spi: spi-ep93xx: use read,write instead of __raw_* variants
[deliverable/linux.git] / drivers / spi / spi-ep93xx.c
CommitLineData
011f23a3
MW
1/*
2 * Driver for Cirrus Logic EP93xx SPI controller.
3 *
626a96db 4 * Copyright (C) 2010-2011 Mika Westerberg
011f23a3
MW
5 *
6 * Explicit FIFO handling code was inspired by amba-pl022 driver.
7 *
8 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
9 *
10 * For more information about the SPI controller see documentation on Cirrus
11 * Logic web site:
12 * http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
17 */
18
19#include <linux/io.h>
20#include <linux/clk.h>
21#include <linux/err.h>
22#include <linux/delay.h>
23#include <linux/device.h>
626a96db 24#include <linux/dmaengine.h>
011f23a3
MW
25#include <linux/bitops.h>
26#include <linux/interrupt.h>
5bdb7613 27#include <linux/module.h>
011f23a3
MW
28#include <linux/platform_device.h>
29#include <linux/workqueue.h>
30#include <linux/sched.h>
626a96db 31#include <linux/scatterlist.h>
011f23a3
MW
32#include <linux/spi/spi.h>
33
a3b29245
AB
34#include <linux/platform_data/dma-ep93xx.h>
35#include <linux/platform_data/spi-ep93xx.h>
011f23a3
MW
36
37#define SSPCR0 0x0000
38#define SSPCR0_MODE_SHIFT 6
39#define SSPCR0_SCR_SHIFT 8
40
41#define SSPCR1 0x0004
42#define SSPCR1_RIE BIT(0)
43#define SSPCR1_TIE BIT(1)
44#define SSPCR1_RORIE BIT(2)
45#define SSPCR1_LBM BIT(3)
46#define SSPCR1_SSE BIT(4)
47#define SSPCR1_MS BIT(5)
48#define SSPCR1_SOD BIT(6)
49
50#define SSPDR 0x0008
51
52#define SSPSR 0x000c
53#define SSPSR_TFE BIT(0)
54#define SSPSR_TNF BIT(1)
55#define SSPSR_RNE BIT(2)
56#define SSPSR_RFF BIT(3)
57#define SSPSR_BSY BIT(4)
58#define SSPCPSR 0x0010
59
60#define SSPIIR 0x0014
61#define SSPIIR_RIS BIT(0)
62#define SSPIIR_TIS BIT(1)
63#define SSPIIR_RORIS BIT(2)
64#define SSPICR SSPIIR
65
66/* timeout in milliseconds */
67#define SPI_TIMEOUT 5
68/* maximum depth of RX/TX FIFO */
69#define SPI_FIFO_SIZE 8
70
71/**
72 * struct ep93xx_spi - EP93xx SPI controller structure
73 * @lock: spinlock that protects concurrent accesses to fields @running,
74 * @current_msg and @msg_queue
75 * @pdev: pointer to platform device
76 * @clk: clock for the controller
77 * @regs_base: pointer to ioremap()'d registers
626a96db 78 * @sspdr_phys: physical address of the SSPDR register
011f23a3
MW
79 * @min_rate: minimum clock rate (in Hz) supported by the controller
80 * @max_rate: maximum clock rate (in Hz) supported by the controller
81 * @running: is the queue running
82 * @wq: workqueue used by the driver
83 * @msg_work: work that is queued for the driver
84 * @wait: wait here until given transfer is completed
85 * @msg_queue: queue for the messages
86 * @current_msg: message that is currently processed (or %NULL if none)
87 * @tx: current byte in transfer to transmit
88 * @rx: current byte in transfer to receive
89 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
90 * frame decreases this level and sending one frame increases it.
626a96db
MW
91 * @dma_rx: RX DMA channel
92 * @dma_tx: TX DMA channel
93 * @dma_rx_data: RX parameters passed to the DMA engine
94 * @dma_tx_data: TX parameters passed to the DMA engine
95 * @rx_sgt: sg table for RX transfers
96 * @tx_sgt: sg table for TX transfers
97 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
98 * the client
011f23a3
MW
99 *
100 * This structure holds EP93xx SPI controller specific information. When
101 * @running is %true, driver accepts transfer requests from protocol drivers.
102 * @current_msg is used to hold pointer to the message that is currently
103 * processed. If @current_msg is %NULL, it means that no processing is going
104 * on.
105 *
106 * Most of the fields are only written once and they can be accessed without
107 * taking the @lock. Fields that are accessed concurrently are: @current_msg,
108 * @running, and @msg_queue.
