Merge tag 'md-3.9' of git://neil.brown.name/md
[deliverable/linux.git] / drivers / spi / spi.c
CommitLineData
8ae12a0d 1/*
ca632f55 2 * SPI init/core code
8ae12a0d
DB
3 *
4 * Copyright (C) 2005 David Brownell
d57a4282 5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
8ae12a0d
DB
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
8ae12a0d 22#include <linux/kernel.h>
d57a4282 23#include <linux/kmod.h>
8ae12a0d
DB
24#include <linux/device.h>
25#include <linux/init.h>
26#include <linux/cache.h>
94040828 27#include <linux/mutex.h>
2b7a32f7 28#include <linux/of_device.h>
d57a4282 29#include <linux/of_irq.h>
5a0e3ad6 30#include <linux/slab.h>
e0626e38 31#include <linux/mod_devicetable.h>
8ae12a0d 32#include <linux/spi/spi.h>
74317984 33#include <linux/of_gpio.h>
3ae22e8c 34#include <linux/pm_runtime.h>
025ed130 35#include <linux/export.h>
8bd75c77 36#include <linux/sched/rt.h>
ffbbdd21
LW
37#include <linux/delay.h>
38#include <linux/kthread.h>
64bee4d2
MW
39#include <linux/ioport.h>
40#include <linux/acpi.h>
8ae12a0d 41
8ae12a0d
DB
42static void spidev_release(struct device *dev)
43{
0ffa0285 44 struct spi_device *spi = to_spi_device(dev);
8ae12a0d
DB
45
46 /* spi masters may cleanup for released devices */
47 if (spi->master->cleanup)
48 spi->master->cleanup(spi);
49
0c868461 50 spi_master_put(spi->master);
07a389fe 51 kfree(spi);
8ae12a0d
DB
52}
53
54static ssize_t
55modalias_show(struct device *dev, struct device_attribute *a, char *buf)
56{
57 const struct spi_device *spi = to_spi_device(dev);
58
d8e328b3 59 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
8ae12a0d
DB
60}
61
62static struct device_attribute spi_dev_attrs[] = {
63 __ATTR_RO(modalias),
64 __ATTR_NULL,
65};
66
67/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
68 * and the sysfs version makes coldplug work too.
69 */
70
75368bf6
AV
71static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
72 const struct spi_device *sdev)
73{
74 while (id->name[0]) {
75 if (!strcmp(sdev->modalias, id->name))
76 return id;
77 id++;
78 }
79 return NULL;
80}
81
82const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
83{
84 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
85
86 return spi_match_id(sdrv->id_table, sdev);
87}
88EXPORT_SYMBOL_GPL(spi_get_device_id);
89
8ae12a0d
DB
90static int spi_match_device(struct device *dev, struct device_driver *drv)
91{
92 const struct spi_device *spi = to_spi_device(dev);
75368bf6
AV
93 const struct spi_driver *sdrv = to_spi_driver(drv);
94
2b7a32f7
SA
95 /* Attempt an OF style match */
96 if (of_driver_match_device(dev, drv))
97 return 1;
98
64bee4d2
MW
99 /* Then try ACPI */
100 if (acpi_driver_match_device(dev, drv))
101 return 1;
102
75368bf6
AV
103 if (sdrv->id_table)
104 return !!spi_match_id(sdrv->id_table, spi);
8ae12a0d 105
35f74fca 106 return strcmp(spi->modalias, drv->name) == 0;
8ae12a0d
DB
107}
108
7eff2e7a 109static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
8ae12a0d
DB
110{
111 const struct spi_device *spi = to_spi_device(dev);
112
e0626e38 113 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
8ae12a0d
DB
114 return 0;
115}
116
3ae22e8c
MB
117#ifdef CONFIG_PM_SLEEP
118static int spi_legacy_suspend(struct device *dev, pm_message_t message)
8ae12a0d 119{
3c72426f 120 int value = 0;
b885244e 121 struct spi_driver *drv = to_spi_driver(dev->driver);
8ae12a0d 122
8ae12a0d 123 /* suspend will stop irqs and dma; no more i/o */
3c72426f
DB
124 if (drv) {
125 if (drv->suspend)
126 value = drv->suspend(to_spi_device(dev), message);
127 else
128 dev_dbg(dev, "... can't suspend\n");
129 }
8ae12a0d
DB
130 return value;
131}
132
3ae22e8c 133static int spi_legacy_resume(struct device *dev)
8ae12a0d 134{
3c72426f 135 int value = 0;
b885244e 136 struct spi_driver *drv = to_spi_driver(dev->driver);
8ae12a0d 137
8ae12a0d 138 /* resume may restart the i/o queue */
3c72426f
DB
139 if (drv) {
140 if (drv->resume)
141 value = drv->resume(to_spi_device(dev));
142 else
143 dev_dbg(dev, "... can't resume\n");
144 }
8ae12a0d
DB
145 return value;
146}
147
3ae22e8c
MB
148static int spi_pm_suspend(struct device *dev)
149{
150 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
151
152 if (pm)
153 return pm_generic_suspend(dev);
154 else
155 return spi_legacy_suspend(dev, PMSG_SUSPEND);
156}
157
158static int spi_pm_resume(struct device *dev)
159{
160 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
161
162 if (pm)
163 return pm_generic_resume(dev);
164 else
165 return spi_legacy_resume(dev);
166}
167
168static int spi_pm_freeze(struct device *dev)
169{
170 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
171
172 if (pm)
173 return pm_generic_freeze(dev);
174 else
175 return spi_legacy_suspend(dev, PMSG_FREEZE);
176}
177
178static int spi_pm_thaw(struct device *dev)
179{
180 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
181
182 if (pm)
183 return pm_generic_thaw(dev);
184 else
185 return spi_legacy_resume(dev);
186}
187
188static int spi_pm_poweroff(struct device *dev)
189{
190 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
191
192 if (pm)
193 return pm_generic_poweroff(dev);
194 else
195 return spi_legacy_suspend(dev, PMSG_HIBERNATE);
196}
197
198static int spi_pm_restore(struct device *dev)
199{
200 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
201
202 if (pm)
203 return pm_generic_restore(dev);
204 else
205 return spi_legacy_resume(dev);
206}
8ae12a0d 207#else
3ae22e8c
MB
208#define spi_pm_suspend NULL
209#define spi_pm_resume NULL
210#define spi_pm_freeze NULL
211#define spi_pm_thaw NULL
212#define spi_pm_poweroff NULL
213#define spi_pm_restore NULL
8ae12a0d
DB
214#endif
215
3ae22e8c
MB
216static const struct dev_pm_ops spi_pm = {
217 .suspend = spi_pm_suspend,
218 .resume = spi_pm_resume,
219 .freeze = spi_pm_freeze,
220 .thaw = spi_pm_thaw,
221 .poweroff = spi_pm_poweroff,
222 .restore = spi_pm_restore,
223 SET_RUNTIME_PM_OPS(
224 pm_generic_runtime_suspend,
225 pm_generic_runtime_resume,
226 pm_generic_runtime_idle
227 )
228};
229
8ae12a0d
DB
230struct bus_type spi_bus_type = {
231 .name = "spi",
232 .dev_attrs = spi_dev_attrs,
233 .match = spi_match_device,
234 .uevent = spi_uevent,
3ae22e8c 235 .pm = &spi_pm,
8ae12a0d
DB
236};
237EXPORT_SYMBOL_GPL(spi_bus_type);
238
b885244e
DB
239
240static int spi_drv_probe(struct device *dev)
241{
242 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
243
244 return sdrv->probe(to_spi_device(dev));
245}
246
247static int spi_drv_remove(struct device *dev)
248{
249 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
250
251 return sdrv->remove(to_spi_device(dev));
252}
253
254static void spi_drv_shutdown(struct device *dev)
255{
256 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
257
258 sdrv->shutdown(to_spi_device(dev));
259}
260
33e34dc6
DB
261/**
262 * spi_register_driver - register a SPI driver
263 * @sdrv: the driver to register
264 * Context: can sleep
265 */
b885244e
DB
266int spi_register_driver(struct spi_driver *sdrv)
267{
268 sdrv->driver.bus = &spi_bus_type;
269 if (sdrv->probe)
270 sdrv->driver.probe = spi_drv_probe;
271 if (sdrv->remove)
272 sdrv->driver.remove = spi_drv_remove;
273 if (sdrv->shutdown)
274 sdrv->driver.shutdown = spi_drv_shutdown;
275 return driver_register(&sdrv->driver);
276}
277EXPORT_SYMBOL_GPL(spi_register_driver);
278
8ae12a0d
DB
279/*-------------------------------------------------------------------------*/
280
281/* SPI devices should normally not be created by SPI device drivers; that
282 * would make them board-specific. Similarly with SPI master drivers.
