);
2028}
2029
2030
b4225885 2031static int __devinit
aa25afad 2032pl022_probe(struct amba_device *adev, const struct amba_id *id)
b43d65f7
LW
2033{
2034 struct device *dev = &adev->dev;
2035 struct pl022_ssp_controller *platform_info = adev->dev.platform_data;
2036 struct spi_master *master;
2037 struct pl022 *pl022 = NULL; /*Data for this driver */
2038 int status = 0;
2039
2040 dev_info(&adev->dev,
2041 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2042 if (platform_info == NULL) {
2043 dev_err(&adev->dev, "probe - no platform data supplied\n");
2044 status = -ENODEV;
2045 goto err_no_pdata;
2046 }
2047
2048 /* Allocate master with space for data */
2049 master = spi_alloc_master(dev, sizeof(struct pl022));
2050 if (master == NULL) {
2051 dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2052 status = -ENOMEM;
2053 goto err_no_master;
2054 }
2055
2056 pl022 = spi_master_get_devdata(master);
2057 pl022->master = master;
2058 pl022->master_info = platform_info;
2059 pl022->adev = adev;
2060 pl022->vendor = id->data;
2061
2062 /*
2063 * Bus Number Which has been Assigned to this SSP controller
2064 * on this board
2065 */
2066 master->bus_num = platform_info->bus_id;
2067 master->num_chipselect = platform_info->num_chipselect;
2068 master->cleanup = pl022_cleanup;
2069 master->setup = pl022_setup;
2070 master->transfer = pl022_transfer;
2071
bde435a9
KW
2072 /*
2073 * Supports mode 0-3, loopback, and active low CS. Transfers are
2074 * always MS bit first on the original pl022.
2075 */
2076 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2077 if (pl022->vendor->extended_cr)
2078 master->mode_bits |= SPI_LSB_FIRST;
2079
b43d65f7
LW
2080 dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2081
2082 status = amba_request_regions(adev, NULL);
2083 if (status)
2084 goto err_no_ioregion;
2085
b1b6b9aa 2086 pl022->phybase = adev->res.start;
b43d65f7
LW
2087 pl022->virtbase = ioremap(adev->res.start, resource_size(&adev->res));
2088 if (pl022->virtbase == NULL) {
2089 status = -ENOMEM;
2090 goto err_no_ioremap;
2091 }
2092 printk(KERN_INFO "pl022: mapped registers from 0x%08x to %p\n",
2093 adev->res.start, pl022->virtbase);
2094
2095 pl022->clk = clk_get(&adev->dev, NULL);
2096 if (IS_ERR(pl022->clk)) {
2097 status = PTR_ERR(pl022->clk);
2098 dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2099 goto err_no_clk;
2100 }
2101
2102 /* Disable SSP */
b43d65f7
LW
2103 writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2104 SSP_CR1(pl022->virtbase));
2105 load_ssp_default_config(pl022);
b43d65f7
LW
2106
2107 status = request_irq(adev->irq[0], pl022_interrupt_handler, 0, "pl022",
2108 pl022);
2109 if (status < 0) {
2110 dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2111 goto err_no_irq;
2112 }
b1b6b9aa
LW
2113
2114 /* Get DMA channels */
2115 if (platform_info->enable_dma) {
2116 status = pl022_dma_probe(pl022);
2117 if (status != 0)
2118 goto err_no_dma;
2119 }
2120
b43d65f7
LW
2121 /* Initialize and start queue */
2122 status = init_queue(pl022);
2123 if (status != 0) {
2124 dev_err(&adev->dev, "probe - problem initializing queue\n");
2125 goto err_init_queue;
2126 }
2127 status = start_queue(pl022);
2128 if (status != 0) {
2129 dev_err(&adev->dev, "probe - problem starting queue\n");
2130 goto err_start_queue;
2131 }
2132 /* Register with the SPI framework */
2133 amba_set_drvdata(adev, pl022);
2134 status = spi_register_master(master);
2135 if (status != 0) {
2136 dev_err(&adev->dev,
2137 "probe - problem registering spi master\n");
2138 goto err_spi_register;
2139 }
25985edc 2140 dev_dbg(dev, "probe succeeded\n");
808f1037
LW
2141 /*
2142 * Disable the silicon block pclk and any voltage domain and just
2143 * power it up and clock it when it's needed
2144 */
545074fb 2145 amba_pclk_disable(adev);
808f1037 2146 amba_vcore_disable(adev);
b43d65f7
LW
2147 return 0;
2148
2149 err_spi_register:
2150 err_start_queue:
2151 err_init_queue:
2152 destroy_queue(pl022);
b1b6b9aa
LW
2153 pl022_dma_remove(pl022);
2154 err_no_dma:
b43d65f7
LW
2155 free_irq(adev->irq[0], pl022);
2156 err_no_irq:
2157 clk_put(pl022->clk);
2158 err_no_clk:
2159 iounmap(pl022->virtbase);
2160 err_no_ioremap:
2161 amba_release_regions(adev);
2162 err_no_ioregion:
2163 spi_master_put(master);
2164 err_no_master:
2165 err_no_pdata:
2166 return status;
2167}
2168
b4225885 2169static int __devexit
b43d65f7
LW
2170pl022_remove(struct amba_device *adev)
2171{
2172 struct pl022 *pl022 = amba_get_drvdata(adev);
