spi: core: Validate length of the transfers in message
[deliverable/linux.git] / drivers / spi / spi.c
CommitLineData
8ae12a0d 1/*
ca632f55 2 * SPI init/core code
8ae12a0d
DB
3 *
4 * Copyright (C) 2005 David Brownell
d57a4282 5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
8ae12a0d
DB
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
8ae12a0d 22#include <linux/kernel.h>
d57a4282 23#include <linux/kmod.h>
8ae12a0d
DB
24#include <linux/device.h>
25#include <linux/init.h>
26#include <linux/cache.h>
94040828 27#include <linux/mutex.h>
2b7a32f7 28#include <linux/of_device.h>
d57a4282 29#include <linux/of_irq.h>
5a0e3ad6 30#include <linux/slab.h>
e0626e38 31#include <linux/mod_devicetable.h>
8ae12a0d 32#include <linux/spi/spi.h>
74317984 33#include <linux/of_gpio.h>
3ae22e8c 34#include <linux/pm_runtime.h>
025ed130 35#include <linux/export.h>
8bd75c77 36#include <linux/sched/rt.h>
ffbbdd21
LW
37#include <linux/delay.h>
38#include <linux/kthread.h>
64bee4d2
MW
39#include <linux/ioport.h>
40#include <linux/acpi.h>
8ae12a0d 41
56ec1978
MB
42#define CREATE_TRACE_POINTS
43#include <trace/events/spi.h>
44
8ae12a0d
DB
45static void spidev_release(struct device *dev)
46{
0ffa0285 47 struct spi_device *spi = to_spi_device(dev);
8ae12a0d
DB
48
49 /* spi masters may cleanup for released devices */
50 if (spi->master->cleanup)
51 spi->master->cleanup(spi);
52
0c868461 53 spi_master_put(spi->master);
07a389fe 54 kfree(spi);
8ae12a0d
DB
55}
56
57static ssize_t
58modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59{
60 const struct spi_device *spi = to_spi_device(dev);
8c4ff6d0
ZR
61 int len;
62
63 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64 if (len != -ENODEV)
65 return len;
8ae12a0d 66
d8e328b3 67 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
8ae12a0d 68}
aa7da564 69static DEVICE_ATTR_RO(modalias);
8ae12a0d 70
aa7da564
GKH
71static struct attribute *spi_dev_attrs[] = {
72 &dev_attr_modalias.attr,
73 NULL,
8ae12a0d 74};
aa7da564 75ATTRIBUTE_GROUPS(spi_dev);
8ae12a0d
DB
76
77/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
78 * and the sysfs version makes coldplug work too.
79 */
80
75368bf6
AV
81static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
82 const struct spi_device *sdev)
83{
84 while (id->name[0]) {
85 if (!strcmp(sdev->modalias, id->name))
86 return id;
87 id++;
88 }
89 return NULL;
90}
91
92const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
93{
94 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
95
96 return spi_match_id(sdrv->id_table, sdev);
97}
98EXPORT_SYMBOL_GPL(spi_get_device_id);
99
8ae12a0d
DB
100static int spi_match_device(struct device *dev, struct device_driver *drv)
101{
102 const struct spi_device *spi = to_spi_device(dev);
75368bf6
AV
103 const struct spi_driver *sdrv = to_spi_driver(drv);
104
2b7a32f7
SA
105 /* Attempt an OF style match */
106 if (of_driver_match_device(dev, drv))
107 return 1;
108
64bee4d2
MW
109 /* Then try ACPI */
110 if (acpi_driver_match_device(dev, drv))
111 return 1;
112
75368bf6
AV
113 if (sdrv->id_table)
114 return !!spi_match_id(sdrv->id_table, spi);
8ae12a0d 115
35f74fca 116 return strcmp(spi->modalias, drv->name) == 0;
8ae12a0d
DB
117}
118
7eff2e7a 119static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
8ae12a0d
DB
120{
121 const struct spi_device *spi = to_spi_device(dev);
8c4ff6d0
ZR
122 int rc;
123
124 rc = acpi_device_uevent_modalias(dev, env);
125 if (rc != -ENODEV)
126 return rc;
8ae12a0d 127
e0626e38 128 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
8ae12a0d
DB
129 return 0;
130}
131
3ae22e8c
MB
132#ifdef CONFIG_PM_SLEEP
133static int spi_legacy_suspend(struct device *dev, pm_message_t message)
8ae12a0d 134{
3c72426f 135 int value = 0;
b885244e 136 struct spi_driver *drv = to_spi_driver(dev->driver);
8ae12a0d 137
8ae12a0d 138 /* suspend will stop irqs and dma; no more i/o */
3c72426f
DB
139 if (drv) {
140 if (drv->suspend)
141 value = drv->suspend(to_spi_device(dev), message);
142 else
143 dev_dbg(dev, "... can't suspend\n");
144 }
8ae12a0d
DB
145 return value;
146}
147
3ae22e8c 148static int spi_legacy_resume(struct device *dev)
8ae12a0d 149{
3c72426f 150 int value = 0;
b885244e 151 struct spi_driver *drv = to_spi_driver(dev->driver);
8ae12a0d 152
8ae12a0d 153 /* resume may restart the i/o queue */
3c72426f
DB
154 if (drv) {
155 if (drv->resume)
156 value = drv->resume(to_spi_device(dev));
157 else
158 dev_dbg(dev, "... can't resume\n");
159 }
8ae12a0d
DB
160 return value;
161}
162
3ae22e8c
MB
163static int spi_pm_suspend(struct device *dev)
164{
165 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
166
167 if (pm)
168 return pm_generic_suspend(dev);
169 else
170 return spi_legacy_suspend(dev, PMSG_SUSPEND);
171}
172
173static int spi_pm_resume(struct device *dev)
174{
175 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
176
177 if (pm)
178 return pm_generic_resume(dev);
179 else
180 return spi_legacy_resume(dev);
181}
182
183static int spi_pm_freeze(struct device *dev)
184{
185 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
186
187 if (pm)
188 return pm_generic_freeze(dev);
189 else
190 return spi_legacy_suspend(dev, PMSG_FREEZE);
191}
192
193static int spi_pm_thaw(struct device *dev)
194{
195 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
196
197 if (pm)
198 return pm_generic_thaw(dev);
199 else
200 return spi_legacy_resume(dev);
201}
202
203static int spi_pm_poweroff(struct device *dev)
204{
205 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
206
207 if (pm)
208 return pm_generic_poweroff(dev);
209 else
210 return spi_legacy_suspend(dev, PMSG_HIBERNATE);
211}
212
213static int spi_pm_restore(struct device *dev)
214{
215 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
216
217 if (pm)
218 return pm_generic_restore(dev);
219 else
220 return spi_legacy_resume(dev);
221}
8ae12a0d 222#else
3ae22e8c
MB
223#define spi_pm_suspend NULL
224#define spi_pm_resume NULL
225#define spi_pm_freeze NULL
226#define spi_pm_thaw NULL
227#define spi_pm_poweroff NULL
228#define spi_pm_restore NULL
8ae12a0d
DB
229#endif
230
3ae22e8c
MB
231static const struct dev_pm_ops spi_pm = {
232 .suspend = spi_pm_suspend,
233 .resume = spi_pm_resume,
234 .freeze = spi_pm_freeze,
235 .thaw = spi_pm_thaw,
236 .poweroff = spi_pm_poweroff,
237 .restore = spi_pm_restore,
238 SET_RUNTIME_PM_OPS(
239 pm_generic_runtime_suspend,
240 pm_generic_runtime_resume,
45f0a85c 241 NULL
3ae22e8c
MB
242 )
243};
244
8ae12a0d
DB
245struct bus_type spi_bus_type = {
246 .name = "spi",
aa7da564 247 .dev_groups = spi_dev_groups,
8ae12a0d
DB
248 .match = spi_match_device,
249 .uevent = spi_uevent,
3ae22e8c 250 .pm = &spi_pm,
8ae12a0d
DB
251};
252EXPORT_SYMBOL_GPL(spi_bus_type);
253
b885244e
DB
254
255static int spi_drv_probe(struct device *dev)
256{
257 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
33cf00e5
MW
258 int ret;
259
aec35f4e
JD
260 acpi_dev_pm_attach(dev, true);
261 ret = sdrv->probe(to_spi_device(dev));
33cf00e5 262 if (ret)
aec35f4e 263 acpi_dev_pm_detach(dev, true);
b885244e 264
33cf00e5 265 return ret;
b885244e
DB
266}
267
268static int spi_drv_remove(struct device *dev)
269{
270 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
33cf00e5
MW
271 int ret;
272
aec35f4e
JD
273 ret = sdrv->remove(to_spi_device(dev));
274 acpi_dev_pm_detach(dev, true);
b885244e 275
33cf00e5 276 return ret;
b885244e
DB
277}
278
279static void spi_drv_shutdown(struct device *dev)
280{
281 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
282
283 sdrv->shutdown(to_spi_device(dev));
284}
285
33e34dc6
DB
286/**
287 * spi_register_driver - register a SPI driver
288 * @sdrv: the driver to register
289 * Context: can sleep
290 */
b885244e
DB
291int spi_register_driver(struct spi_driver *sdrv)
292{
293 sdrv->driver.bus = &spi_bus_type;
294 if (sdrv->probe)
295 sdrv->driver.probe = spi_drv_probe;
296 if (sdrv->remove)
297 sdrv->driver.remove = spi_drv_remove;
298 if (sdrv->shutdown)
299 sdrv->driver.shutdown = spi_drv_shutdown;
300 return driver_register(&sdrv->driver);
301}
302EXPORT_SYMBOL_GPL(spi_register_driver);
303
8ae12a0d
DB
304/*-------------------------------------------------------------------------*/
305
306/* SPI devices should normally not be created by SPI device drivers; that
307 * would make them board-specific. Similarly with SPI master drivers.