109 */
110struct ep93xx_spi {
111 spinlock_t lock;
112 const struct platform_device *pdev;
113 struct clk *clk;
114 void __iomem *regs_base;
626a96db 115 unsigned long sspdr_phys;
011f23a3
MW
116 unsigned long min_rate;
117 unsigned long max_rate;
118 bool running;
119 struct workqueue_struct *wq;
120 struct work_struct msg_work;
121 struct completion wait;
122 struct list_head msg_queue;
123 struct spi_message *current_msg;
124 size_t tx;
125 size_t rx;
126 size_t fifo_level;
626a96db
MW
127 struct dma_chan *dma_rx;
128 struct dma_chan *dma_tx;
129 struct ep93xx_dma_data dma_rx_data;
130 struct ep93xx_dma_data dma_tx_data;
131 struct sg_table rx_sgt;
132 struct sg_table tx_sgt;
133 void *zeropage;
011f23a3
MW
134};
135
136/**
137 * struct ep93xx_spi_chip - SPI device hardware settings
138 * @spi: back pointer to the SPI device
139 * @rate: max rate in hz this chip supports
140 * @div_cpsr: cpsr (pre-scaler) divider
141 * @div_scr: scr divider
142 * @dss: bits per word (4 - 16 bits)
143 * @ops: private chip operations
144 *
145 * This structure is used to store hardware register specific settings for each
146 * SPI device. Settings are written to hardware by function
147 * ep93xx_spi_chip_setup().
148 */
149struct ep93xx_spi_chip {
150 const struct spi_device *spi;
151 unsigned long rate;
152 u8 div_cpsr;
153 u8 div_scr;
154 u8 dss;
155 struct ep93xx_spi_chip_ops *ops;
156};
157
158/* converts bits per word to CR0.DSS value */
159#define bits_per_word_to_dss(bpw) ((bpw) - 1)
160
8d7586bd
HS
161static void ep93xx_spi_write_u8(const struct ep93xx_spi *espi,
162 u16 reg, u8 value)
011f23a3 163{
8d7586bd 164 writeb(value, espi->regs_base + reg);
011f23a3
MW
165}
166
8d7586bd 167static u8 ep93xx_spi_read_u8(const struct ep93xx_spi *spi, u16 reg)
011f23a3 168{
8d7586bd 169 return readb(spi->regs_base + reg);
011f23a3
MW
170}
171
8d7586bd
HS
172static void ep93xx_spi_write_u16(const struct ep93xx_spi *espi,
173 u16 reg, u16 value)
011f23a3 174{
8d7586bd 175 writew(value, espi->regs_base + reg);
011f23a3
MW
176}
177
8d7586bd 178static u16 ep93xx_spi_read_u16(const struct ep93xx_spi *spi, u16 reg)
011f23a3 179{
8d7586bd 180 return readw(spi->regs_base + reg);
011f23a3
MW
181}
182
183static int ep93xx_spi_enable(const struct ep93xx_spi *espi)
184{
185 u8 regval;
186 int err;
187
188 err = clk_enable(espi->clk);
189 if (err)
190 return err;
191
192 regval = ep93xx_spi_read_u8(espi, SSPCR1);
193 regval |= SSPCR1_SSE;
194 ep93xx_spi_write_u8(espi, SSPCR1, regval);
195
196 return 0;
197}
198
199static void ep93xx_spi_disable(const struct ep93xx_spi *espi)
200{
201 u8 regval;
202
203 regval = ep93xx_spi_read_u8(espi, SSPCR1);
204 regval &= ~SSPCR1_SSE;
205 ep93xx_spi_write_u8(espi, SSPCR1, regval);
206
207 clk_disable(espi->clk);
208}
209
210static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi *espi)
211{
212 u8 regval;
213
214 regval = ep93xx_spi_read_u8(espi, SSPCR1);
215 regval |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
216 ep93xx_spi_write_u8(espi, SSPCR1, regval);
217}
218
219static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi *espi)
220{
221 u8 regval;
222
223 regval = ep93xx_spi_read_u8(espi, SSPCR1);
224 regval &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
225 ep93xx_spi_write_u8(espi, SSPCR1, regval);
226}
227
228/**
229 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
230 * @espi: ep93xx SPI controller struct
231 * @chip: divisors are calculated for this chip
232 * @rate: desired SPI output clock rate
233 *
234 * Function calculates cpsr (clock pre-scaler) and scr divisors based on
235 * given @rate and places them to @chip->div_cpsr and @chip->div_scr. If,
236 * for some reason, divisors cannot be calculated nothing is stored and
237 * %-EINVAL is returned.
238 */
239static int ep93xx_spi_calc_divisors(const struct ep93xx_spi *espi,
240 struct ep93xx_spi_chip *chip,
241 unsigned long rate)
242{
243 unsigned long spi_clk_rate = clk_get_rate(espi->clk);
244 int cpsr, scr;
245
246 /*
247 * Make sure that max value is between values supported by the
248 * controller. Note that minimum value is already checked in
249 * ep93xx_spi_transfer().
250 */
251 rate = clamp(rate, espi->min_rate, espi->max_rate);
252
253 /*
254 * Calculate divisors so that we can get speed according the
255 * following formula:
256 * rate = spi_clock_rate / (cpsr * (1 + scr))
257 *
258 * cpsr must be even number and starts from 2, scr can be any number
259 * between 0 and 255.
