Merge remote-tracking branch 'spi/topic/wr' into spi-next
[deliverable/linux.git] / drivers / spi / spi.c
CommitLineData
8ae12a0d 1/*
ca632f55 2 * SPI init/core code
8ae12a0d
DB
3 *
4 * Copyright (C) 2005 David Brownell
d57a4282 5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
8ae12a0d
DB
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
8ae12a0d 22#include <linux/kernel.h>
d57a4282 23#include <linux/kmod.h>
8ae12a0d
DB
24#include <linux/device.h>
25#include <linux/init.h>
26#include <linux/cache.h>
94040828 27#include <linux/mutex.h>
2b7a32f7 28#include <linux/of_device.h>
d57a4282 29#include <linux/of_irq.h>
5a0e3ad6 30#include <linux/slab.h>
e0626e38 31#include <linux/mod_devicetable.h>
8ae12a0d 32#include <linux/spi/spi.h>
74317984 33#include <linux/of_gpio.h>
3ae22e8c 34#include <linux/pm_runtime.h>
025ed130 35#include <linux/export.h>
8bd75c77 36#include <linux/sched/rt.h>
ffbbdd21
LW
37#include <linux/delay.h>
38#include <linux/kthread.h>
64bee4d2
MW
39#include <linux/ioport.h>
40#include <linux/acpi.h>
8ae12a0d 41
56ec1978
MB
42#define CREATE_TRACE_POINTS
43#include <trace/events/spi.h>
44
8ae12a0d
DB
45static void spidev_release(struct device *dev)
46{
0ffa0285 47 struct spi_device *spi = to_spi_device(dev);
8ae12a0d
DB
48
49 /* spi masters may cleanup for released devices */
50 if (spi->master->cleanup)
51 spi->master->cleanup(spi);
52
0c868461 53 spi_master_put(spi->master);
07a389fe 54 kfree(spi);
8ae12a0d
DB
55}
56
57static ssize_t
58modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59{
60 const struct spi_device *spi = to_spi_device(dev);
61
d8e328b3 62 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
8ae12a0d 63}
aa7da564 64static DEVICE_ATTR_RO(modalias);
8ae12a0d 65
aa7da564
GKH
66static struct attribute *spi_dev_attrs[] = {
67 &dev_attr_modalias.attr,
68 NULL,
8ae12a0d 69};
aa7da564 70ATTRIBUTE_GROUPS(spi_dev);
8ae12a0d
DB
71
72/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
73 * and the sysfs version makes coldplug work too.
74 */
75
75368bf6
AV
76static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
77 const struct spi_device *sdev)
78{
79 while (id->name[0]) {
80 if (!strcmp(sdev->modalias, id->name))
81 return id;
82 id++;
83 }
84 return NULL;
85}
86
87const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
88{
89 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
90
91 return spi_match_id(sdrv->id_table, sdev);
92}
93EXPORT_SYMBOL_GPL(spi_get_device_id);
94
8ae12a0d
DB
95static int spi_match_device(struct device *dev, struct device_driver *drv)
96{
97 const struct spi_device *spi = to_spi_device(dev);
75368bf6
AV
98 const struct spi_driver *sdrv = to_spi_driver(drv);
99
2b7a32f7
SA
100 /* Attempt an OF style match */
101 if (of_driver_match_device(dev, drv))
102 return 1;
103
64bee4d2
MW
104 /* Then try ACPI */
105 if (acpi_driver_match_device(dev, drv))
106 return 1;
107
75368bf6
AV
108 if (sdrv->id_table)
109 return !!spi_match_id(sdrv->id_table, spi);
8ae12a0d 110
35f74fca 111 return strcmp(spi->modalias, drv->name) == 0;
8ae12a0d
DB
112}
113
7eff2e7a 114static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
8ae12a0d
DB
115{
116 const struct spi_device *spi = to_spi_device(dev);
117
e0626e38 118 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
8ae12a0d
DB
119 return 0;
120}
121
3ae22e8c
MB
122#ifdef CONFIG_PM_SLEEP
123static int spi_legacy_suspend(struct device *dev, pm_message_t message)
8ae12a0d 124{
3c72426f 125 int value = 0;
b885244e 126 struct spi_driver *drv = to_spi_driver(dev->driver);
8ae12a0d 127
8ae12a0d 128 /* suspend will stop irqs and dma; no more i/o */
3c72426f
DB
129 if (drv) {
130 if (drv->suspend)
131 value = drv->suspend(to_spi_device(dev), message);
132 else
133 dev_dbg(dev, "... can't suspend\n");
134 }
8ae12a0d
DB
135 return value;
136}
137
3ae22e8c 138static int spi_legacy_resume(struct device *dev)
8ae12a0d 139{
3c72426f 140 int value = 0;
b885244e 141 struct spi_driver *drv = to_spi_driver(dev->driver);
8ae12a0d 142
8ae12a0d 143 /* resume may restart the i/o queue */
3c72426f
DB
144 if (drv) {
145 if (drv->resume)
146 value = drv->resume(to_spi_device(dev));
147 else
148 dev_dbg(dev, "... can't resume\n");
149 }
8ae12a0d
DB
150 return value;
151}
152
3ae22e8c
MB
153static int spi_pm_suspend(struct device *dev)
154{
155 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
156
157 if (pm)
158 return pm_generic_suspend(dev);
159 else
160 return spi_legacy_suspend(dev, PMSG_SUSPEND);
161}
162
163static int spi_pm_resume(struct device *dev)
164{
165 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
166
167 if (pm)
168 return pm_generic_resume(dev);
169 else
170 return spi_legacy_resume(dev);
171}
172
173static int spi_pm_freeze(struct device *dev)
174{
175 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
176
177 if (pm)
178 return pm_generic_freeze(dev);
179 else
180 return spi_legacy_suspend(dev, PMSG_FREEZE);
181}
182
183static int spi_pm_thaw(struct device *dev)
184{
185 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
186
187 if (pm)
188 return pm_generic_thaw(dev);
189 else
190 return spi_legacy_resume(dev);
191}
192
193static int spi_pm_poweroff(struct device *dev)
194{
195 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
196
197 if (pm)
198 return pm_generic_poweroff(dev);
199 else
200 return spi_legacy_suspend(dev, PMSG_HIBERNATE);
201}
202
203static int spi_pm_restore(struct device *dev)
204{
205 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
206
207 if (pm)
208 return pm_generic_restore(dev);
209 else
210 return spi_legacy_resume(dev);
211}
8ae12a0d 212#else
3ae22e8c
MB
213#define spi_pm_suspend NULL
214#define spi_pm_resume NULL
215#define spi_pm_freeze NULL
216#define spi_pm_thaw NULL
217#define spi_pm_poweroff NULL
218#define spi_pm_restore NULL
8ae12a0d
DB
219#endif
220
3ae22e8c
MB
221static const struct dev_pm_ops spi_pm = {
222 .suspend = spi_pm_suspend,
223 .resume = spi_pm_resume,
224 .freeze = spi_pm_freeze,
225 .thaw = spi_pm_thaw,
226 .poweroff = spi_pm_poweroff,
227 .restore = spi_pm_restore,
228 SET_RUNTIME_PM_OPS(
229 pm_generic_runtime_suspend,
230 pm_generic_runtime_resume,
45f0a85c 231 NULL
3ae22e8c
MB
232 )
233};
234
8ae12a0d
DB
235struct bus_type spi_bus_type = {
236 .name = "spi",
aa7da564 237 .dev_groups = spi_dev_groups,
8ae12a0d
DB
238 .match = spi_match_device,
239 .uevent = spi_uevent,
3ae22e8c 240 .pm = &spi_pm,
8ae12a0d
DB
241};
242EXPORT_SYMBOL_GPL(spi_bus_type);
243
b885244e
DB
244
245static int spi_drv_probe(struct device *dev)
246{
247 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
248
249 return sdrv->probe(to_spi_device(dev));
250}
251
252static int spi_drv_remove(struct device *dev)
253{
254 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
255
256 return sdrv->remove(to_spi_device(dev));
257}
258
259static void spi_drv_shutdown(struct device *dev)
260{
261 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
262
263 sdrv->shutdown(to_spi_device(dev));
264}
265
33e34dc6
DB
266/**
267 * spi_register_driver - register a SPI driver
268 * @sdrv: the driver to register
269 * Context: can sleep
270 */
b885244e
DB
271int spi_register_driver(struct spi_driver *sdrv)
272{
273 sdrv->driver.bus = &spi_bus_type;
274 if (sdrv->probe)
275 sdrv->driver.probe = spi_drv_probe;
276 if (sdrv->remove)
277 sdrv->driver.remove = spi_drv_remove;
278 if (sdrv->shutdown)
279 sdrv->driver.shutdown = spi_drv_shutdown;
280 return driver_register(&sdrv->driver);
281}
282EXPORT_SYMBOL_GPL(spi_register_driver);
283
8ae12a0d
DB
284/*-------------------------------------------------------------------------*/
285
286/* SPI devices should normally not be created by SPI device drivers; that
287 * would make them board-specific. Similarly with SPI master drivers.