308 * Device registration normally goes into like arch/.../mach.../board-YYY.c
309 * with other readonly (flashable) information about mainboard devices.
310 */
311
312struct boardinfo {
313 struct list_head list;
2b9603a0 314 struct spi_board_info board_info;
8ae12a0d
DB
315};
316
317static LIST_HEAD(board_list);
2b9603a0
FT
318static LIST_HEAD(spi_master_list);
319
320/*
321 * Used to protect add/del opertion for board_info list and
322 * spi_master list, and their matching process
323 */
94040828 324static DEFINE_MUTEX(board_lock);
8ae12a0d 325
dc87c98e
GL
326/**
327 * spi_alloc_device - Allocate a new SPI device
328 * @master: Controller to which device is connected
329 * Context: can sleep
330 *
331 * Allows a driver to allocate and initialize a spi_device without
332 * registering it immediately. This allows a driver to directly
333 * fill the spi_device with device parameters before calling
334 * spi_add_device() on it.
335 *
336 * Caller is responsible to call spi_add_device() on the returned
337 * spi_device structure to add it to the SPI master. If the caller
338 * needs to discard the spi_device without adding it, then it should
339 * call spi_dev_put() on it.
340 *
341 * Returns a pointer to the new device, or NULL.
342 */
343struct spi_device *spi_alloc_device(struct spi_master *master)
344{
345 struct spi_device *spi;
346 struct device *dev = master->dev.parent;
347
348 if (!spi_master_get(master))
349 return NULL;
350
5fe5f05e 351 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
dc87c98e
GL
352 if (!spi) {
353 dev_err(dev, "cannot alloc spi_device\n");
354 spi_master_put(master);
355 return NULL;
356 }
357
358 spi->master = master;
178db7d3 359 spi->dev.parent = &master->dev;
dc87c98e
GL
360 spi->dev.bus = &spi_bus_type;
361 spi->dev.release = spidev_release;
446411e1 362 spi->cs_gpio = -ENOENT;
dc87c98e
GL
363 device_initialize(&spi->dev);
364 return spi;
365}
366EXPORT_SYMBOL_GPL(spi_alloc_device);
367
e13ac47b
JN
368static void spi_dev_set_name(struct spi_device *spi)
369{
370 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
371
372 if (adev) {
373 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
374 return;
375 }
376
377 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
378 spi->chip_select);
379}
380
b6fb8d3a
MW
381static int spi_dev_check(struct device *dev, void *data)
382{
383 struct spi_device *spi = to_spi_device(dev);
384 struct spi_device *new_spi = data;
385
386 if (spi->master == new_spi->master &&
387 spi->chip_select == new_spi->chip_select)
388 return -EBUSY;
389 return 0;
390}
391
dc87c98e
GL
392/**
393 * spi_add_device - Add spi_device allocated with spi_alloc_device
394 * @spi: spi_device to register
395 *
396 * Companion function to spi_alloc_device. Devices allocated with
397 * spi_alloc_device can be added onto the spi bus with this function.
398 *
e48880e0 399 * Returns 0 on success; negative errno on failure
dc87c98e
GL
400 */
401int spi_add_device(struct spi_device *spi)
402{
e48880e0 403 static DEFINE_MUTEX(spi_add_lock);
74317984
JCPV
404 struct spi_master *master = spi->master;
405 struct device *dev = master->dev.parent;
dc87c98e
GL
406 int status;
407
408 /* Chipselects are numbered 0..max; validate. */
74317984 409 if (spi->chip_select >= master->num_chipselect) {
dc87c98e
GL
410 dev_err(dev, "cs%d >= max %d\n",
411 spi->chip_select,
74317984 412 master->num_chipselect);
dc87c98e
GL
413 return -EINVAL;
414 }
415
416 /* Set the bus ID string */
e13ac47b 417 spi_dev_set_name(spi);
e48880e0
DB
418
419 /* We need to make sure there's no other device with this
420 * chipselect **BEFORE** we call setup(), else we'll trash
421 * its configuration. Lock against concurrent add() calls.
422 */
423 mutex_lock(&spi_add_lock);
424
b6fb8d3a
MW
425 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
426 if (status) {
e48880e0
DB
427 dev_err(dev, "chipselect %d already in use\n",
428 spi->chip_select);
e48880e0
DB
429 goto done;
430 }
431
74317984
JCPV
432 if (master->cs_gpios)
433 spi->cs_gpio = master->cs_gpios[spi->chip_select];
434
e48880e0
DB
435 /* Drivers may modify this initial i/o setup, but will
436 * normally rely on the device being setup. Devices
437 * using SPI_CS_HIGH can't coexist well otherwise...
438 */
7d077197 439 status = spi_setup(spi);
dc87c98e 440 if (status < 0) {
eb288a1f
LW
441 dev_err(dev, "can't setup %s, status %d\n",
442 dev_name(&spi->dev), status);
e48880e0 443 goto done;
dc87c98e
GL
444 }
445
e48880e0 446 /* Device may be bound to an active driver when this returns */
dc87c98e 447 status = device_add(&spi->dev);
e48880e0 448 if (status < 0)
eb288a1f
LW
449 dev_err(dev, "can't add %s, status %d\n",
450 dev_name(&spi->dev), status);
e48880e0 451 else
35f74fca 452 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
dc87c98e 453
e48880e0
DB
454done:
455 mutex_unlock(&spi_add_lock);
456 return status;
dc87c98e
GL
457}
458EXPORT_SYMBOL_GPL(spi_add_device);
8ae12a0d 459
33e34dc6
DB
460/**
461 * spi_new_device - instantiate one new SPI device
462 * @master: Controller to which device is connected
463 * @chip: Describes the SPI device
464 * Context: can sleep
465 *
466 * On typical mainboards, this is purely internal; and it's not needed
8ae12a0d
DB
467 * after board init creates the hard-wired devices. Some development
468 * platforms may not be able to use spi_register_board_info though, and
469 * this is exported so that for example a USB or parport based adapter
470 * driver could add devices (which it would learn about out-of-band).
082c8cb4
DB
471 *
472 * Returns the new device, or NULL.
8ae12a0d 473 */
e9d5a461
AB
474struct spi_device *spi_new_device(struct spi_master *master,
475 struct spi_board_info *chip)
8ae12a0d
DB
476{
477 struct spi_device *proxy;
8ae12a0d
DB
478 int status;
479
082c8cb4
DB
480 /* NOTE: caller did any chip->bus_num checks necessary.
481 *
482 * Also, unless we change the return value convention to use
483 * error-or-pointer (not NULL-or-pointer), troubleshootability
484 * suggests syslogged diagnostics are best here (ugh).
485 */
486
dc87c98e
GL
487 proxy = spi_alloc_device(master);
488 if (!proxy)
8ae12a0d
DB
489 return NULL;
490
102eb975
GL
491 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
492
8ae12a0d
DB
493 proxy->chip_select = chip->chip_select;
494 proxy->max_speed_hz = chip->max_speed_hz;
980a01c9 495 proxy->mode = chip->mode;
8ae12a0d 496 proxy->irq = chip->irq;
102eb975 497 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
8ae12a0d
DB
498 proxy->dev.platform_data = (void *) chip->platform_data;
499 proxy->controller_data = chip->controller_data;
500 proxy->controller_state = NULL;
8ae12a0d 501
dc87c98e 502 status = spi_add_device(proxy);
8ae12a0d 503 if (status < 0) {
dc87c98e
GL
504 spi_dev_put(proxy);
505 return NULL;
8ae12a0d
DB
506 }
507
8ae12a0d
DB
508 return proxy;
509}
510EXPORT_SYMBOL_GPL(spi_new_device);
511
2b9603a0
FT
512static void spi_match_master_to_boardinfo(struct spi_master *master,
513 struct spi_board_info *bi)
514{
515 struct spi_device *dev;
516
517 if (master->bus_num != bi->bus_num)
518 return;
519
520 dev = spi_new_device(master, bi);
521 if (!dev)
522 dev_err(master->dev.parent, "can't create new device for %s\n",
523 bi->modalias);
524}
525
33e34dc6
DB
526/**
527 * spi_register_board_info - register SPI devices for a given board
528 * @info: array of chip descriptors
529 * @n: how many descriptors are provided
530 * Context: can sleep
531 *
8ae12a0d
DB
532 * Board-specific early init code calls this (probably during arch_initcall)
533 * with segments of the SPI device table. Any device nodes are created later,
534 * after the relevant parent SPI controller (bus_num) is defined. We keep
535 * this table of devices forever, so that reloading a controller driver will
536 * not make Linux forget about these hard-wired devices.
537 *
538 * Other code can also call this, e.g. a particular add-on board might provide
539 * SPI devices through its expansion connector, so code initializing that board
540 * would naturally declare its SPI devices.
541 *
542 * The board info passed can safely be __initdata ... but be careful of
543 * any embedded pointers (platform_data, etc), they're copied as-is.
