spi: convert bus code to use dev_groups
[deliverable/linux.git] / drivers / spi / spi.c
CommitLineData
8ae12a0d 1/*
ca632f55 2 * SPI init/core code
8ae12a0d
DB
3 *
4 * Copyright (C) 2005 David Brownell
d57a4282 5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
8ae12a0d
DB
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
8ae12a0d 22#include <linux/kernel.h>
d57a4282 23#include <linux/kmod.h>
8ae12a0d
DB
24#include <linux/device.h>
25#include <linux/init.h>
26#include <linux/cache.h>
94040828 27#include <linux/mutex.h>
2b7a32f7 28#include <linux/of_device.h>
d57a4282 29#include <linux/of_irq.h>
5a0e3ad6 30#include <linux/slab.h>
e0626e38 31#include <linux/mod_devicetable.h>
8ae12a0d 32#include <linux/spi/spi.h>
74317984 33#include <linux/of_gpio.h>
3ae22e8c 34#include <linux/pm_runtime.h>
025ed130 35#include <linux/export.h>
8bd75c77 36#include <linux/sched/rt.h>
ffbbdd21
LW
37#include <linux/delay.h>
38#include <linux/kthread.h>
64bee4d2
MW
39#include <linux/ioport.h>
40#include <linux/acpi.h>
8ae12a0d 41
8ae12a0d
DB
42static void spidev_release(struct device *dev)
43{
0ffa0285 44 struct spi_device *spi = to_spi_device(dev);
8ae12a0d
DB
45
46 /* spi masters may cleanup for released devices */
47 if (spi->master->cleanup)
48 spi->master->cleanup(spi);
49
0c868461 50 spi_master_put(spi->master);
07a389fe 51 kfree(spi);
8ae12a0d
DB
52}
53
54static ssize_t
55modalias_show(struct device *dev, struct device_attribute *a, char *buf)
56{
57 const struct spi_device *spi = to_spi_device(dev);
58
d8e328b3 59 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
8ae12a0d 60}
aa7da564 61static DEVICE_ATTR_RO(modalias);
8ae12a0d 62
aa7da564
GKH
63static struct attribute *spi_dev_attrs[] = {
64 &dev_attr_modalias.attr,
65 NULL,
8ae12a0d 66};
aa7da564 67ATTRIBUTE_GROUPS(spi_dev);
8ae12a0d
DB
68
69/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
70 * and the sysfs version makes coldplug work too.
71 */
72
75368bf6
AV
73static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
74 const struct spi_device *sdev)
75{
76 while (id->name[0]) {
77 if (!strcmp(sdev->modalias, id->name))
78 return id;
79 id++;
80 }
81 return NULL;
82}
83
84const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
85{
86 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
87
88 return spi_match_id(sdrv->id_table, sdev);
89}
90EXPORT_SYMBOL_GPL(spi_get_device_id);
91
8ae12a0d
DB
92static int spi_match_device(struct device *dev, struct device_driver *drv)
93{
94 const struct spi_device *spi = to_spi_device(dev);
75368bf6
AV
95 const struct spi_driver *sdrv = to_spi_driver(drv);
96
2b7a32f7
SA
97 /* Attempt an OF style match */
98 if (of_driver_match_device(dev, drv))
99 return 1;
100
64bee4d2
MW
101 /* Then try ACPI */
102 if (acpi_driver_match_device(dev, drv))
103 return 1;
104
75368bf6
AV
105 if (sdrv->id_table)
106 return !!spi_match_id(sdrv->id_table, spi);
8ae12a0d 107
35f74fca 108 return strcmp(spi->modalias, drv->name) == 0;
8ae12a0d
DB
109}
110
7eff2e7a 111static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
8ae12a0d
DB
112{
113 const struct spi_device *spi = to_spi_device(dev);
114
e0626e38 115 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
8ae12a0d
DB
116 return 0;
117}
118
3ae22e8c
MB
119#ifdef CONFIG_PM_SLEEP
120static int spi_legacy_suspend(struct device *dev, pm_message_t message)
8ae12a0d 121{
3c72426f 122 int value = 0;
b885244e 123 struct spi_driver *drv = to_spi_driver(dev->driver);
8ae12a0d 124
8ae12a0d 125 /* suspend will stop irqs and dma; no more i/o */
3c72426f
DB
126 if (drv) {
127 if (drv->suspend)
128 value = drv->suspend(to_spi_device(dev), message);
129 else
130 dev_dbg(dev, "... can't suspend\n");
131 }
8ae12a0d
DB
132 return value;
133}
134
3ae22e8c 135static int spi_legacy_resume(struct device *dev)
8ae12a0d 136{
3c72426f 137 int value = 0;
b885244e 138 struct spi_driver *drv = to_spi_driver(dev->driver);
8ae12a0d 139
8ae12a0d 140 /* resume may restart the i/o queue */
3c72426f
DB
141 if (drv) {
142 if (drv->resume)
143 value = drv->resume(to_spi_device(dev));
144 else
145 dev_dbg(dev, "... can't resume\n");
146 }
8ae12a0d
DB
147 return value;
148}
149
3ae22e8c
MB
150static int spi_pm_suspend(struct device *dev)
151{
152 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
153
154 if (pm)
155 return pm_generic_suspend(dev);
156 else
157 return spi_legacy_suspend(dev, PMSG_SUSPEND);
158}
159
160static int spi_pm_resume(struct device *dev)
161{
162 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
163
164 if (pm)
165 return pm_generic_resume(dev);
166 else
167 return spi_legacy_resume(dev);
168}
169
170static int spi_pm_freeze(struct device *dev)
171{
172 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
173
174 if (pm)
175 return pm_generic_freeze(dev);
176 else
177 return spi_legacy_suspend(dev, PMSG_FREEZE);
178}
179
180static int spi_pm_thaw(struct device *dev)
181{
182 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
183
184 if (pm)
185 return pm_generic_thaw(dev);
186 else
187 return spi_legacy_resume(dev);
188}
189
190static int spi_pm_poweroff(struct device *dev)
191{
192 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
193
194 if (pm)
195 return pm_generic_poweroff(dev);
196 else
197 return spi_legacy_suspend(dev, PMSG_HIBERNATE);
198}
199
200static int spi_pm_restore(struct device *dev)
201{
202 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
203
204 if (pm)
205 return pm_generic_restore(dev);
206 else
207 return spi_legacy_resume(dev);
208}
8ae12a0d 209#else
3ae22e8c
MB
210#define spi_pm_suspend NULL
211#define spi_pm_resume NULL
212#define spi_pm_freeze NULL
213#define spi_pm_thaw NULL
214#define spi_pm_poweroff NULL
215#define spi_pm_restore NULL
8ae12a0d
DB
216#endif
217
3ae22e8c
MB
218static const struct dev_pm_ops spi_pm = {
219 .suspend = spi_pm_suspend,
220 .resume = spi_pm_resume,
221 .freeze = spi_pm_freeze,
222 .thaw = spi_pm_thaw,
223 .poweroff = spi_pm_poweroff,
224 .restore = spi_pm_restore,
225 SET_RUNTIME_PM_OPS(
226 pm_generic_runtime_suspend,
227 pm_generic_runtime_resume,
45f0a85c 228 NULL
3ae22e8c
MB
229 )
230};
231
8ae12a0d
DB
232struct bus_type spi_bus_type = {
233 .name = "spi",
aa7da564 234 .dev_groups = spi_dev_groups,
8ae12a0d
DB
235 .match = spi_match_device,
236 .uevent = spi_uevent,
3ae22e8c 237 .pm = &spi_pm,
8ae12a0d
DB
238};
239EXPORT_SYMBOL_GPL(spi_bus_type);
240
b885244e
DB
241
242static int spi_drv_probe(struct device *dev)
243{
244 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
245
246 return sdrv->probe(to_spi_device(dev));
247}
248
249static int spi_drv_remove(struct device *dev)
250{
251 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
252
253 return sdrv->remove(to_spi_device(dev));
254}
255
256static void spi_drv_shutdown(struct device *dev)
257{
258 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
259
260 sdrv->shutdown(to_spi_device(dev));
261}
262
33e34dc6
DB
263/**
264 * spi_register_driver - register a SPI driver
265 * @sdrv: the driver to register
266 * Context: can sleep
267 */
b885244e
DB
268int spi_register_driver(struct spi_driver *sdrv)
269{
270 sdrv->driver.bus = &spi_bus_type;
271 if (sdrv->probe)
272 sdrv->driver.probe = spi_drv_probe;
273 if (sdrv->remove)
274 sdrv->driver.remove = spi_drv_remove;
275 if (sdrv->shutdown)
276 sdrv->driver.shutdown = spi_drv_shutdown;
277 return driver_register(&sdrv->driver);
278}
279EXPORT_SYMBOL_GPL(spi_register_driver);
280
8ae12a0d
DB
281/*-------------------------------------------------------------------------*/
282
283/* SPI devices should normally not be created by SPI device drivers; that
284 * would make them board-specific. Similarly with SPI master drivers.