283 * Device registration normally goes into like arch/.../mach.../board-YYY.c
284 * with other readonly (flashable) information about mainboard devices.
285 */
286
287struct boardinfo {
288 struct list_head list;
2b9603a0 289 struct spi_board_info board_info;
8ae12a0d
DB
290};
291
292static LIST_HEAD(board_list);
2b9603a0
FT
293static LIST_HEAD(spi_master_list);
294
295/*
296 * Used to protect add/del opertion for board_info list and
297 * spi_master list, and their matching process
298 */
94040828 299static DEFINE_MUTEX(board_lock);
8ae12a0d 300
dc87c98e
GL
301/**
302 * spi_alloc_device - Allocate a new SPI device
303 * @master: Controller to which device is connected
304 * Context: can sleep
305 *
306 * Allows a driver to allocate and initialize a spi_device without
307 * registering it immediately. This allows a driver to directly
308 * fill the spi_device with device parameters before calling
309 * spi_add_device() on it.
310 *
311 * Caller is responsible to call spi_add_device() on the returned
312 * spi_device structure to add it to the SPI master. If the caller
313 * needs to discard the spi_device without adding it, then it should
314 * call spi_dev_put() on it.
315 *
316 * Returns a pointer to the new device, or NULL.
317 */
318struct spi_device *spi_alloc_device(struct spi_master *master)
319{
320 struct spi_device *spi;
321 struct device *dev = master->dev.parent;
322
323 if (!spi_master_get(master))
324 return NULL;
325
326 spi = kzalloc(sizeof *spi, GFP_KERNEL);
327 if (!spi) {
328 dev_err(dev, "cannot alloc spi_device\n");
329 spi_master_put(master);
330 return NULL;
331 }
332
333 spi->master = master;
178db7d3 334 spi->dev.parent = &master->dev;
dc87c98e
GL
335 spi->dev.bus = &spi_bus_type;
336 spi->dev.release = spidev_release;
74317984 337 spi->cs_gpio = -EINVAL;
dc87c98e
GL
338 device_initialize(&spi->dev);
339 return spi;
340}
341EXPORT_SYMBOL_GPL(spi_alloc_device);
342
343/**
344 * spi_add_device - Add spi_device allocated with spi_alloc_device
345 * @spi: spi_device to register
346 *
347 * Companion function to spi_alloc_device. Devices allocated with
348 * spi_alloc_device can be added onto the spi bus with this function.
349 *
e48880e0 350 * Returns 0 on success; negative errno on failure
dc87c98e
GL
351 */
352int spi_add_device(struct spi_device *spi)
353{
e48880e0 354 static DEFINE_MUTEX(spi_add_lock);
74317984
JCPV
355 struct spi_master *master = spi->master;
356 struct device *dev = master->dev.parent;
8ec130a0 357 struct device *d;
dc87c98e
GL
358 int status;
359
360 /* Chipselects are numbered 0..max; validate. */
74317984 361 if (spi->chip_select >= master->num_chipselect) {
dc87c98e
GL
362 dev_err(dev, "cs%d >= max %d\n",
363 spi->chip_select,
74317984 364 master->num_chipselect);
dc87c98e
GL
365 return -EINVAL;
366 }
367
368 /* Set the bus ID string */
35f74fca 369 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
dc87c98e
GL
370 spi->chip_select);
371
e48880e0
DB
372
373 /* We need to make sure there's no other device with this
374 * chipselect **BEFORE** we call setup(), else we'll trash
375 * its configuration. Lock against concurrent add() calls.
376 */
377 mutex_lock(&spi_add_lock);
378
8ec130a0
RT
379 d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
380 if (d != NULL) {
e48880e0
DB
381 dev_err(dev, "chipselect %d already in use\n",
382 spi->chip_select);
8ec130a0 383 put_device(d);
e48880e0
DB
384 status = -EBUSY;
385 goto done;
386 }
387
74317984
JCPV
388 if (master->cs_gpios)
389 spi->cs_gpio = master->cs_gpios[spi->chip_select];
390
e48880e0
DB
391 /* Drivers may modify this initial i/o setup, but will
392 * normally rely on the device being setup. Devices
393 * using SPI_CS_HIGH can't coexist well otherwise...
394 */
7d077197 395 status = spi_setup(spi);
dc87c98e 396 if (status < 0) {
eb288a1f
LW
397 dev_err(dev, "can't setup %s, status %d\n",
398 dev_name(&spi->dev), status);
e48880e0 399 goto done;
dc87c98e
GL
400 }
401
e48880e0 402 /* Device may be bound to an active driver when this returns */
dc87c98e 403 status = device_add(&spi->dev);
e48880e0 404 if (status < 0)
eb288a1f
LW
405 dev_err(dev, "can't add %s, status %d\n",
406 dev_name(&spi->dev), status);
e48880e0 407 else
35f74fca 408 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
dc87c98e 409
e48880e0
DB
410done:
411 mutex_unlock(&spi_add_lock);
412 return status;
dc87c98e
GL
413}
414EXPORT_SYMBOL_GPL(spi_add_device);
8ae12a0d 415
33e34dc6
DB
416/**
417 * spi_new_device - instantiate one new SPI device
418 * @master: Controller to which device is connected
419 * @chip: Describes the SPI device
420 * Context: can sleep
421 *
422 * On typical mainboards, this is purely internal; and it's not needed
8ae12a0d
DB
423 * after board init creates the hard-wired devices. Some development
424 * platforms may not be able to use spi_register_board_info though, and
425 * this is exported so that for example a USB or parport based adapter
426 * driver could add devices (which it would learn about out-of-band).
082c8cb4
DB
427 *
428 * Returns the new device, or NULL.
8ae12a0d 429 */
e9d5a461
AB
430struct spi_device *spi_new_device(struct spi_master *master,
431 struct spi_board_info *chip)
8ae12a0d
DB
432{
433 struct spi_device *proxy;
8ae12a0d
DB
434 int status;
435
082c8cb4
DB
436 /* NOTE: caller did any chip->bus_num checks necessary.
437 *
438 * Also, unless we change the return value convention to use
439 * error-or-pointer (not NULL-or-pointer), troubleshootability
440 * suggests syslogged diagnostics are best here (ugh).