2173 int status = 0;
2174 if (!pl022)
2175 return 0;
2176
2177 /* Remove the queue */
2178 status = destroy_queue(pl022);
2179 if (status != 0) {
2180 dev_err(&adev->dev,
2181 "queue remove failed (%d)\n", status);
2182 return status;
2183 }
2184 load_ssp_default_config(pl022);
b1b6b9aa 2185 pl022_dma_remove(pl022);
b43d65f7
LW
2186 free_irq(adev->irq[0], pl022);
2187 clk_disable(pl022->clk);
2188 clk_put(pl022->clk);
2189 iounmap(pl022->virtbase);
2190 amba_release_regions(adev);
2191 tasklet_disable(&pl022->pump_transfers);
2192 spi_unregister_master(pl022->master);
2193 spi_master_put(pl022->master);
2194 amba_set_drvdata(adev, NULL);
25985edc 2195 dev_dbg(&adev->dev, "remove succeeded\n");
b43d65f7
LW
2196 return 0;
2197}
2198
2199#ifdef CONFIG_PM
2200static int pl022_suspend(struct amba_device *adev, pm_message_t state)
2201{
2202 struct pl022 *pl022 = amba_get_drvdata(adev);
2203 int status = 0;
2204
2205 status = stop_queue(pl022);
2206 if (status) {
2207 dev_warn(&adev->dev, "suspend cannot stop queue\n");
2208 return status;
2209 }
2210
808f1037 2211 amba_vcore_enable(adev);
545074fb 2212 amba_pclk_enable(adev);
b43d65f7 2213 load_ssp_default_config(pl022);
545074fb 2214 amba_pclk_disable(adev);
808f1037 2215 amba_vcore_disable(adev);
b43d65f7
LW
2216 dev_dbg(&adev->dev, "suspended\n");
2217 return 0;
2218}
2219
2220static int pl022_resume(struct amba_device *adev)
2221{
2222 struct pl022 *pl022 = amba_get_drvdata(adev);
2223 int status = 0;
2224
2225 /* Start the queue running */
2226 status = start_queue(pl022);
2227 if (status)
2228 dev_err(&adev->dev, "problem starting queue (%d)\n", status);
2229 else
2230 dev_dbg(&adev->dev, "resumed\n");
2231
2232 return status;
2233}
2234#else
2235#define pl022_suspend NULL
2236#define pl022_resume NULL
2237#endif /* CONFIG_PM */
2238
2239static struct vendor_data vendor_arm = {
2240 .fifodepth = 8,
2241 .max_bpw = 16,
2242 .unidir = false,
556f4aeb 2243 .extended_cr = false,
781c7b12 2244 .pl023 = false,
06fb01fd 2245 .loopback = true,
b43d65f7
LW
2246};
2247
2248
2249static struct vendor_data vendor_st = {
2250 .fifodepth = 32,
2251 .max_bpw = 32,
2252 .unidir = false,
556f4aeb 2253 .extended_cr = true,
781c7b12 2254 .pl023 = false,
06fb01fd 2255 .loopback = true,
781c7b12
LW
2256};
2257
2258static struct vendor_data vendor_st_pl023 = {
2259 .fifodepth = 32,
2260 .max_bpw = 32,
2261 .unidir = false,
2262 .extended_cr = true,
2263 .pl023 = true,
06fb01fd
PL
2264 .loopback = false,
2265};
2266
2267static struct vendor_data vendor_db5500_pl023 = {
2268 .fifodepth = 32,
2269 .max_bpw = 32,
2270 .unidir = false,
2271 .extended_cr = true,
2272 .pl023 = true,
2273 .loopback = true,
b43d65f7
LW
2274};
2275
2276static struct amba_id pl022_ids[] = {
2277 {
2278 /*
2279 * ARM PL022 variant, this has a 16bit wide
2280 * and 8 locations deep TX/RX FIFO
2281 */
2282 .id = 0x00041022,
2283 .mask = 0x000fffff,
2284 .data = &vendor_arm,
2285 },
2286 {
2287 /*
2288 * ST Micro derivative, this has 32bit wide
2289 * and 32 locations deep TX/RX FIFO
2290 */
e89e04fc 2291 .id = 0x01080022,
b43d65f7
LW
2292 .mask = 0xffffffff,
2293 .data = &vendor_st,
2294 },
781c7b12
LW
2295 {
2296 /*
2297 * ST-Ericsson derivative "PL023" (this is not
2298 * an official ARM number), this is a PL022 SSP block
2299 * stripped to SPI mode only, it has 32bit wide
2300 * and 32 locations deep TX/RX FIFO but no extended
2301 * CR0/CR1 register
2302 */
2303 .id = 0x00080023,
2304 .mask = 0xffffffff,
2305 .data = &vendor_st_pl023,
2306 },
06fb01fd
PL
2307 {
2308 .id = 0x10080023,
2309 .mask = 0xffffffff,
2310 .data = &vendor_db5500_pl023,
2311 },
b43d65f7
LW
2312 { 0, 0 },
2313};
2314
2315static struct amba_driver pl022_driver = {
2316 .drv = {
2317 .name = "ssp-pl022",
2318 },
2319 .id_table = pl022_ids,
2320 .probe = pl022_probe,
b4225885 2321 .remove = __devexit_p(pl022_remove),
b43d65f7
LW
2322 .suspend = pl022_suspend,
2323 .resume = pl022_resume,
2324};
2325
2326
2327static int __init pl022_init(void)
2328{
2329 return amba_driver_register(&pl022_driver);
2330}
2331
25c8e03b 2332subsys_initcall(pl022_init);
b43d65f7
LW
2333
2334static void __exit pl022_exit(void)
2335{
2336 amba_driver_unregister(&pl022_driver);
2337}
2338
2339module_exit(pl022_exit);
2340
2341MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2342MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2343MODULE_LICENSE("GPL");
This page took 0.457599 seconds and 5 git commands to generate.