285 * Device registration normally goes into like arch/.../mach.../board-YYY.c
286 * with other readonly (flashable) information about mainboard devices.
287 */
288
289struct boardinfo {
290 struct list_head list;
2b9603a0 291 struct spi_board_info board_info;
8ae12a0d
DB
292};
293
294static LIST_HEAD(board_list);
2b9603a0
FT
295static LIST_HEAD(spi_master_list);
296
297/*
298 * Used to protect add/del opertion for board_info list and
299 * spi_master list, and their matching process
300 */
94040828 301static DEFINE_MUTEX(board_lock);
8ae12a0d 302
dc87c98e
GL
303/**
304 * spi_alloc_device - Allocate a new SPI device
305 * @master: Controller to which device is connected
306 * Context: can sleep
307 *
308 * Allows a driver to allocate and initialize a spi_device without
309 * registering it immediately. This allows a driver to directly
310 * fill the spi_device with device parameters before calling
311 * spi_add_device() on it.
312 *
313 * Caller is responsible to call spi_add_device() on the returned
314 * spi_device structure to add it to the SPI master. If the caller
315 * needs to discard the spi_device without adding it, then it should
316 * call spi_dev_put() on it.
317 *
318 * Returns a pointer to the new device, or NULL.
319 */
320struct spi_device *spi_alloc_device(struct spi_master *master)
321{
322 struct spi_device *spi;
323 struct device *dev = master->dev.parent;
324
325 if (!spi_master_get(master))
326 return NULL;
327
328 spi = kzalloc(sizeof *spi, GFP_KERNEL);
329 if (!spi) {
330 dev_err(dev, "cannot alloc spi_device\n");
331 spi_master_put(master);
332 return NULL;
333 }
334
335 spi->master = master;
178db7d3 336 spi->dev.parent = &master->dev;
dc87c98e
GL
337 spi->dev.bus = &spi_bus_type;
338 spi->dev.release = spidev_release;
446411e1 339 spi->cs_gpio = -ENOENT;
dc87c98e
GL
340 device_initialize(&spi->dev);
341 return spi;
342}
343EXPORT_SYMBOL_GPL(spi_alloc_device);
344
345/**
346 * spi_add_device - Add spi_device allocated with spi_alloc_device
347 * @spi: spi_device to register
348 *
349 * Companion function to spi_alloc_device. Devices allocated with
350 * spi_alloc_device can be added onto the spi bus with this function.
351 *
e48880e0 352 * Returns 0 on success; negative errno on failure
dc87c98e
GL
353 */
354int spi_add_device(struct spi_device *spi)
355{
e48880e0 356 static DEFINE_MUTEX(spi_add_lock);
74317984
JCPV
357 struct spi_master *master = spi->master;
358 struct device *dev = master->dev.parent;
8ec130a0 359 struct device *d;
dc87c98e
GL
360 int status;
361
362 /* Chipselects are numbered 0..max; validate. */
74317984 363 if (spi->chip_select >= master->num_chipselect) {
dc87c98e
GL
364 dev_err(dev, "cs%d >= max %d\n",
365 spi->chip_select,
74317984 366 master->num_chipselect);
dc87c98e
GL
367 return -EINVAL;
368 }
369
370 /* Set the bus ID string */
35f74fca 371 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
dc87c98e
GL
372 spi->chip_select);
373
e48880e0
DB
374
375 /* We need to make sure there's no other device with this
376 * chipselect **BEFORE** we call setup(), else we'll trash
377 * its configuration. Lock against concurrent add() calls.
378 */
379 mutex_lock(&spi_add_lock);
380
8ec130a0
RT
381 d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
382 if (d != NULL) {
e48880e0
DB
383 dev_err(dev, "chipselect %d already in use\n",
384 spi->chip_select);
8ec130a0 385 put_device(d);
e48880e0
DB
386 status = -EBUSY;
387 goto done;
388 }
389
74317984
JCPV
390 if (master->cs_gpios)
391 spi->cs_gpio = master->cs_gpios[spi->chip_select];
392
e48880e0
DB
393 /* Drivers may modify this initial i/o setup, but will
394 * normally rely on the device being setup. Devices
395 * using SPI_CS_HIGH can't coexist well otherwise...
396 */
7d077197 397 status = spi_setup(spi);
dc87c98e 398 if (status < 0) {
eb288a1f
LW
399 dev_err(dev, "can't setup %s, status %d\n",
400 dev_name(&spi->dev), status);
e48880e0 401 goto done;
dc87c98e
GL
402 }
403
e48880e0 404 /* Device may be bound to an active driver when this returns */
dc87c98e 405 status = device_add(&spi->dev);
e48880e0 406 if (status < 0)
eb288a1f
LW
407 dev_err(dev, "can't add %s, status %d\n",
408 dev_name(&spi->dev), status);
e48880e0 409 else
35f74fca 410 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
dc87c98e 411
e48880e0
DB
412done:
413 mutex_unlock(&spi_add_lock);
414 return status;
dc87c98e
GL
415}
416EXPORT_SYMBOL_GPL(spi_add_device);
8ae12a0d 417
33e34dc6
DB
418/**
419 * spi_new_device - instantiate one new SPI device
420 * @master: Controller to which device is connected
421 * @chip: Describes the SPI device
422 * Context: can sleep
423 *
424 * On typical mainboards, this is purely internal; and it's not needed
8ae12a0d
DB
425 * after board init creates the hard-wired devices. Some development
426 * platforms may not be able to use spi_register_board_info though, and
427 * this is exported so that for example a USB or parport based adapter
428 * driver could add devices (which it would learn about out-of-band).
082c8cb4
DB
429 *
430 * Returns the new device, or NULL.
8ae12a0d 431 */
e9d5a461
AB
432struct spi_device *spi_new_device(struct spi_master *master,
433 struct spi_board_info *chip)
8ae12a0d
DB
434{
435 struct spi_device *proxy;
8ae12a0d
DB
436 int status;
437
082c8cb4
DB
438 /* NOTE: caller did any chip->bus_num checks necessary.
439 *
440 * Also, unless we change the return value convention to use
441 * error-or-pointer (not NULL-or-pointer), troubleshootability
442 * suggests syslogged diagnostics are best here (ugh).
443 */
444
dc87c98e
GL
445 proxy = spi_alloc_device(master);
446 if (!proxy)
8ae12a0d
DB
447 return NULL;
448
102eb975
GL
449 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
450
8ae12a0d
DB
451 proxy->chip_select = chip->chip_select;
452 proxy->max_speed_hz = chip->max_speed_hz;
980a01c9 453 proxy->mode = chip->mode;
8ae12a0d 454 proxy->irq = chip->irq;
102eb975 455 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
8ae12a0d
DB
456 proxy->dev.platform_data = (void *) chip->platform_data;
457 proxy->controller_data = chip->controller_data;
458 proxy->controller_state = NULL;
8ae12a0d 459
dc87c98e 460 status = spi_add_device(proxy);
8ae12a0d 461 if (status < 0) {
dc87c98e
GL
462 spi_dev_put(proxy);
463 return NULL;
8ae12a0d
DB
464 }
465
8ae12a0d
DB
466 return proxy;
467}
468EXPORT_SYMBOL_GPL(spi_new_device);
469
2b9603a0
FT
470static void spi_match_master_to_boardinfo(struct spi_master *master,
471 struct spi_board_info *bi)
472{
473 struct spi_device *dev;
474
475 if (master->bus_num != bi->bus_num)
476 return;
477
478 dev = spi_new_device(master, bi);
479 if (!dev)
480 dev_err(master->dev.parent, "can't create new device for %s\n",
481 bi->modalias);
482}
483
33e34dc6
DB
484/**
485 * spi_register_board_info - register SPI devices for a given board
486 * @info: array of chip descriptors
487 * @n: how many descriptors are provided
488 * Context: can sleep
489 *
8ae12a0d
DB
490 * Board-specific early init code calls this (probably during arch_initcall)
491 * with segments of the SPI device table. Any device nodes are created later,
492 * after the relevant parent SPI controller (bus_num) is defined. We keep
493 * this table of devices forever, so that reloading a controller driver will
494 * not make Linux forget about these hard-wired devices.
