spi/s3c64xx: Split wait_for_xfer() into PIO and DMA versions
[deliverable/linux.git] / drivers / spi / spi.c
CommitLineData
8ae12a0d 1/*
ca632f55 2 * SPI init/core code
8ae12a0d
DB
3 *
4 * Copyright (C) 2005 David Brownell
d57a4282 5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
8ae12a0d
DB
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
8ae12a0d 22#include <linux/kernel.h>
d57a4282 23#include <linux/kmod.h>
8ae12a0d
DB
24#include <linux/device.h>
25#include <linux/init.h>
26#include <linux/cache.h>
99adef31
MB
27#include <linux/dma-mapping.h>
28#include <linux/dmaengine.h>
94040828 29#include <linux/mutex.h>
2b7a32f7 30#include <linux/of_device.h>
d57a4282 31#include <linux/of_irq.h>
5a0e3ad6 32#include <linux/slab.h>
e0626e38 33#include <linux/mod_devicetable.h>
8ae12a0d 34#include <linux/spi/spi.h>
74317984 35#include <linux/of_gpio.h>
3ae22e8c 36#include <linux/pm_runtime.h>
025ed130 37#include <linux/export.h>
8bd75c77 38#include <linux/sched/rt.h>
ffbbdd21
LW
39#include <linux/delay.h>
40#include <linux/kthread.h>
64bee4d2
MW
41#include <linux/ioport.h>
42#include <linux/acpi.h>
8ae12a0d 43
56ec1978
MB
44#define CREATE_TRACE_POINTS
45#include <trace/events/spi.h>
46
8ae12a0d
DB
47static void spidev_release(struct device *dev)
48{
0ffa0285 49 struct spi_device *spi = to_spi_device(dev);
8ae12a0d
DB
50
51 /* spi masters may cleanup for released devices */
52 if (spi->master->cleanup)
53 spi->master->cleanup(spi);
54
0c868461 55 spi_master_put(spi->master);
07a389fe 56 kfree(spi);
8ae12a0d
DB
57}
58
59static ssize_t
60modalias_show(struct device *dev, struct device_attribute *a, char *buf)
61{
62 const struct spi_device *spi = to_spi_device(dev);
8c4ff6d0
ZR
63 int len;
64
65 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
66 if (len != -ENODEV)
67 return len;
8ae12a0d 68
d8e328b3 69 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
8ae12a0d 70}
aa7da564 71static DEVICE_ATTR_RO(modalias);
8ae12a0d 72
aa7da564
GKH
73static struct attribute *spi_dev_attrs[] = {
74 &dev_attr_modalias.attr,
75 NULL,
8ae12a0d 76};
aa7da564 77ATTRIBUTE_GROUPS(spi_dev);
8ae12a0d
DB
78
79/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
80 * and the sysfs version makes coldplug work too.
81 */
82
75368bf6
AV
83static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
84 const struct spi_device *sdev)
85{
86 while (id->name[0]) {
87 if (!strcmp(sdev->modalias, id->name))
88 return id;
89 id++;
90 }
91 return NULL;
92}
93
94const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
95{
96 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
97
98 return spi_match_id(sdrv->id_table, sdev);
99}
100EXPORT_SYMBOL_GPL(spi_get_device_id);
101
8ae12a0d
DB
102static int spi_match_device(struct device *dev, struct device_driver *drv)
103{
104 const struct spi_device *spi = to_spi_device(dev);
75368bf6
AV
105 const struct spi_driver *sdrv = to_spi_driver(drv);
106
2b7a32f7
SA
107 /* Attempt an OF style match */
108 if (of_driver_match_device(dev, drv))
109 return 1;
110
64bee4d2
MW
111 /* Then try ACPI */
112 if (acpi_driver_match_device(dev, drv))
113 return 1;
114
75368bf6
AV
115 if (sdrv->id_table)
116 return !!spi_match_id(sdrv->id_table, spi);
8ae12a0d 117
35f74fca 118 return strcmp(spi->modalias, drv->name) == 0;
8ae12a0d
DB
119}
120
7eff2e7a 121static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
8ae12a0d
DB
122{
123 const struct spi_device *spi = to_spi_device(dev);
8c4ff6d0
ZR
124 int rc;
125
126 rc = acpi_device_uevent_modalias(dev, env);
127 if (rc != -ENODEV)
128 return rc;
8ae12a0d 129
e0626e38 130 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
8ae12a0d
DB
131 return 0;
132}
133
3ae22e8c
MB
134#ifdef CONFIG_PM_SLEEP
135static int spi_legacy_suspend(struct device *dev, pm_message_t message)
8ae12a0d 136{
3c72426f 137 int value = 0;
b885244e 138 struct spi_driver *drv = to_spi_driver(dev->driver);
8ae12a0d 139
8ae12a0d 140 /* suspend will stop irqs and dma; no more i/o */
3c72426f
DB
141 if (drv) {
142 if (drv->suspend)
143 value = drv->suspend(to_spi_device(dev), message);
144 else
145 dev_dbg(dev, "... can't suspend\n");
146 }
8ae12a0d
DB
147 return value;
148}
149
3ae22e8c 150static int spi_legacy_resume(struct device *dev)
8ae12a0d 151{
3c72426f 152 int value = 0;
b885244e 153 struct spi_driver *drv = to_spi_driver(dev->driver);
8ae12a0d 154
8ae12a0d 155 /* resume may restart the i/o queue */
3c72426f
DB
156 if (drv) {
157 if (drv->resume)
158 value = drv->resume(to_spi_device(dev));
159 else
160 dev_dbg(dev, "... can't resume\n");
161 }
8ae12a0d
DB
162 return value;
163}
164
3ae22e8c
MB
165static int spi_pm_suspend(struct device *dev)
166{
167 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
168
169 if (pm)
170 return pm_generic_suspend(dev);
171 else
172 return spi_legacy_suspend(dev, PMSG_SUSPEND);
173}
174
175static int spi_pm_resume(struct device *dev)
176{
177 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
178
179 if (pm)
180 return pm_generic_resume(dev);
181 else
182 return spi_legacy_resume(dev);
183}
184
185static int spi_pm_freeze(struct device *dev)
186{
187 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
188
189 if (pm)
190 return pm_generic_freeze(dev);
191 else
192 return spi_legacy_suspend(dev, PMSG_FREEZE);
193}
194
195static int spi_pm_thaw(struct device *dev)
196{
197 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
198
199 if (pm)
200 return pm_generic_thaw(dev);
201 else
202 return spi_legacy_resume(dev);
203}
204
205static int spi_pm_poweroff(struct device *dev)
206{
207 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
208
209 if (pm)
210 return pm_generic_poweroff(dev);
211 else
212 return spi_legacy_suspend(dev, PMSG_HIBERNATE);
213}
214
215static int spi_pm_restore(struct device *dev)
216{
217 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
218
219 if (pm)
220 return pm_generic_restore(dev);
221 else
222 return spi_legacy_resume(dev);
223}
8ae12a0d 224#else
3ae22e8c
MB
225#define spi_pm_suspend NULL
226#define spi_pm_resume NULL
227#define spi_pm_freeze NULL
228#define spi_pm_thaw NULL
229#define spi_pm_poweroff NULL
230#define spi_pm_restore NULL
8ae12a0d
DB
231#endif
232
3ae22e8c
MB
233static const struct dev_pm_ops spi_pm = {
234 .suspend = spi_pm_suspend,
235 .resume = spi_pm_resume,
236 .freeze = spi_pm_freeze,
237 .thaw = spi_pm_thaw,
238 .poweroff = spi_pm_poweroff,
239 .restore = spi_pm_restore,
240 SET_RUNTIME_PM_OPS(
241 pm_generic_runtime_suspend,
242 pm_generic_runtime_resume,
45f0a85c 243 NULL
3ae22e8c
MB
244 )
245};
246
8ae12a0d
DB
247struct bus_type spi_bus_type = {
248 .name = "spi",
aa7da564 249 .dev_groups = spi_dev_groups,
8ae12a0d
DB
250 .match = spi_match_device,
251 .uevent = spi_uevent,
3ae22e8c 252 .pm = &spi_pm,
8ae12a0d
DB
253};
254EXPORT_SYMBOL_GPL(spi_bus_type);
255
b885244e
DB
256
257static int spi_drv_probe(struct device *dev)
258{
259 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
33cf00e5
MW
260 struct spi_device *spi = to_spi_device(dev);
261 int ret;
262
263 acpi_dev_pm_attach(&spi->dev, true);
264 ret = sdrv->probe(spi);
265 if (ret)
266 acpi_dev_pm_detach(&spi->dev, true);
b885244e 267
33cf00e5 268 return ret;
b885244e
DB
269}
270
271static int spi_drv_remove(struct device *dev)
272{
273 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
33cf00e5
MW
274 struct spi_device *spi = to_spi_device(dev);
275 int ret;
276
277 ret = sdrv->remove(spi);
278 acpi_dev_pm_detach(&spi->dev, true);
b885244e 279
33cf00e5 280 return ret;
b885244e
DB
281}
282
283static void spi_drv_shutdown(struct device *dev)
284{
285 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
286
287 sdrv->shutdown(to_spi_device(dev));
288}
289
33e34dc6
DB
290/**
291 * spi_register_driver - register a SPI driver
292 * @sdrv: the driver to register
293 * Context: can sleep
294 */
b885244e
DB
295int spi_register_driver(struct spi_driver *sdrv)
296{
297 sdrv->driver.bus = &spi_bus_type;
298 if (sdrv->probe)
299 sdrv->driver.probe = spi_drv_probe;
300 if (sdrv->remove)
301 sdrv->driver.remove = spi_drv_remove;
302 if (sdrv->shutdown)
303 sdrv->driver.shutdown = spi_drv_shutdown;
304 return driver_register(&sdrv->driver);
305}
306EXPORT_SYMBOL_GPL(spi_register_driver);
307
8ae12a0d
DB
308/*-------------------------------------------------------------------------*/
309
310/* SPI devices should normally not be created by SPI device drivers; that
311 * would make them board-specific. Similarly with SPI master drivers.