544 */
fd4a319b 545int spi_register_board_info(struct spi_board_info const *info, unsigned n)
8ae12a0d 546{
2b9603a0
FT
547 struct boardinfo *bi;
548 int i;
8ae12a0d 549
2b9603a0 550 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
8ae12a0d
DB
551 if (!bi)
552 return -ENOMEM;
8ae12a0d 553
2b9603a0
FT
554 for (i = 0; i < n; i++, bi++, info++) {
555 struct spi_master *master;
8ae12a0d 556
2b9603a0
FT
557 memcpy(&bi->board_info, info, sizeof(*info));
558 mutex_lock(&board_lock);
559 list_add_tail(&bi->list, &board_list);
560 list_for_each_entry(master, &spi_master_list, list)
561 spi_match_master_to_boardinfo(master, &bi->board_info);
562 mutex_unlock(&board_lock);
8ae12a0d 563 }
2b9603a0
FT
564
565 return 0;
8ae12a0d
DB
566}
567
568/*-------------------------------------------------------------------------*/
569
b158935f
MB
570static void spi_set_cs(struct spi_device *spi, bool enable)
571{
572 if (spi->mode & SPI_CS_HIGH)
573 enable = !enable;
574
575 if (spi->cs_gpio >= 0)
576 gpio_set_value(spi->cs_gpio, !enable);
577 else if (spi->master->set_cs)
578 spi->master->set_cs(spi, !enable);
579}
580
581/*
582 * spi_transfer_one_message - Default implementation of transfer_one_message()
583 *
584 * This is a standard implementation of transfer_one_message() for
585 * drivers which impelment a transfer_one() operation. It provides
586 * standard handling of delays and chip select management.
587 */
588static int spi_transfer_one_message(struct spi_master *master,
589 struct spi_message *msg)
590{
591 struct spi_transfer *xfer;
592 bool cur_cs = true;
593 bool keep_cs = false;
594 int ret = 0;
595
596 spi_set_cs(msg->spi, true);
597
598 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
599 trace_spi_transfer_start(msg, xfer);
600
16735d02 601 reinit_completion(&master->xfer_completion);
b158935f
MB
602
603 ret = master->transfer_one(master, msg->spi, xfer);
604 if (ret < 0) {
605 dev_err(&msg->spi->dev,
606 "SPI transfer failed: %d\n", ret);
607 goto out;
608 }
609
13a42798
AL
610 if (ret > 0) {
611 ret = 0;
b158935f 612 wait_for_completion(&master->xfer_completion);
13a42798 613 }
b158935f
MB
614
615 trace_spi_transfer_stop(msg, xfer);
616
617 if (msg->status != -EINPROGRESS)
618 goto out;
619
620 if (xfer->delay_usecs)
621 udelay(xfer->delay_usecs);
622
623 if (xfer->cs_change) {
624 if (list_is_last(&xfer->transfer_list,
625 &msg->transfers)) {
626 keep_cs = true;
627 } else {
628 cur_cs = !cur_cs;
629 spi_set_cs(msg->spi, cur_cs);
630 }
631 }
632
633 msg->actual_length += xfer->len;
634 }
635
636out:
637 if (ret != 0 || !keep_cs)
638 spi_set_cs(msg->spi, false);
639
640 if (msg->status == -EINPROGRESS)
641 msg->status = ret;
642
643 spi_finalize_current_message(master);
644
645 return ret;
646}
647
648/**
649 * spi_finalize_current_transfer - report completion of a transfer
650 *
651 * Called by SPI drivers using the core transfer_one_message()
652 * implementation to notify it that the current interrupt driven
9e8f4882 653 * transfer has finished and the next one may be scheduled.
b158935f
MB
654 */
655void spi_finalize_current_transfer(struct spi_master *master)
656{
657 complete(&master->xfer_completion);
658}
659EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
660
ffbbdd21
LW
661/**
662 * spi_pump_messages - kthread work function which processes spi message queue
663 * @work: pointer to kthread work struct contained in the master struct
664 *
665 * This function checks if there is any spi message in the queue that
666 * needs processing and if so call out to the driver to initialize hardware
667 * and transfer each message.
668 *
669 */
670static void spi_pump_messages(struct kthread_work *work)
671{
672 struct spi_master *master =
673 container_of(work, struct spi_master, pump_messages);
674 unsigned long flags;
675 bool was_busy = false;
676 int ret;
677
678 /* Lock queue and check for queue work */
679 spin_lock_irqsave(&master->queue_lock, flags);
680 if (list_empty(&master->queue) || !master->running) {
b0b36b86
BF
681 if (!master->busy) {
682 spin_unlock_irqrestore(&master->queue_lock, flags);
683 return;
ffbbdd21
LW
684 }
685 master->busy = false;
686 spin_unlock_irqrestore(&master->queue_lock, flags);
b0b36b86
BF
687 if (master->unprepare_transfer_hardware &&
688 master->unprepare_transfer_hardware(master))
689 dev_err(&master->dev,
690 "failed to unprepare transfer hardware\n");
49834de2
MB
691 if (master->auto_runtime_pm) {
692 pm_runtime_mark_last_busy(master->dev.parent);
693 pm_runtime_put_autosuspend(master->dev.parent);
694 }
56ec1978 695 trace_spi_master_idle(master);
ffbbdd21
LW
696 return;
697 }
698
699 /* Make sure we are not already running a message */
700 if (master->cur_msg) {
701 spin_unlock_irqrestore(&master->queue_lock, flags);
702 return;
703 }
704 /* Extract head of queue */
705 master->cur_msg =
a89e2d27 706 list_first_entry(&master->queue, struct spi_message, queue);
ffbbdd21
LW
707
708 list_del_init(&master->cur_msg->queue);
709 if (master->busy)
710 was_busy = true;
711 else
712 master->busy = true;
713 spin_unlock_irqrestore(&master->queue_lock, flags);
714
49834de2
MB
715 if (!was_busy && master->auto_runtime_pm) {
716 ret = pm_runtime_get_sync(master->dev.parent);
717 if (ret < 0) {
718 dev_err(&master->dev, "Failed to power device: %d\n",
719 ret);
720 return;
721 }
722 }
723
56ec1978
MB
724 if (!was_busy)
725 trace_spi_master_busy(master);
726
7dfd2bd7 727 if (!was_busy && master->prepare_transfer_hardware) {
ffbbdd21
LW
728 ret = master->prepare_transfer_hardware(master);
729 if (ret) {
730 dev_err(&master->dev,
731 "failed to prepare transfer hardware\n");
49834de2
MB
732
733 if (master->auto_runtime_pm)
734 pm_runtime_put(master->dev.parent);
ffbbdd21
LW
735 return;
736 }
737 }
738
56ec1978
MB
739 trace_spi_message_start(master->cur_msg);
740
2841a5fc
MB
741 if (master->prepare_message) {
742 ret = master->prepare_message(master, master->cur_msg);
743 if (ret) {
744 dev_err(&master->dev,
745 "failed to prepare message: %d\n", ret);
746 master->cur_msg->status = ret;
747 spi_finalize_current_message(master);
748 return;
749 }
750 master->cur_msg_prepared = true;
751 }
752
ffbbdd21
LW
753 ret = master->transfer_one_message(master, master->cur_msg);
754 if (ret) {
755 dev_err(&master->dev,
e120cc0d
DS
756 "failed to transfer one message from queue: %d\n", ret);
757 master->cur_msg->status = ret;
758 spi_finalize_current_message(master);
ffbbdd21
LW
759 return;
760 }
761}
762
763static int spi_init_queue(struct spi_master *master)
764{
765 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
766
767 INIT_LIST_HEAD(&master->queue);
768 spin_lock_init(&master->queue_lock);
769
770 master->running = false;
771 master->busy = false;
772
773 init_kthread_worker(&master->kworker);
774 master->kworker_task = kthread_run(kthread_worker_fn,
f170168b 775 &master->kworker, "%s",
ffbbdd21
LW
776 dev_name(&master->dev));
777 if (IS_ERR(master->kworker_task)) {
778 dev_err(&master->dev, "failed to create message pump task\n");
779 return -ENOMEM;
780 }
781 init_kthread_work(&master->pump_messages, spi_pump_messages);
782
783 /*
784 * Master config will indicate if this controller should run the
785 * message pump with high (realtime) priority to reduce the transfer
786 * latency on the bus by minimising the delay between a transfer
787 * request and the scheduling of the message pump thread. Without this
788 * setting the message pump thread will remain at default priority.
789 */
790 if (master->rt) {
791 dev_info(&master->dev,
792 "will run message pump with realtime priority\n");
793 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
794 }
795
796 return 0;
797}
798
799/**
800 * spi_get_next_queued_message() - called by driver to check for queued
801 * messages
802 * @master: the master to check for queued messages
803 *
804 * If there are more messages in the queue, the next message is returned from
805 * this call.
806 */
807struct spi_message *spi_get_next_queued_message(struct spi_master *master)
808{
809 struct spi_message *next;
810 unsigned long flags;
811
812 /* get a pointer to the next message, if any */
813 spin_lock_irqsave(&master->queue_lock, flags);
1cfd97f9
AL
814 next = list_first_entry_or_null(&master->queue, struct spi_message,
815 queue);
ffbbdd21
LW
816 spin_unlock_irqrestore(&master->queue_lock, flags);
817
818 return next;
819}
820EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
821
822/**
823 * spi_finalize_current_message() - the current message is complete
824 * @master: the master to return the message to
825 *
826 * Called by the driver to notify the core that the message in the front of the
827 * queue is complete and can be removed from the queue.