495 *
496 * Other code can also call this, e.g. a particular add-on board might provide
497 * SPI devices through its expansion connector, so code initializing that board
498 * would naturally declare its SPI devices.
499 *
500 * The board info passed can safely be __initdata ... but be careful of
501 * any embedded pointers (platform_data, etc), they're copied as-is.
502 */
fd4a319b 503int spi_register_board_info(struct spi_board_info const *info, unsigned n)
8ae12a0d 504{
2b9603a0
FT
505 struct boardinfo *bi;
506 int i;
8ae12a0d 507
2b9603a0 508 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
8ae12a0d
DB
509 if (!bi)
510 return -ENOMEM;
8ae12a0d 511
2b9603a0
FT
512 for (i = 0; i < n; i++, bi++, info++) {
513 struct spi_master *master;
8ae12a0d 514
2b9603a0
FT
515 memcpy(&bi->board_info, info, sizeof(*info));
516 mutex_lock(&board_lock);
517 list_add_tail(&bi->list, &board_list);
518 list_for_each_entry(master, &spi_master_list, list)
519 spi_match_master_to_boardinfo(master, &bi->board_info);
520 mutex_unlock(&board_lock);
8ae12a0d 521 }
2b9603a0
FT
522
523 return 0;
8ae12a0d
DB
524}
525
526/*-------------------------------------------------------------------------*/
527
ffbbdd21
LW
528/**
529 * spi_pump_messages - kthread work function which processes spi message queue
530 * @work: pointer to kthread work struct contained in the master struct
531 *
532 * This function checks if there is any spi message in the queue that
533 * needs processing and if so call out to the driver to initialize hardware
534 * and transfer each message.
535 *
536 */
537static void spi_pump_messages(struct kthread_work *work)
538{
539 struct spi_master *master =
540 container_of(work, struct spi_master, pump_messages);
541 unsigned long flags;
542 bool was_busy = false;
543 int ret;
544
545 /* Lock queue and check for queue work */
546 spin_lock_irqsave(&master->queue_lock, flags);
547 if (list_empty(&master->queue) || !master->running) {
b0b36b86
BF
548 if (!master->busy) {
549 spin_unlock_irqrestore(&master->queue_lock, flags);
550 return;
ffbbdd21
LW
551 }
552 master->busy = false;
553 spin_unlock_irqrestore(&master->queue_lock, flags);
b0b36b86
BF
554 if (master->unprepare_transfer_hardware &&
555 master->unprepare_transfer_hardware(master))
556 dev_err(&master->dev,
557 "failed to unprepare transfer hardware\n");
49834de2
MB
558 if (master->auto_runtime_pm) {
559 pm_runtime_mark_last_busy(master->dev.parent);
560 pm_runtime_put_autosuspend(master->dev.parent);
561 }
ffbbdd21
LW
562 return;
563 }
564
565 /* Make sure we are not already running a message */
566 if (master->cur_msg) {
567 spin_unlock_irqrestore(&master->queue_lock, flags);
568 return;
569 }
570 /* Extract head of queue */
571 master->cur_msg =
572 list_entry(master->queue.next, struct spi_message, queue);
573
574 list_del_init(&master->cur_msg->queue);
575 if (master->busy)
576 was_busy = true;
577 else
578 master->busy = true;
579 spin_unlock_irqrestore(&master->queue_lock, flags);
580
49834de2
MB
581 if (!was_busy && master->auto_runtime_pm) {
582 ret = pm_runtime_get_sync(master->dev.parent);
583 if (ret < 0) {
584 dev_err(&master->dev, "Failed to power device: %d\n",
585 ret);
586 return;
587 }
588 }
589
7dfd2bd7 590 if (!was_busy && master->prepare_transfer_hardware) {
ffbbdd21
LW
591 ret = master->prepare_transfer_hardware(master);
592 if (ret) {
593 dev_err(&master->dev,
594 "failed to prepare transfer hardware\n");
49834de2
MB
595
596 if (master->auto_runtime_pm)
597 pm_runtime_put(master->dev.parent);
ffbbdd21
LW
598 return;
599 }
600 }
601
602 ret = master->transfer_one_message(master, master->cur_msg);
603 if (ret) {
604 dev_err(&master->dev,
605 "failed to transfer one message from queue\n");
606 return;
607 }
608}
609
610static int spi_init_queue(struct spi_master *master)
611{
612 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
613
614 INIT_LIST_HEAD(&master->queue);
615 spin_lock_init(&master->queue_lock);
616
617 master->running = false;
618 master->busy = false;
619
620 init_kthread_worker(&master->kworker);
621 master->kworker_task = kthread_run(kthread_worker_fn,
f170168b 622 &master->kworker, "%s",
ffbbdd21
LW
623 dev_name(&master->dev));
624 if (IS_ERR(master->kworker_task)) {
625 dev_err(&master->dev, "failed to create message pump task\n");
626 return -ENOMEM;
627 }
628 init_kthread_work(&master->pump_messages, spi_pump_messages);
629
630 /*
631 * Master config will indicate if this controller should run the
632 * message pump with high (realtime) priority to reduce the transfer
633 * latency on the bus by minimising the delay between a transfer
634 * request and the scheduling of the message pump thread. Without this
635 * setting the message pump thread will remain at default priority.
636 */
637 if (master->rt) {
638 dev_info(&master->dev,
639 "will run message pump with realtime priority\n");
640 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
641 }
642
643 return 0;
644}
645
646/**
647 * spi_get_next_queued_message() - called by driver to check for queued
648 * messages
649 * @master: the master to check for queued messages
650 *
651 * If there are more messages in the queue, the next message is returned from
652 * this call.
653 */
654struct spi_message *spi_get_next_queued_message(struct spi_master *master)
655{
656 struct spi_message *next;
657 unsigned long flags;
658
659 /* get a pointer to the next message, if any */
660 spin_lock_irqsave(&master->queue_lock, flags);
661 if (list_empty(&master->queue))
662 next = NULL;
663 else
664 next = list_entry(master->queue.next,
665 struct spi_message, queue);
666 spin_unlock_irqrestore(&master->queue_lock, flags);
667
668 return next;
669}
670EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
671
672/**
673 * spi_finalize_current_message() - the current message is complete
674 * @master: the master to return the message to
675 *
676 * Called by the driver to notify the core that the message in the front of the
677 * queue is complete and can be removed from the queue.
678 */
679void spi_finalize_current_message(struct spi_master *master)
680{
681 struct spi_message *mesg;
682 unsigned long flags;
683
684 spin_lock_irqsave(&master->queue_lock, flags);
685 mesg = master->cur_msg;
686 master->cur_msg = NULL;
687
688 queue_kthread_work(&master->kworker, &master->pump_messages);
689 spin_unlock_irqrestore(&master->queue_lock, flags);
690
691 mesg->state = NULL;
692 if (mesg->complete)
693 mesg->complete(mesg->context);
694}
695EXPORT_SYMBOL_GPL(spi_finalize_current_message);
696
697static int spi_start_queue(struct spi_master *master)
698{
699 unsigned long flags;
700
701 spin_lock_irqsave(&master->queue_lock, flags);
702
703 if (master->running || master->busy) {
704 spin_unlock_irqrestore(&master->queue_lock, flags);
705 return -EBUSY;
706 }
707
708 master->running = true;
709 master->cur_msg = NULL;
710 spin_unlock_irqrestore(&master->queue_lock, flags);
711
712 queue_kthread_work(&master->kworker, &master->pump_messages);
713
714 return 0;
715}
716
717static int spi_stop_queue(struct spi_master *master)
718{
719 unsigned long flags;
720 unsigned limit = 500;
721 int ret = 0;
722
723 spin_lock_irqsave(&master->queue_lock, flags);
724
725 /*
726 * This is a bit lame, but is optimized for the common execution path.
727 * A wait_queue on the master->busy could be used, but then the common
728 * execution path (pump_messages) would be required to call wake_up or
729 * friends on every SPI message. Do this instead.