288 * Device registration normally goes into like arch/.../mach.../board-YYY.c
289 * with other readonly (flashable) information about mainboard devices.
290 */
291
292struct boardinfo {
293 struct list_head list;
2b9603a0 294 struct spi_board_info board_info;
8ae12a0d
DB
295};
296
297static LIST_HEAD(board_list);
2b9603a0
FT
298static LIST_HEAD(spi_master_list);
299
300/*
301 * Used to protect add/del opertion for board_info list and
302 * spi_master list, and their matching process
303 */
94040828 304static DEFINE_MUTEX(board_lock);
8ae12a0d 305
dc87c98e
GL
306/**
307 * spi_alloc_device - Allocate a new SPI device
308 * @master: Controller to which device is connected
309 * Context: can sleep
310 *
311 * Allows a driver to allocate and initialize a spi_device without
312 * registering it immediately. This allows a driver to directly
313 * fill the spi_device with device parameters before calling
314 * spi_add_device() on it.
315 *
316 * Caller is responsible to call spi_add_device() on the returned
317 * spi_device structure to add it to the SPI master. If the caller
318 * needs to discard the spi_device without adding it, then it should
319 * call spi_dev_put() on it.
320 *
321 * Returns a pointer to the new device, or NULL.
322 */
323struct spi_device *spi_alloc_device(struct spi_master *master)
324{
325 struct spi_device *spi;
326 struct device *dev = master->dev.parent;
327
328 if (!spi_master_get(master))
329 return NULL;
330
5fe5f05e 331 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
dc87c98e
GL
332 if (!spi) {
333 dev_err(dev, "cannot alloc spi_device\n");
334 spi_master_put(master);
335 return NULL;
336 }
337
338 spi->master = master;
178db7d3 339 spi->dev.parent = &master->dev;
dc87c98e
GL
340 spi->dev.bus = &spi_bus_type;
341 spi->dev.release = spidev_release;
446411e1 342 spi->cs_gpio = -ENOENT;
dc87c98e
GL
343 device_initialize(&spi->dev);
344 return spi;
345}
346EXPORT_SYMBOL_GPL(spi_alloc_device);
347
348/**
349 * spi_add_device - Add spi_device allocated with spi_alloc_device
350 * @spi: spi_device to register
351 *
352 * Companion function to spi_alloc_device. Devices allocated with
353 * spi_alloc_device can be added onto the spi bus with this function.
354 *
e48880e0 355 * Returns 0 on success; negative errno on failure
dc87c98e
GL
356 */
357int spi_add_device(struct spi_device *spi)
358{
e48880e0 359 static DEFINE_MUTEX(spi_add_lock);
74317984
JCPV
360 struct spi_master *master = spi->master;
361 struct device *dev = master->dev.parent;
8ec130a0 362 struct device *d;
dc87c98e
GL
363 int status;
364
365 /* Chipselects are numbered 0..max; validate. */
74317984 366 if (spi->chip_select >= master->num_chipselect) {
dc87c98e
GL
367 dev_err(dev, "cs%d >= max %d\n",
368 spi->chip_select,
74317984 369 master->num_chipselect);
dc87c98e
GL
370 return -EINVAL;
371 }
372
373 /* Set the bus ID string */
35f74fca 374 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
dc87c98e
GL
375 spi->chip_select);
376
e48880e0
DB
377
378 /* We need to make sure there's no other device with this
379 * chipselect **BEFORE** we call setup(), else we'll trash
380 * its configuration. Lock against concurrent add() calls.
381 */
382 mutex_lock(&spi_add_lock);
383
8ec130a0
RT
384 d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
385 if (d != NULL) {
e48880e0
DB
386 dev_err(dev, "chipselect %d already in use\n",
387 spi->chip_select);
8ec130a0 388 put_device(d);
e48880e0
DB
389 status = -EBUSY;
390 goto done;
391 }
392
74317984
JCPV
393 if (master->cs_gpios)
394 spi->cs_gpio = master->cs_gpios[spi->chip_select];
395
e48880e0
DB
396 /* Drivers may modify this initial i/o setup, but will
397 * normally rely on the device being setup. Devices
398 * using SPI_CS_HIGH can't coexist well otherwise...
399 */
7d077197 400 status = spi_setup(spi);
dc87c98e 401 if (status < 0) {
eb288a1f
LW
402 dev_err(dev, "can't setup %s, status %d\n",
403 dev_name(&spi->dev), status);
e48880e0 404 goto done;
dc87c98e
GL
405 }
406
e48880e0 407 /* Device may be bound to an active driver when this returns */
dc87c98e 408 status = device_add(&spi->dev);
e48880e0 409 if (status < 0)
eb288a1f
LW
410 dev_err(dev, "can't add %s, status %d\n",
411 dev_name(&spi->dev), status);
e48880e0 412 else
35f74fca 413 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
dc87c98e 414
e48880e0
DB
415done:
416 mutex_unlock(&spi_add_lock);
417 return status;
dc87c98e
GL
418}
419EXPORT_SYMBOL_GPL(spi_add_device);
8ae12a0d 420
33e34dc6
DB
421/**
422 * spi_new_device - instantiate one new SPI device
423 * @master: Controller to which device is connected
424 * @chip: Describes the SPI device
425 * Context: can sleep
426 *
427 * On typical mainboards, this is purely internal; and it's not needed
8ae12a0d
DB
428 * after board init creates the hard-wired devices. Some development
429 * platforms may not be able to use spi_register_board_info though, and
430 * this is exported so that for example a USB or parport based adapter
431 * driver could add devices (which it would learn about out-of-band).
082c8cb4
DB
432 *
433 * Returns the new device, or NULL.
8ae12a0d 434 */
e9d5a461
AB
435struct spi_device *spi_new_device(struct spi_master *master,
436 struct spi_board_info *chip)
8ae12a0d
DB
437{
438 struct spi_device *proxy;
8ae12a0d
DB
439 int status;
440
082c8cb4
DB
441 /* NOTE: caller did any chip->bus_num checks necessary.
442 *
443 * Also, unless we change the return value convention to use
444 * error-or-pointer (not NULL-or-pointer), troubleshootability
445 * suggests syslogged diagnostics are best here (ugh).
446 */
447
dc87c98e
GL
448 proxy = spi_alloc_device(master);
449 if (!proxy)
8ae12a0d
DB
450 return NULL;
451
102eb975
GL
452 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
453
8ae12a0d
DB
454 proxy->chip_select = chip->chip_select;
455 proxy->max_speed_hz = chip->max_speed_hz;
980a01c9 456 proxy->mode = chip->mode;
8ae12a0d 457 proxy->irq = chip->irq;
102eb975 458 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
8ae12a0d
DB
459 proxy->dev.platform_data = (void *) chip->platform_data;
460 proxy->controller_data = chip->controller_data;
461 proxy->controller_state = NULL;
8ae12a0d 462
dc87c98e 463 status = spi_add_device(proxy);
8ae12a0d 464 if (status < 0) {
dc87c98e
GL
465 spi_dev_put(proxy);
466 return NULL;
8ae12a0d
DB
467 }
468
8ae12a0d
DB
469 return proxy;
470}
471EXPORT_SYMBOL_GPL(spi_new_device);
472
2b9603a0
FT
473static void spi_match_master_to_boardinfo(struct spi_master *master,
474 struct spi_board_info *bi)
475{
476 struct spi_device *dev;
477
478 if (master->bus_num != bi->bus_num)
479 return;
480
481 dev = spi_new_device(master, bi);
482 if (!dev)
483 dev_err(master->dev.parent, "can't create new device for %s\n",
484 bi->modalias);
485}
486
33e34dc6
DB
487/**
488 * spi_register_board_info - register SPI devices for a given board
489 * @info: array of chip descriptors
490 * @n: how many descriptors are provided
491 * Context: can sleep
492 *
8ae12a0d
DB
493 * Board-specific early init code calls this (probably during arch_initcall)
494 * with segments of the SPI device table. Any device nodes are created later,
495 * after the relevant parent SPI controller (bus_num) is defined. We keep
496 * this table of devices forever, so that reloading a controller driver will
497 * not make Linux forget about these hard-wired devices.
498 *
499 * Other code can also call this, e.g. a particular add-on board might provide
500 * SPI devices through its expansion connector, so code initializing that board
501 * would naturally declare its SPI devices.
502 *
503 * The board info passed can safely be __initdata ... but be careful of
504 * any embedded pointers (platform_data, etc), they're copied as-is.
