spi/spi-pl022: Don't allocate more sg than required.
[deliverable/linux.git] / drivers / spi / spi-pl022.c
CommitLineData
b43d65f7 1/*
b43d65f7
LW
2 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
3 *
4 * Copyright (C) 2008-2009 ST-Ericsson AB
5 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
6 *
7 * Author: Linus Walleij <linus.walleij@stericsson.com>
8 *
9 * Initial version inspired by:
10 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
11 * Initial adoption to PL022 by:
12 * Sachin Verma <sachin.verma@st.com>
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 */
24
b43d65f7
LW
25#include <linux/init.h>
26#include <linux/module.h>
27#include <linux/device.h>
28#include <linux/ioport.h>
29#include <linux/errno.h>
30#include <linux/interrupt.h>
31#include <linux/spi/spi.h>
32#include <linux/workqueue.h>
b43d65f7
LW
33#include <linux/delay.h>
34#include <linux/clk.h>
35#include <linux/err.h>
36#include <linux/amba/bus.h>
37#include <linux/amba/pl022.h>
38#include <linux/io.h>
5a0e3ad6 39#include <linux/slab.h>
b1b6b9aa
LW
40#include <linux/dmaengine.h>
41#include <linux/dma-mapping.h>
42#include <linux/scatterlist.h>
bcda6ff8 43#include <linux/pm_runtime.h>
b43d65f7
LW
44
45/*
46 * This macro is used to define some register default values.
47 * reg is masked with mask, the OR:ed with an (again masked)
48 * val shifted sb steps to the left.
49 */
50#define SSP_WRITE_BITS(reg, val, mask, sb) \
51 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
52
53/*
54 * This macro is also used to define some default values.
55 * It will just shift val by sb steps to the left and mask
56 * the result with mask.
57 */
58#define GEN_MASK_BITS(val, mask, sb) \
59 (((val)<<(sb)) & (mask))
60
61#define DRIVE_TX 0
62#define DO_NOT_DRIVE_TX 1
63
64#define DO_NOT_QUEUE_DMA 0
65#define QUEUE_DMA 1
66
67#define RX_TRANSFER 1
68#define TX_TRANSFER 2
69
70/*
71 * Macros to access SSP Registers with their offsets
72 */
73#define SSP_CR0(r) (r + 0x000)
74#define SSP_CR1(r) (r + 0x004)
75#define SSP_DR(r) (r + 0x008)
76#define SSP_SR(r) (r + 0x00C)
77#define SSP_CPSR(r) (r + 0x010)
78#define SSP_IMSC(r) (r + 0x014)
79#define SSP_RIS(r) (r + 0x018)
80#define SSP_MIS(r) (r + 0x01C)
81#define SSP_ICR(r) (r + 0x020)
82#define SSP_DMACR(r) (r + 0x024)
83#define SSP_ITCR(r) (r + 0x080)
84#define SSP_ITIP(r) (r + 0x084)
85#define SSP_ITOP(r) (r + 0x088)
86#define SSP_TDR(r) (r + 0x08C)
87
88#define SSP_PID0(r) (r + 0xFE0)
89#define SSP_PID1(r) (r + 0xFE4)
90#define SSP_PID2(r) (r + 0xFE8)
91#define SSP_PID3(r) (r + 0xFEC)
92
93#define SSP_CID0(r) (r + 0xFF0)
94#define SSP_CID1(r) (r + 0xFF4)
95#define SSP_CID2(r) (r + 0xFF8)
96#define SSP_CID3(r) (r + 0xFFC)
97
98/*
99 * SSP Control Register 0 - SSP_CR0
100 */
556f4aeb
LW
101#define SSP_CR0_MASK_DSS (0x0FUL << 0)
102#define SSP_CR0_MASK_FRF (0x3UL << 4)
b43d65f7
LW
103#define SSP_CR0_MASK_SPO (0x1UL << 6)
104#define SSP_CR0_MASK_SPH (0x1UL << 7)
105#define SSP_CR0_MASK_SCR (0xFFUL << 8)
556f4aeb
LW
106
107/*
108 * The ST version of this block moves som bits
109 * in SSP_CR0 and extends it to 32 bits
110 */
111#define SSP_CR0_MASK_DSS_ST (0x1FUL << 0)
112#define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
113#define SSP_CR0_MASK_CSS_ST (0x1FUL << 16)
114#define SSP_CR0_MASK_FRF_ST (0x3UL << 21)
115
b43d65f7
LW
116/*
117 * SSP Control Register 0 - SSP_CR1
118 */
119#define SSP_CR1_MASK_LBM (0x1UL << 0)
120#define SSP_CR1_MASK_SSE (0x1UL << 1)
121#define SSP_CR1_MASK_MS (0x1UL << 2)
122#define SSP_CR1_MASK_SOD (0x1UL << 3)
b43d65f7
LW
123
124/*
556f4aeb
LW
125 * The ST version of this block adds some bits
126 * in SSP_CR1
b43d65f7 127 */
556f4aeb
LW
128#define SSP_CR1_MASK_RENDN_ST (0x1UL << 4)
129#define SSP_CR1_MASK_TENDN_ST (0x1UL << 5)
130#define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6)
131#define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
132#define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
781c7b12
LW
133/* This one is only in the PL023 variant */
134#define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
b43d65f7
LW
135
136/*
137 * SSP Status Register - SSP_SR
138 */
139#define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
140#define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
141#define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
556f4aeb 142#define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
b43d65f7
LW
143#define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
144
145/*
146 * SSP Clock Prescale Register - SSP_CPSR
147 */
148#define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
149
150/*
151 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
152 */
153#define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
154#define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
155#define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
156#define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
157
158/*
159 * SSP Raw Interrupt Status Register - SSP_RIS
160 */
161/* Receive Overrun Raw Interrupt status */
162#define SSP_RIS_MASK_RORRIS (0x1UL << 0)
163/* Receive Timeout Raw Interrupt status */
164#define SSP_RIS_MASK_RTRIS (0x1UL << 1)
165/* Receive FIFO Raw Interrupt status */
166#define SSP_RIS_MASK_RXRIS (0x1UL << 2)
167/* Transmit FIFO Raw Interrupt status */
168#define SSP_RIS_MASK_TXRIS (0x1UL << 3)
169
170/*
171 * SSP Masked Interrupt Status Register - SSP_MIS
172 */
173/* Receive Overrun Masked Interrupt status */
174#define SSP_MIS_MASK_RORMIS (0x1UL << 0)
175/* Receive Timeout Masked Interrupt status */
176#define SSP_MIS_MASK_RTMIS (0x1UL << 1)
177/* Receive FIFO Masked Interrupt status */
178#define SSP_MIS_MASK_RXMIS (0x1UL << 2)
179/* Transmit FIFO Masked Interrupt status */
180#define SSP_MIS_MASK_TXMIS (0x1UL << 3)
181
182/*
183 * SSP Interrupt Clear Register - SSP_ICR
184 */
185/* Receive Overrun Raw Clear Interrupt bit */
186#define SSP_ICR_MASK_RORIC (0x1UL << 0)
187/* Receive Timeout Clear Interrupt bit */
188#define SSP_ICR_MASK_RTIC (0x1UL << 1)
189
190/*
191 * SSP DMA Control Register - SSP_DMACR
192 */
193/* Receive DMA Enable bit */
194#define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
195/* Transmit DMA Enable bit */
196#define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
197
198/*
199 * SSP Integration Test control Register - SSP_ITCR
200 */
201#define SSP_ITCR_MASK_ITEN (0x1UL << 0)
202#define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
203
204/*
205 * SSP Integration Test Input Register - SSP_ITIP
206 */
207#define ITIP_MASK_SSPRXD (0x1UL << 0)
208#define ITIP_MASK_SSPFSSIN (0x1UL << 1)
209#define ITIP_MASK_SSPCLKIN (0x1UL << 2)
210#define ITIP_MASK_RXDMAC (0x1UL << 3)
211#define ITIP_MASK_TXDMAC (0x1UL << 4)
212#define ITIP_MASK_SSPTXDIN (0x1UL << 5)
213
214/*
215 * SSP Integration Test output Register - SSP_ITOP
216 */
217#define ITOP_MASK_SSPTXD (0x1UL << 0)
218#define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
219#define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
220#define ITOP_MASK_SSPOEn (0x1UL << 3)
221#define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
222#define ITOP_MASK_RORINTR (0x1UL << 5)
223#define ITOP_MASK_RTINTR (0x1UL << 6)
224#define ITOP_MASK_RXINTR (0x1UL << 7)
225#define ITOP_MASK_TXINTR (0x1UL << 8)
226#define ITOP_MASK_INTR (0x1UL << 9)
227#define ITOP_MASK_RXDMABREQ (0x1UL << 10)
228#define ITOP_MASK_RXDMASREQ (0x1UL << 11)
229#define ITOP_MASK_TXDMABREQ (0x1UL << 12)
230#define ITOP_MASK_TXDMASREQ (0x1UL << 13)
231
232/*
233 * SSP Test Data Register - SSP_TDR
234 */
556f4aeb 235#define TDR_MASK_TESTDATA (0xFFFFFFFF)
b43d65f7
LW
236
237/*
238 * Message State
239 * we use the spi_message.state (void *) pointer to
240 * hold a single state value, that's why all this
241 * (void *) casting is done here.