312 * Device registration normally goes into like arch/.../mach.../board-YYY.c
313 * with other readonly (flashable) information about mainboard devices.
314 */
315
316struct boardinfo {
317 struct list_head list;
2b9603a0 318 struct spi_board_info board_info;
8ae12a0d
DB
319};
320
321static LIST_HEAD(board_list);
2b9603a0
FT
322static LIST_HEAD(spi_master_list);
323
324/*
325 * Used to protect add/del opertion for board_info list and
326 * spi_master list, and their matching process
327 */
94040828 328static DEFINE_MUTEX(board_lock);
8ae12a0d 329
dc87c98e
GL
330/**
331 * spi_alloc_device - Allocate a new SPI device
332 * @master: Controller to which device is connected
333 * Context: can sleep
334 *
335 * Allows a driver to allocate and initialize a spi_device without
336 * registering it immediately. This allows a driver to directly
337 * fill the spi_device with device parameters before calling
338 * spi_add_device() on it.
339 *
340 * Caller is responsible to call spi_add_device() on the returned
341 * spi_device structure to add it to the SPI master. If the caller
342 * needs to discard the spi_device without adding it, then it should
343 * call spi_dev_put() on it.
344 *
345 * Returns a pointer to the new device, or NULL.
346 */
347struct spi_device *spi_alloc_device(struct spi_master *master)
348{
349 struct spi_device *spi;
350 struct device *dev = master->dev.parent;
351
352 if (!spi_master_get(master))
353 return NULL;
354
5fe5f05e 355 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
dc87c98e
GL
356 if (!spi) {
357 dev_err(dev, "cannot alloc spi_device\n");
358 spi_master_put(master);
359 return NULL;
360 }
361
362 spi->master = master;
178db7d3 363 spi->dev.parent = &master->dev;
dc87c98e
GL
364 spi->dev.bus = &spi_bus_type;
365 spi->dev.release = spidev_release;
446411e1 366 spi->cs_gpio = -ENOENT;
dc87c98e
GL
367 device_initialize(&spi->dev);
368 return spi;
369}
370EXPORT_SYMBOL_GPL(spi_alloc_device);
371
e13ac47b
JN
372static void spi_dev_set_name(struct spi_device *spi)
373{
374 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
375
376 if (adev) {
377 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
378 return;
379 }
380
381 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
382 spi->chip_select);
383}
384
b6fb8d3a
MW
385static int spi_dev_check(struct device *dev, void *data)
386{
387 struct spi_device *spi = to_spi_device(dev);
388 struct spi_device *new_spi = data;
389
390 if (spi->master == new_spi->master &&
391 spi->chip_select == new_spi->chip_select)
392 return -EBUSY;
393 return 0;
394}
395
dc87c98e
GL
396/**
397 * spi_add_device - Add spi_device allocated with spi_alloc_device
398 * @spi: spi_device to register
399 *
400 * Companion function to spi_alloc_device. Devices allocated with
401 * spi_alloc_device can be added onto the spi bus with this function.
402 *
e48880e0 403 * Returns 0 on success; negative errno on failure
dc87c98e
GL
404 */
405int spi_add_device(struct spi_device *spi)
406{
e48880e0 407 static DEFINE_MUTEX(spi_add_lock);
74317984
JCPV
408 struct spi_master *master = spi->master;
409 struct device *dev = master->dev.parent;
dc87c98e
GL
410 int status;
411
412 /* Chipselects are numbered 0..max; validate. */
74317984 413 if (spi->chip_select >= master->num_chipselect) {
dc87c98e
GL
414 dev_err(dev, "cs%d >= max %d\n",
415 spi->chip_select,
74317984 416 master->num_chipselect);
dc87c98e
GL
417 return -EINVAL;
418 }
419
420 /* Set the bus ID string */
e13ac47b 421 spi_dev_set_name(spi);
e48880e0
DB
422
423 /* We need to make sure there's no other device with this
424 * chipselect **BEFORE** we call setup(), else we'll trash
425 * its configuration. Lock against concurrent add() calls.
426 */
427 mutex_lock(&spi_add_lock);
428
b6fb8d3a
MW
429 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
430 if (status) {
e48880e0
DB
431 dev_err(dev, "chipselect %d already in use\n",
432 spi->chip_select);
e48880e0
DB
433 goto done;
434 }
435
74317984
JCPV
436 if (master->cs_gpios)
437 spi->cs_gpio = master->cs_gpios[spi->chip_select];
438
e48880e0
DB
439 /* Drivers may modify this initial i/o setup, but will
440 * normally rely on the device being setup. Devices
441 * using SPI_CS_HIGH can't coexist well otherwise...
442 */
7d077197 443 status = spi_setup(spi);
dc87c98e 444 if (status < 0) {
eb288a1f
LW
445 dev_err(dev, "can't setup %s, status %d\n",
446 dev_name(&spi->dev), status);
e48880e0 447 goto done;
dc87c98e
GL
448 }
449
e48880e0 450 /* Device may be bound to an active driver when this returns */
dc87c98e 451 status = device_add(&spi->dev);
e48880e0 452 if (status < 0)
eb288a1f
LW
453 dev_err(dev, "can't add %s, status %d\n",
454 dev_name(&spi->dev), status);
e48880e0 455 else
35f74fca 456 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
dc87c98e 457
e48880e0
DB
458done:
459 mutex_unlock(&spi_add_lock);
460 return status;
dc87c98e
GL
461}
462EXPORT_SYMBOL_GPL(spi_add_device);
8ae12a0d 463
33e34dc6
DB
464/**
465 * spi_new_device - instantiate one new SPI device
466 * @master: Controller to which device is connected
467 * @chip: Describes the SPI device
468 * Context: can sleep
469 *
470 * On typical mainboards, this is purely internal; and it's not needed
8ae12a0d
DB
471 * after board init creates the hard-wired devices. Some development
472 * platforms may not be able to use spi_register_board_info though, and
473 * this is exported so that for example a USB or parport based adapter
474 * driver could add devices (which it would learn about out-of-band).
082c8cb4
DB
475 *
476 * Returns the new device, or NULL.
8ae12a0d 477 */
e9d5a461
AB
478struct spi_device *spi_new_device(struct spi_master *master,
479 struct spi_board_info *chip)
8ae12a0d
DB
480{
481 struct spi_device *proxy;
8ae12a0d
DB
482 int status;
483
082c8cb4
DB
484 /* NOTE: caller did any chip->bus_num checks necessary.
485 *
486 * Also, unless we change the return value convention to use
487 * error-or-pointer (not NULL-or-pointer), troubleshootability
488 * suggests syslogged diagnostics are best here (ugh).
489 */
490
dc87c98e
GL
491 proxy = spi_alloc_device(master);
492 if (!proxy)
8ae12a0d
DB
493 return NULL;
494
102eb975
GL
495 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
496
8ae12a0d
DB
497 proxy->chip_select = chip->chip_select;
498 proxy->max_speed_hz = chip->max_speed_hz;
980a01c9 499 proxy->mode = chip->mode;
8ae12a0d 500 proxy->irq = chip->irq;
102eb975 501 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
8ae12a0d
DB
502 proxy->dev.platform_data = (void *) chip->platform_data;
503 proxy->controller_data = chip->controller_data;
504 proxy->controller_state = NULL;
8ae12a0d 505
dc87c98e 506 status = spi_add_device(proxy);
8ae12a0d 507 if (status < 0) {
dc87c98e
GL
508 spi_dev_put(proxy);
509 return NULL;
8ae12a0d
DB
510 }
511
8ae12a0d
DB
512 return proxy;
513}
514EXPORT_SYMBOL_GPL(spi_new_device);
515
2b9603a0
FT
516static void spi_match_master_to_boardinfo(struct spi_master *master,
517 struct spi_board_info *bi)
518{
519 struct spi_device *dev;
520
521 if (master->bus_num != bi->bus_num)
522 return;
523
524 dev = spi_new_device(master, bi);
525 if (!dev)
526 dev_err(master->dev.parent, "can't create new device for %s\n",
527 bi->modalias);
528}
529
33e34dc6
DB
530/**
531 * spi_register_board_info - register SPI devices for a given board
532 * @info: array of chip descriptors
533 * @n: how many descriptors are provided
534 * Context: can sleep
535 *
8ae12a0d
DB
536 * Board-specific early init code calls this (probably during arch_initcall)
537 * with segments of the SPI device table. Any device nodes are created later,
538 * after the relevant parent SPI controller (bus_num) is defined. We keep
539 * this table of devices forever, so that reloading a controller driver will
540 * not make Linux forget about these hard-wired devices.
541 *
542 * Other code can also call this, e.g. a particular add-on board might provide
543 * SPI devices through its expansion connector, so code initializing that board
544 * would naturally declare its SPI devices.
545 *
546 * The board info passed can safely be __initdata ... but be careful of
547 * any embedded pointers (platform_data, etc), they're copied as-is.
