spi/s3c64xx: Don't free controller_data on non-dt platforms
[deliverable/linux.git] / drivers / spi / spi-pl022.c
CommitLineData
b43d65f7 1/*
b43d65f7
LW
2 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
3 *
4 * Copyright (C) 2008-2009 ST-Ericsson AB
5 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
6 *
7 * Author: Linus Walleij <linus.walleij@stericsson.com>
8 *
9 * Initial version inspired by:
10 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
11 * Initial adoption to PL022 by:
12 * Sachin Verma <sachin.verma@st.com>
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 */
24
b43d65f7
LW
25#include <linux/init.h>
26#include <linux/module.h>
27#include <linux/device.h>
28#include <linux/ioport.h>
29#include <linux/errno.h>
30#include <linux/interrupt.h>
31#include <linux/spi/spi.h>
b43d65f7
LW
32#include <linux/delay.h>
33#include <linux/clk.h>
34#include <linux/err.h>
35#include <linux/amba/bus.h>
36#include <linux/amba/pl022.h>
37#include <linux/io.h>
5a0e3ad6 38#include <linux/slab.h>
b1b6b9aa
LW
39#include <linux/dmaengine.h>
40#include <linux/dma-mapping.h>
41#include <linux/scatterlist.h>
bcda6ff8 42#include <linux/pm_runtime.h>
f6f46de1 43#include <linux/gpio.h>
6d3952a7 44#include <linux/of_gpio.h>
4f5e1b37 45#include <linux/pinctrl/consumer.h>
b43d65f7
LW
46
47/*
48 * This macro is used to define some register default values.
49 * reg is masked with mask, the OR:ed with an (again masked)
50 * val shifted sb steps to the left.
51 */
52#define SSP_WRITE_BITS(reg, val, mask, sb) \
53 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
54
55/*
56 * This macro is also used to define some default values.
57 * It will just shift val by sb steps to the left and mask
58 * the result with mask.
59 */
60#define GEN_MASK_BITS(val, mask, sb) \
61 (((val)<<(sb)) & (mask))
62
63#define DRIVE_TX 0
64#define DO_NOT_DRIVE_TX 1
65
66#define DO_NOT_QUEUE_DMA 0
67#define QUEUE_DMA 1
68
69#define RX_TRANSFER 1
70#define TX_TRANSFER 2
71
72/*
73 * Macros to access SSP Registers with their offsets
74 */
75#define SSP_CR0(r) (r + 0x000)
76#define SSP_CR1(r) (r + 0x004)
77#define SSP_DR(r) (r + 0x008)
78#define SSP_SR(r) (r + 0x00C)
79#define SSP_CPSR(r) (r + 0x010)
80#define SSP_IMSC(r) (r + 0x014)
81#define SSP_RIS(r) (r + 0x018)
82#define SSP_MIS(r) (r + 0x01C)
83#define SSP_ICR(r) (r + 0x020)
84#define SSP_DMACR(r) (r + 0x024)
85#define SSP_ITCR(r) (r + 0x080)
86#define SSP_ITIP(r) (r + 0x084)
87#define SSP_ITOP(r) (r + 0x088)
88#define SSP_TDR(r) (r + 0x08C)
89
90#define SSP_PID0(r) (r + 0xFE0)
91#define SSP_PID1(r) (r + 0xFE4)
92#define SSP_PID2(r) (r + 0xFE8)
93#define SSP_PID3(r) (r + 0xFEC)
94
95#define SSP_CID0(r) (r + 0xFF0)
96#define SSP_CID1(r) (r + 0xFF4)
97#define SSP_CID2(r) (r + 0xFF8)
98#define SSP_CID3(r) (r + 0xFFC)
99
100/*
101 * SSP Control Register 0 - SSP_CR0
102 */
556f4aeb
LW
103#define SSP_CR0_MASK_DSS (0x0FUL << 0)
104#define SSP_CR0_MASK_FRF (0x3UL << 4)
b43d65f7
LW
105#define SSP_CR0_MASK_SPO (0x1UL << 6)
106#define SSP_CR0_MASK_SPH (0x1UL << 7)
107#define SSP_CR0_MASK_SCR (0xFFUL << 8)
556f4aeb
LW
108
109/*
110 * The ST version of this block moves som bits
111 * in SSP_CR0 and extends it to 32 bits
112 */
113#define SSP_CR0_MASK_DSS_ST (0x1FUL << 0)
114#define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
115#define SSP_CR0_MASK_CSS_ST (0x1FUL << 16)
116#define SSP_CR0_MASK_FRF_ST (0x3UL << 21)
117
b43d65f7
LW
118/*
119 * SSP Control Register 0 - SSP_CR1
120 */
121#define SSP_CR1_MASK_LBM (0x1UL << 0)
122#define SSP_CR1_MASK_SSE (0x1UL << 1)
123#define SSP_CR1_MASK_MS (0x1UL << 2)
124#define SSP_CR1_MASK_SOD (0x1UL << 3)
b43d65f7
LW
125
126/*
556f4aeb
LW
127 * The ST version of this block adds some bits
128 * in SSP_CR1
b43d65f7 129 */
556f4aeb
LW
130#define SSP_CR1_MASK_RENDN_ST (0x1UL << 4)
131#define SSP_CR1_MASK_TENDN_ST (0x1UL << 5)
132#define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6)
133#define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
134#define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
781c7b12
LW
135/* This one is only in the PL023 variant */
136#define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
b43d65f7
LW
137
138/*
139 * SSP Status Register - SSP_SR
140 */
141#define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
142#define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
143#define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
556f4aeb 144#define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
b43d65f7
LW
145#define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
146
147/*
148 * SSP Clock Prescale Register - SSP_CPSR
149 */
150#define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
151
152/*
153 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
154 */
155#define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
156#define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
157#define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
158#define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
159
160/*
161 * SSP Raw Interrupt Status Register - SSP_RIS
162 */
163/* Receive Overrun Raw Interrupt status */
164#define SSP_RIS_MASK_RORRIS (0x1UL << 0)
165/* Receive Timeout Raw Interrupt status */
166#define SSP_RIS_MASK_RTRIS (0x1UL << 1)
167/* Receive FIFO Raw Interrupt status */
168#define SSP_RIS_MASK_RXRIS (0x1UL << 2)
169/* Transmit FIFO Raw Interrupt status */
170#define SSP_RIS_MASK_TXRIS (0x1UL << 3)
171
172/*
173 * SSP Masked Interrupt Status Register - SSP_MIS
174 */
175/* Receive Overrun Masked Interrupt status */
176#define SSP_MIS_MASK_RORMIS (0x1UL << 0)
177/* Receive Timeout Masked Interrupt status */
178#define SSP_MIS_MASK_RTMIS (0x1UL << 1)
179/* Receive FIFO Masked Interrupt status */
180#define SSP_MIS_MASK_RXMIS (0x1UL << 2)
181/* Transmit FIFO Masked Interrupt status */
182#define SSP_MIS_MASK_TXMIS (0x1UL << 3)
183
184/*
185 * SSP Interrupt Clear Register - SSP_ICR
186 */
187/* Receive Overrun Raw Clear Interrupt bit */
188#define SSP_ICR_MASK_RORIC (0x1UL << 0)
189/* Receive Timeout Clear Interrupt bit */
190#define SSP_ICR_MASK_RTIC (0x1UL << 1)
191
192/*
193 * SSP DMA Control Register - SSP_DMACR
194 */
195/* Receive DMA Enable bit */
196#define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
197/* Transmit DMA Enable bit */
198#define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
199
200/*
201 * SSP Integration Test control Register - SSP_ITCR
202 */
203#define SSP_ITCR_MASK_ITEN (0x1UL << 0)
204#define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
205
206/*
207 * SSP Integration Test Input Register - SSP_ITIP
208 */
209#define ITIP_MASK_SSPRXD (0x1UL << 0)
210#define ITIP_MASK_SSPFSSIN (0x1UL << 1)
211#define ITIP_MASK_SSPCLKIN (0x1UL << 2)
212#define ITIP_MASK_RXDMAC (0x1UL << 3)
213#define ITIP_MASK_TXDMAC (0x1UL << 4)
214#define ITIP_MASK_SSPTXDIN (0x1UL << 5)
215
216/*
217 * SSP Integration Test output Register - SSP_ITOP
218 */
219#define ITOP_MASK_SSPTXD (0x1UL << 0)
220#define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
221#define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
222#define ITOP_MASK_SSPOEn (0x1UL << 3)
223#define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
224#define ITOP_MASK_RORINTR (0x1UL << 5)
225#define ITOP_MASK_RTINTR (0x1UL << 6)
226#define ITOP_MASK_RXINTR (0x1UL << 7)
227#define ITOP_MASK_TXINTR (0x1UL << 8)
228#define ITOP_MASK_INTR (0x1UL << 9)
229#define ITOP_MASK_RXDMABREQ (0x1UL << 10)
230#define ITOP_MASK_RXDMASREQ (0x1UL << 11)
231#define ITOP_MASK_TXDMABREQ (0x1UL << 12)
232#define ITOP_MASK_TXDMASREQ (0x1UL << 13)
233
234/*
235 * SSP Test Data Register - SSP_TDR
236 */
556f4aeb 237#define TDR_MASK_TESTDATA (0xFFFFFFFF)
b43d65f7
LW
238
239/*
240 * Message State
241 * we use the spi_message.state (void *) pointer to
242 * hold a single state value, that's why all this
243 * (void *) casting is done here.
244 */
556f4aeb
LW
245#define STATE_START ((void *) 0)
246#define STATE_RUNNING ((void *) 1)
247#define STATE_DONE ((void *) 2)
248#define STATE_ERROR ((void *) -1)
b43d65f7 249
b43d65f7
LW
250/*
251 * SSP State - Whether Enabled or Disabled
252 */
556f4aeb
LW
253#define SSP_DISABLED (0)
254#define SSP_ENABLED (1)
b43d65f7
LW
255
256/*
257 * SSP DMA State - Whether DMA Enabled or Disabled
258 */
556f4aeb
LW
259#define SSP_DMA_DISABLED (0)
260#define SSP_DMA_ENABLED (1)
b43d65f7
LW
261
262/*
263 * SSP Clock Defaults
264 */
556f4aeb
LW
265#define SSP_DEFAULT_CLKRATE 0x2
266#define SSP_DEFAULT_PRESCALE 0x40
b43d65f7
LW
267
268/*
269 * SSP Clock Parameter ranges
270 */
271#define CPSDVR_MIN 0x02
272#define CPSDVR_MAX 0xFE
273#define SCR_MIN 0x00
274#define SCR_MAX 0xFF
275
276/*
277 * SSP Interrupt related Macros
278 */
279#define DEFAULT_SSP_REG_IMSC 0x0UL
280#define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
281#define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
282
283#define CLEAR_ALL_INTERRUPTS 0x3
284
a18c266f
MT
285#define SPI_POLLING_TIMEOUT 1000
286
b43d65f7
LW
287/*
288 * The type of reading going on on this chip
289 */
290enum ssp_reading {
291 READING_NULL,
292 READING_U8,
293 READING_U16,
294 READING_U32
295};
296
297/**
298 * The type of writing going on on this chip
299 */
300enum ssp_writing {
301 WRITING_NULL,
302 WRITING_U8,
303 WRITING_U16,
304 WRITING_U32
305};
306
307/**
308 * struct vendor_data - vendor-specific config parameters
309 * for PL022 derivates
310 * @fifodepth: depth of FIFOs (both)
311 * @max_bpw: maximum number of bits per word
312 * @unidir: supports unidirection transfers
556f4aeb
LW
313 * @extended_cr: 32 bit wide control register 0 with extra
314 * features and extra features in CR1 as found in the ST variants
781c7b12 315 * @pl023: supports a subset of the ST extensions called "PL023"
b43d65f7
LW
316 */
317struct vendor_data {
318 int fifodepth;
319 int max_bpw;
320 bool unidir;
556f4aeb 321 bool extended_cr;
781c7b12 322 bool pl023;
06fb01fd 323 bool loopback;
b43d65f7
LW
324};
325
326/**
327 * struct pl022 - This is the private SSP driver data structure
328 * @adev: AMBA device model hookup
12e8b325
LW
329 * @vendor: vendor data for the IP block
330 * @phybase: the physical memory where the SSP device resides
331 * @virtbase: the virtual memory where the SSP is mapped
332 * @clk: outgoing clock "SPICLK" for the SPI bus
b43d65f7
LW
333 * @master: SPI framework hookup
334 * @master_info: controller-specific data from machine setup
14af60b6
CB
335 * @kworker: thread struct for message pump
336 * @kworker_task: pointer to task for message pump kworker thread
337 * @pump_messages: work struct for scheduling work to the message pump
12e8b325
LW
338 * @queue_lock: spinlock to syncronise access to message queue
339 * @queue: message queue
14af60b6
CB
340 * @busy: message pump is busy
341 * @running: message pump is running
b43d65f7
LW
342 * @pump_transfers: Tasklet used in Interrupt Transfer mode
343 * @cur_msg: Pointer to current spi_message being processed
344 * @cur_transfer: Pointer to current spi_transfer
345 * @cur_chip: pointer to current clients chip(assigned from controller_state)
8b8d7191
VS
346 * @next_msg_cs_active: the next message in the queue has been examined
347 * and it was found that it uses the same chip select as the previous
348 * message, so we left it active after the previous transfer, and it's
349 * active already.