242 */
556f4aeb
LW
243#define STATE_START ((void *) 0)
244#define STATE_RUNNING ((void *) 1)
245#define STATE_DONE ((void *) 2)
246#define STATE_ERROR ((void *) -1)
b43d65f7 247
b43d65f7
LW
248/*
249 * SSP State - Whether Enabled or Disabled
250 */
556f4aeb
LW
251#define SSP_DISABLED (0)
252#define SSP_ENABLED (1)
b43d65f7
LW
253
254/*
255 * SSP DMA State - Whether DMA Enabled or Disabled
256 */
556f4aeb
LW
257#define SSP_DMA_DISABLED (0)
258#define SSP_DMA_ENABLED (1)
b43d65f7
LW
259
260/*
261 * SSP Clock Defaults
262 */
556f4aeb
LW
263#define SSP_DEFAULT_CLKRATE 0x2
264#define SSP_DEFAULT_PRESCALE 0x40
b43d65f7
LW
265
266/*
267 * SSP Clock Parameter ranges
268 */
269#define CPSDVR_MIN 0x02
270#define CPSDVR_MAX 0xFE
271#define SCR_MIN 0x00
272#define SCR_MAX 0xFF
273
274/*
275 * SSP Interrupt related Macros
276 */
277#define DEFAULT_SSP_REG_IMSC 0x0UL
278#define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
279#define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
280
281#define CLEAR_ALL_INTERRUPTS 0x3
282
a18c266f
MT
283#define SPI_POLLING_TIMEOUT 1000
284
b43d65f7
LW
285/*
286 * The type of reading going on on this chip
287 */
288enum ssp_reading {
289 READING_NULL,
290 READING_U8,
291 READING_U16,
292 READING_U32
293};
294
295/**
296 * The type of writing going on on this chip
297 */
298enum ssp_writing {
299 WRITING_NULL,
300 WRITING_U8,
301 WRITING_U16,
302 WRITING_U32
303};
304
305/**
306 * struct vendor_data - vendor-specific config parameters
307 * for PL022 derivates
308 * @fifodepth: depth of FIFOs (both)
309 * @max_bpw: maximum number of bits per word
310 * @unidir: supports unidirection transfers
556f4aeb
LW
311 * @extended_cr: 32 bit wide control register 0 with extra
312 * features and extra features in CR1 as found in the ST variants
781c7b12 313 * @pl023: supports a subset of the ST extensions called "PL023"
b43d65f7
LW
314 */
315struct vendor_data {
316 int fifodepth;
317 int max_bpw;
318 bool unidir;
556f4aeb 319 bool extended_cr;
781c7b12 320 bool pl023;
06fb01fd 321 bool loopback;
b43d65f7
LW
322};
323
324/**
325 * struct pl022 - This is the private SSP driver data structure
326 * @adev: AMBA device model hookup
12e8b325
LW
327 * @vendor: vendor data for the IP block
328 * @phybase: the physical memory where the SSP device resides
329 * @virtbase: the virtual memory where the SSP is mapped
330 * @clk: outgoing clock "SPICLK" for the SPI bus
b43d65f7
LW
331 * @master: SPI framework hookup
332 * @master_info: controller-specific data from machine setup
b43d65f7 333 * @workqueue: a workqueue on which any spi_message request is queued
12e8b325
LW
334 * @pump_messages: work struct for scheduling work to the workqueue
335 * @queue_lock: spinlock to syncronise access to message queue
336 * @queue: message queue
b43d65f7 337 * @busy: workqueue is busy
5e8b821d 338 * @running: workqueue is running
b43d65f7
LW
339 * @pump_transfers: Tasklet used in Interrupt Transfer mode
340 * @cur_msg: Pointer to current spi_message being processed
341 * @cur_transfer: Pointer to current spi_transfer
342 * @cur_chip: pointer to current clients chip(assigned from controller_state)
343 * @tx: current position in TX buffer to be read
344 * @tx_end: end position in TX buffer to be read
345 * @rx: current position in RX buffer to be written
346 * @rx_end: end position in RX buffer to be written
12e8b325
LW
347 * @read: the type of read currently going on
348 * @write: the type of write currently going on
349 * @exp_fifo_level: expected FIFO level
350 * @dma_rx_channel: optional channel for RX DMA
351 * @dma_tx_channel: optional channel for TX DMA
352 * @sgt_rx: scattertable for the RX transfer
353 * @sgt_tx: scattertable for the TX transfer
354 * @dummypage: a dummy page used for driving data on the bus with DMA
b43d65f7
LW
355 */
356struct pl022 {
357 struct amba_device *adev;
358 struct vendor_data *vendor;
359 resource_size_t phybase;
360 void __iomem *virtbase;
361 struct clk *clk;
362 struct spi_master *master;
363 struct pl022_ssp_controller *master_info;
364 /* Driver message queue */
365 struct workqueue_struct *workqueue;
366 struct work_struct pump_messages;
367 spinlock_t queue_lock;
368 struct list_head queue;
dec5a581 369 bool busy;
5e8b821d 370 bool running;
b43d65f7
LW
371 /* Message transfer pump */
372 struct tasklet_struct pump_transfers;
373 struct spi_message *cur_msg;
374 struct spi_transfer *cur_transfer;
375 struct chip_data *cur_chip;
376 void *tx;
377 void *tx_end;
378 void *rx;
379 void *rx_end;
380 enum ssp_reading read;
381 enum ssp_writing write;
fc05475f 382 u32 exp_fifo_level;
083be3f0
LW
383 enum ssp_rx_level_trig rx_lev_trig;
384 enum ssp_tx_level_trig tx_lev_trig;
b1b6b9aa
LW
385 /* DMA settings */
386#ifdef CONFIG_DMA_ENGINE
387 struct dma_chan *dma_rx_channel;
388 struct dma_chan *dma_tx_channel;
389 struct sg_table sgt_rx;
390 struct sg_table sgt_tx;
391 char *dummypage;
392#endif
b43d65f7
LW
393};
394
395/**
396 * struct chip_data - To maintain runtime state of SSP for each client chip
556f4aeb
LW
397 * @cr0: Value of control register CR0 of SSP - on later ST variants this
398 * register is 32 bits wide rather than just 16
b43d65f7
LW
399 * @cr1: Value of control register CR1 of SSP
400 * @dmacr: Value of DMA control Register of SSP
401 * @cpsr: Value of Clock prescale register
402 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
403 * @enable_dma: Whether to enable DMA or not
b43d65f7 404 * @read: function ptr to be used to read when doing xfer for this chip
12e8b325 405 * @write: function ptr to be used to write when doing xfer for this chip
b43d65f7
LW
406 * @cs_control: chip select callback provided by chip
407 * @xfer_type: polling/interrupt/DMA
408 *
409 * Runtime state of the SSP controller, maintained per chip,
410 * This would be set according to the current message that would be served
411 */
412struct chip_data {
556f4aeb 413 u32 cr0;
b43d65f7
LW
414 u16 cr1;
415 u16 dmacr;
416 u16 cpsr;
417 u8 n_bytes;
b1b6b9aa 418 bool enable_dma;
b43d65f7
LW
419 enum ssp_reading read;
420 enum ssp_writing write;
421 void (*cs_control) (u32 command);
422 int xfer_type;
423};
424
425/**
426 * null_cs_control - Dummy chip select function
427 * @command: select/delect the chip
428 *
429 * If no chip select function is provided by client this is used as dummy
430 * chip select
431 */
432static void null_cs_control(u32 command)
433{
434 pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
435}
436
437/**
438 * giveback - current spi_message is over, schedule next message and call
439 * callback of this message. Assumes that caller already
440 * set message->status; dma and pio irqs are blocked
441 * @pl022: SSP driver private data structure
442 */
443static void giveback(struct pl022 *pl022)
444{
445 struct spi_transfer *last_transfer;
446 unsigned long flags;
447 struct spi_message *msg;
448 void (*curr_cs_control) (u32 command);
449
450 /*
451 * This local reference to the chip select function
452 * is needed because we set curr_chip to NULL
453 * as a step toward termininating the message.
454 */
455 curr_cs_control = pl022->cur_chip->cs_control;
456 spin_lock_irqsave(&pl022->queue_lock, flags);
457 msg = pl022->cur_msg;
458 pl022->cur_msg = NULL;
459 pl022->cur_transfer = NULL;
460 pl022->cur_chip = NULL;
461 queue_work(pl022->workqueue, &pl022->pump_messages);
462 spin_unlock_irqrestore(&pl022->queue_lock, flags);
463
464 last_transfer = list_entry(msg->transfers.prev,
465 struct spi_transfer,
466 transfer_list);
467
468 /* Delay if requested before any change in chip select */
469 if (last_transfer->delay_usecs)
470 /*
471 * FIXME: This runs in interrupt context.
472 * Is this really smart?
473 */
474 udelay(last_transfer->delay_usecs);
475
476 /*
477 * Drop chip select UNLESS cs_change is true or we are returning
478 * a message with an error, or next message is for another chip
479 */
480 if (!last_transfer->cs_change)
481 curr_cs_control(SSP_CHIP_DESELECT);
482 else {
483 struct spi_message *next_msg;
484
485 /* Holding of cs was hinted, but we need to make sure
486 * the next message is for the same chip. Don't waste
487 * time with the following tests unless this was hinted.
488 *
489 * We cannot postpone this until pump_messages, because
490 * after calling msg->complete (below) the driver that
491 * sent the current message could be unloaded, which
492 * could invalidate the cs_control() callback...
493 */
494
495 /* get a pointer to the next message, if any */
496 spin_lock_irqsave(&pl022->queue_lock, flags);
497 if (list_empty(&pl022->queue))
498 next_msg = NULL;
499 else
500 next_msg = list_entry(pl022->queue.next,
501 struct spi_message, queue);
502 spin_unlock_irqrestore(&pl022->queue_lock, flags);
503
504 /* see if the next and current messages point
505 * to the same chip
506 */
507 if (next_msg && next_msg->spi != msg->spi)
508 next_msg = NULL;
509 if (!next_msg || msg->state == STATE_ERROR)
510 curr_cs_control(SSP_CHIP_DESELECT);
511 }
512 msg->state = NULL;
513 if (msg->complete)
514 msg->complete(msg->context);
808f1037 515 /* This message is completed, so let's turn off the clocks & power */
b43d65f7 516 clk_disable(pl022->clk);
545074fb 517 amba_pclk_disable(pl022->adev);
808f1037 518 amba_vcore_disable(pl022->adev);
bcda6ff8 519 pm_runtime_put(&pl022->adev->dev);
b43d65f7
LW
520}
521
522/**
523 * flush - flush the FIFO to reach a clean state
524 * @pl022: SSP driver private data structure
525 */
526static int flush(struct pl022 *pl022)
527{
528 unsigned long limit = loops_per_jiffy << 1;
529
530 dev_dbg(&pl022->adev->dev, "flush\n");
531 do {
532 while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
533 readw(SSP_DR(pl022->virtbase));
534 } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
fc05475f
LW
535
536 pl022->exp_fifo_level = 0;
537
b43d65f7
LW
538 return limit;
539}
540
541/**
542 * restore_state - Load configuration of current chip
543 * @pl022: SSP driver private data structure
544 */
545static void restore_state(struct pl022 *pl022)
546{
547 struct chip_data *chip = pl022->cur_chip;
548
556f4aeb
LW
549 if (pl022->vendor->extended_cr)
550 writel(chip->cr0, SSP_CR0(pl022->virtbase));
551 else
552 writew(chip->cr0, SSP_CR0(pl022->virtbase));
b43d65f7
LW
553 writew(chip->cr1, SSP_CR1(pl022->virtbase));
554 writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
555 writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
556 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
557 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
558}
559
b43d65f7
LW
560/*
561 * Default SSP Register Values
562 */
563#define DEFAULT_SSP_REG_CR0 ( \
564 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
556f4aeb
LW
565 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
566 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
567 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
568 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
569)
570
571/* ST versions have slightly different bit layout */
572#define DEFAULT_SSP_REG_CR0_ST ( \
573 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
574 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
b43d65f7 575 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
ee2b805c 576 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
556f4aeb
LW
577 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
578 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \
579 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
b43d65f7
LW
580)
581
781c7b12
LW
582/* The PL023 version is slightly different again */
583#define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
584 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
585 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
586 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
587 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
588)
589
b43d65f7
LW
590#define DEFAULT_SSP_REG_CR1 ( \
591 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
592 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
593 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
556f4aeb 594 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
b43d65f7
LW
595)
596
556f4aeb
LW
597/* ST versions extend this register to use all 16 bits */
598#define DEFAULT_SSP_REG_CR1_ST ( \
599 DEFAULT_SSP_REG_CR1 | \
600 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
601 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
602 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
603 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
604 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
605)
606
781c7b12
LW
607/*
608 * The PL023 variant has further differences: no loopback mode, no microwire
609 * support, and a new clock feedback delay setting.