548 */
fd4a319b 549int spi_register_board_info(struct spi_board_info const *info, unsigned n)
8ae12a0d 550{
2b9603a0
FT
551 struct boardinfo *bi;
552 int i;
8ae12a0d 553
2b9603a0 554 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
8ae12a0d
DB
555 if (!bi)
556 return -ENOMEM;
8ae12a0d 557
2b9603a0
FT
558 for (i = 0; i < n; i++, bi++, info++) {
559 struct spi_master *master;
8ae12a0d 560
2b9603a0
FT
561 memcpy(&bi->board_info, info, sizeof(*info));
562 mutex_lock(&board_lock);
563 list_add_tail(&bi->list, &board_list);
564 list_for_each_entry(master, &spi_master_list, list)
565 spi_match_master_to_boardinfo(master, &bi->board_info);
566 mutex_unlock(&board_lock);
8ae12a0d 567 }
2b9603a0
FT
568
569 return 0;
8ae12a0d
DB
570}
571
572/*-------------------------------------------------------------------------*/
573
b158935f
MB
574static void spi_set_cs(struct spi_device *spi, bool enable)
575{
576 if (spi->mode & SPI_CS_HIGH)
577 enable = !enable;
578
579 if (spi->cs_gpio >= 0)
580 gpio_set_value(spi->cs_gpio, !enable);
581 else if (spi->master->set_cs)
582 spi->master->set_cs(spi, !enable);
583}
584
99adef31
MB
585static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
586{
587 struct device *dev = master->dev.parent;
588 struct device *tx_dev, *rx_dev;
589 struct spi_transfer *xfer;
590
591 if (msg->is_dma_mapped || !master->can_dma)
592 return 0;
593
594 tx_dev = &master->dma_tx->dev->device;
595 rx_dev = &master->dma_rx->dev->device;
596
597 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
598 if (!master->can_dma(master, msg->spi, xfer))
599 continue;
600
601 if (xfer->tx_buf != NULL) {
602 xfer->tx_dma = dma_map_single(tx_dev,
603 (void *)xfer->tx_buf,
604 xfer->len,
605 DMA_TO_DEVICE);
606 if (dma_mapping_error(dev, xfer->tx_dma)) {
607 dev_err(dev, "dma_map_single Tx failed\n");
608 return -ENOMEM;
609 }
610 }
611
612 if (xfer->rx_buf != NULL) {
613 xfer->rx_dma = dma_map_single(rx_dev,
614 xfer->rx_buf, xfer->len,
615 DMA_FROM_DEVICE);
616 if (dma_mapping_error(dev, xfer->rx_dma)) {
617 dev_err(dev, "dma_map_single Rx failed\n");
618 dma_unmap_single(tx_dev, xfer->tx_dma,
619 xfer->len, DMA_TO_DEVICE);
620 return -ENOMEM;
621 }
622 }
623 }
624
625 master->cur_msg_mapped = true;
626
627 return 0;
628}
629
630static int spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
631{
632 struct spi_transfer *xfer;
633 struct device *tx_dev, *rx_dev;
634
635 if (!master->cur_msg_mapped || msg->is_dma_mapped || !master->can_dma)
636 return 0;
637
638 tx_dev = &master->dma_tx->dev->device;
639 rx_dev = &master->dma_rx->dev->device;
640
641 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
642 if (!master->can_dma(master, msg->spi, xfer))
643 continue;
644
645 if (xfer->rx_buf)
646 dma_unmap_single(rx_dev, xfer->rx_dma, xfer->len,
647 DMA_FROM_DEVICE);
648 if (xfer->tx_buf)
649 dma_unmap_single(tx_dev, xfer->tx_dma, xfer->len,
650 DMA_TO_DEVICE);
651 }
652
653 return 0;
654}
655
b158935f
MB
656/*
657 * spi_transfer_one_message - Default implementation of transfer_one_message()
658 *
659 * This is a standard implementation of transfer_one_message() for
660 * drivers which impelment a transfer_one() operation. It provides
661 * standard handling of delays and chip select management.
662 */
663static int spi_transfer_one_message(struct spi_master *master,
664 struct spi_message *msg)
665{
666 struct spi_transfer *xfer;
667 bool cur_cs = true;
668 bool keep_cs = false;
669 int ret = 0;
670
671 spi_set_cs(msg->spi, true);
672
673 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
674 trace_spi_transfer_start(msg, xfer);
675
16735d02 676 reinit_completion(&master->xfer_completion);
b158935f
MB
677
678 ret = master->transfer_one(master, msg->spi, xfer);
679 if (ret < 0) {
680 dev_err(&msg->spi->dev,
681 "SPI transfer failed: %d\n", ret);
682 goto out;
683 }
684
13a42798
AL
685 if (ret > 0) {
686 ret = 0;
b158935f 687 wait_for_completion(&master->xfer_completion);
13a42798 688 }
b158935f
MB
689
690 trace_spi_transfer_stop(msg, xfer);
691
692 if (msg->status != -EINPROGRESS)
693 goto out;
694
695 if (xfer->delay_usecs)
696 udelay(xfer->delay_usecs);
697
698 if (xfer->cs_change) {
699 if (list_is_last(&xfer->transfer_list,
700 &msg->transfers)) {
701 keep_cs = true;
702 } else {
703 cur_cs = !cur_cs;
704 spi_set_cs(msg->spi, cur_cs);
705 }
706 }
707
708 msg->actual_length += xfer->len;
709 }
710
711out:
712 if (ret != 0 || !keep_cs)
713 spi_set_cs(msg->spi, false);
714
715 if (msg->status == -EINPROGRESS)
716 msg->status = ret;
717
718 spi_finalize_current_message(master);
719
720 return ret;
721}
722
723/**
724 * spi_finalize_current_transfer - report completion of a transfer
725 *
726 * Called by SPI drivers using the core transfer_one_message()
727 * implementation to notify it that the current interrupt driven
9e8f4882 728 * transfer has finished and the next one may be scheduled.
b158935f
MB
729 */
730void spi_finalize_current_transfer(struct spi_master *master)
731{
732 complete(&master->xfer_completion);
733}
734EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
735
ffbbdd21
LW
736/**
737 * spi_pump_messages - kthread work function which processes spi message queue
738 * @work: pointer to kthread work struct contained in the master struct
739 *
740 * This function checks if there is any spi message in the queue that
741 * needs processing and if so call out to the driver to initialize hardware
742 * and transfer each message.
743 *
744 */
745static void spi_pump_messages(struct kthread_work *work)
746{
747 struct spi_master *master =
748 container_of(work, struct spi_master, pump_messages);
749 unsigned long flags;
750 bool was_busy = false;
751 int ret;
752
753 /* Lock queue and check for queue work */
754 spin_lock_irqsave(&master->queue_lock, flags);
755 if (list_empty(&master->queue) || !master->running) {
b0b36b86
BF
756 if (!master->busy) {
757 spin_unlock_irqrestore(&master->queue_lock, flags);
758 return;
ffbbdd21
LW
759 }
760 master->busy = false;
761 spin_unlock_irqrestore(&master->queue_lock, flags);
b0b36b86
BF
762 if (master->unprepare_transfer_hardware &&
763 master->unprepare_transfer_hardware(master))
764 dev_err(&master->dev,
765 "failed to unprepare transfer hardware\n");
49834de2
MB
766 if (master->auto_runtime_pm) {
767 pm_runtime_mark_last_busy(master->dev.parent);
768 pm_runtime_put_autosuspend(master->dev.parent);
769 }
56ec1978 770 trace_spi_master_idle(master);
ffbbdd21
LW
771 return;
772 }
773
774 /* Make sure we are not already running a message */
775 if (master->cur_msg) {
776 spin_unlock_irqrestore(&master->queue_lock, flags);
777 return;
778 }
779 /* Extract head of queue */
780 master->cur_msg =
a89e2d27 781 list_first_entry(&master->queue, struct spi_message, queue);
ffbbdd21
LW
782
783 list_del_init(&master->cur_msg->queue);
784 if (master->busy)
785 was_busy = true;
786 else
787 master->busy = true;
788 spin_unlock_irqrestore(&master->queue_lock, flags);
789
49834de2
MB
790 if (!was_busy && master->auto_runtime_pm) {
791 ret = pm_runtime_get_sync(master->dev.parent);
792 if (ret < 0) {
793 dev_err(&master->dev, "Failed to power device: %d\n",
794 ret);
795 return;
796 }
797 }
798
56ec1978
MB
799 if (!was_busy)
800 trace_spi_master_busy(master);
801
7dfd2bd7 802 if (!was_busy && master->prepare_transfer_hardware) {
ffbbdd21
LW
803 ret = master->prepare_transfer_hardware(master);
804 if (ret) {
805 dev_err(&master->dev,
806 "failed to prepare transfer hardware\n");
49834de2
MB
807
808 if (master->auto_runtime_pm)
809 pm_runtime_put(master->dev.parent);
ffbbdd21
LW
810 return;
811 }
812 }
813
56ec1978
MB
814 trace_spi_message_start(master->cur_msg);
815
2841a5fc
MB
816 if (master->prepare_message) {
817 ret = master->prepare_message(master, master->cur_msg);
818 if (ret) {
819 dev_err(&master->dev,
820 "failed to prepare message: %d\n", ret);
821 master->cur_msg->status = ret;
822 spi_finalize_current_message(master);
823 return;
824 }
825 master->cur_msg_prepared = true;
826 }
827
99adef31
MB
828 ret = spi_map_msg(master, master->cur_msg);
829 if (ret) {
830 master->cur_msg->status = ret;
831 spi_finalize_current_message(master);
832 return;
833 }
834
ffbbdd21
LW
835 ret = master->transfer_one_message(master, master->cur_msg);
836 if (ret) {
837 dev_err(&master->dev,
e120cc0d
DS
838 "failed to transfer one message from queue: %d\n", ret);
839 master->cur_msg->status = ret;
840 spi_finalize_current_message(master);
ffbbdd21
LW
841 return;
842 }
843}
844
845static int spi_init_queue(struct spi_master *master)
846{
847 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
848
849 INIT_LIST_HEAD(&master->queue);
850 spin_lock_init(&master->queue_lock);
851
852 master->running = false;
853 master->busy = false;
854
855 init_kthread_worker(&master->kworker);
856 master->kworker_task = kthread_run(kthread_worker_fn,
f170168b 857 &master->kworker, "%s",
ffbbdd21
LW
858 dev_name(&master->dev));
859 if (IS_ERR(master->kworker_task)) {
860 dev_err(&master->dev, "failed to create message pump task\n");
861 return -ENOMEM;
862 }
863 init_kthread_work(&master->pump_messages, spi_pump_messages);
864
865 /*
866 * Master config will indicate if this controller should run the
867 * message pump with high (realtime) priority to reduce the transfer
868 * latency on the bus by minimising the delay between a transfer
869 * request and the scheduling of the message pump thread. Without this
870 * setting the message pump thread will remain at default priority.