730 */
731 while ((!list_empty(&master->queue) || master->busy) && limit--) {
732 spin_unlock_irqrestore(&master->queue_lock, flags);
733 msleep(10);
734 spin_lock_irqsave(&master->queue_lock, flags);
735 }
736
737 if (!list_empty(&master->queue) || master->busy)
738 ret = -EBUSY;
739 else
740 master->running = false;
741
742 spin_unlock_irqrestore(&master->queue_lock, flags);
743
744 if (ret) {
745 dev_warn(&master->dev,
746 "could not stop message queue\n");
747 return ret;
748 }
749 return ret;
750}
751
752static int spi_destroy_queue(struct spi_master *master)
753{
754 int ret;
755
756 ret = spi_stop_queue(master);
757
758 /*
759 * flush_kthread_worker will block until all work is done.
760 * If the reason that stop_queue timed out is that the work will never
761 * finish, then it does no good to call flush/stop thread, so
762 * return anyway.
763 */
764 if (ret) {
765 dev_err(&master->dev, "problem destroying queue\n");
766 return ret;
767 }
768
769 flush_kthread_worker(&master->kworker);
770 kthread_stop(master->kworker_task);
771
772 return 0;
773}
774
775/**
776 * spi_queued_transfer - transfer function for queued transfers
777 * @spi: spi device which is requesting transfer
778 * @msg: spi message which is to handled is queued to driver queue
779 */
780static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
781{
782 struct spi_master *master = spi->master;
783 unsigned long flags;
784
785 spin_lock_irqsave(&master->queue_lock, flags);
786
787 if (!master->running) {
788 spin_unlock_irqrestore(&master->queue_lock, flags);
789 return -ESHUTDOWN;
790 }
791 msg->actual_length = 0;
792 msg->status = -EINPROGRESS;
793
794 list_add_tail(&msg->queue, &master->queue);
96b3eace 795 if (!master->busy)
ffbbdd21
LW
796 queue_kthread_work(&master->kworker, &master->pump_messages);
797
798 spin_unlock_irqrestore(&master->queue_lock, flags);
799 return 0;
800}
801
802static int spi_master_initialize_queue(struct spi_master *master)
803{
804 int ret;
805
806 master->queued = true;
807 master->transfer = spi_queued_transfer;
808
809 /* Initialize and start queue */
810 ret = spi_init_queue(master);
811 if (ret) {
812 dev_err(&master->dev, "problem initializing queue\n");
813 goto err_init_queue;
814 }
815 ret = spi_start_queue(master);
816 if (ret) {
817 dev_err(&master->dev, "problem starting queue\n");
818 goto err_start_queue;
819 }
820
821 return 0;
822
823err_start_queue:
824err_init_queue:
825 spi_destroy_queue(master);
826 return ret;
827}
828
829/*-------------------------------------------------------------------------*/
830
7cb94361 831#if defined(CONFIG_OF)
d57a4282
GL
832/**
833 * of_register_spi_devices() - Register child devices onto the SPI bus
834 * @master: Pointer to spi_master device
835 *
836 * Registers an spi_device for each child node of master node which has a 'reg'
837 * property.
838 */
839static void of_register_spi_devices(struct spi_master *master)
840{
841 struct spi_device *spi;
842 struct device_node *nc;
d57a4282 843 int rc;
89da4293 844 u32 value;
d57a4282
GL
845
846 if (!master->dev.of_node)
847 return;
848
f3b6159e 849 for_each_available_child_of_node(master->dev.of_node, nc) {
d57a4282
GL
850 /* Alloc an spi_device */
851 spi = spi_alloc_device(master);
852 if (!spi) {
853 dev_err(&master->dev, "spi_device alloc error for %s\n",
854 nc->full_name);
855 spi_dev_put(spi);
856 continue;
857 }
858
859 /* Select device driver */
860 if (of_modalias_node(nc, spi->modalias,
861 sizeof(spi->modalias)) < 0) {
862 dev_err(&master->dev, "cannot find modalias for %s\n",
863 nc->full_name);
864 spi_dev_put(spi);
865 continue;
866 }
867
868 /* Device address */
89da4293
TP
869 rc = of_property_read_u32(nc, "reg", &value);
870 if (rc) {
871 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
872 nc->full_name, rc);
d57a4282
GL
873 spi_dev_put(spi);
874 continue;
875 }
89da4293 876 spi->chip_select = value;
d57a4282
GL
877
878 /* Mode (clock phase/polarity/etc.) */
879 if (of_find_property(nc, "spi-cpha", NULL))
880 spi->mode |= SPI_CPHA;
881 if (of_find_property(nc, "spi-cpol", NULL))
882 spi->mode |= SPI_CPOL;
883 if (of_find_property(nc, "spi-cs-high", NULL))
884 spi->mode |= SPI_CS_HIGH;
c20151df
LPC
885 if (of_find_property(nc, "spi-3wire", NULL))
886 spi->mode |= SPI_3WIRE;
d57a4282 887
f477b7fb 888 /* Device DUAL/QUAD mode */
89da4293
TP
889 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
890 switch (value) {
891 case 1:
a822e99c 892 break;
89da4293 893 case 2:
a822e99c
MB
894 spi->mode |= SPI_TX_DUAL;
895 break;
89da4293 896 case 4:
a822e99c
MB
897 spi->mode |= SPI_TX_QUAD;
898 break;
899 default:
900 dev_err(&master->dev,
a110f93d 901 "spi-tx-bus-width %d not supported\n",
89da4293 902 value);
a822e99c
MB
903 spi_dev_put(spi);
904 continue;
905 }
f477b7fb 906 }
907
89da4293
TP
908 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
909 switch (value) {
910 case 1:
a822e99c 911 break;
89da4293 912 case 2:
a822e99c
MB
913 spi->mode |= SPI_RX_DUAL;
914 break;
89da4293 915 case 4:
a822e99c
MB
916 spi->mode |= SPI_RX_QUAD;
917 break;
918 default:
919 dev_err(&master->dev,
a110f93d 920 "spi-rx-bus-width %d not supported\n",
89da4293 921 value);
a822e99c
MB
922 spi_dev_put(spi);
923 continue;
924 }
f477b7fb 925 }
926
d57a4282 927 /* Device speed */
89da4293
TP
928 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
929 if (rc) {
930 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
931 nc->full_name, rc);
d57a4282
GL
932 spi_dev_put(spi);
933 continue;
934 }
89da4293 935 spi->max_speed_hz = value;
d57a4282
GL
936
937 /* IRQ */
938 spi->irq = irq_of_parse_and_map(nc, 0);
939
940 /* Store a pointer to the node in the device structure */
941 of_node_get(nc);
942 spi->dev.of_node = nc;
943
944 /* Register the new device */
70fac17c 945 request_module("%s%s", SPI_MODULE_PREFIX, spi->modalias);
d57a4282
GL
946 rc = spi_add_device(spi);
947 if (rc) {
948 dev_err(&master->dev, "spi_device register error %s\n",
949 nc->full_name);
950 spi_dev_put(spi);
951 }
952
953 }
954}
955#else
956static void of_register_spi_devices(struct spi_master *master) { }
957#endif
958
64bee4d2
MW
959#ifdef CONFIG_ACPI
960static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
961{
962 struct spi_device *spi = data;
963
964 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
965 struct acpi_resource_spi_serialbus *sb;
966
967 sb = &ares->data.spi_serial_bus;
968 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
969 spi->chip_select = sb->device_selection;
970 spi->max_speed_hz = sb->connection_speed;
971
972 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
973 spi->mode |= SPI_CPHA;
974 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
975 spi->mode |= SPI_CPOL;
976 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
977 spi->mode |= SPI_CS_HIGH;
978 }
979 } else if (spi->irq < 0) {
980 struct resource r;
981
982 if (acpi_dev_resource_interrupt(ares, 0, &r))
983 spi->irq = r.start;
984 }
985
986 /* Always tell the ACPI core to skip this resource */
987 return 1;
988}
989
990static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
991 void *data, void **return_value)
992{
993 struct spi_master *master = data;
994 struct list_head resource_list;
995 struct acpi_device *adev;
996 struct spi_device *spi;
997 int ret;
998
999 if (acpi_bus_get_device(handle, &adev))
1000 return AE_OK;
1001 if (acpi_bus_get_status(adev) || !adev->status.present)
1002 return AE_OK;
1003
1004 spi = spi_alloc_device(master);
1005 if (!spi) {
1006 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1007 dev_name(&adev->dev));
1008 return AE_NO_MEMORY;
1009 }
1010
1011 ACPI_HANDLE_SET(&spi->dev, handle);
1012 spi->irq = -1;
1013
1014 INIT_LIST_HEAD(&resource_list);
1015 ret = acpi_dev_get_resources(adev, &resource_list,
1016 acpi_spi_add_resource, spi);
1017 acpi_dev_free_resource_list(&resource_list);
1018
1019 if (ret < 0 || !spi->max_speed_hz) {
1020 spi_dev_put(spi);
1021 return AE_OK;
1022 }
1023
1024 strlcpy(spi->modalias, dev_name(&adev->dev), sizeof(spi->modalias));
1025 if (spi_add_device(spi)) {
1026 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1027 dev_name(&adev->dev));
1028 spi_dev_put(spi);
1029 }
1030
1031 return AE_OK;
1032}
1033
1034static void acpi_register_spi_devices(struct spi_master *master)
1035{
1036 acpi_status status;
1037 acpi_handle handle;
1038
29896178 1039 handle = ACPI_HANDLE(master->dev.parent);
64bee4d2
MW
1040 if (!handle)
1041 return;
1042
1043 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1044 acpi_spi_add_device, NULL,
1045 master, NULL);
1046 if (ACPI_FAILURE(status))
1047 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1048}
1049#else
1050static inline void acpi_register_spi_devices(struct spi_master *master) {}
1051#endif /* CONFIG_ACPI */
1052
49dce689 1053static void spi_master_release(struct device *dev)
8ae12a0d
DB
1054{
1055 struct spi_master *master;
1056
49dce689 1057 master = container_of(dev, struct spi_master, dev);
8ae12a0d
DB
1058 kfree(master);
1059}
1060
1061static struct class spi_master_class = {
1062 .name = "spi_master",
1063 .owner = THIS_MODULE,
49dce689 1064 .dev_release = spi_master_release,
8ae12a0d
DB
1065};
1066
1067
ffbbdd21 1068
8ae12a0d
DB
1069/**
1070 * spi_alloc_master - allocate SPI master controller
1071 * @dev: the controller, possibly using the platform_bus
33e34dc6 1072 * @size: how much zeroed driver-private data to allocate; the pointer to this
49dce689 1073 * memory is in the driver_data field of the returned device,
0c868461 1074 * accessible with spi_master_get_devdata().
