spi: spi-tle62x0: Use module_spi_driver macro
[deliverable/linux.git] / drivers / spi / spi-pl022.c
CommitLineData
b43d65f7 1/*
b43d65f7
LW
2 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
3 *
4 * Copyright (C) 2008-2009 ST-Ericsson AB
5 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
6 *
7 * Author: Linus Walleij <linus.walleij@stericsson.com>
8 *
9 * Initial version inspired by:
10 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
11 * Initial adoption to PL022 by:
12 * Sachin Verma <sachin.verma@st.com>
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 */
24
b43d65f7
LW
25#include <linux/init.h>
26#include <linux/module.h>
27#include <linux/device.h>
28#include <linux/ioport.h>
29#include <linux/errno.h>
30#include <linux/interrupt.h>
31#include <linux/spi/spi.h>
b43d65f7
LW
32#include <linux/delay.h>
33#include <linux/clk.h>
34#include <linux/err.h>
35#include <linux/amba/bus.h>
36#include <linux/amba/pl022.h>
37#include <linux/io.h>
5a0e3ad6 38#include <linux/slab.h>
b1b6b9aa
LW
39#include <linux/dmaengine.h>
40#include <linux/dma-mapping.h>
41#include <linux/scatterlist.h>
bcda6ff8 42#include <linux/pm_runtime.h>
f6f46de1 43#include <linux/gpio.h>
6d3952a7 44#include <linux/of_gpio.h>
b43d65f7
LW
45
46/*
47 * This macro is used to define some register default values.
48 * reg is masked with mask, the OR:ed with an (again masked)
49 * val shifted sb steps to the left.
50 */
51#define SSP_WRITE_BITS(reg, val, mask, sb) \
52 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
53
54/*
55 * This macro is also used to define some default values.
56 * It will just shift val by sb steps to the left and mask
57 * the result with mask.
58 */
59#define GEN_MASK_BITS(val, mask, sb) \
60 (((val)<<(sb)) & (mask))
61
62#define DRIVE_TX 0
63#define DO_NOT_DRIVE_TX 1
64
65#define DO_NOT_QUEUE_DMA 0
66#define QUEUE_DMA 1
67
68#define RX_TRANSFER 1
69#define TX_TRANSFER 2
70
71/*
72 * Macros to access SSP Registers with their offsets
73 */
74#define SSP_CR0(r) (r + 0x000)
75#define SSP_CR1(r) (r + 0x004)
76#define SSP_DR(r) (r + 0x008)
77#define SSP_SR(r) (r + 0x00C)
78#define SSP_CPSR(r) (r + 0x010)
79#define SSP_IMSC(r) (r + 0x014)
80#define SSP_RIS(r) (r + 0x018)
81#define SSP_MIS(r) (r + 0x01C)
82#define SSP_ICR(r) (r + 0x020)
83#define SSP_DMACR(r) (r + 0x024)
84#define SSP_ITCR(r) (r + 0x080)
85#define SSP_ITIP(r) (r + 0x084)
86#define SSP_ITOP(r) (r + 0x088)
87#define SSP_TDR(r) (r + 0x08C)
88
89#define SSP_PID0(r) (r + 0xFE0)
90#define SSP_PID1(r) (r + 0xFE4)
91#define SSP_PID2(r) (r + 0xFE8)
92#define SSP_PID3(r) (r + 0xFEC)
93
94#define SSP_CID0(r) (r + 0xFF0)
95#define SSP_CID1(r) (r + 0xFF4)
96#define SSP_CID2(r) (r + 0xFF8)
97#define SSP_CID3(r) (r + 0xFFC)
98
99/*
100 * SSP Control Register 0 - SSP_CR0
101 */
556f4aeb
LW
102#define SSP_CR0_MASK_DSS (0x0FUL << 0)
103#define SSP_CR0_MASK_FRF (0x3UL << 4)
b43d65f7
LW
104#define SSP_CR0_MASK_SPO (0x1UL << 6)
105#define SSP_CR0_MASK_SPH (0x1UL << 7)
106#define SSP_CR0_MASK_SCR (0xFFUL << 8)
556f4aeb
LW
107
108/*
109 * The ST version of this block moves som bits
110 * in SSP_CR0 and extends it to 32 bits
111 */
112#define SSP_CR0_MASK_DSS_ST (0x1FUL << 0)
113#define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
114#define SSP_CR0_MASK_CSS_ST (0x1FUL << 16)
115#define SSP_CR0_MASK_FRF_ST (0x3UL << 21)
116
b43d65f7
LW
117/*
118 * SSP Control Register 0 - SSP_CR1
119 */
120#define SSP_CR1_MASK_LBM (0x1UL << 0)
121#define SSP_CR1_MASK_SSE (0x1UL << 1)
122#define SSP_CR1_MASK_MS (0x1UL << 2)
123#define SSP_CR1_MASK_SOD (0x1UL << 3)
b43d65f7
LW
124
125/*
556f4aeb
LW
126 * The ST version of this block adds some bits
127 * in SSP_CR1
b43d65f7 128 */
556f4aeb
LW
129#define SSP_CR1_MASK_RENDN_ST (0x1UL << 4)
130#define SSP_CR1_MASK_TENDN_ST (0x1UL << 5)
131#define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6)
132#define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
133#define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
781c7b12
LW
134/* This one is only in the PL023 variant */
135#define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
b43d65f7
LW
136
137/*
138 * SSP Status Register - SSP_SR
139 */
140#define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
141#define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
142#define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
556f4aeb 143#define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
b43d65f7
LW
144#define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
145
146/*
147 * SSP Clock Prescale Register - SSP_CPSR
148 */
149#define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
150
151/*
152 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
153 */
154#define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
155#define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
156#define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
157#define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
158
159/*
160 * SSP Raw Interrupt Status Register - SSP_RIS
161 */
162/* Receive Overrun Raw Interrupt status */
163#define SSP_RIS_MASK_RORRIS (0x1UL << 0)
164/* Receive Timeout Raw Interrupt status */
165#define SSP_RIS_MASK_RTRIS (0x1UL << 1)
166/* Receive FIFO Raw Interrupt status */
167#define SSP_RIS_MASK_RXRIS (0x1UL << 2)
168/* Transmit FIFO Raw Interrupt status */
169#define SSP_RIS_MASK_TXRIS (0x1UL << 3)
170
171/*
172 * SSP Masked Interrupt Status Register - SSP_MIS
173 */
174/* Receive Overrun Masked Interrupt status */
175#define SSP_MIS_MASK_RORMIS (0x1UL << 0)
176/* Receive Timeout Masked Interrupt status */
177#define SSP_MIS_MASK_RTMIS (0x1UL << 1)
178/* Receive FIFO Masked Interrupt status */
179#define SSP_MIS_MASK_RXMIS (0x1UL << 2)
180/* Transmit FIFO Masked Interrupt status */
181#define SSP_MIS_MASK_TXMIS (0x1UL << 3)
182
183/*
184 * SSP Interrupt Clear Register - SSP_ICR
185 */
186/* Receive Overrun Raw Clear Interrupt bit */
187#define SSP_ICR_MASK_RORIC (0x1UL << 0)
188/* Receive Timeout Clear Interrupt bit */
189#define SSP_ICR_MASK_RTIC (0x1UL << 1)
190
191/*
192 * SSP DMA Control Register - SSP_DMACR
193 */
194/* Receive DMA Enable bit */
195#define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
196/* Transmit DMA Enable bit */
197#define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
198
199/*
200 * SSP Integration Test control Register - SSP_ITCR
201 */
202#define SSP_ITCR_MASK_ITEN (0x1UL << 0)
203#define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
204
205/*
206 * SSP Integration Test Input Register - SSP_ITIP
207 */
208#define ITIP_MASK_SSPRXD (0x1UL << 0)
209#define ITIP_MASK_SSPFSSIN (0x1UL << 1)
210#define ITIP_MASK_SSPCLKIN (0x1UL << 2)
211#define ITIP_MASK_RXDMAC (0x1UL << 3)
212#define ITIP_MASK_TXDMAC (0x1UL << 4)
213#define ITIP_MASK_SSPTXDIN (0x1UL << 5)
214
215/*
216 * SSP Integration Test output Register - SSP_ITOP
217 */
218#define ITOP_MASK_SSPTXD (0x1UL << 0)
219#define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
220#define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
221#define ITOP_MASK_SSPOEn (0x1UL << 3)
222#define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
223#define ITOP_MASK_RORINTR (0x1UL << 5)
224#define ITOP_MASK_RTINTR (0x1UL << 6)
225#define ITOP_MASK_RXINTR (0x1UL << 7)
226#define ITOP_MASK_TXINTR (0x1UL << 8)
227#define ITOP_MASK_INTR (0x1UL << 9)
228#define ITOP_MASK_RXDMABREQ (0x1UL << 10)
229#define ITOP_MASK_RXDMASREQ (0x1UL << 11)
230#define ITOP_MASK_TXDMABREQ (0x1UL << 12)
231#define ITOP_MASK_TXDMASREQ (0x1UL << 13)
232
233/*
234 * SSP Test Data Register - SSP_TDR
235 */
556f4aeb 236#define TDR_MASK_TESTDATA (0xFFFFFFFF)
b43d65f7
LW
237
238/*
239 * Message State
240 * we use the spi_message.state (void *) pointer to
241 * hold a single state value, that's why all this
242 * (void *) casting is done here.
243 */
556f4aeb
LW
244#define STATE_START ((void *) 0)
245#define STATE_RUNNING ((void *) 1)
246#define STATE_DONE ((void *) 2)
247#define STATE_ERROR ((void *) -1)
b43d65f7 248
b43d65f7
LW
249/*
250 * SSP State - Whether Enabled or Disabled
251 */
556f4aeb
LW
252#define SSP_DISABLED (0)
253#define SSP_ENABLED (1)
b43d65f7
LW
254
255/*
256 * SSP DMA State - Whether DMA Enabled or Disabled
257 */
556f4aeb
LW
258#define SSP_DMA_DISABLED (0)
259#define SSP_DMA_ENABLED (1)
b43d65f7
LW
260
261/*
262 * SSP Clock Defaults
263 */
556f4aeb
LW
264#define SSP_DEFAULT_CLKRATE 0x2
265#define SSP_DEFAULT_PRESCALE 0x40
b43d65f7
LW
266
267/*
268 * SSP Clock Parameter ranges
269 */
270#define CPSDVR_MIN 0x02
271#define CPSDVR_MAX 0xFE
272#define SCR_MIN 0x00
273#define SCR_MAX 0xFF
274
275/*
276 * SSP Interrupt related Macros
277 */
278#define DEFAULT_SSP_REG_IMSC 0x0UL
279#define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
280#define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
281
282#define CLEAR_ALL_INTERRUPTS 0x3
283
a18c266f
MT
284#define SPI_POLLING_TIMEOUT 1000
285
b43d65f7
LW
286/*
287 * The type of reading going on on this chip
288 */
289enum ssp_reading {
290 READING_NULL,
291 READING_U8,
292 READING_U16,
293 READING_U32
294};
295
296/**
297 * The type of writing going on on this chip
298 */
299enum ssp_writing {
300 WRITING_NULL,
301 WRITING_U8,
302 WRITING_U16,
303 WRITING_U32
304};
305
306/**
307 * struct vendor_data - vendor-specific config parameters
308 * for PL022 derivates
309 * @fifodepth: depth of FIFOs (both)
310 * @max_bpw: maximum number of bits per word
311 * @unidir: supports unidirection transfers
556f4aeb
LW
312 * @extended_cr: 32 bit wide control register 0 with extra
313 * features and extra features in CR1 as found in the ST variants
781c7b12 314 * @pl023: supports a subset of the ST extensions called "PL023"
b43d65f7
LW
315 */
316struct vendor_data {
317 int fifodepth;
318 int max_bpw;
319 bool unidir;
556f4aeb 320 bool extended_cr;
781c7b12 321 bool pl023;
06fb01fd 322 bool loopback;
b43d65f7
LW
323};
324
325/**
326 * struct pl022 - This is the private SSP driver data structure
327 * @adev: AMBA device model hookup
12e8b325
LW
328 * @vendor: vendor data for the IP block
329 * @phybase: the physical memory where the SSP device resides
330 * @virtbase: the virtual memory where the SSP is mapped
331 * @clk: outgoing clock "SPICLK" for the SPI bus
b43d65f7
LW
332 * @master: SPI framework hookup
333 * @master_info: controller-specific data from machine setup
14af60b6
CB
334 * @kworker: thread struct for message pump
335 * @kworker_task: pointer to task for message pump kworker thread
336 * @pump_messages: work struct for scheduling work to the message pump
12e8b325
LW
337 * @queue_lock: spinlock to syncronise access to message queue
338 * @queue: message queue
14af60b6
CB
339 * @busy: message pump is busy
340 * @running: message pump is running
b43d65f7
LW
341 * @pump_transfers: Tasklet used in Interrupt Transfer mode
342 * @cur_msg: Pointer to current spi_message being processed
343 * @cur_transfer: Pointer to current spi_transfer
344 * @cur_chip: pointer to current clients chip(assigned from controller_state)
8b8d7191
VS
345 * @next_msg_cs_active: the next message in the queue has been examined
346 * and it was found that it uses the same chip select as the previous
347 * message, so we left it active after the previous transfer, and it's
348 * active already.