871 */
872 if (master->rt) {
873 dev_info(&master->dev,
874 "will run message pump with realtime priority\n");
875 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
876 }
877
878 return 0;
879}
880
881/**
882 * spi_get_next_queued_message() - called by driver to check for queued
883 * messages
884 * @master: the master to check for queued messages
885 *
886 * If there are more messages in the queue, the next message is returned from
887 * this call.
888 */
889struct spi_message *spi_get_next_queued_message(struct spi_master *master)
890{
891 struct spi_message *next;
892 unsigned long flags;
893
894 /* get a pointer to the next message, if any */
895 spin_lock_irqsave(&master->queue_lock, flags);
1cfd97f9
AL
896 next = list_first_entry_or_null(&master->queue, struct spi_message,
897 queue);
ffbbdd21
LW
898 spin_unlock_irqrestore(&master->queue_lock, flags);
899
900 return next;
901}
902EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
903
904/**
905 * spi_finalize_current_message() - the current message is complete
906 * @master: the master to return the message to
907 *
908 * Called by the driver to notify the core that the message in the front of the
909 * queue is complete and can be removed from the queue.
910 */
911void spi_finalize_current_message(struct spi_master *master)
912{
913 struct spi_message *mesg;
914 unsigned long flags;
2841a5fc 915 int ret;
ffbbdd21
LW
916
917 spin_lock_irqsave(&master->queue_lock, flags);
918 mesg = master->cur_msg;
919 master->cur_msg = NULL;
920
921 queue_kthread_work(&master->kworker, &master->pump_messages);
922 spin_unlock_irqrestore(&master->queue_lock, flags);
923
99adef31
MB
924 spi_unmap_msg(master, mesg);
925
2841a5fc
MB
926 if (master->cur_msg_prepared && master->unprepare_message) {
927 ret = master->unprepare_message(master, mesg);
928 if (ret) {
929 dev_err(&master->dev,
930 "failed to unprepare message: %d\n", ret);
931 }
932 }
933 master->cur_msg_prepared = false;
934
ffbbdd21
LW
935 mesg->state = NULL;
936 if (mesg->complete)
937 mesg->complete(mesg->context);
56ec1978
MB
938
939 trace_spi_message_done(mesg);
ffbbdd21
LW
940}
941EXPORT_SYMBOL_GPL(spi_finalize_current_message);
942
943static int spi_start_queue(struct spi_master *master)
944{
945 unsigned long flags;
946
947 spin_lock_irqsave(&master->queue_lock, flags);
948
949 if (master->running || master->busy) {
950 spin_unlock_irqrestore(&master->queue_lock, flags);
951 return -EBUSY;
952 }
953
954 master->running = true;
955 master->cur_msg = NULL;
956 spin_unlock_irqrestore(&master->queue_lock, flags);
957
958 queue_kthread_work(&master->kworker, &master->pump_messages);
959
960 return 0;
961}
962
963static int spi_stop_queue(struct spi_master *master)
964{
965 unsigned long flags;
966 unsigned limit = 500;
967 int ret = 0;
968
969 spin_lock_irqsave(&master->queue_lock, flags);
970
971 /*
972 * This is a bit lame, but is optimized for the common execution path.
973 * A wait_queue on the master->busy could be used, but then the common
974 * execution path (pump_messages) would be required to call wake_up or
975 * friends on every SPI message. Do this instead.
976 */
977 while ((!list_empty(&master->queue) || master->busy) && limit--) {
978 spin_unlock_irqrestore(&master->queue_lock, flags);
979 msleep(10);
980 spin_lock_irqsave(&master->queue_lock, flags);
981 }
982
983 if (!list_empty(&master->queue) || master->busy)
984 ret = -EBUSY;
985 else
986 master->running = false;
987
988 spin_unlock_irqrestore(&master->queue_lock, flags);
989
990 if (ret) {
991 dev_warn(&master->dev,
992 "could not stop message queue\n");
993 return ret;
994 }
995 return ret;
996}
997
998static int spi_destroy_queue(struct spi_master *master)
999{
1000 int ret;
1001
1002 ret = spi_stop_queue(master);
1003
1004 /*
1005 * flush_kthread_worker will block until all work is done.
1006 * If the reason that stop_queue timed out is that the work will never
1007 * finish, then it does no good to call flush/stop thread, so
1008 * return anyway.
1009 */
1010 if (ret) {
1011 dev_err(&master->dev, "problem destroying queue\n");
1012 return ret;
1013 }
1014
1015 flush_kthread_worker(&master->kworker);
1016 kthread_stop(master->kworker_task);
1017
1018 return 0;
1019}
1020
1021/**
1022 * spi_queued_transfer - transfer function for queued transfers
1023 * @spi: spi device which is requesting transfer
1024 * @msg: spi message which is to handled is queued to driver queue
1025 */
1026static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1027{
1028 struct spi_master *master = spi->master;
1029 unsigned long flags;
1030
1031 spin_lock_irqsave(&master->queue_lock, flags);
1032
1033 if (!master->running) {
1034 spin_unlock_irqrestore(&master->queue_lock, flags);
1035 return -ESHUTDOWN;
1036 }
1037 msg->actual_length = 0;
1038 msg->status = -EINPROGRESS;
1039
1040 list_add_tail(&msg->queue, &master->queue);
96b3eace 1041 if (!master->busy)
ffbbdd21
LW
1042 queue_kthread_work(&master->kworker, &master->pump_messages);
1043
1044 spin_unlock_irqrestore(&master->queue_lock, flags);
1045 return 0;
1046}
1047
1048static int spi_master_initialize_queue(struct spi_master *master)
1049{
1050 int ret;
1051
1052 master->queued = true;
1053 master->transfer = spi_queued_transfer;
b158935f
MB
1054 if (!master->transfer_one_message)
1055 master->transfer_one_message = spi_transfer_one_message;
ffbbdd21
LW
1056
1057 /* Initialize and start queue */
1058 ret = spi_init_queue(master);
1059 if (ret) {
1060 dev_err(&master->dev, "problem initializing queue\n");
1061 goto err_init_queue;
1062 }
1063 ret = spi_start_queue(master);
1064 if (ret) {
1065 dev_err(&master->dev, "problem starting queue\n");
1066 goto err_start_queue;
1067 }
1068
1069 return 0;
1070
1071err_start_queue:
1072err_init_queue:
1073 spi_destroy_queue(master);
1074 return ret;
1075}
1076
1077/*-------------------------------------------------------------------------*/
1078
7cb94361 1079#if defined(CONFIG_OF)
d57a4282
GL
1080/**
1081 * of_register_spi_devices() - Register child devices onto the SPI bus
1082 * @master: Pointer to spi_master device
1083 *
1084 * Registers an spi_device for each child node of master node which has a 'reg'
1085 * property.