610 */
611#define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
612 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
613 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
614 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
615 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
616 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
617 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
618 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
619 GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
620)
556f4aeb 621
b43d65f7 622#define DEFAULT_SSP_REG_CPSR ( \
556f4aeb 623 GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
b43d65f7
LW
624)
625
626#define DEFAULT_SSP_REG_DMACR (\
627 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
628 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
629)
630
781c7b12
LW
631/**
632 * load_ssp_default_config - Load default configuration for SSP
633 * @pl022: SSP driver private data structure
634 */
b43d65f7
LW
635static void load_ssp_default_config(struct pl022 *pl022)
636{
781c7b12
LW
637 if (pl022->vendor->pl023) {
638 writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
639 writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
640 } else if (pl022->vendor->extended_cr) {
556f4aeb
LW
641 writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
642 writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
643 } else {
644 writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
645 writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
646 }
b43d65f7
LW
647 writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
648 writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
649 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
650 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
651}
652
653/**
654 * This will write to TX and read from RX according to the parameters
655 * set in pl022.
656 */
657static void readwriter(struct pl022 *pl022)
658{
659
660 /*
25985edc 661 * The FIFO depth is different between primecell variants.
b43d65f7
LW
662 * I believe filling in too much in the FIFO might cause
663 * errons in 8bit wide transfers on ARM variants (just 8 words
664 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
665 *
fc05475f
LW
666 * To prevent this issue, the TX FIFO is only filled to the
667 * unused RX FIFO fill length, regardless of what the TX
668 * FIFO status flag indicates.
b43d65f7
LW
669 */
670 dev_dbg(&pl022->adev->dev,
671 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
672 __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
673
674 /* Read as much as you can */
675 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
676 && (pl022->rx < pl022->rx_end)) {
677 switch (pl022->read) {
678 case READING_NULL:
679 readw(SSP_DR(pl022->virtbase));
680 break;
681 case READING_U8:
682 *(u8 *) (pl022->rx) =
683 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
684 break;
685 case READING_U16:
686 *(u16 *) (pl022->rx) =
687 (u16) readw(SSP_DR(pl022->virtbase));
688 break;
689 case READING_U32:
690 *(u32 *) (pl022->rx) =
691 readl(SSP_DR(pl022->virtbase));
692 break;
693 }
694 pl022->rx += (pl022->cur_chip->n_bytes);
fc05475f 695 pl022->exp_fifo_level--;
b43d65f7
LW
696 }
697 /*
fc05475f 698 * Write as much as possible up to the RX FIFO size
b43d65f7 699 */
fc05475f 700 while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
b43d65f7
LW
701 && (pl022->tx < pl022->tx_end)) {
702 switch (pl022->write) {
703 case WRITING_NULL:
704 writew(0x0, SSP_DR(pl022->virtbase));
705 break;
706 case WRITING_U8:
707 writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
708 break;
709 case WRITING_U16:
710 writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
711 break;
712 case WRITING_U32:
713 writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
714 break;
715 }
716 pl022->tx += (pl022->cur_chip->n_bytes);
fc05475f 717 pl022->exp_fifo_level++;
b43d65f7
LW
718 /*
719 * This inner reader takes care of things appearing in the RX
720 * FIFO as we're transmitting. This will happen a lot since the
721 * clock starts running when you put things into the TX FIFO,
25985edc 722 * and then things are continuously clocked into the RX FIFO.
b43d65f7
LW
723 */
724 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
725 && (pl022->rx < pl022->rx_end)) {
726 switch (pl022->read) {
727 case READING_NULL:
728 readw(SSP_DR(pl022->virtbase));
729 break;
730 case READING_U8:
731 *(u8 *) (pl022->rx) =
732 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
733 break;
734 case READING_U16:
735 *(u16 *) (pl022->rx) =
736 (u16) readw(SSP_DR(pl022->virtbase));
737 break;
738 case READING_U32:
739 *(u32 *) (pl022->rx) =
740 readl(SSP_DR(pl022->virtbase));
741 break;
742 }
743 pl022->rx += (pl022->cur_chip->n_bytes);
fc05475f 744 pl022->exp_fifo_level--;
b43d65f7
LW
745 }
746 }
747 /*
748 * When we exit here the TX FIFO should be full and the RX FIFO
749 * should be empty
750 */
751}
752
b43d65f7
LW
753/**
754 * next_transfer - Move to the Next transfer in the current spi message
755 * @pl022: SSP driver private data structure
756 *
757 * This function moves though the linked list of spi transfers in the
758 * current spi message and returns with the state of current spi
759 * message i.e whether its last transfer is done(STATE_DONE) or
760 * Next transfer is ready(STATE_RUNNING)
761 */
762static void *next_transfer(struct pl022 *pl022)
763{
764 struct spi_message *msg = pl022->cur_msg;
765 struct spi_transfer *trans = pl022->cur_transfer;
766
767 /* Move to next transfer */
768 if (trans->transfer_list.next != &msg->transfers) {
769 pl022->cur_transfer =
770 list_entry(trans->transfer_list.next,
771 struct spi_transfer, transfer_list);
772 return STATE_RUNNING;
773 }
774 return STATE_DONE;
775}
b1b6b9aa
LW
776
777/*
778 * This DMA functionality is only compiled in if we have
779 * access to the generic DMA devices/DMA engine.
780 */
781#ifdef CONFIG_DMA_ENGINE
782static void unmap_free_dma_scatter(struct pl022 *pl022)
783{
784 /* Unmap and free the SG tables */
b7298896 785 dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
b1b6b9aa 786 pl022->sgt_tx.nents, DMA_TO_DEVICE);
b7298896 787 dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
b1b6b9aa
LW
788 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
789 sg_free_table(&pl022->sgt_rx);
790 sg_free_table(&pl022->sgt_tx);
791}
792
793static void dma_callback(void *data)
794{
795 struct pl022 *pl022 = data;
796 struct spi_message *msg = pl022->cur_msg;
797
798 BUG_ON(!pl022->sgt_rx.sgl);
799
800#ifdef VERBOSE_DEBUG
801 /*
802 * Optionally dump out buffers to inspect contents, this is
803 * good if you want to convince yourself that the loopback
804 * read/write contents are the same, when adopting to a new
805 * DMA engine.
806 */
807 {
808 struct scatterlist *sg;
809 unsigned int i;
810
811 dma_sync_sg_for_cpu(&pl022->adev->dev,
812 pl022->sgt_rx.sgl,
813 pl022->sgt_rx.nents,
814 DMA_FROM_DEVICE);
815
816 for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
817 dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
818 print_hex_dump(KERN_ERR, "SPI RX: ",
819 DUMP_PREFIX_OFFSET,
820 16,
821 1,
822 sg_virt(sg),
823 sg_dma_len(sg),
824 1);
825 }
826 for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
827 dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
828 print_hex_dump(KERN_ERR, "SPI TX: ",
829 DUMP_PREFIX_OFFSET,
830 16,
831 1,
832 sg_virt(sg),
833 sg_dma_len(sg),
834 1);
835 }
836 }
837#endif
838
839 unmap_free_dma_scatter(pl022);
840
25985edc 841 /* Update total bytes transferred */
b1b6b9aa
LW
842 msg->actual_length += pl022->cur_transfer->len;
843 if (pl022->cur_transfer->cs_change)
844 pl022->cur_chip->
845 cs_control(SSP_CHIP_DESELECT);
846
847 /* Move to next transfer */
848 msg->state = next_transfer(pl022);
849 tasklet_schedule(&pl022->pump_transfers);
850}
851
852static void setup_dma_scatter(struct pl022 *pl022,
853 void *buffer,
854 unsigned int length,
855 struct sg_table *sgtab)
856{
857 struct scatterlist *sg;
858 int bytesleft = length;
859 void *bufp = buffer;
860 int mapbytes;
861 int i;
862
863 if (buffer) {
864 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
865 /*
866 * If there are less bytes left than what fits
867 * in the current page (plus page alignment offset)
868 * we just feed in this, else we stuff in as much
869 * as we can.
870 */
871 if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
872 mapbytes = bytesleft;
873 else
874 mapbytes = PAGE_SIZE - offset_in_page(bufp);
875 sg_set_page(sg, virt_to_page(bufp),
876 mapbytes, offset_in_page(bufp));
877 bufp += mapbytes;
878 bytesleft -= mapbytes;
879 dev_dbg(&pl022->adev->dev,
880 "set RX/TX target page @ %p, %d bytes, %d left\n",
881 bufp, mapbytes, bytesleft);
882 }
883 } else {
884 /* Map the dummy buffer on every page */
885 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
886 if (bytesleft < PAGE_SIZE)
887 mapbytes = bytesleft;
888 else
889 mapbytes = PAGE_SIZE;
890 sg_set_page(sg, virt_to_page(pl022->dummypage),
891 mapbytes, 0);
892 bytesleft -= mapbytes;
893 dev_dbg(&pl022->adev->dev,
894 "set RX/TX to dummy page %d bytes, %d left\n",
895 mapbytes, bytesleft);
896
897 }
898 }
899 BUG_ON(bytesleft);
900}
901
902/**
903 * configure_dma - configures the channels for the next transfer
904 * @pl022: SSP driver's private data structure
905 */
906static int configure_dma(struct pl022 *pl022)
907{
908 struct dma_slave_config rx_conf = {
909 .src_addr = SSP_DR(pl022->phybase),
910 .direction = DMA_FROM_DEVICE,
b1b6b9aa
LW
911 };
912 struct dma_slave_config tx_conf = {
913 .dst_addr = SSP_DR(pl022->phybase),
914 .direction = DMA_TO_DEVICE,
b1b6b9aa
LW
915 };
916 unsigned int pages;
917 int ret;
082086f2 918 int rx_sglen, tx_sglen;
b1b6b9aa
LW
919 struct dma_chan *rxchan = pl022->dma_rx_channel;
920 struct dma_chan *txchan = pl022->dma_tx_channel;
921 struct dma_async_tx_descriptor *rxdesc;
922 struct dma_async_tx_descriptor *txdesc;
b1b6b9aa
LW
923
924 /* Check that the channels are available */
925 if (!rxchan || !txchan)
926 return -ENODEV;
927
083be3f0
LW
928 /*
929 * If supplied, the DMA burstsize should equal the FIFO trigger level.
930 * Notice that the DMA engine uses one-to-one mapping. Since we can
931 * not trigger on 2 elements this needs explicit mapping rather than
932 * calculation.
