spi: Compatibility with direction which is used in samsung DMA operation
[deliverable/linux.git] / drivers / spi / spi.c
CommitLineData
8ae12a0d 1/*
ca632f55 2 * SPI init/core code
8ae12a0d
DB
3 *
4 * Copyright (C) 2005 David Brownell
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
8ae12a0d
DB
21#include <linux/kernel.h>
22#include <linux/device.h>
23#include <linux/init.h>
24#include <linux/cache.h>
94040828 25#include <linux/mutex.h>
2b7a32f7 26#include <linux/of_device.h>
5a0e3ad6 27#include <linux/slab.h>
e0626e38 28#include <linux/mod_devicetable.h>
8ae12a0d 29#include <linux/spi/spi.h>
12b15e83 30#include <linux/of_spi.h>
3ae22e8c 31#include <linux/pm_runtime.h>
025ed130 32#include <linux/export.h>
ffbbdd21
LW
33#include <linux/sched.h>
34#include <linux/delay.h>
35#include <linux/kthread.h>
8ae12a0d 36
8ae12a0d
DB
37static void spidev_release(struct device *dev)
38{
0ffa0285 39 struct spi_device *spi = to_spi_device(dev);
8ae12a0d
DB
40
41 /* spi masters may cleanup for released devices */
42 if (spi->master->cleanup)
43 spi->master->cleanup(spi);
44
0c868461 45 spi_master_put(spi->master);
07a389fe 46 kfree(spi);
8ae12a0d
DB
47}
48
49static ssize_t
50modalias_show(struct device *dev, struct device_attribute *a, char *buf)
51{
52 const struct spi_device *spi = to_spi_device(dev);
53
35f74fca 54 return sprintf(buf, "%s\n", spi->modalias);
8ae12a0d
DB
55}
56
57static struct device_attribute spi_dev_attrs[] = {
58 __ATTR_RO(modalias),
59 __ATTR_NULL,
60};
61
62/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
63 * and the sysfs version makes coldplug work too.
64 */
65
75368bf6
AV
66static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
67 const struct spi_device *sdev)
68{
69 while (id->name[0]) {
70 if (!strcmp(sdev->modalias, id->name))
71 return id;
72 id++;
73 }
74 return NULL;
75}
76
77const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
78{
79 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
80
81 return spi_match_id(sdrv->id_table, sdev);
82}
83EXPORT_SYMBOL_GPL(spi_get_device_id);
84
8ae12a0d
DB
85static int spi_match_device(struct device *dev, struct device_driver *drv)
86{
87 const struct spi_device *spi = to_spi_device(dev);
75368bf6
AV
88 const struct spi_driver *sdrv = to_spi_driver(drv);
89
2b7a32f7
SA
90 /* Attempt an OF style match */
91 if (of_driver_match_device(dev, drv))
92 return 1;
93
75368bf6
AV
94 if (sdrv->id_table)
95 return !!spi_match_id(sdrv->id_table, spi);
8ae12a0d 96
35f74fca 97 return strcmp(spi->modalias, drv->name) == 0;
8ae12a0d
DB
98}
99
7eff2e7a 100static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
8ae12a0d
DB
101{
102 const struct spi_device *spi = to_spi_device(dev);
103
e0626e38 104 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
8ae12a0d
DB
105 return 0;
106}
107
3ae22e8c
MB
108#ifdef CONFIG_PM_SLEEP
109static int spi_legacy_suspend(struct device *dev, pm_message_t message)
8ae12a0d 110{
3c72426f 111 int value = 0;
b885244e 112 struct spi_driver *drv = to_spi_driver(dev->driver);
8ae12a0d 113
8ae12a0d 114 /* suspend will stop irqs and dma; no more i/o */
3c72426f
DB
115 if (drv) {
116 if (drv->suspend)
117 value = drv->suspend(to_spi_device(dev), message);
118 else
119 dev_dbg(dev, "... can't suspend\n");
120 }
8ae12a0d
DB
121 return value;
122}
123
3ae22e8c 124static int spi_legacy_resume(struct device *dev)
8ae12a0d 125{
3c72426f 126 int value = 0;
b885244e 127 struct spi_driver *drv = to_spi_driver(dev->driver);
8ae12a0d 128
8ae12a0d 129 /* resume may restart the i/o queue */
3c72426f
DB
130 if (drv) {
131 if (drv->resume)
132 value = drv->resume(to_spi_device(dev));
133 else
134 dev_dbg(dev, "... can't resume\n");
135 }
8ae12a0d
DB
136 return value;
137}
138
3ae22e8c
MB
139static int spi_pm_suspend(struct device *dev)
140{
141 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
142
143 if (pm)
144 return pm_generic_suspend(dev);
145 else
146 return spi_legacy_suspend(dev, PMSG_SUSPEND);
147}
148
149static int spi_pm_resume(struct device *dev)
150{
151 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
152
153 if (pm)
154 return pm_generic_resume(dev);
155 else
156 return spi_legacy_resume(dev);
157}
158
159static int spi_pm_freeze(struct device *dev)
160{
161 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
162
163 if (pm)
164 return pm_generic_freeze(dev);
165 else
166 return spi_legacy_suspend(dev, PMSG_FREEZE);
167}
168
169static int spi_pm_thaw(struct device *dev)
170{
171 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
172
173 if (pm)
174 return pm_generic_thaw(dev);
175 else
176 return spi_legacy_resume(dev);
177}
178
179static int spi_pm_poweroff(struct device *dev)
180{
181 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
182
183 if (pm)
184 return pm_generic_poweroff(dev);
185 else
186 return spi_legacy_suspend(dev, PMSG_HIBERNATE);
187}
188
189static int spi_pm_restore(struct device *dev)
190{
191 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
192
193 if (pm)
194 return pm_generic_restore(dev);
195 else
196 return spi_legacy_resume(dev);
197}
8ae12a0d 198#else
3ae22e8c
MB
199#define spi_pm_suspend NULL
200#define spi_pm_resume NULL
201#define spi_pm_freeze NULL
202#define spi_pm_thaw NULL
203#define spi_pm_poweroff NULL
204#define spi_pm_restore NULL
8ae12a0d
DB
205#endif
206
3ae22e8c
MB
207static const struct dev_pm_ops spi_pm = {