1086 */
1087static void of_register_spi_devices(struct spi_master *master)
1088{
1089 struct spi_device *spi;
1090 struct device_node *nc;
d57a4282 1091 int rc;
89da4293 1092 u32 value;
d57a4282
GL
1093
1094 if (!master->dev.of_node)
1095 return;
1096
f3b6159e 1097 for_each_available_child_of_node(master->dev.of_node, nc) {
d57a4282
GL
1098 /* Alloc an spi_device */
1099 spi = spi_alloc_device(master);
1100 if (!spi) {
1101 dev_err(&master->dev, "spi_device alloc error for %s\n",
1102 nc->full_name);
1103 spi_dev_put(spi);
1104 continue;
1105 }
1106
1107 /* Select device driver */
1108 if (of_modalias_node(nc, spi->modalias,
1109 sizeof(spi->modalias)) < 0) {
1110 dev_err(&master->dev, "cannot find modalias for %s\n",
1111 nc->full_name);
1112 spi_dev_put(spi);
1113 continue;
1114 }
1115
1116 /* Device address */
89da4293
TP
1117 rc = of_property_read_u32(nc, "reg", &value);
1118 if (rc) {
1119 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1120 nc->full_name, rc);
d57a4282
GL
1121 spi_dev_put(spi);
1122 continue;
1123 }
89da4293 1124 spi->chip_select = value;
d57a4282
GL
1125
1126 /* Mode (clock phase/polarity/etc.) */
1127 if (of_find_property(nc, "spi-cpha", NULL))
1128 spi->mode |= SPI_CPHA;
1129 if (of_find_property(nc, "spi-cpol", NULL))
1130 spi->mode |= SPI_CPOL;
1131 if (of_find_property(nc, "spi-cs-high", NULL))
1132 spi->mode |= SPI_CS_HIGH;
c20151df
LPC
1133 if (of_find_property(nc, "spi-3wire", NULL))
1134 spi->mode |= SPI_3WIRE;
d57a4282 1135
f477b7fb 1136 /* Device DUAL/QUAD mode */
89da4293
TP
1137 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1138 switch (value) {
1139 case 1:
a822e99c 1140 break;
89da4293 1141 case 2:
a822e99c
MB
1142 spi->mode |= SPI_TX_DUAL;
1143 break;
89da4293 1144 case 4:
a822e99c
MB
1145 spi->mode |= SPI_TX_QUAD;
1146 break;
1147 default:
1148 dev_err(&master->dev,
a110f93d 1149 "spi-tx-bus-width %d not supported\n",
89da4293 1150 value);
a822e99c
MB
1151 spi_dev_put(spi);
1152 continue;
1153 }
f477b7fb 1154 }
1155
89da4293
TP
1156 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1157 switch (value) {
1158 case 1:
a822e99c 1159 break;
89da4293 1160 case 2:
a822e99c
MB
1161 spi->mode |= SPI_RX_DUAL;
1162 break;
89da4293 1163 case 4:
a822e99c
MB
1164 spi->mode |= SPI_RX_QUAD;
1165 break;
1166 default:
1167 dev_err(&master->dev,
a110f93d 1168 "spi-rx-bus-width %d not supported\n",
89da4293 1169 value);
a822e99c
MB
1170 spi_dev_put(spi);
1171 continue;
1172 }
f477b7fb 1173 }
1174
d57a4282 1175 /* Device speed */
89da4293
TP
1176 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1177 if (rc) {
1178 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1179 nc->full_name, rc);
d57a4282
GL
1180 spi_dev_put(spi);
1181 continue;
1182 }
89da4293 1183 spi->max_speed_hz = value;
d57a4282
GL
1184
1185 /* IRQ */
1186 spi->irq = irq_of_parse_and_map(nc, 0);
1187
1188 /* Store a pointer to the node in the device structure */
1189 of_node_get(nc);
1190 spi->dev.of_node = nc;
1191
1192 /* Register the new device */
70fac17c 1193 request_module("%s%s", SPI_MODULE_PREFIX, spi->modalias);
d57a4282
GL
1194 rc = spi_add_device(spi);
1195 if (rc) {
1196 dev_err(&master->dev, "spi_device register error %s\n",
1197 nc->full_name);
1198 spi_dev_put(spi);
1199 }
1200
1201 }
1202}
1203#else
1204static void of_register_spi_devices(struct spi_master *master) { }
1205#endif
1206
64bee4d2
MW
1207#ifdef CONFIG_ACPI
1208static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1209{
1210 struct spi_device *spi = data;
1211
1212 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1213 struct acpi_resource_spi_serialbus *sb;
1214
1215 sb = &ares->data.spi_serial_bus;
1216 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1217 spi->chip_select = sb->device_selection;
1218 spi->max_speed_hz = sb->connection_speed;
1219
1220 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1221 spi->mode |= SPI_CPHA;
1222 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1223 spi->mode |= SPI_CPOL;
1224 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1225 spi->mode |= SPI_CS_HIGH;
1226 }
1227 } else if (spi->irq < 0) {
1228 struct resource r;
1229
1230 if (acpi_dev_resource_interrupt(ares, 0, &r))
1231 spi->irq = r.start;
1232 }
1233
1234 /* Always tell the ACPI core to skip this resource */
1235 return 1;
1236}
1237
1238static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1239 void *data, void **return_value)
1240{
1241 struct spi_master *master = data;
1242 struct list_head resource_list;
1243 struct acpi_device *adev;
1244 struct spi_device *spi;
1245 int ret;
1246
1247 if (acpi_bus_get_device(handle, &adev))
1248 return AE_OK;
1249 if (acpi_bus_get_status(adev) || !adev->status.present)
1250 return AE_OK;
1251
1252 spi = spi_alloc_device(master);
1253 if (!spi) {
1254 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1255 dev_name(&adev->dev));
1256 return AE_NO_MEMORY;
1257 }
1258
7b199811 1259 ACPI_COMPANION_SET(&spi->dev, adev);
64bee4d2
MW
1260 spi->irq = -1;
1261
1262 INIT_LIST_HEAD(&resource_list);
1263 ret = acpi_dev_get_resources(adev, &resource_list,
1264 acpi_spi_add_resource, spi);
1265 acpi_dev_free_resource_list(&resource_list);
1266
1267 if (ret < 0 || !spi->max_speed_hz) {
1268 spi_dev_put(spi);
1269 return AE_OK;
1270 }
1271
33cf00e5 1272 adev->power.flags.ignore_parent = true;
cf9eb39c 1273 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
64bee4d2 1274 if (spi_add_device(spi)) {
33cf00e5 1275 adev->power.flags.ignore_parent = false;
64bee4d2
MW
1276 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1277 dev_name(&adev->dev));
1278 spi_dev_put(spi);
1279 }
1280
1281 return AE_OK;
1282}
1283
1284static void acpi_register_spi_devices(struct spi_master *master)
1285{
1286 acpi_status status;
1287 acpi_handle handle;
1288
29896178 1289 handle = ACPI_HANDLE(master->dev.parent);
64bee4d2
MW
1290 if (!handle)
1291 return;
1292
1293 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1294 acpi_spi_add_device, NULL,
1295 master, NULL);
1296 if (ACPI_FAILURE(status))
1297 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1298}
1299#else
1300static inline void acpi_register_spi_devices(struct spi_master *master) {}
1301#endif /* CONFIG_ACPI */
1302
49dce689 1303static void spi_master_release(struct device *dev)
8ae12a0d
DB
1304{
1305 struct spi_master *master;
1306
49dce689 1307 master = container_of(dev, struct spi_master, dev);
8ae12a0d
DB
1308 kfree(master);
1309}
1310
1311static struct class spi_master_class = {
1312 .name = "spi_master",
1313 .owner = THIS_MODULE,
49dce689 1314 .dev_release = spi_master_release,
8ae12a0d
DB
1315};
1316
1317
ffbbdd21 1318
8ae12a0d
DB
1319/**
1320 * spi_alloc_master - allocate SPI master controller
1321 * @dev: the controller, possibly using the platform_bus
33e34dc6 1322 * @size: how much zeroed driver-private data to allocate; the pointer to this
49dce689 1323 * memory is in the driver_data field of the returned device,
0c868461 1324 * accessible with spi_master_get_devdata().
33e34dc6 1325 * Context: can sleep
8ae12a0d
DB
1326 *
1327 * This call is used only by SPI master controller drivers, which are the
1328 * only ones directly touching chip registers. It's how they allocate
ba1a0513 1329 * an spi_master structure, prior to calling spi_register_master().
8ae12a0d
DB
1330 *
1331 * This must be called from context that can sleep. It returns the SPI
1332 * master structure on success, else NULL.
1333 *
1334 * The caller is responsible for assigning the bus number and initializing
ba1a0513 1335 * the master's methods before calling spi_register_master(); and (after errors
eb4af0f5
UKK
1336 * adding the device) calling spi_master_put() and kfree() to prevent a memory
1337 * leak.
8ae12a0d 1338 */
e9d5a461 1339struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
8ae12a0d
DB
1340{
1341 struct spi_master *master;
1342
0c868461
DB
1343 if (!dev)
1344 return NULL;
1345
5fe5f05e 1346 master = kzalloc(size + sizeof(*master), GFP_KERNEL);
8ae12a0d
DB
1347 if (!master)
1348 return NULL;
1349
49dce689 1350 device_initialize(&master->dev);
1e8a52e1
GL
1351 master->bus_num = -1;
1352 master->num_chipselect = 1;
49dce689
TJ
1353 master->dev.class = &spi_master_class;
1354 master->dev.parent = get_device(dev);
0c868461 1355 spi_master_set_devdata(master, &master[1]);
8ae12a0d
DB
1356
1357 return master;
1358}
1359EXPORT_SYMBOL_GPL(spi_alloc_master);
1360
74317984
JCPV
1361#ifdef CONFIG_OF
1362static int of_spi_register_master(struct spi_master *master)
1363{
e80beb27 1364 int nb, i, *cs;
74317984
JCPV
1365 struct device_node *np = master->dev.of_node;
1366
1367 if (!np)
1368 return 0;
1369
1370 nb = of_gpio_named_count(np, "cs-gpios");
5fe5f05e 1371 master->num_chipselect = max_t(int, nb, master->num_chipselect);
74317984 1372
8ec5d84e
AL
1373 /* Return error only for an incorrectly formed cs-gpios property */
1374 if (nb == 0 || nb == -ENOENT)
74317984 1375 return 0;
8ec5d84e
AL
1376 else if (nb < 0)
1377 return nb;
74317984
JCPV
1378
1379 cs = devm_kzalloc(&master->dev,
1380 sizeof(int) * master->num_chipselect,
1381 GFP_KERNEL);
1382 master->cs_gpios = cs;
1383
1384 if (!master->cs_gpios)
1385 return -ENOMEM;
1386
0da83bb1 1387 for (i = 0; i < master->num_chipselect; i++)
446411e1 1388 cs[i] = -ENOENT;
74317984
JCPV
1389
1390 for (i = 0; i < nb; i++)
1391 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1392
1393 return 0;
1394}
1395#else
1396static int of_spi_register_master(struct spi_master *master)
1397{
1398 return 0;
1399}
1400#endif
1401
8ae12a0d
DB
1402/**
1403 * spi_register_master - register SPI master controller
1404 * @master: initialized master, originally from spi_alloc_master()
33e34dc6 1405 * Context: can sleep
8ae12a0d
DB
1406 *
1407 * SPI master controllers connect to their drivers using some non-SPI bus,
1408 * such as the platform bus. The final stage of probe() in that code
1409 * includes calling spi_register_master() to hook up to this SPI bus glue.