33e34dc6 1075 * Context: can sleep
8ae12a0d
DB
1076 *
1077 * This call is used only by SPI master controller drivers, which are the
1078 * only ones directly touching chip registers. It's how they allocate
ba1a0513 1079 * an spi_master structure, prior to calling spi_register_master().
8ae12a0d
DB
1080 *
1081 * This must be called from context that can sleep. It returns the SPI
1082 * master structure on success, else NULL.
1083 *
1084 * The caller is responsible for assigning the bus number and initializing
ba1a0513 1085 * the master's methods before calling spi_register_master(); and (after errors
eb4af0f5
UKK
1086 * adding the device) calling spi_master_put() and kfree() to prevent a memory
1087 * leak.
8ae12a0d 1088 */
e9d5a461 1089struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
8ae12a0d
DB
1090{
1091 struct spi_master *master;
1092
0c868461
DB
1093 if (!dev)
1094 return NULL;
1095
e94b1766 1096 master = kzalloc(size + sizeof *master, GFP_KERNEL);
8ae12a0d
DB
1097 if (!master)
1098 return NULL;
1099
49dce689 1100 device_initialize(&master->dev);
1e8a52e1
GL
1101 master->bus_num = -1;
1102 master->num_chipselect = 1;
49dce689
TJ
1103 master->dev.class = &spi_master_class;
1104 master->dev.parent = get_device(dev);
0c868461 1105 spi_master_set_devdata(master, &master[1]);
8ae12a0d
DB
1106
1107 return master;
1108}
1109EXPORT_SYMBOL_GPL(spi_alloc_master);
1110
74317984
JCPV
1111#ifdef CONFIG_OF
1112static int of_spi_register_master(struct spi_master *master)
1113{
e80beb27 1114 int nb, i, *cs;
74317984
JCPV
1115 struct device_node *np = master->dev.of_node;
1116
1117 if (!np)
1118 return 0;
1119
1120 nb = of_gpio_named_count(np, "cs-gpios");
e80beb27 1121 master->num_chipselect = max(nb, (int)master->num_chipselect);
74317984 1122
8ec5d84e
AL
1123 /* Return error only for an incorrectly formed cs-gpios property */
1124 if (nb == 0 || nb == -ENOENT)
74317984 1125 return 0;
8ec5d84e
AL
1126 else if (nb < 0)
1127 return nb;
74317984
JCPV
1128
1129 cs = devm_kzalloc(&master->dev,
1130 sizeof(int) * master->num_chipselect,
1131 GFP_KERNEL);
1132 master->cs_gpios = cs;
1133
1134 if (!master->cs_gpios)
1135 return -ENOMEM;
1136
0da83bb1 1137 for (i = 0; i < master->num_chipselect; i++)
446411e1 1138 cs[i] = -ENOENT;
74317984
JCPV
1139
1140 for (i = 0; i < nb; i++)
1141 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1142
1143 return 0;
1144}
1145#else
1146static int of_spi_register_master(struct spi_master *master)
1147{
1148 return 0;
1149}
1150#endif
1151
8ae12a0d
DB
1152/**
1153 * spi_register_master - register SPI master controller
1154 * @master: initialized master, originally from spi_alloc_master()
33e34dc6 1155 * Context: can sleep
8ae12a0d
DB
1156 *
1157 * SPI master controllers connect to their drivers using some non-SPI bus,
1158 * such as the platform bus. The final stage of probe() in that code
1159 * includes calling spi_register_master() to hook up to this SPI bus glue.
1160 *
1161 * SPI controllers use board specific (often SOC specific) bus numbers,
1162 * and board-specific addressing for SPI devices combines those numbers
1163 * with chip select numbers. Since SPI does not directly support dynamic
1164 * device identification, boards need configuration tables telling which
1165 * chip is at which address.
1166 *
1167 * This must be called from context that can sleep. It returns zero on
1168 * success, else a negative error code (dropping the master's refcount).
0c868461
DB
1169 * After a successful return, the caller is responsible for calling
1170 * spi_unregister_master().
8ae12a0d 1171 */
e9d5a461 1172int spi_register_master(struct spi_master *master)
8ae12a0d 1173{
e44a45ae 1174 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
49dce689 1175 struct device *dev = master->dev.parent;
2b9603a0 1176 struct boardinfo *bi;
8ae12a0d
DB
1177 int status = -ENODEV;
1178 int dynamic = 0;
1179
0c868461
DB
1180 if (!dev)
1181 return -ENODEV;
1182
74317984
JCPV
1183 status = of_spi_register_master(master);
1184 if (status)
1185 return status;
1186
082c8cb4
DB
1187 /* even if it's just one always-selected device, there must
1188 * be at least one chipselect
1189 */
1190 if (master->num_chipselect == 0)
1191 return -EINVAL;
1192
bb29785e
GL
1193 if ((master->bus_num < 0) && master->dev.of_node)
1194 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1195
8ae12a0d 1196 /* convention: dynamically assigned bus IDs count down from the max */
a020ed75 1197 if (master->bus_num < 0) {
082c8cb4
DB
1198 /* FIXME switch to an IDR based scheme, something like
1199 * I2C now uses, so we can't run out of "dynamic" IDs
1200 */
8ae12a0d 1201 master->bus_num = atomic_dec_return(&dyn_bus_id);
b885244e 1202 dynamic = 1;
8ae12a0d
DB
1203 }
1204
cf32b71e
ES
1205 spin_lock_init(&master->bus_lock_spinlock);
1206 mutex_init(&master->bus_lock_mutex);
1207 master->bus_lock_flag = 0;
1208
8ae12a0d
DB
1209 /* register the device, then userspace will see it.
1210 * registration fails if the bus ID is in use.