b43d65f7
LW
350 * @tx: current position in TX buffer to be read
351 * @tx_end: end position in TX buffer to be read
352 * @rx: current position in RX buffer to be written
353 * @rx_end: end position in RX buffer to be written
12e8b325
LW
354 * @read: the type of read currently going on
355 * @write: the type of write currently going on
356 * @exp_fifo_level: expected FIFO level
357 * @dma_rx_channel: optional channel for RX DMA
358 * @dma_tx_channel: optional channel for TX DMA
359 * @sgt_rx: scattertable for the RX transfer
360 * @sgt_tx: scattertable for the TX transfer
361 * @dummypage: a dummy page used for driving data on the bus with DMA
f6f46de1
RS
362 * @cur_cs: current chip select (gpio)
363 * @chipselects: list of chipselects (gpios)
b43d65f7
LW
364 */
365struct pl022 {
366 struct amba_device *adev;
367 struct vendor_data *vendor;
368 resource_size_t phybase;
369 void __iomem *virtbase;
370 struct clk *clk;
4f5e1b37
PC
371 /* Two optional pin states - default & sleep */
372 struct pinctrl *pinctrl;
373 struct pinctrl_state *pins_default;
374 struct pinctrl_state *pins_sleep;
b43d65f7
LW
375 struct spi_master *master;
376 struct pl022_ssp_controller *master_info;
ffbbdd21 377 /* Message per-transfer pump */
b43d65f7
LW
378 struct tasklet_struct pump_transfers;
379 struct spi_message *cur_msg;
380 struct spi_transfer *cur_transfer;
381 struct chip_data *cur_chip;
8b8d7191 382 bool next_msg_cs_active;
b43d65f7
LW
383 void *tx;
384 void *tx_end;
385 void *rx;
386 void *rx_end;
387 enum ssp_reading read;
388 enum ssp_writing write;
fc05475f 389 u32 exp_fifo_level;
083be3f0
LW
390 enum ssp_rx_level_trig rx_lev_trig;
391 enum ssp_tx_level_trig tx_lev_trig;
b1b6b9aa
LW
392 /* DMA settings */
393#ifdef CONFIG_DMA_ENGINE
394 struct dma_chan *dma_rx_channel;
395 struct dma_chan *dma_tx_channel;
396 struct sg_table sgt_rx;
397 struct sg_table sgt_tx;
398 char *dummypage;
ffbbdd21 399 bool dma_running;
b1b6b9aa 400#endif
f6f46de1
RS
401 int cur_cs;
402 int *chipselects;
b43d65f7
LW
403};
404
405/**
406 * struct chip_data - To maintain runtime state of SSP for each client chip
556f4aeb
LW
407 * @cr0: Value of control register CR0 of SSP - on later ST variants this
408 * register is 32 bits wide rather than just 16
b43d65f7
LW
409 * @cr1: Value of control register CR1 of SSP
410 * @dmacr: Value of DMA control Register of SSP
411 * @cpsr: Value of Clock prescale register
412 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
413 * @enable_dma: Whether to enable DMA or not
b43d65f7 414 * @read: function ptr to be used to read when doing xfer for this chip
12e8b325 415 * @write: function ptr to be used to write when doing xfer for this chip
b43d65f7
LW
416 * @cs_control: chip select callback provided by chip
417 * @xfer_type: polling/interrupt/DMA
418 *
419 * Runtime state of the SSP controller, maintained per chip,
420 * This would be set according to the current message that would be served
421 */
422struct chip_data {
556f4aeb 423 u32 cr0;
b43d65f7
LW
424 u16 cr1;
425 u16 dmacr;
426 u16 cpsr;
427 u8 n_bytes;
b1b6b9aa 428 bool enable_dma;
b43d65f7
LW
429 enum ssp_reading read;
430 enum ssp_writing write;
431 void (*cs_control) (u32 command);
432 int xfer_type;
433};
434
435/**
436 * null_cs_control - Dummy chip select function
437 * @command: select/delect the chip
438 *
439 * If no chip select function is provided by client this is used as dummy
440 * chip select
441 */
442static void null_cs_control(u32 command)
443{
444 pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
445}
446
f6f46de1
RS
447static void pl022_cs_control(struct pl022 *pl022, u32 command)
448{
449 if (gpio_is_valid(pl022->cur_cs))
450 gpio_set_value(pl022->cur_cs, command);
451 else
452 pl022->cur_chip->cs_control(command);
453}
454
b43d65f7
LW
455/**
456 * giveback - current spi_message is over, schedule next message and call
457 * callback of this message. Assumes that caller already
458 * set message->status; dma and pio irqs are blocked
459 * @pl022: SSP driver private data structure
460 */
461static void giveback(struct pl022 *pl022)
462{
463 struct spi_transfer *last_transfer;
8b8d7191 464 pl022->next_msg_cs_active = false;
b43d65f7 465
8b8d7191 466 last_transfer = list_entry(pl022->cur_msg->transfers.prev,
b43d65f7
LW
467 struct spi_transfer,
468 transfer_list);
469
470 /* Delay if requested before any change in chip select */
471 if (last_transfer->delay_usecs)
472 /*
473 * FIXME: This runs in interrupt context.
474 * Is this really smart?
475 */
476 udelay(last_transfer->delay_usecs);
477
8b8d7191 478 if (!last_transfer->cs_change) {
b43d65f7
LW
479 struct spi_message *next_msg;
480
8b8d7191
VS
481 /*
482 * cs_change was not set. We can keep the chip select
483 * enabled if there is message in the queue and it is
484 * for the same spi device.
b43d65f7
LW
485 *
486 * We cannot postpone this until pump_messages, because
487 * after calling msg->complete (below) the driver that
488 * sent the current message could be unloaded, which
489 * could invalidate the cs_control() callback...
490 */
b43d65f7 491 /* get a pointer to the next message, if any */
ffbbdd21 492 next_msg = spi_get_next_queued_message(pl022->master);
b43d65f7 493
8b8d7191
VS
494 /*
495 * see if the next and current messages point
496 * to the same spi device.
b43d65f7 497 */
8b8d7191 498 if (next_msg && next_msg->spi != pl022->cur_msg->spi)
b43d65f7 499 next_msg = NULL;
8b8d7191 500 if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
f6f46de1 501 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
8b8d7191
VS
502 else
503 pl022->next_msg_cs_active = true;
ffbbdd21 504
b43d65f7 505 }
8b8d7191 506
8b8d7191
VS
507 pl022->cur_msg = NULL;
508 pl022->cur_transfer = NULL;
509 pl022->cur_chip = NULL;
ffbbdd21 510 spi_finalize_current_message(pl022->master);
fd316941
VS
511
512 /* disable the SPI/SSP operation */
513 writew((readw(SSP_CR1(pl022->virtbase)) &
514 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
515
b43d65f7
LW
516}
517
518/**
519 * flush - flush the FIFO to reach a clean state
520 * @pl022: SSP driver private data structure
521 */
522static int flush(struct pl022 *pl022)
523{
524 unsigned long limit = loops_per_jiffy << 1;
525
526 dev_dbg(&pl022->adev->dev, "flush\n");
527 do {
528 while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
529 readw(SSP_DR(pl022->virtbase));
530 } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
fc05475f
LW
531
532 pl022->exp_fifo_level = 0;
533
b43d65f7
LW
534 return limit;
535}
536
537/**
538 * restore_state - Load configuration of current chip
539 * @pl022: SSP driver private data structure
540 */
541static void restore_state(struct pl022 *pl022)
542{
543 struct chip_data *chip = pl022->cur_chip;
544
556f4aeb
LW
545 if (pl022->vendor->extended_cr)
546 writel(chip->cr0, SSP_CR0(pl022->virtbase));
547 else
548 writew(chip->cr0, SSP_CR0(pl022->virtbase));
b43d65f7
LW
549 writew(chip->cr1, SSP_CR1(pl022->virtbase));
550 writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
551 writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
552 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
553 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
554}
555
b43d65f7
LW
556/*
557 * Default SSP Register Values
558 */
559#define DEFAULT_SSP_REG_CR0 ( \
560 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
556f4aeb
LW
561 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
562 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
563 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
564 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
565)
566
567/* ST versions have slightly different bit layout */
568#define DEFAULT_SSP_REG_CR0_ST ( \
569 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
570 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
b43d65f7 571 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
ee2b805c 572 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
556f4aeb
LW
573 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
574 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \
575 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
b43d65f7
LW
576)
577
781c7b12
LW
578/* The PL023 version is slightly different again */
579#define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
580 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
581 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
582 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
583 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
584)
585
b43d65f7
LW
586#define DEFAULT_SSP_REG_CR1 ( \
587 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
588 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
589 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
556f4aeb 590 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
b43d65f7
LW
591)
592
556f4aeb
LW
593/* ST versions extend this register to use all 16 bits */
594#define DEFAULT_SSP_REG_CR1_ST ( \
595 DEFAULT_SSP_REG_CR1 | \
596 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
597 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
598 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
599 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
600 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
601)
602
781c7b12
LW
603/*
604 * The PL023 variant has further differences: no loopback mode, no microwire
605 * support, and a new clock feedback delay setting.
606 */
607#define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
608 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
609 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
610 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
611 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
612 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
613 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
614 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
615 GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
616)
556f4aeb 617
b43d65f7 618#define DEFAULT_SSP_REG_CPSR ( \
556f4aeb 619 GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
b43d65f7
LW
620)
621
622#define DEFAULT_SSP_REG_DMACR (\
623 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
624 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
625)
626
781c7b12
LW
627/**
628 * load_ssp_default_config - Load default configuration for SSP
629 * @pl022: SSP driver private data structure
630 */
b43d65f7
LW
631static void load_ssp_default_config(struct pl022 *pl022)
632{
781c7b12
LW
633 if (pl022->vendor->pl023) {
634 writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
635 writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
636 } else if (pl022->vendor->extended_cr) {
556f4aeb
LW
637 writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
638 writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
639 } else {
640 writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
641 writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
642 }
b43d65f7
LW
643 writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
644 writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
645 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
646 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
647}
648
649/**
650 * This will write to TX and read from RX according to the parameters
651 * set in pl022.