1410 *
1411 * SPI controllers use board specific (often SOC specific) bus numbers,
1412 * and board-specific addressing for SPI devices combines those numbers
1413 * with chip select numbers. Since SPI does not directly support dynamic
1414 * device identification, boards need configuration tables telling which
1415 * chip is at which address.
1416 *
1417 * This must be called from context that can sleep. It returns zero on
1418 * success, else a negative error code (dropping the master's refcount).
0c868461
DB
1419 * After a successful return, the caller is responsible for calling
1420 * spi_unregister_master().
8ae12a0d 1421 */
e9d5a461 1422int spi_register_master(struct spi_master *master)
8ae12a0d 1423{
e44a45ae 1424 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
49dce689 1425 struct device *dev = master->dev.parent;
2b9603a0 1426 struct boardinfo *bi;
8ae12a0d
DB
1427 int status = -ENODEV;
1428 int dynamic = 0;
1429
0c868461
DB
1430 if (!dev)
1431 return -ENODEV;
1432
74317984
JCPV
1433 status = of_spi_register_master(master);
1434 if (status)
1435 return status;
1436
082c8cb4
DB
1437 /* even if it's just one always-selected device, there must
1438 * be at least one chipselect
1439 */
1440 if (master->num_chipselect == 0)
1441 return -EINVAL;
1442
bb29785e
GL
1443 if ((master->bus_num < 0) && master->dev.of_node)
1444 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1445
8ae12a0d 1446 /* convention: dynamically assigned bus IDs count down from the max */
a020ed75 1447 if (master->bus_num < 0) {
082c8cb4
DB
1448 /* FIXME switch to an IDR based scheme, something like
1449 * I2C now uses, so we can't run out of "dynamic" IDs
1450 */
8ae12a0d 1451 master->bus_num = atomic_dec_return(&dyn_bus_id);
b885244e 1452 dynamic = 1;
8ae12a0d
DB
1453 }
1454
cf32b71e
ES
1455 spin_lock_init(&master->bus_lock_spinlock);
1456 mutex_init(&master->bus_lock_mutex);
1457 master->bus_lock_flag = 0;
b158935f 1458 init_completion(&master->xfer_completion);
cf32b71e 1459
8ae12a0d
DB
1460 /* register the device, then userspace will see it.
1461 * registration fails if the bus ID is in use.
1462 */
35f74fca 1463 dev_set_name(&master->dev, "spi%u", master->bus_num);
49dce689 1464 status = device_add(&master->dev);
b885244e 1465 if (status < 0)
8ae12a0d 1466 goto done;
35f74fca 1467 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
8ae12a0d
DB
1468 dynamic ? " (dynamic)" : "");
1469
ffbbdd21
LW
1470 /* If we're using a queued driver, start the queue */
1471 if (master->transfer)
1472 dev_info(dev, "master is unqueued, this is deprecated\n");
1473 else {
1474 status = spi_master_initialize_queue(master);
1475 if (status) {
e93b0724 1476 device_del(&master->dev);
ffbbdd21
LW
1477 goto done;
1478 }
1479 }
1480
2b9603a0
FT
1481 mutex_lock(&board_lock);
1482 list_add_tail(&master->list, &spi_master_list);
1483 list_for_each_entry(bi, &board_list, list)
1484 spi_match_master_to_boardinfo(master, &bi->board_info);
1485 mutex_unlock(&board_lock);
1486
64bee4d2 1487 /* Register devices from the device tree and ACPI */
12b15e83 1488 of_register_spi_devices(master);
64bee4d2 1489 acpi_register_spi_devices(master);
8ae12a0d
DB
1490done:
1491 return status;
1492}
1493EXPORT_SYMBOL_GPL(spi_register_master);
1494
666d5b4c
MB
1495static void devm_spi_unregister(struct device *dev, void *res)
1496{
1497 spi_unregister_master(*(struct spi_master **)res);
1498}
1499
1500/**
1501 * dev_spi_register_master - register managed SPI master controller
1502 * @dev: device managing SPI master
1503 * @master: initialized master, originally from spi_alloc_master()
1504 * Context: can sleep
1505 *
1506 * Register a SPI device as with spi_register_master() which will
1507 * automatically be unregister
1508 */
1509int devm_spi_register_master(struct device *dev, struct spi_master *master)
1510{
1511 struct spi_master **ptr;
1512 int ret;
1513
1514 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1515 if (!ptr)
1516 return -ENOMEM;
1517
1518 ret = spi_register_master(master);
4b92894e 1519 if (!ret) {
666d5b4c
MB
1520 *ptr = master;
1521 devres_add(dev, ptr);
1522 } else {
1523 devres_free(ptr);
1524 }
1525
1526 return ret;
1527}
1528EXPORT_SYMBOL_GPL(devm_spi_register_master);
1529
34860089 1530static int __unregister(struct device *dev, void *null)
8ae12a0d 1531{
34860089 1532 spi_unregister_device(to_spi_device(dev));
8ae12a0d
DB
1533 return 0;
1534}
1535
1536/**
1537 * spi_unregister_master - unregister SPI master controller
1538 * @master: the master being unregistered
33e34dc6 1539 * Context: can sleep
8ae12a0d
DB
1540 *
1541 * This call is used only by SPI master controller drivers, which are the
1542 * only ones directly touching chip registers.
1543 *
1544 * This must be called from context that can sleep.
1545 */
1546void spi_unregister_master(struct spi_master *master)
1547{
89fc9a1a
JG
1548 int dummy;
1549
ffbbdd21
LW
1550 if (master->queued) {
1551 if (spi_destroy_queue(master))
1552 dev_err(&master->dev, "queue remove failed\n");
1553 }
1554
2b9603a0
FT
1555 mutex_lock(&board_lock);
1556 list_del(&master->list);
1557 mutex_unlock(&board_lock);
1558
97dbf37d 1559 dummy = device_for_each_child(&master->dev, NULL, __unregister);
49dce689 1560 device_unregister(&master->dev);
8ae12a0d
DB
1561}
1562EXPORT_SYMBOL_GPL(spi_unregister_master);
1563
ffbbdd21
LW
1564int spi_master_suspend(struct spi_master *master)
1565{
1566 int ret;
1567
1568 /* Basically no-ops for non-queued masters */
1569 if (!master->queued)
1570 return 0;
1571
1572 ret = spi_stop_queue(master);
1573 if (ret)
1574 dev_err(&master->dev, "queue stop failed\n");
1575
1576 return ret;
1577}
1578EXPORT_SYMBOL_GPL(spi_master_suspend);
1579
1580int spi_master_resume(struct spi_master *master)
1581{
1582 int ret;
1583
1584 if (!master->queued)
1585 return 0;
1586
1587 ret = spi_start_queue(master);
1588 if (ret)
1589 dev_err(&master->dev, "queue restart failed\n");
1590
1591 return ret;
1592}
1593EXPORT_SYMBOL_GPL(spi_master_resume);
1594
9f3b795a 1595static int __spi_master_match(struct device *dev, const void *data)
5ed2c832
DY
1596{
1597 struct spi_master *m;
9f3b795a 1598 const u16 *bus_num = data;
5ed2c832
DY
1599
1600 m = container_of(dev, struct spi_master, dev);
1601 return m->bus_num == *bus_num;
1602}
1603
8ae12a0d
DB
1604/**
1605 * spi_busnum_to_master - look up master associated with bus_num
1606 * @bus_num: the master's bus number
33e34dc6 1607 * Context: can sleep
8ae12a0d
DB
1608 *
1609 * This call may be used with devices that are registered after
1610 * arch init time. It returns a refcounted pointer to the relevant
1611 * spi_master (which the caller must release), or NULL if there is
1612 * no such master registered.
1613 */
1614struct spi_master *spi_busnum_to_master(u16 bus_num)
1615{
49dce689 1616 struct device *dev;
1e9a51dc 1617 struct spi_master *master = NULL;
5ed2c832 1618
695794ae 1619 dev = class_find_device(&spi_master_class, NULL, &bus_num,
5ed2c832
DY
1620 __spi_master_match);
1621 if (dev)
1622 master = container_of(dev, struct spi_master, dev);
1623 /* reference got in class_find_device */
1e9a51dc 1624 return master;
8ae12a0d
DB
1625}
1626EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1627
1628
1629/*-------------------------------------------------------------------------*/
1630
7d077197
DB
1631/* Core methods for SPI master protocol drivers. Some of the
1632 * other core methods are currently defined as inline functions.
1633 */
1634
1635/**
1636 * spi_setup - setup SPI mode and clock rate
1637 * @spi: the device whose settings are being modified
1638 * Context: can sleep, and no requests are queued to the device
1639 *
1640 * SPI protocol drivers may need to update the transfer mode if the
1641 * device doesn't work with its default. They may likewise need
1642 * to update clock rates or word sizes from initial values. This function
1643 * changes those settings, and must be called from a context that can sleep.
1644 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1645 * effect the next time the device is selected and data is transferred to
1646 * or from it. When this function returns, the spi device is deselected.
1647 *
1648 * Note that this call will fail if the protocol driver specifies an option
1649 * that the underlying controller or its driver does not support. For
1650 * example, not all hardware supports wire transfers using nine bit words,
1651 * LSB-first wire encoding, or active-high chipselects.