208 .suspend = spi_pm_suspend,
209 .resume = spi_pm_resume,
210 .freeze = spi_pm_freeze,
211 .thaw = spi_pm_thaw,
212 .poweroff = spi_pm_poweroff,
213 .restore = spi_pm_restore,
214 SET_RUNTIME_PM_OPS(
215 pm_generic_runtime_suspend,
216 pm_generic_runtime_resume,
217 pm_generic_runtime_idle
218 )
219};
220
8ae12a0d
DB
221struct bus_type spi_bus_type = {
222 .name = "spi",
223 .dev_attrs = spi_dev_attrs,
224 .match = spi_match_device,
225 .uevent = spi_uevent,
3ae22e8c 226 .pm = &spi_pm,
8ae12a0d
DB
227};
228EXPORT_SYMBOL_GPL(spi_bus_type);
229
b885244e
DB
230
231static int spi_drv_probe(struct device *dev)
232{
233 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
234
235 return sdrv->probe(to_spi_device(dev));
236}
237
238static int spi_drv_remove(struct device *dev)
239{
240 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
241
242 return sdrv->remove(to_spi_device(dev));
243}
244
245static void spi_drv_shutdown(struct device *dev)
246{
247 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
248
249 sdrv->shutdown(to_spi_device(dev));
250}
251
33e34dc6
DB
252/**
253 * spi_register_driver - register a SPI driver
254 * @sdrv: the driver to register
255 * Context: can sleep
256 */
b885244e
DB
257int spi_register_driver(struct spi_driver *sdrv)
258{
259 sdrv->driver.bus = &spi_bus_type;
260 if (sdrv->probe)
261 sdrv->driver.probe = spi_drv_probe;
262 if (sdrv->remove)
263 sdrv->driver.remove = spi_drv_remove;
264 if (sdrv->shutdown)
265 sdrv->driver.shutdown = spi_drv_shutdown;
266 return driver_register(&sdrv->driver);
267}
268EXPORT_SYMBOL_GPL(spi_register_driver);
269
8ae12a0d
DB
270/*-------------------------------------------------------------------------*/
271
272/* SPI devices should normally not be created by SPI device drivers; that
273 * would make them board-specific. Similarly with SPI master drivers.
274 * Device registration normally goes into like arch/.../mach.../board-YYY.c
275 * with other readonly (flashable) information about mainboard devices.
276 */
277
278struct boardinfo {
279 struct list_head list;
2b9603a0 280 struct spi_board_info board_info;
8ae12a0d
DB
281};
282
283static LIST_HEAD(board_list);
2b9603a0
FT
284static LIST_HEAD(spi_master_list);
285
286/*
287 * Used to protect add/del opertion for board_info list and
288 * spi_master list, and their matching process
289 */
94040828 290static DEFINE_MUTEX(board_lock);
8ae12a0d 291
dc87c98e
GL
292/**
293 * spi_alloc_device - Allocate a new SPI device
294 * @master: Controller to which device is connected
295 * Context: can sleep
296 *
297 * Allows a driver to allocate and initialize a spi_device without
298 * registering it immediately. This allows a driver to directly
299 * fill the spi_device with device parameters before calling
300 * spi_add_device() on it.
301 *
302 * Caller is responsible to call spi_add_device() on the returned
303 * spi_device structure to add it to the SPI master. If the caller
304 * needs to discard the spi_device without adding it, then it should
305 * call spi_dev_put() on it.
306 *
307 * Returns a pointer to the new device, or NULL.
308 */
309struct spi_device *spi_alloc_device(struct spi_master *master)
310{
311 struct spi_device *spi;
312 struct device *dev = master->dev.parent;
313
314 if (!spi_master_get(master))
315 return NULL;
316
317 spi = kzalloc(sizeof *spi, GFP_KERNEL);
318 if (!spi) {
319 dev_err(dev, "cannot alloc spi_device\n");
320 spi_master_put(master);
321 return NULL;
322 }
323
324 spi->master = master;
178db7d3 325 spi->dev.parent = &master->dev;
dc87c98e
GL
326 spi->dev.bus = &spi_bus_type;
327 spi->dev.release = spidev_release;
328 device_initialize(&spi->dev);
329 return spi;
330}
331EXPORT_SYMBOL_GPL(spi_alloc_device);
332
333/**
334 * spi_add_device - Add spi_device allocated with spi_alloc_device
335 * @spi: spi_device to register
336 *
337 * Companion function to spi_alloc_device. Devices allocated with
338 * spi_alloc_device can be added onto the spi bus with this function.
339 *
e48880e0 340 * Returns 0 on success; negative errno on failure
dc87c98e
GL
341 */
342int spi_add_device(struct spi_device *spi)
343{
e48880e0 344 static DEFINE_MUTEX(spi_add_lock);
dc87c98e 345 struct device *dev = spi->master->dev.parent;
8ec130a0 346 struct device *d;
dc87c98e
GL
347 int status;
348
349 /* Chipselects are numbered 0..max; validate. */
350 if (spi->chip_select >= spi->master->num_chipselect) {
351 dev_err(dev, "cs%d >= max %d\n",
352 spi->chip_select,
353 spi->master->num_chipselect);
354 return -EINVAL;
355 }
356
357 /* Set the bus ID string */
35f74fca 358 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
dc87c98e
GL
359 spi->chip_select);
360
e48880e0
DB
361
362 /* We need to make sure there's no other device with this
363 * chipselect **BEFORE** we call setup(), else we'll trash
364 * its configuration. Lock against concurrent add() calls.
365 */
366 mutex_lock(&spi_add_lock);
367
8ec130a0
RT
368 d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
369 if (d != NULL) {
e48880e0
DB
370 dev_err(dev, "chipselect %d already in use\n",
371 spi->chip_select);
8ec130a0 372 put_device(d);
e48880e0
DB
373 status = -EBUSY;
374 goto done;
375 }
376
377 /* Drivers may modify this initial i/o setup, but will
378 * normally rely on the device being setup. Devices
379 * using SPI_CS_HIGH can't coexist well otherwise...
