spi: omap2-mcspi: Fix PM regression with deferred probe for pm_runtime_reinit
[deliverable/linux.git] / drivers / spi / spi-bcm2835aux.c
CommitLineData
1ea29b39
MS
1/*
2 * Driver for Broadcom BCM2835 auxiliary SPI Controllers
3 *
4 * the driver does not rely on the native chipselects at all
5 * but only uses the gpio type chipselects
6 *
7 * Based on: spi-bcm2835.c
8 *
9 * Copyright (C) 2015 Martin Sperl
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 */
21
22#include <linux/clk.h>
23#include <linux/completion.h>
24#include <linux/delay.h>
25#include <linux/err.h>
26#include <linux/interrupt.h>
27#include <linux/io.h>
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/of.h>
31#include <linux/of_address.h>
32#include <linux/of_device.h>
33#include <linux/of_gpio.h>
34#include <linux/of_irq.h>
35#include <linux/regmap.h>
36#include <linux/spi/spi.h>
37#include <linux/spinlock.h>
38
39/*
40 * spi register defines
41 *
42 * note there is garbage in the "official" documentation,
43 * so some data is taken from the file:
44 * brcm_usrlib/dag/vmcsx/vcinclude/bcm2708_chip/aux_io.h
45 * inside of:
46 * http://www.broadcom.com/docs/support/videocore/Brcm_Android_ICS_Graphics_Stack.tar.gz
47 */
48
49/* SPI register offsets */
50#define BCM2835_AUX_SPI_CNTL0 0x00
51#define BCM2835_AUX_SPI_CNTL1 0x04
52#define BCM2835_AUX_SPI_STAT 0x08
53#define BCM2835_AUX_SPI_PEEK 0x0C
54#define BCM2835_AUX_SPI_IO 0x20
55#define BCM2835_AUX_SPI_TXHOLD 0x30
56
57/* Bitfields in CNTL0 */
58#define BCM2835_AUX_SPI_CNTL0_SPEED 0xFFF00000
59#define BCM2835_AUX_SPI_CNTL0_SPEED_MAX 0xFFF
60#define BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT 20
61#define BCM2835_AUX_SPI_CNTL0_CS 0x000E0000
62#define BCM2835_AUX_SPI_CNTL0_POSTINPUT 0x00010000
63#define BCM2835_AUX_SPI_CNTL0_VAR_CS 0x00008000
64#define BCM2835_AUX_SPI_CNTL0_VAR_WIDTH 0x00004000
65#define BCM2835_AUX_SPI_CNTL0_DOUTHOLD 0x00003000
66#define BCM2835_AUX_SPI_CNTL0_ENABLE 0x00000800
67#define BCM2835_AUX_SPI_CNTL0_CPHA_IN 0x00000400
68#define BCM2835_AUX_SPI_CNTL0_CLEARFIFO 0x00000200
69#define BCM2835_AUX_SPI_CNTL0_CPHA_OUT 0x00000100
70#define BCM2835_AUX_SPI_CNTL0_CPOL 0x00000080
71#define BCM2835_AUX_SPI_CNTL0_MSBF_OUT 0x00000040
72#define BCM2835_AUX_SPI_CNTL0_SHIFTLEN 0x0000003F
73
74/* Bitfields in CNTL1 */
75#define BCM2835_AUX_SPI_CNTL1_CSHIGH 0x00000700
76#define BCM2835_AUX_SPI_CNTL1_IDLE 0x00000080
77#define BCM2835_AUX_SPI_CNTL1_TXEMPTY 0x00000040
78#define BCM2835_AUX_SPI_CNTL1_MSBF_IN 0x00000002
79#define BCM2835_AUX_SPI_CNTL1_KEEP_IN 0x00000001
80
81/* Bitfields in STAT */
82#define BCM2835_AUX_SPI_STAT_TX_LVL 0xFF000000
83#define BCM2835_AUX_SPI_STAT_RX_LVL 0x00FF0000
84#define BCM2835_AUX_SPI_STAT_TX_FULL 0x00000400
85#define BCM2835_AUX_SPI_STAT_TX_EMPTY 0x00000200
86#define BCM2835_AUX_SPI_STAT_RX_FULL 0x00000100
87#define BCM2835_AUX_SPI_STAT_RX_EMPTY 0x00000080
88#define BCM2835_AUX_SPI_STAT_BUSY 0x00000040
89#define BCM2835_AUX_SPI_STAT_BITCOUNT 0x0000003F
90
91/* timeout values */
92#define BCM2835_AUX_SPI_POLLING_LIMIT_US 30
93#define BCM2835_AUX_SPI_POLLING_JIFFIES 2