1652 */
1653int spi_setup(struct spi_device *spi)
1654{
e7db06b5 1655 unsigned bad_bits;
caae070c 1656 int status = 0;
7d077197 1657
f477b7fb 1658 /* check mode to prevent that DUAL and QUAD set at the same time
1659 */
1660 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
1661 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
1662 dev_err(&spi->dev,
1663 "setup: can not select dual and quad at the same time\n");
1664 return -EINVAL;
1665 }
1666 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1667 */
1668 if ((spi->mode & SPI_3WIRE) && (spi->mode &
1669 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
1670 return -EINVAL;
e7db06b5
DB
1671 /* help drivers fail *cleanly* when they need options
1672 * that aren't supported with their current master
1673 */
1674 bad_bits = spi->mode & ~spi->master->mode_bits;
1675 if (bad_bits) {
eb288a1f 1676 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
e7db06b5
DB
1677 bad_bits);
1678 return -EINVAL;
1679 }
1680
7d077197
DB
1681 if (!spi->bits_per_word)
1682 spi->bits_per_word = 8;
1683
caae070c
LD
1684 if (spi->master->setup)
1685 status = spi->master->setup(spi);
7d077197 1686
5fe5f05e 1687 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
7d077197
DB
1688 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1689 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1690 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1691 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
1692 (spi->mode & SPI_LOOP) ? "loopback, " : "",
1693 spi->bits_per_word, spi->max_speed_hz,
1694 status);
1695
1696 return status;
1697}
1698EXPORT_SYMBOL_GPL(spi_setup);
1699
90808738 1700static int __spi_validate(struct spi_device *spi, struct spi_message *message)
cf32b71e
ES
1701{
1702 struct spi_master *master = spi->master;
e6811d1d 1703 struct spi_transfer *xfer;
cf32b71e 1704
24a0013a
MB
1705 if (list_empty(&message->transfers))
1706 return -EINVAL;
1707 if (!message->complete)
1708 return -EINVAL;
1709
cf32b71e
ES
1710 /* Half-duplex links include original MicroWire, and ones with
1711 * only one data pin like SPI_3WIRE (switches direction) or where
1712 * either MOSI or MISO is missing. They can also be caused by
1713 * software limitations.
1714 */
1715 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1716 || (spi->mode & SPI_3WIRE)) {
cf32b71e
ES
1717 unsigned flags = master->flags;
1718
1719 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1720 if (xfer->rx_buf && xfer->tx_buf)
1721 return -EINVAL;
1722 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1723 return -EINVAL;
1724 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1725 return -EINVAL;
1726 }
1727 }
1728
e6811d1d 1729 /**
059b8ffe
LD
1730 * Set transfer bits_per_word and max speed as spi device default if
1731 * it is not set for this transfer.
f477b7fb 1732 * Set transfer tx_nbits and rx_nbits as single transfer default
1733 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
e6811d1d
LD
1734 */
1735 list_for_each_entry(xfer, &message->transfers, transfer_list) {
078726ce 1736 message->frame_length += xfer->len;
e6811d1d
LD
1737 if (!xfer->bits_per_word)
1738 xfer->bits_per_word = spi->bits_per_word;
56ede94a 1739 if (!xfer->speed_hz) {
059b8ffe 1740 xfer->speed_hz = spi->max_speed_hz;
56ede94a
GJ
1741 if (master->max_speed_hz &&
1742 xfer->speed_hz > master->max_speed_hz)
1743 xfer->speed_hz = master->max_speed_hz;
1744 }
1745
543bb255
SW
1746 if (master->bits_per_word_mask) {
1747 /* Only 32 bits fit in the mask */
1748 if (xfer->bits_per_word > 32)
1749 return -EINVAL;
1750 if (!(master->bits_per_word_mask &
1751 BIT(xfer->bits_per_word - 1)))
1752 return -EINVAL;
1753 }
a2fd4f9f
MB
1754
1755 if (xfer->speed_hz && master->min_speed_hz &&
1756 xfer->speed_hz < master->min_speed_hz)
1757 return -EINVAL;
1758 if (xfer->speed_hz && master->max_speed_hz &&
1759 xfer->speed_hz > master->max_speed_hz)
d5ee722a 1760 return -EINVAL;
f477b7fb 1761
1762 if (xfer->tx_buf && !xfer->tx_nbits)
1763 xfer->tx_nbits = SPI_NBITS_SINGLE;
1764 if (xfer->rx_buf && !xfer->rx_nbits)
1765 xfer->rx_nbits = SPI_NBITS_SINGLE;
1766 /* check transfer tx/rx_nbits:
1afd9989
GU
1767 * 1. check the value matches one of single, dual and quad
1768 * 2. check tx/rx_nbits match the mode in spi_device
f477b7fb 1769 */
db90a441
SP
1770 if (xfer->tx_buf) {
1771 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
1772 xfer->tx_nbits != SPI_NBITS_DUAL &&
1773 xfer->tx_nbits != SPI_NBITS_QUAD)
1774 return -EINVAL;
1775 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
1776 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
1777 return -EINVAL;
1778 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
1779 !(spi->mode & SPI_TX_QUAD))
1780 return -EINVAL;
db90a441 1781 }
f477b7fb 1782 /* check transfer rx_nbits */
db90a441
SP
1783 if (xfer->rx_buf) {
1784 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
1785 xfer->rx_nbits != SPI_NBITS_DUAL &&
1786 xfer->rx_nbits != SPI_NBITS_QUAD)
1787 return -EINVAL;
1788 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
1789 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
1790 return -EINVAL;
1791 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
1792 !(spi->mode & SPI_RX_QUAD))
1793 return -EINVAL;
db90a441 1794 }
e6811d1d
LD
1795 }
1796
cf32b71e 1797 message->status = -EINPROGRESS;
90808738
MB
1798
1799 return 0;
1800}
1801
1802static int __spi_async(struct spi_device *spi, struct spi_message *message)
1803{
1804 struct spi_master *master = spi->master;
1805
1806 message->spi = spi;
1807
1808 trace_spi_message_submit(message);
1809
cf32b71e
ES
1810 return master->transfer(spi, message);
1811}
1812
568d0697
DB
1813/**
1814 * spi_async - asynchronous SPI transfer
1815 * @spi: device with which data will be exchanged
1816 * @message: describes the data transfers, including completion callback
1817 * Context: any (irqs may be blocked, etc)
1818 *
1819 * This call may be used in_irq and other contexts which can't sleep,
1820 * as well as from task contexts which can sleep.
1821 *
1822 * The completion callback is invoked in a context which can't sleep.
1823 * Before that invocation, the value of message->status is undefined.
1824 * When the callback is issued, message->status holds either zero (to
1825 * indicate complete success) or a negative error code. After that
1826 * callback returns, the driver which issued the transfer request may
1827 * deallocate the associated memory; it's no longer in use by any SPI
1828 * core or controller driver code.
1829 *
1830 * Note that although all messages to a spi_device are handled in
1831 * FIFO order, messages may go to different devices in other orders.
1832 * Some device might be higher priority, or have various "hard" access
1833 * time requirements, for example.
1834 *
1835 * On detection of any fault during the transfer, processing of
1836 * the entire message is aborted, and the device is deselected.
1837 * Until returning from the associated message completion callback,
1838 * no other spi_message queued to that device will be processed.
1839 * (This rule applies equally to all the synchronous transfer calls,
1840 * which are wrappers around this core asynchronous primitive.)
1841 */
1842int spi_async(struct spi_device *spi, struct spi_message *message)
1843{
1844 struct spi_master *master = spi->master;
cf32b71e
ES
1845 int ret;
1846 unsigned long flags;
568d0697 1847
90808738
MB
1848 ret = __spi_validate(spi, message);
1849 if (ret != 0)
1850 return ret;
1851
cf32b71e 1852 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
568d0697 1853
cf32b71e
ES
1854 if (master->bus_lock_flag)
1855 ret = -EBUSY;
1856 else
1857 ret = __spi_async(spi, message);
568d0697 1858
cf32b71e
ES
1859 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1860
1861 return ret;
568d0697
DB
1862}
1863EXPORT_SYMBOL_GPL(spi_async);
1864
cf32b71e
ES
1865/**
1866 * spi_async_locked - version of spi_async with exclusive bus usage
1867 * @spi: device with which data will be exchanged
1868 * @message: describes the data transfers, including completion callback
1869 * Context: any (irqs may be blocked, etc)
1870 *
1871 * This call may be used in_irq and other contexts which can't sleep,
1872 * as well as from task contexts which can sleep.
1873 *
1874 * The completion callback is invoked in a context which can't sleep.
1875 * Before that invocation, the value of message->status is undefined.
1876 * When the callback is issued, message->status holds either zero (to
1877 * indicate complete success) or a negative error code. After that
1878 * callback returns, the driver which issued the transfer request may
1879 * deallocate the associated memory; it's no longer in use by any SPI
1880 * core or controller driver code.
1881 *
1882 * Note that although all messages to a spi_device are handled in
1883 * FIFO order, messages may go to different devices in other orders.
1884 * Some device might be higher priority, or have various "hard" access
1885 * time requirements, for example.
1886 *
1887 * On detection of any fault during the transfer, processing of
1888 * the entire message is aborted, and the device is deselected.
1889 * Until returning from the associated message completion callback,
1890 * no other spi_message queued to that device will be processed.
1891 * (This rule applies equally to all the synchronous transfer calls,
1892 * which are wrappers around this core asynchronous primitive.)
1893 */
1894int spi_async_locked(struct spi_device *spi, struct spi_message *message)
1895{
1896 struct spi_master *master = spi->master;
1897 int ret;
1898 unsigned long flags;
1899
90808738
MB
1900 ret = __spi_validate(spi, message);
1901 if (ret != 0)
1902 return ret;
1903
cf32b71e
ES
1904 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1905
1906 ret = __spi_async(spi, message);
1907
1908 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1909
1910 return ret;
1911
1912}
1913EXPORT_SYMBOL_GPL(spi_async_locked);
1914
7d077197
DB
1915
1916/*-------------------------------------------------------------------------*/
1917
1918/* Utility methods for SPI master protocol drivers, layered on
1919 * top of the core. Some other utility methods are defined as
1920 * inline functions.