933 */
934 switch (pl022->rx_lev_trig) {
935 case SSP_RX_1_OR_MORE_ELEM:
936 rx_conf.src_maxburst = 1;
937 break;
938 case SSP_RX_4_OR_MORE_ELEM:
939 rx_conf.src_maxburst = 4;
940 break;
941 case SSP_RX_8_OR_MORE_ELEM:
942 rx_conf.src_maxburst = 8;
943 break;
944 case SSP_RX_16_OR_MORE_ELEM:
945 rx_conf.src_maxburst = 16;
946 break;
947 case SSP_RX_32_OR_MORE_ELEM:
948 rx_conf.src_maxburst = 32;
949 break;
950 default:
951 rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
952 break;
953 }
954
955 switch (pl022->tx_lev_trig) {
956 case SSP_TX_1_OR_MORE_EMPTY_LOC:
957 tx_conf.dst_maxburst = 1;
958 break;
959 case SSP_TX_4_OR_MORE_EMPTY_LOC:
960 tx_conf.dst_maxburst = 4;
961 break;
962 case SSP_TX_8_OR_MORE_EMPTY_LOC:
963 tx_conf.dst_maxburst = 8;
964 break;
965 case SSP_TX_16_OR_MORE_EMPTY_LOC:
966 tx_conf.dst_maxburst = 16;
967 break;
968 case SSP_TX_32_OR_MORE_EMPTY_LOC:
969 tx_conf.dst_maxburst = 32;
970 break;
971 default:
972 tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
973 break;
974 }
975
b1b6b9aa
LW
976 switch (pl022->read) {
977 case READING_NULL:
978 /* Use the same as for writing */
979 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
980 break;
981 case READING_U8:
982 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
983 break;
984 case READING_U16:
985 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
986 break;
987 case READING_U32:
988 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
989 break;
990 }
991
992 switch (pl022->write) {
993 case WRITING_NULL:
994 /* Use the same as for reading */
995 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
996 break;
997 case WRITING_U8:
998 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
999 break;
1000 case WRITING_U16:
1001 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1002 break;
1003 case WRITING_U32:
bc3f67a3 1004 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
b1b6b9aa
LW
1005 break;
1006 }
1007
1008 /* SPI pecularity: we need to read and write the same width */
1009 if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1010 rx_conf.src_addr_width = tx_conf.dst_addr_width;
1011 if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1012 tx_conf.dst_addr_width = rx_conf.src_addr_width;
1013 BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
1014
ecd442fd
LW
1015 dmaengine_slave_config(rxchan, &rx_conf);
1016 dmaengine_slave_config(txchan, &tx_conf);
b1b6b9aa
LW
1017
1018 /* Create sglists for the transfers */
b181565e 1019 pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
b1b6b9aa
LW
1020 dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1021
538a18dc 1022 ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
b1b6b9aa
LW
1023 if (ret)
1024 goto err_alloc_rx_sg;
1025
538a18dc 1026 ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
b1b6b9aa
LW
1027 if (ret)
1028 goto err_alloc_tx_sg;
1029
1030 /* Fill in the scatterlists for the RX+TX buffers */
1031 setup_dma_scatter(pl022, pl022->rx,
1032 pl022->cur_transfer->len, &pl022->sgt_rx);
1033 setup_dma_scatter(pl022, pl022->tx,
1034 pl022->cur_transfer->len, &pl022->sgt_tx);
1035
1036 /* Map DMA buffers */
082086f2 1037 rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
b1b6b9aa 1038 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
082086f2 1039 if (!rx_sglen)
b1b6b9aa
LW
1040 goto err_rx_sgmap;
1041
082086f2 1042 tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
b1b6b9aa 1043 pl022->sgt_tx.nents, DMA_TO_DEVICE);
082086f2 1044 if (!tx_sglen)
b1b6b9aa
LW
1045 goto err_tx_sgmap;
1046
1047 /* Send both scatterlists */
1048 rxdesc = rxchan->device->device_prep_slave_sg(rxchan,
1049 pl022->sgt_rx.sgl,
082086f2 1050 rx_sglen,
b1b6b9aa
LW
1051 DMA_FROM_DEVICE,
1052 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1053 if (!rxdesc)
1054 goto err_rxdesc;
1055
1056 txdesc = txchan->device->device_prep_slave_sg(txchan,
1057 pl022->sgt_tx.sgl,
082086f2 1058 tx_sglen,
b1b6b9aa
LW
1059 DMA_TO_DEVICE,
1060 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1061 if (!txdesc)
1062 goto err_txdesc;
1063
1064 /* Put the callback on the RX transfer only, that should finish last */
1065 rxdesc->callback = dma_callback;
1066 rxdesc->callback_param = pl022;
1067
1068 /* Submit and fire RX and TX with TX last so we're ready to read! */
ecd442fd
LW
1069 dmaengine_submit(rxdesc);
1070 dmaengine_submit(txdesc);
1071 dma_async_issue_pending(rxchan);
1072 dma_async_issue_pending(txchan);
b1b6b9aa
LW
1073
1074 return 0;
1075
b1b6b9aa 1076err_txdesc:
ecd442fd 1077 dmaengine_terminate_all(txchan);
b1b6b9aa 1078err_rxdesc:
ecd442fd 1079 dmaengine_terminate_all(rxchan);
b7298896 1080 dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
b1b6b9aa
LW
1081 pl022->sgt_tx.nents, DMA_TO_DEVICE);
1082err_tx_sgmap:
b7298896 1083 dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
b1b6b9aa
LW
1084 pl022->sgt_tx.nents, DMA_FROM_DEVICE);
1085err_rx_sgmap:
1086 sg_free_table(&pl022->sgt_tx);
1087err_alloc_tx_sg:
1088 sg_free_table(&pl022->sgt_rx);
1089err_alloc_rx_sg:
1090 return -ENOMEM;
1091}
1092
1093static int __init pl022_dma_probe(struct pl022 *pl022)
1094{
1095 dma_cap_mask_t mask;
1096
1097 /* Try to acquire a generic DMA engine slave channel */
1098 dma_cap_zero(mask);
1099 dma_cap_set(DMA_SLAVE, mask);
1100 /*
1101 * We need both RX and TX channels to do DMA, else do none
1102 * of them.
1103 */
1104 pl022->dma_rx_channel = dma_request_channel(mask,
1105 pl022->master_info->dma_filter,
1106 pl022->master_info->dma_rx_param);
1107 if (!pl022->dma_rx_channel) {
43c64015 1108 dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
b1b6b9aa
LW
1109 goto err_no_rxchan;
1110 }
1111
1112 pl022->dma_tx_channel = dma_request_channel(mask,
1113 pl022->master_info->dma_filter,
1114 pl022->master_info->dma_tx_param);
1115 if (!pl022->dma_tx_channel) {
43c64015 1116 dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
b1b6b9aa
LW
1117 goto err_no_txchan;
1118 }
1119
1120 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1121 if (!pl022->dummypage) {
43c64015 1122 dev_dbg(&pl022->adev->dev, "no DMA dummypage!\n");
b1b6b9aa
LW
1123 goto err_no_dummypage;
1124 }
1125
1126 dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1127 dma_chan_name(pl022->dma_rx_channel),
1128 dma_chan_name(pl022->dma_tx_channel));
1129
1130 return 0;
1131
1132err_no_dummypage:
1133 dma_release_channel(pl022->dma_tx_channel);
1134err_no_txchan:
1135 dma_release_channel(pl022->dma_rx_channel);
1136 pl022->dma_rx_channel = NULL;
1137err_no_rxchan:
43c64015
VK
1138 dev_err(&pl022->adev->dev,
1139 "Failed to work in dma mode, work without dma!\n");
b1b6b9aa
LW
1140 return -ENODEV;
1141}
1142
1143static void terminate_dma(struct pl022 *pl022)
1144{
1145 struct dma_chan *rxchan = pl022->dma_rx_channel;
1146 struct dma_chan *txchan = pl022->dma_tx_channel;
1147
ecd442fd
LW
1148 dmaengine_terminate_all(rxchan);
1149 dmaengine_terminate_all(txchan);
b1b6b9aa
LW
1150 unmap_free_dma_scatter(pl022);
1151}
1152
1153static void pl022_dma_remove(struct pl022 *pl022)
1154{
1155 if (pl022->busy)
1156 terminate_dma(pl022);
1157 if (pl022->dma_tx_channel)
1158 dma_release_channel(pl022->dma_tx_channel);
1159 if (pl022->dma_rx_channel)
1160 dma_release_channel(pl022->dma_rx_channel);
1161 kfree(pl022->dummypage);
1162}
1163
1164#else
1165static inline int configure_dma(struct pl022 *pl022)
1166{
1167 return -ENODEV;
1168}
1169
1170static inline int pl022_dma_probe(struct pl022 *pl022)
1171{
1172 return 0;
1173}
1174
1175static inline void pl022_dma_remove(struct pl022 *pl022)
1176{
1177}
1178#endif
1179
b43d65f7
LW
1180/**
1181 * pl022_interrupt_handler - Interrupt handler for SSP controller
1182 *
1183 * This function handles interrupts generated for an interrupt based transfer.
1184 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1185 * current message's state as STATE_ERROR and schedule the tasklet
1186 * pump_transfers which will do the postprocessing of the current message by
1187 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1188 * more data, and writes data in TX FIFO till it is not full. If we complete
1189 * the transfer we move to the next transfer and schedule the tasklet.
1190 */
1191static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1192{
1193 struct pl022 *pl022 = dev_id;
1194 struct spi_message *msg = pl022->cur_msg;
1195 u16 irq_status = 0;
1196 u16 flag = 0;
1197
1198 if (unlikely(!msg)) {
1199 dev_err(&pl022->adev->dev,
1200 "bad message state in interrupt handler");
1201 /* Never fail */
1202 return IRQ_HANDLED;
1203 }
1204
1205 /* Read the Interrupt Status Register */
1206 irq_status = readw(SSP_MIS(pl022->virtbase));
1207
1208 if (unlikely(!irq_status))
1209 return IRQ_NONE;
1210
b1b6b9aa
LW
1211 /*
1212 * This handles the FIFO interrupts, the timeout
1213 * interrupts are flatly ignored, they cannot be
1214 * trusted.
1215 */
b43d65f7
LW
1216 if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1217 /*
1218 * Overrun interrupt - bail out since our Data has been
1219 * corrupted
1220 */
b1b6b9aa 1221 dev_err(&pl022->adev->dev, "FIFO overrun\n");
b43d65f7
LW
1222 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1223 dev_err(&pl022->adev->dev,
1224 "RXFIFO is full\n");
1225 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF)
1226 dev_err(&pl022->adev->dev,
1227 "TXFIFO is full\n");
1228
1229 /*
1230 * Disable and clear interrupts, disable SSP,
1231 * mark message with bad status so it can be
1232 * retried.
1233 */
1234 writew(DISABLE_ALL_INTERRUPTS,
1235 SSP_IMSC(pl022->virtbase));
1236 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1237 writew((readw(SSP_CR1(pl022->virtbase)) &
1238 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1239 msg->state = STATE_ERROR;
1240
1241 /* Schedule message queue handler */
1242 tasklet_schedule(&pl022->pump_transfers);
1243 return IRQ_HANDLED;
1244 }
1245
1246 readwriter(pl022);
1247
1248 if ((pl022->tx == pl022->tx_end) && (flag == 0)) {
1249 flag = 1;
1250 /* Disable Transmit interrupt */
1251 writew(readw(SSP_IMSC(pl022->virtbase)) &
1252 (~SSP_IMSC_MASK_TXIM),
1253 SSP_IMSC(pl022->virtbase));
1254 }
1255
1256 /*
1257 * Since all transactions must write as much as shall be read,
1258 * we can conclude the entire transaction once RX is complete.
1259 * At this point, all TX will always be finished.