94
95#define BCM2835_AUX_SPI_MODE_BITS (SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
96 | SPI_NO_CS)
97
98struct bcm2835aux_spi {
99 void __iomem *regs;
100 struct clk *clk;
101 int irq;
102 u32 cntl[2];
103 const u8 *tx_buf;
104 u8 *rx_buf;
105 int tx_len;
106 int rx_len;
72aac02b 107 int pending;
1ea29b39
MS
108};
109
110static inline u32 bcm2835aux_rd(struct bcm2835aux_spi *bs, unsigned reg)
111{
112 return readl(bs->regs + reg);
113}
114
115static inline void bcm2835aux_wr(struct bcm2835aux_spi *bs, unsigned reg,
116 u32 val)
117{
118 writel(val, bs->regs + reg);
119}
120
121static inline void bcm2835aux_rd_fifo(struct bcm2835aux_spi *bs)
122{
123 u32 data;
1ea29b39
MS
124 int count = min(bs->rx_len, 3);
125
126 data = bcm2835aux_rd(bs, BCM2835_AUX_SPI_IO);
127 if (bs->rx_buf) {
72aac02b
MS
128 switch (count) {
129 case 4:
130 *bs->rx_buf++ = (data >> 24) & 0xff;
131 /* fallthrough */
132 case 3:
133 *bs->rx_buf++ = (data >> 16) & 0xff;
134 /* fallthrough */
135 case 2:
136 *bs->rx_buf++ = (data >> 8) & 0xff;
137 /* fallthrough */
138 case 1:
139 *bs->rx_buf++ = (data >> 0) & 0xff;
140 /* fallthrough - no default */
141 }
1ea29b39
MS
142 }
143 bs->rx_len -= count;
72aac02b 144 bs->pending -= count;
1ea29b39
MS
145}
146
147static inline void bcm2835aux_wr_fifo(struct bcm2835aux_spi *bs)
148{
149 u32 data;
150 u8 byte;
151 int count;
152 int i;
153
154 /* gather up to 3 bytes to write to the FIFO */
155 count = min(bs->tx_len, 3);
156 data = 0;
157 for (i = 0; i < count; i++) {
158 byte = bs->tx_buf ? *bs->tx_buf++ : 0;
159 data |= byte << (8 * (2 - i));
160 }
161
162 /* and set the variable bit-length */
163 data |= (count * 8) << 24;
164
165 /* and decrement length */
166 bs->tx_len -= count;
72aac02b 167 bs->pending += count;
1ea29b39
MS
168
169 /* write to the correct TX-register */
170 if (bs->tx_len)
171 bcm2835aux_wr(bs, BCM2835_AUX_SPI_TXHOLD, data);
172 else
173 bcm2835aux_wr(bs, BCM2835_AUX_SPI_IO, data);
174}
175
176static void bcm2835aux_spi_reset_hw(struct bcm2835aux_spi *bs)
177{
178 /* disable spi clearing fifo and interrupts */
179 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, 0);
180 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0,
181 BCM2835_AUX_SPI_CNTL0_CLEARFIFO);
182}
183
184static irqreturn_t bcm2835aux_spi_interrupt(int irq, void *dev_id)
185{
186 struct spi_master *master = dev_id;
187 struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
188 irqreturn_t ret = IRQ_NONE;
189
190 /* check if we have data to read */
191 while (bs->rx_len &&
192 (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
193 BCM2835_AUX_SPI_STAT_RX_EMPTY))) {
194 bcm2835aux_rd_fifo(bs);
195 ret = IRQ_HANDLED;
196 }
197
198 /* check if we have data to write */
199 while (bs->tx_len &&
72aac02b 200 (bs->pending < 12) &&
1ea29b39
MS
201 (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
202 BCM2835_AUX_SPI_STAT_TX_FULL))) {
203 bcm2835aux_wr_fifo(bs);
204 ret = IRQ_HANDLED;
205 }
206
207 /* and check if we have reached "done" */
208 while (bs->rx_len &&
209 (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