828 */
829void spi_finalize_current_message(struct spi_master *master)
830{
831 struct spi_message *mesg;
832 unsigned long flags;
2841a5fc 833 int ret;
ffbbdd21
LW
834
835 spin_lock_irqsave(&master->queue_lock, flags);
836 mesg = master->cur_msg;
837 master->cur_msg = NULL;
838
839 queue_kthread_work(&master->kworker, &master->pump_messages);
840 spin_unlock_irqrestore(&master->queue_lock, flags);
841
2841a5fc
MB
842 if (master->cur_msg_prepared && master->unprepare_message) {
843 ret = master->unprepare_message(master, mesg);
844 if (ret) {
845 dev_err(&master->dev,
846 "failed to unprepare message: %d\n", ret);
847 }
848 }
849 master->cur_msg_prepared = false;
850
ffbbdd21
LW
851 mesg->state = NULL;
852 if (mesg->complete)
853 mesg->complete(mesg->context);
56ec1978
MB
854
855 trace_spi_message_done(mesg);
ffbbdd21
LW
856}
857EXPORT_SYMBOL_GPL(spi_finalize_current_message);
858
859static int spi_start_queue(struct spi_master *master)
860{
861 unsigned long flags;
862
863 spin_lock_irqsave(&master->queue_lock, flags);
864
865 if (master->running || master->busy) {
866 spin_unlock_irqrestore(&master->queue_lock, flags);
867 return -EBUSY;
868 }
869
870 master->running = true;
871 master->cur_msg = NULL;
872 spin_unlock_irqrestore(&master->queue_lock, flags);
873
874 queue_kthread_work(&master->kworker, &master->pump_messages);
875
876 return 0;
877}
878
879static int spi_stop_queue(struct spi_master *master)
880{
881 unsigned long flags;
882 unsigned limit = 500;
883 int ret = 0;
884
885 spin_lock_irqsave(&master->queue_lock, flags);
886
887 /*
888 * This is a bit lame, but is optimized for the common execution path.
889 * A wait_queue on the master->busy could be used, but then the common
890 * execution path (pump_messages) would be required to call wake_up or
891 * friends on every SPI message. Do this instead.
892 */
893 while ((!list_empty(&master->queue) || master->busy) && limit--) {
894 spin_unlock_irqrestore(&master->queue_lock, flags);
895 msleep(10);
896 spin_lock_irqsave(&master->queue_lock, flags);
897 }
898
899 if (!list_empty(&master->queue) || master->busy)
900 ret = -EBUSY;
901 else
902 master->running = false;
903
904 spin_unlock_irqrestore(&master->queue_lock, flags);
905
906 if (ret) {
907 dev_warn(&master->dev,
908 "could not stop message queue\n");
909 return ret;
910 }
911 return ret;
912}
913
914static int spi_destroy_queue(struct spi_master *master)
915{
916 int ret;
917
918 ret = spi_stop_queue(master);
919
920 /*
921 * flush_kthread_worker will block until all work is done.
922 * If the reason that stop_queue timed out is that the work will never
923 * finish, then it does no good to call flush/stop thread, so
924 * return anyway.
925 */
926 if (ret) {
927 dev_err(&master->dev, "problem destroying queue\n");
928 return ret;
929 }
930
931 flush_kthread_worker(&master->kworker);
932 kthread_stop(master->kworker_task);
933
934 return 0;
935}
936
937/**
938 * spi_queued_transfer - transfer function for queued transfers
939 * @spi: spi device which is requesting transfer
940 * @msg: spi message which is to handled is queued to driver queue
941 */
942static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
943{
944 struct spi_master *master = spi->master;
945 unsigned long flags;
946
947 spin_lock_irqsave(&master->queue_lock, flags);
948
949 if (!master->running) {
950 spin_unlock_irqrestore(&master->queue_lock, flags);
951 return -ESHUTDOWN;
952 }
953 msg->actual_length = 0;
954 msg->status = -EINPROGRESS;
955
956 list_add_tail(&msg->queue, &master->queue);
96b3eace 957 if (!master->busy)
ffbbdd21
LW
958 queue_kthread_work(&master->kworker, &master->pump_messages);
959
960 spin_unlock_irqrestore(&master->queue_lock, flags);
961 return 0;
962}
963
964static int spi_master_initialize_queue(struct spi_master *master)
965{
966 int ret;
967
968 master->queued = true;
969 master->transfer = spi_queued_transfer;
b158935f
MB
970 if (!master->transfer_one_message)
971 master->transfer_one_message = spi_transfer_one_message;
ffbbdd21
LW
972
973 /* Initialize and start queue */
974 ret = spi_init_queue(master);
975 if (ret) {
976 dev_err(&master->dev, "problem initializing queue\n");
977 goto err_init_queue;
978 }
979 ret = spi_start_queue(master);
980 if (ret) {
981 dev_err(&master->dev, "problem starting queue\n");
982 goto err_start_queue;
983 }
984
985 return 0;
986
987err_start_queue:
988err_init_queue:
989 spi_destroy_queue(master);
990 return ret;
991}
992
993/*-------------------------------------------------------------------------*/
994
7cb94361 995#if defined(CONFIG_OF)
d57a4282
GL
996/**
997 * of_register_spi_devices() - Register child devices onto the SPI bus
998 * @master: Pointer to spi_master device
999 *
1000 * Registers an spi_device for each child node of master node which has a 'reg'
1001 * property.
1002 */
1003static void of_register_spi_devices(struct spi_master *master)
1004{
1005 struct spi_device *spi;
1006 struct device_node *nc;
d57a4282 1007 int rc;
89da4293 1008 u32 value;
d57a4282
GL
1009
1010 if (!master->dev.of_node)
1011 return;
1012
f3b6159e 1013 for_each_available_child_of_node(master->dev.of_node, nc) {
d57a4282
GL
1014 /* Alloc an spi_device */
1015 spi = spi_alloc_device(master);
1016 if (!spi) {
1017 dev_err(&master->dev, "spi_device alloc error for %s\n",
1018 nc->full_name);
1019 spi_dev_put(spi);
1020 continue;
1021 }
1022
1023 /* Select device driver */
1024 if (of_modalias_node(nc, spi->modalias,
1025 sizeof(spi->modalias)) < 0) {
1026 dev_err(&master->dev, "cannot find modalias for %s\n",
1027 nc->full_name);
1028 spi_dev_put(spi);
1029 continue;
1030 }
1031
1032 /* Device address */
89da4293
TP
1033 rc = of_property_read_u32(nc, "reg", &value);
1034 if (rc) {
1035 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1036 nc->full_name, rc);
d57a4282
GL
1037 spi_dev_put(spi);
1038 continue;
1039 }
89da4293 1040 spi->chip_select = value;
d57a4282
GL
1041
1042 /* Mode (clock phase/polarity/etc.) */
1043 if (of_find_property(nc, "spi-cpha", NULL))
1044 spi->mode |= SPI_CPHA;
1045 if (of_find_property(nc, "spi-cpol", NULL))
1046 spi->mode |= SPI_CPOL;
1047 if (of_find_property(nc, "spi-cs-high", NULL))
1048 spi->mode |= SPI_CS_HIGH;
c20151df
LPC
1049 if (of_find_property(nc, "spi-3wire", NULL))
1050 spi->mode |= SPI_3WIRE;
d57a4282 1051
f477b7fb 1052 /* Device DUAL/QUAD mode */
89da4293
TP
1053 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1054 switch (value) {
1055 case 1:
a822e99c 1056 break;
89da4293 1057 case 2:
a822e99c
MB
1058 spi->mode |= SPI_TX_DUAL;
1059 break;
89da4293 1060 case 4:
a822e99c
MB
1061 spi->mode |= SPI_TX_QUAD;
1062 break;
1063 default:
1064 dev_err(&master->dev,
a110f93d 1065 "spi-tx-bus-width %d not supported\n",
89da4293 1066 value);
a822e99c
MB
1067 spi_dev_put(spi);
1068 continue;
1069 }
f477b7fb 1070 }
1071
89da4293
TP
1072 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1073 switch (value) {
1074 case 1:
a822e99c 1075 break;
89da4293 1076 case 2:
a822e99c
MB
1077 spi->mode |= SPI_RX_DUAL;
1078 break;
89da4293 1079 case 4:
a822e99c
MB
1080 spi->mode |= SPI_RX_QUAD;
1081 break;
1082 default:
1083 dev_err(&master->dev,
a110f93d 1084 "spi-rx-bus-width %d not supported\n",
89da4293 1085 value);
a822e99c
MB
1086 spi_dev_put(spi);
1087 continue;
1088 }
f477b7fb 1089 }
1090
d57a4282 1091 /* Device speed */
89da4293
TP
1092 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1093 if (rc) {
1094 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1095 nc->full_name, rc);
d57a4282
GL
1096 spi_dev_put(spi);
1097 continue;
1098 }
89da4293 1099 spi->max_speed_hz = value;
d57a4282
GL
1100
1101 /* IRQ */
1102 spi->irq = irq_of_parse_and_map(nc, 0);
1103
1104 /* Store a pointer to the node in the device structure */
1105 of_node_get(nc);
1106 spi->dev.of_node = nc;
1107
1108 /* Register the new device */
70fac17c 1109 request_module("%s%s", SPI_MODULE_PREFIX, spi->modalias);
d57a4282
GL
1110 rc = spi_add_device(spi);
1111 if (rc) {
1112 dev_err(&master->dev, "spi_device register error %s\n",
1113 nc->full_name);
1114 spi_dev_put(spi);
1115 }
1116
1117 }
1118}
1119#else
1120static void of_register_spi_devices(struct spi_master *master) { }
1121#endif
1122
64bee4d2
MW
1123#ifdef CONFIG_ACPI
1124static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1125{
1126 struct spi_device *spi = data;
1127
1128 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1129 struct acpi_resource_spi_serialbus *sb;
