spi: atmel: adopt pinctrl support
[deliverable/linux.git] / drivers / spi / spi-atmel.c
CommitLineData
754ce4f2
HS
1/*
2 * Driver for Atmel AT32 and AT91 SPI Controllers
3 *
4 * Copyright (C) 2006 Atmel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11#include <linux/kernel.h>
12#include <linux/init.h>
13#include <linux/clk.h>
14#include <linux/module.h>
15#include <linux/platform_device.h>
16#include <linux/delay.h>
17#include <linux/dma-mapping.h>
1ccc404a 18#include <linux/dmaengine.h>
754ce4f2
HS
19#include <linux/err.h>
20#include <linux/interrupt.h>
21#include <linux/spi/spi.h>
5a0e3ad6 22#include <linux/slab.h>
bcd2360c 23#include <linux/platform_data/atmel.h>
1ccc404a 24#include <linux/platform_data/dma-atmel.h>
850a5b67 25#include <linux/of.h>
754ce4f2 26
d4820b74
WY
27#include <linux/io.h>
28#include <linux/gpio.h>
5bdfd491 29#include <linux/pinctrl/consumer.h>
bb2d1c36 30
ca632f55
GL
31/* SPI register offsets */
32#define SPI_CR 0x0000
33#define SPI_MR 0x0004
34#define SPI_RDR 0x0008
35#define SPI_TDR 0x000c
36#define SPI_SR 0x0010
37#define SPI_IER 0x0014
38#define SPI_IDR 0x0018
39#define SPI_IMR 0x001c
40#define SPI_CSR0 0x0030
41#define SPI_CSR1 0x0034
42#define SPI_CSR2 0x0038
43#define SPI_CSR3 0x003c
d4820b74 44#define SPI_VERSION 0x00fc
ca632f55
GL
45#define SPI_RPR 0x0100
46#define SPI_RCR 0x0104
47#define SPI_TPR 0x0108
48#define SPI_TCR 0x010c
49#define SPI_RNPR 0x0110
50#define SPI_RNCR 0x0114
51#define SPI_TNPR 0x0118
52#define SPI_TNCR 0x011c
53#define SPI_PTCR 0x0120
54#define SPI_PTSR 0x0124
55
56/* Bitfields in CR */
57#define SPI_SPIEN_OFFSET 0
58#define SPI_SPIEN_SIZE 1
59#define SPI_SPIDIS_OFFSET 1
60#define SPI_SPIDIS_SIZE 1
61#define SPI_SWRST_OFFSET 7
62#define SPI_SWRST_SIZE 1
63#define SPI_LASTXFER_OFFSET 24
64#define SPI_LASTXFER_SIZE 1
65
66/* Bitfields in MR */
67#define SPI_MSTR_OFFSET 0
68#define SPI_MSTR_SIZE 1
69#define SPI_PS_OFFSET 1
70#define SPI_PS_SIZE 1
71#define SPI_PCSDEC_OFFSET 2
72#define SPI_PCSDEC_SIZE 1
73#define SPI_FDIV_OFFSET 3
74#define SPI_FDIV_SIZE 1
75#define SPI_MODFDIS_OFFSET 4
76#define SPI_MODFDIS_SIZE 1
d4820b74
WY
77#define SPI_WDRBT_OFFSET 5
78#define SPI_WDRBT_SIZE 1
ca632f55
GL
79#define SPI_LLB_OFFSET 7
80#define SPI_LLB_SIZE 1
81#define SPI_PCS_OFFSET 16
82#define SPI_PCS_SIZE 4
83#define SPI_DLYBCS_OFFSET 24
84#define SPI_DLYBCS_SIZE 8
85
86/* Bitfields in RDR */
87#define SPI_RD_OFFSET 0
88#define SPI_RD_SIZE 16
89
90/* Bitfields in TDR */
91#define SPI_TD_OFFSET 0
92#define SPI_TD_SIZE 16
93
94/* Bitfields in SR */
95#define SPI_RDRF_OFFSET 0
96#define SPI_RDRF_SIZE 1
97#define SPI_TDRE_OFFSET 1
98#define SPI_TDRE_SIZE 1
99#define SPI_MODF_OFFSET 2
100#define SPI_MODF_SIZE 1
101#define SPI_OVRES_OFFSET 3
102#define SPI_OVRES_SIZE 1
103#define SPI_ENDRX_OFFSET 4
104#define SPI_ENDRX_SIZE 1
105#define SPI_ENDTX_OFFSET 5
106#define SPI_ENDTX_SIZE 1
107#define SPI_RXBUFF_OFFSET 6
108#define SPI_RXBUFF_SIZE 1
109#define SPI_TXBUFE_OFFSET 7
110#define SPI_TXBUFE_SIZE 1
111#define SPI_NSSR_OFFSET 8
112#define SPI_NSSR_SIZE 1
113#define SPI_TXEMPTY_OFFSET 9
114#define SPI_TXEMPTY_SIZE 1
115#define SPI_SPIENS_OFFSET 16
116#define SPI_SPIENS_SIZE 1
117
118/* Bitfields in CSR0 */
119#define SPI_CPOL_OFFSET 0
120#define SPI_CPOL_SIZE 1
121#define SPI_NCPHA_OFFSET 1
122#define SPI_NCPHA_SIZE 1
123#define SPI_CSAAT_OFFSET 3
124#define SPI_CSAAT_SIZE 1
125#define SPI_BITS_OFFSET 4
126#define SPI_BITS_SIZE 4
127#define SPI_SCBR_OFFSET 8
128#define SPI_SCBR_SIZE 8
129#define SPI_DLYBS_OFFSET 16
130#define SPI_DLYBS_SIZE 8
131#define SPI_DLYBCT_OFFSET 24
132#define SPI_DLYBCT_SIZE 8
133
134/* Bitfields in RCR */
135#define SPI_RXCTR_OFFSET 0
136#define SPI_RXCTR_SIZE 16
137
138/* Bitfields in TCR */
139#define SPI_TXCTR_OFFSET 0
140#define SPI_TXCTR_SIZE 16
141
142/* Bitfields in RNCR */
143#define SPI_RXNCR_OFFSET 0
144#define SPI_RXNCR_SIZE 16
145
146/* Bitfields in TNCR */
147#define SPI_TXNCR_OFFSET 0
148#define SPI_TXNCR_SIZE 16
149
150/* Bitfields in PTCR */
151#define SPI_RXTEN_OFFSET 0
152#define SPI_RXTEN_SIZE 1
153#define SPI_RXTDIS_OFFSET 1
154#define SPI_RXTDIS_SIZE 1
155#define SPI_TXTEN_OFFSET 8
156#define SPI_TXTEN_SIZE 1
157#define SPI_TXTDIS_OFFSET 9
158#define SPI_TXTDIS_SIZE 1
159
160/* Constants for BITS */
161#define SPI_BITS_8_BPT 0
162#define SPI_BITS_9_BPT 1
163#define SPI_BITS_10_BPT 2
164#define SPI_BITS_11_BPT 3
165#define SPI_BITS_12_BPT 4
166#define SPI_BITS_13_BPT 5
167#define SPI_BITS_14_BPT 6
168#define SPI_BITS_15_BPT 7
169#define SPI_BITS_16_BPT 8
170
171/* Bit manipulation macros */
172#define SPI_BIT(name) \
173 (1 << SPI_##name##_OFFSET)
a536d765 174#define SPI_BF(name, value) \
ca632f55 175 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
a536d765 176#define SPI_BFEXT(name, value) \
ca632f55 177 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
a536d765
SK
178#define SPI_BFINS(name, value, old) \
179 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
180 | SPI_BF(name, value))
ca632f55
GL
181
182/* Register access macros */
a536d765 183#define spi_readl(port, reg) \
ca632f55 184 __raw_readl((port)->regs + SPI_##reg)
a536d765 185#define spi_writel(port, reg, value) \
ca632f55
GL
186 __raw_writel((value), (port)->regs + SPI_##reg)
187
1ccc404a
NF
188/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
189 * cache operations; better heuristics consider wordsize and bitrate.