441 */
442
dc87c98e
GL
443 proxy = spi_alloc_device(master);
444 if (!proxy)
8ae12a0d
DB
445 return NULL;
446
102eb975
GL
447 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
448
8ae12a0d
DB
449 proxy->chip_select = chip->chip_select;
450 proxy->max_speed_hz = chip->max_speed_hz;
980a01c9 451 proxy->mode = chip->mode;
8ae12a0d 452 proxy->irq = chip->irq;
102eb975 453 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
8ae12a0d
DB
454 proxy->dev.platform_data = (void *) chip->platform_data;
455 proxy->controller_data = chip->controller_data;
456 proxy->controller_state = NULL;
8ae12a0d 457
dc87c98e 458 status = spi_add_device(proxy);
8ae12a0d 459 if (status < 0) {
dc87c98e
GL
460 spi_dev_put(proxy);
461 return NULL;
8ae12a0d
DB
462 }
463
8ae12a0d
DB
464 return proxy;
465}
466EXPORT_SYMBOL_GPL(spi_new_device);
467
2b9603a0
FT
468static void spi_match_master_to_boardinfo(struct spi_master *master,
469 struct spi_board_info *bi)
470{
471 struct spi_device *dev;
472
473 if (master->bus_num != bi->bus_num)
474 return;
475
476 dev = spi_new_device(master, bi);
477 if (!dev)
478 dev_err(master->dev.parent, "can't create new device for %s\n",
479 bi->modalias);
480}
481
33e34dc6
DB
482/**
483 * spi_register_board_info - register SPI devices for a given board
484 * @info: array of chip descriptors
485 * @n: how many descriptors are provided
486 * Context: can sleep
487 *
8ae12a0d
DB
488 * Board-specific early init code calls this (probably during arch_initcall)
489 * with segments of the SPI device table. Any device nodes are created later,
490 * after the relevant parent SPI controller (bus_num) is defined. We keep
491 * this table of devices forever, so that reloading a controller driver will
492 * not make Linux forget about these hard-wired devices.
493 *
494 * Other code can also call this, e.g. a particular add-on board might provide
495 * SPI devices through its expansion connector, so code initializing that board
496 * would naturally declare its SPI devices.
497 *
498 * The board info passed can safely be __initdata ... but be careful of
499 * any embedded pointers (platform_data, etc), they're copied as-is.
500 */
fd4a319b 501int spi_register_board_info(struct spi_board_info const *info, unsigned n)
8ae12a0d 502{
2b9603a0
FT
503 struct boardinfo *bi;
504 int i;
8ae12a0d 505
2b9603a0 506 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
8ae12a0d
DB
507 if (!bi)
508 return -ENOMEM;
8ae12a0d 509
2b9603a0
FT
510 for (i = 0; i < n; i++, bi++, info++) {
511 struct spi_master *master;
8ae12a0d 512
2b9603a0
FT
513 memcpy(&bi->board_info, info, sizeof(*info));
514 mutex_lock(&board_lock);
515 list_add_tail(&bi->list, &board_list);
516 list_for_each_entry(master, &spi_master_list, list)
517 spi_match_master_to_boardinfo(master, &bi->board_info);
518 mutex_unlock(&board_lock);
8ae12a0d 519 }
2b9603a0
FT
520
521 return 0;
8ae12a0d
DB
522}
523
524/*-------------------------------------------------------------------------*/
525
ffbbdd21
LW
526/**
527 * spi_pump_messages - kthread work function which processes spi message queue
528 * @work: pointer to kthread work struct contained in the master struct
529 *
530 * This function checks if there is any spi message in the queue that
531 * needs processing and if so call out to the driver to initialize hardware
532 * and transfer each message.
533 *
534 */
535static void spi_pump_messages(struct kthread_work *work)
536{
537 struct spi_master *master =
538 container_of(work, struct spi_master, pump_messages);
539 unsigned long flags;
540 bool was_busy = false;
541 int ret;
542
543 /* Lock queue and check for queue work */
544 spin_lock_irqsave(&master->queue_lock, flags);
545 if (list_empty(&master->queue) || !master->running) {
7dfd2bd7 546 if (master->busy && master->unprepare_transfer_hardware) {
ffbbdd21
LW
547 ret = master->unprepare_transfer_hardware(master);
548 if (ret) {
9af4acc0 549 spin_unlock_irqrestore(&master->queue_lock, flags);
ffbbdd21
LW
550 dev_err(&master->dev,
551 "failed to unprepare transfer hardware\n");
552 return;
553 }
554 }
555 master->busy = false;
556 spin_unlock_irqrestore(&master->queue_lock, flags);
557 return;
558 }
559
560 /* Make sure we are not already running a message */
561 if (master->cur_msg) {
562 spin_unlock_irqrestore(&master->queue_lock, flags);
563 return;
564 }
565 /* Extract head of queue */
566 master->cur_msg =
567 list_entry(master->queue.next, struct spi_message, queue);
568
569 list_del_init(&master->cur_msg->queue);
570 if (master->busy)
571 was_busy = true;
572 else
573 master->busy = true;
574 spin_unlock_irqrestore(&master->queue_lock, flags);
575
7dfd2bd7 576 if (!was_busy && master->prepare_transfer_hardware) {
ffbbdd21
LW
577 ret = master->prepare_transfer_hardware(master);
578 if (ret) {
579 dev_err(&master->dev,
580 "failed to prepare transfer hardware\n");
581 return;
582 }
583 }
584
585 ret = master->transfer_one_message(master, master->cur_msg);
586 if (ret) {
587 dev_err(&master->dev,
588 "failed to transfer one message from queue\n");
589 return;
590 }
591}
592
593static int spi_init_queue(struct spi_master *master)
594{
595 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
596
597 INIT_LIST_HEAD(&master->queue);
598 spin_lock_init(&master->queue_lock);
599
600 master->running = false;
601 master->busy = false;
602
603 init_kthread_worker(&master->kworker);
604 master->kworker_task = kthread_run(kthread_worker_fn,
605 &master->kworker,
606 dev_name(&master->dev));
607 if (IS_ERR(master->kworker_task)) {
608 dev_err(&master->dev, "failed to create message pump task\n");
609 return -ENOMEM;
610 }
611 init_kthread_work(&master->pump_messages, spi_pump_messages);
612
613 /*
614 * Master config will indicate if this controller should run the
615 * message pump with high (realtime) priority to reduce the transfer
616 * latency on the bus by minimising the delay between a transfer
617 * request and the scheduling of the message pump thread. Without this
618 * setting the message pump thread will remain at default priority.
619 */
620 if (master->rt) {
621 dev_info(&master->dev,
622 "will run message pump with realtime priority\n");
623 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
624 }
625
626 return 0;
627}
628
629/**
630 * spi_get_next_queued_message() - called by driver to check for queued
631 * messages
632 * @master: the master to check for queued messages
633 *
634 * If there are more messages in the queue, the next message is returned from
635 * this call.
636 */
637struct spi_message *spi_get_next_queued_message(struct spi_master *master)
638{
639 struct spi_message *next;
640 unsigned long flags;
641
642 /* get a pointer to the next message, if any */
643 spin_lock_irqsave(&master->queue_lock, flags);
644 if (list_empty(&master->queue))
645 next = NULL;
646 else
647 next = list_entry(master->queue.next,
648 struct spi_message, queue);
649 spin_unlock_irqrestore(&master->queue_lock, flags);
650
651 return next;
652}
653EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
654
655/**
656 * spi_finalize_current_message() - the current message is complete
657 * @master: the master to return the message to
658 *
659 * Called by the driver to notify the core that the message in the front of the
660 * queue is complete and can be removed from the queue.