1130
1131 sb = &ares->data.spi_serial_bus;
1132 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1133 spi->chip_select = sb->device_selection;
1134 spi->max_speed_hz = sb->connection_speed;
1135
1136 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1137 spi->mode |= SPI_CPHA;
1138 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1139 spi->mode |= SPI_CPOL;
1140 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1141 spi->mode |= SPI_CS_HIGH;
1142 }
1143 } else if (spi->irq < 0) {
1144 struct resource r;
1145
1146 if (acpi_dev_resource_interrupt(ares, 0, &r))
1147 spi->irq = r.start;
1148 }
1149
1150 /* Always tell the ACPI core to skip this resource */
1151 return 1;
1152}
1153
1154static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1155 void *data, void **return_value)
1156{
1157 struct spi_master *master = data;
1158 struct list_head resource_list;
1159 struct acpi_device *adev;
1160 struct spi_device *spi;
1161 int ret;
1162
1163 if (acpi_bus_get_device(handle, &adev))
1164 return AE_OK;
1165 if (acpi_bus_get_status(adev) || !adev->status.present)
1166 return AE_OK;
1167
1168 spi = spi_alloc_device(master);
1169 if (!spi) {
1170 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1171 dev_name(&adev->dev));
1172 return AE_NO_MEMORY;
1173 }
1174
7b199811 1175 ACPI_COMPANION_SET(&spi->dev, adev);
64bee4d2
MW
1176 spi->irq = -1;
1177
1178 INIT_LIST_HEAD(&resource_list);
1179 ret = acpi_dev_get_resources(adev, &resource_list,
1180 acpi_spi_add_resource, spi);
1181 acpi_dev_free_resource_list(&resource_list);
1182
1183 if (ret < 0 || !spi->max_speed_hz) {
1184 spi_dev_put(spi);
1185 return AE_OK;
1186 }
1187
33cf00e5 1188 adev->power.flags.ignore_parent = true;
cf9eb39c 1189 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
64bee4d2 1190 if (spi_add_device(spi)) {
33cf00e5 1191 adev->power.flags.ignore_parent = false;
64bee4d2
MW
1192 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1193 dev_name(&adev->dev));
1194 spi_dev_put(spi);
1195 }
1196
1197 return AE_OK;
1198}
1199
1200static void acpi_register_spi_devices(struct spi_master *master)
1201{
1202 acpi_status status;
1203 acpi_handle handle;
1204
29896178 1205 handle = ACPI_HANDLE(master->dev.parent);
64bee4d2
MW
1206 if (!handle)
1207 return;
1208
1209 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1210 acpi_spi_add_device, NULL,
1211 master, NULL);
1212 if (ACPI_FAILURE(status))
1213 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1214}
1215#else
1216static inline void acpi_register_spi_devices(struct spi_master *master) {}
1217#endif /* CONFIG_ACPI */
1218
49dce689 1219static void spi_master_release(struct device *dev)
8ae12a0d
DB
1220{
1221 struct spi_master *master;
1222
49dce689 1223 master = container_of(dev, struct spi_master, dev);
8ae12a0d
DB
1224 kfree(master);
1225}
1226
1227static struct class spi_master_class = {
1228 .name = "spi_master",
1229 .owner = THIS_MODULE,
49dce689 1230 .dev_release = spi_master_release,
8ae12a0d
DB
1231};
1232
1233
ffbbdd21 1234
8ae12a0d
DB
1235/**
1236 * spi_alloc_master - allocate SPI master controller
1237 * @dev: the controller, possibly using the platform_bus
33e34dc6 1238 * @size: how much zeroed driver-private data to allocate; the pointer to this
49dce689 1239 * memory is in the driver_data field of the returned device,
0c868461 1240 * accessible with spi_master_get_devdata().
33e34dc6 1241 * Context: can sleep
8ae12a0d
DB
1242 *
1243 * This call is used only by SPI master controller drivers, which are the
1244 * only ones directly touching chip registers. It's how they allocate
ba1a0513 1245 * an spi_master structure, prior to calling spi_register_master().
8ae12a0d
DB
1246 *
1247 * This must be called from context that can sleep. It returns the SPI
1248 * master structure on success, else NULL.
1249 *
1250 * The caller is responsible for assigning the bus number and initializing
ba1a0513 1251 * the master's methods before calling spi_register_master(); and (after errors
eb4af0f5
UKK
1252 * adding the device) calling spi_master_put() and kfree() to prevent a memory
1253 * leak.
8ae12a0d 1254 */
e9d5a461 1255struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
8ae12a0d
DB
1256{
1257 struct spi_master *master;
1258
0c868461
DB
1259 if (!dev)
1260 return NULL;
1261
5fe5f05e 1262 master = kzalloc(size + sizeof(*master), GFP_KERNEL);
8ae12a0d
DB
1263 if (!master)
1264 return NULL;
1265
49dce689 1266 device_initialize(&master->dev);
1e8a52e1
GL
1267 master->bus_num = -1;
1268 master->num_chipselect = 1;
49dce689
TJ
1269 master->dev.class = &spi_master_class;
1270 master->dev.parent = get_device(dev);
0c868461 1271 spi_master_set_devdata(master, &master[1]);
8ae12a0d
DB
1272
1273 return master;
1274}
1275EXPORT_SYMBOL_GPL(spi_alloc_master);
1276
74317984
JCPV
1277#ifdef CONFIG_OF
1278static int of_spi_register_master(struct spi_master *master)
1279{
e80beb27 1280 int nb, i, *cs;
74317984
JCPV
1281 struct device_node *np = master->dev.of_node;
1282
1283 if (!np)
1284 return 0;
1285
1286 nb = of_gpio_named_count(np, "cs-gpios");
5fe5f05e 1287 master->num_chipselect = max_t(int, nb, master->num_chipselect);
74317984 1288
8ec5d84e
AL
1289 /* Return error only for an incorrectly formed cs-gpios property */
1290 if (nb == 0 || nb == -ENOENT)
74317984 1291 return 0;
8ec5d84e
AL
1292 else if (nb < 0)
1293 return nb;
74317984
JCPV
1294
1295 cs = devm_kzalloc(&master->dev,
1296 sizeof(int) * master->num_chipselect,
1297 GFP_KERNEL);
1298 master->cs_gpios = cs;
1299
1300 if (!master->cs_gpios)
1301 return -ENOMEM;
1302
0da83bb1 1303 for (i = 0; i < master->num_chipselect; i++)
446411e1 1304 cs[i] = -ENOENT;
74317984
JCPV
1305
1306 for (i = 0; i < nb; i++)
1307 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1308
1309 return 0;
1310}
1311#else
1312static int of_spi_register_master(struct spi_master *master)
1313{
1314 return 0;
1315}
1316#endif
1317
8ae12a0d
DB
1318/**
1319 * spi_register_master - register SPI master controller
1320 * @master: initialized master, originally from spi_alloc_master()
33e34dc6 1321 * Context: can sleep
8ae12a0d
DB
1322 *
1323 * SPI master controllers connect to their drivers using some non-SPI bus,
1324 * such as the platform bus. The final stage of probe() in that code
1325 * includes calling spi_register_master() to hook up to this SPI bus glue.
1326 *
1327 * SPI controllers use board specific (often SOC specific) bus numbers,
1328 * and board-specific addressing for SPI devices combines those numbers
1329 * with chip select numbers. Since SPI does not directly support dynamic
1330 * device identification, boards need configuration tables telling which
1331 * chip is at which address.
1332 *
1333 * This must be called from context that can sleep. It returns zero on
1334 * success, else a negative error code (dropping the master's refcount).
0c868461
DB
1335 * After a successful return, the caller is responsible for calling
1336 * spi_unregister_master().
8ae12a0d 1337 */
e9d5a461 1338int spi_register_master(struct spi_master *master)
8ae12a0d 1339{
e44a45ae 1340 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
49dce689 1341 struct device *dev = master->dev.parent;
2b9603a0 1342 struct boardinfo *bi;
8ae12a0d
DB
1343 int status = -ENODEV;
1344 int dynamic = 0;
1345
0c868461
DB
1346 if (!dev)
1347 return -ENODEV;
1348
74317984
JCPV
1349 status = of_spi_register_master(master);
1350 if (status)
1351 return status;
1352
082c8cb4
DB
1353 /* even if it's just one always-selected device, there must
1354 * be at least one chipselect
1355 */
1356 if (master->num_chipselect == 0)
1357 return -EINVAL;
1358
bb29785e
GL
1359 if ((master->bus_num < 0) && master->dev.of_node)
1360 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1361
8ae12a0d 1362 /* convention: dynamically assigned bus IDs count down from the max */
a020ed75 1363 if (master->bus_num < 0) {
082c8cb4
DB
1364 /* FIXME switch to an IDR based scheme, something like
1365 * I2C now uses, so we can't run out of "dynamic" IDs
1366 */
8ae12a0d 1367 master->bus_num = atomic_dec_return(&dyn_bus_id);
b885244e 1368 dynamic = 1;
8ae12a0d
DB
1369 }
1370
cf32b71e
ES
1371 spin_lock_init(&master->bus_lock_spinlock);
1372 mutex_init(&master->bus_lock_mutex);
1373 master->bus_lock_flag = 0;
b158935f 1374 init_completion(&master->xfer_completion);
cf32b71e 1375
8ae12a0d
DB
1376 /* register the device, then userspace will see it.
