Staging: comedi: Add spaces after commas where suggested by checkpatch.pl
[deliverable/linux.git] / drivers / staging / comedi / drivers / s626.c
CommitLineData
11e865c1
GP
1/*
2 comedi/drivers/s626.c
3 Sensoray s626 Comedi driver
4
5 COMEDI - Linux Control and Measurement Device Interface
6 Copyright (C) 2000 David A. Schleef <ds@schleef.org>
7
8 Based on Sensoray Model 626 Linux driver Version 0.2
9 Copyright (C) 2002-2004 Sensoray Co., Inc.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24
25*/
26
27/*
28Driver: s626
29Description: Sensoray 626 driver
30Devices: [Sensoray] 626 (s626)
31Authors: Gianluca Palli <gpalli@deis.unibo.it>,
32Updated: Fri, 15 Feb 2008 10:28:42 +0000
33Status: experimental
34
35Configuration options:
36 [0] - PCI bus of device (optional)
37 [1] - PCI slot of device (optional)
38 If bus/slot is not specified, the first supported
39 PCI device found will be used.
40
41INSN_CONFIG instructions:
42 analog input:
43 none
44
45 analog output:
46 none
47
48 digital channel:
49 s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels
50 supported configuration options:
51 INSN_CONFIG_DIO_QUERY
52 COMEDI_INPUT
53 COMEDI_OUTPUT
54
55 encoder:
56 Every channel must be configured before reading.
57
58 Example code
59
60 insn.insn=INSN_CONFIG; //configuration instruction
61 insn.n=1; //number of operation (must be 1)
62 insn.data=&initialvalue; //initial value loaded into encoder
63 //during configuration
64 insn.subdev=5; //encoder subdevice
65 insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel
66 //to configure
67
68 comedi_do_insn(cf,&insn); //executing configuration
69*/
70
71#include <linux/kernel.h>
72#include <linux/types.h>
73
74#include "../comedidev.h"
75
76#include "comedi_pci.h"
77
78#include "comedi_fc.h"
79#include "s626.h"
80
81MODULE_AUTHOR("Gianluca Palli <gpalli@deis.unibo.it>");
82MODULE_DESCRIPTION("Sensoray 626 Comedi driver module");
83MODULE_LICENSE("GPL");
84
85typedef struct s626_board_struct {
86 const char *name;
87 int ai_chans;
88 int ai_bits;
89 int ao_chans;
90 int ao_bits;
91 int dio_chans;
92 int dio_banks;
93 int enc_chans;
94} s626_board;
95
96static const s626_board s626_boards[] = {
97 {
98 name: "s626",
99 ai_chans:S626_ADC_CHANNELS,
100 ai_bits: 14,
101 ao_chans:S626_DAC_CHANNELS,
102 ao_bits: 13,
103 dio_chans:S626_DIO_CHANNELS,
104 dio_banks:S626_DIO_BANKS,
105 enc_chans:S626_ENCODER_CHANNELS,
106 }
107};
108
109#define thisboard ((const s626_board *)dev->board_ptr)
110#define PCI_VENDOR_ID_S626 0x1131
111#define PCI_DEVICE_ID_S626 0x7146
112
113static DEFINE_PCI_DEVICE_TABLE(s626_pci_table) = {
114 {PCI_VENDOR_ID_S626, PCI_DEVICE_ID_S626, PCI_ANY_ID, PCI_ANY_ID, 0, 0,
115 0},
116 {0}
117};
118
119MODULE_DEVICE_TABLE(pci, s626_pci_table);
120
e473e912
BP
121static int s626_attach(comedi_device *dev, comedi_devconfig *it);
122static int s626_detach(comedi_device *dev);
11e865c1
GP
123
124static comedi_driver driver_s626 = {
125 driver_name:"s626",
126 module:THIS_MODULE,
127 attach:s626_attach,
128 detach:s626_detach,
129};
130
131typedef struct {
132 struct pci_dev *pdev;
133 void *base_addr;
134 int got_regions;
135 short allocatedBuf;
b6c77757
BP
136 uint8_t ai_cmd_running; /* ai_cmd is running */
137 uint8_t ai_continous; /* continous aquisition */
138 int ai_sample_count; /* number of samples to aquire */
139 unsigned int ai_sample_timer;
140 /* time between samples in units of the timer */
141 int ai_convert_count; /* conversion counter */
142 unsigned int ai_convert_timer;
143 /* time between conversion in units of the timer */
144 uint16_t CounterIntEnabs;
145 /* Counter interrupt enable mask for MISC2 register. */
146 uint8_t AdcItems; /* Number of items in ADC poll list. */
147 DMABUF RPSBuf; /* DMA buffer used to hold ADC (RPS1) program. */
148 DMABUF ANABuf;
149 /* DMA buffer used to receive ADC data and hold DAC data. */
150 uint32_t *pDacWBuf;
151 /* Pointer to logical adrs of DMA buffer used to hold DAC data. */
152 uint16_t Dacpol; /* Image of DAC polarity register. */
153 uint8_t TrimSetpoint[12]; /* Images of TrimDAC setpoints */
154 uint16_t ChargeEnabled; /* Image of MISC2 Battery */
155 /* Charge Enabled (0 or WRMISC2_CHARGE_ENABLE). */
156 uint16_t WDInterval; /* Image of MISC2 watchdog interval control bits. */
157 uint32_t I2CAdrs;
158 /* I2C device address for onboard EEPROM (board rev dependent). */
159 /* short I2Cards; */
11e865c1
GP
160 lsampl_t ao_readback[S626_DAC_CHANNELS];
161} s626_private;
162
163typedef struct {
164 uint16_t RDDIn;
165 uint16_t WRDOut;
166 uint16_t RDEdgSel;
167 uint16_t WREdgSel;
168 uint16_t RDCapSel;
169 uint16_t WRCapSel;
170 uint16_t RDCapFlg;
171 uint16_t RDIntSel;
172 uint16_t WRIntSel;
173} dio_private;
174
175static dio_private dio_private_A = {
176 RDDIn:LP_RDDINA,
177 WRDOut:LP_WRDOUTA,
178 RDEdgSel:LP_RDEDGSELA,
179 WREdgSel:LP_WREDGSELA,
180 RDCapSel:LP_RDCAPSELA,
181 WRCapSel:LP_WRCAPSELA,
182 RDCapFlg:LP_RDCAPFLGA,
183 RDIntSel:LP_RDINTSELA,
184 WRIntSel:LP_WRINTSELA,
185};
186
187static dio_private dio_private_B = {
188 RDDIn:LP_RDDINB,
189 WRDOut:LP_WRDOUTB,
190 RDEdgSel:LP_RDEDGSELB,
191 WREdgSel:LP_WREDGSELB,
192 RDCapSel:LP_RDCAPSELB,
193 WRCapSel:LP_WRCAPSELB,
194 RDCapFlg:LP_RDCAPFLGB,
195 RDIntSel:LP_RDINTSELB,
196 WRIntSel:LP_WRINTSELB,
197};
198
199static dio_private dio_private_C = {
200 RDDIn:LP_RDDINC,
201 WRDOut:LP_WRDOUTC,
202 RDEdgSel:LP_RDEDGSELC,
203 WREdgSel:LP_WREDGSELC,
204 RDCapSel:LP_RDCAPSELC,
205 WRCapSel:LP_WRCAPSELC,
206 RDCapFlg:LP_RDCAPFLGC,
207 RDIntSel:LP_RDINTSELC,
208 WRIntSel:LP_WRINTSELC,
209};
210
211/* to group dio devices (48 bits mask and data are not allowed ???)
212static dio_private *dio_private_word[]={
213 &dio_private_A,
214 &dio_private_B,
215 &dio_private_C,
216};
217*/
218
219#define devpriv ((s626_private *)dev->private)
220#define diopriv ((dio_private *)s->private)
221
222COMEDI_PCI_INITCLEANUP_NOMODULE(driver_s626, s626_pci_table);
223
b6c77757 224/* ioctl routines */
e473e912
BP
225static int s626_ai_insn_config(comedi_device *dev, comedi_subdevice *s,
226 comedi_insn *insn, lsampl_t *data);
11e865c1 227/* static int s626_ai_rinsn(comedi_device *dev,comedi_subdevice *s,comedi_insn *insn,lsampl_t *data); */
e473e912
BP
228static int s626_ai_insn_read(comedi_device *dev, comedi_subdevice *s,
229 comedi_insn *insn, lsampl_t *data);
230static int s626_ai_cmd(comedi_device *dev, comedi_subdevice *s);
231static int s626_ai_cmdtest(comedi_device *dev, comedi_subdevice *s,
232 comedi_cmd *cmd);
233static int s626_ai_cancel(comedi_device *dev, comedi_subdevice *s);
234static int s626_ao_winsn(comedi_device *dev, comedi_subdevice *s,
235 comedi_insn *insn, lsampl_t *data);
236static int s626_ao_rinsn(comedi_device *dev, comedi_subdevice *s,
237 comedi_insn *insn, lsampl_t *data);
238static int s626_dio_insn_bits(comedi_device *dev, comedi_subdevice *s,
239 comedi_insn *insn, lsampl_t *data);
240static int s626_dio_insn_config(comedi_device *dev, comedi_subdevice *s,
241 comedi_insn *insn, lsampl_t *data);
242static int s626_dio_set_irq(comedi_device *dev, unsigned int chan);
243static int s626_dio_reset_irq(comedi_device *dev, unsigned int gruop,
11e865c1 244 unsigned int mask);
e473e912
BP
245static int s626_dio_clear_irq(comedi_device *dev);
246static int s626_enc_insn_config(comedi_device *dev, comedi_subdevice *s,
247 comedi_insn *insn, lsampl_t *data);
248static int s626_enc_insn_read(comedi_device *dev, comedi_subdevice *s,
249 comedi_insn *insn, lsampl_t *data);
250static int s626_enc_insn_write(comedi_device *dev, comedi_subdevice *s,
251 comedi_insn *insn, lsampl_t *data);
11e865c1 252static int s626_ns_to_timer(int *nanosec, int round_mode);
e473e912
BP
253static int s626_ai_load_polllist(uint8_t *ppl, comedi_cmd *cmd);
254static int s626_ai_inttrig(comedi_device *dev, comedi_subdevice *s,
11e865c1
GP
255 unsigned int trignum);
256static irqreturn_t s626_irq_handler(int irq, void *d PT_REGS_ARG);
257static lsampl_t s626_ai_reg_to_uint(int data);
258/* static lsampl_t s626_uint_to_reg(comedi_subdevice *s, int data); */
259
b6c77757 260/* end ioctl routines */
11e865c1 261
b6c77757 262/* internal routines */
e473e912
BP
263static void s626_dio_init(comedi_device *dev);
264static void ResetADC(comedi_device *dev, uint8_t *ppl);
265static void LoadTrimDACs(comedi_device *dev);
266static void WriteTrimDAC(comedi_device *dev, uint8_t LogicalChan,
11e865c1 267 uint8_t DacData);
e473e912
BP
268static uint8_t I2Cread(comedi_device *dev, uint8_t addr);
269static uint32_t I2Chandshake(comedi_device *dev, uint32_t val);
270static void SetDAC(comedi_device *dev, uint16_t chan, short dacdata);
271static void SendDAC(comedi_device *dev, uint32_t val);
272static void WriteMISC2(comedi_device *dev, uint16_t NewImage);
273static void DEBItransfer(comedi_device *dev);
274static uint16_t DEBIread(comedi_device *dev, uint16_t addr);
275static void DEBIwrite(comedi_device *dev, uint16_t addr, uint16_t wdata);
276static void DEBIreplace(comedi_device *dev, uint16_t addr, uint16_t mask,
11e865c1 277 uint16_t wdata);
e473e912 278static void CloseDMAB(comedi_device *dev, DMABUF *pdma, size_t bsize);
11e865c1 279
b6c77757 280/* COUNTER OBJECT ------------------------------------------------ */
11e865c1 281typedef struct enc_private_struct {