505 */
fd4a319b 506int spi_register_board_info(struct spi_board_info const *info, unsigned n)
8ae12a0d 507{
2b9603a0
FT
508 struct boardinfo *bi;
509 int i;
8ae12a0d 510
2b9603a0 511 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
8ae12a0d
DB
512 if (!bi)
513 return -ENOMEM;
8ae12a0d 514
2b9603a0
FT
515 for (i = 0; i < n; i++, bi++, info++) {
516 struct spi_master *master;
8ae12a0d 517
2b9603a0
FT
518 memcpy(&bi->board_info, info, sizeof(*info));
519 mutex_lock(&board_lock);
520 list_add_tail(&bi->list, &board_list);
521 list_for_each_entry(master, &spi_master_list, list)
522 spi_match_master_to_boardinfo(master, &bi->board_info);
523 mutex_unlock(&board_lock);
8ae12a0d 524 }
2b9603a0
FT
525
526 return 0;
8ae12a0d
DB
527}
528
529/*-------------------------------------------------------------------------*/
530
b158935f
MB
531static void spi_set_cs(struct spi_device *spi, bool enable)
532{
533 if (spi->mode & SPI_CS_HIGH)
534 enable = !enable;
535
536 if (spi->cs_gpio >= 0)
537 gpio_set_value(spi->cs_gpio, !enable);
538 else if (spi->master->set_cs)
539 spi->master->set_cs(spi, !enable);
540}
541
542/*
543 * spi_transfer_one_message - Default implementation of transfer_one_message()
544 *
545 * This is a standard implementation of transfer_one_message() for
546 * drivers which impelment a transfer_one() operation. It provides
547 * standard handling of delays and chip select management.
548 */
549static int spi_transfer_one_message(struct spi_master *master,
550 struct spi_message *msg)
551{
552 struct spi_transfer *xfer;
553 bool cur_cs = true;
554 bool keep_cs = false;
555 int ret = 0;
556
557 spi_set_cs(msg->spi, true);
558
559 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
560 trace_spi_transfer_start(msg, xfer);
561
562 INIT_COMPLETION(master->xfer_completion);
563
564 ret = master->transfer_one(master, msg->spi, xfer);
565 if (ret < 0) {
566 dev_err(&msg->spi->dev,
567 "SPI transfer failed: %d\n", ret);
568 goto out;
569 }
570
571 if (ret > 0)
572 wait_for_completion(&master->xfer_completion);
573
574 trace_spi_transfer_stop(msg, xfer);
575
576 if (msg->status != -EINPROGRESS)
577 goto out;
578
579 if (xfer->delay_usecs)
580 udelay(xfer->delay_usecs);
581
582 if (xfer->cs_change) {
583 if (list_is_last(&xfer->transfer_list,
584 &msg->transfers)) {
585 keep_cs = true;
586 } else {
587 cur_cs = !cur_cs;
588 spi_set_cs(msg->spi, cur_cs);
589 }
590 }
591
592 msg->actual_length += xfer->len;
593 }
594
595out:
596 if (ret != 0 || !keep_cs)
597 spi_set_cs(msg->spi, false);
598
599 if (msg->status == -EINPROGRESS)
600 msg->status = ret;
601
602 spi_finalize_current_message(master);
603
604 return ret;
605}
606
607/**
608 * spi_finalize_current_transfer - report completion of a transfer
609 *
610 * Called by SPI drivers using the core transfer_one_message()
611 * implementation to notify it that the current interrupt driven
612 * transfer has finised and the next one may be scheduled.
613 */
614void spi_finalize_current_transfer(struct spi_master *master)
615{
616 complete(&master->xfer_completion);
617}
618EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
619
ffbbdd21
LW
620/**
621 * spi_pump_messages - kthread work function which processes spi message queue
622 * @work: pointer to kthread work struct contained in the master struct
623 *
624 * This function checks if there is any spi message in the queue that
625 * needs processing and if so call out to the driver to initialize hardware
626 * and transfer each message.
627 *
628 */
629static void spi_pump_messages(struct kthread_work *work)
630{
631 struct spi_master *master =
632 container_of(work, struct spi_master, pump_messages);
633 unsigned long flags;
634 bool was_busy = false;
635 int ret;
636
637 /* Lock queue and check for queue work */
638 spin_lock_irqsave(&master->queue_lock, flags);
639 if (list_empty(&master->queue) || !master->running) {
b0b36b86
BF
640 if (!master->busy) {
641 spin_unlock_irqrestore(&master->queue_lock, flags);
642 return;
ffbbdd21
LW
643 }
644 master->busy = false;
645 spin_unlock_irqrestore(&master->queue_lock, flags);
b0b36b86
BF
646 if (master->unprepare_transfer_hardware &&
647 master->unprepare_transfer_hardware(master))
648 dev_err(&master->dev,
649 "failed to unprepare transfer hardware\n");
49834de2
MB
650 if (master->auto_runtime_pm) {
651 pm_runtime_mark_last_busy(master->dev.parent);
652 pm_runtime_put_autosuspend(master->dev.parent);
653 }
56ec1978 654 trace_spi_master_idle(master);
ffbbdd21
LW
655 return;
656 }
657
658 /* Make sure we are not already running a message */
659 if (master->cur_msg) {
660 spin_unlock_irqrestore(&master->queue_lock, flags);
661 return;
662 }
663 /* Extract head of queue */
664 master->cur_msg =
665 list_entry(master->queue.next, struct spi_message, queue);
666
667 list_del_init(&master->cur_msg->queue);
668 if (master->busy)
669 was_busy = true;
670 else
671 master->busy = true;
672 spin_unlock_irqrestore(&master->queue_lock, flags);
673
49834de2
MB
674 if (!was_busy && master->auto_runtime_pm) {
675 ret = pm_runtime_get_sync(master->dev.parent);
676 if (ret < 0) {
677 dev_err(&master->dev, "Failed to power device: %d\n",
678 ret);
679 return;
680 }
681 }
682
56ec1978
MB
683 if (!was_busy)
684 trace_spi_master_busy(master);
685
7dfd2bd7 686 if (!was_busy && master->prepare_transfer_hardware) {
ffbbdd21
LW
687 ret = master->prepare_transfer_hardware(master);
688 if (ret) {
689 dev_err(&master->dev,
690 "failed to prepare transfer hardware\n");
49834de2
MB
691
692 if (master->auto_runtime_pm)
693 pm_runtime_put(master->dev.parent);
ffbbdd21
LW
694 return;
695 }
696 }
697
56ec1978
MB
698 trace_spi_message_start(master->cur_msg);
699
2841a5fc
MB
700 if (master->prepare_message) {
701 ret = master->prepare_message(master, master->cur_msg);
702 if (ret) {
703 dev_err(&master->dev,
704 "failed to prepare message: %d\n", ret);
705 master->cur_msg->status = ret;
706 spi_finalize_current_message(master);
707 return;
708 }
709 master->cur_msg_prepared = true;
710 }
711
ffbbdd21
LW
712 ret = master->transfer_one_message(master, master->cur_msg);
713 if (ret) {
714 dev_err(&master->dev,
715 "failed to transfer one message from queue\n");
716 return;
717 }
718}
719
720static int spi_init_queue(struct spi_master *master)
721{
722 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
723
724 INIT_LIST_HEAD(&master->queue);
725 spin_lock_init(&master->queue_lock);
726
727 master->running = false;
728 master->busy = false;
729
730 init_kthread_worker(&master->kworker);
731 master->kworker_task = kthread_run(kthread_worker_fn,
f170168b 732 &master->kworker, "%s",
ffbbdd21
LW
733 dev_name(&master->dev));
734 if (IS_ERR(master->kworker_task)) {
735 dev_err(&master->dev, "failed to create message pump task\n");
736 return -ENOMEM;
737 }
738 init_kthread_work(&master->pump_messages, spi_pump_messages);
739
740 /*
741 * Master config will indicate if this controller should run the
742 * message pump with high (realtime) priority to reduce the transfer
743 * latency on the bus by minimising the delay between a transfer
744 * request and the scheduling of the message pump thread. Without this
745 * setting the message pump thread will remain at default priority.
746 */
747 if (master->rt) {
748 dev_info(&master->dev,
749 "will run message pump with realtime priority\n");
750 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
751 }
752
753 return 0;
754}
755
756/**
757 * spi_get_next_queued_message() - called by driver to check for queued
758 * messages
759 * @master: the master to check for queued messages
760 *
761 * If there are more messages in the queue, the next message is returned from
762 * this call.
763 */
764struct spi_message *spi_get_next_queued_message(struct spi_master *master)
765{
766 struct spi_message *next;
767 unsigned long flags;
768
769 /* get a pointer to the next message, if any */
770 spin_lock_irqsave(&master->queue_lock, flags);
771 if (list_empty(&master->queue))
772 next = NULL;
773 else
774 next = list_entry(master->queue.next,
775 struct spi_message, queue);
776 spin_unlock_irqrestore(&master->queue_lock, flags);
777
778 return next;
779}
780EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
781
782/**
783 * spi_finalize_current_message() - the current message is complete
784 * @master: the master to return the message to
785 *
786 * Called by the driver to notify the core that the message in the front of the
787 * queue is complete and can be removed from the queue.