652 */
653static void readwriter(struct pl022 *pl022)
654{
655
656 /*
25985edc 657 * The FIFO depth is different between primecell variants.
b43d65f7
LW
658 * I believe filling in too much in the FIFO might cause
659 * errons in 8bit wide transfers on ARM variants (just 8 words
660 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
661 *
fc05475f
LW
662 * To prevent this issue, the TX FIFO is only filled to the
663 * unused RX FIFO fill length, regardless of what the TX
664 * FIFO status flag indicates.
b43d65f7
LW
665 */
666 dev_dbg(&pl022->adev->dev,
667 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
668 __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
669
670 /* Read as much as you can */
671 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
672 && (pl022->rx < pl022->rx_end)) {
673 switch (pl022->read) {
674 case READING_NULL:
675 readw(SSP_DR(pl022->virtbase));
676 break;
677 case READING_U8:
678 *(u8 *) (pl022->rx) =
679 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
680 break;
681 case READING_U16:
682 *(u16 *) (pl022->rx) =
683 (u16) readw(SSP_DR(pl022->virtbase));
684 break;
685 case READING_U32:
686 *(u32 *) (pl022->rx) =
687 readl(SSP_DR(pl022->virtbase));
688 break;
689 }
690 pl022->rx += (pl022->cur_chip->n_bytes);
fc05475f 691 pl022->exp_fifo_level--;
b43d65f7
LW
692 }
693 /*
fc05475f 694 * Write as much as possible up to the RX FIFO size
b43d65f7 695 */
fc05475f 696 while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
b43d65f7
LW
697 && (pl022->tx < pl022->tx_end)) {
698 switch (pl022->write) {
699 case WRITING_NULL:
700 writew(0x0, SSP_DR(pl022->virtbase));
701 break;
702 case WRITING_U8:
703 writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
704 break;
705 case WRITING_U16:
706 writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
707 break;
708 case WRITING_U32:
709 writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
710 break;
711 }
712 pl022->tx += (pl022->cur_chip->n_bytes);
fc05475f 713 pl022->exp_fifo_level++;
b43d65f7
LW
714 /*
715 * This inner reader takes care of things appearing in the RX
716 * FIFO as we're transmitting. This will happen a lot since the
717 * clock starts running when you put things into the TX FIFO,
25985edc 718 * and then things are continuously clocked into the RX FIFO.
b43d65f7
LW
719 */
720 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
721 && (pl022->rx < pl022->rx_end)) {
722 switch (pl022->read) {
723 case READING_NULL:
724 readw(SSP_DR(pl022->virtbase));
725 break;
726 case READING_U8:
727 *(u8 *) (pl022->rx) =
728 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
729 break;
730 case READING_U16:
731 *(u16 *) (pl022->rx) =
732 (u16) readw(SSP_DR(pl022->virtbase));
733 break;
734 case READING_U32:
735 *(u32 *) (pl022->rx) =
736 readl(SSP_DR(pl022->virtbase));
737 break;
738 }
739 pl022->rx += (pl022->cur_chip->n_bytes);
fc05475f 740 pl022->exp_fifo_level--;
b43d65f7
LW
741 }
742 }
743 /*
744 * When we exit here the TX FIFO should be full and the RX FIFO
745 * should be empty
746 */
747}
748
b43d65f7
LW
749/**
750 * next_transfer - Move to the Next transfer in the current spi message
751 * @pl022: SSP driver private data structure
752 *
753 * This function moves though the linked list of spi transfers in the
754 * current spi message and returns with the state of current spi
755 * message i.e whether its last transfer is done(STATE_DONE) or
756 * Next transfer is ready(STATE_RUNNING)
757 */
758static void *next_transfer(struct pl022 *pl022)
759{
760 struct spi_message *msg = pl022->cur_msg;
761 struct spi_transfer *trans = pl022->cur_transfer;
762
763 /* Move to next transfer */
764 if (trans->transfer_list.next != &msg->transfers) {
765 pl022->cur_transfer =
766 list_entry(trans->transfer_list.next,
767 struct spi_transfer, transfer_list);
768 return STATE_RUNNING;
769 }
770 return STATE_DONE;
771}
b1b6b9aa
LW
772
773/*
774 * This DMA functionality is only compiled in if we have
775 * access to the generic DMA devices/DMA engine.
776 */
777#ifdef CONFIG_DMA_ENGINE
778static void unmap_free_dma_scatter(struct pl022 *pl022)
779{
780 /* Unmap and free the SG tables */
b7298896 781 dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
b1b6b9aa 782 pl022->sgt_tx.nents, DMA_TO_DEVICE);
b7298896 783 dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
b1b6b9aa
LW
784 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
785 sg_free_table(&pl022->sgt_rx);
786 sg_free_table(&pl022->sgt_tx);
787}
788
789static void dma_callback(void *data)
790{
791 struct pl022 *pl022 = data;
792 struct spi_message *msg = pl022->cur_msg;
793
794 BUG_ON(!pl022->sgt_rx.sgl);
795
796#ifdef VERBOSE_DEBUG
797 /*
798 * Optionally dump out buffers to inspect contents, this is
799 * good if you want to convince yourself that the loopback
800 * read/write contents are the same, when adopting to a new
801 * DMA engine.
802 */
803 {
804 struct scatterlist *sg;
805 unsigned int i;
806
807 dma_sync_sg_for_cpu(&pl022->adev->dev,
808 pl022->sgt_rx.sgl,
809 pl022->sgt_rx.nents,
810 DMA_FROM_DEVICE);
811
812 for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
813 dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
814 print_hex_dump(KERN_ERR, "SPI RX: ",
815 DUMP_PREFIX_OFFSET,
816 16,
817 1,
818 sg_virt(sg),
819 sg_dma_len(sg),
820 1);
821 }
822 for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
823 dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
824 print_hex_dump(KERN_ERR, "SPI TX: ",
825 DUMP_PREFIX_OFFSET,
826 16,
827 1,
828 sg_virt(sg),
829 sg_dma_len(sg),
830 1);
831 }
832 }
833#endif
834
835 unmap_free_dma_scatter(pl022);
836
25985edc 837 /* Update total bytes transferred */
b1b6b9aa
LW
838 msg->actual_length += pl022->cur_transfer->len;
839 if (pl022->cur_transfer->cs_change)
f6f46de1 840 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
b1b6b9aa
LW
841
842 /* Move to next transfer */
843 msg->state = next_transfer(pl022);
844 tasklet_schedule(&pl022->pump_transfers);
845}
846
847static void setup_dma_scatter(struct pl022 *pl022,
848 void *buffer,
849 unsigned int length,
850 struct sg_table *sgtab)
851{
852 struct scatterlist *sg;
853 int bytesleft = length;
854 void *bufp = buffer;
855 int mapbytes;
856 int i;
857
858 if (buffer) {
859 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
860 /*
861 * If there are less bytes left than what fits
862 * in the current page (plus page alignment offset)
863 * we just feed in this, else we stuff in as much
864 * as we can.
865 */
866 if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
867 mapbytes = bytesleft;
868 else
869 mapbytes = PAGE_SIZE - offset_in_page(bufp);
870 sg_set_page(sg, virt_to_page(bufp),
871 mapbytes, offset_in_page(bufp));
872 bufp += mapbytes;
873 bytesleft -= mapbytes;
874 dev_dbg(&pl022->adev->dev,
875 "set RX/TX target page @ %p, %d bytes, %d left\n",
876 bufp, mapbytes, bytesleft);
877 }
878 } else {
879 /* Map the dummy buffer on every page */
880 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
881 if (bytesleft < PAGE_SIZE)
882 mapbytes = bytesleft;
883 else
884 mapbytes = PAGE_SIZE;
885 sg_set_page(sg, virt_to_page(pl022->dummypage),
886 mapbytes, 0);
887 bytesleft -= mapbytes;
888 dev_dbg(&pl022->adev->dev,
889 "set RX/TX to dummy page %d bytes, %d left\n",
890 mapbytes, bytesleft);
891
892 }
893 }
894 BUG_ON(bytesleft);
895}
896
897/**
898 * configure_dma - configures the channels for the next transfer
899 * @pl022: SSP driver's private data structure
900 */
901static int configure_dma(struct pl022 *pl022)
902{
903 struct dma_slave_config rx_conf = {
904 .src_addr = SSP_DR(pl022->phybase),
a485df4b 905 .direction = DMA_DEV_TO_MEM,
258aea76 906 .device_fc = false,
b1b6b9aa
LW
907 };
908 struct dma_slave_config tx_conf = {
909 .dst_addr = SSP_DR(pl022->phybase),
a485df4b 910 .direction = DMA_MEM_TO_DEV,
258aea76 911 .device_fc = false,
b1b6b9aa
LW
912 };
913 unsigned int pages;
914 int ret;
082086f2 915 int rx_sglen, tx_sglen;
b1b6b9aa
LW
916 struct dma_chan *rxchan = pl022->dma_rx_channel;
917 struct dma_chan *txchan = pl022->dma_tx_channel;
918 struct dma_async_tx_descriptor *rxdesc;
919 struct dma_async_tx_descriptor *txdesc;
b1b6b9aa
LW
920
921 /* Check that the channels are available */
922 if (!rxchan || !txchan)
923 return -ENODEV;
924
083be3f0
LW
925 /*
926 * If supplied, the DMA burstsize should equal the FIFO trigger level.
927 * Notice that the DMA engine uses one-to-one mapping. Since we can
928 * not trigger on 2 elements this needs explicit mapping rather than
929 * calculation.