210 BCM2835_AUX_SPI_STAT_BUSY))) {
211 bcm2835aux_rd_fifo(bs);
212 ret = IRQ_HANDLED;
213 }
214
215 /* and if rx_len is 0 then wake up completion and disable spi */
216 if (!bs->rx_len) {
217 bcm2835aux_spi_reset_hw(bs);
218 complete(&master->xfer_completion);
219 }
220
221 /* and return */
222 return ret;
223}
224
225static int __bcm2835aux_spi_transfer_one_irq(struct spi_master *master,
226 struct spi_device *spi,
227 struct spi_transfer *tfr)
228{
229 struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
230
231 /* enable interrupts */
232 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1] |
233 BCM2835_AUX_SPI_CNTL1_TXEMPTY |
234 BCM2835_AUX_SPI_CNTL1_IDLE);
235
236 /* and wait for finish... */
237 return 1;
238}
239
240static int bcm2835aux_spi_transfer_one_irq(struct spi_master *master,
241 struct spi_device *spi,
242 struct spi_transfer *tfr)
243{
244 struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
245
246 /* fill in registers and fifos before enabling interrupts */
247 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
248 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
249
250 /* fill in tx fifo with data before enabling interrupts */
251 while ((bs->tx_len) &&
72aac02b 252 (bs->pending < 12) &&
1ea29b39
MS
253 (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
254 BCM2835_AUX_SPI_STAT_TX_FULL))) {
255 bcm2835aux_wr_fifo(bs);
256 }
257
258 /* now run the interrupt mode */
259 return __bcm2835aux_spi_transfer_one_irq(master, spi, tfr);
260}
261
262static int bcm2835aux_spi_transfer_one_poll(struct spi_master *master,
263 struct spi_device *spi,
72aac02b 264 struct spi_transfer *tfr)
1ea29b39
MS
265{
266 struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
267 unsigned long timeout;
268 u32 stat;
269
270 /* configure spi */
271 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
272 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
273
274 /* set the timeout */
275 timeout = jiffies + BCM2835_AUX_SPI_POLLING_JIFFIES;
276
277 /* loop until finished the transfer */
278 while (bs->rx_len) {
279 /* read status */
280 stat = bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT);
281
282 /* fill in tx fifo with remaining data */
283 if ((bs->tx_len) && (!(stat & BCM2835_AUX_SPI_STAT_TX_FULL))) {
284 bcm2835aux_wr_fifo(bs);
285 continue;
286 }
287
288 /* read data from fifo for both cases */
289 if (!(stat & BCM2835_AUX_SPI_STAT_RX_EMPTY)) {
290 bcm2835aux_rd_fifo(bs);
291 continue;
292 }
293 if (!(stat & BCM2835_AUX_SPI_STAT_BUSY)) {
294 bcm2835aux_rd_fifo(bs);
295 continue;
296 }
297
298 /* there is still data pending to read check the timeout */
299 if (bs->rx_len && time_after(jiffies, timeout)) {
300 dev_dbg_ratelimited(&spi->dev,
301 "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
302 jiffies - timeout,
303 bs->tx_len, bs->rx_len);
304 /* forward to interrupt handler */
305 return __bcm2835aux_spi_transfer_one_irq(master,
306 spi, tfr);
307 }
308 }
309
310 /* Transfer complete - reset SPI HW */
311 bcm2835aux_spi_reset_hw(bs);
312
313 /* and return without waiting for completion */