190 */
191#define DMA_MIN_BYTES 16
192
8090d6d1
WY
193#define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
194
1ccc404a
NF
195struct atmel_spi_dma {
196 struct dma_chan *chan_rx;
197 struct dma_chan *chan_tx;
198 struct scatterlist sgrx;
199 struct scatterlist sgtx;
200 struct dma_async_tx_descriptor *data_desc_rx;
201 struct dma_async_tx_descriptor *data_desc_tx;
202
203 struct at_dma_slave dma_slave;
204};
205
d4820b74
WY
206struct atmel_spi_caps {
207 bool is_spi2;
208 bool has_wdrbt;
209 bool has_dma_support;
210};
754ce4f2
HS
211
212/*
213 * The core SPI transfer engine just talks to a register bank to set up
214 * DMA transfers; transfer queue progress is driven by IRQs. The clock
215 * framework provides the base clock, subdivided for each spi_device.
754ce4f2
HS
216 */
217struct atmel_spi {
218 spinlock_t lock;
8aad7924 219 unsigned long flags;
754ce4f2 220
dfab30ee 221 phys_addr_t phybase;
754ce4f2
HS
222 void __iomem *regs;
223 int irq;
224 struct clk *clk;
225 struct platform_device *pdev;
754ce4f2 226
754ce4f2 227 struct spi_transfer *current_transfer;
154443c7 228 unsigned long current_remaining_bytes;
823cd045 229 int done_status;
754ce4f2 230
8090d6d1
WY
231 struct completion xfer_completion;
232
1ccc404a 233 /* scratch buffer */
754ce4f2
HS
234 void *buffer;
235 dma_addr_t buffer_dma;
d4820b74
WY
236
237 struct atmel_spi_caps caps;
1ccc404a
NF
238
239 bool use_dma;
240 bool use_pdc;
241 /* dmaengine data */
242 struct atmel_spi_dma dma;
8090d6d1
WY
243
244 bool keep_cs;
245 bool cs_active;
754ce4f2
HS
246};
247
5ee36c98
HS
248/* Controller-specific per-slave state */
249struct atmel_spi_device {
250 unsigned int npcs_pin;
251 u32 csr;
252};
253
754ce4f2
HS
254#define BUFFER_SIZE PAGE_SIZE
255#define INVALID_DMA_ADDRESS 0xffffffff
256
5bfa26ca
HS
257/*
258 * Version 2 of the SPI controller has
259 * - CR.LASTXFER
260 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
261 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
262 * - SPI_CSRx.CSAAT
263 * - SPI_CSRx.SBCR allows faster clocking
5bfa26ca 264 */
d4820b74 265static bool atmel_spi_is_v2(struct atmel_spi *as)
5bfa26ca 266{
d4820b74 267 return as->caps.is_spi2;
5bfa26ca
HS
268}
269
754ce4f2
HS
270/*
271 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
272 * they assume that spi slave device state will not change on deselect, so
defbd3b4
DB
273 * that automagic deselection is OK. ("NPCSx rises if no data is to be
274 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
275 * controllers have CSAAT and friends.
754ce4f2 276 *
defbd3b4
DB
277 * Since the CSAAT functionality is a bit weird on newer controllers as
278 * well, we use GPIO to control nCSx pins on all controllers, updating
279 * MR.PCS to avoid confusing the controller. Using GPIOs also lets us
280 * support active-high chipselects despite the controller's belief that
281 * only active-low devices/systems exists.
282 *
283 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
284 * right when driven with GPIO. ("Mode Fault does not allow more than one
285 * Master on Chip Select 0.") No workaround exists for that ... so for
286 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
287 * and (c) will trigger that first erratum in some cases.
754ce4f2
HS
288 */
289
defbd3b4 290static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
754ce4f2 291{
5ee36c98 292 struct atmel_spi_device *asd = spi->controller_state;
754ce4f2 293 unsigned active = spi->mode & SPI_CS_HIGH;
defbd3b4
DB
294 u32 mr;
295
d4820b74 296 if (atmel_spi_is_v2(as)) {
97ed465b
WY
297 spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
298 /* For the low SPI version, there is a issue that PDC transfer
299 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
5ee36c98
HS
300 */
301 spi_writel(as, CSR0, asd->csr);
d4820b74 302 if (as->caps.has_wdrbt) {
97ed465b
WY
303 spi_writel(as, MR,
304 SPI_BF(PCS, ~(0x01 << spi->chip_select))
305 | SPI_BIT(WDRBT)
306 | SPI_BIT(MODFDIS)
307 | SPI_BIT(MSTR));
d4820b74 308 } else {
97ed465b
WY
309 spi_writel(as, MR,
310 SPI_BF(PCS, ~(0x01 << spi->chip_select))
311 | SPI_BIT(MODFDIS)
312 | SPI_BIT(MSTR));
d4820b74 313 }
1ccc404a 314
5ee36c98
HS
315 mr = spi_readl(as, MR);
316 gpio_set_value(asd->npcs_pin, active);
317 } else {
318 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
319 int i;
320 u32 csr;
321
322 /* Make sure clock polarity is correct */
323 for (i = 0; i < spi->master->num_chipselect; i++) {
324 csr = spi_readl(as, CSR0 + 4 * i);
325 if ((csr ^ cpol) & SPI_BIT(CPOL))
326 spi_writel(as, CSR0 + 4 * i,
327 csr ^ SPI_BIT(CPOL));
328 }
329
330 mr = spi_readl(as, MR);
331 mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
332 if (spi->chip_select != 0)
333 gpio_set_value(asd->npcs_pin, active);
334 spi_writel(as, MR, mr);
335 }
defbd3b4
DB
336
337 dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
5ee36c98 338 asd->npcs_pin, active ? " (high)" : "",
defbd3b4 339 mr);
754ce4f2
HS
340}
341
defbd3b4 342static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
754ce4f2 343{
5ee36c98 344 struct atmel_spi_device *asd = spi->controller_state;
754ce4f2 345 unsigned active = spi->mode & SPI_CS_HIGH;
defbd3b4
DB
346 u32 mr;
347
348 /* only deactivate *this* device; sometimes transfers to
349 * another device may be active when this routine is called.