930 */
931 switch (pl022->rx_lev_trig) {
932 case SSP_RX_1_OR_MORE_ELEM:
933 rx_conf.src_maxburst = 1;
934 break;
935 case SSP_RX_4_OR_MORE_ELEM:
936 rx_conf.src_maxburst = 4;
937 break;
938 case SSP_RX_8_OR_MORE_ELEM:
939 rx_conf.src_maxburst = 8;
940 break;
941 case SSP_RX_16_OR_MORE_ELEM:
942 rx_conf.src_maxburst = 16;
943 break;
944 case SSP_RX_32_OR_MORE_ELEM:
945 rx_conf.src_maxburst = 32;
946 break;
947 default:
948 rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
949 break;
950 }
951
952 switch (pl022->tx_lev_trig) {
953 case SSP_TX_1_OR_MORE_EMPTY_LOC:
954 tx_conf.dst_maxburst = 1;
955 break;
956 case SSP_TX_4_OR_MORE_EMPTY_LOC:
957 tx_conf.dst_maxburst = 4;
958 break;
959 case SSP_TX_8_OR_MORE_EMPTY_LOC:
960 tx_conf.dst_maxburst = 8;
961 break;
962 case SSP_TX_16_OR_MORE_EMPTY_LOC:
963 tx_conf.dst_maxburst = 16;
964 break;
965 case SSP_TX_32_OR_MORE_EMPTY_LOC:
966 tx_conf.dst_maxburst = 32;
967 break;
968 default:
969 tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
970 break;
971 }
972
b1b6b9aa
LW
973 switch (pl022->read) {
974 case READING_NULL:
975 /* Use the same as for writing */
976 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
977 break;
978 case READING_U8:
979 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
980 break;
981 case READING_U16:
982 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
983 break;
984 case READING_U32:
985 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
986 break;
987 }
988
989 switch (pl022->write) {
990 case WRITING_NULL:
991 /* Use the same as for reading */
992 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
993 break;
994 case WRITING_U8:
995 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
996 break;
997 case WRITING_U16:
998 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
999 break;
1000 case WRITING_U32:
bc3f67a3 1001 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
b1b6b9aa
LW
1002 break;
1003 }
1004
1005 /* SPI pecularity: we need to read and write the same width */
1006 if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1007 rx_conf.src_addr_width = tx_conf.dst_addr_width;
1008 if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1009 tx_conf.dst_addr_width = rx_conf.src_addr_width;
1010 BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
1011
ecd442fd
LW
1012 dmaengine_slave_config(rxchan, &rx_conf);
1013 dmaengine_slave_config(txchan, &tx_conf);
b1b6b9aa
LW
1014
1015 /* Create sglists for the transfers */
b181565e 1016 pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
b1b6b9aa
LW
1017 dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1018
538a18dc 1019 ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
b1b6b9aa
LW
1020 if (ret)
1021 goto err_alloc_rx_sg;
1022
538a18dc 1023 ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
b1b6b9aa
LW
1024 if (ret)
1025 goto err_alloc_tx_sg;
1026
1027 /* Fill in the scatterlists for the RX+TX buffers */
1028 setup_dma_scatter(pl022, pl022->rx,
1029 pl022->cur_transfer->len, &pl022->sgt_rx);
1030 setup_dma_scatter(pl022, pl022->tx,
1031 pl022->cur_transfer->len, &pl022->sgt_tx);
1032
1033 /* Map DMA buffers */
082086f2 1034 rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
b1b6b9aa 1035 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
082086f2 1036 if (!rx_sglen)
b1b6b9aa
LW
1037 goto err_rx_sgmap;
1038
082086f2 1039 tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
b1b6b9aa 1040 pl022->sgt_tx.nents, DMA_TO_DEVICE);
082086f2 1041 if (!tx_sglen)
b1b6b9aa
LW
1042 goto err_tx_sgmap;
1043
1044 /* Send both scatterlists */
16052827 1045 rxdesc = dmaengine_prep_slave_sg(rxchan,
b1b6b9aa 1046 pl022->sgt_rx.sgl,
082086f2 1047 rx_sglen,
a485df4b 1048 DMA_DEV_TO_MEM,
b1b6b9aa
LW
1049 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1050 if (!rxdesc)
1051 goto err_rxdesc;
1052
16052827 1053 txdesc = dmaengine_prep_slave_sg(txchan,
b1b6b9aa 1054 pl022->sgt_tx.sgl,
082086f2 1055 tx_sglen,
a485df4b 1056 DMA_MEM_TO_DEV,
b1b6b9aa
LW
1057 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1058 if (!txdesc)
1059 goto err_txdesc;
1060
1061 /* Put the callback on the RX transfer only, that should finish last */
1062 rxdesc->callback = dma_callback;
1063 rxdesc->callback_param = pl022;
1064
1065 /* Submit and fire RX and TX with TX last so we're ready to read! */
ecd442fd
LW
1066 dmaengine_submit(rxdesc);
1067 dmaengine_submit(txdesc);
1068 dma_async_issue_pending(rxchan);
1069 dma_async_issue_pending(txchan);
ffbbdd21 1070 pl022->dma_running = true;
b1b6b9aa
LW
1071
1072 return 0;
1073
b1b6b9aa 1074err_txdesc:
ecd442fd 1075 dmaengine_terminate_all(txchan);
b1b6b9aa 1076err_rxdesc:
ecd442fd 1077 dmaengine_terminate_all(rxchan);
b7298896 1078 dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
b1b6b9aa
LW
1079 pl022->sgt_tx.nents, DMA_TO_DEVICE);
1080err_tx_sgmap:
b7298896 1081 dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
b1b6b9aa
LW
1082 pl022->sgt_tx.nents, DMA_FROM_DEVICE);
1083err_rx_sgmap:
1084 sg_free_table(&pl022->sgt_tx);
1085err_alloc_tx_sg:
1086 sg_free_table(&pl022->sgt_rx);
1087err_alloc_rx_sg:
1088 return -ENOMEM;
1089}
1090
a5ab6291 1091static int __devinit pl022_dma_probe(struct pl022 *pl022)
b1b6b9aa
LW
1092{
1093 dma_cap_mask_t mask;
1094
1095 /* Try to acquire a generic DMA engine slave channel */
1096 dma_cap_zero(mask);
1097 dma_cap_set(DMA_SLAVE, mask);
1098 /*
1099 * We need both RX and TX channels to do DMA, else do none
1100 * of them.
1101 */
1102 pl022->dma_rx_channel = dma_request_channel(mask,
1103 pl022->master_info->dma_filter,
1104 pl022->master_info->dma_rx_param);
1105 if (!pl022->dma_rx_channel) {
43c64015 1106 dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
b1b6b9aa
LW
1107 goto err_no_rxchan;
1108 }
1109
1110 pl022->dma_tx_channel = dma_request_channel(mask,
1111 pl022->master_info->dma_filter,
1112 pl022->master_info->dma_tx_param);
1113 if (!pl022->dma_tx_channel) {
43c64015 1114 dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
b1b6b9aa
LW
1115 goto err_no_txchan;
1116 }
1117
1118 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1119 if (!pl022->dummypage) {
43c64015 1120 dev_dbg(&pl022->adev->dev, "no DMA dummypage!\n");
b1b6b9aa
LW
1121 goto err_no_dummypage;
1122 }
1123
1124 dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1125 dma_chan_name(pl022->dma_rx_channel),
1126 dma_chan_name(pl022->dma_tx_channel));
1127
1128 return 0;
1129
1130err_no_dummypage:
1131 dma_release_channel(pl022->dma_tx_channel);
1132err_no_txchan:
1133 dma_release_channel(pl022->dma_rx_channel);
1134 pl022->dma_rx_channel = NULL;
1135err_no_rxchan:
43c64015
VK
1136 dev_err(&pl022->adev->dev,
1137 "Failed to work in dma mode, work without dma!\n");
b1b6b9aa
LW
1138 return -ENODEV;
1139}
1140
1141static void terminate_dma(struct pl022 *pl022)
1142{
1143 struct dma_chan *rxchan = pl022->dma_rx_channel;
1144 struct dma_chan *txchan = pl022->dma_tx_channel;
1145
ecd442fd
LW
1146 dmaengine_terminate_all(rxchan);
1147 dmaengine_terminate_all(txchan);
b1b6b9aa 1148 unmap_free_dma_scatter(pl022);
ffbbdd21 1149 pl022->dma_running = false;
b1b6b9aa
LW
1150}
1151
1152static void pl022_dma_remove(struct pl022 *pl022)
1153{
ffbbdd21 1154 if (pl022->dma_running)
b1b6b9aa
LW
1155 terminate_dma(pl022);
1156 if (pl022->dma_tx_channel)
1157 dma_release_channel(pl022->dma_tx_channel);
1158 if (pl022->dma_rx_channel)
1159 dma_release_channel(pl022->dma_rx_channel);
1160 kfree(pl022->dummypage);
1161}
1162
1163#else
1164static inline int configure_dma(struct pl022 *pl022)
1165{
1166 return -ENODEV;
1167}
1168
1169static inline int pl022_dma_probe(struct pl022 *pl022)
1170{
1171 return 0;
1172}
1173
1174static inline void pl022_dma_remove(struct pl022 *pl022)
1175{
1176}
1177#endif
1178
b43d65f7
LW
1179/**
1180 * pl022_interrupt_handler - Interrupt handler for SSP controller
1181 *
1182 * This function handles interrupts generated for an interrupt based transfer.
1183 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1184 * current message's state as STATE_ERROR and schedule the tasklet
1185 * pump_transfers which will do the postprocessing of the current message by
1186 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1187 * more data, and writes data in TX FIFO till it is not full. If we complete
1188 * the transfer we move to the next transfer and schedule the tasklet.
1189 */
1190static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1191{
1192 struct pl022 *pl022 = dev_id;
1193 struct spi_message *msg = pl022->cur_msg;
1194 u16 irq_status = 0;
1195 u16 flag = 0;
1196
1197 if (unlikely(!msg)) {
1198 dev_err(&pl022->adev->dev,
1199 "bad message state in interrupt handler");
1200 /* Never fail */
1201 return IRQ_HANDLED;
1202 }
1203
1204 /* Read the Interrupt Status Register */
1205 irq_status = readw(SSP_MIS(pl022->virtbase));
1206
1207 if (unlikely(!irq_status))
1208 return IRQ_NONE;
1209
b1b6b9aa
LW
1210 /*
1211 * This handles the FIFO interrupts, the timeout
1212 * interrupts are flatly ignored, they cannot be
1213 * trusted.
1214 */
b43d65f7
LW
1215 if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1216 /*
1217 * Overrun interrupt - bail out since our Data has been
1218 * corrupted
1219 */
b1b6b9aa 1220 dev_err(&pl022->adev->dev, "FIFO overrun\n");
b43d65f7
LW
1221 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1222 dev_err(&pl022->adev->dev,
1223 "RXFIFO is full\n");
1224 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF)
1225 dev_err(&pl022->adev->dev,
1226 "TXFIFO is full\n");
1227
1228 /*
1229 * Disable and clear interrupts, disable SSP,
1230 * mark message with bad status so it can be
1231 * retried.
1232 */
1233 writew(DISABLE_ALL_INTERRUPTS,
1234 SSP_IMSC(pl022->virtbase));
1235 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1236 writew((readw(SSP_CR1(pl022->virtbase)) &
1237 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1238 msg->state = STATE_ERROR;
1239
1240 /* Schedule message queue handler */
1241 tasklet_schedule(&pl022->pump_transfers);
1242 return IRQ_HANDLED;
1243 }
1244
1245 readwriter(pl022);
1246
1247 if ((pl022->tx == pl022->tx_end) && (flag == 0)) {
1248 flag = 1;
172289df
CB
1249 /* Disable Transmit interrupt, enable receive interrupt */
1250 writew((readw(SSP_IMSC(pl022->virtbase)) &
1251 ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
b43d65f7
LW
1252 SSP_IMSC(pl022->virtbase));
1253 }
1254
1255 /*
1256 * Since all transactions must write as much as shall be read,
1257 * we can conclude the entire transaction once RX is complete.
1258 * At this point, all TX will always be finished.
1259 */
1260 if (pl022->rx >= pl022->rx_end) {
1261 writew(DISABLE_ALL_INTERRUPTS,
1262 SSP_IMSC(pl022->virtbase));
1263 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1264 if (unlikely(pl022->rx > pl022->rx_end)) {
1265 dev_warn(&pl022->adev->dev, "read %u surplus "
1266 "bytes (did you request an odd "
1267 "number of bytes on a 16bit bus?)\n",
1268 (u32) (pl022->rx - pl022->rx_end));
1269 }
25985edc 1270 /* Update total bytes transferred */
b43d65f7
LW
1271 msg->actual_length += pl022->cur_transfer->len;
1272 if (pl022->cur_transfer->cs_change)
f6f46de1 1273 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
b43d65f7
LW
1274 /* Move to next transfer */
1275 msg->state = next_transfer(pl022);
1276 tasklet_schedule(&pl022->pump_transfers);
1277 return IRQ_HANDLED;
1278 }
1279
1280 return IRQ_HANDLED;
1281}
1282
1283/**
1284 * This sets up the pointers to memory for the next message to
1285 * send out on the SPI bus.