b6c77757 282 /* Pointers to functions that differ for A and B counters: */
e473e912
BP
283 uint16_t(*GetEnable) (comedi_device *dev, struct enc_private_struct *); /* Return clock enable. */
284 uint16_t(*GetIntSrc) (comedi_device *dev, struct enc_private_struct *); /* Return interrupt source. */
285 uint16_t(*GetLoadTrig) (comedi_device *dev, struct enc_private_struct *); /* Return preload trigger source. */
286 uint16_t(*GetMode) (comedi_device *dev, struct enc_private_struct *); /* Return standardized operating mode. */
287 void (*PulseIndex) (comedi_device *dev, struct enc_private_struct *); /* Generate soft index strobe. */
288 void (*SetEnable) (comedi_device *dev, struct enc_private_struct *, uint16_t enab); /* Program clock enable. */
289 void (*SetIntSrc) (comedi_device *dev, struct enc_private_struct *, uint16_t IntSource); /* Program interrupt source. */
290 void (*SetLoadTrig) (comedi_device *dev, struct enc_private_struct *, uint16_t Trig); /* Program preload trigger source. */
291 void (*SetMode) (comedi_device *dev, struct enc_private_struct *, uint16_t Setup, uint16_t DisableIntSrc); /* Program standardized operating mode. */
292 void (*ResetCapFlags) (comedi_device *dev, struct enc_private_struct *); /* Reset event capture flags. */
b6c77757
BP
293
294 uint16_t MyCRA; /* Address of CRA register. */
295 uint16_t MyCRB; /* Address of CRB register. */
296 uint16_t MyLatchLsw; /* Address of Latch least-significant-word */
297 /* register. */
298 uint16_t MyEventBits[4]; /* Bit translations for IntSrc -->RDMISC2. */
299} enc_private; /* counter object */
11e865c1
GP
300
301#define encpriv ((enc_private *)(dev->subdevices+5)->private)
302
b6c77757 303/* counters routines */
e473e912
BP
304static void s626_timer_load(comedi_device *dev, enc_private *k, int tick);
305static uint32_t ReadLatch(comedi_device *dev, enc_private *k);
306static void ResetCapFlags_A(comedi_device *dev, enc_private *k);
307static void ResetCapFlags_B(comedi_device *dev, enc_private *k);
308static uint16_t GetMode_A(comedi_device *dev, enc_private *k);
309static uint16_t GetMode_B(comedi_device *dev, enc_private *k);
310static void SetMode_A(comedi_device *dev, enc_private *k, uint16_t Setup,
11e865c1 311 uint16_t DisableIntSrc);
e473e912 312static void SetMode_B(comedi_device *dev, enc_private *k, uint16_t Setup,
11e865c1 313 uint16_t DisableIntSrc);
e473e912
BP
314static void SetEnable_A(comedi_device *dev, enc_private *k, uint16_t enab);
315static void SetEnable_B(comedi_device *dev, enc_private *k, uint16_t enab);
316static uint16_t GetEnable_A(comedi_device *dev, enc_private *k);
317static uint16_t GetEnable_B(comedi_device *dev, enc_private *k);
318static void SetLatchSource(comedi_device *dev, enc_private *k,
11e865c1
GP
319 uint16_t value);
320/* static uint16_t GetLatchSource(comedi_device *dev, enc_private *k ); */
e473e912
BP
321static void SetLoadTrig_A(comedi_device *dev, enc_private *k, uint16_t Trig);
322static void SetLoadTrig_B(comedi_device *dev, enc_private *k, uint16_t Trig);
323static uint16_t GetLoadTrig_A(comedi_device *dev, enc_private *k);
324static uint16_t GetLoadTrig_B(comedi_device *dev, enc_private *k);
325static void SetIntSrc_B(comedi_device *dev, enc_private *k,
11e865c1 326 uint16_t IntSource);
e473e912 327static void SetIntSrc_A(comedi_device *dev, enc_private *k,
11e865c1 328 uint16_t IntSource);
e473e912
BP
329static uint16_t GetIntSrc_A(comedi_device *dev, enc_private *k);
330static uint16_t GetIntSrc_B(comedi_device *dev, enc_private *k);
11e865c1
GP
331/* static void SetClkMult(comedi_device *dev, enc_private *k, uint16_t value ) ; */
332/* static uint16_t GetClkMult(comedi_device *dev, enc_private *k ) ; */
333/* static void SetIndexPol(comedi_device *dev, enc_private *k, uint16_t value ); */
334/* static uint16_t GetClkPol(comedi_device *dev, enc_private *k ) ; */
335/* static void SetIndexSrc( comedi_device *dev,enc_private *k, uint16_t value ); */
336/* static uint16_t GetClkSrc( comedi_device *dev,enc_private *k ); */
337/* static void SetIndexSrc( comedi_device *dev,enc_private *k, uint16_t value ); */
338/* static uint16_t GetIndexSrc( comedi_device *dev,enc_private *k ); */
e473e912
BP
339static void PulseIndex_A(comedi_device *dev, enc_private *k);
340static void PulseIndex_B(comedi_device *dev, enc_private *k);
341static void Preload(comedi_device *dev, enc_private *k, uint32_t value);
342static void CountersInit(comedi_device *dev);
b6c77757 343/* end internal routines */
11e865c1 344
b6c77757 345/* Counter objects constructor. */
11e865c1 346
b6c77757 347/* Counter overflow/index event flag masks for RDMISC2. */
11e865c1
GP
348#define INDXMASK(C) ( 1 << ( ( (C) > 2 ) ? ( (C) * 2 - 1 ) : ( (C) * 2 + 4 ) ) )
349#define OVERMASK(C) ( 1 << ( ( (C) > 2 ) ? ( (C) * 2 + 5 ) : ( (C) * 2 + 10 ) ) )
350#define EVBITS(C) { 0, OVERMASK(C), INDXMASK(C), OVERMASK(C) | INDXMASK(C) }
351
b6c77757
BP
352/* Translation table to map IntSrc into equivalent RDMISC2 event flag bits. */
353/* static const uint16_t EventBits[][4] = { EVBITS(0), EVBITS(1), EVBITS(2), EVBITS(3), EVBITS(4), EVBITS(5) }; */
11e865c1
GP
354
355/* enc_private; */
356static enc_private enc_private_data[] = {
357 {
358 GetEnable:GetEnable_A,
359 GetIntSrc:GetIntSrc_A,
360 GetLoadTrig:GetLoadTrig_A,
361 GetMode: GetMode_A,
362 PulseIndex:PulseIndex_A,
363 SetEnable:SetEnable_A,
364 SetIntSrc:SetIntSrc_A,
365 SetLoadTrig:SetLoadTrig_A,
366 SetMode: SetMode_A,
367 ResetCapFlags:ResetCapFlags_A,
368 MyCRA: LP_CR0A,
369 MyCRB: LP_CR0B,
370 MyLatchLsw:LP_CNTR0ALSW,
371 MyEventBits:EVBITS(0),
372 },
373 {
374 GetEnable:GetEnable_A,
375 GetIntSrc:GetIntSrc_A,
376 GetLoadTrig:GetLoadTrig_A,
377 GetMode: GetMode_A,
378 PulseIndex:PulseIndex_A,
379 SetEnable:SetEnable_A,
380 SetIntSrc:SetIntSrc_A,
381 SetLoadTrig:SetLoadTrig_A,
382 SetMode: SetMode_A,
383 ResetCapFlags:ResetCapFlags_A,
384 MyCRA: LP_CR1A,
385 MyCRB: LP_CR1B,
386 MyLatchLsw:LP_CNTR1ALSW,
387 MyEventBits:EVBITS(1),
388 },
389 {
390 GetEnable:GetEnable_A,
391 GetIntSrc:GetIntSrc_A,
392 GetLoadTrig:GetLoadTrig_A,
393 GetMode: GetMode_A,
394 PulseIndex:PulseIndex_A,
395 SetEnable:SetEnable_A,
396 SetIntSrc:SetIntSrc_A,
397 SetLoadTrig:SetLoadTrig_A,
398 SetMode: SetMode_A,
399 ResetCapFlags:ResetCapFlags_A,
400 MyCRA: LP_CR2A,
401 MyCRB: LP_CR2B,
402 MyLatchLsw:LP_CNTR2ALSW,
403 MyEventBits:EVBITS(2),
404 },
405 {
406 GetEnable:GetEnable_B,
407 GetIntSrc:GetIntSrc_B,
408 GetLoadTrig:GetLoadTrig_B,
409 GetMode: GetMode_B,
410 PulseIndex:PulseIndex_B,
411 SetEnable:SetEnable_B,
412 SetIntSrc:SetIntSrc_B,
413 SetLoadTrig:SetLoadTrig_B,
414 SetMode: SetMode_B,
415 ResetCapFlags:ResetCapFlags_B,
416 MyCRA: LP_CR0A,
417 MyCRB: LP_CR0B,
418 MyLatchLsw:LP_CNTR0BLSW,
419 MyEventBits:EVBITS(3),
420 },
421 {
422 GetEnable:GetEnable_B,
423 GetIntSrc:GetIntSrc_B,
424 GetLoadTrig:GetLoadTrig_B,
425 GetMode: GetMode_B,
426 PulseIndex:PulseIndex_B,
427 SetEnable:SetEnable_B,
428 SetIntSrc:SetIntSrc_B,
429 SetLoadTrig:SetLoadTrig_B,
430 SetMode: SetMode_B,
431 ResetCapFlags:ResetCapFlags_B,
432 MyCRA: LP_CR1A,
433 MyCRB: LP_CR1B,
434 MyLatchLsw:LP_CNTR1BLSW,
435 MyEventBits:EVBITS(4),
436 },
437 {
438 GetEnable:GetEnable_B,
439 GetIntSrc:GetIntSrc_B,
440 GetLoadTrig:GetLoadTrig_B,
441 GetMode: GetMode_B,
442 PulseIndex:PulseIndex_B,
443 SetEnable:SetEnable_B,
444 SetIntSrc:SetIntSrc_B,
445 SetLoadTrig:SetLoadTrig_B,
446 SetMode: SetMode_B,
447 ResetCapFlags:ResetCapFlags_B,
448 MyCRA: LP_CR2A,
449 MyCRB: LP_CR2B,
450 MyLatchLsw:LP_CNTR2BLSW,
451 MyEventBits:EVBITS(5),
452 },
453};
454
b6c77757
BP
455/* enab/disable a function or test status bit(s) that are accessed */
456/* through Main Control Registers 1 or 2. */
8086fff8 457#define MC_ENABLE( REGADRS, CTRLWORD ) writel( ( (uint32_t)( CTRLWORD ) << 16 ) | (uint32_t)( CTRLWORD ), devpriv->base_addr+( REGADRS ) )
11e865c1
GP
458
459#define MC_DISABLE( REGADRS, CTRLWORD ) writel( (uint32_t)( CTRLWORD ) << 16 , devpriv->base_addr+( REGADRS ) )
460
461#define MC_TEST( REGADRS, CTRLWORD ) ( ( readl(devpriv->base_addr+( REGADRS )) & CTRLWORD ) != 0 )
462
463/* #define WR7146(REGARDS,CTRLWORD)
464 writel(CTRLWORD,(uint32_t)(devpriv->base_addr+(REGARDS))) */
8086fff8 465#define WR7146(REGARDS, CTRLWORD) writel(CTRLWORD, devpriv->base_addr+(REGARDS))
11e865c1
GP
466
467/* #define RR7146(REGARDS)
468 readl((uint32_t)(devpriv->base_addr+(REGARDS))) */
469#define RR7146(REGARDS) readl(devpriv->base_addr+(REGARDS))
470
471#define BUGFIX_STREG(REGADRS) ( REGADRS - 4 )
472
b6c77757 473/* Write a time slot control record to TSL2. */
11e865c1
GP
474#define VECTPORT( VECTNUM ) (P_TSL2 + ( (VECTNUM) << 2 ))
475#define SETVECT( VECTNUM, VECTVAL ) WR7146(VECTPORT( VECTNUM ), (VECTVAL))
476
b6c77757 477/* Code macros used for constructing I2C command bytes. */
8086fff8
BP
478#define I2C_B2(ATTR, VAL) ( ( (ATTR) << 6 ) | ( (VAL) << 24 ) )
479#define I2C_B1(ATTR, VAL) ( ( (ATTR) << 4 ) | ( (VAL) << 16 ) )
480#define I2C_B0(ATTR, VAL) ( ( (ATTR) << 2 ) | ( (VAL) << 8 ) )
11e865c1
GP
481
482static const comedi_lrange s626_range_table = { 2, {
483 RANGE(-5, 5),
484 RANGE(-10, 10),
485 }
486};
487
e473e912 488static int s626_attach(comedi_device *dev, comedi_devconfig *it)
11e865c1
GP
489{
490/* uint8_t PollList; */
491/* uint16_t AdcData; */