1377 * registration fails if the bus ID is in use.
1378 */
35f74fca 1379 dev_set_name(&master->dev, "spi%u", master->bus_num);
49dce689 1380 status = device_add(&master->dev);
b885244e 1381 if (status < 0)
8ae12a0d 1382 goto done;
35f74fca 1383 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
8ae12a0d
DB
1384 dynamic ? " (dynamic)" : "");
1385
ffbbdd21
LW
1386 /* If we're using a queued driver, start the queue */
1387 if (master->transfer)
1388 dev_info(dev, "master is unqueued, this is deprecated\n");
1389 else {
1390 status = spi_master_initialize_queue(master);
1391 if (status) {
e93b0724 1392 device_del(&master->dev);
ffbbdd21
LW
1393 goto done;
1394 }
1395 }
1396
2b9603a0
FT
1397 mutex_lock(&board_lock);
1398 list_add_tail(&master->list, &spi_master_list);
1399 list_for_each_entry(bi, &board_list, list)
1400 spi_match_master_to_boardinfo(master, &bi->board_info);
1401 mutex_unlock(&board_lock);
1402
64bee4d2 1403 /* Register devices from the device tree and ACPI */
12b15e83 1404 of_register_spi_devices(master);
64bee4d2 1405 acpi_register_spi_devices(master);
8ae12a0d
DB
1406done:
1407 return status;
1408}
1409EXPORT_SYMBOL_GPL(spi_register_master);
1410
666d5b4c
MB
1411static void devm_spi_unregister(struct device *dev, void *res)
1412{
1413 spi_unregister_master(*(struct spi_master **)res);
1414}
1415
1416/**
1417 * dev_spi_register_master - register managed SPI master controller
1418 * @dev: device managing SPI master
1419 * @master: initialized master, originally from spi_alloc_master()
1420 * Context: can sleep
1421 *
1422 * Register a SPI device as with spi_register_master() which will
1423 * automatically be unregister
1424 */
1425int devm_spi_register_master(struct device *dev, struct spi_master *master)
1426{
1427 struct spi_master **ptr;
1428 int ret;
1429
1430 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1431 if (!ptr)
1432 return -ENOMEM;
1433
1434 ret = spi_register_master(master);
4b92894e 1435 if (!ret) {
666d5b4c
MB
1436 *ptr = master;
1437 devres_add(dev, ptr);
1438 } else {
1439 devres_free(ptr);
1440 }
1441
1442 return ret;
1443}
1444EXPORT_SYMBOL_GPL(devm_spi_register_master);
1445
34860089 1446static int __unregister(struct device *dev, void *null)
8ae12a0d 1447{
34860089 1448 spi_unregister_device(to_spi_device(dev));
8ae12a0d
DB
1449 return 0;
1450}
1451
1452/**
1453 * spi_unregister_master - unregister SPI master controller
1454 * @master: the master being unregistered
33e34dc6 1455 * Context: can sleep
8ae12a0d
DB
1456 *
1457 * This call is used only by SPI master controller drivers, which are the
1458 * only ones directly touching chip registers.
1459 *
1460 * This must be called from context that can sleep.
1461 */
1462void spi_unregister_master(struct spi_master *master)
1463{
89fc9a1a
JG
1464 int dummy;
1465
ffbbdd21
LW
1466 if (master->queued) {
1467 if (spi_destroy_queue(master))
1468 dev_err(&master->dev, "queue remove failed\n");
1469 }
1470
2b9603a0
FT
1471 mutex_lock(&board_lock);
1472 list_del(&master->list);
1473 mutex_unlock(&board_lock);
1474
97dbf37d 1475 dummy = device_for_each_child(&master->dev, NULL, __unregister);
49dce689 1476 device_unregister(&master->dev);
8ae12a0d
DB
1477}
1478EXPORT_SYMBOL_GPL(spi_unregister_master);
1479
ffbbdd21
LW
1480int spi_master_suspend(struct spi_master *master)
1481{
1482 int ret;
1483
1484 /* Basically no-ops for non-queued masters */
1485 if (!master->queued)
1486 return 0;
1487
1488 ret = spi_stop_queue(master);
1489 if (ret)
1490 dev_err(&master->dev, "queue stop failed\n");
1491
1492 return ret;
1493}
1494EXPORT_SYMBOL_GPL(spi_master_suspend);
1495
1496int spi_master_resume(struct spi_master *master)
1497{
1498 int ret;
1499
1500 if (!master->queued)
1501 return 0;
1502
1503 ret = spi_start_queue(master);
1504 if (ret)
1505 dev_err(&master->dev, "queue restart failed\n");
1506
1507 return ret;
1508}
1509EXPORT_SYMBOL_GPL(spi_master_resume);
1510
9f3b795a 1511static int __spi_master_match(struct device *dev, const void *data)
5ed2c832
DY
1512{
1513 struct spi_master *m;
9f3b795a 1514 const u16 *bus_num = data;
5ed2c832
DY
1515
1516 m = container_of(dev, struct spi_master, dev);
1517 return m->bus_num == *bus_num;
1518}
1519
8ae12a0d
DB
1520/**
1521 * spi_busnum_to_master - look up master associated with bus_num
1522 * @bus_num: the master's bus number
33e34dc6 1523 * Context: can sleep
8ae12a0d
DB
1524 *
1525 * This call may be used with devices that are registered after
1526 * arch init time. It returns a refcounted pointer to the relevant
1527 * spi_master (which the caller must release), or NULL if there is
1528 * no such master registered.
1529 */
1530struct spi_master *spi_busnum_to_master(u16 bus_num)
1531{
49dce689 1532 struct device *dev;
1e9a51dc 1533 struct spi_master *master = NULL;
5ed2c832 1534
695794ae 1535 dev = class_find_device(&spi_master_class, NULL, &bus_num,
5ed2c832
DY
1536 __spi_master_match);
1537 if (dev)
1538 master = container_of(dev, struct spi_master, dev);
1539 /* reference got in class_find_device */
1e9a51dc 1540 return master;
8ae12a0d
DB
1541}
1542EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1543
1544
1545/*-------------------------------------------------------------------------*/
1546
7d077197
DB
1547/* Core methods for SPI master protocol drivers. Some of the
1548 * other core methods are currently defined as inline functions.
1549 */
1550
1551/**
1552 * spi_setup - setup SPI mode and clock rate
1553 * @spi: the device whose settings are being modified
1554 * Context: can sleep, and no requests are queued to the device
1555 *
1556 * SPI protocol drivers may need to update the transfer mode if the
1557 * device doesn't work with its default. They may likewise need
1558 * to update clock rates or word sizes from initial values. This function
1559 * changes those settings, and must be called from a context that can sleep.
1560 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1561 * effect the next time the device is selected and data is transferred to
1562 * or from it. When this function returns, the spi device is deselected.
1563 *
1564 * Note that this call will fail if the protocol driver specifies an option
1565 * that the underlying controller or its driver does not support. For
1566 * example, not all hardware supports wire transfers using nine bit words,
1567 * LSB-first wire encoding, or active-high chipselects.
1568 */
1569int spi_setup(struct spi_device *spi)
1570{
e7db06b5 1571 unsigned bad_bits;
caae070c 1572 int status = 0;
7d077197 1573
f477b7fb 1574 /* check mode to prevent that DUAL and QUAD set at the same time
1575 */
1576 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
1577 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
1578 dev_err(&spi->dev,
1579 "setup: can not select dual and quad at the same time\n");
1580 return -EINVAL;
1581 }
1582 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1583 */
1584 if ((spi->mode & SPI_3WIRE) && (spi->mode &
1585 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
1586 return -EINVAL;
e7db06b5
DB
1587 /* help drivers fail *cleanly* when they need options
1588 * that aren't supported with their current master
1589 */
1590 bad_bits = spi->mode & ~spi->master->mode_bits;
1591 if (bad_bits) {
eb288a1f 1592 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
e7db06b5
DB
1593 bad_bits);
1594 return -EINVAL;
1595 }
1596
7d077197
DB
1597 if (!spi->bits_per_word)
1598 spi->bits_per_word = 8;
1599
caae070c
LD
1600 if (spi->master->setup)
1601 status = spi->master->setup(spi);
7d077197 1602
5fe5f05e 1603 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
7d077197
DB
1604 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1605 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1606 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1607 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
1608 (spi->mode & SPI_LOOP) ? "loopback, " : "",
1609 spi->bits_per_word, spi->max_speed_hz,
1610 status);
1611
1612 return status;
1613}
1614EXPORT_SYMBOL_GPL(spi_setup);
1615
90808738 1616static int __spi_validate(struct spi_device *spi, struct spi_message *message)
cf32b71e
ES
1617{
1618 struct spi_master *master = spi->master;
e6811d1d 1619 struct spi_transfer *xfer;
4d94bd21 1620 int w_size, n_words;
cf32b71e 1621
24a0013a
MB
1622 if (list_empty(&message->transfers))
1623 return -EINVAL;
1624 if (!message->complete)
1625 return -EINVAL;
1626
cf32b71e
ES
1627 /* Half-duplex links include original MicroWire, and ones with
1628 * only one data pin like SPI_3WIRE (switches direction) or where
1629 * either MOSI or MISO is missing. They can also be caused by
1630 * software limitations.