788 */
789void spi_finalize_current_message(struct spi_master *master)
790{
791 struct spi_message *mesg;
792 unsigned long flags;
2841a5fc 793 int ret;
ffbbdd21
LW
794
795 spin_lock_irqsave(&master->queue_lock, flags);
796 mesg = master->cur_msg;
797 master->cur_msg = NULL;
798
799 queue_kthread_work(&master->kworker, &master->pump_messages);
800 spin_unlock_irqrestore(&master->queue_lock, flags);
801
2841a5fc
MB
802 if (master->cur_msg_prepared && master->unprepare_message) {
803 ret = master->unprepare_message(master, mesg);
804 if (ret) {
805 dev_err(&master->dev,
806 "failed to unprepare message: %d\n", ret);
807 }
808 }
809 master->cur_msg_prepared = false;
810
ffbbdd21
LW
811 mesg->state = NULL;
812 if (mesg->complete)
813 mesg->complete(mesg->context);
56ec1978
MB
814
815 trace_spi_message_done(mesg);
ffbbdd21
LW
816}
817EXPORT_SYMBOL_GPL(spi_finalize_current_message);
818
819static int spi_start_queue(struct spi_master *master)
820{
821 unsigned long flags;
822
823 spin_lock_irqsave(&master->queue_lock, flags);
824
825 if (master->running || master->busy) {
826 spin_unlock_irqrestore(&master->queue_lock, flags);
827 return -EBUSY;
828 }
829
830 master->running = true;
831 master->cur_msg = NULL;
832 spin_unlock_irqrestore(&master->queue_lock, flags);
833
834 queue_kthread_work(&master->kworker, &master->pump_messages);
835
836 return 0;
837}
838
839static int spi_stop_queue(struct spi_master *master)
840{
841 unsigned long flags;
842 unsigned limit = 500;
843 int ret = 0;
844
845 spin_lock_irqsave(&master->queue_lock, flags);
846
847 /*
848 * This is a bit lame, but is optimized for the common execution path.
849 * A wait_queue on the master->busy could be used, but then the common
850 * execution path (pump_messages) would be required to call wake_up or
851 * friends on every SPI message. Do this instead.
852 */
853 while ((!list_empty(&master->queue) || master->busy) && limit--) {
854 spin_unlock_irqrestore(&master->queue_lock, flags);
855 msleep(10);
856 spin_lock_irqsave(&master->queue_lock, flags);
857 }
858
859 if (!list_empty(&master->queue) || master->busy)
860 ret = -EBUSY;
861 else
862 master->running = false;
863
864 spin_unlock_irqrestore(&master->queue_lock, flags);
865
866 if (ret) {
867 dev_warn(&master->dev,
868 "could not stop message queue\n");
869 return ret;
870 }
871 return ret;
872}
873
874static int spi_destroy_queue(struct spi_master *master)
875{
876 int ret;
877
878 ret = spi_stop_queue(master);
879
880 /*
881 * flush_kthread_worker will block until all work is done.
882 * If the reason that stop_queue timed out is that the work will never
883 * finish, then it does no good to call flush/stop thread, so
884 * return anyway.
885 */
886 if (ret) {
887 dev_err(&master->dev, "problem destroying queue\n");
888 return ret;
889 }
890
891 flush_kthread_worker(&master->kworker);
892 kthread_stop(master->kworker_task);
893
894 return 0;
895}
896
897/**
898 * spi_queued_transfer - transfer function for queued transfers
899 * @spi: spi device which is requesting transfer
900 * @msg: spi message which is to handled is queued to driver queue
901 */
902static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
903{
904 struct spi_master *master = spi->master;
905 unsigned long flags;
906
907 spin_lock_irqsave(&master->queue_lock, flags);
908
909 if (!master->running) {
910 spin_unlock_irqrestore(&master->queue_lock, flags);
911 return -ESHUTDOWN;
912 }
913 msg->actual_length = 0;
914 msg->status = -EINPROGRESS;
915
916 list_add_tail(&msg->queue, &master->queue);
96b3eace 917 if (!master->busy)
ffbbdd21
LW
918 queue_kthread_work(&master->kworker, &master->pump_messages);
919
920 spin_unlock_irqrestore(&master->queue_lock, flags);
921 return 0;
922}
923
924static int spi_master_initialize_queue(struct spi_master *master)
925{
926 int ret;
927
928 master->queued = true;
929 master->transfer = spi_queued_transfer;
b158935f
MB
930 if (!master->transfer_one_message)
931 master->transfer_one_message = spi_transfer_one_message;
ffbbdd21
LW
932
933 /* Initialize and start queue */
934 ret = spi_init_queue(master);
935 if (ret) {
936 dev_err(&master->dev, "problem initializing queue\n");
937 goto err_init_queue;
938 }
939 ret = spi_start_queue(master);
940 if (ret) {
941 dev_err(&master->dev, "problem starting queue\n");
942 goto err_start_queue;
943 }
944
945 return 0;
946
947err_start_queue:
948err_init_queue:
949 spi_destroy_queue(master);
950 return ret;
951}
952
953/*-------------------------------------------------------------------------*/
954
7cb94361 955#if defined(CONFIG_OF)
d57a4282
GL
956/**
957 * of_register_spi_devices() - Register child devices onto the SPI bus
958 * @master: Pointer to spi_master device
959 *
960 * Registers an spi_device for each child node of master node which has a 'reg'
961 * property.
962 */
963static void of_register_spi_devices(struct spi_master *master)
964{
965 struct spi_device *spi;
966 struct device_node *nc;
d57a4282 967 int rc;
89da4293 968 u32 value;
d57a4282
GL
969
970 if (!master->dev.of_node)
971 return;
972
f3b6159e 973 for_each_available_child_of_node(master->dev.of_node, nc) {
d57a4282
GL
974 /* Alloc an spi_device */
975 spi = spi_alloc_device(master);
976 if (!spi) {
977 dev_err(&master->dev, "spi_device alloc error for %s\n",
978 nc->full_name);
979 spi_dev_put(spi);
980 continue;
981 }
982
983 /* Select device driver */
984 if (of_modalias_node(nc, spi->modalias,
985 sizeof(spi->modalias)) < 0) {
986 dev_err(&master->dev, "cannot find modalias for %s\n",
987 nc->full_name);
988 spi_dev_put(spi);
989 continue;
990 }
991
992 /* Device address */
89da4293
TP
993 rc = of_property_read_u32(nc, "reg", &value);
994 if (rc) {
995 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
996 nc->full_name, rc);
d57a4282
GL
997 spi_dev_put(spi);
998 continue;
999 }
89da4293 1000 spi->chip_select = value;
d57a4282
GL
1001
1002 /* Mode (clock phase/polarity/etc.) */
1003 if (of_find_property(nc, "spi-cpha", NULL))
1004 spi->mode |= SPI_CPHA;
1005 if (of_find_property(nc, "spi-cpol", NULL))
1006 spi->mode |= SPI_CPOL;
1007 if (of_find_property(nc, "spi-cs-high", NULL))
1008 spi->mode |= SPI_CS_HIGH;
c20151df
LPC
1009 if (of_find_property(nc, "spi-3wire", NULL))
1010 spi->mode |= SPI_3WIRE;
d57a4282 1011
f477b7fb 1012 /* Device DUAL/QUAD mode */
89da4293
TP
1013 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1014 switch (value) {
1015 case 1:
a822e99c 1016 break;
89da4293 1017 case 2:
a822e99c
MB
1018 spi->mode |= SPI_TX_DUAL;
1019 break;
89da4293 1020 case 4:
a822e99c
MB
1021 spi->mode |= SPI_TX_QUAD;
1022 break;
1023 default:
1024 dev_err(&master->dev,
a110f93d 1025 "spi-tx-bus-width %d not supported\n",
89da4293 1026 value);
a822e99c
MB
1027 spi_dev_put(spi);
1028 continue;
1029 }
f477b7fb 1030 }
1031
89da4293
TP
1032 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1033 switch (value) {
1034 case 1:
a822e99c 1035 break;
89da4293 1036 case 2:
a822e99c
MB
1037 spi->mode |= SPI_RX_DUAL;
1038 break;
89da4293 1039 case 4:
a822e99c
MB
1040 spi->mode |= SPI_RX_QUAD;
1041 break;
1042 default:
1043 dev_err(&master->dev,
a110f93d 1044 "spi-rx-bus-width %d not supported\n",
89da4293 1045 value);
a822e99c
MB
1046 spi_dev_put(spi);
1047 continue;
1048 }
f477b7fb 1049 }
1050
d57a4282 1051 /* Device speed */
89da4293
TP
1052 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1053 if (rc) {
1054 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1055 nc->full_name, rc);
d57a4282
GL
1056 spi_dev_put(spi);
1057 continue;
1058 }
89da4293 1059 spi->max_speed_hz = value;
d57a4282
GL
1060
1061 /* IRQ */
1062 spi->irq = irq_of_parse_and_map(nc, 0);
1063
1064 /* Store a pointer to the node in the device structure */
1065 of_node_get(nc);
1066 spi->dev.of_node = nc;
1067
1068 /* Register the new device */
70fac17c 1069 request_module("%s%s", SPI_MODULE_PREFIX, spi->modalias);
d57a4282
GL
1070 rc = spi_add_device(spi);
1071 if (rc) {
1072 dev_err(&master->dev, "spi_device register error %s\n",
1073 nc->full_name);
1074 spi_dev_put(spi);
1075 }
1076
1077 }
1078}
1079#else
1080static void of_register_spi_devices(struct spi_master *master) { }
1081#endif
1082
64bee4d2
MW
1083#ifdef CONFIG_ACPI
1084static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1085{
1086 struct spi_device *spi = data;
1087