380 */
7d077197 381 status = spi_setup(spi);
dc87c98e 382 if (status < 0) {
eb288a1f
LW
383 dev_err(dev, "can't setup %s, status %d\n",
384 dev_name(&spi->dev), status);
e48880e0 385 goto done;
dc87c98e
GL
386 }
387
e48880e0 388 /* Device may be bound to an active driver when this returns */
dc87c98e 389 status = device_add(&spi->dev);
e48880e0 390 if (status < 0)
eb288a1f
LW
391 dev_err(dev, "can't add %s, status %d\n",
392 dev_name(&spi->dev), status);
e48880e0 393 else
35f74fca 394 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
dc87c98e 395
e48880e0
DB
396done:
397 mutex_unlock(&spi_add_lock);
398 return status;
dc87c98e
GL
399}
400EXPORT_SYMBOL_GPL(spi_add_device);
8ae12a0d 401
33e34dc6
DB
402/**
403 * spi_new_device - instantiate one new SPI device
404 * @master: Controller to which device is connected
405 * @chip: Describes the SPI device
406 * Context: can sleep
407 *
408 * On typical mainboards, this is purely internal; and it's not needed
8ae12a0d
DB
409 * after board init creates the hard-wired devices. Some development
410 * platforms may not be able to use spi_register_board_info though, and
411 * this is exported so that for example a USB or parport based adapter
412 * driver could add devices (which it would learn about out-of-band).
082c8cb4
DB
413 *
414 * Returns the new device, or NULL.
8ae12a0d 415 */
e9d5a461
AB
416struct spi_device *spi_new_device(struct spi_master *master,
417 struct spi_board_info *chip)
8ae12a0d
DB
418{
419 struct spi_device *proxy;
8ae12a0d
DB
420 int status;
421
082c8cb4
DB
422 /* NOTE: caller did any chip->bus_num checks necessary.
423 *
424 * Also, unless we change the return value convention to use
425 * error-or-pointer (not NULL-or-pointer), troubleshootability
426 * suggests syslogged diagnostics are best here (ugh).
427 */
428
dc87c98e
GL
429 proxy = spi_alloc_device(master);
430 if (!proxy)
8ae12a0d
DB
431 return NULL;
432
102eb975
GL
433 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
434
8ae12a0d
DB
435 proxy->chip_select = chip->chip_select;
436 proxy->max_speed_hz = chip->max_speed_hz;
980a01c9 437 proxy->mode = chip->mode;
8ae12a0d 438 proxy->irq = chip->irq;
102eb975 439 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
8ae12a0d
DB
440 proxy->dev.platform_data = (void *) chip->platform_data;
441 proxy->controller_data = chip->controller_data;
442 proxy->controller_state = NULL;
8ae12a0d 443
dc87c98e 444 status = spi_add_device(proxy);
8ae12a0d 445 if (status < 0) {
dc87c98e
GL
446 spi_dev_put(proxy);
447 return NULL;
8ae12a0d
DB
448 }
449
8ae12a0d
DB
450 return proxy;
451}
452EXPORT_SYMBOL_GPL(spi_new_device);
453
2b9603a0
FT
454static void spi_match_master_to_boardinfo(struct spi_master *master,
455 struct spi_board_info *bi)
456{
457 struct spi_device *dev;
458
459 if (master->bus_num != bi->bus_num)
460 return;
461
462 dev = spi_new_device(master, bi);
463 if (!dev)
464 dev_err(master->dev.parent, "can't create new device for %s\n",
465 bi->modalias);
466}
467
33e34dc6
DB
468/**
469 * spi_register_board_info - register SPI devices for a given board
470 * @info: array of chip descriptors
471 * @n: how many descriptors are provided
472 * Context: can sleep
473 *
8ae12a0d
DB
474 * Board-specific early init code calls this (probably during arch_initcall)
475 * with segments of the SPI device table. Any device nodes are created later,
476 * after the relevant parent SPI controller (bus_num) is defined. We keep
477 * this table of devices forever, so that reloading a controller driver will
478 * not make Linux forget about these hard-wired devices.
479 *
480 * Other code can also call this, e.g. a particular add-on board might provide
481 * SPI devices through its expansion connector, so code initializing that board
482 * would naturally declare its SPI devices.
483 *
484 * The board info passed can safely be __initdata ... but be careful of
485 * any embedded pointers (platform_data, etc), they're copied as-is.
486 */
690fb11b 487int __devinit
8ae12a0d
DB
488spi_register_board_info(struct spi_board_info const *info, unsigned n)
489{
2b9603a0
FT
490 struct boardinfo *bi;
491 int i;
8ae12a0d 492
2b9603a0 493 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
8ae12a0d
DB
494 if (!bi)
495 return -ENOMEM;
8ae12a0d 496
2b9603a0
FT
497 for (i = 0; i < n; i++, bi++, info++) {
498 struct spi_master *master;
8ae12a0d 499
2b9603a0
FT
500 memcpy(&bi->board_info, info, sizeof(*info));
501 mutex_lock(&board_lock);
502 list_add_tail(&bi->list, &board_list);
503 list_for_each_entry(master, &spi_master_list, list)
504 spi_match_master_to_boardinfo(master, &bi->board_info);
505 mutex_unlock(&board_lock);
8ae12a0d 506 }
2b9603a0
FT
507
508 return 0;
8ae12a0d
DB
509}
510
511/*-------------------------------------------------------------------------*/
512
ffbbdd21
LW
513/**
514 * spi_pump_messages - kthread work function which processes spi message queue
515 * @work: pointer to kthread work struct contained in the master struct
516 *
517 * This function checks if there is any spi message in the queue that
518 * needs processing and if so call out to the driver to initialize hardware
519 * and transfer each message.
520 *
521 */
522static void spi_pump_messages(struct kthread_work *work)
523{
524 struct spi_master *master =
525 container_of(work, struct spi_master, pump_messages);
526 unsigned long flags;
527 bool was_busy = false;
528 int ret;
529
530 /* Lock queue and check for queue work */
531 spin_lock_irqsave(&master->queue_lock, flags);
532 if (list_empty(&master->queue) || !master->running) {
533 if (master->busy) {
534 ret = master->unprepare_transfer_hardware(master);
535 if (ret) {
536 dev_err(&master->dev,
537 "failed to unprepare transfer hardware\n");
538 return;
539 }
540 }
541 master->busy = false;
542 spin_unlock_irqrestore(&master->queue_lock, flags);
543 return;
544 }
545
546 /* Make sure we are not already running a message */
547 if (master->cur_msg) {
548 spin_unlock_irqrestore(&master->queue_lock, flags);
549 return;
550 }
551 /* Extract head of queue */
552 master->cur_msg =
553 list_entry(master->queue.next, struct spi_message, queue);
554
555 list_del_init(&master->cur_msg->queue);
556 if (master->busy)
557 was_busy = true;
558 else
559 master->busy = true;
560 spin_unlock_irqrestore(&master->queue_lock, flags);
561
562 if (!was_busy) {
563 ret = master->prepare_transfer_hardware(master);
564 if (ret) {
565 dev_err(&master->dev,
566 "failed to prepare transfer hardware\n");
567 return;
568 }
569 }
570
571 ret = master->transfer_one_message(master, master->cur_msg);
572 if (ret) {
573 dev_err(&master->dev,
574 "failed to transfer one message from queue\n");
575 return;
576 }
577}
578
579static int spi_init_queue(struct spi_master *master)
580{
581 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
582
583 INIT_LIST_HEAD(&master->queue);
584 spin_lock_init(&master->queue_lock);
585
586 master->running = false;
587 master->busy = false;
588
589 init_kthread_worker(&master->kworker);
590 master->kworker_task = kthread_run(kthread_worker_fn,
591 &master->kworker,
592 dev_name(&master->dev));
593 if (IS_ERR(master->kworker_task)) {
594 dev_err(&master->dev, "failed to create message pump task\n");
595 return -ENOMEM;
596 }
597 init_kthread_work(&master->pump_messages, spi_pump_messages);
598
599 /*
600 * Master config will indicate if this controller should run the
601 * message pump with high (realtime) priority to reduce the transfer
602 * latency on the bus by minimising the delay between a transfer
603 * request and the scheduling of the message pump thread. Without this
604 * setting the message pump thread will remain at default priority.