260 */
261 for (cpsr = 2; cpsr <= 254; cpsr += 2) {
262 for (scr = 0; scr <= 255; scr++) {
263 if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
264 chip->div_scr = (u8)scr;
265 chip->div_cpsr = (u8)cpsr;
266 return 0;
267 }
268 }
269 }
270
271 return -EINVAL;
272}
273
274static void ep93xx_spi_cs_control(struct spi_device *spi, bool control)
275{
276 struct ep93xx_spi_chip *chip = spi_get_ctldata(spi);
277 int value = (spi->mode & SPI_CS_HIGH) ? control : !control;
278
279 if (chip->ops && chip->ops->cs_control)
280 chip->ops->cs_control(spi, value);
281}
282
283/**
284 * ep93xx_spi_setup() - setup an SPI device
285 * @spi: SPI device to setup
286 *
287 * This function sets up SPI device mode, speed etc. Can be called multiple
288 * times for a single device. Returns %0 in case of success, negative error in
289 * case of failure. When this function returns success, the device is
290 * deselected.
291 */
292static int ep93xx_spi_setup(struct spi_device *spi)
293{
294 struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
295 struct ep93xx_spi_chip *chip;
296
011f23a3
MW
297 chip = spi_get_ctldata(spi);
298 if (!chip) {
299 dev_dbg(&espi->pdev->dev, "initial setup for %s\n",
300 spi->modalias);
301
302 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
303 if (!chip)
304 return -ENOMEM;
305
306 chip->spi = spi;
307 chip->ops = spi->controller_data;
308
309 if (chip->ops && chip->ops->setup) {
310 int ret = chip->ops->setup(spi);
311 if (ret) {
312 kfree(chip);
313 return ret;
314 }
315 }
316
317 spi_set_ctldata(spi, chip);
318 }
319
320 if (spi->max_speed_hz != chip->rate) {
321 int err;
322
323 err = ep93xx_spi_calc_divisors(espi, chip, spi->max_speed_hz);
324 if (err != 0) {
325 spi_set_ctldata(spi, NULL);
326 kfree(chip);
327 return err;
328 }
329 chip->rate = spi->max_speed_hz;
330 }
331
332 chip->dss = bits_per_word_to_dss(spi->bits_per_word);
333
334 ep93xx_spi_cs_control(spi, false);
335 return 0;
336}
337
338/**
339 * ep93xx_spi_transfer() - queue message to be transferred
340 * @spi: target SPI device
341 * @msg: message to be transferred
342 *
343 * This function is called by SPI device drivers when they are going to transfer
344 * a new message. It simply puts the message in the queue and schedules
345 * workqueue to perform the actual transfer later on.
346 *
347 * Returns %0 on success and negative error in case of failure.
348 */
349static int ep93xx_spi_transfer(struct spi_device *spi, struct spi_message *msg)
350{
351 struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
352 struct spi_transfer *t;
353 unsigned long flags;
354
355 if (!msg || !msg->complete)
356 return -EINVAL;
357
358 /* first validate each transfer */
359 list_for_each_entry(t, &msg->transfers, transfer_list) {
011f23a3
MW
360 if (t->speed_hz && t->speed_hz < espi->min_rate)
361 return -EINVAL;
362 }
363
364 /*
365 * Now that we own the message, let's initialize it so that it is
366 * suitable for us. We use @msg->status to signal whether there was
367 * error in transfer and @msg->state is used to hold pointer to the
368 * current transfer (or %NULL if no active current transfer).
369 */
370 msg->state = NULL;
371 msg->status = 0;
372 msg->actual_length = 0;
373
374 spin_lock_irqsave(&espi->lock, flags);
375 if (!espi->running) {
376 spin_unlock_irqrestore(&espi->lock, flags);
377 return -ESHUTDOWN;
378 }
379 list_add_tail(&msg->queue, &espi->msg_queue);
380 queue_work(espi->wq, &espi->msg_work);
381 spin_unlock_irqrestore(&espi->lock, flags);
382
383 return 0;
384}
385
386/**
387 * ep93xx_spi_cleanup() - cleans up master controller specific state
388 * @spi: SPI device to cleanup
389 *
390 * This function releases master controller specific state for given @spi
391 * device.
392 */
393static void ep93xx_spi_cleanup(struct spi_device *spi)
394{
395 struct ep93xx_spi_chip *chip;
396
397 chip = spi_get_ctldata(spi);
398 if (chip) {
399 if (chip->ops && chip->ops->cleanup)
400 chip->ops->cleanup(spi);
401 spi_set_ctldata(spi, NULL);
402 kfree(chip);
403 }
404}
405
406/**
407 * ep93xx_spi_chip_setup() - configures hardware according to given @chip
408 * @espi: ep93xx SPI controller struct
409 * @chip: chip specific settings
410 *
411 * This function sets up the actual hardware registers with settings given in
412 * @chip. Note that no validation is done so make sure that callers validate
413 * settings before calling this.