350 */
351 mr = spi_readl(as, MR);
352 if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
353 mr = SPI_BFINS(PCS, 0xf, mr);
354 spi_writel(as, MR, mr);
355 }
754ce4f2 356
defbd3b4 357 dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
5ee36c98 358 asd->npcs_pin, active ? " (low)" : "",
defbd3b4
DB
359 mr);
360
d4820b74 361 if (atmel_spi_is_v2(as) || spi->chip_select != 0)
5ee36c98 362 gpio_set_value(asd->npcs_pin, !active);
754ce4f2
HS
363}
364
6c07ef29 365static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
8aad7924
NF
366{
367 spin_lock_irqsave(&as->lock, as->flags);
368}
369
6c07ef29 370static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
8aad7924
NF
371{
372 spin_unlock_irqrestore(&as->lock, as->flags);
373}
374
1ccc404a
NF
375static inline bool atmel_spi_use_dma(struct atmel_spi *as,
376 struct spi_transfer *xfer)
377{
378 return as->use_dma && xfer->len >= DMA_MIN_BYTES;
379}
380
1ccc404a
NF
381static int atmel_spi_dma_slave_config(struct atmel_spi *as,
382 struct dma_slave_config *slave_config,
383 u8 bits_per_word)
384{
385 int err = 0;
386
387 if (bits_per_word > 8) {
388 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
389 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
390 } else {
391 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
392 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
393 }
394
395 slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
396 slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
397 slave_config->src_maxburst = 1;
398 slave_config->dst_maxburst = 1;
399 slave_config->device_fc = false;
400
401 slave_config->direction = DMA_MEM_TO_DEV;
402 if (dmaengine_slave_config(as->dma.chan_tx, slave_config)) {
403 dev_err(&as->pdev->dev,
404 "failed to configure tx dma channel\n");
405 err = -EINVAL;
406 }
407
408 slave_config->direction = DMA_DEV_TO_MEM;
409 if (dmaengine_slave_config(as->dma.chan_rx, slave_config)) {
410 dev_err(&as->pdev->dev,
411 "failed to configure rx dma channel\n");
412 err = -EINVAL;
413 }
414
415 return err;
416}
417
2f767a9f 418static bool filter(struct dma_chan *chan, void *pdata)
1ccc404a 419{
2f767a9f
RG
420 struct atmel_spi_dma *sl_pdata = pdata;
421 struct at_dma_slave *sl;
1ccc404a 422
2f767a9f
RG
423 if (!sl_pdata)
424 return false;
425
426 sl = &sl_pdata->dma_slave;
1ccc404a
NF
427 if (sl->dma_dev == chan->device->dev) {
428 chan->private = sl;
429 return true;
430 } else {
431 return false;
432 }
433}
434
435static int atmel_spi_configure_dma(struct atmel_spi *as)
436{
1ccc404a 437 struct dma_slave_config slave_config;
2f767a9f 438 struct device *dev = &as->pdev->dev;
1ccc404a
NF
439 int err;
440
2f767a9f
RG
441 dma_cap_mask_t mask;
442 dma_cap_zero(mask);
443 dma_cap_set(DMA_SLAVE, mask);
1ccc404a 444
2f767a9f
RG
445 as->dma.chan_tx = dma_request_slave_channel_compat(mask, filter,
446 &as->dma,
447 dev, "tx");
448 if (!as->dma.chan_tx) {
449 dev_err(dev,
450 "DMA TX channel not available, SPI unable to use DMA\n");
451 err = -EBUSY;
452 goto error;
1ccc404a 453 }
2f767a9f
RG
454
455 as->dma.chan_rx = dma_request_slave_channel_compat(mask, filter,
456 &as->dma,
457 dev, "rx");
458
459 if (!as->dma.chan_rx) {
460 dev_err(dev,
461 "DMA RX channel not available, SPI unable to use DMA\n");
1ccc404a
NF
462 err = -EBUSY;
463 goto error;
464 }
465
466 err = atmel_spi_dma_slave_config(as, &slave_config, 8);
467 if (err)
468 goto error;
469
470 dev_info(&as->pdev->dev,
471 "Using %s (tx) and %s (rx) for DMA transfers\n",
472 dma_chan_name(as->dma.chan_tx),
473 dma_chan_name(as->dma.chan_rx));
474 return 0;
475error:
476 if (as->dma.chan_rx)
477 dma_release_channel(as->dma.chan_rx);
478 if (as->dma.chan_tx)
479 dma_release_channel(as->dma.chan_tx);
480 return err;
481}
482
483static void atmel_spi_stop_dma(struct atmel_spi *as)
484{
485 if (as->dma.chan_rx)
486 as->dma.chan_rx->device->device_control(as->dma.chan_rx,
487 DMA_TERMINATE_ALL, 0);
488 if (as->dma.chan_tx)
489 as->dma.chan_tx->device->device_control(as->dma.chan_tx,
490 DMA_TERMINATE_ALL, 0);
491}
492
493static void atmel_spi_release_dma(struct atmel_spi *as)
494{
495 if (as->dma.chan_rx)
496 dma_release_channel(as->dma.chan_rx);
497 if (as->dma.chan_tx)
498 dma_release_channel(as->dma.chan_tx);
499}
500
501/* This function is called by the DMA driver from tasklet context */
502static void dma_callback(void *data)
503{
504 struct spi_master *master = data;
505 struct atmel_spi *as = spi_master_get_devdata(master);
506
8090d6d1 507 complete(&as->xfer_completion);
1ccc404a
NF
508}
509
510/*
511 * Next transfer using PIO.
1ccc404a
NF
512 */
513static void atmel_spi_next_xfer_pio(struct spi_master *master,
514 struct spi_transfer *xfer)
515{
516 struct atmel_spi *as = spi_master_get_devdata(master);
8090d6d1 517 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
1ccc404a
NF
518
519 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
520
1ccc404a
NF
521 /* Make sure data is not remaining in RDR */
522 spi_readl(as, RDR);
523 while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
524 spi_readl(as, RDR);
525 cpu_relax();
526 }
527
8090d6d1 528 if (xfer->tx_buf) {
f557c98b 529 if (xfer->bits_per_word > 8)
8090d6d1 530 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
f557c98b 531 else
8090d6d1
WY
532 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
533 } else {
1ccc404a 534 spi_writel(as, TDR, 0);
8090d6d1 535 }
1ccc404a
NF
536
537 dev_dbg(master->dev.parent,
f557c98b
RG
538 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
539 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
540 xfer->bits_per_word);
1ccc404a
NF
541
542 /* Enable relevant interrupts */
543 spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
544}
545
546/*
547 * Submit next transfer for DMA.