492/* uint16_t StartVal; */
493/* uint16_t index; */
494/* unsigned int data[16]; */
495 int result;
496 int i;
497 int ret;
498 resource_size_t resourceStart;
499 dma_addr_t appdma;
500 comedi_subdevice *s;
501 struct pci_dev *pdev;
502
503 if (alloc_private(dev, sizeof(s626_private)) < 0)
504 return -ENOMEM;
505
506 for (pdev = pci_get_device(PCI_VENDOR_ID_S626, PCI_DEVICE_ID_S626,
507 NULL); pdev != NULL;
508 pdev = pci_get_device(PCI_VENDOR_ID_S626,
509 PCI_DEVICE_ID_S626, pdev)) {
510 if (it->options[0] || it->options[1]) {
511 if (pdev->bus->number == it->options[0] &&
512 PCI_SLOT(pdev->devfn) == it->options[1]) {
513 /* matches requested bus/slot */
514 break;
515 }
516 } else {
517 /* no bus/slot specified */
518 break;
519 }
520 }
521 devpriv->pdev = pdev;
522
523 if (pdev == NULL) {
524 printk("s626_attach: Board not present!!!\n");
525 return -ENODEV;
526 }
527
528 if ((result = comedi_pci_enable(pdev, "s626")) < 0) {
529 printk("s626_attach: comedi_pci_enable fails\n");
530 return -ENODEV;
531 }
532 devpriv->got_regions = 1;
533
534 resourceStart = pci_resource_start(devpriv->pdev, 0);
535
536 devpriv->base_addr = ioremap(resourceStart, SIZEOF_ADDRESS_SPACE);
537 if (devpriv->base_addr == NULL) {
538 printk("s626_attach: IOREMAP failed\n");
539 return -ENODEV;
540 }
541
542 if (devpriv->base_addr) {
b6c77757 543 /* disable master interrupt */
11e865c1
GP
544 writel(0, devpriv->base_addr + P_IER);
545
b6c77757 546 /* soft reset */
11e865c1
GP
547 writel(MC1_SOFT_RESET, devpriv->base_addr + P_MC1);
548
b6c77757 549 /* DMA FIXME DMA// */
11e865c1
GP
550 DEBUG("s626_attach: DMA ALLOCATION\n");
551
b6c77757 552 /* adc buffer allocation */
11e865c1
GP
553 devpriv->allocatedBuf = 0;
554
555 if ((devpriv->ANABuf.LogicalBase =
556 pci_alloc_consistent(devpriv->pdev, DMABUF_SIZE,
557 &appdma)) == NULL) {
558 printk("s626_attach: DMA Memory mapping error\n");
559 return -ENOMEM;
560 }
561
562 devpriv->ANABuf.PhysicalBase = appdma;
563
564 DEBUG("s626_attach: AllocDMAB ADC Logical=%p, bsize=%d, Physical=0x%x\n", devpriv->ANABuf.LogicalBase, DMABUF_SIZE, (uint32_t) devpriv->ANABuf.PhysicalBase);
565
566 devpriv->allocatedBuf++;
567
568 if ((devpriv->RPSBuf.LogicalBase =
569 pci_alloc_consistent(devpriv->pdev, DMABUF_SIZE,
570 &appdma)) == NULL) {
571 printk("s626_attach: DMA Memory mapping error\n");
572 return -ENOMEM;
573 }
574
575 devpriv->RPSBuf.PhysicalBase = appdma;
576
577 DEBUG("s626_attach: AllocDMAB RPS Logical=%p, bsize=%d, Physical=0x%x\n", devpriv->RPSBuf.LogicalBase, DMABUF_SIZE, (uint32_t) devpriv->RPSBuf.PhysicalBase);
578
579 devpriv->allocatedBuf++;
580
581 }
582
583 dev->board_ptr = s626_boards;
584 dev->board_name = thisboard->name;
585
586 if (alloc_subdevices(dev, 6) < 0)
587 return -ENOMEM;
588
589 dev->iobase = (unsigned long)devpriv->base_addr;
590 dev->irq = devpriv->pdev->irq;
591
b6c77757 592 /* set up interrupt handler */
11e865c1
GP
593 if (dev->irq == 0) {
594 printk(" unknown irq (bad)\n");
595 } else {
596 if ((ret = comedi_request_irq(dev->irq, s626_irq_handler,
597 IRQF_SHARED, "s626", dev)) < 0) {
598 printk(" irq not available\n");
599 dev->irq = 0;
600 }
601 }
602
603 DEBUG("s626_attach: -- it opts %d,%d -- \n",
604 it->options[0], it->options[1]);
605
606 s = dev->subdevices + 0;
607 /* analog input subdevice */
608 dev->read_subdev = s;
609 /* we support single-ended (ground) and differential */
610 s->type = COMEDI_SUBD_AI;
611 s->subdev_flags = SDF_READABLE | SDF_DIFF | SDF_CMD_READ;
612 s->n_chan = thisboard->ai_chans;
613 s->maxdata = (0xffff >> 2);
614 s->range_table = &s626_range_table;
615 s->len_chanlist = thisboard->ai_chans; /* This is the maximum chanlist
616 length that the board can
617 handle */
618 s->insn_config = s626_ai_insn_config;
619 s->insn_read = s626_ai_insn_read;
620 s->do_cmd = s626_ai_cmd;
621 s->do_cmdtest = s626_ai_cmdtest;
622 s->cancel = s626_ai_cancel;
623
624 s = dev->subdevices + 1;
625 /* analog output subdevice */
626 s->type = COMEDI_SUBD_AO;
627 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
628 s->n_chan = thisboard->ao_chans;
629 s->maxdata = (0x3fff);
630 s->range_table = &range_bipolar10;
631 s->insn_write = s626_ao_winsn;
632 s->insn_read = s626_ao_rinsn;
633
634 s = dev->subdevices + 2;
635 /* digital I/O subdevice */
636 s->type = COMEDI_SUBD_DIO;
637 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
638 s->n_chan = S626_DIO_CHANNELS;
639 s->maxdata = 1;
640 s->io_bits = 0xffff;
641 s->private = &dio_private_A;
642 s->range_table = &range_digital;
643 s->insn_config = s626_dio_insn_config;
644 s->insn_bits = s626_dio_insn_bits;
645
646 s = dev->subdevices + 3;
647 /* digital I/O subdevice */
648 s->type = COMEDI_SUBD_DIO;
649 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
650 s->n_chan = 16;
651 s->maxdata = 1;
652 s->io_bits = 0xffff;
653 s->private = &dio_private_B;
654 s->range_table = &range_digital;
655 s->insn_config = s626_dio_insn_config;
656 s->insn_bits = s626_dio_insn_bits;
657
658 s = dev->subdevices + 4;
659 /* digital I/O subdevice */
660 s->type = COMEDI_SUBD_DIO;
661 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
662 s->n_chan = 16;
663 s->maxdata = 1;
664 s->io_bits = 0xffff;
665 s->private = &dio_private_C;
666 s->range_table = &range_digital;
667 s->insn_config = s626_dio_insn_config;
668 s->insn_bits = s626_dio_insn_bits;
669
670 s = dev->subdevices + 5;
671 /* encoder (counter) subdevice */
672 s->type = COMEDI_SUBD_COUNTER;
673 s->subdev_flags = SDF_WRITABLE | SDF_READABLE | SDF_LSAMPL;
674 s->n_chan = thisboard->enc_chans;
675 s->private = enc_private_data;
676 s->insn_config = s626_enc_insn_config;
677 s->insn_read = s626_enc_insn_read;
678 s->insn_write = s626_enc_insn_write;
679 s->maxdata = 0xffffff;
680 s->range_table = &range_unknown;
681
b6c77757 682 /* stop ai_command */
11e865c1
GP
683 devpriv->ai_cmd_running = 0;
684
685 if (devpriv->base_addr && (devpriv->allocatedBuf == 2)) {
686 dma_addr_t pPhysBuf;
687 uint16_t chan;
688
b6c77757 689 /* enab DEBI and audio pins, enable I2C interface. */
11e865c1 690 MC_ENABLE(P_MC1, MC1_DEBI | MC1_AUDIO | MC1_I2C);
b6c77757
BP
691 /* Configure DEBI operating mode. */
692 WR7146(P_DEBICFG, DEBI_CFG_SLAVE16 /* Local bus is 16 */
693 /* bits wide. */
694 | (DEBI_TOUT << DEBI_CFG_TOUT_BIT) /* Declare DEBI */
695 /* transfer timeout */
696 /* interval. */
697 | DEBI_SWAP /* Set up byte lane */
698 /* steering. */
699 | DEBI_CFG_INTEL); /* Intel-compatible */
700 /* local bus (DEBI */
701 /* never times out). */
11e865c1
GP
702 DEBUG("s626_attach: %d debi init -- %d\n",
703 DEBI_CFG_SLAVE16 | (DEBI_TOUT << DEBI_CFG_TOUT_BIT) |
704 DEBI_SWAP | DEBI_CFG_INTEL,
705 DEBI_CFG_INTEL | DEBI_CFG_TOQ | DEBI_CFG_INCQ |
706 DEBI_CFG_16Q);
707
b6c77757
BP
708 /* DEBI INIT S626 WR7146( P_DEBICFG, DEBI_CFG_INTEL | DEBI_CFG_TOQ */
709 /* | DEBI_CFG_INCQ| DEBI_CFG_16Q); //end */
11e865c1 710
b6c77757
BP
711 /* Paging is disabled. */
712 WR7146(P_DEBIPAGE, DEBI_PAGE_DISABLE); /* Disable MMU paging. */
11e865c1 713
b6c77757 714 /* Init GPIO so that ADC Start* is negated. */
11e865c1
GP
715 WR7146(P_GPIO, GPIO_BASE | GPIO1_HI);
716
b6c77757
BP
717 /* IsBoardRevA is a boolean that indicates whether the board is RevA.
718 *
719 * VERSION 2.01 CHANGE: REV A & B BOARDS NOW SUPPORTED BY DYNAMIC
720 * EEPROM ADDRESS SELECTION. Initialize the I2C interface, which
721 * is used to access the onboard serial EEPROM. The EEPROM's I2C
722 * DeviceAddress is hardwired to a value that is dependent on the
723 * 626 board revision. On all board revisions, the EEPROM stores
724 * TrimDAC calibration constants for analog I/O. On RevB and
725 * higher boards, the DeviceAddress is hardwired to 0 to enable
726 * the EEPROM to also store the PCI SubVendorID and SubDeviceID;
727 * this is the address at which the SAA7146 expects a
728 * configuration EEPROM to reside. On RevA boards, the EEPROM
729 * device address, which is hardwired to 4, prevents the SAA7146
730 * from retrieving PCI sub-IDs, so the SAA7146 uses its built-in
731 * default values, instead.
732 */
733
734 /* devpriv->I2Cards= IsBoardRevA ? 0xA8 : 0xA0; // Set I2C EEPROM */
735 /* DeviceType (0xA0) */
736 /* and DeviceAddress<<1. */
737
738 devpriv->I2CAdrs = 0xA0; /* I2C device address for onboard */
739 /* eeprom(revb) */
740
741 /* Issue an I2C ABORT command to halt any I2C operation in */
742 /* progress and reset BUSY flag. */
743 WR7146(P_I2CSTAT, I2C_CLKSEL | I2C_ABORT);
744 /* Write I2C control: abort any I2C activity. */
745 MC_ENABLE(P_MC2, MC2_UPLD_IIC);
746 /* Invoke command upload */
747 while ((RR7146(P_MC2) & MC2_UPLD_IIC) == 0);
748 /* and wait for upload to complete. */
749
750 /* Per SAA7146 data sheet, write to STATUS reg twice to
751 * reset all I2C error flags. */
11e865c1 752 for (i = 0; i < 2; i++) {
b6c77757
BP
753 WR7146(P_I2CSTAT, I2C_CLKSEL);
754 /* Write I2C control: reset error flags. */
755 MC_ENABLE(P_MC2, MC2_UPLD_IIC); /* Invoke command upload */
756 while (!MC_TEST(P_MC2, MC2_UPLD_IIC));
757 /* and wait for upload to complete. */
11e865c1
GP
758 }
759
b6c77757
BP
760 /* Init audio interface functional attributes: set DAC/ADC
761 * serial clock rates, invert DAC serial clock so that
762 * DAC data setup times are satisfied, enable DAC serial
763 * clock out.