1286 */
1287static int set_up_next_transfer(struct pl022 *pl022,
1288 struct spi_transfer *transfer)
1289{
1290 int residue;
1291
1292 /* Sanity check the message for this bus width */
1293 residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1294 if (unlikely(residue != 0)) {
1295 dev_err(&pl022->adev->dev,
1296 "message of %u bytes to transmit but the current "
1297 "chip bus has a data width of %u bytes!\n",
1298 pl022->cur_transfer->len,
1299 pl022->cur_chip->n_bytes);
1300 dev_err(&pl022->adev->dev, "skipping this message\n");
1301 return -EIO;
1302 }
1303 pl022->tx = (void *)transfer->tx_buf;
1304 pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1305 pl022->rx = (void *)transfer->rx_buf;
1306 pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1307 pl022->write =
1308 pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1309 pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1310 return 0;
1311}
1312
1313/**
b1b6b9aa
LW
1314 * pump_transfers - Tasklet function which schedules next transfer
1315 * when running in interrupt or DMA transfer mode.
b43d65f7
LW
1316 * @data: SSP driver private data structure
1317 *
1318 */
1319static void pump_transfers(unsigned long data)
1320{
1321 struct pl022 *pl022 = (struct pl022 *) data;
1322 struct spi_message *message = NULL;
1323 struct spi_transfer *transfer = NULL;
1324 struct spi_transfer *previous = NULL;
1325
1326 /* Get current state information */
1327 message = pl022->cur_msg;
1328 transfer = pl022->cur_transfer;
1329
1330 /* Handle for abort */
1331 if (message->state == STATE_ERROR) {
1332 message->status = -EIO;
1333 giveback(pl022);
1334 return;
1335 }
1336
1337 /* Handle end of message */
1338 if (message->state == STATE_DONE) {
1339 message->status = 0;
1340 giveback(pl022);
1341 return;
1342 }
1343
1344 /* Delay if requested at end of transfer before CS change */
1345 if (message->state == STATE_RUNNING) {
1346 previous = list_entry(transfer->transfer_list.prev,
1347 struct spi_transfer,
1348 transfer_list);
1349 if (previous->delay_usecs)
1350 /*
1351 * FIXME: This runs in interrupt context.
1352 * Is this really smart?
1353 */
1354 udelay(previous->delay_usecs);
1355
8b8d7191 1356 /* Reselect chip select only if cs_change was requested */
b43d65f7 1357 if (previous->cs_change)
f6f46de1 1358 pl022_cs_control(pl022, SSP_CHIP_SELECT);
b43d65f7
LW
1359 } else {
1360 /* STATE_START */
1361 message->state = STATE_RUNNING;
1362 }
1363
1364 if (set_up_next_transfer(pl022, transfer)) {
1365 message->state = STATE_ERROR;
1366 message->status = -EIO;
1367 giveback(pl022);
1368 return;
1369 }
1370 /* Flush the FIFOs and let's go! */
1371 flush(pl022);
b43d65f7 1372
b1b6b9aa
LW
1373 if (pl022->cur_chip->enable_dma) {
1374 if (configure_dma(pl022)) {
1375 dev_dbg(&pl022->adev->dev,
1376 "configuration of DMA failed, fall back to interrupt mode\n");
1377 goto err_config_dma;
1378 }
b43d65f7
LW
1379 return;
1380 }
b43d65f7 1381
b1b6b9aa 1382err_config_dma:
172289df
CB
1383 /* enable all interrupts except RX */
1384 writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
b43d65f7
LW
1385}
1386
b1b6b9aa 1387static void do_interrupt_dma_transfer(struct pl022 *pl022)
b43d65f7 1388{
172289df
CB
1389 /*
1390 * Default is to enable all interrupts except RX -
1391 * this will be enabled once TX is complete
1392 */
1393 u32 irqflags = ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM;
b43d65f7 1394
8b8d7191
VS
1395 /* Enable target chip, if not already active */
1396 if (!pl022->next_msg_cs_active)
f6f46de1 1397 pl022_cs_control(pl022, SSP_CHIP_SELECT);
b43d65f7 1398
b43d65f7
LW
1399 if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1400 /* Error path */
1401 pl022->cur_msg->state = STATE_ERROR;
1402 pl022->cur_msg->status = -EIO;
1403 giveback(pl022);
1404 return;
1405 }
b1b6b9aa
LW
1406 /* If we're using DMA, set up DMA here */
1407 if (pl022->cur_chip->enable_dma) {
1408 /* Configure DMA transfer */
1409 if (configure_dma(pl022)) {
1410 dev_dbg(&pl022->adev->dev,
1411 "configuration of DMA failed, fall back to interrupt mode\n");
1412 goto err_config_dma;
1413 }
1414 /* Disable interrupts in DMA mode, IRQ from DMA controller */
1415 irqflags = DISABLE_ALL_INTERRUPTS;
1416 }
1417err_config_dma:
b43d65f7
LW
1418 /* Enable SSP, turn on interrupts */
1419 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1420 SSP_CR1(pl022->virtbase));
b1b6b9aa 1421 writew(irqflags, SSP_IMSC(pl022->virtbase));
b43d65f7
LW
1422}
1423
b1b6b9aa 1424static void do_polling_transfer(struct pl022 *pl022)
b43d65f7 1425{
b43d65f7
LW
1426 struct spi_message *message = NULL;
1427 struct spi_transfer *transfer = NULL;
1428 struct spi_transfer *previous = NULL;
1429 struct chip_data *chip;
a18c266f 1430 unsigned long time, timeout;
b43d65f7
LW
1431
1432 chip = pl022->cur_chip;
1433 message = pl022->cur_msg;
1434
1435 while (message->state != STATE_DONE) {
1436 /* Handle for abort */
1437 if (message->state == STATE_ERROR)
1438 break;
1439 transfer = pl022->cur_transfer;
1440
1441 /* Delay if requested at end of transfer */
1442 if (message->state == STATE_RUNNING) {
1443 previous =
1444 list_entry(transfer->transfer_list.prev,
1445 struct spi_transfer, transfer_list);
1446 if (previous->delay_usecs)
1447 udelay(previous->delay_usecs);
1448 if (previous->cs_change)
f6f46de1 1449 pl022_cs_control(pl022, SSP_CHIP_SELECT);
b43d65f7
LW
1450 } else {
1451 /* STATE_START */
1452 message->state = STATE_RUNNING;
8b8d7191 1453 if (!pl022->next_msg_cs_active)
f6f46de1 1454 pl022_cs_control(pl022, SSP_CHIP_SELECT);
b43d65f7
LW
1455 }
1456
1457 /* Configuration Changing Per Transfer */
1458 if (set_up_next_transfer(pl022, transfer)) {
1459 /* Error path */
1460 message->state = STATE_ERROR;
1461 break;
1462 }
1463 /* Flush FIFOs and enable SSP */
1464 flush(pl022);
1465 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1466 SSP_CR1(pl022->virtbase));
1467
556f4aeb 1468 dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
a18c266f
MT
1469
1470 timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1471 while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1472 time = jiffies;
b43d65f7 1473 readwriter(pl022);
a18c266f
MT
1474 if (time_after(time, timeout)) {
1475 dev_warn(&pl022->adev->dev,
1476 "%s: timeout!\n", __func__);
1477 message->state = STATE_ERROR;
1478 goto out;
1479 }
521999bd 1480 cpu_relax();
a18c266f 1481 }
b43d65f7 1482
25985edc 1483 /* Update total byte transferred */
b43d65f7
LW
1484 message->actual_length += pl022->cur_transfer->len;
1485 if (pl022->cur_transfer->cs_change)
f6f46de1 1486 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
b43d65f7
LW
1487 /* Move to next transfer */
1488 message->state = next_transfer(pl022);
1489 }
a18c266f 1490out:
b43d65f7
LW
1491 /* Handle end of message */
1492 if (message->state == STATE_DONE)
1493 message->status = 0;
1494 else
1495 message->status = -EIO;
1496
1497 giveback(pl022);
1498 return;
1499}
1500
ffbbdd21
LW
1501static int pl022_transfer_one_message(struct spi_master *master,
1502 struct spi_message *msg)
b43d65f7 1503{
ffbbdd21 1504 struct pl022 *pl022 = spi_master_get_devdata(master);
b43d65f7
LW
1505
1506 /* Initial message state */
ffbbdd21
LW
1507 pl022->cur_msg = msg;
1508 msg->state = STATE_START;
1509
1510 pl022->cur_transfer = list_entry(msg->transfers.next,
1511 struct spi_transfer, transfer_list);
b43d65f7
LW
1512
1513 /* Setup the SPI using the per chip configuration */
ffbbdd21 1514 pl022->cur_chip = spi_get_ctldata(msg->spi);
f6f46de1 1515 pl022->cur_cs = pl022->chipselects[msg->spi->chip_select];
d4b6af2e 1516
b43d65f7
LW
1517 restore_state(pl022);
1518 flush(pl022);
1519
1520 if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1521 do_polling_transfer(pl022);
b43d65f7 1522 else
b1b6b9aa 1523 do_interrupt_dma_transfer(pl022);
b43d65f7
LW
1524
1525 return 0;
1526}
1527
ffbbdd21 1528static int pl022_prepare_transfer_hardware(struct spi_master *master)
b43d65f7 1529{
ffbbdd21 1530 struct pl022 *pl022 = spi_master_get_devdata(master);
b43d65f7 1531
ffbbdd21
LW
1532 /*
1533 * Just make sure we have all we need to run the transfer by syncing
1534 * with the runtime PM framework.