1ccc404a
NF
548 */
549static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
550 struct spi_transfer *xfer,
551 u32 *plen)
552{
553 struct atmel_spi *as = spi_master_get_devdata(master);
554 struct dma_chan *rxchan = as->dma.chan_rx;
555 struct dma_chan *txchan = as->dma.chan_tx;
556 struct dma_async_tx_descriptor *rxdesc;
557 struct dma_async_tx_descriptor *txdesc;
558 struct dma_slave_config slave_config;
559 dma_cookie_t cookie;
560 u32 len = *plen;
561
562 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
563
564 /* Check that the channels are available */
565 if (!rxchan || !txchan)
566 return -ENODEV;
567
568 /* release lock for DMA operations */
569 atmel_spi_unlock(as);
570
571 /* prepare the RX dma transfer */
572 sg_init_table(&as->dma.sgrx, 1);
573 if (xfer->rx_buf) {
574 as->dma.sgrx.dma_address = xfer->rx_dma + xfer->len - *plen;
575 } else {
576 as->dma.sgrx.dma_address = as->buffer_dma;
577 if (len > BUFFER_SIZE)
578 len = BUFFER_SIZE;
579 }
580
581 /* prepare the TX dma transfer */
582 sg_init_table(&as->dma.sgtx, 1);
583 if (xfer->tx_buf) {
584 as->dma.sgtx.dma_address = xfer->tx_dma + xfer->len - *plen;
585 } else {
586 as->dma.sgtx.dma_address = as->buffer_dma;
587 if (len > BUFFER_SIZE)
588 len = BUFFER_SIZE;
589 memset(as->buffer, 0, len);
590 }
591
592 sg_dma_len(&as->dma.sgtx) = len;
593 sg_dma_len(&as->dma.sgrx) = len;
594
595 *plen = len;
596
597 if (atmel_spi_dma_slave_config(as, &slave_config, 8))
598 goto err_exit;
599
600 /* Send both scatterlists */
601 rxdesc = rxchan->device->device_prep_slave_sg(rxchan,
602 &as->dma.sgrx,
603 1,
604 DMA_FROM_DEVICE,
605 DMA_PREP_INTERRUPT | DMA_CTRL_ACK,
606 NULL);
607 if (!rxdesc)
608 goto err_dma;
609
610 txdesc = txchan->device->device_prep_slave_sg(txchan,
611 &as->dma.sgtx,
612 1,
613 DMA_TO_DEVICE,
614 DMA_PREP_INTERRUPT | DMA_CTRL_ACK,
615 NULL);
616 if (!txdesc)
617 goto err_dma;
618
619 dev_dbg(master->dev.parent,
2de024b7
EG
620 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
621 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
622 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
1ccc404a
NF
623
624 /* Enable relevant interrupts */
625 spi_writel(as, IER, SPI_BIT(OVRES));
626
627 /* Put the callback on the RX transfer only, that should finish last */
628 rxdesc->callback = dma_callback;
629 rxdesc->callback_param = master;
630
631 /* Submit and fire RX and TX with TX last so we're ready to read! */
632 cookie = rxdesc->tx_submit(rxdesc);
633 if (dma_submit_error(cookie))
634 goto err_dma;
635 cookie = txdesc->tx_submit(txdesc);
636 if (dma_submit_error(cookie))
637 goto err_dma;
638 rxchan->device->device_issue_pending(rxchan);
639 txchan->device->device_issue_pending(txchan);
640
641 /* take back lock */
642 atmel_spi_lock(as);
643 return 0;
644
645err_dma:
646 spi_writel(as, IDR, SPI_BIT(OVRES));
647 atmel_spi_stop_dma(as);
648err_exit:
649 atmel_spi_lock(as);
650 return -ENOMEM;
651}
652
154443c7
SE
653static void atmel_spi_next_xfer_data(struct spi_master *master,
654 struct spi_transfer *xfer,
655 dma_addr_t *tx_dma,
656 dma_addr_t *rx_dma,
657 u32 *plen)
658{
659 struct atmel_spi *as = spi_master_get_devdata(master);
660 u32 len = *plen;
661
662 /* use scratch buffer only when rx or tx data is unspecified */
663 if (xfer->rx_buf)
6aed4ee9 664 *rx_dma = xfer->rx_dma + xfer->len - *plen;
154443c7
SE
665 else {
666 *rx_dma = as->buffer_dma;
667 if (len > BUFFER_SIZE)
668 len = BUFFER_SIZE;
669 }
1ccc404a 670
154443c7 671 if (xfer->tx_buf)
6aed4ee9 672 *tx_dma = xfer->tx_dma + xfer->len - *plen;
154443c7
SE
673 else {
674 *tx_dma = as->buffer_dma;
675 if (len > BUFFER_SIZE)
676 len = BUFFER_SIZE;
677 memset(as->buffer, 0, len);
678 dma_sync_single_for_device(&as->pdev->dev,
679 as->buffer_dma, len, DMA_TO_DEVICE);
680 }
681
682 *plen = len;
683}
684
d3b72c7e
RG
685static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
686 struct spi_device *spi,
687 struct spi_transfer *xfer)
688{
689 u32 scbr, csr;
690 unsigned long bus_hz;
691
692 /* v1 chips start out at half the peripheral bus speed. */
693 bus_hz = clk_get_rate(as->clk);
694 if (!atmel_spi_is_v2(as))
695 bus_hz /= 2;
696
697 /*
698 * Calculate the lowest divider that satisfies the
699 * constraint, assuming div32/fdiv/mbz == 0.
700 */
701 if (xfer->speed_hz)
702 scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
703 else
704 /*
705 * This can happend if max_speed is null.
706 * In this case, we set the lowest possible speed
707 */
708 scbr = 0xff;
709
710 /*
711 * If the resulting divider doesn't fit into the
712 * register bitfield, we can't satisfy the constraint.
713 */
714 if (scbr >= (1 << SPI_SCBR_SIZE)) {
715 dev_err(&spi->dev,
716 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
717 xfer->speed_hz, scbr, bus_hz/255);
718 return -EINVAL;
719 }
720 if (scbr == 0) {
721 dev_err(&spi->dev,
722 "setup: %d Hz too high, scbr %u; max %ld Hz\n",
723 xfer->speed_hz, scbr, bus_hz);
724 return -EINVAL;
725 }
726 csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
727 csr = SPI_BFINS(SCBR, scbr, csr);
728 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
729
730 return 0;
731}
732
754ce4f2 733/*
1ccc404a 734 * Submit next transfer for PDC.