1211 */
35f74fca 1212 dev_set_name(&master->dev, "spi%u", master->bus_num);
49dce689 1213 status = device_add(&master->dev);
b885244e 1214 if (status < 0)
8ae12a0d 1215 goto done;
35f74fca 1216 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
8ae12a0d
DB
1217 dynamic ? " (dynamic)" : "");
1218
ffbbdd21
LW
1219 /* If we're using a queued driver, start the queue */
1220 if (master->transfer)
1221 dev_info(dev, "master is unqueued, this is deprecated\n");
1222 else {
1223 status = spi_master_initialize_queue(master);
1224 if (status) {
e93b0724 1225 device_del(&master->dev);
ffbbdd21
LW
1226 goto done;
1227 }
1228 }
1229
2b9603a0
FT
1230 mutex_lock(&board_lock);
1231 list_add_tail(&master->list, &spi_master_list);
1232 list_for_each_entry(bi, &board_list, list)
1233 spi_match_master_to_boardinfo(master, &bi->board_info);
1234 mutex_unlock(&board_lock);
1235
64bee4d2 1236 /* Register devices from the device tree and ACPI */
12b15e83 1237 of_register_spi_devices(master);
64bee4d2 1238 acpi_register_spi_devices(master);
8ae12a0d
DB
1239done:
1240 return status;
1241}
1242EXPORT_SYMBOL_GPL(spi_register_master);
1243
34860089 1244static int __unregister(struct device *dev, void *null)
8ae12a0d 1245{
34860089 1246 spi_unregister_device(to_spi_device(dev));
8ae12a0d
DB
1247 return 0;
1248}
1249
1250/**
1251 * spi_unregister_master - unregister SPI master controller
1252 * @master: the master being unregistered
33e34dc6 1253 * Context: can sleep
8ae12a0d
DB
1254 *
1255 * This call is used only by SPI master controller drivers, which are the
1256 * only ones directly touching chip registers.
1257 *
1258 * This must be called from context that can sleep.
1259 */
1260void spi_unregister_master(struct spi_master *master)
1261{
89fc9a1a
JG
1262 int dummy;
1263
ffbbdd21
LW
1264 if (master->queued) {
1265 if (spi_destroy_queue(master))
1266 dev_err(&master->dev, "queue remove failed\n");
1267 }
1268
2b9603a0
FT
1269 mutex_lock(&board_lock);
1270 list_del(&master->list);
1271 mutex_unlock(&board_lock);
1272
97dbf37d 1273 dummy = device_for_each_child(&master->dev, NULL, __unregister);
49dce689 1274 device_unregister(&master->dev);
8ae12a0d
DB
1275}
1276EXPORT_SYMBOL_GPL(spi_unregister_master);
1277
ffbbdd21
LW
1278int spi_master_suspend(struct spi_master *master)
1279{
1280 int ret;
1281
1282 /* Basically no-ops for non-queued masters */
1283 if (!master->queued)
1284 return 0;
1285
1286 ret = spi_stop_queue(master);
1287 if (ret)
1288 dev_err(&master->dev, "queue stop failed\n");
1289
1290 return ret;
1291}
1292EXPORT_SYMBOL_GPL(spi_master_suspend);
1293
1294int spi_master_resume(struct spi_master *master)
1295{
1296 int ret;
1297
1298 if (!master->queued)
1299 return 0;
1300
1301 ret = spi_start_queue(master);
1302 if (ret)
1303 dev_err(&master->dev, "queue restart failed\n");
1304
1305 return ret;
1306}
1307EXPORT_SYMBOL_GPL(spi_master_resume);
1308
9f3b795a 1309static int __spi_master_match(struct device *dev, const void *data)
5ed2c832
DY
1310{
1311 struct spi_master *m;
9f3b795a 1312 const u16 *bus_num = data;
5ed2c832
DY
1313
1314 m = container_of(dev, struct spi_master, dev);
1315 return m->bus_num == *bus_num;
1316}
1317
8ae12a0d
DB
1318/**
1319 * spi_busnum_to_master - look up master associated with bus_num
1320 * @bus_num: the master's bus number
33e34dc6 1321 * Context: can sleep
8ae12a0d
DB
1322 *
1323 * This call may be used with devices that are registered after
1324 * arch init time. It returns a refcounted pointer to the relevant
1325 * spi_master (which the caller must release), or NULL if there is
1326 * no such master registered.
1327 */
1328struct spi_master *spi_busnum_to_master(u16 bus_num)
1329{
49dce689 1330 struct device *dev;
1e9a51dc 1331 struct spi_master *master = NULL;
5ed2c832 1332
695794ae 1333 dev = class_find_device(&spi_master_class, NULL, &bus_num,
5ed2c832
DY
1334 __spi_master_match);
1335 if (dev)
1336 master = container_of(dev, struct spi_master, dev);
1337 /* reference got in class_find_device */
1e9a51dc 1338 return master;
8ae12a0d
DB
1339}
1340EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1341
1342
1343/*-------------------------------------------------------------------------*/
1344
7d077197
DB
1345/* Core methods for SPI master protocol drivers. Some of the
1346 * other core methods are currently defined as inline functions.
1347 */
1348
1349/**
1350 * spi_setup - setup SPI mode and clock rate
1351 * @spi: the device whose settings are being modified
1352 * Context: can sleep, and no requests are queued to the device
1353 *
1354 * SPI protocol drivers may need to update the transfer mode if the
1355 * device doesn't work with its default. They may likewise need
1356 * to update clock rates or word sizes from initial values. This function
1357 * changes those settings, and must be called from a context that can sleep.
1358 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1359 * effect the next time the device is selected and data is transferred to
1360 * or from it. When this function returns, the spi device is deselected.
1361 *
1362 * Note that this call will fail if the protocol driver specifies an option
1363 * that the underlying controller or its driver does not support. For
1364 * example, not all hardware supports wire transfers using nine bit words,
1365 * LSB-first wire encoding, or active-high chipselects.
1366 */
1367int spi_setup(struct spi_device *spi)
1368{
e7db06b5 1369 unsigned bad_bits;
caae070c 1370 int status = 0;
7d077197 1371
f477b7fb 1372 /* check mode to prevent that DUAL and QUAD set at the same time
1373 */
1374 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
1375 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
1376 dev_err(&spi->dev,
1377 "setup: can not select dual and quad at the same time\n");
1378 return -EINVAL;
1379 }
1380 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1381 */
1382 if ((spi->mode & SPI_3WIRE) && (spi->mode &
1383 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
1384 return -EINVAL;
e7db06b5
DB
1385 /* help drivers fail *cleanly* when they need options
1386 * that aren't supported with their current master
1387 */
1388 bad_bits = spi->mode & ~spi->master->mode_bits;
1389 if (bad_bits) {
eb288a1f 1390 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
e7db06b5
DB
1391 bad_bits);
1392 return -EINVAL;
1393 }
1394
7d077197
DB
1395 if (!spi->bits_per_word)
1396 spi->bits_per_word = 8;
1397
caae070c
LD
1398 if (spi->master->setup)
1399 status = spi->master->setup(spi);
7d077197
DB
1400
1401 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
1402 "%u bits/w, %u Hz max --> %d\n",
1403 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1404 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1405 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1406 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
1407 (spi->mode & SPI_LOOP) ? "loopback, " : "",
1408 spi->bits_per_word, spi->max_speed_hz,
1409 status);
1410
1411 return status;
1412}
1413EXPORT_SYMBOL_GPL(spi_setup);
1414
cf32b71e
ES
1415static int __spi_async(struct spi_device *spi, struct spi_message *message)
1416{
1417 struct spi_master *master = spi->master;
e6811d1d 1418 struct spi_transfer *xfer;
cf32b71e 1419
24a0013a
MB
1420 if (list_empty(&message->transfers))
1421 return -EINVAL;
1422 if (!message->complete)
1423 return -EINVAL;
1424
cf32b71e
ES
1425 /* Half-duplex links include original MicroWire, and ones with
1426 * only one data pin like SPI_3WIRE (switches direction) or where
1427 * either MOSI or MISO is missing. They can also be caused by
1428 * software limitations.