661 */
662void spi_finalize_current_message(struct spi_master *master)
663{
664 struct spi_message *mesg;
665 unsigned long flags;
666
667 spin_lock_irqsave(&master->queue_lock, flags);
668 mesg = master->cur_msg;
669 master->cur_msg = NULL;
670
671 queue_kthread_work(&master->kworker, &master->pump_messages);
672 spin_unlock_irqrestore(&master->queue_lock, flags);
673
674 mesg->state = NULL;
675 if (mesg->complete)
676 mesg->complete(mesg->context);
677}
678EXPORT_SYMBOL_GPL(spi_finalize_current_message);
679
680static int spi_start_queue(struct spi_master *master)
681{
682 unsigned long flags;
683
684 spin_lock_irqsave(&master->queue_lock, flags);
685
686 if (master->running || master->busy) {
687 spin_unlock_irqrestore(&master->queue_lock, flags);
688 return -EBUSY;
689 }
690
691 master->running = true;
692 master->cur_msg = NULL;
693 spin_unlock_irqrestore(&master->queue_lock, flags);
694
695 queue_kthread_work(&master->kworker, &master->pump_messages);
696
697 return 0;
698}
699
700static int spi_stop_queue(struct spi_master *master)
701{
702 unsigned long flags;
703 unsigned limit = 500;
704 int ret = 0;
705
706 spin_lock_irqsave(&master->queue_lock, flags);
707
708 /*
709 * This is a bit lame, but is optimized for the common execution path.
710 * A wait_queue on the master->busy could be used, but then the common
711 * execution path (pump_messages) would be required to call wake_up or
712 * friends on every SPI message. Do this instead.
713 */
714 while ((!list_empty(&master->queue) || master->busy) && limit--) {
715 spin_unlock_irqrestore(&master->queue_lock, flags);
716 msleep(10);
717 spin_lock_irqsave(&master->queue_lock, flags);
718 }
719
720 if (!list_empty(&master->queue) || master->busy)
721 ret = -EBUSY;
722 else
723 master->running = false;
724
725 spin_unlock_irqrestore(&master->queue_lock, flags);
726
727 if (ret) {
728 dev_warn(&master->dev,
729 "could not stop message queue\n");
730 return ret;
731 }
732 return ret;
733}
734
735static int spi_destroy_queue(struct spi_master *master)
736{
737 int ret;
738
739 ret = spi_stop_queue(master);
740
741 /*
742 * flush_kthread_worker will block until all work is done.
743 * If the reason that stop_queue timed out is that the work will never
744 * finish, then it does no good to call flush/stop thread, so
745 * return anyway.
746 */
747 if (ret) {
748 dev_err(&master->dev, "problem destroying queue\n");
749 return ret;
750 }
751
752 flush_kthread_worker(&master->kworker);
753 kthread_stop(master->kworker_task);
754
755 return 0;
756}
757
758/**
759 * spi_queued_transfer - transfer function for queued transfers
760 * @spi: spi device which is requesting transfer
761 * @msg: spi message which is to handled is queued to driver queue
762 */
763static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
764{
765 struct spi_master *master = spi->master;
766 unsigned long flags;
767
768 spin_lock_irqsave(&master->queue_lock, flags);
769
770 if (!master->running) {
771 spin_unlock_irqrestore(&master->queue_lock, flags);
772 return -ESHUTDOWN;
773 }
774 msg->actual_length = 0;
775 msg->status = -EINPROGRESS;
776
777 list_add_tail(&msg->queue, &master->queue);
778 if (master->running && !master->busy)
779 queue_kthread_work(&master->kworker, &master->pump_messages);
780
781 spin_unlock_irqrestore(&master->queue_lock, flags);
782 return 0;
783}
784
785static int spi_master_initialize_queue(struct spi_master *master)
786{
787 int ret;
788
789 master->queued = true;
790 master->transfer = spi_queued_transfer;
791
792 /* Initialize and start queue */
793 ret = spi_init_queue(master);
794 if (ret) {
795 dev_err(&master->dev, "problem initializing queue\n");
796 goto err_init_queue;
797 }
798 ret = spi_start_queue(master);
799 if (ret) {
800 dev_err(&master->dev, "problem starting queue\n");
801 goto err_start_queue;
802 }
803
804 return 0;
805
806err_start_queue:
807err_init_queue:
808 spi_destroy_queue(master);
809 return ret;
810}
811
812/*-------------------------------------------------------------------------*/
813
7cb94361 814#if defined(CONFIG_OF)
d57a4282
GL
815/**
816 * of_register_spi_devices() - Register child devices onto the SPI bus
817 * @master: Pointer to spi_master device
818 *
819 * Registers an spi_device for each child node of master node which has a 'reg'
820 * property.
821 */
822static void of_register_spi_devices(struct spi_master *master)
823{
824 struct spi_device *spi;
825 struct device_node *nc;
826 const __be32 *prop;
cb71941a 827 char modalias[SPI_NAME_SIZE + 4];
d57a4282
GL
828 int rc;
829 int len;
830
831 if (!master->dev.of_node)
832 return;
833
f3b6159e 834 for_each_available_child_of_node(master->dev.of_node, nc) {
d57a4282
GL
835 /* Alloc an spi_device */
836 spi = spi_alloc_device(master);
837 if (!spi) {
838 dev_err(&master->dev, "spi_device alloc error for %s\n",
839 nc->full_name);
840 spi_dev_put(spi);
841 continue;
842 }
843
844 /* Select device driver */
845 if (of_modalias_node(nc, spi->modalias,
846 sizeof(spi->modalias)) < 0) {
847 dev_err(&master->dev, "cannot find modalias for %s\n",
848 nc->full_name);
849 spi_dev_put(spi);
850 continue;
851 }
852
853 /* Device address */
854 prop = of_get_property(nc, "reg", &len);
855 if (!prop || len < sizeof(*prop)) {
856 dev_err(&master->dev, "%s has no 'reg' property\n",
857 nc->full_name);
858 spi_dev_put(spi);
859 continue;
860 }
861 spi->chip_select = be32_to_cpup(prop);
862
863 /* Mode (clock phase/polarity/etc.) */
864 if (of_find_property(nc, "spi-cpha", NULL))
865 spi->mode |= SPI_CPHA;
866 if (of_find_property(nc, "spi-cpol", NULL))
867 spi->mode |= SPI_CPOL;
868 if (of_find_property(nc, "spi-cs-high", NULL))
869 spi->mode |= SPI_CS_HIGH;
c20151df
LPC
870 if (of_find_property(nc, "spi-3wire", NULL))
871 spi->mode |= SPI_3WIRE;
d57a4282
GL
872
873 /* Device speed */
874 prop = of_get_property(nc, "spi-max-frequency", &len);
875 if (!prop || len < sizeof(*prop)) {
876 dev_err(&master->dev, "%s has no 'spi-max-frequency' property\n",
877 nc->full_name);
878 spi_dev_put(spi);
879 continue;
880 }
881 spi->max_speed_hz = be32_to_cpup(prop);
882
883 /* IRQ */
884 spi->irq = irq_of_parse_and_map(nc, 0);
885
886 /* Store a pointer to the node in the device structure */
887 of_node_get(nc);
888 spi->dev.of_node = nc;
889
890 /* Register the new device */
cb71941a
DD
891 snprintf(modalias, sizeof(modalias), "%s%s", SPI_MODULE_PREFIX,
892 spi->modalias);
893 request_module(modalias);
d57a4282
GL
894 rc = spi_add_device(spi);
895 if (rc) {
896 dev_err(&master->dev, "spi_device register error %s\n",
897 nc->full_name);
898 spi_dev_put(spi);
899 }
900
901 }
902}
903#else
904static void of_register_spi_devices(struct spi_master *master) { }
905#endif
906
64bee4d2
MW
907#ifdef CONFIG_ACPI