754ce4f2
HS
735 * lock is held, spi irq is blocked
736 */
1ccc404a 737static void atmel_spi_pdc_next_xfer(struct spi_master *master,
8090d6d1
WY
738 struct spi_message *msg,
739 struct spi_transfer *xfer)
754ce4f2
HS
740{
741 struct atmel_spi *as = spi_master_get_devdata(master);
8090d6d1 742 u32 len;
754ce4f2
HS
743 dma_addr_t tx_dma, rx_dma;
744
8090d6d1 745 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
754ce4f2 746
8090d6d1
WY
747 len = as->current_remaining_bytes;
748 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
749 as->current_remaining_bytes -= len;
754ce4f2 750
8090d6d1
WY
751 spi_writel(as, RPR, rx_dma);
752 spi_writel(as, TPR, tx_dma);
754ce4f2 753
8090d6d1
WY
754 if (msg->spi->bits_per_word > 8)
755 len >>= 1;
756 spi_writel(as, RCR, len);
757 spi_writel(as, TCR, len);
754ce4f2 758
8090d6d1
WY
759 dev_dbg(&msg->spi->dev,
760 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
761 xfer, xfer->len, xfer->tx_buf,
762 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
763 (unsigned long long)xfer->rx_dma);
dc329442 764
8090d6d1
WY
765 if (as->current_remaining_bytes) {
766 len = as->current_remaining_bytes;
154443c7 767 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
8090d6d1 768 as->current_remaining_bytes -= len;
754ce4f2 769
154443c7
SE
770 spi_writel(as, RNPR, rx_dma);
771 spi_writel(as, TNPR, tx_dma);
754ce4f2 772
154443c7
SE
773 if (msg->spi->bits_per_word > 8)
774 len >>= 1;
775 spi_writel(as, RNCR, len);
776 spi_writel(as, TNCR, len);
8bacb219
HS
777
778 dev_dbg(&msg->spi->dev,
2de024b7
EG
779 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
780 xfer, xfer->len, xfer->tx_buf,
781 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
782 (unsigned long long)xfer->rx_dma);
154443c7
SE
783 }
784
785 /* REVISIT: We're waiting for ENDRX before we start the next
754ce4f2
HS
786 * transfer because we need to handle some difficult timing
787 * issues otherwise. If we wait for ENDTX in one transfer and
788 * then starts waiting for ENDRX in the next, it's difficult
789 * to tell the difference between the ENDRX interrupt we're
790 * actually waiting for and the ENDRX interrupt of the
791 * previous transfer.
792 *
793 * It should be doable, though. Just not now...
794 */
8090d6d1 795 spi_writel(as, IER, SPI_BIT(ENDRX) | SPI_BIT(OVRES));
754ce4f2
HS
796 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
797}
798
8da0859a
DB
799/*
800 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
801 * - The buffer is either valid for CPU access, else NULL
b595076a 802 * - If the buffer is valid, so is its DMA address
8da0859a 803 *
b595076a 804 * This driver manages the dma address unless message->is_dma_mapped.
8da0859a
DB
805 */
806static int
754ce4f2
HS
807atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
808{
8da0859a
DB
809 struct device *dev = &as->pdev->dev;
810
754ce4f2 811 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
8da0859a 812 if (xfer->tx_buf) {
214b574a
JCPV
813 /* tx_buf is a const void* where we need a void * for the dma
814 * mapping */
815 void *nonconst_tx = (void *)xfer->tx_buf;
816
8da0859a 817 xfer->tx_dma = dma_map_single(dev,
214b574a 818 nonconst_tx, xfer->len,
754ce4f2 819 DMA_TO_DEVICE);
8d8bb39b 820 if (dma_mapping_error(dev, xfer->tx_dma))
8da0859a
DB
821 return -ENOMEM;
822 }
823 if (xfer->rx_buf) {
824 xfer->rx_dma = dma_map_single(dev,
754ce4f2
HS
825 xfer->rx_buf, xfer->len,
826 DMA_FROM_DEVICE);
8d8bb39b 827 if (dma_mapping_error(dev, xfer->rx_dma)) {
8da0859a
DB
828 if (xfer->tx_buf)
829 dma_unmap_single(dev,
830 xfer->tx_dma, xfer->len,
831 DMA_TO_DEVICE);
832 return -ENOMEM;
833 }
834 }
835 return 0;
754ce4f2
HS
836}
837
838static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
839 struct spi_transfer *xfer)
840{
841 if (xfer->tx_dma != INVALID_DMA_ADDRESS)
49dce689 842 dma_unmap_single(master->dev.parent, xfer->tx_dma,
754ce4f2
HS
843 xfer->len, DMA_TO_DEVICE);
844 if (xfer->rx_dma != INVALID_DMA_ADDRESS)
49dce689 845 dma_unmap_single(master->dev.parent, xfer->rx_dma,
754ce4f2
HS
846 xfer->len, DMA_FROM_DEVICE);
847}
848
1ccc404a
NF
849static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
850{
851 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
852}
853
1ccc404a 854/* Called from IRQ
1ccc404a
NF
855 *
856 * Must update "current_remaining_bytes" to keep track of data
857 * to transfer.
858 */
859static void
860atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
861{
1ccc404a 862 u8 *rxp;
f557c98b 863 u16 *rxp16;
1ccc404a
NF
864 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
865
866 if (xfer->rx_buf) {
f557c98b
RG
867 if (xfer->bits_per_word > 8) {
868 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
869 *rxp16 = spi_readl(as, RDR);
870 } else {
871 rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
872 *rxp = spi_readl(as, RDR);
873 }
1ccc404a
NF
874 } else {
875 spi_readl(as, RDR);
876 }
f557c98b
RG
877 if (xfer->bits_per_word > 8) {
878 as->current_remaining_bytes -= 2;
879 if (as->current_remaining_bytes < 0)
880 as->current_remaining_bytes = 0;
881 } else {
882 as->current_remaining_bytes--;
883 }
1ccc404a
NF
884}
885
886/* Interrupt
887 *
888 * No need for locking in this Interrupt handler: done_status is the
8090d6d1 889 * only information modified.
1ccc404a
NF
890 */
891static irqreturn_t
892atmel_spi_pio_interrupt(int irq, void *dev_id)
893{
894 struct spi_master *master = dev_id;
895 struct atmel_spi *as = spi_master_get_devdata(master);
896 u32 status, pending, imr;
897 struct spi_transfer *xfer;
898 int ret = IRQ_NONE;
899
900 imr = spi_readl(as, IMR);
901 status = spi_readl(as, SR);
902 pending = status & imr;
903
904 if (pending & SPI_BIT(OVRES)) {
905 ret = IRQ_HANDLED;
906 spi_writel(as, IDR, SPI_BIT(OVRES));
907 dev_warn(master->dev.parent, "overrun\n");
908
909 /*
910 * When we get an overrun, we disregard the current
911 * transfer. Data will not be copied back from any
912 * bounce buffer and msg->actual_len will not be
913 * updated with the last xfer.
914 *
915 * We will also not process any remaning transfers in
916 * the message.