414 */
415static void ep93xx_spi_chip_setup(const struct ep93xx_spi *espi,
416 const struct ep93xx_spi_chip *chip)
417{
418 u16 cr0;
419
420 cr0 = chip->div_scr << SSPCR0_SCR_SHIFT;
421 cr0 |= (chip->spi->mode & (SPI_CPHA|SPI_CPOL)) << SSPCR0_MODE_SHIFT;
422 cr0 |= chip->dss;
423
424 dev_dbg(&espi->pdev->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
425 chip->spi->mode, chip->div_cpsr, chip->div_scr, chip->dss);
426 dev_dbg(&espi->pdev->dev, "setup: cr0 %#x", cr0);
427
428 ep93xx_spi_write_u8(espi, SSPCPSR, chip->div_cpsr);
429 ep93xx_spi_write_u16(espi, SSPCR0, cr0);
430}
431
432static inline int bits_per_word(const struct ep93xx_spi *espi)
433{
434 struct spi_message *msg = espi->current_msg;
435 struct spi_transfer *t = msg->state;
436
766ed704 437 return t->bits_per_word;
011f23a3
MW
438}
439
440static void ep93xx_do_write(struct ep93xx_spi *espi, struct spi_transfer *t)
441{
442 if (bits_per_word(espi) > 8) {
443 u16 tx_val = 0;
444
445 if (t->tx_buf)
446 tx_val = ((u16 *)t->tx_buf)[espi->tx];
447 ep93xx_spi_write_u16(espi, SSPDR, tx_val);
448 espi->tx += sizeof(tx_val);
449 } else {
450 u8 tx_val = 0;
451
452 if (t->tx_buf)
453 tx_val = ((u8 *)t->tx_buf)[espi->tx];
454 ep93xx_spi_write_u8(espi, SSPDR, tx_val);
455 espi->tx += sizeof(tx_val);
456 }
457}
458
459static void ep93xx_do_read(struct ep93xx_spi *espi, struct spi_transfer *t)
460{
461 if (bits_per_word(espi) > 8) {
462 u16 rx_val;
463
464 rx_val = ep93xx_spi_read_u16(espi, SSPDR);
465 if (t->rx_buf)
466 ((u16 *)t->rx_buf)[espi->rx] = rx_val;
467 espi->rx += sizeof(rx_val);
468 } else {
469 u8 rx_val;
470
471 rx_val = ep93xx_spi_read_u8(espi, SSPDR);
472 if (t->rx_buf)
473 ((u8 *)t->rx_buf)[espi->rx] = rx_val;
474 espi->rx += sizeof(rx_val);
475 }
476}
477
478/**
479 * ep93xx_spi_read_write() - perform next RX/TX transfer
480 * @espi: ep93xx SPI controller struct
481 *
482 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
483 * called several times, the whole transfer will be completed. Returns
484 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
485 *
486 * When this function is finished, RX FIFO should be empty and TX FIFO should be
487 * full.
488 */
489static int ep93xx_spi_read_write(struct ep93xx_spi *espi)
490{
491 struct spi_message *msg = espi->current_msg;
492 struct spi_transfer *t = msg->state;
493
494 /* read as long as RX FIFO has frames in it */
495 while ((ep93xx_spi_read_u8(espi, SSPSR) & SSPSR_RNE)) {
496 ep93xx_do_read(espi, t);
497 espi->fifo_level--;
498 }
499
500 /* write as long as TX FIFO has room */
501 while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < t->len) {
502 ep93xx_do_write(espi, t);
503 espi->fifo_level++;
504 }
505
626a96db 506 if (espi->rx == t->len)
011f23a3 507 return 0;
011f23a3
MW
508
509 return -EINPROGRESS;
510}
511
626a96db
MW
512static void ep93xx_spi_pio_transfer(struct ep93xx_spi *espi)
513{
514 /*
515 * Now everything is set up for the current transfer. We prime the TX
516 * FIFO, enable interrupts, and wait for the transfer to complete.
517 */
518 if (ep93xx_spi_read_write(espi)) {
519 ep93xx_spi_enable_interrupts(espi);
520 wait_for_completion(&espi->wait);
521 }
522}
523
524/**
525 * ep93xx_spi_dma_prepare() - prepares a DMA transfer
526 * @espi: ep93xx SPI controller struct
527 * @dir: DMA transfer direction
528 *
529 * Function configures the DMA, maps the buffer and prepares the DMA
530 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
531 * in case of failure.
532 */
533static struct dma_async_tx_descriptor *
d4b9b578 534ep93xx_spi_dma_prepare(struct ep93xx_spi *espi, enum dma_transfer_direction dir)
626a96db
MW
535{
536 struct spi_transfer *t = espi->current_msg->state;
537 struct dma_async_tx_descriptor *txd;
538 enum dma_slave_buswidth buswidth;
539 struct dma_slave_config conf;
540 struct scatterlist *sg;
541 struct sg_table *sgt;
542 struct dma_chan *chan;
543 const void *buf, *pbuf;
544 size_t len = t->len;
545 int i, ret, nents;
546
547 if (bits_per_word(espi) > 8)
548 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
549 else
550 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
551
552 memset(&conf, 0, sizeof(conf));
553 conf.direction = dir;
554
d4b9b578 555 if (dir == DMA_DEV_TO_MEM) {
626a96db
MW
556 chan = espi->dma_rx;
557 buf = t->rx_buf;
558 sgt = &espi->rx_sgt;
559
560 conf.src_addr = espi->sspdr_phys;
561 conf.src_addr_width = buswidth;
562 } else {
563 chan = espi->dma_tx;
564 buf = t->tx_buf;
565 sgt = &espi->tx_sgt;
566
567 conf.dst_addr = espi->sspdr_phys;
568 conf.dst_addr_width = buswidth;
569 }
570
571 ret = dmaengine_slave_config(chan, &conf);
572 if (ret)
573 return ERR_PTR(ret);
574
575 /*
576 * We need to split the transfer into PAGE_SIZE'd chunks. This is
577 * because we are using @espi->zeropage to provide a zero RX buffer
578 * for the TX transfers and we have only allocated one page for that.