1260 */
1261 if (pl022->rx >= pl022->rx_end) {
1262 writew(DISABLE_ALL_INTERRUPTS,
1263 SSP_IMSC(pl022->virtbase));
1264 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1265 if (unlikely(pl022->rx > pl022->rx_end)) {
1266 dev_warn(&pl022->adev->dev, "read %u surplus "
1267 "bytes (did you request an odd "
1268 "number of bytes on a 16bit bus?)\n",
1269 (u32) (pl022->rx - pl022->rx_end));
1270 }
25985edc 1271 /* Update total bytes transferred */
b43d65f7
LW
1272 msg->actual_length += pl022->cur_transfer->len;
1273 if (pl022->cur_transfer->cs_change)
1274 pl022->cur_chip->
1275 cs_control(SSP_CHIP_DESELECT);
1276 /* Move to next transfer */
1277 msg->state = next_transfer(pl022);
1278 tasklet_schedule(&pl022->pump_transfers);
1279 return IRQ_HANDLED;
1280 }
1281
1282 return IRQ_HANDLED;
1283}
1284
1285/**
1286 * This sets up the pointers to memory for the next message to
1287 * send out on the SPI bus.
1288 */
1289static int set_up_next_transfer(struct pl022 *pl022,
1290 struct spi_transfer *transfer)
1291{
1292 int residue;
1293
1294 /* Sanity check the message for this bus width */
1295 residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1296 if (unlikely(residue != 0)) {
1297 dev_err(&pl022->adev->dev,
1298 "message of %u bytes to transmit but the current "
1299 "chip bus has a data width of %u bytes!\n",
1300 pl022->cur_transfer->len,
1301 pl022->cur_chip->n_bytes);
1302 dev_err(&pl022->adev->dev, "skipping this message\n");
1303 return -EIO;
1304 }
1305 pl022->tx = (void *)transfer->tx_buf;
1306 pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1307 pl022->rx = (void *)transfer->rx_buf;
1308 pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1309 pl022->write =
1310 pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1311 pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1312 return 0;
1313}
1314
1315/**
b1b6b9aa
LW
1316 * pump_transfers - Tasklet function which schedules next transfer
1317 * when running in interrupt or DMA transfer mode.
b43d65f7
LW
1318 * @data: SSP driver private data structure
1319 *
1320 */
1321static void pump_transfers(unsigned long data)
1322{
1323 struct pl022 *pl022 = (struct pl022 *) data;
1324 struct spi_message *message = NULL;
1325 struct spi_transfer *transfer = NULL;
1326 struct spi_transfer *previous = NULL;
1327
1328 /* Get current state information */
1329 message = pl022->cur_msg;
1330 transfer = pl022->cur_transfer;
1331
1332 /* Handle for abort */
1333 if (message->state == STATE_ERROR) {
1334 message->status = -EIO;
1335 giveback(pl022);
1336 return;
1337 }
1338
1339 /* Handle end of message */
1340 if (message->state == STATE_DONE) {
1341 message->status = 0;
1342 giveback(pl022);
1343 return;
1344 }
1345
1346 /* Delay if requested at end of transfer before CS change */
1347 if (message->state == STATE_RUNNING) {
1348 previous = list_entry(transfer->transfer_list.prev,
1349 struct spi_transfer,
1350 transfer_list);
1351 if (previous->delay_usecs)
1352 /*
1353 * FIXME: This runs in interrupt context.
1354 * Is this really smart?
1355 */
1356 udelay(previous->delay_usecs);
1357
1358 /* Drop chip select only if cs_change is requested */
1359 if (previous->cs_change)
1360 pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1361 } else {
1362 /* STATE_START */
1363 message->state = STATE_RUNNING;
1364 }
1365
1366 if (set_up_next_transfer(pl022, transfer)) {
1367 message->state = STATE_ERROR;
1368 message->status = -EIO;
1369 giveback(pl022);
1370 return;
1371 }
1372 /* Flush the FIFOs and let's go! */
1373 flush(pl022);
b43d65f7 1374
b1b6b9aa
LW
1375 if (pl022->cur_chip->enable_dma) {
1376 if (configure_dma(pl022)) {
1377 dev_dbg(&pl022->adev->dev,
1378 "configuration of DMA failed, fall back to interrupt mode\n");
1379 goto err_config_dma;
1380 }
b43d65f7
LW
1381 return;
1382 }
b43d65f7 1383
b1b6b9aa
LW
1384err_config_dma:
1385 writew(ENABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
b43d65f7
LW
1386}
1387
b1b6b9aa 1388static void do_interrupt_dma_transfer(struct pl022 *pl022)
b43d65f7 1389{
b1b6b9aa 1390 u32 irqflags = ENABLE_ALL_INTERRUPTS;
b43d65f7
LW
1391
1392 /* Enable target chip */
1393 pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1394 if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1395 /* Error path */
1396 pl022->cur_msg->state = STATE_ERROR;
1397 pl022->cur_msg->status = -EIO;
1398 giveback(pl022);
1399 return;
1400 }
b1b6b9aa
LW
1401 /* If we're using DMA, set up DMA here */
1402 if (pl022->cur_chip->enable_dma) {
1403 /* Configure DMA transfer */
1404 if (configure_dma(pl022)) {
1405 dev_dbg(&pl022->adev->dev,
1406 "configuration of DMA failed, fall back to interrupt mode\n");
1407 goto err_config_dma;
1408 }
1409 /* Disable interrupts in DMA mode, IRQ from DMA controller */
1410 irqflags = DISABLE_ALL_INTERRUPTS;
1411 }
1412err_config_dma:
b43d65f7
LW
1413 /* Enable SSP, turn on interrupts */
1414 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1415 SSP_CR1(pl022->virtbase));
b1b6b9aa 1416 writew(irqflags, SSP_IMSC(pl022->virtbase));
b43d65f7
LW
1417}
1418
b1b6b9aa 1419static void do_polling_transfer(struct pl022 *pl022)
b43d65f7 1420{
b43d65f7
LW
1421 struct spi_message *message = NULL;
1422 struct spi_transfer *transfer = NULL;
1423 struct spi_transfer *previous = NULL;
1424 struct chip_data *chip;
a18c266f 1425 unsigned long time, timeout;
b43d65f7
LW
1426
1427 chip = pl022->cur_chip;
1428 message = pl022->cur_msg;
1429
1430 while (message->state != STATE_DONE) {
1431 /* Handle for abort */
1432 if (message->state == STATE_ERROR)
1433 break;
1434 transfer = pl022->cur_transfer;
1435
1436 /* Delay if requested at end of transfer */
1437 if (message->state == STATE_RUNNING) {
1438 previous =
1439 list_entry(transfer->transfer_list.prev,
1440 struct spi_transfer, transfer_list);
1441 if (previous->delay_usecs)
1442 udelay(previous->delay_usecs);
1443 if (previous->cs_change)
1444 pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1445 } else {
1446 /* STATE_START */
1447 message->state = STATE_RUNNING;
1448 pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1449 }
1450
1451 /* Configuration Changing Per Transfer */
1452 if (set_up_next_transfer(pl022, transfer)) {
1453 /* Error path */
1454 message->state = STATE_ERROR;
1455 break;
1456 }
1457 /* Flush FIFOs and enable SSP */
1458 flush(pl022);
1459 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1460 SSP_CR1(pl022->virtbase));
1461
556f4aeb 1462 dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
a18c266f
MT
1463
1464 timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1465 while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1466 time = jiffies;
b43d65f7 1467 readwriter(pl022);
a18c266f
MT
1468 if (time_after(time, timeout)) {
1469 dev_warn(&pl022->adev->dev,
1470 "%s: timeout!\n", __func__);
1471 message->state = STATE_ERROR;
1472 goto out;
1473 }
521999bd 1474 cpu_relax();
a18c266f 1475 }
b43d65f7 1476
25985edc 1477 /* Update total byte transferred */
b43d65f7
LW
1478 message->actual_length += pl022->cur_transfer->len;
1479 if (pl022->cur_transfer->cs_change)
1480 pl022->cur_chip->cs_control(SSP_CHIP_DESELECT);
1481 /* Move to next transfer */
1482 message->state = next_transfer(pl022);
1483 }
a18c266f 1484out:
b43d65f7
LW
1485 /* Handle end of message */
1486 if (message->state == STATE_DONE)
1487 message->status = 0;
1488 else
1489 message->status = -EIO;
1490
1491 giveback(pl022);
1492 return;
1493}
1494
1495/**
1496 * pump_messages - Workqueue function which processes spi message queue
1497 * @data: pointer to private data of SSP driver
1498 *
1499 * This function checks if there is any spi message in the queue that
1500 * needs processing and delegate control to appropriate function
b1b6b9aa 1501 * do_polling_transfer()/do_interrupt_dma_transfer()
b43d65f7
LW
1502 * based on the kind of the transfer
1503 *
1504 */
1505static void pump_messages(struct work_struct *work)
1506{
1507 struct pl022 *pl022 =
1508 container_of(work, struct pl022, pump_messages);
1509 unsigned long flags;
1510
1511 /* Lock queue and check for queue work */
1512 spin_lock_irqsave(&pl022->queue_lock, flags);
5e8b821d 1513 if (list_empty(&pl022->queue) || !pl022->running) {
dec5a581 1514 pl022->busy = false;
b43d65f7
LW
1515 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1516 return;
1517 }
1518 /* Make sure we are not already running a message */
1519 if (pl022->cur_msg) {
1520 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1521 return;
1522 }
1523 /* Extract head of queue */
1524 pl022->cur_msg =
1525 list_entry(pl022->queue.next, struct spi_message, queue);
1526
1527 list_del_init(&pl022->cur_msg->queue);
dec5a581 1528 pl022->busy = true;
b43d65f7
LW
1529 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1530
1531 /* Initial message state */
1532 pl022->cur_msg->state = STATE_START;
1533 pl022->cur_transfer = list_entry(pl022->cur_msg->transfers.next,
f1e45f86 1534 struct spi_transfer, transfer_list);
b43d65f7
LW
1535
1536 /* Setup the SPI using the per chip configuration */
1537 pl022->cur_chip = spi_get_ctldata(pl022->cur_msg->spi);
1538 /*
808f1037
LW
1539 * We enable the core voltage and clocks here, then the clocks
1540 * and core will be disabled when giveback() is called in each method
1541 * (poll/interrupt/DMA)
b43d65f7 1542 */
bcda6ff8 1543 pm_runtime_get_sync(&pl022->adev->dev);
808f1037 1544 amba_vcore_enable(pl022->adev);
545074fb 1545 amba_pclk_enable(pl022->adev);
b43d65f7
LW
1546 clk_enable(pl022->clk);
1547 restore_state(pl022);
1548 flush(pl022);
1549
1550 if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1551 do_polling_transfer(pl022);
b43d65f7 1552 else
b1b6b9aa 1553 do_interrupt_dma_transfer(pl022);
b43d65f7
LW
1554}
1555
b43d65f7
LW
1556static int __init init_queue(struct pl022 *pl022)
1557{
1558 INIT_LIST_HEAD(&pl022->queue);
1559 spin_lock_init(&pl022->queue_lock);
1560
5e8b821d 1561 pl022->running = false;
dec5a581 1562 pl022->busy = false;
b43d65f7 1563
f1e45f86
VK
1564 tasklet_init(&pl022->pump_transfers, pump_transfers,
1565 (unsigned long)pl022);
b43d65f7
LW
1566
1567 INIT_WORK(&pl022->pump_messages, pump_messages);
1568 pl022->workqueue = create_singlethread_workqueue(
1569 dev_name(pl022->master->dev.parent));
1570 if (pl022->workqueue == NULL)
1571 return -EBUSY;
1572
1573 return 0;
1574}
1575
b43d65f7
LW
1576static int start_queue(struct pl022 *pl022)
1577{
1578 unsigned long flags;
1579
1580 spin_lock_irqsave(&pl022->queue_lock, flags);
1581
5e8b821d 1582 if (pl022->running || pl022->busy) {
b43d65f7
LW
1583 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1584 return -EBUSY;
1585 }
1586
5e8b821d 1587 pl022->running = true;
b43d65f7
LW
1588 pl022->cur_msg = NULL;
1589 pl022->cur_transfer = NULL;
1590 pl022->cur_chip = NULL;
1591 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1592
1593 queue_work(pl022->workqueue, &pl022->pump_messages);
1594
1595 return 0;
1596}
1597
b43d65f7
LW
1598static int stop_queue(struct pl022 *pl022)
1599{
1600 unsigned long flags;
1601 unsigned limit = 500;
1602 int status = 0;
1603
1604 spin_lock_irqsave(&pl022->queue_lock, flags);
1605
1606 /* This is a bit lame, but is optimized for the common execution path.