b43d65f7
LW
349 * @tx: current position in TX buffer to be read
350 * @tx_end: end position in TX buffer to be read
351 * @rx: current position in RX buffer to be written
352 * @rx_end: end position in RX buffer to be written
12e8b325
LW
353 * @read: the type of read currently going on
354 * @write: the type of write currently going on
355 * @exp_fifo_level: expected FIFO level
356 * @dma_rx_channel: optional channel for RX DMA
357 * @dma_tx_channel: optional channel for TX DMA
358 * @sgt_rx: scattertable for the RX transfer
359 * @sgt_tx: scattertable for the TX transfer
360 * @dummypage: a dummy page used for driving data on the bus with DMA
f6f46de1
RS
361 * @cur_cs: current chip select (gpio)
362 * @chipselects: list of chipselects (gpios)
b43d65f7
LW
363 */
364struct pl022 {
365 struct amba_device *adev;
366 struct vendor_data *vendor;
367 resource_size_t phybase;
368 void __iomem *virtbase;
369 struct clk *clk;
370 struct spi_master *master;
371 struct pl022_ssp_controller *master_info;
ffbbdd21 372 /* Message per-transfer pump */
b43d65f7
LW
373 struct tasklet_struct pump_transfers;
374 struct spi_message *cur_msg;
375 struct spi_transfer *cur_transfer;
376 struct chip_data *cur_chip;
8b8d7191 377 bool next_msg_cs_active;
b43d65f7
LW
378 void *tx;
379 void *tx_end;
380 void *rx;
381 void *rx_end;
382 enum ssp_reading read;
383 enum ssp_writing write;
fc05475f 384 u32 exp_fifo_level;
083be3f0
LW
385 enum ssp_rx_level_trig rx_lev_trig;
386 enum ssp_tx_level_trig tx_lev_trig;
b1b6b9aa
LW
387 /* DMA settings */
388#ifdef CONFIG_DMA_ENGINE
389 struct dma_chan *dma_rx_channel;
390 struct dma_chan *dma_tx_channel;
391 struct sg_table sgt_rx;
392 struct sg_table sgt_tx;
393 char *dummypage;
ffbbdd21 394 bool dma_running;
b1b6b9aa 395#endif
f6f46de1
RS
396 int cur_cs;
397 int *chipselects;
b43d65f7
LW
398};
399
400/**
401 * struct chip_data - To maintain runtime state of SSP for each client chip
556f4aeb
LW
402 * @cr0: Value of control register CR0 of SSP - on later ST variants this
403 * register is 32 bits wide rather than just 16
b43d65f7
LW
404 * @cr1: Value of control register CR1 of SSP
405 * @dmacr: Value of DMA control Register of SSP
406 * @cpsr: Value of Clock prescale register
407 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
408 * @enable_dma: Whether to enable DMA or not
b43d65f7 409 * @read: function ptr to be used to read when doing xfer for this chip
12e8b325 410 * @write: function ptr to be used to write when doing xfer for this chip
b43d65f7
LW
411 * @cs_control: chip select callback provided by chip
412 * @xfer_type: polling/interrupt/DMA
413 *
414 * Runtime state of the SSP controller, maintained per chip,
415 * This would be set according to the current message that would be served
416 */
417struct chip_data {
556f4aeb 418 u32 cr0;
b43d65f7
LW
419 u16 cr1;
420 u16 dmacr;
421 u16 cpsr;
422 u8 n_bytes;
b1b6b9aa 423 bool enable_dma;
b43d65f7
LW
424 enum ssp_reading read;
425 enum ssp_writing write;
426 void (*cs_control) (u32 command);
427 int xfer_type;
428};
429
430/**
431 * null_cs_control - Dummy chip select function
432 * @command: select/delect the chip
433 *
434 * If no chip select function is provided by client this is used as dummy
435 * chip select
436 */
437static void null_cs_control(u32 command)
438{
439 pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
440}
441
f6f46de1
RS
442static void pl022_cs_control(struct pl022 *pl022, u32 command)
443{
444 if (gpio_is_valid(pl022->cur_cs))
445 gpio_set_value(pl022->cur_cs, command);
446 else
447 pl022->cur_chip->cs_control(command);
448}
449
b43d65f7
LW
450/**
451 * giveback - current spi_message is over, schedule next message and call
452 * callback of this message. Assumes that caller already
453 * set message->status; dma and pio irqs are blocked
454 * @pl022: SSP driver private data structure
455 */
456static void giveback(struct pl022 *pl022)
457{
458 struct spi_transfer *last_transfer;
8b8d7191 459 pl022->next_msg_cs_active = false;
b43d65f7 460
8b8d7191 461 last_transfer = list_entry(pl022->cur_msg->transfers.prev,
b43d65f7
LW
462 struct spi_transfer,
463 transfer_list);
464
465 /* Delay if requested before any change in chip select */
466 if (last_transfer->delay_usecs)
467 /*
468 * FIXME: This runs in interrupt context.
469 * Is this really smart?
470 */
471 udelay(last_transfer->delay_usecs);
472
8b8d7191 473 if (!last_transfer->cs_change) {
b43d65f7
LW
474 struct spi_message *next_msg;
475
8b8d7191
VS
476 /*
477 * cs_change was not set. We can keep the chip select
478 * enabled if there is message in the queue and it is
479 * for the same spi device.
b43d65f7
LW
480 *
481 * We cannot postpone this until pump_messages, because
482 * after calling msg->complete (below) the driver that
483 * sent the current message could be unloaded, which
484 * could invalidate the cs_control() callback...
485 */
b43d65f7 486 /* get a pointer to the next message, if any */
ffbbdd21 487 next_msg = spi_get_next_queued_message(pl022->master);
b43d65f7 488
8b8d7191
VS
489 /*
490 * see if the next and current messages point
491 * to the same spi device.
b43d65f7 492 */
8b8d7191 493 if (next_msg && next_msg->spi != pl022->cur_msg->spi)
b43d65f7 494 next_msg = NULL;
8b8d7191 495 if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
f6f46de1 496 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
8b8d7191
VS
497 else
498 pl022->next_msg_cs_active = true;
ffbbdd21 499
b43d65f7 500 }
8b8d7191 501
8b8d7191
VS
502 pl022->cur_msg = NULL;
503 pl022->cur_transfer = NULL;
504 pl022->cur_chip = NULL;
ffbbdd21 505 spi_finalize_current_message(pl022->master);
fd316941
VS
506
507 /* disable the SPI/SSP operation */
508 writew((readw(SSP_CR1(pl022->virtbase)) &
509 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
510
b43d65f7
LW
511}
512
513/**
514 * flush - flush the FIFO to reach a clean state
515 * @pl022: SSP driver private data structure
516 */
517static int flush(struct pl022 *pl022)
518{
519 unsigned long limit = loops_per_jiffy << 1;
520
521 dev_dbg(&pl022->adev->dev, "flush\n");
522 do {
523 while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
524 readw(SSP_DR(pl022->virtbase));
525 } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
fc05475f
LW
526
527 pl022->exp_fifo_level = 0;
528
b43d65f7
LW
529 return limit;
530}
531
532/**
533 * restore_state - Load configuration of current chip
534 * @pl022: SSP driver private data structure
535 */
536static void restore_state(struct pl022 *pl022)
537{
538 struct chip_data *chip = pl022->cur_chip;
539
556f4aeb
LW
540 if (pl022->vendor->extended_cr)
541 writel(chip->cr0, SSP_CR0(pl022->virtbase));
542 else
543 writew(chip->cr0, SSP_CR0(pl022->virtbase));
b43d65f7
LW
544 writew(chip->cr1, SSP_CR1(pl022->virtbase));
545 writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
546 writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
547 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
548 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
549}
550
b43d65f7
LW
551/*
552 * Default SSP Register Values
553 */
554#define DEFAULT_SSP_REG_CR0 ( \
555 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
556f4aeb
LW
556 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
557 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
558 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
559 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
560)
561
562/* ST versions have slightly different bit layout */
563#define DEFAULT_SSP_REG_CR0_ST ( \
564 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
565 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
b43d65f7 566 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
ee2b805c 567 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
556f4aeb
LW
568 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
569 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \
570 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
b43d65f7
LW
571)
572
781c7b12
LW
573/* The PL023 version is slightly different again */
574#define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
575 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
576 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
577 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
578 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
579)
580
b43d65f7
LW
581#define DEFAULT_SSP_REG_CR1 ( \
582 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
583 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
584 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
556f4aeb 585 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
b43d65f7
LW
586)
587
556f4aeb
LW
588/* ST versions extend this register to use all 16 bits */
589#define DEFAULT_SSP_REG_CR1_ST ( \
590 DEFAULT_SSP_REG_CR1 | \
591 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
592 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
593 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
594 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
595 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
596)
597
781c7b12
LW
598/*
599 * The PL023 variant has further differences: no loopback mode, no microwire
600 * support, and a new clock feedback delay setting.
601 */
602#define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
603 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
604 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
605 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
606 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
607 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
608 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
609 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
610 GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
611)
556f4aeb 612
b43d65f7 613#define DEFAULT_SSP_REG_CPSR ( \
556f4aeb 614 GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
b43d65f7
LW
615)
616
617#define DEFAULT_SSP_REG_DMACR (\
618 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
619 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
620)
621
781c7b12
LW
622/**
623 * load_ssp_default_config - Load default configuration for SSP
624 * @pl022: SSP driver private data structure
625 */
b43d65f7
LW
626static void load_ssp_default_config(struct pl022 *pl022)
627{
781c7b12
LW
628 if (pl022->vendor->pl023) {
629 writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
630 writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
631 } else if (pl022->vendor->extended_cr) {
556f4aeb
LW
632 writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
633 writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
634 } else {
635 writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
636 writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
637 }
b43d65f7
LW
638 writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
639 writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
640 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
641 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
642}
643
644/**
645 * This will write to TX and read from RX according to the parameters
646 * set in pl022.