579 *
580 * For performance reasons we allocate a new sg_table only when
581 * needed. Otherwise we will re-use the current one. Eventually the
582 * last sg_table is released in ep93xx_spi_release_dma().
583 */
584
585 nents = DIV_ROUND_UP(len, PAGE_SIZE);
586 if (nents != sgt->nents) {
587 sg_free_table(sgt);
588
589 ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
590 if (ret)
591 return ERR_PTR(ret);
592 }
593
594 pbuf = buf;
595 for_each_sg(sgt->sgl, sg, sgt->nents, i) {
596 size_t bytes = min_t(size_t, len, PAGE_SIZE);
597
598 if (buf) {
599 sg_set_page(sg, virt_to_page(pbuf), bytes,
600 offset_in_page(pbuf));
601 } else {
602 sg_set_page(sg, virt_to_page(espi->zeropage),
603 bytes, 0);
604 }
605
606 pbuf += bytes;
607 len -= bytes;
608 }
609
610 if (WARN_ON(len)) {
611 dev_warn(&espi->pdev->dev, "len = %d expected 0!", len);
612 return ERR_PTR(-EINVAL);
613 }
614
615 nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
616 if (!nents)
617 return ERR_PTR(-ENOMEM);
618
d4b9b578 619 txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir, DMA_CTRL_ACK);
626a96db
MW
620 if (!txd) {
621 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
622 return ERR_PTR(-ENOMEM);
623 }
624 return txd;
625}
626
627/**
628 * ep93xx_spi_dma_finish() - finishes with a DMA transfer
629 * @espi: ep93xx SPI controller struct
630 * @dir: DMA transfer direction
631 *
632 * Function finishes with the DMA transfer. After this, the DMA buffer is
633 * unmapped.
634 */
635static void ep93xx_spi_dma_finish(struct ep93xx_spi *espi,
d4b9b578 636 enum dma_transfer_direction dir)
626a96db
MW
637{
638 struct dma_chan *chan;
639 struct sg_table *sgt;
640
d4b9b578 641 if (dir == DMA_DEV_TO_MEM) {
626a96db
MW
642 chan = espi->dma_rx;
643 sgt = &espi->rx_sgt;
644 } else {
645 chan = espi->dma_tx;
646 sgt = &espi->tx_sgt;
647 }
648
649 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
650}
651
652static void ep93xx_spi_dma_callback(void *callback_param)
653{
654 complete(callback_param);
655}
656
657static void ep93xx_spi_dma_transfer(struct ep93xx_spi *espi)
658{
659 struct spi_message *msg = espi->current_msg;
660 struct dma_async_tx_descriptor *rxd, *txd;
661
d4b9b578 662 rxd = ep93xx_spi_dma_prepare(espi, DMA_DEV_TO_MEM);
626a96db
MW
663 if (IS_ERR(rxd)) {
664 dev_err(&espi->pdev->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
665 msg->status = PTR_ERR(rxd);
666 return;
667 }
668
d4b9b578 669 txd = ep93xx_spi_dma_prepare(espi, DMA_MEM_TO_DEV);
626a96db 670 if (IS_ERR(txd)) {
d4b9b578 671 ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
626a96db
MW
672 dev_err(&espi->pdev->dev, "DMA TX failed: %ld\n", PTR_ERR(rxd));
673 msg->status = PTR_ERR(txd);
674 return;
675 }
676
677 /* We are ready when RX is done */
678 rxd->callback = ep93xx_spi_dma_callback;
679 rxd->callback_param = &espi->wait;
680
681 /* Now submit both descriptors and wait while they finish */
682 dmaengine_submit(rxd);
683 dmaengine_submit(txd);
684
685 dma_async_issue_pending(espi->dma_rx);
686 dma_async_issue_pending(espi->dma_tx);
687
688 wait_for_completion(&espi->wait);
689
d4b9b578
HS
690 ep93xx_spi_dma_finish(espi, DMA_MEM_TO_DEV);
691 ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
626a96db
MW
692}
693
011f23a3
MW
694/**
695 * ep93xx_spi_process_transfer() - processes one SPI transfer
696 * @espi: ep93xx SPI controller struct
697 * @msg: current message
698 * @t: transfer to process
699 *
700 * This function processes one SPI transfer given in @t. Function waits until
701 * transfer is complete (may sleep) and updates @msg->status based on whether
25985edc 702 * transfer was successfully processed or not.