1429 */
1430 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1431 || (spi->mode & SPI_3WIRE)) {
cf32b71e
ES
1432 unsigned flags = master->flags;
1433
1434 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1435 if (xfer->rx_buf && xfer->tx_buf)
1436 return -EINVAL;
1437 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1438 return -EINVAL;
1439 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1440 return -EINVAL;
1441 }
1442 }
1443
e6811d1d 1444 /**
059b8ffe
LD
1445 * Set transfer bits_per_word and max speed as spi device default if
1446 * it is not set for this transfer.
f477b7fb 1447 * Set transfer tx_nbits and rx_nbits as single transfer default
1448 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
e6811d1d
LD
1449 */
1450 list_for_each_entry(xfer, &message->transfers, transfer_list) {
078726ce 1451 message->frame_length += xfer->len;
e6811d1d
LD
1452 if (!xfer->bits_per_word)
1453 xfer->bits_per_word = spi->bits_per_word;
56ede94a 1454 if (!xfer->speed_hz) {
059b8ffe 1455 xfer->speed_hz = spi->max_speed_hz;
56ede94a
GJ
1456 if (master->max_speed_hz &&
1457 xfer->speed_hz > master->max_speed_hz)
1458 xfer->speed_hz = master->max_speed_hz;
1459 }
1460
543bb255
SW
1461 if (master->bits_per_word_mask) {
1462 /* Only 32 bits fit in the mask */
1463 if (xfer->bits_per_word > 32)
1464 return -EINVAL;
1465 if (!(master->bits_per_word_mask &
1466 BIT(xfer->bits_per_word - 1)))
1467 return -EINVAL;
1468 }
a2fd4f9f
MB
1469
1470 if (xfer->speed_hz && master->min_speed_hz &&
1471 xfer->speed_hz < master->min_speed_hz)
1472 return -EINVAL;
1473 if (xfer->speed_hz && master->max_speed_hz &&
1474 xfer->speed_hz > master->max_speed_hz)
d5ee722a 1475 return -EINVAL;
f477b7fb 1476
1477 if (xfer->tx_buf && !xfer->tx_nbits)
1478 xfer->tx_nbits = SPI_NBITS_SINGLE;
1479 if (xfer->rx_buf && !xfer->rx_nbits)
1480 xfer->rx_nbits = SPI_NBITS_SINGLE;
1481 /* check transfer tx/rx_nbits:
1482 * 1. keep the value is not out of single, dual and quad
1483 * 2. keep tx/rx_nbits is contained by mode in spi_device
1484 * 3. if SPI_3WIRE, tx/rx_nbits should be in single
1485 */
db90a441
SP
1486 if (xfer->tx_buf) {
1487 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
1488 xfer->tx_nbits != SPI_NBITS_DUAL &&
1489 xfer->tx_nbits != SPI_NBITS_QUAD)
1490 return -EINVAL;
1491 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
1492 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
1493 return -EINVAL;
1494 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
1495 !(spi->mode & SPI_TX_QUAD))
1496 return -EINVAL;
1497 if ((spi->mode & SPI_3WIRE) &&
1498 (xfer->tx_nbits != SPI_NBITS_SINGLE))
1499 return -EINVAL;
1500 }
f477b7fb 1501 /* check transfer rx_nbits */
db90a441
SP
1502 if (xfer->rx_buf) {
1503 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
1504 xfer->rx_nbits != SPI_NBITS_DUAL &&
1505 xfer->rx_nbits != SPI_NBITS_QUAD)
1506 return -EINVAL;
1507 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
1508 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
1509 return -EINVAL;
1510 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
1511 !(spi->mode & SPI_RX_QUAD))
1512 return -EINVAL;
1513 if ((spi->mode & SPI_3WIRE) &&
1514 (xfer->rx_nbits != SPI_NBITS_SINGLE))
1515 return -EINVAL;
1516 }
e6811d1d
LD
1517 }
1518
cf32b71e
ES
1519 message->spi = spi;
1520 message->status = -EINPROGRESS;
1521 return master->transfer(spi, message);
1522}
1523
568d0697
DB
1524/**
1525 * spi_async - asynchronous SPI transfer
1526 * @spi: device with which data will be exchanged
1527 * @message: describes the data transfers, including completion callback
1528 * Context: any (irqs may be blocked, etc)
1529 *
1530 * This call may be used in_irq and other contexts which can't sleep,
1531 * as well as from task contexts which can sleep.
1532 *
1533 * The completion callback is invoked in a context which can't sleep.
1534 * Before that invocation, the value of message->status is undefined.
1535 * When the callback is issued, message->status holds either zero (to
1536 * indicate complete success) or a negative error code. After that
1537 * callback returns, the driver which issued the transfer request may
1538 * deallocate the associated memory; it's no longer in use by any SPI
1539 * core or controller driver code.
1540 *
1541 * Note that although all messages to a spi_device are handled in
1542 * FIFO order, messages may go to different devices in other orders.
1543 * Some device might be higher priority, or have various "hard" access
1544 * time requirements, for example.
1545 *
1546 * On detection of any fault during the transfer, processing of
1547 * the entire message is aborted, and the device is deselected.
1548 * Until returning from the associated message completion callback,
1549 * no other spi_message queued to that device will be processed.
1550 * (This rule applies equally to all the synchronous transfer calls,
1551 * which are wrappers around this core asynchronous primitive.)
1552 */
1553int spi_async(struct spi_device *spi, struct spi_message *message)
1554{
1555 struct spi_master *master = spi->master;
cf32b71e
ES
1556 int ret;
1557 unsigned long flags;
568d0697 1558
cf32b71e 1559 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
568d0697 1560
cf32b71e
ES
1561 if (master->bus_lock_flag)
1562 ret = -EBUSY;
1563 else
1564 ret = __spi_async(spi, message);
568d0697 1565
cf32b71e
ES
1566 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1567
1568 return ret;
568d0697
DB
1569}
1570EXPORT_SYMBOL_GPL(spi_async);
1571
cf32b71e
ES
1572/**
1573 * spi_async_locked - version of spi_async with exclusive bus usage
1574 * @spi: device with which data will be exchanged
1575 * @message: describes the data transfers, including completion callback
1576 * Context: any (irqs may be blocked, etc)
1577 *
1578 * This call may be used in_irq and other contexts which can't sleep,
1579 * as well as from task contexts which can sleep.
1580 *
1581 * The completion callback is invoked in a context which can't sleep.
1582 * Before that invocation, the value of message->status is undefined.
1583 * When the callback is issued, message->status holds either zero (to
1584 * indicate complete success) or a negative error code. After that
1585 * callback returns, the driver which issued the transfer request may
1586 * deallocate the associated memory; it's no longer in use by any SPI
1587 * core or controller driver code.
1588 *
1589 * Note that although all messages to a spi_device are handled in
1590 * FIFO order, messages may go to different devices in other orders.
1591 * Some device might be higher priority, or have various "hard" access
1592 * time requirements, for example.
1593 *
1594 * On detection of any fault during the transfer, processing of
1595 * the entire message is aborted, and the device is deselected.
1596 * Until returning from the associated message completion callback,
1597 * no other spi_message queued to that device will be processed.
1598 * (This rule applies equally to all the synchronous transfer calls,
1599 * which are wrappers around this core asynchronous primitive.)
1600 */
1601int spi_async_locked(struct spi_device *spi, struct spi_message *message)
1602{
1603 struct spi_master *master = spi->master;
1604 int ret;
1605 unsigned long flags;
1606
1607 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1608
1609 ret = __spi_async(spi, message);
1610
1611 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1612
1613 return ret;
1614
1615}
1616EXPORT_SYMBOL_GPL(spi_async_locked);
1617
7d077197
DB
1618
1619/*-------------------------------------------------------------------------*/
1620
1621/* Utility methods for SPI master protocol drivers, layered on
1622 * top of the core. Some other utility methods are defined as
1623 * inline functions.
1624 */
1625
5d870c8e
AM
1626static void spi_complete(void *arg)
1627{
1628 complete(arg);
1629}
1630
cf32b71e
ES
1631static int __spi_sync(struct spi_device *spi, struct spi_message *message,
1632 int bus_locked)
1633{
1634 DECLARE_COMPLETION_ONSTACK(done);
1635 int status;
1636 struct spi_master *master = spi->master;
1637
1638 message->complete = spi_complete;
1639 message->context = &done;
1640
1641 if (!bus_locked)
1642 mutex_lock(&master->bus_lock_mutex);
1643
1644 status = spi_async_locked(spi, message);
1645
1646 if (!bus_locked)
1647 mutex_unlock(&master->bus_lock_mutex);
1648
1649 if (status == 0) {
1650 wait_for_completion(&done);
1651 status = message->status;
1652 }
1653 message->context = NULL;
1654 return status;
1655}
1656
8ae12a0d
DB
1657/**
1658 * spi_sync - blocking/synchronous SPI data transfers
1659 * @spi: device with which data will be exchanged
1660 * @message: describes the data transfers
33e34dc6 1661 * Context: can sleep
8ae12a0d
DB
1662 *
1663 * This call may only be used from a context that may sleep. The sleep
1664 * is non-interruptible, and has no timeout. Low-overhead controller
1665 * drivers may DMA directly into and out of the message buffers.