1607 * A wait_queue on the pl022->busy could be used, but then the common
1608 * execution path (pump_messages) would be required to call wake_up or
1609 * friends on every SPI message. Do this instead */
850a28ec 1610 while ((!list_empty(&pl022->queue) || pl022->busy) && limit--) {
b43d65f7
LW
1611 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1612 msleep(10);
1613 spin_lock_irqsave(&pl022->queue_lock, flags);
1614 }
1615
1616 if (!list_empty(&pl022->queue) || pl022->busy)
1617 status = -EBUSY;
5e8b821d
LW
1618 else
1619 pl022->running = false;
b43d65f7
LW
1620
1621 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1622
1623 return status;
1624}
1625
1626static int destroy_queue(struct pl022 *pl022)
1627{
1628 int status;
1629
1630 status = stop_queue(pl022);
1631 /* we are unloading the module or failing to load (only two calls
1632 * to this routine), and neither call can handle a return value.
1633 * However, destroy_workqueue calls flush_workqueue, and that will
1634 * block until all work is done. If the reason that stop_queue
1635 * timed out is that the work will never finish, then it does no
1636 * good to call destroy_workqueue, so return anyway. */
1637 if (status != 0)
1638 return status;
1639
1640 destroy_workqueue(pl022->workqueue);
1641
1642 return 0;
1643}
1644
1645static int verify_controller_parameters(struct pl022 *pl022,
f9d629c7 1646 struct pl022_config_chip const *chip_info)
b43d65f7 1647{
b43d65f7
LW
1648 if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1649 || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
5a1c98be 1650 dev_err(&pl022->adev->dev,
b43d65f7
LW
1651 "interface is configured incorrectly\n");
1652 return -EINVAL;
1653 }
1654 if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1655 (!pl022->vendor->unidir)) {
5a1c98be 1656 dev_err(&pl022->adev->dev,
b43d65f7
LW
1657 "unidirectional mode not supported in this "
1658 "hardware version\n");
1659 return -EINVAL;
1660 }
1661 if ((chip_info->hierarchy != SSP_MASTER)
1662 && (chip_info->hierarchy != SSP_SLAVE)) {
5a1c98be 1663 dev_err(&pl022->adev->dev,
b43d65f7
LW
1664 "hierarchy is configured incorrectly\n");
1665 return -EINVAL;
1666 }
b43d65f7
LW
1667 if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1668 && (chip_info->com_mode != DMA_TRANSFER)
1669 && (chip_info->com_mode != POLLING_TRANSFER)) {
5a1c98be 1670 dev_err(&pl022->adev->dev,
b43d65f7
LW
1671 "Communication mode is configured incorrectly\n");
1672 return -EINVAL;
1673 }
78b2b911
LW
1674 switch (chip_info->rx_lev_trig) {
1675 case SSP_RX_1_OR_MORE_ELEM:
1676 case SSP_RX_4_OR_MORE_ELEM:
1677 case SSP_RX_8_OR_MORE_ELEM:
1678 /* These are always OK, all variants can handle this */
1679 break;
1680 case SSP_RX_16_OR_MORE_ELEM:
1681 if (pl022->vendor->fifodepth < 16) {
1682 dev_err(&pl022->adev->dev,
1683 "RX FIFO Trigger Level is configured incorrectly\n");
1684 return -EINVAL;
1685 }
1686 break;
1687 case SSP_RX_32_OR_MORE_ELEM:
1688 if (pl022->vendor->fifodepth < 32) {
1689 dev_err(&pl022->adev->dev,
1690 "RX FIFO Trigger Level is configured incorrectly\n");
1691 return -EINVAL;
1692 }
1693 break;
1694 default:
5a1c98be 1695 dev_err(&pl022->adev->dev,
b43d65f7
LW
1696 "RX FIFO Trigger Level is configured incorrectly\n");
1697 return -EINVAL;
78b2b911 1698 break;
b43d65f7 1699 }
78b2b911
LW
1700 switch (chip_info->tx_lev_trig) {
1701 case SSP_TX_1_OR_MORE_EMPTY_LOC:
1702 case SSP_TX_4_OR_MORE_EMPTY_LOC:
1703 case SSP_TX_8_OR_MORE_EMPTY_LOC:
1704 /* These are always OK, all variants can handle this */
1705 break;
1706 case SSP_TX_16_OR_MORE_EMPTY_LOC:
1707 if (pl022->vendor->fifodepth < 16) {
1708 dev_err(&pl022->adev->dev,
1709 "TX FIFO Trigger Level is configured incorrectly\n");
1710 return -EINVAL;
1711 }
1712 break;
1713 case SSP_TX_32_OR_MORE_EMPTY_LOC:
1714 if (pl022->vendor->fifodepth < 32) {
1715 dev_err(&pl022->adev->dev,
1716 "TX FIFO Trigger Level is configured incorrectly\n");
1717 return -EINVAL;
1718 }
1719 break;
1720 default:
5a1c98be 1721 dev_err(&pl022->adev->dev,
b43d65f7
LW
1722 "TX FIFO Trigger Level is configured incorrectly\n");
1723 return -EINVAL;
78b2b911 1724 break;
b43d65f7 1725 }
b43d65f7
LW
1726 if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1727 if ((chip_info->ctrl_len < SSP_BITS_4)
1728 || (chip_info->ctrl_len > SSP_BITS_32)) {
5a1c98be 1729 dev_err(&pl022->adev->dev,
b43d65f7
LW
1730 "CTRL LEN is configured incorrectly\n");
1731 return -EINVAL;
1732 }
1733 if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1734 && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
5a1c98be 1735 dev_err(&pl022->adev->dev,
b43d65f7
LW
1736 "Wait State is configured incorrectly\n");
1737 return -EINVAL;
1738 }
556f4aeb
LW
1739 /* Half duplex is only available in the ST Micro version */
1740 if (pl022->vendor->extended_cr) {
1741 if ((chip_info->duplex !=
1742 SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1743 && (chip_info->duplex !=
4a4fd471 1744 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
5a1c98be 1745 dev_err(&pl022->adev->dev,
556f4aeb
LW
1746 "Microwire duplex mode is configured incorrectly\n");
1747 return -EINVAL;
4a4fd471 1748 }
556f4aeb
LW
1749 } else {
1750 if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
5a1c98be 1751 dev_err(&pl022->adev->dev,
556f4aeb
LW
1752 "Microwire half duplex mode requested,"
1753 " but this is only available in the"
1754 " ST version of PL022\n");
b43d65f7
LW
1755 return -EINVAL;
1756 }
1757 }
b43d65f7
LW
1758 return 0;
1759}
1760
1761/**
1762 * pl022_transfer - transfer function registered to SPI master framework
1763 * @spi: spi device which is requesting transfer
1764 * @msg: spi message which is to handled is queued to driver queue
1765 *
1766 * This function is registered to the SPI framework for this SPI master
1767 * controller. It will queue the spi_message in the queue of driver if
1768 * the queue is not stopped and return.
1769 */
1770static int pl022_transfer(struct spi_device *spi, struct spi_message *msg)
1771{
1772 struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1773 unsigned long flags;
1774
1775 spin_lock_irqsave(&pl022->queue_lock, flags);
1776
5e8b821d 1777 if (!pl022->running) {
b43d65f7
LW
1778 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1779 return -ESHUTDOWN;
1780 }
1781 msg->actual_length = 0;
1782 msg->status = -EINPROGRESS;
1783 msg->state = STATE_START;
1784
1785 list_add_tail(&msg->queue, &pl022->queue);
5e8b821d 1786 if (pl022->running && !pl022->busy)
b43d65f7
LW
1787 queue_work(pl022->workqueue, &pl022->pump_messages);
1788
1789 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1790 return 0;
1791}
1792
1793static int calculate_effective_freq(struct pl022 *pl022,
1794 int freq,
1795 struct ssp_clock_params *clk_freq)
1796{
1797 /* Lets calculate the frequency parameters */
1798 u16 cpsdvsr = 2;
1799 u16 scr = 0;
1800 bool freq_found = false;
1801 u32 rate;
1802 u32 max_tclk;
1803 u32 min_tclk;
1804
1805 rate = clk_get_rate(pl022->clk);
1806 /* cpsdvscr = 2 & scr 0 */
1807 max_tclk = (rate / (CPSDVR_MIN * (1 + SCR_MIN)));
1808 /* cpsdvsr = 254 & scr = 255 */
1809 min_tclk = (rate / (CPSDVR_MAX * (1 + SCR_MAX)));
1810
1811 if ((freq <= max_tclk) && (freq >= min_tclk)) {
1812 while (cpsdvsr <= CPSDVR_MAX && !freq_found) {
1813 while (scr <= SCR_MAX && !freq_found) {
1814 if ((rate /
1815 (cpsdvsr * (1 + scr))) > freq)
1816 scr += 1;
1817 else {
1818 /*
1819 * This bool is made true when
1820 * effective frequency >=
1821 * target frequency is found
1822 */
1823 freq_found = true;
1824 if ((rate /
1825 (cpsdvsr * (1 + scr))) != freq) {
1826 if (scr == SCR_MIN) {
1827 cpsdvsr -= 2;
1828 scr = SCR_MAX;
1829 } else
1830 scr -= 1;
1831 }
1832 }
1833 }
1834 if (!freq_found) {
1835 cpsdvsr += 2;
1836 scr = SCR_MIN;
1837 }
1838 }
1839 if (cpsdvsr != 0) {
1840 dev_dbg(&pl022->adev->dev,
1841 "SSP Effective Frequency is %u\n",
1842 (rate / (cpsdvsr * (1 + scr))));
1843 clk_freq->cpsdvsr = (u8) (cpsdvsr & 0xFF);
1844 clk_freq->scr = (u8) (scr & 0xFF);
1845 dev_dbg(&pl022->adev->dev,
1846 "SSP cpsdvsr = %d, scr = %d\n",
1847 clk_freq->cpsdvsr, clk_freq->scr);
1848 }
1849 } else {
1850 dev_err(&pl022->adev->dev,
1851 "controller data is incorrect: out of range frequency");
1852 return -EINVAL;
1853 }
1854 return 0;
1855}
1856
f9d629c7
LW
1857/*
1858 * A piece of default chip info unless the platform
1859 * supplies it.