605 */
606 if (master->rt) {
607 dev_info(&master->dev,
608 "will run message pump with realtime priority\n");
609 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
610 }
611
612 return 0;
613}
614
615/**
616 * spi_get_next_queued_message() - called by driver to check for queued
617 * messages
618 * @master: the master to check for queued messages
619 *
620 * If there are more messages in the queue, the next message is returned from
621 * this call.
622 */
623struct spi_message *spi_get_next_queued_message(struct spi_master *master)
624{
625 struct spi_message *next;
626 unsigned long flags;
627
628 /* get a pointer to the next message, if any */
629 spin_lock_irqsave(&master->queue_lock, flags);
630 if (list_empty(&master->queue))
631 next = NULL;
632 else
633 next = list_entry(master->queue.next,
634 struct spi_message, queue);
635 spin_unlock_irqrestore(&master->queue_lock, flags);
636
637 return next;
638}
639EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
640
641/**
642 * spi_finalize_current_message() - the current message is complete
643 * @master: the master to return the message to
644 *
645 * Called by the driver to notify the core that the message in the front of the
646 * queue is complete and can be removed from the queue.
647 */
648void spi_finalize_current_message(struct spi_master *master)
649{
650 struct spi_message *mesg;
651 unsigned long flags;
652
653 spin_lock_irqsave(&master->queue_lock, flags);
654 mesg = master->cur_msg;
655 master->cur_msg = NULL;
656
657 queue_kthread_work(&master->kworker, &master->pump_messages);
658 spin_unlock_irqrestore(&master->queue_lock, flags);
659
660 mesg->state = NULL;
661 if (mesg->complete)
662 mesg->complete(mesg->context);
663}
664EXPORT_SYMBOL_GPL(spi_finalize_current_message);
665
666static int spi_start_queue(struct spi_master *master)
667{
668 unsigned long flags;
669
670 spin_lock_irqsave(&master->queue_lock, flags);
671
672 if (master->running || master->busy) {
673 spin_unlock_irqrestore(&master->queue_lock, flags);
674 return -EBUSY;
675 }
676
677 master->running = true;
678 master->cur_msg = NULL;
679 spin_unlock_irqrestore(&master->queue_lock, flags);
680
681 queue_kthread_work(&master->kworker, &master->pump_messages);
682
683 return 0;
684}
685
686static int spi_stop_queue(struct spi_master *master)
687{
688 unsigned long flags;
689 unsigned limit = 500;
690 int ret = 0;
691
692 spin_lock_irqsave(&master->queue_lock, flags);
693
694 /*
695 * This is a bit lame, but is optimized for the common execution path.
696 * A wait_queue on the master->busy could be used, but then the common
697 * execution path (pump_messages) would be required to call wake_up or
698 * friends on every SPI message. Do this instead.
699 */
700 while ((!list_empty(&master->queue) || master->busy) && limit--) {
701 spin_unlock_irqrestore(&master->queue_lock, flags);
702 msleep(10);
703 spin_lock_irqsave(&master->queue_lock, flags);
704 }
705
706 if (!list_empty(&master->queue) || master->busy)
707 ret = -EBUSY;
708 else
709 master->running = false;
710
711 spin_unlock_irqrestore(&master->queue_lock, flags);
712
713 if (ret) {
714 dev_warn(&master->dev,
715 "could not stop message queue\n");
716 return ret;
717 }
718 return ret;
719}
720
721static int spi_destroy_queue(struct spi_master *master)
722{
723 int ret;
724
725 ret = spi_stop_queue(master);
726
727 /*
728 * flush_kthread_worker will block until all work is done.
729 * If the reason that stop_queue timed out is that the work will never
730 * finish, then it does no good to call flush/stop thread, so
731 * return anyway.
732 */
733 if (ret) {
734 dev_err(&master->dev, "problem destroying queue\n");
735 return ret;
736 }
737
738 flush_kthread_worker(&master->kworker);
739 kthread_stop(master->kworker_task);
740
741 return 0;
742}
743
744/**
745 * spi_queued_transfer - transfer function for queued transfers
746 * @spi: spi device which is requesting transfer
747 * @msg: spi message which is to handled is queued to driver queue
748 */
749static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
750{
751 struct spi_master *master = spi->master;
752 unsigned long flags;
753
754 spin_lock_irqsave(&master->queue_lock, flags);
755
756 if (!master->running) {
757 spin_unlock_irqrestore(&master->queue_lock, flags);
758 return -ESHUTDOWN;
759 }
760 msg->actual_length = 0;
761 msg->status = -EINPROGRESS;
762
763 list_add_tail(&msg->queue, &master->queue);
764 if (master->running && !master->busy)
765 queue_kthread_work(&master->kworker, &master->pump_messages);
766
767 spin_unlock_irqrestore(&master->queue_lock, flags);
768 return 0;
769}
770
771static int spi_master_initialize_queue(struct spi_master *master)
772{
773 int ret;
774
775 master->queued = true;
776 master->transfer = spi_queued_transfer;
777
778 /* Initialize and start queue */
779 ret = spi_init_queue(master);
780 if (ret) {
781 dev_err(&master->dev, "problem initializing queue\n");
782 goto err_init_queue;
783 }
784 ret = spi_start_queue(master);
785 if (ret) {
786 dev_err(&master->dev, "problem starting queue\n");
787 goto err_start_queue;
788 }
789
790 return 0;
791
792err_start_queue:
793err_init_queue:
794 spi_destroy_queue(master);
795 return ret;
796}
797
798/*-------------------------------------------------------------------------*/
799
49dce689 800static void spi_master_release(struct device *dev)
8ae12a0d
DB
801{
802 struct spi_master *master;
803
49dce689 804 master = container_of(dev, struct spi_master, dev);
8ae12a0d
DB
805 kfree(master);
806}
807
808static struct class spi_master_class = {
809 .name = "spi_master",
810 .owner = THIS_MODULE,
49dce689 811 .dev_release = spi_master_release,
8ae12a0d
DB
812};
813
814
ffbbdd21 815
8ae12a0d
DB
816/**
817 * spi_alloc_master - allocate SPI master controller
818 * @dev: the controller, possibly using the platform_bus
33e34dc6 819 * @size: how much zeroed driver-private data to allocate; the pointer to this
49dce689 820 * memory is in the driver_data field of the returned device,
0c868461 821 * accessible with spi_master_get_devdata().