1088 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1089 struct acpi_resource_spi_serialbus *sb;
1090
1091 sb = &ares->data.spi_serial_bus;
1092 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1093 spi->chip_select = sb->device_selection;
1094 spi->max_speed_hz = sb->connection_speed;
1095
1096 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1097 spi->mode |= SPI_CPHA;
1098 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1099 spi->mode |= SPI_CPOL;
1100 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1101 spi->mode |= SPI_CS_HIGH;
1102 }
1103 } else if (spi->irq < 0) {
1104 struct resource r;
1105
1106 if (acpi_dev_resource_interrupt(ares, 0, &r))
1107 spi->irq = r.start;
1108 }
1109
1110 /* Always tell the ACPI core to skip this resource */
1111 return 1;
1112}
1113
1114static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1115 void *data, void **return_value)
1116{
1117 struct spi_master *master = data;
1118 struct list_head resource_list;
1119 struct acpi_device *adev;
1120 struct spi_device *spi;
1121 int ret;
1122
1123 if (acpi_bus_get_device(handle, &adev))
1124 return AE_OK;
1125 if (acpi_bus_get_status(adev) || !adev->status.present)
1126 return AE_OK;
1127
1128 spi = spi_alloc_device(master);
1129 if (!spi) {
1130 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1131 dev_name(&adev->dev));
1132 return AE_NO_MEMORY;
1133 }
1134
1135 ACPI_HANDLE_SET(&spi->dev, handle);
1136 spi->irq = -1;
1137
1138 INIT_LIST_HEAD(&resource_list);
1139 ret = acpi_dev_get_resources(adev, &resource_list,
1140 acpi_spi_add_resource, spi);
1141 acpi_dev_free_resource_list(&resource_list);
1142
1143 if (ret < 0 || !spi->max_speed_hz) {
1144 spi_dev_put(spi);
1145 return AE_OK;
1146 }
1147
cf9eb39c 1148 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
64bee4d2
MW
1149 if (spi_add_device(spi)) {
1150 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1151 dev_name(&adev->dev));
1152 spi_dev_put(spi);
1153 }
1154
1155 return AE_OK;
1156}
1157
1158static void acpi_register_spi_devices(struct spi_master *master)
1159{
1160 acpi_status status;
1161 acpi_handle handle;
1162
29896178 1163 handle = ACPI_HANDLE(master->dev.parent);
64bee4d2
MW
1164 if (!handle)
1165 return;
1166
1167 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1168 acpi_spi_add_device, NULL,
1169 master, NULL);
1170 if (ACPI_FAILURE(status))
1171 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1172}
1173#else
1174static inline void acpi_register_spi_devices(struct spi_master *master) {}
1175#endif /* CONFIG_ACPI */
1176
49dce689 1177static void spi_master_release(struct device *dev)
8ae12a0d
DB
1178{
1179 struct spi_master *master;
1180
49dce689 1181 master = container_of(dev, struct spi_master, dev);
8ae12a0d
DB
1182 kfree(master);
1183}
1184
1185static struct class spi_master_class = {
1186 .name = "spi_master",
1187 .owner = THIS_MODULE,
49dce689 1188 .dev_release = spi_master_release,
8ae12a0d
DB
1189};
1190
1191
ffbbdd21 1192
8ae12a0d
DB
1193/**
1194 * spi_alloc_master - allocate SPI master controller
1195 * @dev: the controller, possibly using the platform_bus
33e34dc6 1196 * @size: how much zeroed driver-private data to allocate; the pointer to this
49dce689 1197 * memory is in the driver_data field of the returned device,
0c868461 1198 * accessible with spi_master_get_devdata().
33e34dc6 1199 * Context: can sleep
8ae12a0d
DB
1200 *
1201 * This call is used only by SPI master controller drivers, which are the
1202 * only ones directly touching chip registers. It's how they allocate
ba1a0513 1203 * an spi_master structure, prior to calling spi_register_master().
8ae12a0d
DB
1204 *
1205 * This must be called from context that can sleep. It returns the SPI
1206 * master structure on success, else NULL.
1207 *
1208 * The caller is responsible for assigning the bus number and initializing
ba1a0513 1209 * the master's methods before calling spi_register_master(); and (after errors
eb4af0f5
UKK
1210 * adding the device) calling spi_master_put() and kfree() to prevent a memory
1211 * leak.
8ae12a0d 1212 */
e9d5a461 1213struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
8ae12a0d
DB
1214{
1215 struct spi_master *master;
1216
0c868461
DB
1217 if (!dev)
1218 return NULL;
1219
5fe5f05e 1220 master = kzalloc(size + sizeof(*master), GFP_KERNEL);
8ae12a0d
DB
1221 if (!master)
1222 return NULL;
1223
49dce689 1224 device_initialize(&master->dev);
1e8a52e1
GL
1225 master->bus_num = -1;
1226 master->num_chipselect = 1;
49dce689
TJ
1227 master->dev.class = &spi_master_class;
1228 master->dev.parent = get_device(dev);
0c868461 1229 spi_master_set_devdata(master, &master[1]);
8ae12a0d
DB
1230
1231 return master;
1232}
1233EXPORT_SYMBOL_GPL(spi_alloc_master);
1234
74317984
JCPV
1235#ifdef CONFIG_OF
1236static int of_spi_register_master(struct spi_master *master)
1237{
e80beb27 1238 int nb, i, *cs;
74317984
JCPV
1239 struct device_node *np = master->dev.of_node;
1240
1241 if (!np)
1242 return 0;
1243
1244 nb = of_gpio_named_count(np, "cs-gpios");
5fe5f05e 1245 master->num_chipselect = max_t(int, nb, master->num_chipselect);
74317984 1246
8ec5d84e
AL
1247 /* Return error only for an incorrectly formed cs-gpios property */
1248 if (nb == 0 || nb == -ENOENT)
74317984 1249 return 0;
8ec5d84e
AL
1250 else if (nb < 0)
1251 return nb;
74317984
JCPV
1252
1253 cs = devm_kzalloc(&master->dev,
1254 sizeof(int) * master->num_chipselect,
1255 GFP_KERNEL);
1256 master->cs_gpios = cs;
1257
1258 if (!master->cs_gpios)
1259 return -ENOMEM;
1260
0da83bb1 1261 for (i = 0; i < master->num_chipselect; i++)
446411e1 1262 cs[i] = -ENOENT;
74317984
JCPV
1263
1264 for (i = 0; i < nb; i++)
1265 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1266
1267 return 0;
1268}
1269#else
1270static int of_spi_register_master(struct spi_master *master)
1271{
1272 return 0;
1273}
1274#endif
1275
8ae12a0d
DB
1276/**
1277 * spi_register_master - register SPI master controller
1278 * @master: initialized master, originally from spi_alloc_master()
33e34dc6 1279 * Context: can sleep
8ae12a0d
DB
1280 *
1281 * SPI master controllers connect to their drivers using some non-SPI bus,
1282 * such as the platform bus. The final stage of probe() in that code
1283 * includes calling spi_register_master() to hook up to this SPI bus glue.
1284 *
1285 * SPI controllers use board specific (often SOC specific) bus numbers,
1286 * and board-specific addressing for SPI devices combines those numbers
1287 * with chip select numbers. Since SPI does not directly support dynamic
1288 * device identification, boards need configuration tables telling which
1289 * chip is at which address.
1290 *
1291 * This must be called from context that can sleep. It returns zero on
1292 * success, else a negative error code (dropping the master's refcount).
0c868461
DB
1293 * After a successful return, the caller is responsible for calling
1294 * spi_unregister_master().
8ae12a0d 1295 */
e9d5a461 1296int spi_register_master(struct spi_master *master)
8ae12a0d 1297{
e44a45ae 1298 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
49dce689 1299 struct device *dev = master->dev.parent;
2b9603a0 1300 struct boardinfo *bi;
8ae12a0d
DB
1301 int status = -ENODEV;
1302 int dynamic = 0;
1303
0c868461
DB
1304 if (!dev)
1305 return -ENODEV;
1306
74317984
JCPV
1307 status = of_spi_register_master(master);
1308 if (status)
1309 return status;
1310
082c8cb4
DB
1311 /* even if it's just one always-selected device, there must
1312 * be at least one chipselect
1313 */
1314 if (master->num_chipselect == 0)
1315 return -EINVAL;
1316
bb29785e
GL
1317 if ((master->bus_num < 0) && master->dev.of_node)
1318 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1319
8ae12a0d 1320 /* convention: dynamically assigned bus IDs count down from the max */
a020ed75 1321 if (master->bus_num < 0) {
082c8cb4
DB
1322 /* FIXME switch to an IDR based scheme, something like
1323 * I2C now uses, so we can't run out of "dynamic" IDs
1324 */
8ae12a0d 1325 master->bus_num = atomic_dec_return(&dyn_bus_id);
b885244e 1326 dynamic = 1;
8ae12a0d
DB
1327 }
1328
cf32b71e
ES
1329 spin_lock_init(&master->bus_lock_spinlock);
1330 mutex_init(&master->bus_lock_mutex);
1331 master->bus_lock_flag = 0;
b158935f 1332 init_completion(&master->xfer_completion);
cf32b71e 1333
8ae12a0d
DB
1334 /* register the device, then userspace will see it.