764 */
765
11e865c1
GP
766 WR7146(P_ACON2, ACON2_INIT);
767
b6c77757
BP
768 /* Set up TSL1 slot list, which is used to control the
769 * accumulation of ADC data: RSD1 = shift data in on SD1.
770 * SIB_A1 = store data uint8_t at next available location in
771 * FB BUFFER1 register. */
772 WR7146(P_TSL1, RSD1 | SIB_A1);
773 /* Fetch ADC high data uint8_t. */
774 WR7146(P_TSL1 + 4, RSD1 | SIB_A1 | EOS);
775 /* Fetch ADC low data uint8_t; end of TSL1. */
776
777 /* enab TSL1 slot list so that it executes all the time. */
11e865c1
GP
778 WR7146(P_ACON1, ACON1_ADCSTART);
779
b6c77757 780 /* Initialize RPS registers used for ADC. */
11e865c1 781
b6c77757 782 /* Physical start of RPS program. */
11e865c1
GP
783 WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase);
784
b6c77757
BP
785 WR7146(P_RPSPAGE1, 0);
786 /* RPS program performs no explicit mem writes. */
787 WR7146(P_RPS1_TOUT, 0); /* Disable RPS timeouts. */
11e865c1 788
b6c77757
BP
789 /* SAA7146 BUG WORKAROUND. Initialize SAA7146 ADC interface
790 * to a known state by invoking ADCs until FB BUFFER 1
791 * register shows that it is correctly receiving ADC data.
792 * This is necessary because the SAA7146 ADC interface does
793 * not start up in a defined state after a PCI reset.
794 */
11e865c1
GP
795
796/* PollList = EOPL; // Create a simple polling */
797/* // list for analog input */
798/* // channel 0. */
799/* ResetADC( dev, &PollList ); */
800
801/* s626_ai_rinsn(dev,dev->subdevices,NULL,data); //( &AdcData ); // */
802/* //Get initial ADC */
803/* //value. */
804
805/* StartVal = data[0]; */
806
807/* // VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED EXECUTION. */
808/* // Invoke ADCs until the new ADC value differs from the initial */
809/* // value or a timeout occurs. The timeout protects against the */
810/* // possibility that the driver is restarting and the ADC data is a */
811/* // fixed value resulting from the applied ADC analog input being */
812/* // unusually quiet or at the rail. */
813
814/* for ( index = 0; index < 500; index++ ) */
815/* { */
816/* s626_ai_rinsn(dev,dev->subdevices,NULL,data); */
817/* AdcData = data[0]; //ReadADC( &AdcData ); */
818/* if ( AdcData != StartVal ) */
819/* break; */
820/* } */
821
b6c77757 822 /* end initADC */
11e865c1 823
b6c77757 824 /* init the DAC interface */
11e865c1 825
b6c77757
BP
826 /* Init Audio2's output DMAC attributes: burst length = 1
827 * DWORD, threshold = 1 DWORD.
828 */
11e865c1
GP
829 WR7146(P_PCI_BT_A, 0);
830
b6c77757
BP
831 /* Init Audio2's output DMA physical addresses. The protection
832 * address is set to 1 DWORD past the base address so that a
833 * single DWORD will be transferred each time a DMA transfer is
834 * enabled. */
11e865c1
GP
835
836 pPhysBuf =
837 devpriv->ANABuf.PhysicalBase +
838 (DAC_WDMABUF_OS * sizeof(uint32_t));
839
b6c77757
BP
840 WR7146(P_BASEA2_OUT, (uint32_t) pPhysBuf); /* Buffer base adrs. */
841 WR7146(P_PROTA2_OUT, (uint32_t) (pPhysBuf + sizeof(uint32_t))); /* Protection address. */
11e865c1 842
b6c77757
BP
843 /* Cache Audio2's output DMA buffer logical address. This is
844 * where DAC data is buffered for A2 output DMA transfers. */
11e865c1
GP
845 devpriv->pDacWBuf =
846 (uint32_t *) devpriv->ANABuf.LogicalBase +
847 DAC_WDMABUF_OS;
848
b6c77757
BP
849 /* Audio2's output channels does not use paging. The protection
850 * violation handling bit is set so that the DMAC will
851 * automatically halt and its PCI address pointer will be reset
852 * when the protection address is reached. */
853
11e865c1
GP
854 WR7146(P_PAGEA2_OUT, 8);
855
b6c77757
BP
856 /* Initialize time slot list 2 (TSL2), which is used to control
857 * the clock generation for and serialization of data to be sent
858 * to the DAC devices. Slot 0 is a NOP that is used to trap TSL
859 * execution; this permits other slots to be safely modified
860 * without first turning off the TSL sequencer (which is
861 * apparently impossible to do). Also, SD3 (which is driven by a
862 * pull-up resistor) is shifted in and stored to the MSB of
863 * FB_BUFFER2 to be used as evidence that the slot sequence has
864 * not yet finished executing.
865 */
866
867 SETVECT(0, XSD2 | RSD3 | SIB_A2 | EOS);
868 /* Slot 0: Trap TSL execution, shift 0xFF into FB_BUFFER2. */
869
870 /* Initialize slot 1, which is constant. Slot 1 causes a
871 * DWORD to be transferred from audio channel 2's output FIFO
872 * to the FIFO's output buffer so that it can be serialized
873 * and sent to the DAC during subsequent slots. All remaining
874 * slots are dynamically populated as required by the target
875 * DAC device.
876 */
877 SETVECT(1, LF_A2);
878 /* Slot 1: Fetch DWORD from Audio2's output FIFO. */
879
880 /* Start DAC's audio interface (TSL2) running. */
11e865c1
GP
881 WR7146(P_ACON1, ACON1_DACSTART);
882
b6c77757 883 /* end init DAC interface */
11e865c1 884
b6c77757
BP
885 /* Init Trim DACs to calibrated values. Do it twice because the
886 * SAA7146 audio channel does not always reset properly and
887 * sometimes causes the first few TrimDAC writes to malfunction.
888 */
11e865c1
GP
889
890 LoadTrimDACs(dev);
b6c77757 891 LoadTrimDACs(dev); /* Insurance. */
11e865c1 892
b6c77757
BP
893 /* Manually init all gate array hardware in case this is a soft
894 * reset (we have no way of determining whether this is a warm
895 * or cold start). This is necessary because the gate array will
896 * reset only in response to a PCI hard reset; there is no soft
897 * reset function. */
11e865c1 898
b6c77757
BP
899 /* Init all DAC outputs to 0V and init all DAC setpoint and
900 * polarity images.
901 */
11e865c1
GP
902 for (chan = 0; chan < S626_DAC_CHANNELS; chan++)
903 SetDAC(dev, chan, 0);
904
b6c77757
BP
905 /* Init image of WRMISC2 Battery Charger Enabled control bit.
906 * This image is used when the state of the charger control bit,
907 * which has no direct hardware readback mechanism, is queried.
908 */
11e865c1
GP
909 devpriv->ChargeEnabled = 0;
910
b6c77757
BP
911 /* Init image of watchdog timer interval in WRMISC2. This image
912 * maintains the value of the control bits of MISC2 are
913 * continuously reset to zero as long as the WD timer is disabled.
914 */
11e865c1
GP
915 devpriv->WDInterval = 0;
916
b6c77757
BP
917 /* Init Counter Interrupt enab mask for RDMISC2. This mask is
918 * applied against MISC2 when testing to determine which timer
919 * events are requesting interrupt service.
920 */
11e865c1
GP
921 devpriv->CounterIntEnabs = 0;
922
b6c77757 923 /* Init counters. */
11e865c1
GP
924 CountersInit(dev);
925
b6c77757
BP
926 /* Without modifying the state of the Battery Backup enab, disable
927 * the watchdog timer, set DIO channels 0-5 to operate in the
928 * standard DIO (vs. counter overflow) mode, disable the battery
929 * charger, and reset the watchdog interval selector to zero.
930 */
11e865c1
GP
931 WriteMISC2(dev, (uint16_t) (DEBIread(dev,
932 LP_RDMISC2) & MISC2_BATT_ENABLE));
933
b6c77757 934 /* Initialize the digital I/O subsystem. */
11e865c1
GP
935 s626_dio_init(dev);
936
b6c77757
BP
937 /* enable interrupt test */
938 /* writel(IRQ_GPIO3 | IRQ_RPS1,devpriv->base_addr+P_IER); */
11e865c1
GP
939 }
940
941 DEBUG("s626_attach: comedi%d s626 attached %04x\n", dev->minor,
942 (uint32_t) devpriv->base_addr);
943
944 return 1;
945}
946
947static lsampl_t s626_ai_reg_to_uint(int data)
948{
949 lsampl_t tempdata;
950
951 tempdata = (data >> 18);
952 if (tempdata & 0x2000)
953 tempdata &= 0x1fff;
954 else
955 tempdata += (1 << 13);
956
957 return tempdata;
958}
959
960/* static lsampl_t s626_uint_to_reg(comedi_subdevice *s, int data){ */
961/* return 0; */
962/* } */
963
964static irqreturn_t s626_irq_handler(int irq, void *d PT_REGS_ARG)
965{
966 comedi_device *dev = d;
967 comedi_subdevice *s;
968 comedi_cmd *cmd;
969 enc_private *k;
970 unsigned long flags;
971 int32_t *readaddr;
972 uint32_t irqtype, irqstatus;
973 int i = 0;
974 sampl_t tempdata;
975 uint8_t group;
976 uint16_t irqbit;
977
978 DEBUG("s626_irq_handler: interrupt request recieved!!!\n");
979
980 if (dev->attached == 0)
981 return IRQ_NONE;
b6c77757 982 /* lock to avoid race with comedi_poll */
11e865c1
GP
983 comedi_spin_lock_irqsave(&dev->spinlock, flags);
984
b6c77757 985 /* save interrupt enable register state */
11e865c1
GP
986 irqstatus = readl(devpriv->base_addr + P_IER);
987
b6c77757 988 /* read interrupt type */
11e865c1
GP
989 irqtype = readl(devpriv->base_addr + P_ISR);
990
b6c77757 991 /* disable master interrupt */
11e865c1
GP
992 writel(0, devpriv->base_addr + P_IER);
993
b6c77757 994 /* clear interrupt */
11e865c1
GP
995 writel(irqtype, devpriv->base_addr + P_ISR);
996
b6c77757 997 /* do somethings */
11e865c1
GP
998 DEBUG("s626_irq_handler: interrupt type %d\n", irqtype);
999
1000 switch (irqtype) {
b6c77757 1001 case IRQ_RPS1: /* end_of_scan occurs */
11e865c1
GP
1002
1003 DEBUG("s626_irq_handler: RPS1 irq detected\n");
1004
b6c77757 1005 /* manage ai subdevice */
11e865c1
GP
1006 s = dev->subdevices;
1007 cmd = &(s->async->cmd);
1008
b6c77757
BP
1009 /* Init ptr to DMA buffer that holds new ADC data. We skip the
1010 * first uint16_t in the buffer because it contains junk data from
1011 * the final ADC of the previous poll list scan.