314 return 0;
315}
316
317static int bcm2835aux_spi_transfer_one(struct spi_master *master,
318 struct spi_device *spi,
319 struct spi_transfer *tfr)
320{
321 struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
322 unsigned long spi_hz, clk_hz, speed;
72aac02b
MS
323 unsigned long spi_used_hz;
324 unsigned long long xfer_time_us;
1ea29b39
MS
325
326 /* calculate the registers to handle
327 *
328 * note that we use the variable data mode, which
329 * is not optimal for longer transfers as we waste registers
330 * resulting (potentially) in more interrupts when transferring
331 * more than 12 bytes
332 */
333 bs->cntl[0] = BCM2835_AUX_SPI_CNTL0_ENABLE |
334 BCM2835_AUX_SPI_CNTL0_VAR_WIDTH |
335 BCM2835_AUX_SPI_CNTL0_MSBF_OUT;
336 bs->cntl[1] = BCM2835_AUX_SPI_CNTL1_MSBF_IN;
337
338 /* set clock */
339 spi_hz = tfr->speed_hz;
340 clk_hz = clk_get_rate(bs->clk);
341
342 if (spi_hz >= clk_hz / 2) {
343 speed = 0;
344 } else if (spi_hz) {
345 speed = DIV_ROUND_UP(clk_hz, 2 * spi_hz) - 1;
346 if (speed > BCM2835_AUX_SPI_CNTL0_SPEED_MAX)
347 speed = BCM2835_AUX_SPI_CNTL0_SPEED_MAX;
348 } else { /* the slowest we can go */
349 speed = BCM2835_AUX_SPI_CNTL0_SPEED_MAX;
350 }
351 bs->cntl[0] |= speed << BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT;
352
353 spi_used_hz = clk_hz / (2 * (speed + 1));
354
355 /* handle all the modes */
356 if (spi->mode & SPI_CPOL)
357 bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_CPOL;
358 if (spi->mode & SPI_CPHA)
359 bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_CPHA_OUT |
360 BCM2835_AUX_SPI_CNTL0_CPHA_IN;
361
362 /* set transmit buffers and length */
363 bs->tx_buf = tfr->tx_buf;
364 bs->rx_buf = tfr->rx_buf;
365 bs->tx_len = tfr->len;
366 bs->rx_len = tfr->len;
72aac02b 367 bs->pending = 0;
1ea29b39 368
72aac02b
MS
369 /* calculate the estimated time in us the transfer runs
370 * note that there are are 2 idle clocks after each
371 * chunk getting transferred - in our case the chunk size
372 * is 3 bytes, so we approximate this by 9 bits/byte
373 */
374 xfer_time_us = tfr->len * 9 * 1000000;
375 do_div(xfer_time_us, spi_used_hz);
1ea29b39
MS
376
377 /* run in polling mode for short transfers */
378 if (xfer_time_us < BCM2835_AUX_SPI_POLLING_LIMIT_US)
72aac02b 379 return bcm2835aux_spi_transfer_one_poll(master, spi, tfr);
1ea29b39
MS
380
381 /* run in interrupt mode for all others */
382 return bcm2835aux_spi_transfer_one_irq(master, spi, tfr);
383}
384
385static void bcm2835aux_spi_handle_err(struct spi_master *master,
386 struct spi_message *msg)
387{
388 struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
389
390 bcm2835aux_spi_reset_hw(bs);
391}
392
393static int bcm2835aux_spi_probe(struct platform_device *pdev)
394{
395 struct spi_master *master;
396 struct bcm2835aux_spi *bs;
397 struct resource *res;
398 unsigned long clk_hz;
399 int err;
400
401 master = spi_alloc_master(&pdev->dev, sizeof(*bs));
402 if (!master) {
403 dev_err(&pdev->dev, "spi_alloc_master() failed\n");
404 return -ENOMEM;
405 }
406
407 platform_set_drvdata(pdev, master);