1335 * registration fails if the bus ID is in use.
1336 */
35f74fca 1337 dev_set_name(&master->dev, "spi%u", master->bus_num);
49dce689 1338 status = device_add(&master->dev);
b885244e 1339 if (status < 0)
8ae12a0d 1340 goto done;
35f74fca 1341 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
8ae12a0d
DB
1342 dynamic ? " (dynamic)" : "");
1343
ffbbdd21
LW
1344 /* If we're using a queued driver, start the queue */
1345 if (master->transfer)
1346 dev_info(dev, "master is unqueued, this is deprecated\n");
1347 else {
1348 status = spi_master_initialize_queue(master);
1349 if (status) {
e93b0724 1350 device_del(&master->dev);
ffbbdd21
LW
1351 goto done;
1352 }
1353 }
1354
2b9603a0
FT
1355 mutex_lock(&board_lock);
1356 list_add_tail(&master->list, &spi_master_list);
1357 list_for_each_entry(bi, &board_list, list)
1358 spi_match_master_to_boardinfo(master, &bi->board_info);
1359 mutex_unlock(&board_lock);
1360
64bee4d2 1361 /* Register devices from the device tree and ACPI */
12b15e83 1362 of_register_spi_devices(master);
64bee4d2 1363 acpi_register_spi_devices(master);
8ae12a0d
DB
1364done:
1365 return status;
1366}
1367EXPORT_SYMBOL_GPL(spi_register_master);
1368
666d5b4c
MB
1369static void devm_spi_unregister(struct device *dev, void *res)
1370{
1371 spi_unregister_master(*(struct spi_master **)res);
1372}
1373
1374/**
1375 * dev_spi_register_master - register managed SPI master controller
1376 * @dev: device managing SPI master
1377 * @master: initialized master, originally from spi_alloc_master()
1378 * Context: can sleep
1379 *
1380 * Register a SPI device as with spi_register_master() which will
1381 * automatically be unregister
1382 */
1383int devm_spi_register_master(struct device *dev, struct spi_master *master)
1384{
1385 struct spi_master **ptr;
1386 int ret;
1387
1388 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1389 if (!ptr)
1390 return -ENOMEM;
1391
1392 ret = spi_register_master(master);
1393 if (ret != 0) {
1394 *ptr = master;
1395 devres_add(dev, ptr);
1396 } else {
1397 devres_free(ptr);
1398 }
1399
1400 return ret;
1401}
1402EXPORT_SYMBOL_GPL(devm_spi_register_master);
1403
34860089 1404static int __unregister(struct device *dev, void *null)
8ae12a0d 1405{
34860089 1406 spi_unregister_device(to_spi_device(dev));
8ae12a0d
DB
1407 return 0;
1408}
1409
1410/**
1411 * spi_unregister_master - unregister SPI master controller
1412 * @master: the master being unregistered
33e34dc6 1413 * Context: can sleep
8ae12a0d
DB
1414 *
1415 * This call is used only by SPI master controller drivers, which are the
1416 * only ones directly touching chip registers.
1417 *
1418 * This must be called from context that can sleep.
1419 */
1420void spi_unregister_master(struct spi_master *master)
1421{
89fc9a1a
JG
1422 int dummy;
1423
ffbbdd21
LW
1424 if (master->queued) {
1425 if (spi_destroy_queue(master))
1426 dev_err(&master->dev, "queue remove failed\n");
1427 }
1428
2b9603a0
FT
1429 mutex_lock(&board_lock);
1430 list_del(&master->list);
1431 mutex_unlock(&board_lock);
1432
97dbf37d 1433 dummy = device_for_each_child(&master->dev, NULL, __unregister);
49dce689 1434 device_unregister(&master->dev);
8ae12a0d
DB
1435}
1436EXPORT_SYMBOL_GPL(spi_unregister_master);
1437
ffbbdd21
LW
1438int spi_master_suspend(struct spi_master *master)
1439{
1440 int ret;
1441
1442 /* Basically no-ops for non-queued masters */
1443 if (!master->queued)
1444 return 0;
1445
1446 ret = spi_stop_queue(master);
1447 if (ret)
1448 dev_err(&master->dev, "queue stop failed\n");
1449
1450 return ret;
1451}
1452EXPORT_SYMBOL_GPL(spi_master_suspend);
1453
1454int spi_master_resume(struct spi_master *master)
1455{
1456 int ret;
1457
1458 if (!master->queued)
1459 return 0;
1460
1461 ret = spi_start_queue(master);
1462 if (ret)
1463 dev_err(&master->dev, "queue restart failed\n");
1464
1465 return ret;
1466}
1467EXPORT_SYMBOL_GPL(spi_master_resume);
1468
9f3b795a 1469static int __spi_master_match(struct device *dev, const void *data)
5ed2c832
DY
1470{
1471 struct spi_master *m;
9f3b795a 1472 const u16 *bus_num = data;
5ed2c832
DY
1473
1474 m = container_of(dev, struct spi_master, dev);
1475 return m->bus_num == *bus_num;
1476}
1477
8ae12a0d
DB
1478/**
1479 * spi_busnum_to_master - look up master associated with bus_num
1480 * @bus_num: the master's bus number
33e34dc6 1481 * Context: can sleep
8ae12a0d
DB
1482 *
1483 * This call may be used with devices that are registered after
1484 * arch init time. It returns a refcounted pointer to the relevant
1485 * spi_master (which the caller must release), or NULL if there is
1486 * no such master registered.
1487 */
1488struct spi_master *spi_busnum_to_master(u16 bus_num)
1489{
49dce689 1490 struct device *dev;
1e9a51dc 1491 struct spi_master *master = NULL;
5ed2c832 1492
695794ae 1493 dev = class_find_device(&spi_master_class, NULL, &bus_num,
5ed2c832
DY
1494 __spi_master_match);
1495 if (dev)
1496 master = container_of(dev, struct spi_master, dev);
1497 /* reference got in class_find_device */
1e9a51dc 1498 return master;
8ae12a0d
DB
1499}
1500EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1501
1502
1503/*-------------------------------------------------------------------------*/
1504
7d077197
DB
1505/* Core methods for SPI master protocol drivers. Some of the
1506 * other core methods are currently defined as inline functions.
1507 */
1508
1509/**
1510 * spi_setup - setup SPI mode and clock rate
1511 * @spi: the device whose settings are being modified
1512 * Context: can sleep, and no requests are queued to the device
1513 *
1514 * SPI protocol drivers may need to update the transfer mode if the
1515 * device doesn't work with its default. They may likewise need
1516 * to update clock rates or word sizes from initial values. This function
1517 * changes those settings, and must be called from a context that can sleep.
1518 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1519 * effect the next time the device is selected and data is transferred to
1520 * or from it. When this function returns, the spi device is deselected.
1521 *
1522 * Note that this call will fail if the protocol driver specifies an option
1523 * that the underlying controller or its driver does not support. For
1524 * example, not all hardware supports wire transfers using nine bit words,
1525 * LSB-first wire encoding, or active-high chipselects.
1526 */
1527int spi_setup(struct spi_device *spi)
1528{
e7db06b5 1529 unsigned bad_bits;
caae070c 1530 int status = 0;
7d077197 1531
f477b7fb 1532 /* check mode to prevent that DUAL and QUAD set at the same time
1533 */
1534 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
1535 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
1536 dev_err(&spi->dev,
1537 "setup: can not select dual and quad at the same time\n");
1538 return -EINVAL;
1539 }
1540 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1541 */
1542 if ((spi->mode & SPI_3WIRE) && (spi->mode &
1543 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
1544 return -EINVAL;
e7db06b5
DB
1545 /* help drivers fail *cleanly* when they need options
1546 * that aren't supported with their current master
1547 */
1548 bad_bits = spi->mode & ~spi->master->mode_bits;
1549 if (bad_bits) {
eb288a1f 1550 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
e7db06b5
DB
1551 bad_bits);
1552 return -EINVAL;
1553 }
1554
7d077197
DB
1555 if (!spi->bits_per_word)
1556 spi->bits_per_word = 8;
1557
caae070c
LD
1558 if (spi->master->setup)
1559 status = spi->master->setup(spi);
7d077197 1560
5fe5f05e 1561 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
7d077197
DB
1562 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1563 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1564 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1565 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
1566 (spi->mode & SPI_LOOP) ? "loopback, " : "",
1567 spi->bits_per_word, spi->max_speed_hz,
1568 status);
1569
1570 return status;
1571}
1572EXPORT_SYMBOL_GPL(spi_setup);
1573
cf32b71e
ES
1574static int __spi_async(struct spi_device *spi, struct spi_message *message)
1575{
1576 struct spi_master *master = spi->master;
e6811d1d 1577 struct spi_transfer *xfer;
cf32b71e 1578
56ec1978
MB
1579 message->spi = spi;
1580
1581 trace_spi_message_submit(message);
1582
24a0013a
MB
1583 if (list_empty(&message->transfers))
1584 return -EINVAL;
1585 if (!message->complete)
1586 return -EINVAL;
1587
cf32b71e
ES
1588 /* Half-duplex links include original MicroWire, and ones with
1589 * only one data pin like SPI_3WIRE (switches direction) or where
1590 * either MOSI or MISO is missing. They can also be caused by
1591 * software limitations.