1012 */
11e865c1
GP
1013 readaddr = (int32_t *) devpriv->ANABuf.LogicalBase + 1;
1014
b6c77757 1015 /* get the data and hand it over to comedi */
11e865c1 1016 for (i = 0; i < (s->async->cmd.chanlist_len); i++) {
b6c77757
BP
1017 /* Convert ADC data to 16-bit integer values and copy to application */
1018 /* buffer. */
11e865c1
GP
1019 tempdata = s626_ai_reg_to_uint((int)*readaddr);
1020 readaddr++;
1021
b6c77757
BP
1022 /* put data into read buffer */
1023 /* comedi_buf_put(s->async, tempdata); */
11e865c1
GP
1024 if (cfc_write_to_buffer(s, tempdata) == 0)
1025 printk("s626_irq_handler: cfc_write_to_buffer error!\n");
1026
1027 DEBUG("s626_irq_handler: ai channel %d acquired: %d\n",
1028 i, tempdata);
1029 }
1030
b6c77757 1031 /* end of scan occurs */
11e865c1
GP
1032 s->async->events |= COMEDI_CB_EOS;
1033
1034 if (!(devpriv->ai_continous))
1035 devpriv->ai_sample_count--;
1036 if (devpriv->ai_sample_count <= 0) {
1037 devpriv->ai_cmd_running = 0;
1038
b6c77757 1039 /* Stop RPS program. */
11e865c1
GP
1040 MC_DISABLE(P_MC1, MC1_ERPS1);
1041
b6c77757 1042 /* send end of acquisition */
11e865c1
GP
1043 s->async->events |= COMEDI_CB_EOA;
1044
b6c77757 1045 /* disable master interrupt */
11e865c1
GP
1046 irqstatus = 0;
1047 }
1048
1049 if (devpriv->ai_cmd_running && cmd->scan_begin_src == TRIG_EXT) {
1050 DEBUG("s626_irq_handler: enable interrupt on dio channel %d\n", cmd->scan_begin_arg);
1051
1052 s626_dio_set_irq(dev, cmd->scan_begin_arg);
1053
1054 DEBUG("s626_irq_handler: External trigger is set!!!\n");
1055 }
b6c77757 1056 /* tell comedi that data is there */
11e865c1
GP
1057 DEBUG("s626_irq_handler: events %d\n", s->async->events);
1058 comedi_event(dev, s);
1059 break;
b6c77757 1060 case IRQ_GPIO3: /* check dio and conter interrupt */
11e865c1
GP
1061
1062 DEBUG("s626_irq_handler: GPIO3 irq detected\n");
1063
b6c77757 1064 /* manage ai subdevice */
11e865c1
GP
1065 s = dev->subdevices;
1066 cmd = &(s->async->cmd);
1067
b6c77757 1068 /* s626_dio_clear_irq(dev); */
11e865c1
GP
1069
1070 for (group = 0; group < S626_DIO_BANKS; group++) {
1071 irqbit = 0;
b6c77757 1072 /* read interrupt type */
11e865c1
GP
1073 irqbit = DEBIread(dev,
1074 ((dio_private *) (dev->subdevices + 2 +
1075 group)->private)->RDCapFlg);
1076
b6c77757 1077 /* check if interrupt is generated from dio channels */
11e865c1
GP
1078 if (irqbit) {
1079 s626_dio_reset_irq(dev, group, irqbit);
1080 DEBUG("s626_irq_handler: check interrupt on dio group %d %d\n", group, i);
1081 if (devpriv->ai_cmd_running) {
b6c77757 1082 /* check if interrupt is an ai acquisition start trigger */
11e865c1
GP
1083 if ((irqbit >> (cmd->start_arg -
1084 (16 * group)))
1085 == 1
1086 && cmd->start_src == TRIG_EXT) {
1087 DEBUG("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", cmd->start_arg);
1088
b6c77757 1089 /* Start executing the RPS program. */
11e865c1
GP
1090 MC_ENABLE(P_MC1, MC1_ERPS1);
1091
1092 DEBUG("s626_irq_handler: aquisition start triggered!!!\n");
1093
1094 if (cmd->scan_begin_src ==
1095 TRIG_EXT) {
1096 DEBUG("s626_ai_cmd: enable interrupt on dio channel %d\n", cmd->scan_begin_arg);
1097
1098 s626_dio_set_irq(dev,
1099 cmd->
1100 scan_begin_arg);
1101
1102 DEBUG("s626_irq_handler: External scan trigger is set!!!\n");
1103 }
1104 }
1105 if ((irqbit >> (cmd->scan_begin_arg -
1106 (16 * group)))
1107 == 1
1108 && cmd->scan_begin_src ==
1109 TRIG_EXT) {
1110 DEBUG("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", cmd->scan_begin_arg);
1111
b6c77757 1112 /* Trigger ADC scan loop start by setting RPS Signal 0. */
11e865c1
GP
1113 MC_ENABLE(P_MC2, MC2_ADC_RPS);
1114
1115 DEBUG("s626_irq_handler: scan triggered!!! %d\n", devpriv->ai_sample_count);
1116 if (cmd->convert_src ==
1117 TRIG_EXT) {
1118
1119 DEBUG("s626_ai_cmd: enable interrupt on dio channel %d group %d\n", cmd->convert_arg - (16 * group), group);
1120
1121 devpriv->
1122 ai_convert_count
1123 =
1124 cmd->
1125 chanlist_len;
1126
1127 s626_dio_set_irq(dev,
1128 cmd->
1129 convert_arg);
1130
1131 DEBUG("s626_irq_handler: External convert trigger is set!!!\n");
1132 }
1133
1134 if (cmd->convert_src ==
1135 TRIG_TIMER) {
1136 k = &encpriv[5];
1137 devpriv->
1138 ai_convert_count
1139 =
1140 cmd->
1141 chanlist_len;
1142 k->SetEnable(dev, k,
1143 CLKENAB_ALWAYS);
1144 }
1145 }
1146 if ((irqbit >> (cmd->convert_arg -
1147 (16 * group)))
1148 == 1
1149 && cmd->convert_src ==
1150 TRIG_EXT) {
1151 DEBUG("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", cmd->convert_arg);
1152
b6c77757 1153 /* Trigger ADC scan loop start by setting RPS Signal 0. */
11e865c1
GP
1154 MC_ENABLE(P_MC2, MC2_ADC_RPS);
1155
1156 DEBUG("s626_irq_handler: adc convert triggered!!!\n");
1157
1158 devpriv->ai_convert_count--;
1159
1160 if (devpriv->ai_convert_count >
1161 0) {
1162
1163 DEBUG("s626_ai_cmd: enable interrupt on dio channel %d group %d\n", cmd->convert_arg - (16 * group), group);
1164
1165 s626_dio_set_irq(dev,
1166 cmd->
1167 convert_arg);
1168
1169 DEBUG("s626_irq_handler: External trigger is set!!!\n");
1170 }
1171 }
1172 }
1173 break;
1174 }
1175 }
1176
b6c77757 1177 /* read interrupt type */
11e865c1
GP
1178 irqbit = DEBIread(dev, LP_RDMISC2);
1179
b6c77757 1180 /* check interrupt on counters */
11e865c1
GP
1181 DEBUG("s626_irq_handler: check counters interrupt %d\n",
1182 irqbit);
1183
1184 if (irqbit & IRQ_COINT1A) {
1185 DEBUG("s626_irq_handler: interrupt on counter 1A overflow\n");
1186 k = &encpriv[0];
1187
b6c77757 1188 /* clear interrupt capture flag */
11e865c1
GP
1189 k->ResetCapFlags(dev, k);
1190 }
1191 if (irqbit & IRQ_COINT2A) {
1192 DEBUG("s626_irq_handler: interrupt on counter 2A overflow\n");
1193 k = &encpriv[1];
1194
b6c77757 1195 /* clear interrupt capture flag */
11e865c1
GP
1196 k->ResetCapFlags(dev, k);
1197 }
1198 if (irqbit & IRQ_COINT3A) {
1199 DEBUG("s626_irq_handler: interrupt on counter 3A overflow\n");
1200 k = &encpriv[2];
1201
b6c77757 1202 /* clear interrupt capture flag */
11e865c1
GP
1203 k->ResetCapFlags(dev, k);
1204 }
1205 if (irqbit & IRQ_COINT1B) {
1206 DEBUG("s626_irq_handler: interrupt on counter 1B overflow\n");
1207 k = &encpriv[3];
1208
b6c77757 1209 /* clear interrupt capture flag */
11e865c1
GP
1210 k->ResetCapFlags(dev, k);
1211 }
1212 if (irqbit & IRQ_COINT2B) {
1213 DEBUG("s626_irq_handler: interrupt on counter 2B overflow\n");
1214 k = &encpriv[4];
1215
b6c77757 1216 /* clear interrupt capture flag */
11e865c1
GP
1217 k->ResetCapFlags(dev, k);
1218
1219 if (devpriv->ai_convert_count > 0) {
1220 devpriv->ai_convert_count--;
1221 if (devpriv->ai_convert_count == 0)
1222 k->SetEnable(dev, k, CLKENAB_INDEX);
1223
1224 if (cmd->convert_src == TRIG_TIMER) {
1225 DEBUG("s626_irq_handler: conver timer trigger!!! %d\n", devpriv->ai_convert_count);
1226
b6c77757 1227 /* Trigger ADC scan loop start by setting RPS Signal 0. */
11e865c1
GP
1228 MC_ENABLE(P_MC2, MC2_ADC_RPS);
1229 }
1230 }
1231 }
1232 if (irqbit & IRQ_COINT3B) {
1233 DEBUG("s626_irq_handler: interrupt on counter 3B overflow\n");
1234 k = &encpriv[5];
1235
b6c77757 1236 /* clear interrupt capture flag */
11e865c1
GP
1237 k->ResetCapFlags(dev, k);
1238
1239 if (cmd->scan_begin_src == TRIG_TIMER) {
1240 DEBUG("s626_irq_handler: scan timer trigger!!!\n");
1241
b6c77757 1242 /* Trigger ADC scan loop start by setting RPS Signal 0. */
11e865c1
GP
1243 MC_ENABLE(P_MC2, MC2_ADC_RPS);
1244 }
1245
1246 if (cmd->convert_src == TRIG_TIMER) {
1247 DEBUG("s626_irq_handler: convert timer trigger is set\n");
1248 k = &encpriv[4];
1249 devpriv->ai_convert_count = cmd->chanlist_len;
1250 k->SetEnable(dev, k, CLKENAB_ALWAYS);
1251 }
1252 }
1253 }
1254
b6c77757 1255 /* enable interrupt */
11e865c1
GP
1256 writel(irqstatus, devpriv->base_addr + P_IER);
1257
1258 DEBUG("s626_irq_handler: exit interrupt service routine.\n");
1259
1260 comedi_spin_unlock_irqrestore(&dev->spinlock, flags);
1261 return IRQ_HANDLED;
1262}
1263
e473e912 1264static int s626_detach(comedi_device *dev)
11e865c1
GP
1265{
1266 if (devpriv) {
b6c77757 1267 /* stop ai_command */
11e865c1
GP
1268 devpriv->ai_cmd_running = 0;
1269
1270 if (devpriv->base_addr) {
b6c77757
BP
1271 /* interrupt mask */
1272 WR7146(P_IER, 0); /* Disable master interrupt. */
1273 WR7146(P_ISR, IRQ_GPIO3 | IRQ_RPS1); /* Clear board's IRQ status flag. */
11e865c1 1274
b6c77757 1275 /* Disable the watchdog timer and battery charger. */
11e865c1
GP
1276 WriteMISC2(dev, 0);
1277
b6c77757 1278 /* Close all interfaces on 7146 device. */
11e865c1
GP
1279 WR7146(P_MC1, MC1_SHUTDOWN);
1280 WR7146(P_ACON1, ACON1_BASE);
1281
1282 CloseDMAB(dev, &devpriv->RPSBuf, DMABUF_SIZE);
1283 CloseDMAB(dev, &devpriv->ANABuf, DMABUF_SIZE);
1284 }
1285
1286 if (dev->irq) {
1287 comedi_free_irq(dev->irq, dev);
1288 }
1289
1290 if (devpriv->base_addr) {
1291 iounmap(devpriv->base_addr);
1292 }
1293
1294 if (devpriv->pdev) {
1295 if (devpriv->got_regions) {
1296 comedi_pci_disable(devpriv->pdev);
1297 }
1298 pci_dev_put(devpriv->pdev);
1299 }
1300 }
1301
1302 DEBUG("s626_detach: S626 detached!\n");
1303
1304 return 0;
1305}
1306
1307/*
1308 * this functions build the RPS program for hardware driven acquistion
1309 */
e473e912 1310void ResetADC(comedi_device *dev, uint8_t *ppl)
11e865c1
GP
1311{
1312 register uint32_t *pRPS;
1313 uint32_t JmpAdrs;
1314 uint16_t i;
1315 uint16_t n;
1316 uint32_t LocalPPL;
1317 comedi_cmd *cmd = &(dev->subdevices->async->cmd);
1318
b6c77757 1319 /* Stop RPS program in case it is currently running. */
11e865c1
GP
1320 MC_DISABLE(P_MC1, MC1_ERPS1);
1321
b6c77757 1322 /* Set starting logical address to write RPS commands. */
11e865c1
GP
1323 pRPS = (uint32_t *) devpriv->RPSBuf.LogicalBase;
1324
b6c77757 1325 /* Initialize RPS instruction pointer. */
11e865c1
GP
1326 WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase);
1327
b6c77757 1328 /* Construct RPS program in RPSBuf DMA buffer */
11e865c1
GP
1329
1330 if (cmd != NULL && cmd->scan_begin_src != TRIG_FOLLOW) {
1331 DEBUG("ResetADC: scan_begin pause inserted\n");
b6c77757 1332 /* Wait for Start trigger. */
11e865c1
GP
1333 *pRPS++ = RPS_PAUSE | RPS_SIGADC;
1334 *pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
1335 }
b6c77757
BP
1336
1337 /* SAA7146 BUG WORKAROUND Do a dummy DEBI Write. This is necessary
1338 * because the first RPS DEBI Write following a non-RPS DEBI write
1339 * seems to always fail. If we don't do this dummy write, the ADC
1340 * gain might not be set to the value required for the first slot in
1341 * the poll list; the ADC gain would instead remain unchanged from
1342 * the previously programmed value.