647 */
648static void readwriter(struct pl022 *pl022)
649{
650
651 /*
25985edc 652 * The FIFO depth is different between primecell variants.
b43d65f7
LW
653 * I believe filling in too much in the FIFO might cause
654 * errons in 8bit wide transfers on ARM variants (just 8 words
655 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
656 *
fc05475f
LW
657 * To prevent this issue, the TX FIFO is only filled to the
658 * unused RX FIFO fill length, regardless of what the TX
659 * FIFO status flag indicates.
b43d65f7
LW
660 */
661 dev_dbg(&pl022->adev->dev,
662 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
663 __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
664
665 /* Read as much as you can */
666 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
667 && (pl022->rx < pl022->rx_end)) {
668 switch (pl022->read) {
669 case READING_NULL:
670 readw(SSP_DR(pl022->virtbase));
671 break;
672 case READING_U8:
673 *(u8 *) (pl022->rx) =
674 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
675 break;
676 case READING_U16:
677 *(u16 *) (pl022->rx) =
678 (u16) readw(SSP_DR(pl022->virtbase));
679 break;
680 case READING_U32:
681 *(u32 *) (pl022->rx) =
682 readl(SSP_DR(pl022->virtbase));
683 break;
684 }
685 pl022->rx += (pl022->cur_chip->n_bytes);
fc05475f 686 pl022->exp_fifo_level--;
b43d65f7
LW
687 }
688 /*
fc05475f 689 * Write as much as possible up to the RX FIFO size
b43d65f7 690 */
fc05475f 691 while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
b43d65f7
LW
692 && (pl022->tx < pl022->tx_end)) {
693 switch (pl022->write) {
694 case WRITING_NULL:
695 writew(0x0, SSP_DR(pl022->virtbase));
696 break;
697 case WRITING_U8:
698 writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
699 break;
700 case WRITING_U16:
701 writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
702 break;
703 case WRITING_U32:
704 writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
705 break;
706 }
707 pl022->tx += (pl022->cur_chip->n_bytes);
fc05475f 708 pl022->exp_fifo_level++;
b43d65f7
LW
709 /*
710 * This inner reader takes care of things appearing in the RX
711 * FIFO as we're transmitting. This will happen a lot since the
712 * clock starts running when you put things into the TX FIFO,
25985edc 713 * and then things are continuously clocked into the RX FIFO.
b43d65f7
LW
714 */
715 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
716 && (pl022->rx < pl022->rx_end)) {
717 switch (pl022->read) {
718 case READING_NULL:
719 readw(SSP_DR(pl022->virtbase));
720 break;
721 case READING_U8:
722 *(u8 *) (pl022->rx) =
723 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
724 break;
725 case READING_U16:
726 *(u16 *) (pl022->rx) =
727 (u16) readw(SSP_DR(pl022->virtbase));
728 break;
729 case READING_U32:
730 *(u32 *) (pl022->rx) =
731 readl(SSP_DR(pl022->virtbase));
732 break;
733 }
734 pl022->rx += (pl022->cur_chip->n_bytes);
fc05475f 735 pl022->exp_fifo_level--;
b43d65f7
LW
736 }
737 }
738 /*
739 * When we exit here the TX FIFO should be full and the RX FIFO
740 * should be empty
741 */
742}
743
b43d65f7
LW
744/**
745 * next_transfer - Move to the Next transfer in the current spi message
746 * @pl022: SSP driver private data structure
747 *
748 * This function moves though the linked list of spi transfers in the
749 * current spi message and returns with the state of current spi
750 * message i.e whether its last transfer is done(STATE_DONE) or
751 * Next transfer is ready(STATE_RUNNING)
752 */
753static void *next_transfer(struct pl022 *pl022)
754{
755 struct spi_message *msg = pl022->cur_msg;
756 struct spi_transfer *trans = pl022->cur_transfer;
757
758 /* Move to next transfer */
759 if (trans->transfer_list.next != &msg->transfers) {
760 pl022->cur_transfer =
761 list_entry(trans->transfer_list.next,
762 struct spi_transfer, transfer_list);
763 return STATE_RUNNING;
764 }
765 return STATE_DONE;
766}
b1b6b9aa
LW
767
768/*
769 * This DMA functionality is only compiled in if we have
770 * access to the generic DMA devices/DMA engine.
771 */
772#ifdef CONFIG_DMA_ENGINE
773static void unmap_free_dma_scatter(struct pl022 *pl022)
774{
775 /* Unmap and free the SG tables */
b7298896 776 dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
b1b6b9aa 777 pl022->sgt_tx.nents, DMA_TO_DEVICE);
b7298896 778 dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
b1b6b9aa
LW
779 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
780 sg_free_table(&pl022->sgt_rx);
781 sg_free_table(&pl022->sgt_tx);
782}
783
784static void dma_callback(void *data)
785{
786 struct pl022 *pl022 = data;
787 struct spi_message *msg = pl022->cur_msg;
788
789 BUG_ON(!pl022->sgt_rx.sgl);
790
791#ifdef VERBOSE_DEBUG
792 /*
793 * Optionally dump out buffers to inspect contents, this is
794 * good if you want to convince yourself that the loopback
795 * read/write contents are the same, when adopting to a new
796 * DMA engine.
797 */
798 {
799 struct scatterlist *sg;
800 unsigned int i;
801
802 dma_sync_sg_for_cpu(&pl022->adev->dev,
803 pl022->sgt_rx.sgl,
804 pl022->sgt_rx.nents,
805 DMA_FROM_DEVICE);
806
807 for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
808 dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
809 print_hex_dump(KERN_ERR, "SPI RX: ",
810 DUMP_PREFIX_OFFSET,
811 16,
812 1,
813 sg_virt(sg),
814 sg_dma_len(sg),
815 1);
816 }
817 for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
818 dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
819 print_hex_dump(KERN_ERR, "SPI TX: ",
820 DUMP_PREFIX_OFFSET,
821 16,
822 1,
823 sg_virt(sg),
824 sg_dma_len(sg),
825 1);
826 }
827 }
828#endif
829
830 unmap_free_dma_scatter(pl022);
831
25985edc 832 /* Update total bytes transferred */
b1b6b9aa
LW
833 msg->actual_length += pl022->cur_transfer->len;
834 if (pl022->cur_transfer->cs_change)
f6f46de1 835 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
b1b6b9aa
LW
836
837 /* Move to next transfer */
838 msg->state = next_transfer(pl022);
839 tasklet_schedule(&pl022->pump_transfers);
840}
841
842static void setup_dma_scatter(struct pl022 *pl022,
843 void *buffer,
844 unsigned int length,
845 struct sg_table *sgtab)
846{
847 struct scatterlist *sg;
848 int bytesleft = length;
849 void *bufp = buffer;
850 int mapbytes;
851 int i;
852
853 if (buffer) {
854 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
855 /*
856 * If there are less bytes left than what fits
857 * in the current page (plus page alignment offset)
858 * we just feed in this, else we stuff in as much
859 * as we can.
860 */
861 if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
862 mapbytes = bytesleft;
863 else
864 mapbytes = PAGE_SIZE - offset_in_page(bufp);
865 sg_set_page(sg, virt_to_page(bufp),
866 mapbytes, offset_in_page(bufp));
867 bufp += mapbytes;
868 bytesleft -= mapbytes;
869 dev_dbg(&pl022->adev->dev,
870 "set RX/TX target page @ %p, %d bytes, %d left\n",
871 bufp, mapbytes, bytesleft);
872 }
873 } else {
874 /* Map the dummy buffer on every page */
875 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
876 if (bytesleft < PAGE_SIZE)
877 mapbytes = bytesleft;
878 else
879 mapbytes = PAGE_SIZE;
880 sg_set_page(sg, virt_to_page(pl022->dummypage),
881 mapbytes, 0);
882 bytesleft -= mapbytes;
883 dev_dbg(&pl022->adev->dev,
884 "set RX/TX to dummy page %d bytes, %d left\n",
885 mapbytes, bytesleft);
886
887 }
888 }
889 BUG_ON(bytesleft);
890}
891
892/**
893 * configure_dma - configures the channels for the next transfer
894 * @pl022: SSP driver's private data structure
895 */
896static int configure_dma(struct pl022 *pl022)
897{
898 struct dma_slave_config rx_conf = {
899 .src_addr = SSP_DR(pl022->phybase),
a485df4b 900 .direction = DMA_DEV_TO_MEM,
258aea76 901 .device_fc = false,
b1b6b9aa
LW
902 };
903 struct dma_slave_config tx_conf = {
904 .dst_addr = SSP_DR(pl022->phybase),
a485df4b 905 .direction = DMA_MEM_TO_DEV,
258aea76 906 .device_fc = false,
b1b6b9aa
LW
907 };
908 unsigned int pages;
909 int ret;
082086f2 910 int rx_sglen, tx_sglen;
b1b6b9aa
LW
911 struct dma_chan *rxchan = pl022->dma_rx_channel;
912 struct dma_chan *txchan = pl022->dma_tx_channel;
913 struct dma_async_tx_descriptor *rxdesc;
914 struct dma_async_tx_descriptor *txdesc;
b1b6b9aa
LW
915
916 /* Check that the channels are available */
917 if (!rxchan || !txchan)
918 return -ENODEV;
919
083be3f0
LW
920 /*
921 * If supplied, the DMA burstsize should equal the FIFO trigger level.
922 * Notice that the DMA engine uses one-to-one mapping. Since we can
923 * not trigger on 2 elements this needs explicit mapping rather than
924 * calculation.