908static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
909{
910 struct spi_device *spi = data;
911
912 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
913 struct acpi_resource_spi_serialbus *sb;
914
915 sb = &ares->data.spi_serial_bus;
916 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
917 spi->chip_select = sb->device_selection;
918 spi->max_speed_hz = sb->connection_speed;
919
920 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
921 spi->mode |= SPI_CPHA;
922 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
923 spi->mode |= SPI_CPOL;
924 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
925 spi->mode |= SPI_CS_HIGH;
926 }
927 } else if (spi->irq < 0) {
928 struct resource r;
929
930 if (acpi_dev_resource_interrupt(ares, 0, &r))
931 spi->irq = r.start;
932 }
933
934 /* Always tell the ACPI core to skip this resource */
935 return 1;
936}
937
938static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
939 void *data, void **return_value)
940{
941 struct spi_master *master = data;
942 struct list_head resource_list;
943 struct acpi_device *adev;
944 struct spi_device *spi;
945 int ret;
946
947 if (acpi_bus_get_device(handle, &adev))
948 return AE_OK;
949 if (acpi_bus_get_status(adev) || !adev->status.present)
950 return AE_OK;
951
952 spi = spi_alloc_device(master);
953 if (!spi) {
954 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
955 dev_name(&adev->dev));
956 return AE_NO_MEMORY;
957 }
958
959 ACPI_HANDLE_SET(&spi->dev, handle);
960 spi->irq = -1;
961
962 INIT_LIST_HEAD(&resource_list);
963 ret = acpi_dev_get_resources(adev, &resource_list,
964 acpi_spi_add_resource, spi);
965 acpi_dev_free_resource_list(&resource_list);
966
967 if (ret < 0 || !spi->max_speed_hz) {
968 spi_dev_put(spi);
969 return AE_OK;
970 }
971
972 strlcpy(spi->modalias, dev_name(&adev->dev), sizeof(spi->modalias));
973 if (spi_add_device(spi)) {
974 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
975 dev_name(&adev->dev));
976 spi_dev_put(spi);
977 }
978
979 return AE_OK;
980}
981
982static void acpi_register_spi_devices(struct spi_master *master)
983{
984 acpi_status status;
985 acpi_handle handle;
986
987 handle = ACPI_HANDLE(&master->dev);
988 if (!handle)
989 return;
990
991 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
992 acpi_spi_add_device, NULL,
993 master, NULL);
994 if (ACPI_FAILURE(status))
995 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
996}
997#else
998static inline void acpi_register_spi_devices(struct spi_master *master) {}
999#endif /* CONFIG_ACPI */
1000
49dce689 1001static void spi_master_release(struct device *dev)
8ae12a0d
DB
1002{
1003 struct spi_master *master;
1004
49dce689 1005 master = container_of(dev, struct spi_master, dev);
8ae12a0d
DB
1006 kfree(master);
1007}
1008
1009static struct class spi_master_class = {
1010 .name = "spi_master",
1011 .owner = THIS_MODULE,
49dce689 1012 .dev_release = spi_master_release,
8ae12a0d
DB
1013};
1014
1015
ffbbdd21 1016
8ae12a0d
DB
1017/**
1018 * spi_alloc_master - allocate SPI master controller
1019 * @dev: the controller, possibly using the platform_bus
33e34dc6 1020 * @size: how much zeroed driver-private data to allocate; the pointer to this
49dce689 1021 * memory is in the driver_data field of the returned device,
0c868461 1022 * accessible with spi_master_get_devdata().
33e34dc6 1023 * Context: can sleep
8ae12a0d
DB
1024 *
1025 * This call is used only by SPI master controller drivers, which are the
1026 * only ones directly touching chip registers. It's how they allocate
ba1a0513 1027 * an spi_master structure, prior to calling spi_register_master().
8ae12a0d
DB
1028 *
1029 * This must be called from context that can sleep. It returns the SPI
1030 * master structure on success, else NULL.
1031 *
1032 * The caller is responsible for assigning the bus number and initializing
ba1a0513 1033 * the master's methods before calling spi_register_master(); and (after errors
eb4af0f5
UKK
1034 * adding the device) calling spi_master_put() and kfree() to prevent a memory
1035 * leak.
8ae12a0d 1036 */
e9d5a461 1037struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
8ae12a0d
DB
1038{
1039 struct spi_master *master;
1040
0c868461
DB
1041 if (!dev)
1042 return NULL;
1043
e94b1766 1044 master = kzalloc(size + sizeof *master, GFP_KERNEL);
8ae12a0d
DB
1045 if (!master)
1046 return NULL;
1047
49dce689 1048 device_initialize(&master->dev);
1e8a52e1
GL
1049 master->bus_num = -1;
1050 master->num_chipselect = 1;
49dce689
TJ
1051 master->dev.class = &spi_master_class;
1052 master->dev.parent = get_device(dev);
0c868461 1053 spi_master_set_devdata(master, &master[1]);
8ae12a0d
DB
1054
1055 return master;
1056}
1057EXPORT_SYMBOL_GPL(spi_alloc_master);
1058
74317984
JCPV
1059#ifdef CONFIG_OF
1060static int of_spi_register_master(struct spi_master *master)
1061{
e80beb27 1062 int nb, i, *cs;
74317984
JCPV
1063 struct device_node *np = master->dev.of_node;
1064
1065 if (!np)
1066 return 0;
1067
1068 nb = of_gpio_named_count(np, "cs-gpios");
e80beb27 1069 master->num_chipselect = max(nb, (int)master->num_chipselect);
74317984
JCPV
1070
1071 if (nb < 1)
1072 return 0;
1073
1074 cs = devm_kzalloc(&master->dev,
1075 sizeof(int) * master->num_chipselect,
1076 GFP_KERNEL);
1077 master->cs_gpios = cs;
1078
1079 if (!master->cs_gpios)
1080 return -ENOMEM;
1081
0da83bb1
AL
1082 for (i = 0; i < master->num_chipselect; i++)
1083 cs[i] = -EINVAL;
74317984
JCPV
1084
1085 for (i = 0; i < nb; i++)
1086 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1087
1088 return 0;
1089}
1090#else
1091static int of_spi_register_master(struct spi_master *master)
1092{
1093 return 0;
1094}
1095#endif
1096
8ae12a0d
DB
1097/**
1098 * spi_register_master - register SPI master controller
1099 * @master: initialized master, originally from spi_alloc_master()
33e34dc6 1100 * Context: can sleep
8ae12a0d
DB
1101 *
1102 * SPI master controllers connect to their drivers using some non-SPI bus,
1103 * such as the platform bus. The final stage of probe() in that code
1104 * includes calling spi_register_master() to hook up to this SPI bus glue.
1105 *
1106 * SPI controllers use board specific (often SOC specific) bus numbers,
1107 * and board-specific addressing for SPI devices combines those numbers
1108 * with chip select numbers. Since SPI does not directly support dynamic
1109 * device identification, boards need configuration tables telling which
1110 * chip is at which address.
1111 *
1112 * This must be called from context that can sleep. It returns zero on
1113 * success, else a negative error code (dropping the master's refcount).
0c868461
DB
1114 * After a successful return, the caller is responsible for calling
1115 * spi_unregister_master().