1631 */
1632 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1633 || (spi->mode & SPI_3WIRE)) {
cf32b71e
ES
1634 unsigned flags = master->flags;
1635
1636 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1637 if (xfer->rx_buf && xfer->tx_buf)
1638 return -EINVAL;
1639 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1640 return -EINVAL;
1641 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1642 return -EINVAL;
1643 }
1644 }
1645
e6811d1d 1646 /**
059b8ffe
LD
1647 * Set transfer bits_per_word and max speed as spi device default if
1648 * it is not set for this transfer.
f477b7fb 1649 * Set transfer tx_nbits and rx_nbits as single transfer default
1650 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
e6811d1d
LD
1651 */
1652 list_for_each_entry(xfer, &message->transfers, transfer_list) {
078726ce 1653 message->frame_length += xfer->len;
e6811d1d
LD
1654 if (!xfer->bits_per_word)
1655 xfer->bits_per_word = spi->bits_per_word;
56ede94a 1656 if (!xfer->speed_hz) {
059b8ffe 1657 xfer->speed_hz = spi->max_speed_hz;
56ede94a
GJ
1658 if (master->max_speed_hz &&
1659 xfer->speed_hz > master->max_speed_hz)
1660 xfer->speed_hz = master->max_speed_hz;
1661 }
1662
543bb255
SW
1663 if (master->bits_per_word_mask) {
1664 /* Only 32 bits fit in the mask */
1665 if (xfer->bits_per_word > 32)
1666 return -EINVAL;
1667 if (!(master->bits_per_word_mask &
1668 BIT(xfer->bits_per_word - 1)))
1669 return -EINVAL;
1670 }
a2fd4f9f 1671
4d94bd21
II
1672 /*
1673 * SPI transfer length should be multiple of SPI word size
1674 * where SPI word size should be power-of-two multiple
1675 */
1676 if (xfer->bits_per_word <= 8)
1677 w_size = 1;
1678 else if (xfer->bits_per_word <= 16)
1679 w_size = 2;
1680 else
1681 w_size = 4;
1682
1683 n_words = xfer->len / w_size;
1684 /* No partial transfers accepted */
1685 if (!n_words || xfer->len % w_size)
1686 return -EINVAL;
1687
a2fd4f9f
MB
1688 if (xfer->speed_hz && master->min_speed_hz &&
1689 xfer->speed_hz < master->min_speed_hz)
1690 return -EINVAL;
1691 if (xfer->speed_hz && master->max_speed_hz &&
1692 xfer->speed_hz > master->max_speed_hz)
d5ee722a 1693 return -EINVAL;
f477b7fb 1694
1695 if (xfer->tx_buf && !xfer->tx_nbits)
1696 xfer->tx_nbits = SPI_NBITS_SINGLE;
1697 if (xfer->rx_buf && !xfer->rx_nbits)
1698 xfer->rx_nbits = SPI_NBITS_SINGLE;
1699 /* check transfer tx/rx_nbits:
1afd9989
GU
1700 * 1. check the value matches one of single, dual and quad
1701 * 2. check tx/rx_nbits match the mode in spi_device
f477b7fb 1702 */
db90a441
SP
1703 if (xfer->tx_buf) {
1704 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
1705 xfer->tx_nbits != SPI_NBITS_DUAL &&
1706 xfer->tx_nbits != SPI_NBITS_QUAD)
1707 return -EINVAL;
1708 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
1709 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
1710 return -EINVAL;
1711 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
1712 !(spi->mode & SPI_TX_QUAD))
1713 return -EINVAL;
db90a441 1714 }
f477b7fb 1715 /* check transfer rx_nbits */
db90a441
SP
1716 if (xfer->rx_buf) {
1717 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
1718 xfer->rx_nbits != SPI_NBITS_DUAL &&
1719 xfer->rx_nbits != SPI_NBITS_QUAD)
1720 return -EINVAL;
1721 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
1722 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
1723 return -EINVAL;
1724 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
1725 !(spi->mode & SPI_RX_QUAD))
1726 return -EINVAL;
db90a441 1727 }
e6811d1d
LD
1728 }
1729
cf32b71e 1730 message->status = -EINPROGRESS;
90808738
MB
1731
1732 return 0;
1733}
1734
1735static int __spi_async(struct spi_device *spi, struct spi_message *message)
1736{
1737 struct spi_master *master = spi->master;
1738
1739 message->spi = spi;
1740
1741 trace_spi_message_submit(message);
1742
cf32b71e
ES
1743 return master->transfer(spi, message);
1744}
1745
568d0697
DB
1746/**
1747 * spi_async - asynchronous SPI transfer
1748 * @spi: device with which data will be exchanged
1749 * @message: describes the data transfers, including completion callback
1750 * Context: any (irqs may be blocked, etc)
1751 *
1752 * This call may be used in_irq and other contexts which can't sleep,
1753 * as well as from task contexts which can sleep.
1754 *
1755 * The completion callback is invoked in a context which can't sleep.
1756 * Before that invocation, the value of message->status is undefined.
1757 * When the callback is issued, message->status holds either zero (to
1758 * indicate complete success) or a negative error code. After that
1759 * callback returns, the driver which issued the transfer request may
1760 * deallocate the associated memory; it's no longer in use by any SPI
1761 * core or controller driver code.
1762 *
1763 * Note that although all messages to a spi_device are handled in
1764 * FIFO order, messages may go to different devices in other orders.
1765 * Some device might be higher priority, or have various "hard" access
1766 * time requirements, for example.
1767 *
1768 * On detection of any fault during the transfer, processing of
1769 * the entire message is aborted, and the device is deselected.
1770 * Until returning from the associated message completion callback,
1771 * no other spi_message queued to that device will be processed.
1772 * (This rule applies equally to all the synchronous transfer calls,
1773 * which are wrappers around this core asynchronous primitive.)
1774 */
1775int spi_async(struct spi_device *spi, struct spi_message *message)
1776{
1777 struct spi_master *master = spi->master;
cf32b71e
ES
1778 int ret;
1779 unsigned long flags;
568d0697 1780
90808738
MB
1781 ret = __spi_validate(spi, message);
1782 if (ret != 0)
1783 return ret;
1784
cf32b71e 1785 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
568d0697 1786
cf32b71e
ES
1787 if (master->bus_lock_flag)
1788 ret = -EBUSY;
1789 else
1790 ret = __spi_async(spi, message);
568d0697 1791
cf32b71e
ES
1792 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1793
1794 return ret;
568d0697
DB
1795}
1796EXPORT_SYMBOL_GPL(spi_async);
1797
cf32b71e
ES
1798/**
1799 * spi_async_locked - version of spi_async with exclusive bus usage
1800 * @spi: device with which data will be exchanged
1801 * @message: describes the data transfers, including completion callback
1802 * Context: any (irqs may be blocked, etc)
1803 *
1804 * This call may be used in_irq and other contexts which can't sleep,
1805 * as well as from task contexts which can sleep.
1806 *
1807 * The completion callback is invoked in a context which can't sleep.
1808 * Before that invocation, the value of message->status is undefined.
1809 * When the callback is issued, message->status holds either zero (to
1810 * indicate complete success) or a negative error code. After that
1811 * callback returns, the driver which issued the transfer request may
1812 * deallocate the associated memory; it's no longer in use by any SPI
1813 * core or controller driver code.
1814 *
1815 * Note that although all messages to a spi_device are handled in
1816 * FIFO order, messages may go to different devices in other orders.
1817 * Some device might be higher priority, or have various "hard" access
1818 * time requirements, for example.
1819 *
1820 * On detection of any fault during the transfer, processing of
1821 * the entire message is aborted, and the device is deselected.
1822 * Until returning from the associated message completion callback,
1823 * no other spi_message queued to that device will be processed.
1824 * (This rule applies equally to all the synchronous transfer calls,
1825 * which are wrappers around this core asynchronous primitive.)
1826 */
1827int spi_async_locked(struct spi_device *spi, struct spi_message *message)
1828{
1829 struct spi_master *master = spi->master;
1830 int ret;
1831 unsigned long flags;
1832
90808738
MB
1833 ret = __spi_validate(spi, message);
1834 if (ret != 0)
1835 return ret;
1836
cf32b71e
ES
1837 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1838
1839 ret = __spi_async(spi, message);
1840
1841 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1842
1843 return ret;
1844
1845}
1846EXPORT_SYMBOL_GPL(spi_async_locked);
1847
7d077197
DB
1848
1849/*-------------------------------------------------------------------------*/
1850
1851/* Utility methods for SPI master protocol drivers, layered on
1852 * top of the core. Some other utility methods are defined as
1853 * inline functions.