33e34dc6 822 * Context: can sleep
8ae12a0d
DB
823 *
824 * This call is used only by SPI master controller drivers, which are the
825 * only ones directly touching chip registers. It's how they allocate
ba1a0513 826 * an spi_master structure, prior to calling spi_register_master().
8ae12a0d
DB
827 *
828 * This must be called from context that can sleep. It returns the SPI
829 * master structure on success, else NULL.
830 *
831 * The caller is responsible for assigning the bus number and initializing
ba1a0513 832 * the master's methods before calling spi_register_master(); and (after errors
eb4af0f5
UKK
833 * adding the device) calling spi_master_put() and kfree() to prevent a memory
834 * leak.
8ae12a0d 835 */
e9d5a461 836struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
8ae12a0d
DB
837{
838 struct spi_master *master;
839
0c868461
DB
840 if (!dev)
841 return NULL;
842
e94b1766 843 master = kzalloc(size + sizeof *master, GFP_KERNEL);
8ae12a0d
DB
844 if (!master)
845 return NULL;
846
49dce689
TJ
847 device_initialize(&master->dev);
848 master->dev.class = &spi_master_class;
849 master->dev.parent = get_device(dev);
0c868461 850 spi_master_set_devdata(master, &master[1]);
8ae12a0d
DB
851
852 return master;
853}
854EXPORT_SYMBOL_GPL(spi_alloc_master);
855
856/**
857 * spi_register_master - register SPI master controller
858 * @master: initialized master, originally from spi_alloc_master()
33e34dc6 859 * Context: can sleep
8ae12a0d
DB
860 *
861 * SPI master controllers connect to their drivers using some non-SPI bus,
862 * such as the platform bus. The final stage of probe() in that code
863 * includes calling spi_register_master() to hook up to this SPI bus glue.
864 *
865 * SPI controllers use board specific (often SOC specific) bus numbers,
866 * and board-specific addressing for SPI devices combines those numbers
867 * with chip select numbers. Since SPI does not directly support dynamic
868 * device identification, boards need configuration tables telling which
869 * chip is at which address.
870 *
871 * This must be called from context that can sleep. It returns zero on
872 * success, else a negative error code (dropping the master's refcount).
0c868461
DB
873 * After a successful return, the caller is responsible for calling
874 * spi_unregister_master().
8ae12a0d 875 */
e9d5a461 876int spi_register_master(struct spi_master *master)
8ae12a0d 877{
e44a45ae 878 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
49dce689 879 struct device *dev = master->dev.parent;
2b9603a0 880 struct boardinfo *bi;
8ae12a0d
DB
881 int status = -ENODEV;
882 int dynamic = 0;
883
0c868461
DB
884 if (!dev)
885 return -ENODEV;
886
082c8cb4
DB
887 /* even if it's just one always-selected device, there must
888 * be at least one chipselect
889 */
890 if (master->num_chipselect == 0)
891 return -EINVAL;
892
8ae12a0d 893 /* convention: dynamically assigned bus IDs count down from the max */
a020ed75 894 if (master->bus_num < 0) {
082c8cb4
DB
895 /* FIXME switch to an IDR based scheme, something like
896 * I2C now uses, so we can't run out of "dynamic" IDs
897 */
8ae12a0d 898 master->bus_num = atomic_dec_return(&dyn_bus_id);
b885244e 899 dynamic = 1;
8ae12a0d
DB
900 }
901
cf32b71e
ES
902 spin_lock_init(&master->bus_lock_spinlock);
903 mutex_init(&master->bus_lock_mutex);
904 master->bus_lock_flag = 0;
905
8ae12a0d
DB
906 /* register the device, then userspace will see it.
907 * registration fails if the bus ID is in use.
908 */
35f74fca 909 dev_set_name(&master->dev, "spi%u", master->bus_num);
49dce689 910 status = device_add(&master->dev);
b885244e 911 if (status < 0)
8ae12a0d 912 goto done;
35f74fca 913 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
8ae12a0d
DB
914 dynamic ? " (dynamic)" : "");
915
ffbbdd21
LW
916 /* If we're using a queued driver, start the queue */
917 if (master->transfer)
918 dev_info(dev, "master is unqueued, this is deprecated\n");
919 else {
920 status = spi_master_initialize_queue(master);
921 if (status) {
922 device_unregister(&master->dev);
923 goto done;
924 }
925 }
926
2b9603a0
FT
927 mutex_lock(&board_lock);
928 list_add_tail(&master->list, &spi_master_list);
929 list_for_each_entry(bi, &board_list, list)
930 spi_match_master_to_boardinfo(master, &bi->board_info);
931 mutex_unlock(&board_lock);
932
8ae12a0d 933 status = 0;
12b15e83
AG
934
935 /* Register devices from the device tree */
936 of_register_spi_devices(master);
8ae12a0d
DB
937done:
938 return status;
939}
940EXPORT_SYMBOL_GPL(spi_register_master);
941
34860089 942static int __unregister(struct device *dev, void *null)
8ae12a0d 943{
34860089 944 spi_unregister_device(to_spi_device(dev));
8ae12a0d
DB
945 return 0;
946}
947
948/**
949 * spi_unregister_master - unregister SPI master controller
950 * @master: the master being unregistered
33e34dc6 951 * Context: can sleep
8ae12a0d
DB
952 *
953 * This call is used only by SPI master controller drivers, which are the
954 * only ones directly touching chip registers.