8ae12a0d 1116 */
e9d5a461 1117int spi_register_master(struct spi_master *master)
8ae12a0d 1118{
e44a45ae 1119 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
49dce689 1120 struct device *dev = master->dev.parent;
2b9603a0 1121 struct boardinfo *bi;
8ae12a0d
DB
1122 int status = -ENODEV;
1123 int dynamic = 0;
1124
0c868461
DB
1125 if (!dev)
1126 return -ENODEV;
1127
74317984
JCPV
1128 status = of_spi_register_master(master);
1129 if (status)
1130 return status;
1131
082c8cb4
DB
1132 /* even if it's just one always-selected device, there must
1133 * be at least one chipselect
1134 */
1135 if (master->num_chipselect == 0)
1136 return -EINVAL;
1137
bb29785e
GL
1138 if ((master->bus_num < 0) && master->dev.of_node)
1139 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1140
8ae12a0d 1141 /* convention: dynamically assigned bus IDs count down from the max */
a020ed75 1142 if (master->bus_num < 0) {
082c8cb4
DB
1143 /* FIXME switch to an IDR based scheme, something like
1144 * I2C now uses, so we can't run out of "dynamic" IDs
1145 */
8ae12a0d 1146 master->bus_num = atomic_dec_return(&dyn_bus_id);
b885244e 1147 dynamic = 1;
8ae12a0d
DB
1148 }
1149
cf32b71e
ES
1150 spin_lock_init(&master->bus_lock_spinlock);
1151 mutex_init(&master->bus_lock_mutex);
1152 master->bus_lock_flag = 0;
1153
8ae12a0d
DB
1154 /* register the device, then userspace will see it.
1155 * registration fails if the bus ID is in use.
1156 */
35f74fca 1157 dev_set_name(&master->dev, "spi%u", master->bus_num);
49dce689 1158 status = device_add(&master->dev);
b885244e 1159 if (status < 0)
8ae12a0d 1160 goto done;
35f74fca 1161 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
8ae12a0d
DB
1162 dynamic ? " (dynamic)" : "");
1163
ffbbdd21
LW
1164 /* If we're using a queued driver, start the queue */
1165 if (master->transfer)
1166 dev_info(dev, "master is unqueued, this is deprecated\n");
1167 else {
1168 status = spi_master_initialize_queue(master);
1169 if (status) {
1170 device_unregister(&master->dev);
1171 goto done;
1172 }
1173 }
1174
2b9603a0
FT
1175 mutex_lock(&board_lock);
1176 list_add_tail(&master->list, &spi_master_list);
1177 list_for_each_entry(bi, &board_list, list)
1178 spi_match_master_to_boardinfo(master, &bi->board_info);
1179 mutex_unlock(&board_lock);
1180
64bee4d2 1181 /* Register devices from the device tree and ACPI */
12b15e83 1182 of_register_spi_devices(master);
64bee4d2 1183 acpi_register_spi_devices(master);
8ae12a0d
DB
1184done:
1185 return status;
1186}
1187EXPORT_SYMBOL_GPL(spi_register_master);
1188
34860089 1189static int __unregister(struct device *dev, void *null)
8ae12a0d 1190{
34860089 1191 spi_unregister_device(to_spi_device(dev));
8ae12a0d
DB
1192 return 0;
1193}
1194
1195/**
1196 * spi_unregister_master - unregister SPI master controller
1197 * @master: the master being unregistered
33e34dc6 1198 * Context: can sleep
8ae12a0d
DB
1199 *
1200 * This call is used only by SPI master controller drivers, which are the
1201 * only ones directly touching chip registers.
1202 *
1203 * This must be called from context that can sleep.
1204 */
1205void spi_unregister_master(struct spi_master *master)
1206{
89fc9a1a
JG
1207 int dummy;
1208
ffbbdd21
LW
1209 if (master->queued) {
1210 if (spi_destroy_queue(master))
1211 dev_err(&master->dev, "queue remove failed\n");
1212 }
1213
2b9603a0
FT
1214 mutex_lock(&board_lock);
1215 list_del(&master->list);
1216 mutex_unlock(&board_lock);
1217
97dbf37d 1218 dummy = device_for_each_child(&master->dev, NULL, __unregister);
49dce689 1219 device_unregister(&master->dev);
8ae12a0d
DB
1220}
1221EXPORT_SYMBOL_GPL(spi_unregister_master);
1222
ffbbdd21
LW
1223int spi_master_suspend(struct spi_master *master)
1224{
1225 int ret;
1226
1227 /* Basically no-ops for non-queued masters */
1228 if (!master->queued)
1229 return 0;
1230
1231 ret = spi_stop_queue(master);
1232 if (ret)
1233 dev_err(&master->dev, "queue stop failed\n");
1234
1235 return ret;
1236}
1237EXPORT_SYMBOL_GPL(spi_master_suspend);
1238
1239int spi_master_resume(struct spi_master *master)
1240{
1241 int ret;
1242
1243 if (!master->queued)
1244 return 0;
1245
1246 ret = spi_start_queue(master);
1247 if (ret)
1248 dev_err(&master->dev, "queue restart failed\n");
1249
1250 return ret;
1251}
1252EXPORT_SYMBOL_GPL(spi_master_resume);
1253
9f3b795a 1254static int __spi_master_match(struct device *dev, const void *data)
5ed2c832
DY
1255{
1256 struct spi_master *m;
9f3b795a 1257 const u16 *bus_num = data;
5ed2c832
DY
1258
1259 m = container_of(dev, struct spi_master, dev);
1260 return m->bus_num == *bus_num;
1261}
1262
8ae12a0d
DB
1263/**
1264 * spi_busnum_to_master - look up master associated with bus_num
1265 * @bus_num: the master's bus number
33e34dc6 1266 * Context: can sleep
8ae12a0d
DB
1267 *
1268 * This call may be used with devices that are registered after
1269 * arch init time. It returns a refcounted pointer to the relevant
1270 * spi_master (which the caller must release), or NULL if there is
1271 * no such master registered.
1272 */
1273struct spi_master *spi_busnum_to_master(u16 bus_num)
1274{
49dce689 1275 struct device *dev;
1e9a51dc 1276 struct spi_master *master = NULL;
5ed2c832 1277
695794ae 1278 dev = class_find_device(&spi_master_class, NULL, &bus_num,
5ed2c832
DY
1279 __spi_master_match);
1280 if (dev)
1281 master = container_of(dev, struct spi_master, dev);
1282 /* reference got in class_find_device */
1e9a51dc 1283 return master;
8ae12a0d
DB
1284}
1285EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1286
1287
1288/*-------------------------------------------------------------------------*/
1289
7d077197
DB
1290/* Core methods for SPI master protocol drivers. Some of the
1291 * other core methods are currently defined as inline functions.
1292 */
1293
1294/**
1295 * spi_setup - setup SPI mode and clock rate
1296 * @spi: the device whose settings are being modified
1297 * Context: can sleep, and no requests are queued to the device
1298 *
1299 * SPI protocol drivers may need to update the transfer mode if the
1300 * device doesn't work with its default. They may likewise need
1301 * to update clock rates or word sizes from initial values. This function
1302 * changes those settings, and must be called from a context that can sleep.
1303 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1304 * effect the next time the device is selected and data is transferred to
1305 * or from it. When this function returns, the spi device is deselected.
1306 *
1307 * Note that this call will fail if the protocol driver specifies an option
1308 * that the underlying controller or its driver does not support. For
1309 * example, not all hardware supports wire transfers using nine bit words,
1310 * LSB-first wire encoding, or active-high chipselects.
1311 */
1312int spi_setup(struct spi_device *spi)
1313{
e7db06b5 1314 unsigned bad_bits;
caae070c 1315 int status = 0;
7d077197 1316
e7db06b5
DB
1317 /* help drivers fail *cleanly* when they need options
1318 * that aren't supported with their current master
1319 */
1320 bad_bits = spi->mode & ~spi->master->mode_bits;
1321 if (bad_bits) {
eb288a1f 1322 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
e7db06b5
DB
1323 bad_bits);
1324 return -EINVAL;
1325 }
1326
7d077197
DB
1327 if (!spi->bits_per_word)
1328 spi->bits_per_word = 8;
1329
caae070c
LD
1330 if (spi->master->setup)
1331 status = spi->master->setup(spi);
7d077197
DB
1332
1333 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
1334 "%u bits/w, %u Hz max --> %d\n",
1335 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1336 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1337 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1338 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
1339 (spi->mode & SPI_LOOP) ? "loopback, " : "",
1340 spi->bits_per_word, spi->max_speed_hz,
1341 status);
1342
1343 return status;
1344}
1345EXPORT_SYMBOL_GPL(spi_setup);
1346
cf32b71e
ES
1347static int __spi_async(struct spi_device *spi, struct spi_message *message)
1348{
1349 struct spi_master *master = spi->master;
e6811d1d 1350 struct spi_transfer *xfer;
cf32b71e
ES
1351
1352 /* Half-duplex links include original MicroWire, and ones with
1353 * only one data pin like SPI_3WIRE (switches direction) or where
1354 * either MOSI or MISO is missing. They can also be caused by
1355 * software limitations.