1854 */
1855
5d870c8e
AM
1856static void spi_complete(void *arg)
1857{
1858 complete(arg);
1859}
1860
cf32b71e
ES
1861static int __spi_sync(struct spi_device *spi, struct spi_message *message,
1862 int bus_locked)
1863{
1864 DECLARE_COMPLETION_ONSTACK(done);
1865 int status;
1866 struct spi_master *master = spi->master;
1867
1868 message->complete = spi_complete;
1869 message->context = &done;
1870
1871 if (!bus_locked)
1872 mutex_lock(&master->bus_lock_mutex);
1873
1874 status = spi_async_locked(spi, message);
1875
1876 if (!bus_locked)
1877 mutex_unlock(&master->bus_lock_mutex);
1878
1879 if (status == 0) {
1880 wait_for_completion(&done);
1881 status = message->status;
1882 }
1883 message->context = NULL;
1884 return status;
1885}
1886
8ae12a0d
DB
1887/**
1888 * spi_sync - blocking/synchronous SPI data transfers
1889 * @spi: device with which data will be exchanged
1890 * @message: describes the data transfers
33e34dc6 1891 * Context: can sleep
8ae12a0d
DB
1892 *
1893 * This call may only be used from a context that may sleep. The sleep
1894 * is non-interruptible, and has no timeout. Low-overhead controller
1895 * drivers may DMA directly into and out of the message buffers.
1896 *
1897 * Note that the SPI device's chip select is active during the message,
1898 * and then is normally disabled between messages. Drivers for some
1899 * frequently-used devices may want to minimize costs of selecting a chip,
1900 * by leaving it selected in anticipation that the next message will go
1901 * to the same chip. (That may increase power usage.)
1902 *
0c868461
DB
1903 * Also, the caller is guaranteeing that the memory associated with the
1904 * message will not be freed before this call returns.
1905 *
9b938b74 1906 * It returns zero on success, else a negative error code.
8ae12a0d
DB
1907 */
1908int spi_sync(struct spi_device *spi, struct spi_message *message)
1909{
cf32b71e 1910 return __spi_sync(spi, message, 0);
8ae12a0d
DB
1911}
1912EXPORT_SYMBOL_GPL(spi_sync);
1913
cf32b71e
ES
1914/**
1915 * spi_sync_locked - version of spi_sync with exclusive bus usage
1916 * @spi: device with which data will be exchanged
1917 * @message: describes the data transfers
1918 * Context: can sleep
1919 *
1920 * This call may only be used from a context that may sleep. The sleep
1921 * is non-interruptible, and has no timeout. Low-overhead controller
1922 * drivers may DMA directly into and out of the message buffers.
1923 *
1924 * This call should be used by drivers that require exclusive access to the
25985edc 1925 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
cf32b71e
ES
1926 * be released by a spi_bus_unlock call when the exclusive access is over.
1927 *
1928 * It returns zero on success, else a negative error code.
1929 */
1930int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
1931{
1932 return __spi_sync(spi, message, 1);
1933}
1934EXPORT_SYMBOL_GPL(spi_sync_locked);
1935
1936/**
1937 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
1938 * @master: SPI bus master that should be locked for exclusive bus access
1939 * Context: can sleep
1940 *
1941 * This call may only be used from a context that may sleep. The sleep
1942 * is non-interruptible, and has no timeout.
1943 *
1944 * This call should be used by drivers that require exclusive access to the
1945 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
1946 * exclusive access is over. Data transfer must be done by spi_sync_locked
1947 * and spi_async_locked calls when the SPI bus lock is held.
1948 *
1949 * It returns zero on success, else a negative error code.
1950 */
1951int spi_bus_lock(struct spi_master *master)
1952{
1953 unsigned long flags;
1954
1955 mutex_lock(&master->bus_lock_mutex);
1956
1957 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1958 master->bus_lock_flag = 1;
1959 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1960
1961 /* mutex remains locked until spi_bus_unlock is called */
1962
1963 return 0;
1964}
1965EXPORT_SYMBOL_GPL(spi_bus_lock);
1966
1967/**
1968 * spi_bus_unlock - release the lock for exclusive SPI bus usage
1969 * @master: SPI bus master that was locked for exclusive bus access
1970 * Context: can sleep
1971 *
1972 * This call may only be used from a context that may sleep. The sleep
1973 * is non-interruptible, and has no timeout.
1974 *
1975 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
1976 * call.
1977 *
1978 * It returns zero on success, else a negative error code.
1979 */
1980int spi_bus_unlock(struct spi_master *master)
1981{
1982 master->bus_lock_flag = 0;
1983
1984 mutex_unlock(&master->bus_lock_mutex);
1985
1986 return 0;
1987}
1988EXPORT_SYMBOL_GPL(spi_bus_unlock);
1989
a9948b61 1990/* portable code must never pass more than 32 bytes */
5fe5f05e 1991#define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
8ae12a0d
DB
1992
1993static u8 *buf;
1994
1995/**
1996 * spi_write_then_read - SPI synchronous write followed by read
1997 * @spi: device with which data will be exchanged
1998 * @txbuf: data to be written (need not be dma-safe)
1999 * @n_tx: size of txbuf, in bytes
27570497
JP
2000 * @rxbuf: buffer into which data will be read (need not be dma-safe)
2001 * @n_rx: size of rxbuf, in bytes
33e34dc6 2002 * Context: can sleep
8ae12a0d
DB
2003 *
2004 * This performs a half duplex MicroWire style transaction with the
2005 * device, sending txbuf and then reading rxbuf. The return value
2006 * is zero for success, else a negative errno status code.
b885244e 2007 * This call may only be used from a context that may sleep.
8ae12a0d 2008 *
0c868461 2009 * Parameters to this routine are always copied using a small buffer;
33e34dc6
DB
2010 * portable code should never use this for more than 32 bytes.
2011 * Performance-sensitive or bulk transfer code should instead use
0c868461 2012 * spi_{async,sync}() calls with dma-safe buffers.
8ae12a0d
DB
2013 */
2014int spi_write_then_read(struct spi_device *spi,
0c4a1590
MB
2015 const void *txbuf, unsigned n_tx,
2016 void *rxbuf, unsigned n_rx)
8ae12a0d 2017{
068f4070 2018 static DEFINE_MUTEX(lock);
8ae12a0d
DB
2019
2020 int status;
2021 struct spi_message message;
bdff549e 2022 struct spi_transfer x[2];
8ae12a0d
DB
2023 u8 *local_buf;
2024
b3a223ee
MB
2025 /* Use preallocated DMA-safe buffer if we can. We can't avoid
2026 * copying here, (as a pure convenience thing), but we can
2027 * keep heap costs out of the hot path unless someone else is
2028 * using the pre-allocated buffer or the transfer is too large.
8ae12a0d 2029 */
b3a223ee 2030 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2cd94c8a
MB
2031 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2032 GFP_KERNEL | GFP_DMA);
b3a223ee
MB
2033 if (!local_buf)
2034 return -ENOMEM;
2035 } else {
2036 local_buf = buf;
2037 }
8ae12a0d 2038
8275c642 2039 spi_message_init(&message);
5fe5f05e 2040 memset(x, 0, sizeof(x));
bdff549e
DB
2041 if (n_tx) {
2042 x[0].len = n_tx;
2043 spi_message_add_tail(&x[0], &message);
2044 }
2045 if (n_rx) {
2046 x[1].len = n_rx;
2047 spi_message_add_tail(&x[1], &message);
2048 }
8275c642 2049
8ae12a0d 2050 memcpy(local_buf, txbuf, n_tx);
bdff549e
DB
2051 x[0].tx_buf = local_buf;
2052 x[1].rx_buf = local_buf + n_tx;
8ae12a0d
DB
2053
2054 /* do the i/o */
8ae12a0d 2055 status = spi_sync(spi, &message);
9b938b74 2056 if (status == 0)
bdff549e 2057 memcpy(rxbuf, x[1].rx_buf, n_rx);
8ae12a0d 2058
bdff549e 2059 if (x[0].tx_buf == buf)
068f4070 2060 mutex_unlock(&lock);
8ae12a0d
DB
2061 else
2062 kfree(local_buf);
2063
2064 return status;
2065}
2066EXPORT_SYMBOL_GPL(spi_write_then_read);
2067
2068/*-------------------------------------------------------------------------*/
2069
2070static int __init spi_init(void)
2071{
b885244e
DB
2072 int status;
2073
e94b1766 2074 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
b885244e
DB
2075 if (!buf) {
2076 status = -ENOMEM;
2077 goto err0;
2078 }
2079
2080 status = bus_register(&spi_bus_type);
2081 if (status < 0)
2082 goto err1;
8ae12a0d 2083
b885244e
DB
2084 status = class_register(&spi_master_class);
2085 if (status < 0)
2086 goto err2;
8ae12a0d 2087 return 0;
b885244e
DB
2088
2089err2:
2090 bus_unregister(&spi_bus_type);
2091err1:
2092 kfree(buf);
2093 buf = NULL;
2094err0:
2095 return status;
8ae12a0d 2096}
b885244e 2097
8ae12a0d
DB
2098/* board_info is normally registered in arch_initcall(),
2099 * but even essential drivers wait till later
b885244e
DB
2100 *
2101 * REVISIT only boardinfo really needs static linking. the rest (device and
2102 * driver registration) _could_ be dynamically linked (modular) ... costs
2103 * include needing to have boardinfo data structures be much more public.
8ae12a0d 2104 */
673c0c00 2105postcore_initcall(spi_init);
8ae12a0d 2106
This page took 0.849119 seconds and 5 git commands to generate.