1ccc404a
NF
917 */
918 as->done_status = -EIO;
919 smp_wmb();
920
921 /* Clear any overrun happening while cleaning up */
922 spi_readl(as, SR);
923
8090d6d1 924 complete(&as->xfer_completion);
1ccc404a
NF
925
926 } else if (pending & SPI_BIT(RDRF)) {
927 atmel_spi_lock(as);
928
929 if (as->current_remaining_bytes) {
930 ret = IRQ_HANDLED;
931 xfer = as->current_transfer;
932 atmel_spi_pump_pio_data(as, xfer);
8090d6d1 933 if (!as->current_remaining_bytes)
1ccc404a 934 spi_writel(as, IDR, pending);
8090d6d1
WY
935
936 complete(&as->xfer_completion);
1ccc404a
NF
937 }
938
939 atmel_spi_unlock(as);
940 } else {
941 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
942 ret = IRQ_HANDLED;
943 spi_writel(as, IDR, pending);
944 }
945
946 return ret;
754ce4f2
HS
947}
948
949static irqreturn_t
1ccc404a 950atmel_spi_pdc_interrupt(int irq, void *dev_id)
754ce4f2
HS
951{
952 struct spi_master *master = dev_id;
953 struct atmel_spi *as = spi_master_get_devdata(master);
754ce4f2
HS
954 u32 status, pending, imr;
955 int ret = IRQ_NONE;
956
754ce4f2
HS
957 imr = spi_readl(as, IMR);
958 status = spi_readl(as, SR);
959 pending = status & imr;
960
961 if (pending & SPI_BIT(OVRES)) {
754ce4f2
HS
962
963 ret = IRQ_HANDLED;
964
dc329442 965 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
754ce4f2
HS
966 | SPI_BIT(OVRES)));
967
754ce4f2
HS
968 /* Clear any overrun happening while cleaning up */
969 spi_readl(as, SR);
970
823cd045 971 as->done_status = -EIO;
8090d6d1
WY
972
973 complete(&as->xfer_completion);
974
dc329442 975 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
754ce4f2
HS
976 ret = IRQ_HANDLED;
977
978 spi_writel(as, IDR, pending);
979
8090d6d1 980 complete(&as->xfer_completion);
754ce4f2
HS
981 }
982
754ce4f2
HS
983 return ret;
984}
985
754ce4f2
HS
986static int atmel_spi_setup(struct spi_device *spi)
987{
988 struct atmel_spi *as;
5ee36c98 989 struct atmel_spi_device *asd;
d3b72c7e 990 u32 csr;
754ce4f2 991 unsigned int bits = spi->bits_per_word;
754ce4f2
HS
992 unsigned int npcs_pin;
993 int ret;
994
995 as = spi_master_get_devdata(spi->master);
996
754ce4f2
HS
997 if (spi->chip_select > spi->master->num_chipselect) {
998 dev_dbg(&spi->dev,
999 "setup: invalid chipselect %u (%u defined)\n",
1000 spi->chip_select, spi->master->num_chipselect);
1001 return -EINVAL;
1002 }
1003
defbd3b4 1004 /* see notes above re chipselect */
d4820b74 1005 if (!atmel_spi_is_v2(as)
defbd3b4
DB
1006 && spi->chip_select == 0
1007 && (spi->mode & SPI_CS_HIGH)) {
1008 dev_dbg(&spi->dev, "setup: can't be active-high\n");
1009 return -EINVAL;
1010 }
1011
d3b72c7e 1012 csr = SPI_BF(BITS, bits - 8);
754ce4f2
HS
1013 if (spi->mode & SPI_CPOL)
1014 csr |= SPI_BIT(CPOL);
1015 if (!(spi->mode & SPI_CPHA))
1016 csr |= SPI_BIT(NCPHA);
1017
1eed29df
HS
1018 /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1019 *
1020 * DLYBCT would add delays between words, slowing down transfers.
1021 * It could potentially be useful to cope with DMA bottlenecks, but
1022 * in those cases it's probably best to just use a lower bitrate.
1023 */
1024 csr |= SPI_BF(DLYBS, 0);
1025 csr |= SPI_BF(DLYBCT, 0);
754ce4f2
HS
1026
1027 /* chipselect must have been muxed as GPIO (e.g. in board setup) */
1028 npcs_pin = (unsigned int)spi->controller_data;
850a5b67
JCPV
1029
1030 if (gpio_is_valid(spi->cs_gpio))
1031 npcs_pin = spi->cs_gpio;
1032
5ee36c98
HS
1033 asd = spi->controller_state;
1034 if (!asd) {
1035 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1036 if (!asd)
1037 return -ENOMEM;
1038
6c7377ab 1039 ret = gpio_request(npcs_pin, dev_name(&spi->dev));
5ee36c98
HS
1040 if (ret) {
1041 kfree(asd);
754ce4f2 1042 return ret;
5ee36c98
HS
1043 }
1044
1045 asd->npcs_pin = npcs_pin;
1046 spi->controller_state = asd;
28735a72 1047 gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH));
754ce4f2
HS
1048 }
1049
5ee36c98
HS
1050 asd->csr = csr;
1051
754ce4f2 1052 dev_dbg(&spi->dev,
d3b72c7e
RG
1053 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1054 bits, spi->mode, spi->chip_select, csr);
754ce4f2 1055
d4820b74 1056 if (!atmel_spi_is_v2(as))
5ee36c98 1057 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
754ce4f2
HS
1058
1059 return 0;
1060}
1061
8090d6d1
WY
1062static int atmel_spi_one_transfer(struct spi_master *master,
1063 struct spi_message *msg,
1064 struct spi_transfer *xfer)
754ce4f2
HS
1065{
1066 struct atmel_spi *as;
8090d6d1 1067 struct spi_device *spi = msg->spi;
b9d228f9 1068 u8 bits;
8090d6d1 1069 u32 len;
b9d228f9 1070 struct atmel_spi_device *asd;
8090d6d1
WY
1071 int timeout;
1072 int ret;
754ce4f2 1073
8090d6d1 1074 as = spi_master_get_devdata(master);
754ce4f2 1075
8090d6d1
WY
1076 if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1077 dev_dbg(&spi->dev, "missing rx or tx buf\n");
754ce4f2 1078 return -EINVAL;
8090d6d1 1079 }
754ce4f2 1080
8090d6d1
WY
1081 if (xfer->bits_per_word) {
1082 asd = spi->controller_state;
1083 bits = (asd->csr >> 4) & 0xf;
1084 if (bits != xfer->bits_per_word - 8) {
1085 dev_dbg(&spi->dev,
1086 "you can't yet change bits_per_word in transfers\n");
1087 return -ENOPROTOOPT;
1088 }
1089 }
754ce4f2 1090
8090d6d1
WY
1091 /*
1092 * DMA map early, for performance (empties dcache ASAP) and
1093 * better fault reporting.
1094 */
1095 if ((!msg->is_dma_mapped)
1096 && (atmel_spi_use_dma(as, xfer) || as->use_pdc)) {
1097 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1098 return -ENOMEM;
1099 }
1100
1101 atmel_spi_set_xfer_speed(as, msg->spi, xfer);
754ce4f2 1102
8090d6d1
WY
1103 as->done_status = 0;
1104 as->current_transfer = xfer;
1105 as->current_remaining_bytes = xfer->len;
1106 while (as->current_remaining_bytes) {
1107 reinit_completion(&as->xfer_completion);
1108
1109 if (as->use_pdc) {
1110 atmel_spi_pdc_next_xfer(master, msg, xfer);
1111 } else if (atmel_spi_use_dma(as, xfer)) {
1112 len = as->current_remaining_bytes;
1113 ret = atmel_spi_next_xfer_dma_submit(master,
1114 xfer, &len);
1115 if (ret) {
1116 dev_err(&spi->dev,
1117 "unable to use DMA, fallback to PIO\n");
1118 atmel_spi_next_xfer_pio(master, xfer);
1119 } else {
1120 as->current_remaining_bytes -= len;
b9d228f9 1121 }
8090d6d1
WY
1122 } else {
1123 atmel_spi_next_xfer_pio(master, xfer);
b9d228f9
MB
1124 }
1125
8090d6d1
WY
1126 ret = wait_for_completion_timeout(&as->xfer_completion,
1127 SPI_DMA_TIMEOUT);
1128 if (WARN_ON(ret == 0)) {
1129 dev_err(&spi->dev,
1130 "spi trasfer timeout, err %d\n", ret);
1131 as->done_status = -EIO;
1132 } else {
1133 ret = 0;
f557c98b
RG
1134 }
1135
8090d6d1
WY
1136 if (as->done_status)
1137 break;
1138 }
1139
1140 if (as->done_status) {
1141 if (as->use_pdc) {
1142 dev_warn(master->dev.parent,
1143 "overrun (%u/%u remaining)\n",
1144 spi_readl(as, TCR), spi_readl(as, RCR));
1145
1146 /*
1147 * Clean up DMA registers and make sure the data
1148 * registers are empty.