1860 */
1861static const struct pl022_config_chip pl022_default_chip_info = {
1862 .com_mode = POLLING_TRANSFER,
1863 .iface = SSP_INTERFACE_MOTOROLA_SPI,
1864 .hierarchy = SSP_SLAVE,
1865 .slave_tx_disable = DO_NOT_DRIVE_TX,
1866 .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1867 .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1868 .ctrl_len = SSP_BITS_8,
1869 .wait_state = SSP_MWIRE_WAIT_ZERO,
1870 .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1871 .cs_control = null_cs_control,
1872};
1873
b43d65f7
LW
1874/**
1875 * pl022_setup - setup function registered to SPI master framework
1876 * @spi: spi device which is requesting setup
1877 *
1878 * This function is registered to the SPI framework for this SPI master
1879 * controller. If it is the first time when setup is called by this device,
1880 * this function will initialize the runtime state for this chip and save
1881 * the same in the device structure. Else it will update the runtime info
1882 * with the updated chip info. Nothing is really being written to the
1883 * controller hardware here, that is not done until the actual transfer
1884 * commence.
1885 */
b43d65f7
LW
1886static int pl022_setup(struct spi_device *spi)
1887{
f9d629c7 1888 struct pl022_config_chip const *chip_info;
b43d65f7 1889 struct chip_data *chip;
94a1b6d8 1890 struct ssp_clock_params clk_freq = {0, };
b43d65f7
LW
1891 int status = 0;
1892 struct pl022 *pl022 = spi_master_get_devdata(spi->master);
bde435a9
KW
1893 unsigned int bits = spi->bits_per_word;
1894 u32 tmp;
b43d65f7
LW
1895
1896 if (!spi->max_speed_hz)
1897 return -EINVAL;
1898
1899 /* Get controller_state if one is supplied */
1900 chip = spi_get_ctldata(spi);
1901
1902 if (chip == NULL) {
1903 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1904 if (!chip) {
1905 dev_err(&spi->dev,
1906 "cannot allocate controller state\n");
1907 return -ENOMEM;
1908 }
1909 dev_dbg(&spi->dev,
1910 "allocated memory for controller's runtime state\n");
1911 }
1912
1913 /* Get controller data if one is supplied */
1914 chip_info = spi->controller_data;
1915
1916 if (chip_info == NULL) {
f9d629c7 1917 chip_info = &pl022_default_chip_info;
b43d65f7
LW
1918 /* spi_board_info.controller_data not is supplied */
1919 dev_dbg(&spi->dev,
1920 "using default controller_data settings\n");
f9d629c7 1921 } else
b43d65f7
LW
1922 dev_dbg(&spi->dev,
1923 "using user supplied controller_data settings\n");
b43d65f7
LW
1924
1925 /*
1926 * We can override with custom divisors, else we use the board
1927 * frequency setting
1928 */
1929 if ((0 == chip_info->clk_freq.cpsdvsr)
1930 && (0 == chip_info->clk_freq.scr)) {
1931 status = calculate_effective_freq(pl022,
1932 spi->max_speed_hz,
f9d629c7 1933 &clk_freq);
b43d65f7
LW
1934 if (status < 0)
1935 goto err_config_params;
1936 } else {
f9d629c7
LW
1937 memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1938 if ((clk_freq.cpsdvsr % 2) != 0)
1939 clk_freq.cpsdvsr =
1940 clk_freq.cpsdvsr - 1;
b43d65f7 1941 }
f9d629c7
LW
1942 if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1943 || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
e3f88ae9 1944 status = -EINVAL;
f9d629c7
LW
1945 dev_err(&spi->dev,
1946 "cpsdvsr is configured incorrectly\n");
1947 goto err_config_params;
1948 }
1949
b43d65f7
LW
1950 status = verify_controller_parameters(pl022, chip_info);
1951 if (status) {
1952 dev_err(&spi->dev, "controller data is incorrect");
1953 goto err_config_params;
1954 }
f9d629c7 1955
083be3f0
LW
1956 pl022->rx_lev_trig = chip_info->rx_lev_trig;
1957 pl022->tx_lev_trig = chip_info->tx_lev_trig;
1958
b43d65f7
LW
1959 /* Now set controller state based on controller data */
1960 chip->xfer_type = chip_info->com_mode;
f9d629c7
LW
1961 if (!chip_info->cs_control) {
1962 chip->cs_control = null_cs_control;
1963 dev_warn(&spi->dev,
1964 "chip select function is NULL for this chip\n");
1965 } else
1966 chip->cs_control = chip_info->cs_control;
b43d65f7 1967
bde435a9
KW
1968 if (bits <= 3) {
1969 /* PL022 doesn't support less than 4-bits */
1970 status = -ENOTSUPP;
1971 goto err_config_params;
1972 } else if (bits <= 8) {
1973 dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
b43d65f7
LW
1974 chip->n_bytes = 1;
1975 chip->read = READING_U8;
1976 chip->write = WRITING_U8;
bde435a9 1977 } else if (bits <= 16) {
b43d65f7
LW
1978 dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1979 chip->n_bytes = 2;
1980 chip->read = READING_U16;
1981 chip->write = WRITING_U16;
1982 } else {
1983 if (pl022->vendor->max_bpw >= 32) {
1984 dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1985 chip->n_bytes = 4;
1986 chip->read = READING_U32;
1987 chip->write = WRITING_U32;
1988 } else {
1989 dev_err(&spi->dev,
1990 "illegal data size for this controller!\n");
1991 dev_err(&spi->dev,
1992 "a standard pl022 can only handle "
1993 "1 <= n <= 16 bit words\n");
bde435a9 1994 status = -ENOTSUPP;
b43d65f7
LW
1995 goto err_config_params;
1996 }
1997 }
1998
1999 /* Now Initialize all register settings required for this chip */
2000 chip->cr0 = 0;
2001 chip->cr1 = 0;
2002 chip->dmacr = 0;
2003 chip->cpsr = 0;
2004 if ((chip_info->com_mode == DMA_TRANSFER)
2005 && ((pl022->master_info)->enable_dma)) {
b1b6b9aa 2006 chip->enable_dma = true;
b43d65f7 2007 dev_dbg(&spi->dev, "DMA mode set in controller state\n");
b43d65f7
LW
2008 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
2009 SSP_DMACR_MASK_RXDMAE, 0);
2010 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
2011 SSP_DMACR_MASK_TXDMAE, 1);
2012 } else {
b1b6b9aa 2013 chip->enable_dma = false;
b43d65f7
LW
2014 dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
2015 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
2016 SSP_DMACR_MASK_RXDMAE, 0);
2017 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
2018 SSP_DMACR_MASK_TXDMAE, 1);
2019 }
2020
f9d629c7 2021 chip->cpsr = clk_freq.cpsdvsr;
b43d65f7 2022
556f4aeb
LW
2023 /* Special setup for the ST micro extended control registers */
2024 if (pl022->vendor->extended_cr) {
bde435a9
KW
2025 u32 etx;
2026
781c7b12
LW
2027 if (pl022->vendor->pl023) {
2028 /* These bits are only in the PL023 */
2029 SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
2030 SSP_CR1_MASK_FBCLKDEL_ST, 13);
2031 } else {
2032 /* These bits are in the PL022 but not PL023 */
2033 SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
2034 SSP_CR0_MASK_HALFDUP_ST, 5);
2035 SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
2036 SSP_CR0_MASK_CSS_ST, 16);
2037 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2038 SSP_CR0_MASK_FRF_ST, 21);
2039 SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
2040 SSP_CR1_MASK_MWAIT_ST, 6);
2041 }
bde435a9 2042 SSP_WRITE_BITS(chip->cr0, bits - 1,
556f4aeb 2043 SSP_CR0_MASK_DSS_ST, 0);
bde435a9
KW
2044
2045 if (spi->mode & SPI_LSB_FIRST) {
2046 tmp = SSP_RX_LSB;
2047 etx = SSP_TX_LSB;
2048 } else {
2049 tmp = SSP_RX_MSB;
2050 etx = SSP_TX_MSB;
2051 }
2052 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
2053 SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
556f4aeb
LW
2054 SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
2055 SSP_CR1_MASK_RXIFLSEL_ST, 7);
2056 SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
2057 SSP_CR1_MASK_TXIFLSEL_ST, 10);
2058 } else {
bde435a9 2059 SSP_WRITE_BITS(chip->cr0, bits - 1,
556f4aeb
LW
2060 SSP_CR0_MASK_DSS, 0);
2061 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2062 SSP_CR0_MASK_FRF, 4);
2063 }
bde435a9 2064
556f4aeb 2065 /* Stuff that is common for all versions */
bde435a9
KW
2066 if (spi->mode & SPI_CPOL)
2067 tmp = SSP_CLK_POL_IDLE_HIGH;
2068 else
2069 tmp = SSP_CLK_POL_IDLE_LOW;
2070 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
2071
2072 if (spi->mode & SPI_CPHA)
2073 tmp = SSP_CLK_SECOND_EDGE;
2074 else
2075 tmp = SSP_CLK_FIRST_EDGE;
2076 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
2077
f9d629c7 2078 SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
781c7b12 2079 /* Loopback is available on all versions except PL023 */
06fb01fd 2080 if (pl022->vendor->loopback) {
bde435a9
KW
2081 if (spi->mode & SPI_LOOP)
2082 tmp = LOOPBACK_ENABLED;
2083 else
2084 tmp = LOOPBACK_DISABLED;
2085 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
2086 }
b43d65f7
LW
2087 SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
2088 SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
f1e45f86
VK
2089 SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
2090 3);
b43d65f7
LW
2091
2092 /* Save controller_state */
2093 spi_set_ctldata(spi, chip);
2094 return status;
2095 err_config_params:
bde435a9 2096 spi_set_ctldata(spi, NULL);
b43d65f7
LW
2097 kfree(chip);
2098 return status;
2099}
2100
2101/**
2102 * pl022_cleanup - cleanup function registered to SPI master framework
2103 * @spi: spi device which is requesting cleanup
2104 *
2105 * This function is registered to the SPI framework for this SPI master
2106 * controller. It will free the runtime state of chip.