955 *
956 * This must be called from context that can sleep.
957 */
958void spi_unregister_master(struct spi_master *master)
959{
89fc9a1a
JG
960 int dummy;
961
ffbbdd21
LW
962 if (master->queued) {
963 if (spi_destroy_queue(master))
964 dev_err(&master->dev, "queue remove failed\n");
965 }
966
2b9603a0
FT
967 mutex_lock(&board_lock);
968 list_del(&master->list);
969 mutex_unlock(&board_lock);
970
97dbf37d 971 dummy = device_for_each_child(&master->dev, NULL, __unregister);
49dce689 972 device_unregister(&master->dev);
8ae12a0d
DB
973}
974EXPORT_SYMBOL_GPL(spi_unregister_master);
975
ffbbdd21
LW
976int spi_master_suspend(struct spi_master *master)
977{
978 int ret;
979
980 /* Basically no-ops for non-queued masters */
981 if (!master->queued)
982 return 0;
983
984 ret = spi_stop_queue(master);
985 if (ret)
986 dev_err(&master->dev, "queue stop failed\n");
987
988 return ret;
989}
990EXPORT_SYMBOL_GPL(spi_master_suspend);
991
992int spi_master_resume(struct spi_master *master)
993{
994 int ret;
995
996 if (!master->queued)
997 return 0;
998
999 ret = spi_start_queue(master);
1000 if (ret)
1001 dev_err(&master->dev, "queue restart failed\n");
1002
1003 return ret;
1004}
1005EXPORT_SYMBOL_GPL(spi_master_resume);
1006
5ed2c832
DY
1007static int __spi_master_match(struct device *dev, void *data)
1008{
1009 struct spi_master *m;
1010 u16 *bus_num = data;
1011
1012 m = container_of(dev, struct spi_master, dev);
1013 return m->bus_num == *bus_num;
1014}
1015
8ae12a0d
DB
1016/**
1017 * spi_busnum_to_master - look up master associated with bus_num
1018 * @bus_num: the master's bus number
33e34dc6 1019 * Context: can sleep
8ae12a0d
DB
1020 *
1021 * This call may be used with devices that are registered after
1022 * arch init time. It returns a refcounted pointer to the relevant
1023 * spi_master (which the caller must release), or NULL if there is
1024 * no such master registered.
1025 */
1026struct spi_master *spi_busnum_to_master(u16 bus_num)
1027{
49dce689 1028 struct device *dev;
1e9a51dc 1029 struct spi_master *master = NULL;
5ed2c832 1030
695794ae 1031 dev = class_find_device(&spi_master_class, NULL, &bus_num,
5ed2c832
DY
1032 __spi_master_match);
1033 if (dev)
1034 master = container_of(dev, struct spi_master, dev);
1035 /* reference got in class_find_device */
1e9a51dc 1036 return master;
8ae12a0d
DB
1037}
1038EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1039
1040
1041/*-------------------------------------------------------------------------*/
1042
7d077197
DB
1043/* Core methods for SPI master protocol drivers. Some of the
1044 * other core methods are currently defined as inline functions.
1045 */
1046
1047/**
1048 * spi_setup - setup SPI mode and clock rate
1049 * @spi: the device whose settings are being modified
1050 * Context: can sleep, and no requests are queued to the device
1051 *
1052 * SPI protocol drivers may need to update the transfer mode if the
1053 * device doesn't work with its default. They may likewise need
1054 * to update clock rates or word sizes from initial values. This function
1055 * changes those settings, and must be called from a context that can sleep.
1056 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1057 * effect the next time the device is selected and data is transferred to
1058 * or from it. When this function returns, the spi device is deselected.
1059 *
1060 * Note that this call will fail if the protocol driver specifies an option
1061 * that the underlying controller or its driver does not support. For
1062 * example, not all hardware supports wire transfers using nine bit words,
1063 * LSB-first wire encoding, or active-high chipselects.
1064 */
1065int spi_setup(struct spi_device *spi)
1066{
e7db06b5 1067 unsigned bad_bits;
7d077197
DB
1068 int status;
1069
e7db06b5
DB
1070 /* help drivers fail *cleanly* when they need options
1071 * that aren't supported with their current master
1072 */
1073 bad_bits = spi->mode & ~spi->master->mode_bits;
1074 if (bad_bits) {
eb288a1f 1075 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
e7db06b5
DB
1076 bad_bits);
1077 return -EINVAL;
1078 }
1079
7d077197
DB
1080 if (!spi->bits_per_word)
1081 spi->bits_per_word = 8;
1082
1083 status = spi->master->setup(spi);
1084
1085 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
1086 "%u bits/w, %u Hz max --> %d\n",
1087 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1088 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1089 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1090 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
1091 (spi->mode & SPI_LOOP) ? "loopback, " : "",
1092 spi->bits_per_word, spi->max_speed_hz,
1093 status);
1094
1095 return status;
1096}
1097EXPORT_SYMBOL_GPL(spi_setup);
1098
cf32b71e
ES
1099static int __spi_async(struct spi_device *spi, struct spi_message *message)
1100{
1101 struct spi_master *master = spi->master;
1102
1103 /* Half-duplex links include original MicroWire, and ones with
1104 * only one data pin like SPI_3WIRE (switches direction) or where
1105 * either MOSI or MISO is missing. They can also be caused by
1106 * software limitations.
1107 */
1108 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1109 || (spi->mode & SPI_3WIRE)) {
1110 struct spi_transfer *xfer;
1111 unsigned flags = master->flags;
1112
1113 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1114 if (xfer->rx_buf && xfer->tx_buf)
1115 return -EINVAL;
1116 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1117 return -EINVAL;
1118 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1119 return -EINVAL;
1120 }
1121 }
1122
1123 message->spi = spi;
1124 message->status = -EINPROGRESS;
1125 return master->transfer(spi, message);
1126}
1127
568d0697
DB
1128/**
1129 * spi_async - asynchronous SPI transfer
1130 * @spi: device with which data will be exchanged
1131 * @message: describes the data transfers, including completion callback
1132 * Context: any (irqs may be blocked, etc)
1133 *
1134 * This call may be used in_irq and other contexts which can't sleep,
1135 * as well as from task contexts which can sleep.
1136 *
1137 * The completion callback is invoked in a context which can't sleep.
1138 * Before that invocation, the value of message->status is undefined.
1139 * When the callback is issued, message->status holds either zero (to
1140 * indicate complete success) or a negative error code. After that
1141 * callback returns, the driver which issued the transfer request may
1142 * deallocate the associated memory; it's no longer in use by any SPI
1143 * core or controller driver code.