1149 */
1150 spi_writel(as, RNCR, 0);
1151 spi_writel(as, TNCR, 0);
1152 spi_writel(as, RCR, 0);
1153 spi_writel(as, TCR, 0);
1154 for (timeout = 1000; timeout; timeout--)
1155 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1156 break;
1157 if (!timeout)
1158 dev_warn(master->dev.parent,
1159 "timeout waiting for TXEMPTY");
1160 while (spi_readl(as, SR) & SPI_BIT(RDRF))
1161 spi_readl(as, RDR);
1162
1163 /* Clear any overrun happening while cleaning up */
1164 spi_readl(as, SR);
1165
1166 } else if (atmel_spi_use_dma(as, xfer)) {
1167 atmel_spi_stop_dma(as);
1168 }
1169
1170 if (!msg->is_dma_mapped
1171 && (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1172 atmel_spi_dma_unmap_xfer(master, xfer);
1173
1174 return 0;
1175
1176 } else {
1177 /* only update length if no error */
1178 msg->actual_length += xfer->len;
1179 }
1180
1181 if (!msg->is_dma_mapped
1182 && (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1183 atmel_spi_dma_unmap_xfer(master, xfer);
1184
1185 if (xfer->delay_usecs)
1186 udelay(xfer->delay_usecs);
1187
1188 if (xfer->cs_change) {
1189 if (list_is_last(&xfer->transfer_list,
1190 &msg->transfers)) {
1191 as->keep_cs = true;
1192 } else {
1193 as->cs_active = !as->cs_active;
1194 if (as->cs_active)
1195 cs_activate(as, msg->spi);
1196 else
1197 cs_deactivate(as, msg->spi);
8da0859a 1198 }
754ce4f2
HS
1199 }
1200
8090d6d1
WY
1201 return 0;
1202}
1203
1204static int atmel_spi_transfer_one_message(struct spi_master *master,
1205 struct spi_message *msg)
1206{
1207 struct atmel_spi *as;
1208 struct spi_transfer *xfer;
1209 struct spi_device *spi = msg->spi;
1210 int ret = 0;
1211
1212 as = spi_master_get_devdata(master);
1213
1214 dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1215 msg, dev_name(&spi->dev));
1216
8090d6d1
WY
1217 atmel_spi_lock(as);
1218 cs_activate(as, spi);
1219
1220 as->cs_active = true;
1221 as->keep_cs = false;
1222
1223 msg->status = 0;
1224 msg->actual_length = 0;
1225
1226 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1227 ret = atmel_spi_one_transfer(master, msg, xfer);
1228 if (ret)
1229 goto msg_done;
1230 }
1231
1232 if (as->use_pdc)
1233 atmel_spi_disable_pdc_transfer(as);
1234
754ce4f2 1235 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
8090d6d1 1236 dev_dbg(&spi->dev,
754ce4f2
HS
1237 " xfer %p: len %u tx %p/%08x rx %p/%08x\n",
1238 xfer, xfer->len,
1239 xfer->tx_buf, xfer->tx_dma,
1240 xfer->rx_buf, xfer->rx_dma);
1241 }
1242
8090d6d1
WY
1243msg_done:
1244 if (!as->keep_cs)
1245 cs_deactivate(as, msg->spi);
754ce4f2 1246
8aad7924 1247 atmel_spi_unlock(as);
754ce4f2 1248
8090d6d1
WY
1249 msg->status = as->done_status;
1250 spi_finalize_current_message(spi->master);
1251
1252 return ret;
754ce4f2
HS
1253}
1254
bb2d1c36 1255static void atmel_spi_cleanup(struct spi_device *spi)
754ce4f2 1256{
5ee36c98 1257 struct atmel_spi_device *asd = spi->controller_state;
defbd3b4 1258 unsigned gpio = (unsigned) spi->controller_data;
defbd3b4 1259
5ee36c98 1260 if (!asd)
defbd3b4
DB
1261 return;
1262
5ee36c98 1263 spi->controller_state = NULL;
defbd3b4 1264 gpio_free(gpio);
5ee36c98 1265 kfree(asd);
754ce4f2
HS
1266}
1267
d4820b74
WY
1268static inline unsigned int atmel_get_version(struct atmel_spi *as)
1269{
1270 return spi_readl(as, VERSION) & 0x00000fff;
1271}
1272
1273static void atmel_get_caps(struct atmel_spi *as)
1274{
1275 unsigned int version;
1276
1277 version = atmel_get_version(as);
1278 dev_info(&as->pdev->dev, "version: 0x%x\n", version);
1279
1280 as->caps.is_spi2 = version > 0x121;
1281 as->caps.has_wdrbt = version >= 0x210;
1282 as->caps.has_dma_support = version >= 0x212;
1283}
1284
754ce4f2
HS
1285/*-------------------------------------------------------------------------*/
1286
fd4a319b 1287static int atmel_spi_probe(struct platform_device *pdev)
754ce4f2
HS
1288{
1289 struct resource *regs;
1290 int irq;
1291 struct clk *clk;
1292 int ret;
1293 struct spi_master *master;
1294 struct atmel_spi *as;
1295
5bdfd491
WY
1296 /* Select default pin state */
1297 pinctrl_pm_select_default_state(&pdev->dev);
1298
754ce4f2
HS
1299 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1300 if (!regs)
1301 return -ENXIO;
1302
1303 irq = platform_get_irq(pdev, 0);
1304 if (irq < 0)
1305 return irq;
1306
9f87d6f2 1307 clk = devm_clk_get(&pdev->dev, "spi_clk");
754ce4f2
HS
1308 if (IS_ERR(clk))
1309 return PTR_ERR(clk);
1310
1311 /* setup spi core then atmel-specific driver state */
1312 ret = -ENOMEM;
a536d765 1313 master = spi_alloc_master(&pdev->dev, sizeof(*as));
754ce4f2
HS
1314 if (!master)
1315 goto out_free;
1316
e7db06b5
DB
1317 /* the spi->mode bits understood by this driver: */
1318 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
24778be2 1319 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
850a5b67 1320 master->dev.of_node = pdev->dev.of_node;
754ce4f2 1321 master->bus_num = pdev->id;
850a5b67 1322 master->num_chipselect = master->dev.of_node ? 0 : 4;
754ce4f2 1323 master->setup = atmel_spi_setup;
8090d6d1 1324 master->transfer_one_message = atmel_spi_transfer_one_message;
754ce4f2
HS
1325 master->cleanup = atmel_spi_cleanup;
1326 platform_set_drvdata(pdev, master);
1327
1328 as = spi_master_get_devdata(master);
1329
8da0859a
DB
1330 /*
1331 * Scratch buffer is used for throwaway rx and tx data.