2107 */
2108static void pl022_cleanup(struct spi_device *spi)
2109{
2110 struct chip_data *chip = spi_get_ctldata(spi);
2111
2112 spi_set_ctldata(spi, NULL);
2113 kfree(chip);
2114}
2115
b4225885 2116static int __devinit
aa25afad 2117pl022_probe(struct amba_device *adev, const struct amba_id *id)
b43d65f7
LW
2118{
2119 struct device *dev = &adev->dev;
2120 struct pl022_ssp_controller *platform_info = adev->dev.platform_data;
2121 struct spi_master *master;
2122 struct pl022 *pl022 = NULL; /*Data for this driver */
2123 int status = 0;
2124
2125 dev_info(&adev->dev,
2126 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2127 if (platform_info == NULL) {
2128 dev_err(&adev->dev, "probe - no platform data supplied\n");
2129 status = -ENODEV;
2130 goto err_no_pdata;
2131 }
2132
2133 /* Allocate master with space for data */
2134 master = spi_alloc_master(dev, sizeof(struct pl022));
2135 if (master == NULL) {
2136 dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2137 status = -ENOMEM;
2138 goto err_no_master;
2139 }
2140
2141 pl022 = spi_master_get_devdata(master);
2142 pl022->master = master;
2143 pl022->master_info = platform_info;
2144 pl022->adev = adev;
2145 pl022->vendor = id->data;
2146
2147 /*
2148 * Bus Number Which has been Assigned to this SSP controller
2149 * on this board
2150 */
2151 master->bus_num = platform_info->bus_id;
2152 master->num_chipselect = platform_info->num_chipselect;
2153 master->cleanup = pl022_cleanup;
2154 master->setup = pl022_setup;
2155 master->transfer = pl022_transfer;
2156
bde435a9
KW
2157 /*
2158 * Supports mode 0-3, loopback, and active low CS. Transfers are
2159 * always MS bit first on the original pl022.
2160 */
2161 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2162 if (pl022->vendor->extended_cr)
2163 master->mode_bits |= SPI_LSB_FIRST;
2164
b43d65f7
LW
2165 dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2166
2167 status = amba_request_regions(adev, NULL);
2168 if (status)
2169 goto err_no_ioregion;
2170
b1b6b9aa 2171 pl022->phybase = adev->res.start;
b43d65f7
LW
2172 pl022->virtbase = ioremap(adev->res.start, resource_size(&adev->res));
2173 if (pl022->virtbase == NULL) {
2174 status = -ENOMEM;
2175 goto err_no_ioremap;
2176 }
2177 printk(KERN_INFO "pl022: mapped registers from 0x%08x to %p\n",
2178 adev->res.start, pl022->virtbase);
bcda6ff8
RV
2179 pm_runtime_enable(dev);
2180 pm_runtime_resume(dev);
b43d65f7
LW
2181
2182 pl022->clk = clk_get(&adev->dev, NULL);
2183 if (IS_ERR(pl022->clk)) {
2184 status = PTR_ERR(pl022->clk);
2185 dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2186 goto err_no_clk;
2187 }
2188
2189 /* Disable SSP */
b43d65f7
LW
2190 writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2191 SSP_CR1(pl022->virtbase));
2192 load_ssp_default_config(pl022);
b43d65f7
LW
2193
2194 status = request_irq(adev->irq[0], pl022_interrupt_handler, 0, "pl022",
2195 pl022);
2196 if (status < 0) {
2197 dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2198 goto err_no_irq;
2199 }
b1b6b9aa
LW
2200
2201 /* Get DMA channels */
2202 if (platform_info->enable_dma) {
2203 status = pl022_dma_probe(pl022);
2204 if (status != 0)
43c64015 2205 platform_info->enable_dma = 0;
b1b6b9aa
LW
2206 }
2207
b43d65f7
LW
2208 /* Initialize and start queue */
2209 status = init_queue(pl022);
2210 if (status != 0) {
2211 dev_err(&adev->dev, "probe - problem initializing queue\n");
2212 goto err_init_queue;
2213 }
2214 status = start_queue(pl022);
2215 if (status != 0) {
2216 dev_err(&adev->dev, "probe - problem starting queue\n");
2217 goto err_start_queue;
2218 }
2219 /* Register with the SPI framework */
2220 amba_set_drvdata(adev, pl022);
2221 status = spi_register_master(master);
2222 if (status != 0) {
2223 dev_err(&adev->dev,
2224 "probe - problem registering spi master\n");
2225 goto err_spi_register;
2226 }
25985edc 2227 dev_dbg(dev, "probe succeeded\n");
808f1037
LW
2228 /*
2229 * Disable the silicon block pclk and any voltage domain and just
2230 * power it up and clock it when it's needed
2231 */
545074fb 2232 amba_pclk_disable(adev);
808f1037 2233 amba_vcore_disable(adev);
b43d65f7
LW
2234 return 0;
2235
2236 err_spi_register:
2237 err_start_queue:
2238 err_init_queue:
2239 destroy_queue(pl022);
b1b6b9aa 2240 pl022_dma_remove(pl022);
b43d65f7 2241 free_irq(adev->irq[0], pl022);
bcda6ff8 2242 pm_runtime_disable(&adev->dev);
b43d65f7
LW
2243 err_no_irq:
2244 clk_put(pl022->clk);
2245 err_no_clk:
2246 iounmap(pl022->virtbase);
2247 err_no_ioremap:
2248 amba_release_regions(adev);
2249 err_no_ioregion:
2250 spi_master_put(master);
2251 err_no_master:
2252 err_no_pdata:
2253 return status;
2254}
2255
b4225885 2256static int __devexit
b43d65f7
LW
2257pl022_remove(struct amba_device *adev)
2258{
2259 struct pl022 *pl022 = amba_get_drvdata(adev);
50658b66 2260
b43d65f7
LW
2261 if (!pl022)
2262 return 0;
2263
2264 /* Remove the queue */
50658b66
LW
2265 if (destroy_queue(pl022) != 0)
2266 dev_err(&adev->dev, "queue remove failed\n");
b43d65f7 2267 load_ssp_default_config(pl022);
b1b6b9aa 2268 pl022_dma_remove(pl022);
b43d65f7
LW
2269 free_irq(adev->irq[0], pl022);
2270 clk_disable(pl022->clk);
2271 clk_put(pl022->clk);
2272 iounmap(pl022->virtbase);
2273 amba_release_regions(adev);
2274 tasklet_disable(&pl022->pump_transfers);
2275 spi_unregister_master(pl022->master);
2276 spi_master_put(pl022->master);
2277 amba_set_drvdata(adev, NULL);
b43d65f7
LW
2278 return 0;
2279}
2280
2281#ifdef CONFIG_PM
2282static int pl022_suspend(struct amba_device *adev, pm_message_t state)
2283{
2284 struct pl022 *pl022 = amba_get_drvdata(adev);
2285 int status = 0;
2286
2287 status = stop_queue(pl022);
2288 if (status) {
2289 dev_warn(&adev->dev, "suspend cannot stop queue\n");
2290 return status;
2291 }
2292
808f1037 2293 amba_vcore_enable(adev);
545074fb 2294 amba_pclk_enable(adev);
b43d65f7 2295 load_ssp_default_config(pl022);
545074fb 2296 amba_pclk_disable(adev);
808f1037 2297 amba_vcore_disable(adev);
b43d65f7
LW
2298 dev_dbg(&adev->dev, "suspended\n");
2299 return 0;
2300}
2301
2302static int pl022_resume(struct amba_device *adev)
2303{
2304 struct pl022 *pl022 = amba_get_drvdata(adev);
2305 int status = 0;
2306
2307 /* Start the queue running */
2308 status = start_queue(pl022);
2309 if (status)
2310 dev_err(&adev->dev, "problem starting queue (%d)\n", status);
2311 else
2312 dev_dbg(&adev->dev, "resumed\n");
2313
2314 return status;
2315}
2316#else
2317#define pl022_suspend NULL
2318#define pl022_resume NULL
2319#endif /* CONFIG_PM */
2320
2321static struct vendor_data vendor_arm = {
2322 .fifodepth = 8,
2323 .max_bpw = 16,
2324 .unidir = false,
556f4aeb 2325 .extended_cr = false,
781c7b12 2326 .pl023 = false,
06fb01fd 2327 .loopback = true,
b43d65f7
LW
2328};
2329
b43d65f7
LW
2330static struct vendor_data vendor_st = {
2331 .fifodepth = 32,
2332 .max_bpw = 32,
2333 .unidir = false,
556f4aeb 2334 .extended_cr = true,
781c7b12 2335 .pl023 = false,
06fb01fd 2336 .loopback = true,
781c7b12
LW
2337};
2338
2339static struct vendor_data vendor_st_pl023 = {
2340 .fifodepth = 32,
2341 .max_bpw = 32,
2342 .unidir = false,
2343 .extended_cr = true,
2344 .pl023 = true,
06fb01fd
PL
2345 .loopback = false,
2346};
2347
2348static struct vendor_data vendor_db5500_pl023 = {
2349 .fifodepth = 32,
2350 .max_bpw = 32,
2351 .unidir = false,
2352 .extended_cr = true,
2353 .pl023 = true,
2354 .loopback = true,
b43d65f7
LW
2355};
2356
2357static struct amba_id pl022_ids[] = {
2358 {
2359 /*
2360 * ARM PL022 variant, this has a 16bit wide
2361 * and 8 locations deep TX/RX FIFO
2362 */
2363 .id = 0x00041022,
2364 .mask = 0x000fffff,
2365 .data = &vendor_arm,
2366 },
2367 {
2368 /*
2369 * ST Micro derivative, this has 32bit wide
2370 * and 32 locations deep TX/RX FIFO
2371 */
e89e04fc 2372 .id = 0x01080022,
b43d65f7
LW
2373 .mask = 0xffffffff,
2374 .data = &vendor_st,
2375 },
781c7b12
LW
2376 {
2377 /*
2378 * ST-Ericsson derivative "PL023" (this is not
2379 * an official ARM number), this is a PL022 SSP block
2380 * stripped to SPI mode only, it has 32bit wide
2381 * and 32 locations deep TX/RX FIFO but no extended
2382 * CR0/CR1 register
2383 */
f1e45f86
VK
2384 .id = 0x00080023,
2385 .mask = 0xffffffff,
2386 .data = &vendor_st_pl023,
781c7b12 2387 },
06fb01fd
PL
2388 {
2389 .id = 0x10080023,
2390 .mask = 0xffffffff,
2391 .data = &vendor_db5500_pl023,
2392 },
b43d65f7
LW
2393 { 0, 0 },
2394};
2395
2396static struct amba_driver pl022_driver = {
2397 .drv = {
2398 .name = "ssp-pl022",
2399 },
2400 .id_table = pl022_ids,
2401 .probe = pl022_probe,
b4225885 2402 .remove = __devexit_p(pl022_remove),
b43d65f7
LW
2403 .suspend = pl022_suspend,
2404 .resume = pl022_resume,
2405};
2406
b43d65f7
LW
2407static int __init pl022_init(void)
2408{
2409 return amba_driver_register(&pl022_driver);
2410}
25c8e03b 2411subsys_initcall(pl022_init);
b43d65f7
LW
2412
2413static void __exit pl022_exit(void)
2414{
2415 amba_driver_unregister(&pl022_driver);
2416}
b43d65f7
LW
2417module_exit(pl022_exit);
2418
2419MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2420MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2421MODULE_LICENSE("GPL");
This page took 0.24453 seconds and 5 git commands to generate.