1144 *
1145 * Note that although all messages to a spi_device are handled in
1146 * FIFO order, messages may go to different devices in other orders.
1147 * Some device might be higher priority, or have various "hard" access
1148 * time requirements, for example.
1149 *
1150 * On detection of any fault during the transfer, processing of
1151 * the entire message is aborted, and the device is deselected.
1152 * Until returning from the associated message completion callback,
1153 * no other spi_message queued to that device will be processed.
1154 * (This rule applies equally to all the synchronous transfer calls,
1155 * which are wrappers around this core asynchronous primitive.)
1156 */
1157int spi_async(struct spi_device *spi, struct spi_message *message)
1158{
1159 struct spi_master *master = spi->master;
cf32b71e
ES
1160 int ret;
1161 unsigned long flags;
568d0697 1162
cf32b71e 1163 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
568d0697 1164
cf32b71e
ES
1165 if (master->bus_lock_flag)
1166 ret = -EBUSY;
1167 else
1168 ret = __spi_async(spi, message);
568d0697 1169
cf32b71e
ES
1170 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1171
1172 return ret;
568d0697
DB
1173}
1174EXPORT_SYMBOL_GPL(spi_async);
1175
cf32b71e
ES
1176/**
1177 * spi_async_locked - version of spi_async with exclusive bus usage
1178 * @spi: device with which data will be exchanged
1179 * @message: describes the data transfers, including completion callback
1180 * Context: any (irqs may be blocked, etc)
1181 *
1182 * This call may be used in_irq and other contexts which can't sleep,
1183 * as well as from task contexts which can sleep.
1184 *
1185 * The completion callback is invoked in a context which can't sleep.
1186 * Before that invocation, the value of message->status is undefined.
1187 * When the callback is issued, message->status holds either zero (to
1188 * indicate complete success) or a negative error code. After that
1189 * callback returns, the driver which issued the transfer request may
1190 * deallocate the associated memory; it's no longer in use by any SPI
1191 * core or controller driver code.
1192 *
1193 * Note that although all messages to a spi_device are handled in
1194 * FIFO order, messages may go to different devices in other orders.
1195 * Some device might be higher priority, or have various "hard" access
1196 * time requirements, for example.
1197 *
1198 * On detection of any fault during the transfer, processing of
1199 * the entire message is aborted, and the device is deselected.
1200 * Until returning from the associated message completion callback,
1201 * no other spi_message queued to that device will be processed.
1202 * (This rule applies equally to all the synchronous transfer calls,
1203 * which are wrappers around this core asynchronous primitive.)
1204 */
1205int spi_async_locked(struct spi_device *spi, struct spi_message *message)
1206{
1207 struct spi_master *master = spi->master;
1208 int ret;
1209 unsigned long flags;
1210
1211 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1212
1213 ret = __spi_async(spi, message);
1214
1215 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1216
1217 return ret;
1218
1219}
1220EXPORT_SYMBOL_GPL(spi_async_locked);
1221
7d077197
DB
1222
1223/*-------------------------------------------------------------------------*/
1224
1225/* Utility methods for SPI master protocol drivers, layered on
1226 * top of the core. Some other utility methods are defined as
1227 * inline functions.
1228 */
1229
5d870c8e
AM
1230static void spi_complete(void *arg)
1231{
1232 complete(arg);
1233}
1234
cf32b71e
ES
1235static int __spi_sync(struct spi_device *spi, struct spi_message *message,
1236 int bus_locked)
1237{
1238 DECLARE_COMPLETION_ONSTACK(done);
1239 int status;
1240 struct spi_master *master = spi->master;
1241
1242 message->complete = spi_complete;
1243 message->context = &done;
1244
1245 if (!bus_locked)
1246 mutex_lock(&master->bus_lock_mutex);
1247
1248 status = spi_async_locked(spi, message);
1249
1250 if (!bus_locked)
1251 mutex_unlock(&master->bus_lock_mutex);
1252
1253 if (status == 0) {
1254 wait_for_completion(&done);
1255 status = message->status;
1256 }
1257 message->context = NULL;
1258 return status;
1259}
1260
8ae12a0d
DB
1261/**
1262 * spi_sync - blocking/synchronous SPI data transfers
1263 * @spi: device with which data will be exchanged
1264 * @message: describes the data transfers
33e34dc6 1265 * Context: can sleep
8ae12a0d
DB
1266 *
1267 * This call may only be used from a context that may sleep. The sleep
1268 * is non-interruptible, and has no timeout. Low-overhead controller
1269 * drivers may DMA directly into and out of the message buffers.
1270 *
1271 * Note that the SPI device's chip select is active during the message,
1272 * and then is normally disabled between messages. Drivers for some
1273 * frequently-used devices may want to minimize costs of selecting a chip,
1274 * by leaving it selected in anticipation that the next message will go
1275 * to the same chip. (That may increase power usage.)
1276 *
0c868461
DB
1277 * Also, the caller is guaranteeing that the memory associated with the
1278 * message will not be freed before this call returns.
1279 *
9b938b74 1280 * It returns zero on success, else a negative error code.
8ae12a0d
DB
1281 */
1282int spi_sync(struct spi_device *spi, struct spi_message *message)
1283{
cf32b71e 1284 return __spi_sync(spi, message, 0);
8ae12a0d
DB
1285}
1286EXPORT_SYMBOL_GPL(spi_sync);
1287
cf32b71e
ES
1288/**
1289 * spi_sync_locked - version of spi_sync with exclusive bus usage
1290 * @spi: device with which data will be exchanged
1291 * @message: describes the data transfers
1292 * Context: can sleep
1293 *
1294 * This call may only be used from a context that may sleep. The sleep
1295 * is non-interruptible, and has no timeout. Low-overhead controller
1296 * drivers may DMA directly into and out of the message buffers.
1297 *
1298 * This call should be used by drivers that require exclusive access to the
25985edc 1299 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
cf32b71e
ES
1300 * be released by a spi_bus_unlock call when the exclusive access is over.
1301 *
1302 * It returns zero on success, else a negative error code.
1303 */
1304int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
1305{
1306 return __spi_sync(spi, message, 1);
1307}
1308EXPORT_SYMBOL_GPL(spi_sync_locked);
1309
1310/**
1311 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
1312 * @master: SPI bus master that should be locked for exclusive bus access
1313 * Context: can sleep
1314 *
1315 * This call may only be used from a context that may sleep. The sleep
1316 * is non-interruptible, and has no timeout.