925 */
926 switch (pl022->rx_lev_trig) {
927 case SSP_RX_1_OR_MORE_ELEM:
928 rx_conf.src_maxburst = 1;
929 break;
930 case SSP_RX_4_OR_MORE_ELEM:
931 rx_conf.src_maxburst = 4;
932 break;
933 case SSP_RX_8_OR_MORE_ELEM:
934 rx_conf.src_maxburst = 8;
935 break;
936 case SSP_RX_16_OR_MORE_ELEM:
937 rx_conf.src_maxburst = 16;
938 break;
939 case SSP_RX_32_OR_MORE_ELEM:
940 rx_conf.src_maxburst = 32;
941 break;
942 default:
943 rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
944 break;
945 }
946
947 switch (pl022->tx_lev_trig) {
948 case SSP_TX_1_OR_MORE_EMPTY_LOC:
949 tx_conf.dst_maxburst = 1;
950 break;
951 case SSP_TX_4_OR_MORE_EMPTY_LOC:
952 tx_conf.dst_maxburst = 4;
953 break;
954 case SSP_TX_8_OR_MORE_EMPTY_LOC:
955 tx_conf.dst_maxburst = 8;
956 break;
957 case SSP_TX_16_OR_MORE_EMPTY_LOC:
958 tx_conf.dst_maxburst = 16;
959 break;
960 case SSP_TX_32_OR_MORE_EMPTY_LOC:
961 tx_conf.dst_maxburst = 32;
962 break;
963 default:
964 tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
965 break;
966 }
967
b1b6b9aa
LW
968 switch (pl022->read) {
969 case READING_NULL:
970 /* Use the same as for writing */
971 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
972 break;
973 case READING_U8:
974 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
975 break;
976 case READING_U16:
977 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
978 break;
979 case READING_U32:
980 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
981 break;
982 }
983
984 switch (pl022->write) {
985 case WRITING_NULL:
986 /* Use the same as for reading */
987 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
988 break;
989 case WRITING_U8:
990 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
991 break;
992 case WRITING_U16:
993 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
994 break;
995 case WRITING_U32:
bc3f67a3 996 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
b1b6b9aa
LW
997 break;
998 }
999
1000 /* SPI pecularity: we need to read and write the same width */
1001 if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1002 rx_conf.src_addr_width = tx_conf.dst_addr_width;
1003 if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1004 tx_conf.dst_addr_width = rx_conf.src_addr_width;
1005 BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
1006
ecd442fd
LW
1007 dmaengine_slave_config(rxchan, &rx_conf);
1008 dmaengine_slave_config(txchan, &tx_conf);
b1b6b9aa
LW
1009
1010 /* Create sglists for the transfers */
b181565e 1011 pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
b1b6b9aa
LW
1012 dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1013
538a18dc 1014 ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
b1b6b9aa
LW
1015 if (ret)
1016 goto err_alloc_rx_sg;
1017
538a18dc 1018 ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
b1b6b9aa
LW
1019 if (ret)
1020 goto err_alloc_tx_sg;
1021
1022 /* Fill in the scatterlists for the RX+TX buffers */
1023 setup_dma_scatter(pl022, pl022->rx,
1024 pl022->cur_transfer->len, &pl022->sgt_rx);
1025 setup_dma_scatter(pl022, pl022->tx,
1026 pl022->cur_transfer->len, &pl022->sgt_tx);
1027
1028 /* Map DMA buffers */
082086f2 1029 rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
b1b6b9aa 1030 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
082086f2 1031 if (!rx_sglen)
b1b6b9aa
LW
1032 goto err_rx_sgmap;
1033
082086f2 1034 tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
b1b6b9aa 1035 pl022->sgt_tx.nents, DMA_TO_DEVICE);
082086f2 1036 if (!tx_sglen)
b1b6b9aa
LW
1037 goto err_tx_sgmap;
1038
1039 /* Send both scatterlists */
16052827 1040 rxdesc = dmaengine_prep_slave_sg(rxchan,
b1b6b9aa 1041 pl022->sgt_rx.sgl,
082086f2 1042 rx_sglen,
a485df4b 1043 DMA_DEV_TO_MEM,
b1b6b9aa
LW
1044 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1045 if (!rxdesc)
1046 goto err_rxdesc;
1047
16052827 1048 txdesc = dmaengine_prep_slave_sg(txchan,
b1b6b9aa 1049 pl022->sgt_tx.sgl,
082086f2 1050 tx_sglen,
a485df4b 1051 DMA_MEM_TO_DEV,
b1b6b9aa
LW
1052 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1053 if (!txdesc)
1054 goto err_txdesc;
1055
1056 /* Put the callback on the RX transfer only, that should finish last */
1057 rxdesc->callback = dma_callback;
1058 rxdesc->callback_param = pl022;
1059
1060 /* Submit and fire RX and TX with TX last so we're ready to read! */
ecd442fd
LW
1061 dmaengine_submit(rxdesc);
1062 dmaengine_submit(txdesc);
1063 dma_async_issue_pending(rxchan);
1064 dma_async_issue_pending(txchan);
ffbbdd21 1065 pl022->dma_running = true;
b1b6b9aa
LW
1066
1067 return 0;
1068
b1b6b9aa 1069err_txdesc:
ecd442fd 1070 dmaengine_terminate_all(txchan);
b1b6b9aa 1071err_rxdesc:
ecd442fd 1072 dmaengine_terminate_all(rxchan);
b7298896 1073 dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
b1b6b9aa
LW
1074 pl022->sgt_tx.nents, DMA_TO_DEVICE);
1075err_tx_sgmap:
b7298896 1076 dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
b1b6b9aa
LW
1077 pl022->sgt_tx.nents, DMA_FROM_DEVICE);
1078err_rx_sgmap:
1079 sg_free_table(&pl022->sgt_tx);
1080err_alloc_tx_sg:
1081 sg_free_table(&pl022->sgt_rx);
1082err_alloc_rx_sg:
1083 return -ENOMEM;
1084}
1085
a5ab6291 1086static int __devinit pl022_dma_probe(struct pl022 *pl022)
b1b6b9aa
LW
1087{
1088 dma_cap_mask_t mask;
1089
1090 /* Try to acquire a generic DMA engine slave channel */
1091 dma_cap_zero(mask);
1092 dma_cap_set(DMA_SLAVE, mask);
1093 /*
1094 * We need both RX and TX channels to do DMA, else do none
1095 * of them.
1096 */
1097 pl022->dma_rx_channel = dma_request_channel(mask,
1098 pl022->master_info->dma_filter,
1099 pl022->master_info->dma_rx_param);
1100 if (!pl022->dma_rx_channel) {
43c64015 1101 dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
b1b6b9aa
LW
1102 goto err_no_rxchan;
1103 }
1104
1105 pl022->dma_tx_channel = dma_request_channel(mask,
1106 pl022->master_info->dma_filter,
1107 pl022->master_info->dma_tx_param);
1108 if (!pl022->dma_tx_channel) {
43c64015 1109 dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
b1b6b9aa
LW
1110 goto err_no_txchan;
1111 }
1112
1113 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1114 if (!pl022->dummypage) {
43c64015 1115 dev_dbg(&pl022->adev->dev, "no DMA dummypage!\n");
b1b6b9aa
LW
1116 goto err_no_dummypage;
1117 }
1118
1119 dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1120 dma_chan_name(pl022->dma_rx_channel),
1121 dma_chan_name(pl022->dma_tx_channel));
1122
1123 return 0;
1124
1125err_no_dummypage:
1126 dma_release_channel(pl022->dma_tx_channel);
1127err_no_txchan:
1128 dma_release_channel(pl022->dma_rx_channel);
1129 pl022->dma_rx_channel = NULL;
1130err_no_rxchan:
43c64015
VK
1131 dev_err(&pl022->adev->dev,
1132 "Failed to work in dma mode, work without dma!\n");
b1b6b9aa
LW
1133 return -ENODEV;
1134}
1135
1136static void terminate_dma(struct pl022 *pl022)
1137{
1138 struct dma_chan *rxchan = pl022->dma_rx_channel;
1139 struct dma_chan *txchan = pl022->dma_tx_channel;
1140
ecd442fd
LW
1141 dmaengine_terminate_all(rxchan);
1142 dmaengine_terminate_all(txchan);
b1b6b9aa 1143 unmap_free_dma_scatter(pl022);
ffbbdd21 1144 pl022->dma_running = false;
b1b6b9aa
LW
1145}
1146
1147static void pl022_dma_remove(struct pl022 *pl022)
1148{
ffbbdd21 1149 if (pl022->dma_running)
b1b6b9aa
LW
1150 terminate_dma(pl022);
1151 if (pl022->dma_tx_channel)
1152 dma_release_channel(pl022->dma_tx_channel);
1153 if (pl022->dma_rx_channel)
1154 dma_release_channel(pl022->dma_rx_channel);
1155 kfree(pl022->dummypage);
1156}
1157
1158#else
1159static inline int configure_dma(struct pl022 *pl022)
1160{
1161 return -ENODEV;
1162}
1163
1164static inline int pl022_dma_probe(struct pl022 *pl022)
1165{
1166 return 0;
1167}
1168
1169static inline void pl022_dma_remove(struct pl022 *pl022)
1170{
1171}
1172#endif
1173
b43d65f7
LW
1174/**
1175 * pl022_interrupt_handler - Interrupt handler for SSP controller
1176 *
1177 * This function handles interrupts generated for an interrupt based transfer.
1178 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1179 * current message's state as STATE_ERROR and schedule the tasklet
1180 * pump_transfers which will do the postprocessing of the current message by
1181 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1182 * more data, and writes data in TX FIFO till it is not full. If we complete
1183 * the transfer we move to the next transfer and schedule the tasklet.
1184 */
1185static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1186{
1187 struct pl022 *pl022 = dev_id;
1188 struct spi_message *msg = pl022->cur_msg;
1189 u16 irq_status = 0;
1190 u16 flag = 0;
1191
1192 if (unlikely(!msg)) {
1193 dev_err(&pl022->adev->dev,
1194 "bad message state in interrupt handler");
1195 /* Never fail */
1196 return IRQ_HANDLED;
1197 }
1198
1199 /* Read the Interrupt Status Register */
1200 irq_status = readw(SSP_MIS(pl022->virtbase));
1201
1202 if (unlikely(!irq_status))
1203 return IRQ_NONE;
1204
b1b6b9aa
LW
1205 /*
1206 * This handles the FIFO interrupts, the timeout
1207 * interrupts are flatly ignored, they cannot be
1208 * trusted.
1209 */
b43d65f7
LW
1210 if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1211 /*
1212 * Overrun interrupt - bail out since our Data has been
1213 * corrupted
1214 */
b1b6b9aa 1215 dev_err(&pl022->adev->dev, "FIFO overrun\n");
b43d65f7
LW
1216 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1217 dev_err(&pl022->adev->dev,
1218 "RXFIFO is full\n");
1219 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF)
1220 dev_err(&pl022->adev->dev,
1221 "TXFIFO is full\n");
1222
1223 /*
1224 * Disable and clear interrupts, disable SSP,
1225 * mark message with bad status so it can be
1226 * retried.
1227 */
1228 writew(DISABLE_ALL_INTERRUPTS,
1229 SSP_IMSC(pl022->virtbase));
1230 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1231 writew((readw(SSP_CR1(pl022->virtbase)) &
1232 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1233 msg->state = STATE_ERROR;
1234
1235 /* Schedule message queue handler */
1236 tasklet_schedule(&pl022->pump_transfers);
1237 return IRQ_HANDLED;
1238 }
1239
1240 readwriter(pl022);
1241
1242 if ((pl022->tx == pl022->tx_end) && (flag == 0)) {
1243 flag = 1;
172289df
CB
1244 /* Disable Transmit interrupt, enable receive interrupt */
1245 writew((readw(SSP_IMSC(pl022->virtbase)) &
1246 ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
b43d65f7
LW
1247 SSP_IMSC(pl022->virtbase));
1248 }
1249
1250 /*
1251 * Since all transactions must write as much as shall be read,
1252 * we can conclude the entire transaction once RX is complete.
1253 * At this point, all TX will always be finished.
1254 */
1255 if (pl022->rx >= pl022->rx_end) {
1256 writew(DISABLE_ALL_INTERRUPTS,
1257 SSP_IMSC(pl022->virtbase));
1258 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1259 if (unlikely(pl022->rx > pl022->rx_end)) {
1260 dev_warn(&pl022->adev->dev, "read %u surplus "
1261 "bytes (did you request an odd "
1262 "number of bytes on a 16bit bus?)\n",
1263 (u32) (pl022->rx - pl022->rx_end));
1264 }
25985edc 1265 /* Update total bytes transferred */
b43d65f7
LW
1266 msg->actual_length += pl022->cur_transfer->len;
1267 if (pl022->cur_transfer->cs_change)
f6f46de1 1268 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
b43d65f7
LW
1269 /* Move to next transfer */
1270 msg->state = next_transfer(pl022);
1271 tasklet_schedule(&pl022->pump_transfers);
1272 return IRQ_HANDLED;
1273 }
1274
1275 return IRQ_HANDLED;
1276}
1277
1278/**
1279 * This sets up the pointers to memory for the next message to
1280 * send out on the SPI bus.