1535 */
1536 pm_runtime_get_sync(&pl022->adev->dev);
b43d65f7
LW
1537 return 0;
1538}
1539
ffbbdd21 1540static int pl022_unprepare_transfer_hardware(struct spi_master *master)
b43d65f7 1541{
ffbbdd21 1542 struct pl022 *pl022 = spi_master_get_devdata(master);
b43d65f7 1543
ffbbdd21
LW
1544 /* nothing more to do - disable spi/ssp and power off */
1545 writew((readw(SSP_CR1(pl022->virtbase)) &
1546 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
b43d65f7 1547
ffbbdd21
LW
1548 if (pl022->master_info->autosuspend_delay > 0) {
1549 pm_runtime_mark_last_busy(&pl022->adev->dev);
1550 pm_runtime_put_autosuspend(&pl022->adev->dev);
1551 } else {
1552 pm_runtime_put(&pl022->adev->dev);
b43d65f7
LW
1553 }
1554
b43d65f7
LW
1555 return 0;
1556}
1557
1558static int verify_controller_parameters(struct pl022 *pl022,
f9d629c7 1559 struct pl022_config_chip const *chip_info)
b43d65f7 1560{
b43d65f7
LW
1561 if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1562 || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
5a1c98be 1563 dev_err(&pl022->adev->dev,
b43d65f7
LW
1564 "interface is configured incorrectly\n");
1565 return -EINVAL;
1566 }
1567 if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1568 (!pl022->vendor->unidir)) {
5a1c98be 1569 dev_err(&pl022->adev->dev,
b43d65f7
LW
1570 "unidirectional mode not supported in this "
1571 "hardware version\n");
1572 return -EINVAL;
1573 }
1574 if ((chip_info->hierarchy != SSP_MASTER)
1575 && (chip_info->hierarchy != SSP_SLAVE)) {
5a1c98be 1576 dev_err(&pl022->adev->dev,
b43d65f7
LW
1577 "hierarchy is configured incorrectly\n");
1578 return -EINVAL;
1579 }
b43d65f7
LW
1580 if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1581 && (chip_info->com_mode != DMA_TRANSFER)
1582 && (chip_info->com_mode != POLLING_TRANSFER)) {
5a1c98be 1583 dev_err(&pl022->adev->dev,
b43d65f7
LW
1584 "Communication mode is configured incorrectly\n");
1585 return -EINVAL;
1586 }
78b2b911
LW
1587 switch (chip_info->rx_lev_trig) {
1588 case SSP_RX_1_OR_MORE_ELEM:
1589 case SSP_RX_4_OR_MORE_ELEM:
1590 case SSP_RX_8_OR_MORE_ELEM:
1591 /* These are always OK, all variants can handle this */
1592 break;
1593 case SSP_RX_16_OR_MORE_ELEM:
1594 if (pl022->vendor->fifodepth < 16) {
1595 dev_err(&pl022->adev->dev,
1596 "RX FIFO Trigger Level is configured incorrectly\n");
1597 return -EINVAL;
1598 }
1599 break;
1600 case SSP_RX_32_OR_MORE_ELEM:
1601 if (pl022->vendor->fifodepth < 32) {
1602 dev_err(&pl022->adev->dev,
1603 "RX FIFO Trigger Level is configured incorrectly\n");
1604 return -EINVAL;
1605 }
1606 break;
1607 default:
5a1c98be 1608 dev_err(&pl022->adev->dev,
b43d65f7
LW
1609 "RX FIFO Trigger Level is configured incorrectly\n");
1610 return -EINVAL;
78b2b911 1611 break;
b43d65f7 1612 }
78b2b911
LW
1613 switch (chip_info->tx_lev_trig) {
1614 case SSP_TX_1_OR_MORE_EMPTY_LOC:
1615 case SSP_TX_4_OR_MORE_EMPTY_LOC:
1616 case SSP_TX_8_OR_MORE_EMPTY_LOC:
1617 /* These are always OK, all variants can handle this */
1618 break;
1619 case SSP_TX_16_OR_MORE_EMPTY_LOC:
1620 if (pl022->vendor->fifodepth < 16) {
1621 dev_err(&pl022->adev->dev,
1622 "TX FIFO Trigger Level is configured incorrectly\n");
1623 return -EINVAL;
1624 }
1625 break;
1626 case SSP_TX_32_OR_MORE_EMPTY_LOC:
1627 if (pl022->vendor->fifodepth < 32) {
1628 dev_err(&pl022->adev->dev,
1629 "TX FIFO Trigger Level is configured incorrectly\n");
1630 return -EINVAL;
1631 }
1632 break;
1633 default:
5a1c98be 1634 dev_err(&pl022->adev->dev,
b43d65f7
LW
1635 "TX FIFO Trigger Level is configured incorrectly\n");
1636 return -EINVAL;
78b2b911 1637 break;
b43d65f7 1638 }
b43d65f7
LW
1639 if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1640 if ((chip_info->ctrl_len < SSP_BITS_4)
1641 || (chip_info->ctrl_len > SSP_BITS_32)) {
5a1c98be 1642 dev_err(&pl022->adev->dev,
b43d65f7
LW
1643 "CTRL LEN is configured incorrectly\n");
1644 return -EINVAL;
1645 }
1646 if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1647 && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
5a1c98be 1648 dev_err(&pl022->adev->dev,
b43d65f7
LW
1649 "Wait State is configured incorrectly\n");
1650 return -EINVAL;
1651 }
556f4aeb
LW
1652 /* Half duplex is only available in the ST Micro version */
1653 if (pl022->vendor->extended_cr) {
1654 if ((chip_info->duplex !=
1655 SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1656 && (chip_info->duplex !=
4a4fd471 1657 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
5a1c98be 1658 dev_err(&pl022->adev->dev,
556f4aeb
LW
1659 "Microwire duplex mode is configured incorrectly\n");
1660 return -EINVAL;
4a4fd471 1661 }
556f4aeb
LW
1662 } else {
1663 if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
5a1c98be 1664 dev_err(&pl022->adev->dev,
556f4aeb
LW
1665 "Microwire half duplex mode requested,"
1666 " but this is only available in the"
1667 " ST version of PL022\n");
b43d65f7
LW
1668 return -EINVAL;
1669 }
1670 }
b43d65f7
LW
1671 return 0;
1672}
1673
0379b2a3
VK
1674static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1675{
1676 return rate / (cpsdvsr * (1 + scr));
1677}
1678
1679static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1680 ssp_clock_params * clk_freq)
b43d65f7
LW
1681{
1682 /* Lets calculate the frequency parameters */
0379b2a3
VK
1683 u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1684 u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1685 best_scr = 0, tmp, found = 0;
b43d65f7
LW
1686
1687 rate = clk_get_rate(pl022->clk);
1688 /* cpsdvscr = 2 & scr 0 */
0379b2a3 1689 max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
b43d65f7 1690 /* cpsdvsr = 254 & scr = 255 */
0379b2a3
VK
1691 min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1692
ea505bc9
VK
1693 if (freq > max_tclk)
1694 dev_warn(&pl022->adev->dev,
1695 "Max speed that can be programmed is %d Hz, you requested %d\n",
1696 max_tclk, freq);
1697
1698 if (freq < min_tclk) {
b43d65f7 1699 dev_err(&pl022->adev->dev,
ea505bc9
VK
1700 "Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1701 freq, min_tclk);
b43d65f7
LW
1702 return -EINVAL;
1703 }
0379b2a3
VK
1704
1705 /*
1706 * best_freq will give closest possible available rate (<= requested
1707 * freq) for all values of scr & cpsdvsr.
1708 */
1709 while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1710 while (scr <= SCR_MAX) {
1711 tmp = spi_rate(rate, cpsdvsr, scr);
1712
5eb806a3
VK
1713 if (tmp > freq) {
1714 /* we need lower freq */
0379b2a3 1715 scr++;
5eb806a3
VK
1716 continue;
1717 }
1718
0379b2a3 1719 /*
5eb806a3
VK
1720 * If found exact value, mark found and break.
1721 * If found more closer value, update and break.
0379b2a3 1722 */
5eb806a3 1723 if (tmp > best_freq) {
0379b2a3
VK
1724 best_freq = tmp;
1725 best_cpsdvsr = cpsdvsr;
1726 best_scr = scr;
1727
1728 if (tmp == freq)
5eb806a3 1729 found = 1;
0379b2a3 1730 }
5eb806a3
VK
1731 /*
1732 * increased scr will give lower rates, which are not
1733 * required
1734 */
1735 break;
0379b2a3
VK
1736 }
1737 cpsdvsr += 2;
1738 scr = SCR_MIN;
1739 }
1740
5eb806a3
VK
1741 WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1742 freq);
1743
0379b2a3
VK
1744 clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1745 clk_freq->scr = (u8) (best_scr & 0xFF);
1746 dev_dbg(&pl022->adev->dev,
1747 "SSP Target Frequency is: %u, Effective Frequency is %u\n",
1748 freq, best_freq);
1749 dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1750 clk_freq->cpsdvsr, clk_freq->scr);
1751
b43d65f7
LW
1752 return 0;
1753}
1754
f9d629c7
LW
1755/*
1756 * A piece of default chip info unless the platform
1757 * supplies it.
1758 */
1759static const struct pl022_config_chip pl022_default_chip_info = {
1760 .com_mode = POLLING_TRANSFER,
1761 .iface = SSP_INTERFACE_MOTOROLA_SPI,
1762 .hierarchy = SSP_SLAVE,
1763 .slave_tx_disable = DO_NOT_DRIVE_TX,
1764 .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1765 .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1766 .ctrl_len = SSP_BITS_8,
1767 .wait_state = SSP_MWIRE_WAIT_ZERO,
1768 .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1769 .cs_control = null_cs_control,
1770};
1771
b43d65f7
LW
1772/**
1773 * pl022_setup - setup function registered to SPI master framework
1774 * @spi: spi device which is requesting setup
1775 *
1776 * This function is registered to the SPI framework for this SPI master
1777 * controller. If it is the first time when setup is called by this device,
1778 * this function will initialize the runtime state for this chip and save
1779 * the same in the device structure. Else it will update the runtime info
1780 * with the updated chip info. Nothing is really being written to the
1781 * controller hardware here, that is not done until the actual transfer
1782 * commence.
1783 */
b43d65f7
LW
1784static int pl022_setup(struct spi_device *spi)
1785{
f9d629c7 1786 struct pl022_config_chip const *chip_info;
6d3952a7 1787 struct pl022_config_chip chip_info_dt;
b43d65f7 1788 struct chip_data *chip;
c4a47843 1789 struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
b43d65f7
LW
1790 int status = 0;
1791 struct pl022 *pl022 = spi_master_get_devdata(spi->master);
bde435a9
KW
1792 unsigned int bits = spi->bits_per_word;
1793 u32 tmp;
6d3952a7 1794 struct device_node *np = spi->dev.of_node;
b43d65f7
LW
1795
1796 if (!spi->max_speed_hz)
1797 return -EINVAL;
1798
1799 /* Get controller_state if one is supplied */
1800 chip = spi_get_ctldata(spi);
1801
1802 if (chip == NULL) {
1803 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1804 if (!chip) {
1805 dev_err(&spi->dev,
1806 "cannot allocate controller state\n");
1807 return -ENOMEM;
1808 }
1809 dev_dbg(&spi->dev,
1810 "allocated memory for controller's runtime state\n");
1811 }
1812
1813 /* Get controller data if one is supplied */
1814 chip_info = spi->controller_data;
1815
1816 if (chip_info == NULL) {
6d3952a7
RS
1817 if (np) {
1818 chip_info_dt = pl022_default_chip_info;
1819
1820 chip_info_dt.hierarchy = SSP_MASTER;
1821 of_property_read_u32(np, "pl022,interface",
1822 &chip_info_dt.iface);
1823 of_property_read_u32(np, "pl022,com-mode",
1824 &chip_info_dt.com_mode);
1825 of_property_read_u32(np, "pl022,rx-level-trig",
1826 &chip_info_dt.rx_lev_trig);
1827 of_property_read_u32(np, "pl022,tx-level-trig",
1828 &chip_info_dt.tx_lev_trig);
1829 of_property_read_u32(np, "pl022,ctrl-len",
1830 &chip_info_dt.ctrl_len);
1831 of_property_read_u32(np, "pl022,wait-state",
1832 &chip_info_dt.wait_state);
1833 of_property_read_u32(np, "pl022,duplex",
1834 &chip_info_dt.duplex);
1835
1836 chip_info = &chip_info_dt;
1837 } else {
1838 chip_info = &pl022_default_chip_info;
1839 /* spi_board_info.controller_data not is supplied */
1840 dev_dbg(&spi->dev,
1841 "using default controller_data settings\n");