1356 */
1357 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1358 || (spi->mode & SPI_3WIRE)) {
cf32b71e
ES
1359 unsigned flags = master->flags;
1360
1361 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1362 if (xfer->rx_buf && xfer->tx_buf)
1363 return -EINVAL;
1364 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1365 return -EINVAL;
1366 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1367 return -EINVAL;
1368 }
1369 }
1370
e6811d1d 1371 /**
059b8ffe
LD
1372 * Set transfer bits_per_word and max speed as spi device default if
1373 * it is not set for this transfer.
e6811d1d
LD
1374 */
1375 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1376 if (!xfer->bits_per_word)
1377 xfer->bits_per_word = spi->bits_per_word;
059b8ffe
LD
1378 if (!xfer->speed_hz)
1379 xfer->speed_hz = spi->max_speed_hz;
e6811d1d
LD
1380 }
1381
cf32b71e
ES
1382 message->spi = spi;
1383 message->status = -EINPROGRESS;
1384 return master->transfer(spi, message);
1385}
1386
568d0697
DB
1387/**
1388 * spi_async - asynchronous SPI transfer
1389 * @spi: device with which data will be exchanged
1390 * @message: describes the data transfers, including completion callback
1391 * Context: any (irqs may be blocked, etc)
1392 *
1393 * This call may be used in_irq and other contexts which can't sleep,
1394 * as well as from task contexts which can sleep.
1395 *
1396 * The completion callback is invoked in a context which can't sleep.
1397 * Before that invocation, the value of message->status is undefined.
1398 * When the callback is issued, message->status holds either zero (to
1399 * indicate complete success) or a negative error code. After that
1400 * callback returns, the driver which issued the transfer request may
1401 * deallocate the associated memory; it's no longer in use by any SPI
1402 * core or controller driver code.
1403 *
1404 * Note that although all messages to a spi_device are handled in
1405 * FIFO order, messages may go to different devices in other orders.
1406 * Some device might be higher priority, or have various "hard" access
1407 * time requirements, for example.
1408 *
1409 * On detection of any fault during the transfer, processing of
1410 * the entire message is aborted, and the device is deselected.
1411 * Until returning from the associated message completion callback,
1412 * no other spi_message queued to that device will be processed.
1413 * (This rule applies equally to all the synchronous transfer calls,
1414 * which are wrappers around this core asynchronous primitive.)
1415 */
1416int spi_async(struct spi_device *spi, struct spi_message *message)
1417{
1418 struct spi_master *master = spi->master;
cf32b71e
ES
1419 int ret;
1420 unsigned long flags;
568d0697 1421
cf32b71e 1422 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
568d0697 1423
cf32b71e
ES
1424 if (master->bus_lock_flag)
1425 ret = -EBUSY;
1426 else
1427 ret = __spi_async(spi, message);
568d0697 1428
cf32b71e
ES
1429 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1430
1431 return ret;
568d0697
DB
1432}
1433EXPORT_SYMBOL_GPL(spi_async);
1434
cf32b71e
ES
1435/**
1436 * spi_async_locked - version of spi_async with exclusive bus usage
1437 * @spi: device with which data will be exchanged
1438 * @message: describes the data transfers, including completion callback
1439 * Context: any (irqs may be blocked, etc)
1440 *
1441 * This call may be used in_irq and other contexts which can't sleep,
1442 * as well as from task contexts which can sleep.
1443 *
1444 * The completion callback is invoked in a context which can't sleep.
1445 * Before that invocation, the value of message->status is undefined.
1446 * When the callback is issued, message->status holds either zero (to
1447 * indicate complete success) or a negative error code. After that
1448 * callback returns, the driver which issued the transfer request may
1449 * deallocate the associated memory; it's no longer in use by any SPI
1450 * core or controller driver code.
1451 *
1452 * Note that although all messages to a spi_device are handled in
1453 * FIFO order, messages may go to different devices in other orders.
1454 * Some device might be higher priority, or have various "hard" access
1455 * time requirements, for example.
1456 *
1457 * On detection of any fault during the transfer, processing of
1458 * the entire message is aborted, and the device is deselected.
1459 * Until returning from the associated message completion callback,
1460 * no other spi_message queued to that device will be processed.
1461 * (This rule applies equally to all the synchronous transfer calls,
1462 * which are wrappers around this core asynchronous primitive.)
1463 */
1464int spi_async_locked(struct spi_device *spi, struct spi_message *message)
1465{
1466 struct spi_master *master = spi->master;
1467 int ret;
1468 unsigned long flags;
1469
1470 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1471
1472 ret = __spi_async(spi, message);
1473
1474 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1475
1476 return ret;
1477
1478}
1479EXPORT_SYMBOL_GPL(spi_async_locked);
1480
7d077197
DB
1481
1482/*-------------------------------------------------------------------------*/
1483
1484/* Utility methods for SPI master protocol drivers, layered on
1485 * top of the core. Some other utility methods are defined as
1486 * inline functions.
1487 */
1488
5d870c8e
AM
1489static void spi_complete(void *arg)
1490{
1491 complete(arg);
1492}
1493
cf32b71e
ES
1494static int __spi_sync(struct spi_device *spi, struct spi_message *message,
1495 int bus_locked)
1496{
1497 DECLARE_COMPLETION_ONSTACK(done);
1498 int status;
1499 struct spi_master *master = spi->master;
1500
1501 message->complete = spi_complete;
1502 message->context = &done;
1503
1504 if (!bus_locked)
1505 mutex_lock(&master->bus_lock_mutex);
1506
1507 status = spi_async_locked(spi, message);
1508
1509 if (!bus_locked)
1510 mutex_unlock(&master->bus_lock_mutex);
1511
1512 if (status == 0) {
1513 wait_for_completion(&done);
1514 status = message->status;
1515 }
1516 message->context = NULL;
1517 return status;
1518}
1519
8ae12a0d
DB
1520/**
1521 * spi_sync - blocking/synchronous SPI data transfers
1522 * @spi: device with which data will be exchanged
1523 * @message: describes the data transfers
33e34dc6 1524 * Context: can sleep
8ae12a0d
DB
1525 *
1526 * This call may only be used from a context that may sleep. The sleep
1527 * is non-interruptible, and has no timeout. Low-overhead controller
1528 * drivers may DMA directly into and out of the message buffers.
1529 *
1530 * Note that the SPI device's chip select is active during the message,
1531 * and then is normally disabled between messages. Drivers for some
1532 * frequently-used devices may want to minimize costs of selecting a chip,
1533 * by leaving it selected in anticipation that the next message will go
1534 * to the same chip. (That may increase power usage.)
1535 *
0c868461
DB
1536 * Also, the caller is guaranteeing that the memory associated with the
1537 * message will not be freed before this call returns.
1538 *
9b938b74 1539 * It returns zero on success, else a negative error code.