1281 */
1282static int set_up_next_transfer(struct pl022 *pl022,
1283 struct spi_transfer *transfer)
1284{
1285 int residue;
1286
1287 /* Sanity check the message for this bus width */
1288 residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1289 if (unlikely(residue != 0)) {
1290 dev_err(&pl022->adev->dev,
1291 "message of %u bytes to transmit but the current "
1292 "chip bus has a data width of %u bytes!\n",
1293 pl022->cur_transfer->len,
1294 pl022->cur_chip->n_bytes);
1295 dev_err(&pl022->adev->dev, "skipping this message\n");
1296 return -EIO;
1297 }
1298 pl022->tx = (void *)transfer->tx_buf;
1299 pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1300 pl022->rx = (void *)transfer->rx_buf;
1301 pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1302 pl022->write =
1303 pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1304 pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1305 return 0;
1306}
1307
1308/**
b1b6b9aa
LW
1309 * pump_transfers - Tasklet function which schedules next transfer
1310 * when running in interrupt or DMA transfer mode.
b43d65f7
LW
1311 * @data: SSP driver private data structure
1312 *
1313 */
1314static void pump_transfers(unsigned long data)
1315{
1316 struct pl022 *pl022 = (struct pl022 *) data;
1317 struct spi_message *message = NULL;
1318 struct spi_transfer *transfer = NULL;
1319 struct spi_transfer *previous = NULL;
1320
1321 /* Get current state information */
1322 message = pl022->cur_msg;
1323 transfer = pl022->cur_transfer;
1324
1325 /* Handle for abort */
1326 if (message->state == STATE_ERROR) {
1327 message->status = -EIO;
1328 giveback(pl022);
1329 return;
1330 }
1331
1332 /* Handle end of message */
1333 if (message->state == STATE_DONE) {
1334 message->status = 0;
1335 giveback(pl022);
1336 return;
1337 }
1338
1339 /* Delay if requested at end of transfer before CS change */
1340 if (message->state == STATE_RUNNING) {
1341 previous = list_entry(transfer->transfer_list.prev,
1342 struct spi_transfer,
1343 transfer_list);
1344 if (previous->delay_usecs)
1345 /*
1346 * FIXME: This runs in interrupt context.
1347 * Is this really smart?
1348 */
1349 udelay(previous->delay_usecs);
1350
8b8d7191 1351 /* Reselect chip select only if cs_change was requested */
b43d65f7 1352 if (previous->cs_change)
f6f46de1 1353 pl022_cs_control(pl022, SSP_CHIP_SELECT);
b43d65f7
LW
1354 } else {
1355 /* STATE_START */
1356 message->state = STATE_RUNNING;
1357 }
1358
1359 if (set_up_next_transfer(pl022, transfer)) {
1360 message->state = STATE_ERROR;
1361 message->status = -EIO;
1362 giveback(pl022);
1363 return;
1364 }
1365 /* Flush the FIFOs and let's go! */
1366 flush(pl022);
b43d65f7 1367
b1b6b9aa
LW
1368 if (pl022->cur_chip->enable_dma) {
1369 if (configure_dma(pl022)) {
1370 dev_dbg(&pl022->adev->dev,
1371 "configuration of DMA failed, fall back to interrupt mode\n");
1372 goto err_config_dma;
1373 }
b43d65f7
LW
1374 return;
1375 }
b43d65f7 1376
b1b6b9aa 1377err_config_dma:
172289df
CB
1378 /* enable all interrupts except RX */
1379 writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
b43d65f7
LW
1380}
1381
b1b6b9aa 1382static void do_interrupt_dma_transfer(struct pl022 *pl022)
b43d65f7 1383{
172289df
CB
1384 /*
1385 * Default is to enable all interrupts except RX -
1386 * this will be enabled once TX is complete
1387 */
1388 u32 irqflags = ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM;
b43d65f7 1389
8b8d7191
VS
1390 /* Enable target chip, if not already active */
1391 if (!pl022->next_msg_cs_active)
f6f46de1 1392 pl022_cs_control(pl022, SSP_CHIP_SELECT);
b43d65f7 1393
b43d65f7
LW
1394 if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1395 /* Error path */
1396 pl022->cur_msg->state = STATE_ERROR;
1397 pl022->cur_msg->status = -EIO;
1398 giveback(pl022);
1399 return;
1400 }
b1b6b9aa
LW
1401 /* If we're using DMA, set up DMA here */
1402 if (pl022->cur_chip->enable_dma) {
1403 /* Configure DMA transfer */
1404 if (configure_dma(pl022)) {
1405 dev_dbg(&pl022->adev->dev,
1406 "configuration of DMA failed, fall back to interrupt mode\n");
1407 goto err_config_dma;
1408 }
1409 /* Disable interrupts in DMA mode, IRQ from DMA controller */
1410 irqflags = DISABLE_ALL_INTERRUPTS;
1411 }
1412err_config_dma:
b43d65f7
LW
1413 /* Enable SSP, turn on interrupts */
1414 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1415 SSP_CR1(pl022->virtbase));
b1b6b9aa 1416 writew(irqflags, SSP_IMSC(pl022->virtbase));
b43d65f7
LW
1417}
1418
b1b6b9aa 1419static void do_polling_transfer(struct pl022 *pl022)
b43d65f7 1420{
b43d65f7
LW
1421 struct spi_message *message = NULL;
1422 struct spi_transfer *transfer = NULL;
1423 struct spi_transfer *previous = NULL;
1424 struct chip_data *chip;
a18c266f 1425 unsigned long time, timeout;
b43d65f7
LW
1426
1427 chip = pl022->cur_chip;
1428 message = pl022->cur_msg;
1429
1430 while (message->state != STATE_DONE) {
1431 /* Handle for abort */
1432 if (message->state == STATE_ERROR)
1433 break;
1434 transfer = pl022->cur_transfer;
1435
1436 /* Delay if requested at end of transfer */
1437 if (message->state == STATE_RUNNING) {
1438 previous =
1439 list_entry(transfer->transfer_list.prev,
1440 struct spi_transfer, transfer_list);
1441 if (previous->delay_usecs)
1442 udelay(previous->delay_usecs);
1443 if (previous->cs_change)
f6f46de1 1444 pl022_cs_control(pl022, SSP_CHIP_SELECT);
b43d65f7
LW
1445 } else {
1446 /* STATE_START */
1447 message->state = STATE_RUNNING;
8b8d7191 1448 if (!pl022->next_msg_cs_active)
f6f46de1 1449 pl022_cs_control(pl022, SSP_CHIP_SELECT);
b43d65f7
LW
1450 }
1451
1452 /* Configuration Changing Per Transfer */
1453 if (set_up_next_transfer(pl022, transfer)) {
1454 /* Error path */
1455 message->state = STATE_ERROR;
1456 break;
1457 }
1458 /* Flush FIFOs and enable SSP */
1459 flush(pl022);
1460 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1461 SSP_CR1(pl022->virtbase));
1462
556f4aeb 1463 dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
a18c266f
MT
1464
1465 timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1466 while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1467 time = jiffies;
b43d65f7 1468 readwriter(pl022);
a18c266f
MT
1469 if (time_after(time, timeout)) {
1470 dev_warn(&pl022->adev->dev,
1471 "%s: timeout!\n", __func__);
1472 message->state = STATE_ERROR;
1473 goto out;
1474 }
521999bd 1475 cpu_relax();
a18c266f 1476 }
b43d65f7 1477
25985edc 1478 /* Update total byte transferred */
b43d65f7
LW
1479 message->actual_length += pl022->cur_transfer->len;
1480 if (pl022->cur_transfer->cs_change)
f6f46de1 1481 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
b43d65f7
LW
1482 /* Move to next transfer */
1483 message->state = next_transfer(pl022);
1484 }
a18c266f 1485out:
b43d65f7
LW
1486 /* Handle end of message */
1487 if (message->state == STATE_DONE)
1488 message->status = 0;
1489 else
1490 message->status = -EIO;
1491
1492 giveback(pl022);
1493 return;
1494}
1495
ffbbdd21
LW
1496static int pl022_transfer_one_message(struct spi_master *master,
1497 struct spi_message *msg)
b43d65f7 1498{
ffbbdd21 1499 struct pl022 *pl022 = spi_master_get_devdata(master);
b43d65f7
LW
1500
1501 /* Initial message state */
ffbbdd21
LW
1502 pl022->cur_msg = msg;
1503 msg->state = STATE_START;
1504
1505 pl022->cur_transfer = list_entry(msg->transfers.next,
1506 struct spi_transfer, transfer_list);
b43d65f7
LW
1507
1508 /* Setup the SPI using the per chip configuration */
ffbbdd21 1509 pl022->cur_chip = spi_get_ctldata(msg->spi);
f6f46de1 1510 pl022->cur_cs = pl022->chipselects[msg->spi->chip_select];
d4b6af2e 1511
b43d65f7
LW
1512 restore_state(pl022);
1513 flush(pl022);
1514
1515 if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1516 do_polling_transfer(pl022);
b43d65f7 1517 else
b1b6b9aa 1518 do_interrupt_dma_transfer(pl022);
b43d65f7
LW
1519
1520 return 0;
1521}
1522
ffbbdd21 1523static int pl022_prepare_transfer_hardware(struct spi_master *master)
b43d65f7 1524{
ffbbdd21 1525 struct pl022 *pl022 = spi_master_get_devdata(master);
b43d65f7 1526
ffbbdd21
LW
1527 /*
1528 * Just make sure we have all we need to run the transfer by syncing
1529 * with the runtime PM framework.