1666 *
1667 * Note that the SPI device's chip select is active during the message,
1668 * and then is normally disabled between messages. Drivers for some
1669 * frequently-used devices may want to minimize costs of selecting a chip,
1670 * by leaving it selected in anticipation that the next message will go
1671 * to the same chip. (That may increase power usage.)
1672 *
0c868461
DB
1673 * Also, the caller is guaranteeing that the memory associated with the
1674 * message will not be freed before this call returns.
1675 *
9b938b74 1676 * It returns zero on success, else a negative error code.
8ae12a0d
DB
1677 */
1678int spi_sync(struct spi_device *spi, struct spi_message *message)
1679{
cf32b71e 1680 return __spi_sync(spi, message, 0);
8ae12a0d
DB
1681}
1682EXPORT_SYMBOL_GPL(spi_sync);
1683
cf32b71e
ES
1684/**
1685 * spi_sync_locked - version of spi_sync with exclusive bus usage
1686 * @spi: device with which data will be exchanged
1687 * @message: describes the data transfers
1688 * Context: can sleep
1689 *
1690 * This call may only be used from a context that may sleep. The sleep
1691 * is non-interruptible, and has no timeout. Low-overhead controller
1692 * drivers may DMA directly into and out of the message buffers.
1693 *
1694 * This call should be used by drivers that require exclusive access to the
25985edc 1695 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
cf32b71e
ES
1696 * be released by a spi_bus_unlock call when the exclusive access is over.
1697 *
1698 * It returns zero on success, else a negative error code.
1699 */
1700int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
1701{
1702 return __spi_sync(spi, message, 1);
1703}
1704EXPORT_SYMBOL_GPL(spi_sync_locked);
1705
1706/**
1707 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
1708 * @master: SPI bus master that should be locked for exclusive bus access
1709 * Context: can sleep
1710 *
1711 * This call may only be used from a context that may sleep. The sleep
1712 * is non-interruptible, and has no timeout.
1713 *
1714 * This call should be used by drivers that require exclusive access to the
1715 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
1716 * exclusive access is over. Data transfer must be done by spi_sync_locked
1717 * and spi_async_locked calls when the SPI bus lock is held.
1718 *
1719 * It returns zero on success, else a negative error code.
1720 */
1721int spi_bus_lock(struct spi_master *master)
1722{
1723 unsigned long flags;
1724
1725 mutex_lock(&master->bus_lock_mutex);
1726
1727 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1728 master->bus_lock_flag = 1;
1729 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1730
1731 /* mutex remains locked until spi_bus_unlock is called */
1732
1733 return 0;
1734}
1735EXPORT_SYMBOL_GPL(spi_bus_lock);
1736
1737/**
1738 * spi_bus_unlock - release the lock for exclusive SPI bus usage
1739 * @master: SPI bus master that was locked for exclusive bus access
1740 * Context: can sleep
1741 *
1742 * This call may only be used from a context that may sleep. The sleep
1743 * is non-interruptible, and has no timeout.
1744 *
1745 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
1746 * call.
1747 *
1748 * It returns zero on success, else a negative error code.
1749 */
1750int spi_bus_unlock(struct spi_master *master)
1751{
1752 master->bus_lock_flag = 0;
1753
1754 mutex_unlock(&master->bus_lock_mutex);
1755
1756 return 0;
1757}
1758EXPORT_SYMBOL_GPL(spi_bus_unlock);
1759
a9948b61
DB
1760/* portable code must never pass more than 32 bytes */
1761#define SPI_BUFSIZ max(32,SMP_CACHE_BYTES)
8ae12a0d
DB
1762
1763static u8 *buf;
1764
1765/**
1766 * spi_write_then_read - SPI synchronous write followed by read
1767 * @spi: device with which data will be exchanged
1768 * @txbuf: data to be written (need not be dma-safe)
1769 * @n_tx: size of txbuf, in bytes
27570497
JP
1770 * @rxbuf: buffer into which data will be read (need not be dma-safe)
1771 * @n_rx: size of rxbuf, in bytes
33e34dc6 1772 * Context: can sleep
8ae12a0d
DB
1773 *
1774 * This performs a half duplex MicroWire style transaction with the
1775 * device, sending txbuf and then reading rxbuf. The return value
1776 * is zero for success, else a negative errno status code.
b885244e 1777 * This call may only be used from a context that may sleep.
8ae12a0d 1778 *
0c868461 1779 * Parameters to this routine are always copied using a small buffer;
33e34dc6
DB
1780 * portable code should never use this for more than 32 bytes.
1781 * Performance-sensitive or bulk transfer code should instead use
0c868461 1782 * spi_{async,sync}() calls with dma-safe buffers.
8ae12a0d
DB
1783 */
1784int spi_write_then_read(struct spi_device *spi,
0c4a1590
MB
1785 const void *txbuf, unsigned n_tx,
1786 void *rxbuf, unsigned n_rx)
8ae12a0d 1787{
068f4070 1788 static DEFINE_MUTEX(lock);
8ae12a0d
DB
1789
1790 int status;
1791 struct spi_message message;
bdff549e 1792 struct spi_transfer x[2];
8ae12a0d
DB
1793 u8 *local_buf;
1794
b3a223ee
MB
1795 /* Use preallocated DMA-safe buffer if we can. We can't avoid
1796 * copying here, (as a pure convenience thing), but we can
1797 * keep heap costs out of the hot path unless someone else is
1798 * using the pre-allocated buffer or the transfer is too large.
8ae12a0d 1799 */
b3a223ee 1800 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2cd94c8a
MB
1801 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
1802 GFP_KERNEL | GFP_DMA);
b3a223ee
MB
1803 if (!local_buf)
1804 return -ENOMEM;
1805 } else {
1806 local_buf = buf;
1807 }
8ae12a0d 1808
8275c642 1809 spi_message_init(&message);
bdff549e
DB
1810 memset(x, 0, sizeof x);
1811 if (n_tx) {
1812 x[0].len = n_tx;
1813 spi_message_add_tail(&x[0], &message);
1814 }
1815 if (n_rx) {
1816 x[1].len = n_rx;
1817 spi_message_add_tail(&x[1], &message);
1818 }
8275c642 1819
8ae12a0d 1820 memcpy(local_buf, txbuf, n_tx);
bdff549e
DB
1821 x[0].tx_buf = local_buf;
1822 x[1].rx_buf = local_buf + n_tx;
8ae12a0d
DB
1823
1824 /* do the i/o */
8ae12a0d 1825 status = spi_sync(spi, &message);
9b938b74 1826 if (status == 0)
bdff549e 1827 memcpy(rxbuf, x[1].rx_buf, n_rx);
8ae12a0d 1828
bdff549e 1829 if (x[0].tx_buf == buf)
068f4070 1830 mutex_unlock(&lock);
8ae12a0d
DB
1831 else
1832 kfree(local_buf);
1833
1834 return status;
1835}
1836EXPORT_SYMBOL_GPL(spi_write_then_read);
1837
1838/*-------------------------------------------------------------------------*/
1839
1840static int __init spi_init(void)
1841{
b885244e
DB
1842 int status;
1843
e94b1766 1844 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
b885244e
DB
1845 if (!buf) {
1846 status = -ENOMEM;
1847 goto err0;
1848 }
1849
1850 status = bus_register(&spi_bus_type);
1851 if (status < 0)
1852 goto err1;
8ae12a0d 1853
b885244e
DB
1854 status = class_register(&spi_master_class);
1855 if (status < 0)
1856 goto err2;
8ae12a0d 1857 return 0;
b885244e
DB
1858
1859err2:
1860 bus_unregister(&spi_bus_type);
1861err1:
1862 kfree(buf);
1863 buf = NULL;
1864err0:
1865 return status;
8ae12a0d 1866}
b885244e 1867
8ae12a0d
DB
1868/* board_info is normally registered in arch_initcall(),
1869 * but even essential drivers wait till later
b885244e
DB
1870 *
1871 * REVISIT only boardinfo really needs static linking. the rest (device and
1872 * driver registration) _could_ be dynamically linked (modular) ... costs
1873 * include needing to have boardinfo data structures be much more public.
8ae12a0d 1874 */
673c0c00 1875postcore_initcall(spi_init);
8ae12a0d 1876
This page took 0.731026 seconds and 5 git commands to generate.