1592 */
1593 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1594 || (spi->mode & SPI_3WIRE)) {
cf32b71e
ES
1595 unsigned flags = master->flags;
1596
1597 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1598 if (xfer->rx_buf && xfer->tx_buf)
1599 return -EINVAL;
1600 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1601 return -EINVAL;
1602 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1603 return -EINVAL;
1604 }
1605 }
1606
e6811d1d 1607 /**
059b8ffe
LD
1608 * Set transfer bits_per_word and max speed as spi device default if
1609 * it is not set for this transfer.
f477b7fb 1610 * Set transfer tx_nbits and rx_nbits as single transfer default
1611 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
e6811d1d
LD
1612 */
1613 list_for_each_entry(xfer, &message->transfers, transfer_list) {
078726ce 1614 message->frame_length += xfer->len;
e6811d1d
LD
1615 if (!xfer->bits_per_word)
1616 xfer->bits_per_word = spi->bits_per_word;
56ede94a 1617 if (!xfer->speed_hz) {
059b8ffe 1618 xfer->speed_hz = spi->max_speed_hz;
56ede94a
GJ
1619 if (master->max_speed_hz &&
1620 xfer->speed_hz > master->max_speed_hz)
1621 xfer->speed_hz = master->max_speed_hz;
1622 }
1623
543bb255
SW
1624 if (master->bits_per_word_mask) {
1625 /* Only 32 bits fit in the mask */
1626 if (xfer->bits_per_word > 32)
1627 return -EINVAL;
1628 if (!(master->bits_per_word_mask &
1629 BIT(xfer->bits_per_word - 1)))
1630 return -EINVAL;
1631 }
a2fd4f9f
MB
1632
1633 if (xfer->speed_hz && master->min_speed_hz &&
1634 xfer->speed_hz < master->min_speed_hz)
1635 return -EINVAL;
1636 if (xfer->speed_hz && master->max_speed_hz &&
1637 xfer->speed_hz > master->max_speed_hz)
d5ee722a 1638 return -EINVAL;
f477b7fb 1639
1640 if (xfer->tx_buf && !xfer->tx_nbits)
1641 xfer->tx_nbits = SPI_NBITS_SINGLE;
1642 if (xfer->rx_buf && !xfer->rx_nbits)
1643 xfer->rx_nbits = SPI_NBITS_SINGLE;
1644 /* check transfer tx/rx_nbits:
1645 * 1. keep the value is not out of single, dual and quad
1646 * 2. keep tx/rx_nbits is contained by mode in spi_device
1647 * 3. if SPI_3WIRE, tx/rx_nbits should be in single
1648 */
db90a441
SP
1649 if (xfer->tx_buf) {
1650 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
1651 xfer->tx_nbits != SPI_NBITS_DUAL &&
1652 xfer->tx_nbits != SPI_NBITS_QUAD)
1653 return -EINVAL;
1654 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
1655 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
1656 return -EINVAL;
1657 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
1658 !(spi->mode & SPI_TX_QUAD))
1659 return -EINVAL;
1660 if ((spi->mode & SPI_3WIRE) &&
1661 (xfer->tx_nbits != SPI_NBITS_SINGLE))
1662 return -EINVAL;
1663 }
f477b7fb 1664 /* check transfer rx_nbits */
db90a441
SP
1665 if (xfer->rx_buf) {
1666 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
1667 xfer->rx_nbits != SPI_NBITS_DUAL &&
1668 xfer->rx_nbits != SPI_NBITS_QUAD)
1669 return -EINVAL;
1670 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
1671 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
1672 return -EINVAL;
1673 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
1674 !(spi->mode & SPI_RX_QUAD))
1675 return -EINVAL;
1676 if ((spi->mode & SPI_3WIRE) &&
1677 (xfer->rx_nbits != SPI_NBITS_SINGLE))
1678 return -EINVAL;
1679 }
e6811d1d
LD
1680 }
1681
cf32b71e
ES
1682 message->status = -EINPROGRESS;
1683 return master->transfer(spi, message);
1684}
1685
568d0697
DB
1686/**
1687 * spi_async - asynchronous SPI transfer
1688 * @spi: device with which data will be exchanged
1689 * @message: describes the data transfers, including completion callback
1690 * Context: any (irqs may be blocked, etc)
1691 *
1692 * This call may be used in_irq and other contexts which can't sleep,
1693 * as well as from task contexts which can sleep.
1694 *
1695 * The completion callback is invoked in a context which can't sleep.
1696 * Before that invocation, the value of message->status is undefined.
1697 * When the callback is issued, message->status holds either zero (to
1698 * indicate complete success) or a negative error code. After that
1699 * callback returns, the driver which issued the transfer request may
1700 * deallocate the associated memory; it's no longer in use by any SPI
1701 * core or controller driver code.
1702 *
1703 * Note that although all messages to a spi_device are handled in
1704 * FIFO order, messages may go to different devices in other orders.
1705 * Some device might be higher priority, or have various "hard" access
1706 * time requirements, for example.
1707 *
1708 * On detection of any fault during the transfer, processing of
1709 * the entire message is aborted, and the device is deselected.
1710 * Until returning from the associated message completion callback,
1711 * no other spi_message queued to that device will be processed.
1712 * (This rule applies equally to all the synchronous transfer calls,
1713 * which are wrappers around this core asynchronous primitive.)
1714 */
1715int spi_async(struct spi_device *spi, struct spi_message *message)
1716{
1717 struct spi_master *master = spi->master;
cf32b71e
ES
1718 int ret;
1719 unsigned long flags;
568d0697 1720
cf32b71e 1721 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
568d0697 1722
cf32b71e
ES
1723 if (master->bus_lock_flag)
1724 ret = -EBUSY;
1725 else
1726 ret = __spi_async(spi, message);
568d0697 1727
cf32b71e
ES
1728 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1729
1730 return ret;
568d0697
DB
1731}
1732EXPORT_SYMBOL_GPL(spi_async);
1733
cf32b71e
ES
1734/**
1735 * spi_async_locked - version of spi_async with exclusive bus usage
1736 * @spi: device with which data will be exchanged
1737 * @message: describes the data transfers, including completion callback
1738 * Context: any (irqs may be blocked, etc)
1739 *
1740 * This call may be used in_irq and other contexts which can't sleep,
1741 * as well as from task contexts which can sleep.
1742 *
1743 * The completion callback is invoked in a context which can't sleep.
1744 * Before that invocation, the value of message->status is undefined.
1745 * When the callback is issued, message->status holds either zero (to
1746 * indicate complete success) or a negative error code. After that
1747 * callback returns, the driver which issued the transfer request may
1748 * deallocate the associated memory; it's no longer in use by any SPI
1749 * core or controller driver code.
1750 *
1751 * Note that although all messages to a spi_device are handled in
1752 * FIFO order, messages may go to different devices in other orders.
1753 * Some device might be higher priority, or have various "hard" access
1754 * time requirements, for example.
1755 *
1756 * On detection of any fault during the transfer, processing of
1757 * the entire message is aborted, and the device is deselected.
1758 * Until returning from the associated message completion callback,
1759 * no other spi_message queued to that device will be processed.
1760 * (This rule applies equally to all the synchronous transfer calls,
1761 * which are wrappers around this core asynchronous primitive.)
1762 */
1763int spi_async_locked(struct spi_device *spi, struct spi_message *message)
1764{
1765 struct spi_master *master = spi->master;
1766 int ret;
1767 unsigned long flags;
1768
1769 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1770
1771 ret = __spi_async(spi, message);
1772
1773 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1774
1775 return ret;
1776
1777}
1778EXPORT_SYMBOL_GPL(spi_async_locked);
1779
7d077197
DB
1780
1781/*-------------------------------------------------------------------------*/
1782
1783/* Utility methods for SPI master protocol drivers, layered on
1784 * top of the core. Some other utility methods are defined as
1785 * inline functions.