1530 */
1531 pm_runtime_get_sync(&pl022->adev->dev);
b43d65f7
LW
1532 return 0;
1533}
1534
ffbbdd21 1535static int pl022_unprepare_transfer_hardware(struct spi_master *master)
b43d65f7 1536{
ffbbdd21 1537 struct pl022 *pl022 = spi_master_get_devdata(master);
b43d65f7 1538
ffbbdd21
LW
1539 /* nothing more to do - disable spi/ssp and power off */
1540 writew((readw(SSP_CR1(pl022->virtbase)) &
1541 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
b43d65f7 1542
ffbbdd21
LW
1543 if (pl022->master_info->autosuspend_delay > 0) {
1544 pm_runtime_mark_last_busy(&pl022->adev->dev);
1545 pm_runtime_put_autosuspend(&pl022->adev->dev);
1546 } else {
1547 pm_runtime_put(&pl022->adev->dev);
b43d65f7
LW
1548 }
1549
b43d65f7
LW
1550 return 0;
1551}
1552
1553static int verify_controller_parameters(struct pl022 *pl022,
f9d629c7 1554 struct pl022_config_chip const *chip_info)
b43d65f7 1555{
b43d65f7
LW
1556 if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1557 || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
5a1c98be 1558 dev_err(&pl022->adev->dev,
b43d65f7
LW
1559 "interface is configured incorrectly\n");
1560 return -EINVAL;
1561 }
1562 if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1563 (!pl022->vendor->unidir)) {
5a1c98be 1564 dev_err(&pl022->adev->dev,
b43d65f7
LW
1565 "unidirectional mode not supported in this "
1566 "hardware version\n");
1567 return -EINVAL;
1568 }
1569 if ((chip_info->hierarchy != SSP_MASTER)
1570 && (chip_info->hierarchy != SSP_SLAVE)) {
5a1c98be 1571 dev_err(&pl022->adev->dev,
b43d65f7
LW
1572 "hierarchy is configured incorrectly\n");
1573 return -EINVAL;
1574 }
b43d65f7
LW
1575 if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1576 && (chip_info->com_mode != DMA_TRANSFER)
1577 && (chip_info->com_mode != POLLING_TRANSFER)) {
5a1c98be 1578 dev_err(&pl022->adev->dev,
b43d65f7
LW
1579 "Communication mode is configured incorrectly\n");
1580 return -EINVAL;
1581 }
78b2b911
LW
1582 switch (chip_info->rx_lev_trig) {
1583 case SSP_RX_1_OR_MORE_ELEM:
1584 case SSP_RX_4_OR_MORE_ELEM:
1585 case SSP_RX_8_OR_MORE_ELEM:
1586 /* These are always OK, all variants can handle this */
1587 break;
1588 case SSP_RX_16_OR_MORE_ELEM:
1589 if (pl022->vendor->fifodepth < 16) {
1590 dev_err(&pl022->adev->dev,
1591 "RX FIFO Trigger Level is configured incorrectly\n");
1592 return -EINVAL;
1593 }
1594 break;
1595 case SSP_RX_32_OR_MORE_ELEM:
1596 if (pl022->vendor->fifodepth < 32) {
1597 dev_err(&pl022->adev->dev,
1598 "RX FIFO Trigger Level is configured incorrectly\n");
1599 return -EINVAL;
1600 }
1601 break;
1602 default:
5a1c98be 1603 dev_err(&pl022->adev->dev,
b43d65f7
LW
1604 "RX FIFO Trigger Level is configured incorrectly\n");
1605 return -EINVAL;
78b2b911 1606 break;
b43d65f7 1607 }
78b2b911
LW
1608 switch (chip_info->tx_lev_trig) {
1609 case SSP_TX_1_OR_MORE_EMPTY_LOC:
1610 case SSP_TX_4_OR_MORE_EMPTY_LOC:
1611 case SSP_TX_8_OR_MORE_EMPTY_LOC:
1612 /* These are always OK, all variants can handle this */
1613 break;
1614 case SSP_TX_16_OR_MORE_EMPTY_LOC:
1615 if (pl022->vendor->fifodepth < 16) {
1616 dev_err(&pl022->adev->dev,
1617 "TX FIFO Trigger Level is configured incorrectly\n");
1618 return -EINVAL;
1619 }
1620 break;
1621 case SSP_TX_32_OR_MORE_EMPTY_LOC:
1622 if (pl022->vendor->fifodepth < 32) {
1623 dev_err(&pl022->adev->dev,
1624 "TX FIFO Trigger Level is configured incorrectly\n");
1625 return -EINVAL;
1626 }
1627 break;
1628 default:
5a1c98be 1629 dev_err(&pl022->adev->dev,
b43d65f7
LW
1630 "TX FIFO Trigger Level is configured incorrectly\n");
1631 return -EINVAL;
78b2b911 1632 break;
b43d65f7 1633 }
b43d65f7
LW
1634 if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1635 if ((chip_info->ctrl_len < SSP_BITS_4)
1636 || (chip_info->ctrl_len > SSP_BITS_32)) {
5a1c98be 1637 dev_err(&pl022->adev->dev,
b43d65f7
LW
1638 "CTRL LEN is configured incorrectly\n");
1639 return -EINVAL;
1640 }
1641 if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1642 && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
5a1c98be 1643 dev_err(&pl022->adev->dev,
b43d65f7
LW
1644 "Wait State is configured incorrectly\n");
1645 return -EINVAL;
1646 }
556f4aeb
LW
1647 /* Half duplex is only available in the ST Micro version */
1648 if (pl022->vendor->extended_cr) {
1649 if ((chip_info->duplex !=
1650 SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1651 && (chip_info->duplex !=
4a4fd471 1652 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
5a1c98be 1653 dev_err(&pl022->adev->dev,
556f4aeb
LW
1654 "Microwire duplex mode is configured incorrectly\n");
1655 return -EINVAL;
4a4fd471 1656 }
556f4aeb
LW
1657 } else {
1658 if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
5a1c98be 1659 dev_err(&pl022->adev->dev,
556f4aeb
LW
1660 "Microwire half duplex mode requested,"
1661 " but this is only available in the"
1662 " ST version of PL022\n");
b43d65f7
LW
1663 return -EINVAL;
1664 }
1665 }
b43d65f7
LW
1666 return 0;
1667}
1668
0379b2a3
VK
1669static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1670{
1671 return rate / (cpsdvsr * (1 + scr));
1672}
1673
1674static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1675 ssp_clock_params * clk_freq)
b43d65f7
LW
1676{
1677 /* Lets calculate the frequency parameters */
0379b2a3
VK
1678 u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1679 u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1680 best_scr = 0, tmp, found = 0;
b43d65f7
LW
1681
1682 rate = clk_get_rate(pl022->clk);
1683 /* cpsdvscr = 2 & scr 0 */
0379b2a3 1684 max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
b43d65f7 1685 /* cpsdvsr = 254 & scr = 255 */
0379b2a3
VK
1686 min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1687
ea505bc9
VK
1688 if (freq > max_tclk)
1689 dev_warn(&pl022->adev->dev,
1690 "Max speed that can be programmed is %d Hz, you requested %d\n",
1691 max_tclk, freq);
1692
1693 if (freq < min_tclk) {
b43d65f7 1694 dev_err(&pl022->adev->dev,
ea505bc9
VK
1695 "Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1696 freq, min_tclk);
b43d65f7
LW
1697 return -EINVAL;
1698 }
0379b2a3
VK
1699
1700 /*
1701 * best_freq will give closest possible available rate (<= requested
1702 * freq) for all values of scr & cpsdvsr.
1703 */
1704 while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1705 while (scr <= SCR_MAX) {
1706 tmp = spi_rate(rate, cpsdvsr, scr);
1707
5eb806a3
VK
1708 if (tmp > freq) {
1709 /* we need lower freq */
0379b2a3 1710 scr++;
5eb806a3
VK
1711 continue;
1712 }
1713
0379b2a3 1714 /*
5eb806a3
VK
1715 * If found exact value, mark found and break.
1716 * If found more closer value, update and break.
0379b2a3 1717 */
5eb806a3 1718 if (tmp > best_freq) {
0379b2a3
VK
1719 best_freq = tmp;
1720 best_cpsdvsr = cpsdvsr;
1721 best_scr = scr;
1722
1723 if (tmp == freq)
5eb806a3 1724 found = 1;
0379b2a3 1725 }
5eb806a3
VK
1726 /*
1727 * increased scr will give lower rates, which are not
1728 * required
1729 */
1730 break;
0379b2a3
VK
1731 }
1732 cpsdvsr += 2;
1733 scr = SCR_MIN;
1734 }
1735
5eb806a3
VK
1736 WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1737 freq);
1738
0379b2a3
VK
1739 clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1740 clk_freq->scr = (u8) (best_scr & 0xFF);
1741 dev_dbg(&pl022->adev->dev,
1742 "SSP Target Frequency is: %u, Effective Frequency is %u\n",
1743 freq, best_freq);
1744 dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1745 clk_freq->cpsdvsr, clk_freq->scr);
1746
b43d65f7
LW
1747 return 0;
1748}
1749
f9d629c7
LW
1750/*
1751 * A piece of default chip info unless the platform
1752 * supplies it.
1753 */
1754static const struct pl022_config_chip pl022_default_chip_info = {
1755 .com_mode = POLLING_TRANSFER,
1756 .iface = SSP_INTERFACE_MOTOROLA_SPI,
1757 .hierarchy = SSP_SLAVE,
1758 .slave_tx_disable = DO_NOT_DRIVE_TX,
1759 .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1760 .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1761 .ctrl_len = SSP_BITS_8,
1762 .wait_state = SSP_MWIRE_WAIT_ZERO,
1763 .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1764 .cs_control = null_cs_control,
1765};
1766
b43d65f7
LW
1767/**
1768 * pl022_setup - setup function registered to SPI master framework
1769 * @spi: spi device which is requesting setup
1770 *
1771 * This function is registered to the SPI framework for this SPI master
1772 * controller. If it is the first time when setup is called by this device,
1773 * this function will initialize the runtime state for this chip and save
1774 * the same in the device structure. Else it will update the runtime info
1775 * with the updated chip info. Nothing is really being written to the
1776 * controller hardware here, that is not done until the actual transfer
1777 * commence.