1921 */
1922
5d870c8e
AM
1923static void spi_complete(void *arg)
1924{
1925 complete(arg);
1926}
1927
cf32b71e
ES
1928static int __spi_sync(struct spi_device *spi, struct spi_message *message,
1929 int bus_locked)
1930{
1931 DECLARE_COMPLETION_ONSTACK(done);
1932 int status;
1933 struct spi_master *master = spi->master;
1934
1935 message->complete = spi_complete;
1936 message->context = &done;
1937
1938 if (!bus_locked)
1939 mutex_lock(&master->bus_lock_mutex);
1940
1941 status = spi_async_locked(spi, message);
1942
1943 if (!bus_locked)
1944 mutex_unlock(&master->bus_lock_mutex);
1945
1946 if (status == 0) {
1947 wait_for_completion(&done);
1948 status = message->status;
1949 }
1950 message->context = NULL;
1951 return status;
1952}
1953
8ae12a0d
DB
1954/**
1955 * spi_sync - blocking/synchronous SPI data transfers
1956 * @spi: device with which data will be exchanged
1957 * @message: describes the data transfers
33e34dc6 1958 * Context: can sleep
8ae12a0d
DB
1959 *
1960 * This call may only be used from a context that may sleep. The sleep
1961 * is non-interruptible, and has no timeout. Low-overhead controller
1962 * drivers may DMA directly into and out of the message buffers.
1963 *
1964 * Note that the SPI device's chip select is active during the message,
1965 * and then is normally disabled between messages. Drivers for some
1966 * frequently-used devices may want to minimize costs of selecting a chip,
1967 * by leaving it selected in anticipation that the next message will go
1968 * to the same chip. (That may increase power usage.)
1969 *
0c868461
DB
1970 * Also, the caller is guaranteeing that the memory associated with the
1971 * message will not be freed before this call returns.
1972 *
9b938b74 1973 * It returns zero on success, else a negative error code.
8ae12a0d
DB
1974 */
1975int spi_sync(struct spi_device *spi, struct spi_message *message)
1976{
cf32b71e 1977 return __spi_sync(spi, message, 0);
8ae12a0d
DB
1978}
1979EXPORT_SYMBOL_GPL(spi_sync);
1980
cf32b71e
ES
1981/**
1982 * spi_sync_locked - version of spi_sync with exclusive bus usage
1983 * @spi: device with which data will be exchanged
1984 * @message: describes the data transfers
1985 * Context: can sleep
1986 *
1987 * This call may only be used from a context that may sleep. The sleep
1988 * is non-interruptible, and has no timeout. Low-overhead controller
1989 * drivers may DMA directly into and out of the message buffers.
1990 *
1991 * This call should be used by drivers that require exclusive access to the
25985edc 1992 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
cf32b71e
ES
1993 * be released by a spi_bus_unlock call when the exclusive access is over.
1994 *
1995 * It returns zero on success, else a negative error code.
1996 */
1997int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
1998{
1999 return __spi_sync(spi, message, 1);
2000}
2001EXPORT_SYMBOL_GPL(spi_sync_locked);
2002
2003/**
2004 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2005 * @master: SPI bus master that should be locked for exclusive bus access
2006 * Context: can sleep
2007 *
2008 * This call may only be used from a context that may sleep. The sleep
2009 * is non-interruptible, and has no timeout.
2010 *
2011 * This call should be used by drivers that require exclusive access to the
2012 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2013 * exclusive access is over. Data transfer must be done by spi_sync_locked
2014 * and spi_async_locked calls when the SPI bus lock is held.
2015 *
2016 * It returns zero on success, else a negative error code.
2017 */
2018int spi_bus_lock(struct spi_master *master)
2019{
2020 unsigned long flags;
2021
2022 mutex_lock(&master->bus_lock_mutex);
2023
2024 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2025 master->bus_lock_flag = 1;
2026 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2027
2028 /* mutex remains locked until spi_bus_unlock is called */
2029
2030 return 0;
2031}
2032EXPORT_SYMBOL_GPL(spi_bus_lock);
2033
2034/**
2035 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2036 * @master: SPI bus master that was locked for exclusive bus access
2037 * Context: can sleep
2038 *
2039 * This call may only be used from a context that may sleep. The sleep
2040 * is non-interruptible, and has no timeout.
2041 *
2042 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2043 * call.
2044 *
2045 * It returns zero on success, else a negative error code.
2046 */
2047int spi_bus_unlock(struct spi_master *master)
2048{
2049 master->bus_lock_flag = 0;
2050
2051 mutex_unlock(&master->bus_lock_mutex);
2052
2053 return 0;
2054}
2055EXPORT_SYMBOL_GPL(spi_bus_unlock);
2056
a9948b61 2057/* portable code must never pass more than 32 bytes */
5fe5f05e 2058#define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
8ae12a0d
DB
2059
2060static u8 *buf;
2061
2062/**
2063 * spi_write_then_read - SPI synchronous write followed by read
2064 * @spi: device with which data will be exchanged
2065 * @txbuf: data to be written (need not be dma-safe)
2066 * @n_tx: size of txbuf, in bytes
27570497
JP
2067 * @rxbuf: buffer into which data will be read (need not be dma-safe)
2068 * @n_rx: size of rxbuf, in bytes
33e34dc6 2069 * Context: can sleep
8ae12a0d
DB
2070 *
2071 * This performs a half duplex MicroWire style transaction with the
2072 * device, sending txbuf and then reading rxbuf. The return value
2073 * is zero for success, else a negative errno status code.
b885244e 2074 * This call may only be used from a context that may sleep.
8ae12a0d 2075 *
0c868461 2076 * Parameters to this routine are always copied using a small buffer;
33e34dc6
DB
2077 * portable code should never use this for more than 32 bytes.
2078 * Performance-sensitive or bulk transfer code should instead use
0c868461 2079 * spi_{async,sync}() calls with dma-safe buffers.
8ae12a0d
DB
2080 */
2081int spi_write_then_read(struct spi_device *spi,
0c4a1590
MB
2082 const void *txbuf, unsigned n_tx,
2083 void *rxbuf, unsigned n_rx)
8ae12a0d 2084{
068f4070 2085 static DEFINE_MUTEX(lock);
8ae12a0d
DB
2086
2087 int status;
2088 struct spi_message message;
bdff549e 2089 struct spi_transfer x[2];
8ae12a0d
DB
2090 u8 *local_buf;
2091
b3a223ee
MB
2092 /* Use preallocated DMA-safe buffer if we can. We can't avoid
2093 * copying here, (as a pure convenience thing), but we can
2094 * keep heap costs out of the hot path unless someone else is
2095 * using the pre-allocated buffer or the transfer is too large.
8ae12a0d 2096 */
b3a223ee 2097 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2cd94c8a
MB
2098 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2099 GFP_KERNEL | GFP_DMA);
b3a223ee
MB
2100 if (!local_buf)
2101 return -ENOMEM;
2102 } else {
2103 local_buf = buf;
2104 }
8ae12a0d 2105
8275c642 2106 spi_message_init(&message);
5fe5f05e 2107 memset(x, 0, sizeof(x));
bdff549e
DB
2108 if (n_tx) {
2109 x[0].len = n_tx;
2110 spi_message_add_tail(&x[0], &message);
2111 }
2112 if (n_rx) {
2113 x[1].len = n_rx;
2114 spi_message_add_tail(&x[1], &message);
2115 }
8275c642 2116
8ae12a0d 2117 memcpy(local_buf, txbuf, n_tx);
bdff549e
DB
2118 x[0].tx_buf = local_buf;
2119 x[1].rx_buf = local_buf + n_tx;
8ae12a0d
DB
2120
2121 /* do the i/o */
8ae12a0d 2122 status = spi_sync(spi, &message);
9b938b74 2123 if (status == 0)
bdff549e 2124 memcpy(rxbuf, x[1].rx_buf, n_rx);
8ae12a0d 2125
bdff549e 2126 if (x[0].tx_buf == buf)
068f4070 2127 mutex_unlock(&lock);
8ae12a0d
DB
2128 else
2129 kfree(local_buf);
2130
2131 return status;
2132}
2133EXPORT_SYMBOL_GPL(spi_write_then_read);
2134
2135/*-------------------------------------------------------------------------*/
2136
2137static int __init spi_init(void)
2138{
b885244e
DB
2139 int status;
2140
e94b1766 2141 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
b885244e
DB
2142 if (!buf) {
2143 status = -ENOMEM;
2144 goto err0;
2145 }
2146
2147 status = bus_register(&spi_bus_type);
2148 if (status < 0)
2149 goto err1;
8ae12a0d 2150
b885244e
DB
2151 status = class_register(&spi_master_class);
2152 if (status < 0)
2153 goto err2;
8ae12a0d 2154 return 0;
b885244e
DB
2155
2156err2:
2157 bus_unregister(&spi_bus_type);
2158err1:
2159 kfree(buf);
2160 buf = NULL;
2161err0:
2162 return status;
8ae12a0d 2163}
b885244e 2164
8ae12a0d
DB
2165/* board_info is normally registered in arch_initcall(),
2166 * but even essential drivers wait till later
b885244e
DB
2167 *
2168 * REVISIT only boardinfo really needs static linking. the rest (device and
2169 * driver registration) _could_ be dynamically linked (modular) ... costs
2170 * include needing to have boardinfo data structures be much more public.
8ae12a0d 2171 */
673c0c00 2172postcore_initcall(spi_init);
8ae12a0d 2173
This page took 1.142561 seconds and 5 git commands to generate.