1343 */
1344 *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);
1345 /* Write DEBI Write command and address to shadow RAM. */
1346
11e865c1 1347 *pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
b6c77757
BP
1348 *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);
1349 /* Write DEBI immediate data to shadow RAM: */
1350
1351 *pRPS++ = GSEL_BIPOLAR5V;
1352 /* arbitrary immediate data value. */
1353
1354 *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;
1355 /* Reset "shadow RAM uploaded" flag. */
1356 *pRPS++ = RPS_UPLOAD | RPS_DEBI; /* Invoke shadow RAM upload. */
1357 *pRPS++ = RPS_PAUSE | RPS_DEBI; /* Wait for shadow upload to finish. */
1358
1359 /* Digitize all slots in the poll list. This is implemented as a
1360 * for loop to limit the slot count to 16 in case the application
1361 * forgot to set the EOPL flag in the final slot.
1362 */
11e865c1 1363 for (devpriv->AdcItems = 0; devpriv->AdcItems < 16; devpriv->AdcItems++) {
b6c77757
BP
1364 /* Convert application's poll list item to private board class
1365 * format. Each app poll list item is an uint8_t with form
1366 * (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 =
1367 * +-10V, 1 = +-5V, and EOPL = End of Poll List marker.
1368 */
11e865c1
GP
1369 LocalPPL =
1370 (*ppl << 8) | (*ppl & 0x10 ? GSEL_BIPOLAR5V :
1371 GSEL_BIPOLAR10V);
1372
b6c77757
BP
1373 /* Switch ADC analog gain. */
1374 *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2); /* Write DEBI command */
1375 /* and address to */
1376 /* shadow RAM. */
11e865c1 1377 *pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
b6c77757
BP
1378 *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2); /* Write DEBI */
1379 /* immediate data to */
1380 /* shadow RAM. */
11e865c1 1381 *pRPS++ = LocalPPL;
b6c77757
BP
1382 *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI; /* Reset "shadow RAM uploaded" */
1383 /* flag. */
1384 *pRPS++ = RPS_UPLOAD | RPS_DEBI; /* Invoke shadow RAM upload. */
1385 *pRPS++ = RPS_PAUSE | RPS_DEBI; /* Wait for shadow upload to */
1386 /* finish. */
1387
1388 /* Select ADC analog input channel. */
1389 *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);
1390 /* Write DEBI command and address to shadow RAM. */
11e865c1 1391 *pRPS++ = DEBI_CMD_WRWORD | LP_ISEL;
b6c77757
BP
1392 *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);
1393 /* Write DEBI immediate data to shadow RAM. */
11e865c1 1394 *pRPS++ = LocalPPL;
b6c77757
BP
1395 *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;
1396 /* Reset "shadow RAM uploaded" flag. */
1397
1398 *pRPS++ = RPS_UPLOAD | RPS_DEBI;
1399 /* Invoke shadow RAM upload. */
1400
1401 *pRPS++ = RPS_PAUSE | RPS_DEBI;
1402 /* Wait for shadow upload to finish. */
1403
1404 /* Delay at least 10 microseconds for analog input settling.
1405 * Instead of padding with NOPs, we use RPS_JUMP instructions
1406 * here; this allows us to produce a longer delay than is
1407 * possible with NOPs because each RPS_JUMP flushes the RPS'
1408 * instruction prefetch pipeline.
1409 */
11e865c1
GP
1410 JmpAdrs =
1411 (uint32_t) devpriv->RPSBuf.PhysicalBase +
1412 (uint32_t) ((unsigned long)pRPS -
1413 (unsigned long)devpriv->RPSBuf.LogicalBase);
1414 for (i = 0; i < (10 * RPSCLK_PER_US / 2); i++) {
b6c77757
BP
1415 JmpAdrs += 8; /* Repeat to implement time delay: */
1416 *pRPS++ = RPS_JUMP; /* Jump to next RPS instruction. */
11e865c1
GP
1417 *pRPS++ = JmpAdrs;
1418 }
1419
1420 if (cmd != NULL && cmd->convert_src != TRIG_NOW) {
1421 DEBUG("ResetADC: convert pause inserted\n");
b6c77757 1422 /* Wait for Start trigger. */
11e865c1
GP
1423 *pRPS++ = RPS_PAUSE | RPS_SIGADC;
1424 *pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
1425 }
b6c77757
BP
1426 /* Start ADC by pulsing GPIO1. */
1427 *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* Begin ADC Start pulse. */
11e865c1
GP
1428 *pRPS++ = GPIO_BASE | GPIO1_LO;
1429 *pRPS++ = RPS_NOP;
b6c77757
BP
1430 /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1431 *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* End ADC Start pulse. */
11e865c1
GP
1432 *pRPS++ = GPIO_BASE | GPIO1_HI;
1433
b6c77757
BP
1434 /* Wait for ADC to complete (GPIO2 is asserted high when ADC not
1435 * busy) and for data from previous conversion to shift into FB
1436 * BUFFER 1 register.
1437 */
1438 *pRPS++ = RPS_PAUSE | RPS_GPIO2; /* Wait for ADC done. */
11e865c1 1439
b6c77757 1440 /* Transfer ADC data from FB BUFFER 1 register to DMA buffer. */
11e865c1
GP
1441 *pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2);
1442 *pRPS++ =
1443 (uint32_t) devpriv->ANABuf.PhysicalBase +
1444 (devpriv->AdcItems << 2);
1445
b6c77757
BP
1446 /* If this slot's EndOfPollList flag is set, all channels have */
1447 /* now been processed. */
11e865c1 1448 if (*ppl++ & EOPL) {
b6c77757
BP
1449 devpriv->AdcItems++; /* Adjust poll list item count. */
1450 break; /* Exit poll list processing loop. */
11e865c1
GP
1451 }
1452 }
1453 DEBUG("ResetADC: ADC items %d \n", devpriv->AdcItems);
1454
b6c77757
BP
1455 /* VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US. Allow the
1456 * ADC to stabilize for 2 microseconds before starting the final
1457 * (dummy) conversion. This delay is necessary to allow sufficient
1458 * time between last conversion finished and the start of the dummy
1459 * conversion. Without this delay, the last conversion's data value
1460 * is sometimes set to the previous conversion's data value.
1461 */
11e865c1
GP
1462 for (n = 0; n < (2 * RPSCLK_PER_US); n++)
1463 *pRPS++ = RPS_NOP;
1464
b6c77757
BP
1465 /* Start a dummy conversion to cause the data from the last
1466 * conversion of interest to be shifted in.
1467 */
1468 *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* Begin ADC Start pulse. */
11e865c1
GP
1469 *pRPS++ = GPIO_BASE | GPIO1_LO;
1470 *pRPS++ = RPS_NOP;
b6c77757
BP
1471 /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1472 *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* End ADC Start pulse. */
11e865c1
GP
1473 *pRPS++ = GPIO_BASE | GPIO1_HI;
1474
b6c77757
BP
1475 /* Wait for the data from the last conversion of interest to arrive
1476 * in FB BUFFER 1 register.
1477 */
1478 *pRPS++ = RPS_PAUSE | RPS_GPIO2; /* Wait for ADC done. */
11e865c1 1479
b6c77757
BP
1480 /* Transfer final ADC data from FB BUFFER 1 register to DMA buffer. */
1481 *pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2); /* */
11e865c1
GP
1482 *pRPS++ =
1483 (uint32_t) devpriv->ANABuf.PhysicalBase +
1484 (devpriv->AdcItems << 2);
1485
b6c77757
BP
1486 /* Indicate ADC scan loop is finished. */
1487 /* *pRPS++= RPS_CLRSIGNAL | RPS_SIGADC ; // Signal ReadADC() that scan is done. */
11e865c1 1488
b6c77757 1489 /* invoke interrupt */
11e865c1
GP
1490 if (devpriv->ai_cmd_running == 1) {
1491 DEBUG("ResetADC: insert irq in ADC RPS task\n");
1492 *pRPS++ = RPS_IRQ;
1493 }
b6c77757
BP
1494 /* Restart RPS program at its beginning. */
1495 *pRPS++ = RPS_JUMP; /* Branch to start of RPS program. */
11e865c1
GP
1496 *pRPS++ = (uint32_t) devpriv->RPSBuf.PhysicalBase;
1497
b6c77757 1498 /* End of RPS program build */
11e865c1
GP
1499}
1500
1501/* TO COMPLETE, IF NECESSARY */
e473e912
BP
1502static int s626_ai_insn_config(comedi_device *dev, comedi_subdevice *s,
1503 comedi_insn *insn, lsampl_t *data)
11e865c1
GP
1504{
1505
1506 return -EINVAL;
1507}
1508
1509/* static int s626_ai_rinsn(comedi_device *dev,comedi_subdevice *s,comedi_insn *insn,lsampl_t *data) */
1510/* { */
1511/* register uint8_t i; */
1512/* register int32_t *readaddr; */
1513
1514/* DEBUG("as626_ai_rinsn: ai_rinsn enter \n"); */
1515
b6c77757 1516/* Trigger ADC scan loop start by setting RPS Signal 0. */
11e865c1
GP
1517/* MC_ENABLE( P_MC2, MC2_ADC_RPS ); */
1518
b6c77757 1519/* Wait until ADC scan loop is finished (RPS Signal 0 reset). */
11e865c1
GP
1520/* while ( MC_TEST( P_MC2, MC2_ADC_RPS ) ); */
1521
b6c77757
BP
1522/* Init ptr to DMA buffer that holds new ADC data. We skip the
1523 * first uint16_t in the buffer because it contains junk data from
1524 * the final ADC of the previous poll list scan.