1778 */
b43d65f7
LW
1779static int pl022_setup(struct spi_device *spi)
1780{
f9d629c7 1781 struct pl022_config_chip const *chip_info;
6d3952a7 1782 struct pl022_config_chip chip_info_dt;
b43d65f7 1783 struct chip_data *chip;
c4a47843 1784 struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
b43d65f7
LW
1785 int status = 0;
1786 struct pl022 *pl022 = spi_master_get_devdata(spi->master);
bde435a9
KW
1787 unsigned int bits = spi->bits_per_word;
1788 u32 tmp;
6d3952a7 1789 struct device_node *np = spi->dev.of_node;
b43d65f7
LW
1790
1791 if (!spi->max_speed_hz)
1792 return -EINVAL;
1793
1794 /* Get controller_state if one is supplied */
1795 chip = spi_get_ctldata(spi);
1796
1797 if (chip == NULL) {
1798 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1799 if (!chip) {
1800 dev_err(&spi->dev,
1801 "cannot allocate controller state\n");
1802 return -ENOMEM;
1803 }
1804 dev_dbg(&spi->dev,
1805 "allocated memory for controller's runtime state\n");
1806 }
1807
1808 /* Get controller data if one is supplied */
1809 chip_info = spi->controller_data;
1810
1811 if (chip_info == NULL) {
6d3952a7
RS
1812 if (np) {
1813 chip_info_dt = pl022_default_chip_info;
1814
1815 chip_info_dt.hierarchy = SSP_MASTER;
1816 of_property_read_u32(np, "pl022,interface",
1817 &chip_info_dt.iface);
1818 of_property_read_u32(np, "pl022,com-mode",
1819 &chip_info_dt.com_mode);
1820 of_property_read_u32(np, "pl022,rx-level-trig",
1821 &chip_info_dt.rx_lev_trig);
1822 of_property_read_u32(np, "pl022,tx-level-trig",
1823 &chip_info_dt.tx_lev_trig);
1824 of_property_read_u32(np, "pl022,ctrl-len",
1825 &chip_info_dt.ctrl_len);
1826 of_property_read_u32(np, "pl022,wait-state",
1827 &chip_info_dt.wait_state);
1828 of_property_read_u32(np, "pl022,duplex",
1829 &chip_info_dt.duplex);
1830
1831 chip_info = &chip_info_dt;
1832 } else {
1833 chip_info = &pl022_default_chip_info;
1834 /* spi_board_info.controller_data not is supplied */
1835 dev_dbg(&spi->dev,
1836 "using default controller_data settings\n");
1837 }
f9d629c7 1838 } else
b43d65f7
LW
1839 dev_dbg(&spi->dev,
1840 "using user supplied controller_data settings\n");
b43d65f7
LW
1841
1842 /*
1843 * We can override with custom divisors, else we use the board
1844 * frequency setting
1845 */
1846 if ((0 == chip_info->clk_freq.cpsdvsr)
1847 && (0 == chip_info->clk_freq.scr)) {
1848 status = calculate_effective_freq(pl022,
1849 spi->max_speed_hz,
f9d629c7 1850 &clk_freq);
b43d65f7
LW
1851 if (status < 0)
1852 goto err_config_params;
1853 } else {
f9d629c7
LW
1854 memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1855 if ((clk_freq.cpsdvsr % 2) != 0)
1856 clk_freq.cpsdvsr =
1857 clk_freq.cpsdvsr - 1;
b43d65f7 1858 }
f9d629c7
LW
1859 if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1860 || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
e3f88ae9 1861 status = -EINVAL;
f9d629c7
LW
1862 dev_err(&spi->dev,
1863 "cpsdvsr is configured incorrectly\n");
1864 goto err_config_params;
1865 }
1866
b43d65f7
LW
1867 status = verify_controller_parameters(pl022, chip_info);
1868 if (status) {
1869 dev_err(&spi->dev, "controller data is incorrect");
1870 goto err_config_params;
1871 }
f9d629c7 1872
083be3f0
LW
1873 pl022->rx_lev_trig = chip_info->rx_lev_trig;
1874 pl022->tx_lev_trig = chip_info->tx_lev_trig;
1875
b43d65f7
LW
1876 /* Now set controller state based on controller data */
1877 chip->xfer_type = chip_info->com_mode;
f9d629c7
LW
1878 if (!chip_info->cs_control) {
1879 chip->cs_control = null_cs_control;
f6f46de1
RS
1880 if (!gpio_is_valid(pl022->chipselects[spi->chip_select]))
1881 dev_warn(&spi->dev,
1882 "invalid chip select\n");
f9d629c7
LW
1883 } else
1884 chip->cs_control = chip_info->cs_control;
b43d65f7 1885
eb798c64
VS
1886 /* Check bits per word with vendor specific range */
1887 if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
bde435a9 1888 status = -ENOTSUPP;
eb798c64
VS
1889 dev_err(&spi->dev, "illegal data size for this controller!\n");
1890 dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1891 pl022->vendor->max_bpw);
bde435a9
KW
1892 goto err_config_params;
1893 } else if (bits <= 8) {
1894 dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
b43d65f7
LW
1895 chip->n_bytes = 1;
1896 chip->read = READING_U8;
1897 chip->write = WRITING_U8;
bde435a9 1898 } else if (bits <= 16) {
b43d65f7
LW
1899 dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1900 chip->n_bytes = 2;
1901 chip->read = READING_U16;
1902 chip->write = WRITING_U16;
1903 } else {
eb798c64
VS
1904 dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1905 chip->n_bytes = 4;
1906 chip->read = READING_U32;
1907 chip->write = WRITING_U32;
b43d65f7
LW
1908 }
1909
1910 /* Now Initialize all register settings required for this chip */
1911 chip->cr0 = 0;
1912 chip->cr1 = 0;
1913 chip->dmacr = 0;
1914 chip->cpsr = 0;
1915 if ((chip_info->com_mode == DMA_TRANSFER)
1916 && ((pl022->master_info)->enable_dma)) {
b1b6b9aa 1917 chip->enable_dma = true;
b43d65f7 1918 dev_dbg(&spi->dev, "DMA mode set in controller state\n");
b43d65f7
LW
1919 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1920 SSP_DMACR_MASK_RXDMAE, 0);
1921 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1922 SSP_DMACR_MASK_TXDMAE, 1);
1923 } else {
b1b6b9aa 1924 chip->enable_dma = false;
b43d65f7
LW
1925 dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1926 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1927 SSP_DMACR_MASK_RXDMAE, 0);
1928 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1929 SSP_DMACR_MASK_TXDMAE, 1);
1930 }
1931
f9d629c7 1932 chip->cpsr = clk_freq.cpsdvsr;
b43d65f7 1933
556f4aeb
LW
1934 /* Special setup for the ST micro extended control registers */
1935 if (pl022->vendor->extended_cr) {
bde435a9
KW
1936 u32 etx;
1937
781c7b12
LW
1938 if (pl022->vendor->pl023) {
1939 /* These bits are only in the PL023 */
1940 SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
1941 SSP_CR1_MASK_FBCLKDEL_ST, 13);
1942 } else {
1943 /* These bits are in the PL022 but not PL023 */
1944 SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
1945 SSP_CR0_MASK_HALFDUP_ST, 5);
1946 SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
1947 SSP_CR0_MASK_CSS_ST, 16);
1948 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1949 SSP_CR0_MASK_FRF_ST, 21);
1950 SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
1951 SSP_CR1_MASK_MWAIT_ST, 6);
1952 }
bde435a9 1953 SSP_WRITE_BITS(chip->cr0, bits - 1,
556f4aeb 1954 SSP_CR0_MASK_DSS_ST, 0);
bde435a9
KW
1955
1956 if (spi->mode & SPI_LSB_FIRST) {
1957 tmp = SSP_RX_LSB;
1958 etx = SSP_TX_LSB;
1959 } else {
1960 tmp = SSP_RX_MSB;
1961 etx = SSP_TX_MSB;
1962 }
1963 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
1964 SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
556f4aeb
LW
1965 SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
1966 SSP_CR1_MASK_RXIFLSEL_ST, 7);
1967 SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
1968 SSP_CR1_MASK_TXIFLSEL_ST, 10);
1969 } else {
bde435a9 1970 SSP_WRITE_BITS(chip->cr0, bits - 1,
556f4aeb
LW
1971 SSP_CR0_MASK_DSS, 0);
1972 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1973 SSP_CR0_MASK_FRF, 4);
1974 }
bde435a9 1975
556f4aeb 1976 /* Stuff that is common for all versions */
bde435a9
KW
1977 if (spi->mode & SPI_CPOL)
1978 tmp = SSP_CLK_POL_IDLE_HIGH;
1979 else
1980 tmp = SSP_CLK_POL_IDLE_LOW;
1981 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
1982
1983 if (spi->mode & SPI_CPHA)
1984 tmp = SSP_CLK_SECOND_EDGE;
1985 else
1986 tmp = SSP_CLK_FIRST_EDGE;
1987 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
1988
f9d629c7 1989 SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
781c7b12 1990 /* Loopback is available on all versions except PL023 */
06fb01fd 1991 if (pl022->vendor->loopback) {
bde435a9
KW
1992 if (spi->mode & SPI_LOOP)
1993 tmp = LOOPBACK_ENABLED;
1994 else
1995 tmp = LOOPBACK_DISABLED;
1996 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
1997 }
b43d65f7
LW
1998 SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
1999 SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
f1e45f86
VK
2000 SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
2001 3);
b43d65f7
LW
2002
2003 /* Save controller_state */
2004 spi_set_ctldata(spi, chip);
2005 return status;
2006 err_config_params:
bde435a9 2007 spi_set_ctldata(spi, NULL);
b43d65f7
LW
2008 kfree(chip);
2009 return status;
2010}
2011
2012/**
2013 * pl022_cleanup - cleanup function registered to SPI master framework
2014 * @spi: spi device which is requesting cleanup
2015 *
2016 * This function is registered to the SPI framework for this SPI master
2017 * controller. It will free the runtime state of chip.
2018 */
2019static void pl022_cleanup(struct spi_device *spi)
2020{
2021 struct chip_data *chip = spi_get_ctldata(spi);
2022
2023 spi_set_ctldata(spi, NULL);
2024 kfree(chip);
2025}
2026
b4225885 2027static int __devinit
aa25afad 2028pl022_probe(struct amba_device *adev, const struct amba_id *id)
b43d65f7
LW
2029{
2030 struct device *dev = &adev->dev;
2031 struct pl022_ssp_controller *platform_info = adev->dev.platform_data;
2032 struct spi_master *master;
2033 struct pl022 *pl022 = NULL; /*Data for this driver */
6d3952a7
RS
2034 struct device_node *np = adev->dev.of_node;
2035 int status = 0, i, num_cs;
b43d65f7
LW
2036
2037 dev_info(&adev->dev,
2038 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2039 if (platform_info == NULL) {
2040 dev_err(&adev->dev, "probe - no platform data supplied\n");
2041 status = -ENODEV;
2042 goto err_no_pdata;
2043 }
2044
6d3952a7
RS
2045 if (platform_info->num_chipselect) {
2046 num_cs = platform_info->num_chipselect;
2047 } else if (IS_ENABLED(CONFIG_OF)) {
2048 of_property_read_u32(np, "num-cs", &num_cs);
2049 } else {
2050 dev_err(&adev->dev, "probe: no chip select defined\n");
2051 status = -ENODEV;
2052 goto err_no_pdata;
2053 }
2054
b43d65f7 2055 /* Allocate master with space for data */
f6f46de1 2056 master = spi_alloc_master(dev, sizeof(struct pl022) + sizeof(int) *
6d3952a7 2057 num_cs);
b43d65f7
LW
2058 if (master == NULL) {
2059 dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2060 status = -ENOMEM;
2061 goto err_no_master;
2062 }
2063
2064 pl022 = spi_master_get_devdata(master);
2065 pl022->master = master;
2066 pl022->master_info = platform_info;
2067 pl022->adev = adev;
2068 pl022->vendor = id->data;
f6f46de1
RS
2069 /* Point chipselects to allocated memory beyond the main struct */
2070 pl022->chipselects = (int *) pl022 + sizeof(struct pl022);
b43d65f7
LW
2071
2072 /*
2073 * Bus Number Which has been Assigned to this SSP controller
2074 * on this board
2075 */
2076 master->bus_num = platform_info->bus_id;
6d3952a7 2077 master->num_chipselect = num_cs;
b43d65f7
LW
2078 master->cleanup = pl022_cleanup;
2079 master->setup = pl022_setup;
ffbbdd21
LW
2080 master->prepare_transfer_hardware = pl022_prepare_transfer_hardware;
2081 master->transfer_one_message = pl022_transfer_one_message;
2082 master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
2083 master->rt = platform_info->rt;
6d3952a7 2084 master->dev.of_node = dev->of_node;
b43d65f7 2085
6d3952a7
RS
2086 if (platform_info->num_chipselect && platform_info->chipselects) {
2087 for (i = 0; i < num_cs; i++)
f6f46de1 2088 pl022->chipselects[i] = platform_info->chipselects[i];
6d3952a7
RS
2089 } else if (IS_ENABLED(CONFIG_OF)) {
2090 for (i = 0; i < num_cs; i++) {
2091 int cs_gpio = of_get_named_gpio(np, "cs-gpios", i);
2092
2093 if (cs_gpio == -EPROBE_DEFER) {
2094 status = -EPROBE_DEFER;
2095 goto err_no_gpio;
2096 }
2097
2098 pl022->chipselects[i] = cs_gpio;
2099
2100 if (gpio_is_valid(cs_gpio)) {
2101 if (gpio_request(cs_gpio, "ssp-pl022"))
2102 dev_err(&adev->dev,
2103 "could not request %d gpio\n",
2104 cs_gpio);
2105 else if (gpio_direction_output(cs_gpio, 1))
2106 dev_err(&adev->dev,
2107 "could set gpio %d as output\n",
2108 cs_gpio);
2109 }
2110 }
2111 }
f6f46de1 2112
bde435a9
KW
2113 /*
2114 * Supports mode 0-3, loopback, and active low CS. Transfers are
2115 * always MS bit first on the original pl022.