1786 */
1787
5d870c8e
AM
1788static void spi_complete(void *arg)
1789{
1790 complete(arg);
1791}
1792
cf32b71e
ES
1793static int __spi_sync(struct spi_device *spi, struct spi_message *message,
1794 int bus_locked)
1795{
1796 DECLARE_COMPLETION_ONSTACK(done);
1797 int status;
1798 struct spi_master *master = spi->master;
1799
1800 message->complete = spi_complete;
1801 message->context = &done;
1802
1803 if (!bus_locked)
1804 mutex_lock(&master->bus_lock_mutex);
1805
1806 status = spi_async_locked(spi, message);
1807
1808 if (!bus_locked)
1809 mutex_unlock(&master->bus_lock_mutex);
1810
1811 if (status == 0) {
1812 wait_for_completion(&done);
1813 status = message->status;
1814 }
1815 message->context = NULL;
1816 return status;
1817}
1818
8ae12a0d
DB
1819/**
1820 * spi_sync - blocking/synchronous SPI data transfers
1821 * @spi: device with which data will be exchanged
1822 * @message: describes the data transfers
33e34dc6 1823 * Context: can sleep
8ae12a0d
DB
1824 *
1825 * This call may only be used from a context that may sleep. The sleep
1826 * is non-interruptible, and has no timeout. Low-overhead controller
1827 * drivers may DMA directly into and out of the message buffers.
1828 *
1829 * Note that the SPI device's chip select is active during the message,
1830 * and then is normally disabled between messages. Drivers for some
1831 * frequently-used devices may want to minimize costs of selecting a chip,
1832 * by leaving it selected in anticipation that the next message will go
1833 * to the same chip. (That may increase power usage.)
1834 *
0c868461
DB
1835 * Also, the caller is guaranteeing that the memory associated with the
1836 * message will not be freed before this call returns.
1837 *
9b938b74 1838 * It returns zero on success, else a negative error code.
8ae12a0d
DB
1839 */
1840int spi_sync(struct spi_device *spi, struct spi_message *message)
1841{
cf32b71e 1842 return __spi_sync(spi, message, 0);
8ae12a0d
DB
1843}
1844EXPORT_SYMBOL_GPL(spi_sync);
1845
cf32b71e
ES
1846/**
1847 * spi_sync_locked - version of spi_sync with exclusive bus usage
1848 * @spi: device with which data will be exchanged
1849 * @message: describes the data transfers
1850 * Context: can sleep
1851 *
1852 * This call may only be used from a context that may sleep. The sleep
1853 * is non-interruptible, and has no timeout. Low-overhead controller
1854 * drivers may DMA directly into and out of the message buffers.
1855 *
1856 * This call should be used by drivers that require exclusive access to the
25985edc 1857 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
cf32b71e
ES
1858 * be released by a spi_bus_unlock call when the exclusive access is over.
1859 *
1860 * It returns zero on success, else a negative error code.
1861 */
1862int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
1863{
1864 return __spi_sync(spi, message, 1);
1865}
1866EXPORT_SYMBOL_GPL(spi_sync_locked);
1867
1868/**
1869 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
1870 * @master: SPI bus master that should be locked for exclusive bus access
1871 * Context: can sleep
1872 *
1873 * This call may only be used from a context that may sleep. The sleep
1874 * is non-interruptible, and has no timeout.
1875 *
1876 * This call should be used by drivers that require exclusive access to the
1877 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
1878 * exclusive access is over. Data transfer must be done by spi_sync_locked
1879 * and spi_async_locked calls when the SPI bus lock is held.
1880 *
1881 * It returns zero on success, else a negative error code.
1882 */
1883int spi_bus_lock(struct spi_master *master)
1884{
1885 unsigned long flags;
1886
1887 mutex_lock(&master->bus_lock_mutex);
1888
1889 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1890 master->bus_lock_flag = 1;
1891 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1892
1893 /* mutex remains locked until spi_bus_unlock is called */
1894
1895 return 0;
1896}
1897EXPORT_SYMBOL_GPL(spi_bus_lock);
1898
1899/**
1900 * spi_bus_unlock - release the lock for exclusive SPI bus usage
1901 * @master: SPI bus master that was locked for exclusive bus access
1902 * Context: can sleep
1903 *
1904 * This call may only be used from a context that may sleep. The sleep
1905 * is non-interruptible, and has no timeout.
1906 *
1907 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
1908 * call.
1909 *
1910 * It returns zero on success, else a negative error code.
1911 */
1912int spi_bus_unlock(struct spi_master *master)
1913{
1914 master->bus_lock_flag = 0;
1915
1916 mutex_unlock(&master->bus_lock_mutex);
1917
1918 return 0;
1919}
1920EXPORT_SYMBOL_GPL(spi_bus_unlock);
1921
a9948b61 1922/* portable code must never pass more than 32 bytes */
5fe5f05e 1923#define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
8ae12a0d
DB
1924
1925static u8 *buf;
1926
1927/**
1928 * spi_write_then_read - SPI synchronous write followed by read
1929 * @spi: device with which data will be exchanged
1930 * @txbuf: data to be written (need not be dma-safe)
1931 * @n_tx: size of txbuf, in bytes
27570497
JP
1932 * @rxbuf: buffer into which data will be read (need not be dma-safe)
1933 * @n_rx: size of rxbuf, in bytes
33e34dc6 1934 * Context: can sleep
8ae12a0d
DB
1935 *
1936 * This performs a half duplex MicroWire style transaction with the
1937 * device, sending txbuf and then reading rxbuf. The return value
1938 * is zero for success, else a negative errno status code.
b885244e 1939 * This call may only be used from a context that may sleep.
8ae12a0d 1940 *
0c868461 1941 * Parameters to this routine are always copied using a small buffer;
33e34dc6
DB
1942 * portable code should never use this for more than 32 bytes.
1943 * Performance-sensitive or bulk transfer code should instead use
0c868461 1944 * spi_{async,sync}() calls with dma-safe buffers.
8ae12a0d
DB
1945 */
1946int spi_write_then_read(struct spi_device *spi,
0c4a1590
MB
1947 const void *txbuf, unsigned n_tx,
1948 void *rxbuf, unsigned n_rx)
8ae12a0d 1949{
068f4070 1950 static DEFINE_MUTEX(lock);
8ae12a0d
DB
1951
1952 int status;
1953 struct spi_message message;
bdff549e 1954 struct spi_transfer x[2];
8ae12a0d
DB
1955 u8 *local_buf;
1956
b3a223ee
MB
1957 /* Use preallocated DMA-safe buffer if we can. We can't avoid
1958 * copying here, (as a pure convenience thing), but we can
1959 * keep heap costs out of the hot path unless someone else is
1960 * using the pre-allocated buffer or the transfer is too large.
8ae12a0d 1961 */
b3a223ee 1962 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2cd94c8a
MB
1963 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
1964 GFP_KERNEL | GFP_DMA);
b3a223ee
MB
1965 if (!local_buf)
1966 return -ENOMEM;
1967 } else {
1968 local_buf = buf;
1969 }
8ae12a0d 1970
8275c642 1971 spi_message_init(&message);
5fe5f05e 1972 memset(x, 0, sizeof(x));
bdff549e
DB
1973 if (n_tx) {
1974 x[0].len = n_tx;
1975 spi_message_add_tail(&x[0], &message);
1976 }
1977 if (n_rx) {
1978 x[1].len = n_rx;
1979 spi_message_add_tail(&x[1], &message);
1980 }
8275c642 1981
8ae12a0d 1982 memcpy(local_buf, txbuf, n_tx);
bdff549e
DB
1983 x[0].tx_buf = local_buf;
1984 x[1].rx_buf = local_buf + n_tx;
8ae12a0d
DB
1985
1986 /* do the i/o */
8ae12a0d 1987 status = spi_sync(spi, &message);
9b938b74 1988 if (status == 0)
bdff549e 1989 memcpy(rxbuf, x[1].rx_buf, n_rx);
8ae12a0d 1990
bdff549e 1991 if (x[0].tx_buf == buf)
068f4070 1992 mutex_unlock(&lock);
8ae12a0d
DB
1993 else
1994 kfree(local_buf);
1995
1996 return status;
1997}
1998EXPORT_SYMBOL_GPL(spi_write_then_read);
1999
2000/*-------------------------------------------------------------------------*/
2001
2002static int __init spi_init(void)
2003{
b885244e
DB
2004 int status;
2005
e94b1766 2006 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
b885244e
DB
2007 if (!buf) {
2008 status = -ENOMEM;
2009 goto err0;
2010 }
2011
2012 status = bus_register(&spi_bus_type);
2013 if (status < 0)
2014 goto err1;
8ae12a0d 2015
b885244e
DB
2016 status = class_register(&spi_master_class);
2017 if (status < 0)
2018 goto err2;
8ae12a0d 2019 return 0;
b885244e
DB
2020
2021err2:
2022 bus_unregister(&spi_bus_type);
2023err1:
2024 kfree(buf);
2025 buf = NULL;
2026err0:
2027 return status;
8ae12a0d 2028}
b885244e 2029
8ae12a0d
DB
2030/* board_info is normally registered in arch_initcall(),
2031 * but even essential drivers wait till later
b885244e
DB
2032 *
2033 * REVISIT only boardinfo really needs static linking. the rest (device and
2034 * driver registration) _could_ be dynamically linked (modular) ... costs
2035 * include needing to have boardinfo data structures be much more public.
8ae12a0d 2036 */
673c0c00 2037postcore_initcall(spi_init);
8ae12a0d 2038
This page took 0.953527 seconds and 5 git commands to generate.