011f23a3
MW
703 */
704static void ep93xx_spi_process_transfer(struct ep93xx_spi *espi,
705 struct spi_message *msg,
706 struct spi_transfer *t)
707{
708 struct ep93xx_spi_chip *chip = spi_get_ctldata(msg->spi);
4870c217 709 int err;
011f23a3
MW
710
711 msg->state = t;
712
4870c217
HS
713 err = ep93xx_spi_calc_divisors(espi, chip, t->speed_hz);
714 if (err) {
715 dev_err(&espi->pdev->dev, "failed to adjust speed\n");
716 msg->status = err;
717 return;
718 }
011f23a3 719
4870c217 720 chip->dss = bits_per_word_to_dss(t->bits_per_word);
011f23a3 721
4870c217 722 ep93xx_spi_chip_setup(espi, chip);
011f23a3
MW
723
724 espi->rx = 0;
725 espi->tx = 0;
726
727 /*
626a96db
MW
728 * There is no point of setting up DMA for the transfers which will
729 * fit into the FIFO and can be transferred with a single interrupt.
730 * So in these cases we will be using PIO and don't bother for DMA.
011f23a3 731 */
626a96db
MW
732 if (espi->dma_rx && t->len > SPI_FIFO_SIZE)
733 ep93xx_spi_dma_transfer(espi);
734 else
735 ep93xx_spi_pio_transfer(espi);
011f23a3
MW
736
737 /*
738 * In case of error during transmit, we bail out from processing
739 * the message.
740 */
741 if (msg->status)
742 return;
743
626a96db
MW
744 msg->actual_length += t->len;
745
011f23a3
MW
746 /*
747 * After this transfer is finished, perform any possible
748 * post-transfer actions requested by the protocol driver.
749 */
750 if (t->delay_usecs) {
751 set_current_state(TASK_UNINTERRUPTIBLE);
752 schedule_timeout(usecs_to_jiffies(t->delay_usecs));
753 }
754 if (t->cs_change) {
755 if (!list_is_last(&t->transfer_list, &msg->transfers)) {
756 /*
757 * In case protocol driver is asking us to drop the
758 * chipselect briefly, we let the scheduler to handle
759 * any "delay" here.
760 */
761 ep93xx_spi_cs_control(msg->spi, false);
762 cond_resched();
763 ep93xx_spi_cs_control(msg->spi, true);
764 }
765 }
011f23a3
MW
766}
767
768/*
769 * ep93xx_spi_process_message() - process one SPI message
770 * @espi: ep93xx SPI controller struct
771 * @msg: message to process
772 *
773 * This function processes a single SPI message. We go through all transfers in
774 * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is
775 * asserted during the whole message (unless per transfer cs_change is set).
776 *
777 * @msg->status contains %0 in case of success or negative error code in case of
778 * failure.
779 */
780static void ep93xx_spi_process_message(struct ep93xx_spi *espi,
781 struct spi_message *msg)
782{
783 unsigned long timeout;
784 struct spi_transfer *t;
785 int err;
786
787 /*
788 * Enable the SPI controller and its clock.
789 */
790 err = ep93xx_spi_enable(espi);
791 if (err) {
792 dev_err(&espi->pdev->dev, "failed to enable SPI controller\n");
793 msg->status = err;
794 return;
795 }
796
797 /*
798 * Just to be sure: flush any data from RX FIFO.
799 */
800 timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
801 while (ep93xx_spi_read_u16(espi, SSPSR) & SSPSR_RNE) {
802 if (time_after(jiffies, timeout)) {
803 dev_warn(&espi->pdev->dev,
804 "timeout while flushing RX FIFO\n");
805 msg->status = -ETIMEDOUT;
806 return;
807 }
808 ep93xx_spi_read_u16(espi, SSPDR);
809 }
810
811 /*
812 * We explicitly handle FIFO level. This way we don't have to check TX
813 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
814 */
815 espi->fifo_level = 0;
816
817 /*
4870c217 818 * Assert the chipselect.
011f23a3 819 */
011f23a3
MW
820 ep93xx_spi_cs_control(msg->spi, true);
821
822 list_for_each_entry(t, &msg->transfers, transfer_list) {
823 ep93xx_spi_process_transfer(espi, msg, t);
824 if (msg->status)
825 break;
826 }
827
828 /*
829 * Now the whole message is transferred (or failed for some reason). We
830 * deselect the device and disable the SPI controller.
831 */
832 ep93xx_spi_cs_control(msg->spi, false);
833 ep93xx_spi_disable(espi);
834}
835
836#define work_to_espi(work) (container_of((work), struct ep93xx_spi, msg_work))
837
838/**
839 * ep93xx_spi_work() - EP93xx SPI workqueue worker function
840 * @work: work struct
841 *
842 * Workqueue worker function. This function is called when there are new
843 * SPI messages to be processed. Message is taken out from the queue and then
844 * passed to ep93xx_spi_process_message().
845 *
846 * After message is transferred, protocol driver is notified by calling
847 * @msg->complete(). In case of error, @msg->status is set to negative error
848 * number, otherwise it contains zero (and @msg->actual_length is updated).
849 */
850static void ep93xx_spi_work(struct work_struct *work)
851{
852 struct ep93xx_spi *espi = work_to_espi(work);
853 struct spi_message *msg;
854
855 spin_lock_irq(&espi->lock);
856 if (!espi->running || espi->current_msg ||
857 list_empty(&espi->msg_queue)) {
858 spin_unlock_irq(&espi->lock);
859 return;
860 }
861 msg = list_first_entry(&espi->msg_queue, struct spi_message, queue);
862 list_del_init(&msg->queue);
863 espi->current_msg = msg;
864 spin_unlock_irq(&espi->lock);
865
866 ep93xx_spi_process_message(espi, msg);
867
868 /*
869 * Update the current message and re-schedule ourselves if there are
870 * more messages in the queue.