1332 * It's coherent to minimize dcache pollution.
1333 */
754ce4f2
HS
1334 as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
1335 &as->buffer_dma, GFP_KERNEL);
1336 if (!as->buffer)
1337 goto out_free;
1338
1339 spin_lock_init(&as->lock);
1ccc404a 1340
754ce4f2 1341 as->pdev = pdev;
31407478 1342 as->regs = devm_ioremap_resource(&pdev->dev, regs);
543c954d
WY
1343 if (IS_ERR(as->regs)) {
1344 ret = PTR_ERR(as->regs);
754ce4f2 1345 goto out_free_buffer;
543c954d 1346 }
dfab30ee 1347 as->phybase = regs->start;
754ce4f2
HS
1348 as->irq = irq;
1349 as->clk = clk;
754ce4f2 1350
8090d6d1
WY
1351 init_completion(&as->xfer_completion);
1352
d4820b74
WY
1353 atmel_get_caps(as);
1354
1ccc404a
NF
1355 as->use_dma = false;
1356 as->use_pdc = false;
1357 if (as->caps.has_dma_support) {
1358 if (atmel_spi_configure_dma(as) == 0)
1359 as->use_dma = true;
1360 } else {
1361 as->use_pdc = true;
1362 }
1363
1364 if (as->caps.has_dma_support && !as->use_dma)
1365 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1366
1367 if (as->use_pdc) {
9f87d6f2
JH
1368 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1369 0, dev_name(&pdev->dev), master);
1ccc404a 1370 } else {
9f87d6f2
JH
1371 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1372 0, dev_name(&pdev->dev), master);
1ccc404a 1373 }
754ce4f2
HS
1374 if (ret)
1375 goto out_unmap_regs;
1376
1377 /* Initialize the hardware */
dfec4a6e
BB
1378 ret = clk_prepare_enable(clk);
1379 if (ret)
de8cc234 1380 goto out_free_irq;
754ce4f2 1381 spi_writel(as, CR, SPI_BIT(SWRST));
50d7d5bf 1382 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
d4820b74
WY
1383 if (as->caps.has_wdrbt) {
1384 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1385 | SPI_BIT(MSTR));
1386 } else {
1387 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1388 }
1ccc404a
NF
1389
1390 if (as->use_pdc)
1391 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
754ce4f2
HS
1392 spi_writel(as, CR, SPI_BIT(SPIEN));
1393
1394 /* go! */
1395 dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
1396 (unsigned long)regs->start, irq);
1397
9f87d6f2 1398 ret = devm_spi_register_master(&pdev->dev, master);
754ce4f2 1399 if (ret)
1ccc404a 1400 goto out_free_dma;
754ce4f2
HS
1401
1402 return 0;
1403
1ccc404a
NF
1404out_free_dma:
1405 if (as->use_dma)
1406 atmel_spi_release_dma(as);
1407
754ce4f2 1408 spi_writel(as, CR, SPI_BIT(SWRST));
50d7d5bf 1409 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
dfec4a6e 1410 clk_disable_unprepare(clk);
de8cc234 1411out_free_irq:
754ce4f2 1412out_unmap_regs:
754ce4f2
HS
1413out_free_buffer:
1414 dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1415 as->buffer_dma);
1416out_free:
754ce4f2
HS
1417 spi_master_put(master);
1418 return ret;
1419}
1420
fd4a319b 1421static int atmel_spi_remove(struct platform_device *pdev)
754ce4f2
HS
1422{
1423 struct spi_master *master = platform_get_drvdata(pdev);
1424 struct atmel_spi *as = spi_master_get_devdata(master);
754ce4f2
HS
1425
1426 /* reset the hardware and block queue progress */
1427 spin_lock_irq(&as->lock);
1ccc404a
NF
1428 if (as->use_dma) {
1429 atmel_spi_stop_dma(as);
1430 atmel_spi_release_dma(as);
1431 }
1432
754ce4f2 1433 spi_writel(as, CR, SPI_BIT(SWRST));
50d7d5bf 1434 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
754ce4f2
HS
1435 spi_readl(as, SR);
1436 spin_unlock_irq(&as->lock);
1437
754ce4f2
HS
1438 dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1439 as->buffer_dma);
1440
dfec4a6e 1441 clk_disable_unprepare(as->clk);
754ce4f2
HS
1442
1443 return 0;
1444}
1445
ec60dd37
JH
1446#ifdef CONFIG_PM_SLEEP
1447static int atmel_spi_suspend(struct device *dev)
754ce4f2 1448{
ec60dd37 1449 struct spi_master *master = dev_get_drvdata(dev);
754ce4f2
HS
1450 struct atmel_spi *as = spi_master_get_devdata(master);
1451
dfec4a6e 1452 clk_disable_unprepare(as->clk);
5bdfd491
WY
1453
1454 pinctrl_pm_select_sleep_state(dev);
1455
754ce4f2
HS
1456 return 0;
1457}
1458
ec60dd37 1459static int atmel_spi_resume(struct device *dev)
754ce4f2 1460{
ec60dd37 1461 struct spi_master *master = dev_get_drvdata(dev);
754ce4f2
HS
1462 struct atmel_spi *as = spi_master_get_devdata(master);
1463
5bdfd491
WY
1464 pinctrl_pm_select_default_state(dev);
1465
ec60dd37 1466 clk_prepare_enable(as->clk);
754ce4f2
HS
1467 return 0;
1468}
1469
ec60dd37
JH
1470static SIMPLE_DEV_PM_OPS(atmel_spi_pm_ops, atmel_spi_suspend, atmel_spi_resume);
1471
1472#define ATMEL_SPI_PM_OPS (&atmel_spi_pm_ops)
754ce4f2 1473#else
ec60dd37 1474#define ATMEL_SPI_PM_OPS NULL
754ce4f2
HS
1475#endif
1476
850a5b67
JCPV
1477#if defined(CONFIG_OF)
1478static const struct of_device_id atmel_spi_dt_ids[] = {
1479 { .compatible = "atmel,at91rm9200-spi" },
1480 { /* sentinel */ }
1481};
1482
1483MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1484#endif
754ce4f2
HS
1485
1486static struct platform_driver atmel_spi_driver = {
1487 .driver = {
1488 .name = "atmel_spi",
1489 .owner = THIS_MODULE,
ec60dd37 1490 .pm = ATMEL_SPI_PM_OPS,
850a5b67 1491 .of_match_table = of_match_ptr(atmel_spi_dt_ids),
754ce4f2 1492 },
1cb201af 1493 .probe = atmel_spi_probe,
2deff8d6 1494 .remove = atmel_spi_remove,
754ce4f2 1495};
940ab889 1496module_platform_driver(atmel_spi_driver);
754ce4f2
HS
1497
1498MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
e05503ef 1499MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
754ce4f2 1500MODULE_LICENSE("GPL");
7e38c3c4 1501MODULE_ALIAS("platform:atmel_spi");
This page took 0.60256 seconds and 5 git commands to generate.