1842 }
f9d629c7 1843 } else
b43d65f7
LW
1844 dev_dbg(&spi->dev,
1845 "using user supplied controller_data settings\n");
b43d65f7
LW
1846
1847 /*
1848 * We can override with custom divisors, else we use the board
1849 * frequency setting
1850 */
1851 if ((0 == chip_info->clk_freq.cpsdvsr)
1852 && (0 == chip_info->clk_freq.scr)) {
1853 status = calculate_effective_freq(pl022,
1854 spi->max_speed_hz,
f9d629c7 1855 &clk_freq);
b43d65f7
LW
1856 if (status < 0)
1857 goto err_config_params;
1858 } else {
f9d629c7
LW
1859 memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1860 if ((clk_freq.cpsdvsr % 2) != 0)
1861 clk_freq.cpsdvsr =
1862 clk_freq.cpsdvsr - 1;
b43d65f7 1863 }
f9d629c7
LW
1864 if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1865 || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
e3f88ae9 1866 status = -EINVAL;
f9d629c7
LW
1867 dev_err(&spi->dev,
1868 "cpsdvsr is configured incorrectly\n");
1869 goto err_config_params;
1870 }
1871
b43d65f7
LW
1872 status = verify_controller_parameters(pl022, chip_info);
1873 if (status) {
1874 dev_err(&spi->dev, "controller data is incorrect");
1875 goto err_config_params;
1876 }
f9d629c7 1877
083be3f0
LW
1878 pl022->rx_lev_trig = chip_info->rx_lev_trig;
1879 pl022->tx_lev_trig = chip_info->tx_lev_trig;
1880
b43d65f7
LW
1881 /* Now set controller state based on controller data */
1882 chip->xfer_type = chip_info->com_mode;
f9d629c7
LW
1883 if (!chip_info->cs_control) {
1884 chip->cs_control = null_cs_control;
f6f46de1
RS
1885 if (!gpio_is_valid(pl022->chipselects[spi->chip_select]))
1886 dev_warn(&spi->dev,
1887 "invalid chip select\n");
f9d629c7
LW
1888 } else
1889 chip->cs_control = chip_info->cs_control;
b43d65f7 1890
eb798c64
VS
1891 /* Check bits per word with vendor specific range */
1892 if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
bde435a9 1893 status = -ENOTSUPP;
eb798c64
VS
1894 dev_err(&spi->dev, "illegal data size for this controller!\n");
1895 dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1896 pl022->vendor->max_bpw);
bde435a9
KW
1897 goto err_config_params;
1898 } else if (bits <= 8) {
1899 dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
b43d65f7
LW
1900 chip->n_bytes = 1;
1901 chip->read = READING_U8;
1902 chip->write = WRITING_U8;
bde435a9 1903 } else if (bits <= 16) {
b43d65f7
LW
1904 dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1905 chip->n_bytes = 2;
1906 chip->read = READING_U16;
1907 chip->write = WRITING_U16;
1908 } else {
eb798c64
VS
1909 dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1910 chip->n_bytes = 4;
1911 chip->read = READING_U32;
1912 chip->write = WRITING_U32;
b43d65f7
LW
1913 }
1914
1915 /* Now Initialize all register settings required for this chip */
1916 chip->cr0 = 0;
1917 chip->cr1 = 0;
1918 chip->dmacr = 0;
1919 chip->cpsr = 0;
1920 if ((chip_info->com_mode == DMA_TRANSFER)
1921 && ((pl022->master_info)->enable_dma)) {
b1b6b9aa 1922 chip->enable_dma = true;
b43d65f7 1923 dev_dbg(&spi->dev, "DMA mode set in controller state\n");
b43d65f7
LW
1924 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1925 SSP_DMACR_MASK_RXDMAE, 0);
1926 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1927 SSP_DMACR_MASK_TXDMAE, 1);
1928 } else {
b1b6b9aa 1929 chip->enable_dma = false;
b43d65f7
LW
1930 dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1931 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1932 SSP_DMACR_MASK_RXDMAE, 0);
1933 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1934 SSP_DMACR_MASK_TXDMAE, 1);
1935 }
1936
f9d629c7 1937 chip->cpsr = clk_freq.cpsdvsr;
b43d65f7 1938
556f4aeb
LW
1939 /* Special setup for the ST micro extended control registers */
1940 if (pl022->vendor->extended_cr) {
bde435a9
KW
1941 u32 etx;
1942
781c7b12
LW
1943 if (pl022->vendor->pl023) {
1944 /* These bits are only in the PL023 */
1945 SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
1946 SSP_CR1_MASK_FBCLKDEL_ST, 13);
1947 } else {
1948 /* These bits are in the PL022 but not PL023 */
1949 SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
1950 SSP_CR0_MASK_HALFDUP_ST, 5);
1951 SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
1952 SSP_CR0_MASK_CSS_ST, 16);
1953 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1954 SSP_CR0_MASK_FRF_ST, 21);
1955 SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
1956 SSP_CR1_MASK_MWAIT_ST, 6);
1957 }
bde435a9 1958 SSP_WRITE_BITS(chip->cr0, bits - 1,
556f4aeb 1959 SSP_CR0_MASK_DSS_ST, 0);
bde435a9
KW
1960
1961 if (spi->mode & SPI_LSB_FIRST) {
1962 tmp = SSP_RX_LSB;
1963 etx = SSP_TX_LSB;
1964 } else {
1965 tmp = SSP_RX_MSB;
1966 etx = SSP_TX_MSB;
1967 }
1968 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
1969 SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
556f4aeb
LW
1970 SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
1971 SSP_CR1_MASK_RXIFLSEL_ST, 7);
1972 SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
1973 SSP_CR1_MASK_TXIFLSEL_ST, 10);
1974 } else {
bde435a9 1975 SSP_WRITE_BITS(chip->cr0, bits - 1,
556f4aeb
LW
1976 SSP_CR0_MASK_DSS, 0);
1977 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1978 SSP_CR0_MASK_FRF, 4);
1979 }
bde435a9 1980
556f4aeb 1981 /* Stuff that is common for all versions */
bde435a9
KW
1982 if (spi->mode & SPI_CPOL)
1983 tmp = SSP_CLK_POL_IDLE_HIGH;
1984 else
1985 tmp = SSP_CLK_POL_IDLE_LOW;
1986 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
1987
1988 if (spi->mode & SPI_CPHA)
1989 tmp = SSP_CLK_SECOND_EDGE;
1990 else
1991 tmp = SSP_CLK_FIRST_EDGE;
1992 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
1993
f9d629c7 1994 SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
781c7b12 1995 /* Loopback is available on all versions except PL023 */
06fb01fd 1996 if (pl022->vendor->loopback) {
bde435a9
KW
1997 if (spi->mode & SPI_LOOP)
1998 tmp = LOOPBACK_ENABLED;
1999 else
2000 tmp = LOOPBACK_DISABLED;
2001 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
2002 }
b43d65f7
LW
2003 SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
2004 SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
f1e45f86
VK
2005 SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
2006 3);
b43d65f7
LW
2007
2008 /* Save controller_state */
2009 spi_set_ctldata(spi, chip);
2010 return status;
2011 err_config_params:
bde435a9 2012 spi_set_ctldata(spi, NULL);
b43d65f7
LW
2013 kfree(chip);
2014 return status;
2015}
2016
2017/**
2018 * pl022_cleanup - cleanup function registered to SPI master framework
2019 * @spi: spi device which is requesting cleanup
2020 *
2021 * This function is registered to the SPI framework for this SPI master
2022 * controller. It will free the runtime state of chip.
2023 */
2024static void pl022_cleanup(struct spi_device *spi)
2025{
2026 struct chip_data *chip = spi_get_ctldata(spi);
2027
2028 spi_set_ctldata(spi, NULL);
2029 kfree(chip);
2030}
2031
b4225885 2032static int __devinit
aa25afad 2033pl022_probe(struct amba_device *adev, const struct amba_id *id)
b43d65f7
LW
2034{
2035 struct device *dev = &adev->dev;
2036 struct pl022_ssp_controller *platform_info = adev->dev.platform_data;
2037 struct spi_master *master;
2038 struct pl022 *pl022 = NULL; /*Data for this driver */
6d3952a7
RS
2039 struct device_node *np = adev->dev.of_node;
2040 int status = 0, i, num_cs;
b43d65f7
LW
2041
2042 dev_info(&adev->dev,
2043 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2044 if (platform_info == NULL) {
2045 dev_err(&adev->dev, "probe - no platform data supplied\n");
2046 status = -ENODEV;
2047 goto err_no_pdata;
2048 }
2049
6d3952a7
RS
2050 if (platform_info->num_chipselect) {
2051 num_cs = platform_info->num_chipselect;
2052 } else if (IS_ENABLED(CONFIG_OF)) {
2053 of_property_read_u32(np, "num-cs", &num_cs);
2054 } else {
2055 dev_err(&adev->dev, "probe: no chip select defined\n");
2056 status = -ENODEV;
2057 goto err_no_pdata;
2058 }
2059
b43d65f7 2060 /* Allocate master with space for data */
b4b84826 2061 master = spi_alloc_master(dev, sizeof(struct pl022));
b43d65f7
LW
2062 if (master == NULL) {
2063 dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2064 status = -ENOMEM;
2065 goto err_no_master;
2066 }
2067
2068 pl022 = spi_master_get_devdata(master);
2069 pl022->master = master;
2070 pl022->master_info = platform_info;
2071 pl022->adev = adev;
2072 pl022->vendor = id->data;
b4b84826
RS
2073 pl022->chipselects = devm_kzalloc(dev, num_cs * sizeof(int),
2074 GFP_KERNEL);
b43d65f7 2075
4f5e1b37
PC
2076 pl022->pinctrl = devm_pinctrl_get(dev);
2077 if (IS_ERR(pl022->pinctrl)) {
2078 status = PTR_ERR(pl022->pinctrl);
2079 goto err_no_pinctrl;
2080 }
2081
2082 pl022->pins_default = pinctrl_lookup_state(pl022->pinctrl,
2083 PINCTRL_STATE_DEFAULT);
2084 /* enable pins to be muxed in and configured */
2085 if (!IS_ERR(pl022->pins_default)) {
2086 status = pinctrl_select_state(pl022->pinctrl,
2087 pl022->pins_default);
2088 if (status)
2089 dev_err(dev, "could not set default pins\n");
2090 } else
2091 dev_err(dev, "could not get default pinstate\n");
2092
2093 pl022->pins_sleep = pinctrl_lookup_state(pl022->pinctrl,
2094 PINCTRL_STATE_SLEEP);
2095 if (IS_ERR(pl022->pins_sleep))
2096 dev_dbg(dev, "could not get sleep pinstate\n");
2097
b43d65f7
LW
2098 /*
2099 * Bus Number Which has been Assigned to this SSP controller
2100 * on this board
2101 */
2102 master->bus_num = platform_info->bus_id;
6d3952a7 2103 master->num_chipselect = num_cs;
b43d65f7
LW
2104 master->cleanup = pl022_cleanup;
2105 master->setup = pl022_setup;
ffbbdd21
LW
2106 master->prepare_transfer_hardware = pl022_prepare_transfer_hardware;
2107 master->transfer_one_message = pl022_transfer_one_message;
2108 master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
2109 master->rt = platform_info->rt;
6d3952a7 2110 master->dev.of_node = dev->of_node;
b43d65f7 2111
6d3952a7
RS
2112 if (platform_info->num_chipselect && platform_info->chipselects) {
2113 for (i = 0; i < num_cs; i++)
f6f46de1 2114 pl022->chipselects[i] = platform_info->chipselects[i];
6d3952a7
RS
2115 } else if (IS_ENABLED(CONFIG_OF)) {
2116 for (i = 0; i < num_cs; i++) {
2117 int cs_gpio = of_get_named_gpio(np, "cs-gpios", i);
2118
2119 if (cs_gpio == -EPROBE_DEFER) {
2120 status = -EPROBE_DEFER;
2121 goto err_no_gpio;
2122 }
2123
2124 pl022->chipselects[i] = cs_gpio;
2125
2126 if (gpio_is_valid(cs_gpio)) {
2127 if (gpio_request(cs_gpio, "ssp-pl022"))
2128 dev_err(&adev->dev,
2129 "could not request %d gpio\n",
2130 cs_gpio);
2131 else if (gpio_direction_output(cs_gpio, 1))
2132 dev_err(&adev->dev,
2133 "could set gpio %d as output\n",
2134 cs_gpio);
2135 }
2136 }
2137 }
f6f46de1 2138
bde435a9
KW
2139 /*
2140 * Supports mode 0-3, loopback, and active low CS. Transfers are
2141 * always MS bit first on the original pl022.