871 */
872 spin_lock_irq(&espi->lock);
873 espi->current_msg = NULL;
874 if (espi->running && !list_empty(&espi->msg_queue))
875 queue_work(espi->wq, &espi->msg_work);
876 spin_unlock_irq(&espi->lock);
877
878 /* notify the protocol driver that we are done with this message */
879 msg->complete(msg->context);
880}
881
882static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
883{
884 struct ep93xx_spi *espi = dev_id;
885 u8 irq_status = ep93xx_spi_read_u8(espi, SSPIIR);
886
887 /*
888 * If we got ROR (receive overrun) interrupt we know that something is
889 * wrong. Just abort the message.
890 */
891 if (unlikely(irq_status & SSPIIR_RORIS)) {
892 /* clear the overrun interrupt */
893 ep93xx_spi_write_u8(espi, SSPICR, 0);
894 dev_warn(&espi->pdev->dev,
895 "receive overrun, aborting the message\n");
896 espi->current_msg->status = -EIO;
897 } else {
898 /*
899 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
900 * simply execute next data transfer.
901 */
902 if (ep93xx_spi_read_write(espi)) {
903 /*
904 * In normal case, there still is some processing left
905 * for current transfer. Let's wait for the next
906 * interrupt then.
907 */
908 return IRQ_HANDLED;
909 }
910 }
911
912 /*
913 * Current transfer is finished, either with error or with success. In
914 * any case we disable interrupts and notify the worker to handle
915 * any post-processing of the message.
916 */
917 ep93xx_spi_disable_interrupts(espi);
918 complete(&espi->wait);
919 return IRQ_HANDLED;
920}
921
626a96db
MW
922static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
923{
924 if (ep93xx_dma_chan_is_m2p(chan))
925 return false;
926
927 chan->private = filter_param;
928 return true;
929}
930
931static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
932{
933 dma_cap_mask_t mask;
934 int ret;
935
936 espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
937 if (!espi->zeropage)
938 return -ENOMEM;
939
940 dma_cap_zero(mask);
941 dma_cap_set(DMA_SLAVE, mask);
942
943 espi->dma_rx_data.port = EP93XX_DMA_SSP;
a485df4b 944 espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
626a96db
MW
945 espi->dma_rx_data.name = "ep93xx-spi-rx";
946
947 espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
948 &espi->dma_rx_data);
949 if (!espi->dma_rx) {
950 ret = -ENODEV;
951 goto fail_free_page;
952 }
953
954 espi->dma_tx_data.port = EP93XX_DMA_SSP;
a485df4b 955 espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
626a96db
MW
956 espi->dma_tx_data.name = "ep93xx-spi-tx";
957
958 espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
959 &espi->dma_tx_data);
960 if (!espi->dma_tx) {
961 ret = -ENODEV;
962 goto fail_release_rx;
963 }
964
965 return 0;
966
967fail_release_rx:
968 dma_release_channel(espi->dma_rx);
969 espi->dma_rx = NULL;
970fail_free_page:
971 free_page((unsigned long)espi->zeropage);
972
973 return ret;
974}
975
976static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
977{
978 if (espi->dma_rx) {
979 dma_release_channel(espi->dma_rx);
980 sg_free_table(&espi->rx_sgt);
981 }
982 if (espi->dma_tx) {
983 dma_release_channel(espi->dma_tx);
984 sg_free_table(&espi->tx_sgt);
985 }
986
987 if (espi->zeropage)
988 free_page((unsigned long)espi->zeropage);
989}
990
fd4a319b 991static int ep93xx_spi_probe(struct platform_device *pdev)
011f23a3
MW
992{
993 struct spi_master *master;
994 struct ep93xx_spi_info *info;
995 struct ep93xx_spi *espi;
996 struct resource *res;
6d6467ee 997 int irq;
011f23a3
MW
998 int error;
999
1000 info = pdev->dev.platform_data;
1001
1002 master = spi_alloc_master(&pdev->dev, sizeof(*espi));
1003 if (!master) {
1004 dev_err(&pdev->dev, "failed to allocate spi master\n");
1005 return -ENOMEM;
1006 }
1007
1008 master->setup = ep93xx_spi_setup;
1009 master->transfer = ep93xx_spi_transfer;
1010 master->cleanup = ep93xx_spi_cleanup;
1011 master->bus_num = pdev->id;
1012 master->num_chipselect = info->num_chipselect;
1013 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
24778be2 1014 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
011f23a3
MW
1015
1016 platform_set_drvdata(pdev, master);
1017
1018 espi = spi_master_get_devdata(master);
1019
1020 espi->clk = clk_get(&pdev->dev, NULL);
1021 if (IS_ERR(espi->clk)) {
1022 dev_err(&pdev->dev, "unable to get spi clock\n");
1023 error = PTR_ERR(espi->clk);
1024 goto fail_release_master;
1025 }
1026
1027 spin_lock_init(&espi->lock);
1028 init_completion(&espi->wait);
1029
1030 /*
1031 * Calculate maximum and minimum supported clock rates
1032 * for the controller.