1525 */
11e865c1
GP
1526/* readaddr = (uint32_t *)devpriv->ANABuf.LogicalBase + 1; */
1527
b6c77757 1528/* Convert ADC data to 16-bit integer values and copy to application buffer. */
11e865c1
GP
1529/* for ( i = 0; i < devpriv->AdcItems; i++ ) { */
1530/* *data = s626_ai_reg_to_uint( *readaddr++ ); */
1531/* DEBUG("s626_ai_rinsn: data %d \n",*data); */
1532/* data++; */
1533/* } */
1534
1535/* DEBUG("s626_ai_rinsn: ai_rinsn escape \n"); */
1536/* return i; */
1537/* } */
1538
e473e912
BP
1539static int s626_ai_insn_read(comedi_device *dev, comedi_subdevice *s,
1540 comedi_insn *insn, lsampl_t *data)
11e865c1
GP
1541{
1542 uint16_t chan = CR_CHAN(insn->chanspec);
1543 uint16_t range = CR_RANGE(insn->chanspec);
1544 uint16_t AdcSpec = 0;
1545 uint32_t GpioImage;
1546 int n;
1547
b6c77757
BP
1548 /* interrupt call test */
1549/* writel(IRQ_GPIO3,devpriv->base_addr+P_PSR); */
1550 /* Writing a logical 1 into any of the RPS_PSR bits causes the
1551 * corresponding interrupt to be generated if enabled
1552 */
11e865c1
GP
1553
1554 DEBUG("s626_ai_insn_read: entering\n");
1555
b6c77757
BP
1556 /* Convert application's ADC specification into form
1557 * appropriate for register programming.
1558 */
11e865c1
GP
1559 if (range == 0)
1560 AdcSpec = (chan << 8) | (GSEL_BIPOLAR5V);
1561 else
1562 AdcSpec = (chan << 8) | (GSEL_BIPOLAR10V);
1563
b6c77757
BP
1564 /* Switch ADC analog gain. */
1565 DEBIwrite(dev, LP_GSEL, AdcSpec); /* Set gain. */
11e865c1 1566
b6c77757
BP
1567 /* Select ADC analog input channel. */
1568 DEBIwrite(dev, LP_ISEL, AdcSpec); /* Select channel. */
11e865c1
GP
1569
1570 for (n = 0; n < insn->n; n++) {
1571
b6c77757 1572 /* Delay 10 microseconds for analog input settling. */
11e865c1
GP
1573 comedi_udelay(10);
1574
b6c77757 1575 /* Start ADC by pulsing GPIO1 low. */
11e865c1 1576 GpioImage = RR7146(P_GPIO);
b6c77757 1577 /* Assert ADC Start command */
11e865c1 1578 WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
b6c77757 1579 /* and stretch it out. */
11e865c1
GP
1580 WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1581 WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
b6c77757 1582 /* Negate ADC Start command. */
11e865c1
GP
1583 WR7146(P_GPIO, GpioImage | GPIO1_HI);
1584
b6c77757
BP
1585 /* Wait for ADC to complete (GPIO2 is asserted high when */
1586 /* ADC not busy) and for data from previous conversion to */
1587 /* shift into FB BUFFER 1 register. */
11e865c1 1588
b6c77757 1589 /* Wait for ADC done. */
11e865c1
GP
1590 while (!(RR7146(P_PSR) & PSR_GPIO2)) ;
1591
b6c77757 1592 /* Fetch ADC data. */
11e865c1
GP
1593 if (n != 0)
1594 data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1));
1595
b6c77757
BP
1596 /* Allow the ADC to stabilize for 4 microseconds before
1597 * starting the next (final) conversion. This delay is
1598 * necessary to allow sufficient time between last
1599 * conversion finished and the start of the next
1600 * conversion. Without this delay, the last conversion's
1601 * data value is sometimes set to the previous
1602 * conversion's data value.
1603 */
11e865c1
GP
1604 comedi_udelay(4);
1605 }
1606
b6c77757
BP
1607 /* Start a dummy conversion to cause the data from the
1608 * previous conversion to be shifted in. */
11e865c1
GP
1609 GpioImage = RR7146(P_GPIO);
1610
b6c77757 1611 /* Assert ADC Start command */
11e865c1 1612 WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
b6c77757 1613 /* and stretch it out. */
11e865c1
GP
1614 WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1615 WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
b6c77757 1616 /* Negate ADC Start command. */
11e865c1
GP
1617 WR7146(P_GPIO, GpioImage | GPIO1_HI);
1618
b6c77757 1619 /* Wait for the data to arrive in FB BUFFER 1 register. */
11e865c1 1620
b6c77757 1621 /* Wait for ADC done. */
11e865c1
GP
1622 while (!(RR7146(P_PSR) & PSR_GPIO2)) ;
1623
b6c77757 1624 /* Fetch ADC data from audio interface's input shift register. */
11e865c1 1625
b6c77757 1626 /* Fetch ADC data. */
11e865c1
GP
1627 if (n != 0)
1628 data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1));
1629
1630 DEBUG("s626_ai_insn_read: samples %d, data %d\n", n, data[n - 1]);
1631
1632 return n;
1633}
1634
e473e912 1635static int s626_ai_load_polllist(uint8_t *ppl, comedi_cmd *cmd)
11e865c1
GP
1636{
1637
1638 int n;
1639
1640 for (n = 0; n < cmd->chanlist_len; n++) {
1641 if (CR_RANGE((cmd->chanlist)[n]) == 0)
1642 ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_5V);
1643 else
1644 ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_10V);
1645 }
1646 ppl[n - 1] |= EOPL;
1647
1648 return n;
1649}
1650
e473e912 1651static int s626_ai_inttrig(comedi_device *dev, comedi_subdevice *s,
11e865c1
GP
1652 unsigned int trignum)
1653{
1654 if (trignum != 0)
1655 return -EINVAL;
1656
1657 DEBUG("s626_ai_inttrig: trigger adc start...");
1658
b6c77757 1659 /* Start executing the RPS program. */
11e865c1
GP
1660 MC_ENABLE(P_MC1, MC1_ERPS1);
1661
1662 s->async->inttrig = NULL;
1663
1664 DEBUG(" done\n");
1665
1666 return 1;
1667}
1668
1669/* TO COMPLETE */
e473e912 1670static int s626_ai_cmd(comedi_device *dev, comedi_subdevice *s)
11e865c1
GP
1671{
1672
1673 uint8_t ppl[16];
1674 comedi_cmd *cmd = &s->async->cmd;
1675 enc_private *k;
1676 int tick;
1677
1678 DEBUG("s626_ai_cmd: entering command function\n");
1679
1680 if (devpriv->ai_cmd_running) {
1681 printk("s626_ai_cmd: Another ai_cmd is running %d\n",
1682 dev->minor);
1683 return -EBUSY;
1684 }
b6c77757 1685 /* disable interrupt */
11e865c1
GP
1686 writel(0, devpriv->base_addr + P_IER);
1687
b6c77757 1688 /* clear interrupt request */
11e865c1
GP
1689 writel(IRQ_RPS1 | IRQ_GPIO3, devpriv->base_addr + P_ISR);
1690
b6c77757 1691 /* clear any pending interrupt */
11e865c1 1692 s626_dio_clear_irq(dev);
b6c77757 1693 /* s626_enc_clear_irq(dev); */
11e865c1 1694
b6c77757 1695 /* reset ai_cmd_running flag */
11e865c1
GP
1696 devpriv->ai_cmd_running = 0;
1697
b6c77757 1698 /* test if cmd is valid */
11e865c1
GP
1699 if (cmd == NULL) {
1700 DEBUG("s626_ai_cmd: NULL command\n");
1701 return -EINVAL;
1702 } else {
1703 DEBUG("s626_ai_cmd: command recieved!!!\n");
1704 }
1705
1706 if (dev->irq == 0) {
1707 comedi_error(dev,
1708 "s626_ai_cmd: cannot run command without an irq");
1709 return -EIO;
1710 }
1711
1712 s626_ai_load_polllist(ppl, cmd);
1713 devpriv->ai_cmd_running = 1;
1714 devpriv->ai_convert_count = 0;
1715
1716 switch (cmd->scan_begin_src) {
1717 case TRIG_FOLLOW:
1718 break;
1719 case TRIG_TIMER:
b6c77757 1720 /* set a conter to generate adc trigger at scan_begin_arg interval */
11e865c1
GP
1721 k = &encpriv[5];
1722 tick = s626_ns_to_timer((int *)&cmd->scan_begin_arg,
1723 cmd->flags & TRIG_ROUND_MASK);
1724
b6c77757 1725 /* load timer value and enable interrupt */
11e865c1
GP
1726 s626_timer_load(dev, k, tick);
1727 k->SetEnable(dev, k, CLKENAB_ALWAYS);
1728
1729 DEBUG("s626_ai_cmd: scan trigger timer is set with value %d\n",
1730 tick);
1731
1732 break;
1733 case TRIG_EXT:
b6c77757 1734 /* set the digital line and interrupt for scan trigger */
11e865c1
GP
1735 if (cmd->start_src != TRIG_EXT)
1736 s626_dio_set_irq(dev, cmd->scan_begin_arg);
1737
1738 DEBUG("s626_ai_cmd: External scan trigger is set!!!\n");
1739
1740 break;
1741 }
1742
1743 switch (cmd->convert_src) {
1744 case TRIG_NOW:
1745 break;
1746 case TRIG_TIMER:
b6c77757 1747 /* set a conter to generate adc trigger at convert_arg interval */
11e865c1
GP
1748 k = &encpriv[4];
1749 tick = s626_ns_to_timer((int *)&cmd->convert_arg,
1750 cmd->flags & TRIG_ROUND_MASK);
1751
b6c77757 1752 /* load timer value and enable interrupt */
11e865c1
GP
1753 s626_timer_load(dev, k, tick);
1754 k->SetEnable(dev, k, CLKENAB_INDEX);
1755
1756 DEBUG("s626_ai_cmd: convert trigger timer is set with value %d\n", tick);
1757 break;
1758 case TRIG_EXT:
b6c77757 1759 /* set the digital line and interrupt for convert trigger */
11e865c1
GP
1760 if (cmd->scan_begin_src != TRIG_EXT
1761 && cmd->start_src == TRIG_EXT)
1762 s626_dio_set_irq(dev, cmd->convert_arg);
1763
1764 DEBUG("s626_ai_cmd: External convert trigger is set!!!\n");
1765
1766 break;
1767 }
1768
1769 switch (cmd->stop_src) {
1770 case TRIG_COUNT:
b6c77757 1771 /* data arrives as one packet */
11e865c1
GP
1772 devpriv->ai_sample_count = cmd->stop_arg;
1773 devpriv->ai_continous = 0;
1774 break;
1775 case TRIG_NONE:
b6c77757 1776 /* continous aquisition */
11e865c1
GP
1777 devpriv->ai_continous = 1;
1778 devpriv->ai_sample_count = 0;
1779 break;
1780 }
1781
1782 ResetADC(dev, ppl);
1783
1784 switch (cmd->start_src) {
1785 case TRIG_NOW:
b6c77757
BP
1786 /* Trigger ADC scan loop start by setting RPS Signal 0. */
1787 /* MC_ENABLE( P_MC2, MC2_ADC_RPS ); */
11e865c1 1788
b6c77757 1789 /* Start executing the RPS program. */
11e865c1
GP
1790 MC_ENABLE(P_MC1, MC1_ERPS1);
1791
1792 DEBUG("s626_ai_cmd: ADC triggered\n");
1793 s->async->inttrig = NULL;
1794 break;
1795 case TRIG_EXT:
b6c77757 1796 /* configure DIO channel for acquisition trigger */
11e865c1
GP
1797 s626_dio_set_irq(dev, cmd->start_arg);
1798
1799 DEBUG("s626_ai_cmd: External start trigger is set!!!\n");
1800
1801 s->async->inttrig = NULL;
1802 break;
1803 case TRIG_INT:
1804 s->async->inttrig = s626_ai_inttrig;
1805 break;
1806 }
1807
b6c77757 1808 /* enable interrupt */
11e865c1
GP
1809 writel(IRQ_GPIO3 | IRQ_RPS1, devpriv->base_addr + P_IER);
1810
1811 DEBUG("s626_ai_cmd: command function terminated\n");
1812
1813 return 0;
1814}
1815
e473e912
BP
1816static int s626_ai_cmdtest(comedi_device *dev, comedi_subdevice *s,
1817 comedi_cmd *cmd)
11e865c1
GP
1818{
1819 int err = 0;
1820 int tmp;
1821
1822 /* cmdtest tests a particular command to see if it is valid. Using
1823 * the cmdtest ioctl, a user can create a valid cmd and then have it
1824 * executes by the cmd ioctl.