1317 *
1318 * This call should be used by drivers that require exclusive access to the
1319 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
1320 * exclusive access is over. Data transfer must be done by spi_sync_locked
1321 * and spi_async_locked calls when the SPI bus lock is held.
1322 *
1323 * It returns zero on success, else a negative error code.
1324 */
1325int spi_bus_lock(struct spi_master *master)
1326{
1327 unsigned long flags;
1328
1329 mutex_lock(&master->bus_lock_mutex);
1330
1331 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1332 master->bus_lock_flag = 1;
1333 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1334
1335 /* mutex remains locked until spi_bus_unlock is called */
1336
1337 return 0;
1338}
1339EXPORT_SYMBOL_GPL(spi_bus_lock);
1340
1341/**
1342 * spi_bus_unlock - release the lock for exclusive SPI bus usage
1343 * @master: SPI bus master that was locked for exclusive bus access
1344 * Context: can sleep
1345 *
1346 * This call may only be used from a context that may sleep. The sleep
1347 * is non-interruptible, and has no timeout.
1348 *
1349 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
1350 * call.
1351 *
1352 * It returns zero on success, else a negative error code.
1353 */
1354int spi_bus_unlock(struct spi_master *master)
1355{
1356 master->bus_lock_flag = 0;
1357
1358 mutex_unlock(&master->bus_lock_mutex);
1359
1360 return 0;
1361}
1362EXPORT_SYMBOL_GPL(spi_bus_unlock);
1363
a9948b61
DB
1364/* portable code must never pass more than 32 bytes */
1365#define SPI_BUFSIZ max(32,SMP_CACHE_BYTES)
8ae12a0d
DB
1366
1367static u8 *buf;
1368
1369/**
1370 * spi_write_then_read - SPI synchronous write followed by read
1371 * @spi: device with which data will be exchanged
1372 * @txbuf: data to be written (need not be dma-safe)
1373 * @n_tx: size of txbuf, in bytes
27570497
JP
1374 * @rxbuf: buffer into which data will be read (need not be dma-safe)
1375 * @n_rx: size of rxbuf, in bytes
33e34dc6 1376 * Context: can sleep
8ae12a0d
DB
1377 *
1378 * This performs a half duplex MicroWire style transaction with the
1379 * device, sending txbuf and then reading rxbuf. The return value
1380 * is zero for success, else a negative errno status code.
b885244e 1381 * This call may only be used from a context that may sleep.
8ae12a0d 1382 *
0c868461 1383 * Parameters to this routine are always copied using a small buffer;
33e34dc6
DB
1384 * portable code should never use this for more than 32 bytes.
1385 * Performance-sensitive or bulk transfer code should instead use
0c868461 1386 * spi_{async,sync}() calls with dma-safe buffers.
8ae12a0d
DB
1387 */
1388int spi_write_then_read(struct spi_device *spi,
0c4a1590
MB
1389 const void *txbuf, unsigned n_tx,
1390 void *rxbuf, unsigned n_rx)
8ae12a0d 1391{
068f4070 1392 static DEFINE_MUTEX(lock);
8ae12a0d
DB
1393
1394 int status;
1395 struct spi_message message;
bdff549e 1396 struct spi_transfer x[2];
8ae12a0d
DB
1397 u8 *local_buf;
1398
1399 /* Use preallocated DMA-safe buffer. We can't avoid copying here,
1400 * (as a pure convenience thing), but we can keep heap costs
1401 * out of the hot path ...
1402 */
1403 if ((n_tx + n_rx) > SPI_BUFSIZ)
1404 return -EINVAL;
1405
8275c642 1406 spi_message_init(&message);
bdff549e
DB
1407 memset(x, 0, sizeof x);
1408 if (n_tx) {
1409 x[0].len = n_tx;
1410 spi_message_add_tail(&x[0], &message);
1411 }
1412 if (n_rx) {
1413 x[1].len = n_rx;
1414 spi_message_add_tail(&x[1], &message);
1415 }
8275c642 1416
8ae12a0d 1417 /* ... unless someone else is using the pre-allocated buffer */
068f4070 1418 if (!mutex_trylock(&lock)) {
8ae12a0d
DB
1419 local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
1420 if (!local_buf)
1421 return -ENOMEM;
1422 } else
1423 local_buf = buf;
1424
8ae12a0d 1425 memcpy(local_buf, txbuf, n_tx);
bdff549e
DB
1426 x[0].tx_buf = local_buf;
1427 x[1].rx_buf = local_buf + n_tx;
8ae12a0d
DB
1428
1429 /* do the i/o */
8ae12a0d 1430 status = spi_sync(spi, &message);
9b938b74 1431 if (status == 0)
bdff549e 1432 memcpy(rxbuf, x[1].rx_buf, n_rx);
8ae12a0d 1433
bdff549e 1434 if (x[0].tx_buf == buf)
068f4070 1435 mutex_unlock(&lock);
8ae12a0d
DB
1436 else
1437 kfree(local_buf);
1438
1439 return status;
1440}
1441EXPORT_SYMBOL_GPL(spi_write_then_read);
1442
1443/*-------------------------------------------------------------------------*/
1444
1445static int __init spi_init(void)
1446{
b885244e
DB
1447 int status;
1448
e94b1766 1449 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
b885244e
DB
1450 if (!buf) {
1451 status = -ENOMEM;
1452 goto err0;
1453 }
1454
1455 status = bus_register(&spi_bus_type);
1456 if (status < 0)
1457 goto err1;
8ae12a0d 1458
b885244e
DB
1459 status = class_register(&spi_master_class);
1460 if (status < 0)
1461 goto err2;
8ae12a0d 1462 return 0;
b885244e
DB
1463
1464err2:
1465 bus_unregister(&spi_bus_type);
1466err1:
1467 kfree(buf);
1468 buf = NULL;
1469err0:
1470 return status;
8ae12a0d 1471}
b885244e 1472
8ae12a0d
DB
1473/* board_info is normally registered in arch_initcall(),
1474 * but even essential drivers wait till later
b885244e
DB
1475 *
1476 * REVISIT only boardinfo really needs static linking. the rest (device and
1477 * driver registration) _could_ be dynamically linked (modular) ... costs
1478 * include needing to have boardinfo data structures be much more public.
8ae12a0d 1479 */
673c0c00 1480postcore_initcall(spi_init);
8ae12a0d 1481
This page took 0.626344 seconds and 5 git commands to generate.