2142 */
2143 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2144 if (pl022->vendor->extended_cr)
2145 master->mode_bits |= SPI_LSB_FIRST;
2146
b43d65f7
LW
2147 dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2148
2149 status = amba_request_regions(adev, NULL);
2150 if (status)
2151 goto err_no_ioregion;
2152
b1b6b9aa 2153 pl022->phybase = adev->res.start;
b43d65f7
LW
2154 pl022->virtbase = ioremap(adev->res.start, resource_size(&adev->res));
2155 if (pl022->virtbase == NULL) {
2156 status = -ENOMEM;
2157 goto err_no_ioremap;
2158 }
2159 printk(KERN_INFO "pl022: mapped registers from 0x%08x to %p\n",
2160 adev->res.start, pl022->virtbase);
2161
2fb30d11
LW
2162 pm_runtime_enable(dev);
2163 pm_runtime_resume(dev);
2164
b43d65f7
LW
2165 pl022->clk = clk_get(&adev->dev, NULL);
2166 if (IS_ERR(pl022->clk)) {
2167 status = PTR_ERR(pl022->clk);
2168 dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2169 goto err_no_clk;
2170 }
7ff6bcf0
RK
2171
2172 status = clk_prepare(pl022->clk);
2173 if (status) {
2174 dev_err(&adev->dev, "could not prepare SSP/SPI bus clock\n");
2175 goto err_clk_prep;
2176 }
2177
71e63e74
UH
2178 status = clk_enable(pl022->clk);
2179 if (status) {
2180 dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
2181 goto err_no_clk_en;
2182 }
2183
ffbbdd21
LW
2184 /* Initialize transfer pump */
2185 tasklet_init(&pl022->pump_transfers, pump_transfers,
2186 (unsigned long)pl022);
2187
b43d65f7 2188 /* Disable SSP */
b43d65f7
LW
2189 writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2190 SSP_CR1(pl022->virtbase));
2191 load_ssp_default_config(pl022);
b43d65f7
LW
2192
2193 status = request_irq(adev->irq[0], pl022_interrupt_handler, 0, "pl022",
2194 pl022);
2195 if (status < 0) {
2196 dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2197 goto err_no_irq;
2198 }
b1b6b9aa
LW
2199
2200 /* Get DMA channels */
2201 if (platform_info->enable_dma) {
2202 status = pl022_dma_probe(pl022);
2203 if (status != 0)
43c64015 2204 platform_info->enable_dma = 0;
b1b6b9aa
LW
2205 }
2206
b43d65f7
LW
2207 /* Register with the SPI framework */
2208 amba_set_drvdata(adev, pl022);
2209 status = spi_register_master(master);
2210 if (status != 0) {
2211 dev_err(&adev->dev,
2212 "probe - problem registering spi master\n");
2213 goto err_spi_register;
2214 }
25985edc 2215 dev_dbg(dev, "probe succeeded\n");
92b97f0a
RK
2216
2217 /* let runtime pm put suspend */
53e4acea
CB
2218 if (platform_info->autosuspend_delay > 0) {
2219 dev_info(&adev->dev,
2220 "will use autosuspend for runtime pm, delay %dms\n",
2221 platform_info->autosuspend_delay);
2222 pm_runtime_set_autosuspend_delay(dev,
2223 platform_info->autosuspend_delay);
2224 pm_runtime_use_autosuspend(dev);
2225 pm_runtime_put_autosuspend(dev);
2226 } else {
2227 pm_runtime_put(dev);
2228 }
b43d65f7
LW
2229 return 0;
2230
2231 err_spi_register:
3e3ea716
VK
2232 if (platform_info->enable_dma)
2233 pl022_dma_remove(pl022);
2234
b43d65f7
LW
2235 free_irq(adev->irq[0], pl022);
2236 err_no_irq:
71e63e74
UH
2237 clk_disable(pl022->clk);
2238 err_no_clk_en:
7ff6bcf0
RK
2239 clk_unprepare(pl022->clk);
2240 err_clk_prep:
b43d65f7
LW
2241 clk_put(pl022->clk);
2242 err_no_clk:
2243 iounmap(pl022->virtbase);
2244 err_no_ioremap:
2245 amba_release_regions(adev);
2246 err_no_ioregion:
6d3952a7 2247 err_no_gpio:
4f5e1b37 2248 err_no_pinctrl:
b43d65f7
LW
2249 spi_master_put(master);
2250 err_no_master:
2251 err_no_pdata:
2252 return status;
2253}
2254
b4225885 2255static int __devexit
b43d65f7
LW
2256pl022_remove(struct amba_device *adev)
2257{
2258 struct pl022 *pl022 = amba_get_drvdata(adev);
50658b66 2259
b43d65f7
LW
2260 if (!pl022)
2261 return 0;
2262
92b97f0a
RK
2263 /*
2264 * undo pm_runtime_put() in probe. I assume that we're not
2265 * accessing the primecell here.
2266 */
2267 pm_runtime_get_noresume(&adev->dev);
2268
b43d65f7 2269 load_ssp_default_config(pl022);
3e3ea716
VK
2270 if (pl022->master_info->enable_dma)
2271 pl022_dma_remove(pl022);
2272
b43d65f7
LW
2273 free_irq(adev->irq[0], pl022);
2274 clk_disable(pl022->clk);
7ff6bcf0 2275 clk_unprepare(pl022->clk);
b43d65f7 2276 clk_put(pl022->clk);
2fb30d11 2277 pm_runtime_disable(&adev->dev);
b43d65f7
LW
2278 iounmap(pl022->virtbase);
2279 amba_release_regions(adev);
2280 tasklet_disable(&pl022->pump_transfers);
2281 spi_unregister_master(pl022->master);
b43d65f7 2282 amba_set_drvdata(adev, NULL);
b43d65f7
LW
2283 return 0;
2284}
2285
92b97f0a 2286#ifdef CONFIG_SUSPEND
6cfa6279 2287static int pl022_suspend(struct device *dev)
b43d65f7 2288{
92b97f0a 2289 struct pl022 *pl022 = dev_get_drvdata(dev);
ffbbdd21 2290 int ret;
b43d65f7 2291
ffbbdd21
LW
2292 ret = spi_master_suspend(pl022->master);
2293 if (ret) {
2294 dev_warn(dev, "cannot suspend master\n");
2295 return ret;
b43d65f7
LW
2296 }
2297
6cfa6279 2298 dev_dbg(dev, "suspended\n");
b43d65f7
LW
2299 return 0;
2300}
2301
92b97f0a 2302static int pl022_resume(struct device *dev)
b43d65f7 2303{
92b97f0a 2304 struct pl022 *pl022 = dev_get_drvdata(dev);
ffbbdd21 2305 int ret;
b43d65f7
LW
2306
2307 /* Start the queue running */
ffbbdd21
LW
2308 ret = spi_master_resume(pl022->master);
2309 if (ret)
2310 dev_err(dev, "problem starting queue (%d)\n", ret);
b43d65f7 2311 else
92b97f0a 2312 dev_dbg(dev, "resumed\n");
b43d65f7 2313
ffbbdd21 2314 return ret;
b43d65f7 2315}
b43d65f7
LW
2316#endif /* CONFIG_PM */
2317
92b97f0a
RK
2318#ifdef CONFIG_PM_RUNTIME
2319static int pl022_runtime_suspend(struct device *dev)
2320{
2321 struct pl022 *pl022 = dev_get_drvdata(dev);
4f5e1b37 2322 int status = 0;
92b97f0a
RK
2323
2324 clk_disable(pl022->clk);
92b97f0a 2325
4f5e1b37
PC
2326 /* Optionally let pins go into sleep states */
2327 if (!IS_ERR(pl022->pins_sleep)) {
2328 status = pinctrl_select_state(pl022->pinctrl,
2329 pl022->pins_sleep);
2330 if (status)
2331 dev_err(dev, "could not set pins to sleep state\n");
2332 }
2333
92b97f0a
RK
2334 return 0;
2335}
2336
2337static int pl022_runtime_resume(struct device *dev)
2338{
2339 struct pl022 *pl022 = dev_get_drvdata(dev);
4f5e1b37
PC
2340 int status = 0;
2341
2342 /* Optionaly enable pins to be muxed in and configured */
2343 if (!IS_ERR(pl022->pins_default)) {
2344 status = pinctrl_select_state(pl022->pinctrl,
2345 pl022->pins_default);
2346 if (status)
2347 dev_err(dev, "could not set default pins\n");
2348 }
92b97f0a 2349
92b97f0a
RK
2350 clk_enable(pl022->clk);
2351
2352 return 0;
2353}
2354#endif
2355
2356static const struct dev_pm_ops pl022_dev_pm_ops = {
2357 SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2358 SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2359};
2360
b43d65f7
LW
2361static struct vendor_data vendor_arm = {
2362 .fifodepth = 8,
2363 .max_bpw = 16,
2364 .unidir = false,
556f4aeb 2365 .extended_cr = false,
781c7b12 2366 .pl023 = false,
06fb01fd 2367 .loopback = true,
b43d65f7
LW
2368};
2369
b43d65f7
LW
2370static struct vendor_data vendor_st = {
2371 .fifodepth = 32,
2372 .max_bpw = 32,
2373 .unidir = false,
556f4aeb 2374 .extended_cr = true,
781c7b12 2375 .pl023 = false,
06fb01fd 2376 .loopback = true,
781c7b12
LW
2377};
2378
2379static struct vendor_data vendor_st_pl023 = {
2380 .fifodepth = 32,
2381 .max_bpw = 32,
2382 .unidir = false,
2383 .extended_cr = true,
2384 .pl023 = true,
06fb01fd
PL
2385 .loopback = false,
2386};
2387
b43d65f7
LW
2388static struct amba_id pl022_ids[] = {
2389 {
2390 /*
2391 * ARM PL022 variant, this has a 16bit wide
2392 * and 8 locations deep TX/RX FIFO
2393 */
2394 .id = 0x00041022,
2395 .mask = 0x000fffff,
2396 .data = &vendor_arm,
2397 },
2398 {
2399 /*
2400 * ST Micro derivative, this has 32bit wide
2401 * and 32 locations deep TX/RX FIFO
2402 */
e89e04fc 2403 .id = 0x01080022,
b43d65f7
LW
2404 .mask = 0xffffffff,
2405 .data = &vendor_st,
2406 },
781c7b12
LW
2407 {
2408 /*
2409 * ST-Ericsson derivative "PL023" (this is not
2410 * an official ARM number), this is a PL022 SSP block
2411 * stripped to SPI mode only, it has 32bit wide
2412 * and 32 locations deep TX/RX FIFO but no extended
2413 * CR0/CR1 register
2414 */
f1e45f86
VK
2415 .id = 0x00080023,
2416 .mask = 0xffffffff,
2417 .data = &vendor_st_pl023,
781c7b12 2418 },
b43d65f7
LW
2419 { 0, 0 },
2420};
2421
7eeac71b
DM
2422MODULE_DEVICE_TABLE(amba, pl022_ids);
2423
b43d65f7
LW
2424static struct amba_driver pl022_driver = {
2425 .drv = {
2426 .name = "ssp-pl022",
92b97f0a 2427 .pm = &pl022_dev_pm_ops,
b43d65f7
LW
2428 },
2429 .id_table = pl022_ids,
2430 .probe = pl022_probe,
b4225885 2431 .remove = __devexit_p(pl022_remove),
b43d65f7
LW
2432};
2433
b43d65f7
LW
2434static int __init pl022_init(void)
2435{
2436 return amba_driver_register(&pl022_driver);
2437}
25c8e03b 2438subsys_initcall(pl022_init);
b43d65f7
LW
2439
2440static void __exit pl022_exit(void)
2441{
2442 amba_driver_unregister(&pl022_driver);
2443}
b43d65f7
LW
2444module_exit(pl022_exit);
2445
2446MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2447MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2448MODULE_LICENSE("GPL");
This page took 0.322346 seconds and 5 git commands to generate.