1033 */
1034 espi->max_rate = clk_get_rate(espi->clk) / 2;
1035 espi->min_rate = clk_get_rate(espi->clk) / (254 * 256);
1036 espi->pdev = pdev;
1037
6d6467ee
HH
1038 irq = platform_get_irq(pdev, 0);
1039 if (irq < 0) {
011f23a3
MW
1040 error = -EBUSY;
1041 dev_err(&pdev->dev, "failed to get irq resources\n");
1042 goto fail_put_clock;
1043 }
1044
1045 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1046 if (!res) {
1047 dev_err(&pdev->dev, "unable to get iomem resource\n");
1048 error = -ENODEV;
1049 goto fail_put_clock;
1050 }
1051
626a96db 1052 espi->sspdr_phys = res->start + SSPDR;
6d6467ee 1053
b0ee5605
TR
1054 espi->regs_base = devm_ioremap_resource(&pdev->dev, res);
1055 if (IS_ERR(espi->regs_base)) {
1056 error = PTR_ERR(espi->regs_base);
6d6467ee 1057 goto fail_put_clock;
011f23a3
MW
1058 }
1059
6d6467ee
HH
1060 error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
1061 0, "ep93xx-spi", espi);
011f23a3
MW
1062 if (error) {
1063 dev_err(&pdev->dev, "failed to request irq\n");
6d6467ee 1064 goto fail_put_clock;
011f23a3
MW
1065 }
1066
626a96db
MW
1067 if (info->use_dma && ep93xx_spi_setup_dma(espi))
1068 dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
1069
011f23a3
MW
1070 espi->wq = create_singlethread_workqueue("ep93xx_spid");
1071 if (!espi->wq) {
1072 dev_err(&pdev->dev, "unable to create workqueue\n");
27474d26 1073 error = -ENOMEM;
626a96db 1074 goto fail_free_dma;
011f23a3
MW
1075 }
1076 INIT_WORK(&espi->msg_work, ep93xx_spi_work);
1077 INIT_LIST_HEAD(&espi->msg_queue);
1078 espi->running = true;
1079
1080 /* make sure that the hardware is disabled */
1081 ep93xx_spi_write_u8(espi, SSPCR1, 0);
1082
1083 error = spi_register_master(master);
1084 if (error) {
1085 dev_err(&pdev->dev, "failed to register SPI master\n");
1086 goto fail_free_queue;
1087 }
1088
1089 dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
6d6467ee 1090 (unsigned long)res->start, irq);
011f23a3
MW
1091
1092 return 0;
1093
1094fail_free_queue:
1095 destroy_workqueue(espi->wq);
626a96db
MW
1096fail_free_dma:
1097 ep93xx_spi_release_dma(espi);
011f23a3
MW
1098fail_put_clock:
1099 clk_put(espi->clk);
1100fail_release_master:
1101 spi_master_put(master);
011f23a3
MW
1102
1103 return error;
1104}
1105
fd4a319b 1106static int ep93xx_spi_remove(struct platform_device *pdev)
011f23a3
MW
1107{
1108 struct spi_master *master = platform_get_drvdata(pdev);
1109 struct ep93xx_spi *espi = spi_master_get_devdata(master);
011f23a3
MW
1110
1111 spin_lock_irq(&espi->lock);
1112 espi->running = false;
1113 spin_unlock_irq(&espi->lock);
1114
1115 destroy_workqueue(espi->wq);
1116
1117 /*
1118 * Complete remaining messages with %-ESHUTDOWN status.
1119 */
1120 spin_lock_irq(&espi->lock);
1121 while (!list_empty(&espi->msg_queue)) {
1122 struct spi_message *msg;
1123
1124 msg = list_first_entry(&espi->msg_queue,
1125 struct spi_message, queue);
1126 list_del_init(&msg->queue);
1127 msg->status = -ESHUTDOWN;
1128 spin_unlock_irq(&espi->lock);
1129 msg->complete(msg->context);
1130 spin_lock_irq(&espi->lock);
1131 }
1132 spin_unlock_irq(&espi->lock);
1133
626a96db 1134 ep93xx_spi_release_dma(espi);
011f23a3 1135 clk_put(espi->clk);
011f23a3
MW
1136
1137 spi_unregister_master(master);
1138 return 0;
1139}
1140
1141static struct platform_driver ep93xx_spi_driver = {
1142 .driver = {
1143 .name = "ep93xx-spi",
1144 .owner = THIS_MODULE,
1145 },
940ab889 1146 .probe = ep93xx_spi_probe,
fd4a319b 1147 .remove = ep93xx_spi_remove,
011f23a3 1148};
940ab889 1149module_platform_driver(ep93xx_spi_driver);
011f23a3
MW
1150
1151MODULE_DESCRIPTION("EP93xx SPI Controller driver");
1152MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1153MODULE_LICENSE("GPL");
1154MODULE_ALIAS("platform:ep93xx-spi");
This page took 0.227116 seconds and 5 git commands to generate.