2116 */
2117 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2118 if (pl022->vendor->extended_cr)
2119 master->mode_bits |= SPI_LSB_FIRST;
2120
b43d65f7
LW
2121 dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2122
2123 status = amba_request_regions(adev, NULL);
2124 if (status)
2125 goto err_no_ioregion;
2126
b1b6b9aa 2127 pl022->phybase = adev->res.start;
b43d65f7
LW
2128 pl022->virtbase = ioremap(adev->res.start, resource_size(&adev->res));
2129 if (pl022->virtbase == NULL) {
2130 status = -ENOMEM;
2131 goto err_no_ioremap;
2132 }
2133 printk(KERN_INFO "pl022: mapped registers from 0x%08x to %p\n",
2134 adev->res.start, pl022->virtbase);
2135
2fb30d11
LW
2136 pm_runtime_enable(dev);
2137 pm_runtime_resume(dev);
2138
b43d65f7
LW
2139 pl022->clk = clk_get(&adev->dev, NULL);
2140 if (IS_ERR(pl022->clk)) {
2141 status = PTR_ERR(pl022->clk);
2142 dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2143 goto err_no_clk;
2144 }
7ff6bcf0
RK
2145
2146 status = clk_prepare(pl022->clk);
2147 if (status) {
2148 dev_err(&adev->dev, "could not prepare SSP/SPI bus clock\n");
2149 goto err_clk_prep;
2150 }
2151
71e63e74
UH
2152 status = clk_enable(pl022->clk);
2153 if (status) {
2154 dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
2155 goto err_no_clk_en;
2156 }
2157
ffbbdd21
LW
2158 /* Initialize transfer pump */
2159 tasklet_init(&pl022->pump_transfers, pump_transfers,
2160 (unsigned long)pl022);
2161
b43d65f7 2162 /* Disable SSP */
b43d65f7
LW
2163 writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2164 SSP_CR1(pl022->virtbase));
2165 load_ssp_default_config(pl022);
b43d65f7
LW
2166
2167 status = request_irq(adev->irq[0], pl022_interrupt_handler, 0, "pl022",
2168 pl022);
2169 if (status < 0) {
2170 dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2171 goto err_no_irq;
2172 }
b1b6b9aa
LW
2173
2174 /* Get DMA channels */
2175 if (platform_info->enable_dma) {
2176 status = pl022_dma_probe(pl022);
2177 if (status != 0)
43c64015 2178 platform_info->enable_dma = 0;
b1b6b9aa
LW
2179 }
2180
b43d65f7
LW
2181 /* Register with the SPI framework */
2182 amba_set_drvdata(adev, pl022);
2183 status = spi_register_master(master);
2184 if (status != 0) {
2185 dev_err(&adev->dev,
2186 "probe - problem registering spi master\n");
2187 goto err_spi_register;
2188 }
25985edc 2189 dev_dbg(dev, "probe succeeded\n");
92b97f0a
RK
2190
2191 /* let runtime pm put suspend */
53e4acea
CB
2192 if (platform_info->autosuspend_delay > 0) {
2193 dev_info(&adev->dev,
2194 "will use autosuspend for runtime pm, delay %dms\n",
2195 platform_info->autosuspend_delay);
2196 pm_runtime_set_autosuspend_delay(dev,
2197 platform_info->autosuspend_delay);
2198 pm_runtime_use_autosuspend(dev);
2199 pm_runtime_put_autosuspend(dev);
2200 } else {
2201 pm_runtime_put(dev);
2202 }
b43d65f7
LW
2203 return 0;
2204
2205 err_spi_register:
3e3ea716
VK
2206 if (platform_info->enable_dma)
2207 pl022_dma_remove(pl022);
2208
b43d65f7
LW
2209 free_irq(adev->irq[0], pl022);
2210 err_no_irq:
71e63e74
UH
2211 clk_disable(pl022->clk);
2212 err_no_clk_en:
7ff6bcf0
RK
2213 clk_unprepare(pl022->clk);
2214 err_clk_prep:
b43d65f7
LW
2215 clk_put(pl022->clk);
2216 err_no_clk:
2217 iounmap(pl022->virtbase);
2218 err_no_ioremap:
2219 amba_release_regions(adev);
2220 err_no_ioregion:
6d3952a7 2221 err_no_gpio:
b43d65f7
LW
2222 spi_master_put(master);
2223 err_no_master:
2224 err_no_pdata:
2225 return status;
2226}
2227
b4225885 2228static int __devexit
b43d65f7
LW
2229pl022_remove(struct amba_device *adev)
2230{
2231 struct pl022 *pl022 = amba_get_drvdata(adev);
50658b66 2232
b43d65f7
LW
2233 if (!pl022)
2234 return 0;
2235
92b97f0a
RK
2236 /*
2237 * undo pm_runtime_put() in probe. I assume that we're not
2238 * accessing the primecell here.
2239 */
2240 pm_runtime_get_noresume(&adev->dev);
2241
b43d65f7 2242 load_ssp_default_config(pl022);
3e3ea716
VK
2243 if (pl022->master_info->enable_dma)
2244 pl022_dma_remove(pl022);
2245
b43d65f7
LW
2246 free_irq(adev->irq[0], pl022);
2247 clk_disable(pl022->clk);
7ff6bcf0 2248 clk_unprepare(pl022->clk);
b43d65f7 2249 clk_put(pl022->clk);
2fb30d11 2250 pm_runtime_disable(&adev->dev);
b43d65f7
LW
2251 iounmap(pl022->virtbase);
2252 amba_release_regions(adev);
2253 tasklet_disable(&pl022->pump_transfers);
2254 spi_unregister_master(pl022->master);
b43d65f7 2255 amba_set_drvdata(adev, NULL);
b43d65f7
LW
2256 return 0;
2257}
2258
92b97f0a 2259#ifdef CONFIG_SUSPEND
6cfa6279 2260static int pl022_suspend(struct device *dev)
b43d65f7 2261{
92b97f0a 2262 struct pl022 *pl022 = dev_get_drvdata(dev);
ffbbdd21 2263 int ret;
b43d65f7 2264
ffbbdd21
LW
2265 ret = spi_master_suspend(pl022->master);
2266 if (ret) {
2267 dev_warn(dev, "cannot suspend master\n");
2268 return ret;
b43d65f7
LW
2269 }
2270
6cfa6279 2271 dev_dbg(dev, "suspended\n");
b43d65f7
LW
2272 return 0;
2273}
2274
92b97f0a 2275static int pl022_resume(struct device *dev)
b43d65f7 2276{
92b97f0a 2277 struct pl022 *pl022 = dev_get_drvdata(dev);
ffbbdd21 2278 int ret;
b43d65f7
LW
2279
2280 /* Start the queue running */
ffbbdd21
LW
2281 ret = spi_master_resume(pl022->master);
2282 if (ret)
2283 dev_err(dev, "problem starting queue (%d)\n", ret);
b43d65f7 2284 else
92b97f0a 2285 dev_dbg(dev, "resumed\n");
b43d65f7 2286
ffbbdd21 2287 return ret;
b43d65f7 2288}
b43d65f7
LW
2289#endif /* CONFIG_PM */
2290
92b97f0a
RK
2291#ifdef CONFIG_PM_RUNTIME
2292static int pl022_runtime_suspend(struct device *dev)
2293{
2294 struct pl022 *pl022 = dev_get_drvdata(dev);
2295
2296 clk_disable(pl022->clk);
92b97f0a
RK
2297
2298 return 0;
2299}
2300
2301static int pl022_runtime_resume(struct device *dev)
2302{
2303 struct pl022 *pl022 = dev_get_drvdata(dev);
2304
92b97f0a
RK
2305 clk_enable(pl022->clk);
2306
2307 return 0;
2308}
2309#endif
2310
2311static const struct dev_pm_ops pl022_dev_pm_ops = {
2312 SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2313 SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2314};
2315
b43d65f7
LW
2316static struct vendor_data vendor_arm = {
2317 .fifodepth = 8,
2318 .max_bpw = 16,
2319 .unidir = false,
556f4aeb 2320 .extended_cr = false,
781c7b12 2321 .pl023 = false,
06fb01fd 2322 .loopback = true,
b43d65f7
LW
2323};
2324
b43d65f7
LW
2325static struct vendor_data vendor_st = {
2326 .fifodepth = 32,
2327 .max_bpw = 32,
2328 .unidir = false,
556f4aeb 2329 .extended_cr = true,
781c7b12 2330 .pl023 = false,
06fb01fd 2331 .loopback = true,
781c7b12
LW
2332};
2333
2334static struct vendor_data vendor_st_pl023 = {
2335 .fifodepth = 32,
2336 .max_bpw = 32,
2337 .unidir = false,
2338 .extended_cr = true,
2339 .pl023 = true,
06fb01fd
PL
2340 .loopback = false,
2341};
2342
b43d65f7
LW
2343static struct amba_id pl022_ids[] = {
2344 {
2345 /*
2346 * ARM PL022 variant, this has a 16bit wide
2347 * and 8 locations deep TX/RX FIFO
2348 */
2349 .id = 0x00041022,
2350 .mask = 0x000fffff,
2351 .data = &vendor_arm,
2352 },
2353 {
2354 /*
2355 * ST Micro derivative, this has 32bit wide
2356 * and 32 locations deep TX/RX FIFO
2357 */
e89e04fc 2358 .id = 0x01080022,
b43d65f7
LW
2359 .mask = 0xffffffff,
2360 .data = &vendor_st,
2361 },
781c7b12
LW
2362 {
2363 /*
2364 * ST-Ericsson derivative "PL023" (this is not
2365 * an official ARM number), this is a PL022 SSP block
2366 * stripped to SPI mode only, it has 32bit wide
2367 * and 32 locations deep TX/RX FIFO but no extended
2368 * CR0/CR1 register
2369 */
f1e45f86
VK
2370 .id = 0x00080023,
2371 .mask = 0xffffffff,
2372 .data = &vendor_st_pl023,
781c7b12 2373 },
b43d65f7
LW
2374 { 0, 0 },
2375};
2376
7eeac71b
DM
2377MODULE_DEVICE_TABLE(amba, pl022_ids);
2378
b43d65f7
LW
2379static struct amba_driver pl022_driver = {
2380 .drv = {
2381 .name = "ssp-pl022",
92b97f0a 2382 .pm = &pl022_dev_pm_ops,
b43d65f7
LW
2383 },
2384 .id_table = pl022_ids,
2385 .probe = pl022_probe,
b4225885 2386 .remove = __devexit_p(pl022_remove),
b43d65f7
LW
2387};
2388
b43d65f7
LW
2389static int __init pl022_init(void)
2390{
2391 return amba_driver_register(&pl022_driver);
2392}
25c8e03b 2393subsys_initcall(pl022_init);
b43d65f7
LW
2394
2395static void __exit pl022_exit(void)
2396{
2397 amba_driver_unregister(&pl022_driver);
2398}
b43d65f7
LW
2399module_exit(pl022_exit);
2400
2401MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2402MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2403MODULE_LICENSE("GPL");
This page took 0.458776 seconds and 5 git commands to generate.