408 master->mode_bits = BCM2835_AUX_SPI_MODE_BITS;
409 master->bits_per_word_mask = SPI_BPW_MASK(8);
410 master->num_chipselect = -1;
411 master->transfer_one = bcm2835aux_spi_transfer_one;
412 master->handle_err = bcm2835aux_spi_handle_err;
413 master->dev.of_node = pdev->dev.of_node;
414
415 bs = spi_master_get_devdata(master);
416
417 /* the main area */
418 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
419 bs->regs = devm_ioremap_resource(&pdev->dev, res);
420 if (IS_ERR(bs->regs)) {
421 err = PTR_ERR(bs->regs);
422 goto out_master_put;
423 }
424
425 bs->clk = devm_clk_get(&pdev->dev, NULL);
426 if ((!bs->clk) || (IS_ERR(bs->clk))) {
427 err = PTR_ERR(bs->clk);
428 dev_err(&pdev->dev, "could not get clk: %d\n", err);
429 goto out_master_put;
430 }
431
07bce09e 432 bs->irq = platform_get_irq(pdev, 0);
1ea29b39
MS
433 if (bs->irq <= 0) {
434 dev_err(&pdev->dev, "could not get IRQ: %d\n", bs->irq);
435 err = bs->irq ? bs->irq : -ENODEV;
436 goto out_master_put;
437 }
438
439 /* this also enables the HW block */
440 err = clk_prepare_enable(bs->clk);
441 if (err) {
442 dev_err(&pdev->dev, "could not prepare clock: %d\n", err);
443 goto out_master_put;
444 }
445
446 /* just checking if the clock returns a sane value */
447 clk_hz = clk_get_rate(bs->clk);
448 if (!clk_hz) {
449 dev_err(&pdev->dev, "clock returns 0 Hz\n");
450 err = -ENODEV;
451 goto out_clk_disable;
452 }
453
07bce09e
MS
454 /* reset SPI-HW block */
455 bcm2835aux_spi_reset_hw(bs);
456
1ea29b39
MS
457 err = devm_request_irq(&pdev->dev, bs->irq,
458 bcm2835aux_spi_interrupt,
459 IRQF_SHARED,
460 dev_name(&pdev->dev), master);
461 if (err) {
462 dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
463 goto out_clk_disable;
464 }
465
1ea29b39
MS
466 err = devm_spi_register_master(&pdev->dev, master);
467 if (err) {
468 dev_err(&pdev->dev, "could not register SPI master: %d\n", err);
469 goto out_clk_disable;
470 }
471
472 return 0;
473
474out_clk_disable:
475 clk_disable_unprepare(bs->clk);
476out_master_put:
477 spi_master_put(master);
478 return err;
479}
480
481static int bcm2835aux_spi_remove(struct platform_device *pdev)
482{
483 struct spi_master *master = platform_get_drvdata(pdev);
484 struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
485
486 bcm2835aux_spi_reset_hw(bs);
487
488 /* disable the HW block by releasing the clock */
489 clk_disable_unprepare(bs->clk);
490
491 return 0;
492}
493
494static const struct of_device_id bcm2835aux_spi_match[] = {
495 { .compatible = "brcm,bcm2835-aux-spi", },
496 {}
497};
498MODULE_DEVICE_TABLE(of, bcm2835aux_spi_match);
499
500static struct platform_driver bcm2835aux_spi_driver = {
501 .driver = {
502 .name = "spi-bcm2835aux",
503 .of_match_table = bcm2835aux_spi_match,
504 },
505 .probe = bcm2835aux_spi_probe,
506 .remove = bcm2835aux_spi_remove,
507};
508module_platform_driver(bcm2835aux_spi_driver);
509
510MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835 aux");
511MODULE_AUTHOR("Martin Sperl <kernel@martin.sperl.org>");
512MODULE_LICENSE("GPL v2");
This page took 0.059149 seconds and 5 git commands to generate.