8ae12a0d
DB
1540 */
1541int spi_sync(struct spi_device *spi, struct spi_message *message)
1542{
cf32b71e 1543 return __spi_sync(spi, message, 0);
8ae12a0d
DB
1544}
1545EXPORT_SYMBOL_GPL(spi_sync);
1546
cf32b71e
ES
1547/**
1548 * spi_sync_locked - version of spi_sync with exclusive bus usage
1549 * @spi: device with which data will be exchanged
1550 * @message: describes the data transfers
1551 * Context: can sleep
1552 *
1553 * This call may only be used from a context that may sleep. The sleep
1554 * is non-interruptible, and has no timeout. Low-overhead controller
1555 * drivers may DMA directly into and out of the message buffers.
1556 *
1557 * This call should be used by drivers that require exclusive access to the
25985edc 1558 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
cf32b71e
ES
1559 * be released by a spi_bus_unlock call when the exclusive access is over.
1560 *
1561 * It returns zero on success, else a negative error code.
1562 */
1563int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
1564{
1565 return __spi_sync(spi, message, 1);
1566}
1567EXPORT_SYMBOL_GPL(spi_sync_locked);
1568
1569/**
1570 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
1571 * @master: SPI bus master that should be locked for exclusive bus access
1572 * Context: can sleep
1573 *
1574 * This call may only be used from a context that may sleep. The sleep
1575 * is non-interruptible, and has no timeout.
1576 *
1577 * This call should be used by drivers that require exclusive access to the
1578 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
1579 * exclusive access is over. Data transfer must be done by spi_sync_locked
1580 * and spi_async_locked calls when the SPI bus lock is held.
1581 *
1582 * It returns zero on success, else a negative error code.
1583 */
1584int spi_bus_lock(struct spi_master *master)
1585{
1586 unsigned long flags;
1587
1588 mutex_lock(&master->bus_lock_mutex);
1589
1590 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1591 master->bus_lock_flag = 1;
1592 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1593
1594 /* mutex remains locked until spi_bus_unlock is called */
1595
1596 return 0;
1597}
1598EXPORT_SYMBOL_GPL(spi_bus_lock);
1599
1600/**
1601 * spi_bus_unlock - release the lock for exclusive SPI bus usage
1602 * @master: SPI bus master that was locked for exclusive bus access
1603 * Context: can sleep
1604 *
1605 * This call may only be used from a context that may sleep. The sleep
1606 * is non-interruptible, and has no timeout.
1607 *
1608 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
1609 * call.
1610 *
1611 * It returns zero on success, else a negative error code.
1612 */
1613int spi_bus_unlock(struct spi_master *master)
1614{
1615 master->bus_lock_flag = 0;
1616
1617 mutex_unlock(&master->bus_lock_mutex);
1618
1619 return 0;
1620}
1621EXPORT_SYMBOL_GPL(spi_bus_unlock);
1622
a9948b61
DB
1623/* portable code must never pass more than 32 bytes */
1624#define SPI_BUFSIZ max(32,SMP_CACHE_BYTES)
8ae12a0d
DB
1625
1626static u8 *buf;
1627
1628/**
1629 * spi_write_then_read - SPI synchronous write followed by read
1630 * @spi: device with which data will be exchanged
1631 * @txbuf: data to be written (need not be dma-safe)
1632 * @n_tx: size of txbuf, in bytes
27570497
JP
1633 * @rxbuf: buffer into which data will be read (need not be dma-safe)
1634 * @n_rx: size of rxbuf, in bytes
33e34dc6 1635 * Context: can sleep
8ae12a0d
DB
1636 *
1637 * This performs a half duplex MicroWire style transaction with the
1638 * device, sending txbuf and then reading rxbuf. The return value
1639 * is zero for success, else a negative errno status code.
b885244e 1640 * This call may only be used from a context that may sleep.
8ae12a0d 1641 *
0c868461 1642 * Parameters to this routine are always copied using a small buffer;
33e34dc6
DB
1643 * portable code should never use this for more than 32 bytes.
1644 * Performance-sensitive or bulk transfer code should instead use
0c868461 1645 * spi_{async,sync}() calls with dma-safe buffers.
8ae12a0d
DB
1646 */
1647int spi_write_then_read(struct spi_device *spi,
0c4a1590
MB
1648 const void *txbuf, unsigned n_tx,
1649 void *rxbuf, unsigned n_rx)
8ae12a0d 1650{
068f4070 1651 static DEFINE_MUTEX(lock);
8ae12a0d
DB
1652
1653 int status;
1654 struct spi_message message;
bdff549e 1655 struct spi_transfer x[2];
8ae12a0d
DB
1656 u8 *local_buf;
1657
b3a223ee
MB
1658 /* Use preallocated DMA-safe buffer if we can. We can't avoid
1659 * copying here, (as a pure convenience thing), but we can
1660 * keep heap costs out of the hot path unless someone else is
1661 * using the pre-allocated buffer or the transfer is too large.
8ae12a0d 1662 */
b3a223ee 1663 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2cd94c8a
MB
1664 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
1665 GFP_KERNEL | GFP_DMA);
b3a223ee
MB
1666 if (!local_buf)
1667 return -ENOMEM;
1668 } else {
1669 local_buf = buf;
1670 }
8ae12a0d 1671
8275c642 1672 spi_message_init(&message);
bdff549e
DB
1673 memset(x, 0, sizeof x);
1674 if (n_tx) {
1675 x[0].len = n_tx;
1676 spi_message_add_tail(&x[0], &message);
1677 }
1678 if (n_rx) {
1679 x[1].len = n_rx;
1680 spi_message_add_tail(&x[1], &message);
1681 }
8275c642 1682
8ae12a0d 1683 memcpy(local_buf, txbuf, n_tx);
bdff549e
DB
1684 x[0].tx_buf = local_buf;
1685 x[1].rx_buf = local_buf + n_tx;
8ae12a0d
DB
1686
1687 /* do the i/o */
8ae12a0d 1688 status = spi_sync(spi, &message);
9b938b74 1689 if (status == 0)
bdff549e 1690 memcpy(rxbuf, x[1].rx_buf, n_rx);
8ae12a0d 1691
bdff549e 1692 if (x[0].tx_buf == buf)
068f4070 1693 mutex_unlock(&lock);
8ae12a0d
DB
1694 else
1695 kfree(local_buf);
1696
1697 return status;
1698}
1699EXPORT_SYMBOL_GPL(spi_write_then_read);
1700
1701/*-------------------------------------------------------------------------*/
1702
1703static int __init spi_init(void)
1704{
b885244e
DB
1705 int status;
1706
e94b1766 1707 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
b885244e
DB
1708 if (!buf) {
1709 status = -ENOMEM;
1710 goto err0;
1711 }
1712
1713 status = bus_register(&spi_bus_type);
1714 if (status < 0)
1715 goto err1;
8ae12a0d 1716
b885244e
DB
1717 status = class_register(&spi_master_class);
1718 if (status < 0)
1719 goto err2;
8ae12a0d 1720 return 0;
b885244e
DB
1721
1722err2:
1723 bus_unregister(&spi_bus_type);
1724err1:
1725 kfree(buf);
1726 buf = NULL;
1727err0:
1728 return status;
8ae12a0d 1729}
b885244e 1730
8ae12a0d
DB
1731/* board_info is normally registered in arch_initcall(),
1732 * but even essential drivers wait till later
b885244e
DB
1733 *
1734 * REVISIT only boardinfo really needs static linking. the rest (device and
1735 * driver registration) _could_ be dynamically linked (modular) ... costs
1736 * include needing to have boardinfo data structures be much more public.
8ae12a0d 1737 */
673c0c00 1738postcore_initcall(spi_init);
8ae12a0d 1739
This page took 0.689913 seconds and 5 git commands to generate.