1825 *
1826 * cmdtest returns 1,2,3,4 or 0, depending on which tests the
1827 * command passes. */
1828
1829 /* step 1: make sure trigger sources are trivially valid */
1830
1831 tmp = cmd->start_src;
1832 cmd->start_src &= TRIG_NOW | TRIG_INT | TRIG_EXT;
1833 if (!cmd->start_src || tmp != cmd->start_src)
1834 err++;
1835
1836 tmp = cmd->scan_begin_src;
1837 cmd->scan_begin_src &= TRIG_TIMER | TRIG_EXT | TRIG_FOLLOW;
1838 if (!cmd->scan_begin_src || tmp != cmd->scan_begin_src)
1839 err++;
1840
1841 tmp = cmd->convert_src;
1842 cmd->convert_src &= TRIG_TIMER | TRIG_EXT | TRIG_NOW;
1843 if (!cmd->convert_src || tmp != cmd->convert_src)
1844 err++;
1845
1846 tmp = cmd->scan_end_src;
1847 cmd->scan_end_src &= TRIG_COUNT;
1848 if (!cmd->scan_end_src || tmp != cmd->scan_end_src)
1849 err++;
1850
1851 tmp = cmd->stop_src;
1852 cmd->stop_src &= TRIG_COUNT | TRIG_NONE;
1853 if (!cmd->stop_src || tmp != cmd->stop_src)
1854 err++;
1855
1856 if (err)
1857 return 1;
1858
1859 /* step 2: make sure trigger sources are unique and mutually
1860 compatible */
1861
1862 /* note that mutual compatiblity is not an issue here */
1863 if (cmd->scan_begin_src != TRIG_TIMER &&
1864 cmd->scan_begin_src != TRIG_EXT
1865 && cmd->scan_begin_src != TRIG_FOLLOW)
1866 err++;
1867 if (cmd->convert_src != TRIG_TIMER &&
1868 cmd->convert_src != TRIG_EXT && cmd->convert_src != TRIG_NOW)
1869 err++;
1870 if (cmd->stop_src != TRIG_COUNT && cmd->stop_src != TRIG_NONE)
1871 err++;
1872
1873 if (err)
1874 return 2;
1875
1876 /* step 3: make sure arguments are trivially compatible */
1877
1878 if (cmd->start_src != TRIG_EXT && cmd->start_arg != 0) {
1879 cmd->start_arg = 0;
1880 err++;
1881 }
1882
1883 if (cmd->start_src == TRIG_EXT && cmd->start_arg < 0) {
1884 cmd->start_arg = 0;
1885 err++;
1886 }
1887
1888 if (cmd->start_src == TRIG_EXT && cmd->start_arg > 39) {
1889 cmd->start_arg = 39;
1890 err++;
1891 }
1892
1893 if (cmd->scan_begin_src == TRIG_EXT && cmd->scan_begin_arg < 0) {
1894 cmd->scan_begin_arg = 0;
1895 err++;
1896 }
1897
1898 if (cmd->scan_begin_src == TRIG_EXT && cmd->scan_begin_arg > 39) {
1899 cmd->scan_begin_arg = 39;
1900 err++;
1901 }
1902
1903 if (cmd->convert_src == TRIG_EXT && cmd->convert_arg < 0) {
1904 cmd->convert_arg = 0;
1905 err++;
1906 }
1907
1908 if (cmd->convert_src == TRIG_EXT && cmd->convert_arg > 39) {
1909 cmd->convert_arg = 39;
1910 err++;
1911 }
1912#define MAX_SPEED 200000 /* in nanoseconds */
1913#define MIN_SPEED 2000000000 /* in nanoseconds */
1914
1915 if (cmd->scan_begin_src == TRIG_TIMER) {
1916 if (cmd->scan_begin_arg < MAX_SPEED) {
1917 cmd->scan_begin_arg = MAX_SPEED;
1918 err++;
1919 }
1920 if (cmd->scan_begin_arg > MIN_SPEED) {
1921 cmd->scan_begin_arg = MIN_SPEED;
1922 err++;
1923 }
1924 } else {
1925 /* external trigger */
1926 /* should be level/edge, hi/lo specification here */
1927 /* should specify multiple external triggers */
1928/* if(cmd->scan_begin_arg>9){ */
1929/* cmd->scan_begin_arg=9; */
1930/* err++; */
1931/* } */
1932 }
1933 if (cmd->convert_src == TRIG_TIMER) {
1934 if (cmd->convert_arg < MAX_SPEED) {
1935 cmd->convert_arg = MAX_SPEED;
1936 err++;
1937 }
1938 if (cmd->convert_arg > MIN_SPEED) {
1939 cmd->convert_arg = MIN_SPEED;
1940 err++;
1941 }
1942 } else {
1943 /* external trigger */
1944 /* see above */
1945/* if(cmd->convert_arg>9){ */
1946/* cmd->convert_arg=9; */
1947/* err++; */
1948/* } */
1949 }
1950
1951 if (cmd->scan_end_arg != cmd->chanlist_len) {
1952 cmd->scan_end_arg = cmd->chanlist_len;
1953 err++;
1954 }
1955 if (cmd->stop_src == TRIG_COUNT) {
1956 if (cmd->stop_arg > 0x00ffffff) {
1957 cmd->stop_arg = 0x00ffffff;
1958 err++;
1959 }
1960 } else {
1961 /* TRIG_NONE */
1962 if (cmd->stop_arg != 0) {
1963 cmd->stop_arg = 0;
1964 err++;
1965 }
1966 }
1967
1968 if (err)
1969 return 3;
1970
1971 /* step 4: fix up any arguments */
1972
1973 if (cmd->scan_begin_src == TRIG_TIMER) {
1974 tmp = cmd->scan_begin_arg;
1975 s626_ns_to_timer((int *)&cmd->scan_begin_arg,
1976 cmd->flags & TRIG_ROUND_MASK);
1977 if (tmp != cmd->scan_begin_arg)
1978 err++;
1979 }
1980 if (cmd->convert_src == TRIG_TIMER) {
1981 tmp = cmd->convert_arg;
1982 s626_ns_to_timer((int *)&cmd->convert_arg,
1983 cmd->flags & TRIG_ROUND_MASK);
1984 if (tmp != cmd->convert_arg)
1985 err++;
1986 if (cmd->scan_begin_src == TRIG_TIMER &&
1987 cmd->scan_begin_arg <
1988 cmd->convert_arg * cmd->scan_end_arg) {
1989 cmd->scan_begin_arg =
1990 cmd->convert_arg * cmd->scan_end_arg;
1991 err++;
1992 }
1993 }
1994
1995 if (err)
1996 return 4;
1997
1998 return 0;
1999}
2000
e473e912 2001static int s626_ai_cancel(comedi_device *dev, comedi_subdevice *s)
11e865c1 2002{
b6c77757 2003 /* Stop RPS program in case it is currently running. */
11e865c1
GP
2004 MC_DISABLE(P_MC1, MC1_ERPS1);
2005
b6c77757 2006 /* disable master interrupt */
11e865c1
GP
2007 writel(0, devpriv->base_addr + P_IER);
2008
2009 devpriv->ai_cmd_running = 0;
2010
2011 return 0;
2012}
2013
2014/* This function doesn't require a particular form, this is just what
2015 * happens to be used in some of the drivers. It should convert ns
2016 * nanoseconds to a counter value suitable for programming the device.
2017 * Also, it should adjust ns so that it cooresponds to the actual time
2018 * that the device will use. */
2019static int s626_ns_to_timer(int *nanosec, int round_mode)
2020{
2021 int divider, base;
2022
b6c77757 2023 base = 500; /* 2MHz internal clock */
11e865c1
GP
2024
2025 switch (round_mode) {
2026 case TRIG_ROUND_NEAREST:
2027 default:
2028 divider = (*nanosec + base / 2) / base;
2029 break;
2030 case TRIG_ROUND_DOWN:
2031 divider = (*nanosec) / base;
2032 break;
2033 case TRIG_ROUND_UP:
2034 divider = (*nanosec + base - 1) / base;
2035 break;
2036 }
2037
2038 *nanosec = base * divider;
2039 return divider - 1;
2040}
2041
e473e912
BP
2042static int s626_ao_winsn(comedi_device *dev, comedi_subdevice *s,
2043 comedi_insn *insn, lsampl_t *data)
11e865c1
GP
2044{
2045
2046 int i;
2047 uint16_t chan = CR_CHAN(insn->chanspec);
2048 int16_t dacdata;
2049
2050 for (i = 0; i < insn->n; i++) {
2051 dacdata = (int16_t) data[i];
2052 devpriv->ao_readback[CR_CHAN(insn->chanspec)] = data[i];
2053 dacdata -= (0x1fff);
2054
2055 SetDAC(dev, chan, dacdata);
2056 }
2057
2058 return i;
2059}
2060
e473e912
BP
2061static int s626_ao_rinsn(comedi_device *dev, comedi_subdevice *s,
2062 comedi_insn *insn, lsampl_t *data)
11e865c1
GP
2063{
2064 int i;
2065
2066 for (i = 0; i < insn->n; i++) {
2067 data[i] = devpriv->ao_readback[CR_CHAN(insn->chanspec)];
2068 }
2069
2070 return i;
2071}
2072
b6c77757
BP
2073/* *************** DIGITAL I/O FUNCTIONS ***************
2074 * All DIO functions address a group of DIO channels by means of
2075 * "group" argument. group may be 0, 1 or 2, which correspond to DIO
2076 * ports A, B and C, respectively.
2077 */
11e865c1 2078
e473e912 2079static void s626_dio_init(comedi_device *dev)
11e865c1
GP
2080{
2081 uint16_t group;
2082 comedi_subdevice *s;
2083
b6c77757 2084 /* Prepare to treat writes to WRCapSel as capture disables. */
11e865c1
GP
2085 DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
2086
b6c77757 2087 /* For each group of sixteen channels ... */
11e865c1
GP
2088 for (group = 0; group < S626_DIO_BANKS; group++) {
2089 s = dev->subdevices + 2 + group;
b6c77757
BP
2090 DEBIwrite(dev, diopriv->WRIntSel, 0); /* Disable all interrupts. */
2091 DEBIwrite(dev, diopriv->WRCapSel, 0xFFFF); /* Disable all event */
2092 /* captures. */
2093 DEBIwrite(dev, diopriv->WREdgSel, 0); /* Init all DIOs to */
2094 /* default edge */
2095 /* polarity. */
2096 DEBIwrite(dev, diopriv->WRDOut, 0); /* Program all outputs */
2097 /* to inactive state. */
11e865c1
GP
2098 }
2099 DEBUG("s626_dio_init: DIO initialized \n");
2100}
2101
2102/* DIO devices are slightly special. Although it is possible to
2103 * implement the insn_read/insn_write interface, it is much more
2104 * useful to applications if you implement the insn_bits interface.
2105 * This allows packed reading/writing of the DIO channels. The comedi
2106 * core can convert between insn_bits and insn_read/write */
2107
e473e912
BP
2108static int s626_dio_insn_bits(comedi_device *dev, comedi_subdevice *s,
2109 comedi_insn *insn, lsampl_t *data)
11e865c1
GP
2110{
2111
2112 /* Length of data must be 2 (mask and new data, see below) */
2113 if (insn->n == 0) {
2114 return 0;
2115 }
2116 if (insn->n != 2) {
2117 printk("comedi%d: s626: s626_dio_insn_bits(): Invalid instruction length\n", dev->minor);
2118 return -EINVAL;
2119 }
2120
2121 /*
2122 * The insn data consists of a mask in data[0] and the new data in
2123 * data[1]. The mask defines which bits we are concerning about.
2124 * The new data must be anded with the mask. Each channel
2125 * corresponds to a bit.
2126 */
2127 if (data[0]) {
2128 /* Check if requested ports are configured for output */
2129 if ((s->io_bits & data[0]) != data[0])
2130 return -EIO;
2131
2132 s->state &= ~data[0];
2133 s->state |= data[0] & data[1];
2134
2135 /* Write out the new digital output lines */
2136
2137 DEBIwrite(dev, diopriv->WRDOut, s->state);
2138 }
2139 data[1] = DEBIread(dev, diopriv->RDDIn);
2140
2141 return 2;
2142}
2143
e473e912
BP
2144static int s626_dio_insn_config(comedi_device *dev, comedi_subdevice *s,
2145 comedi_insn *insn, lsampl_t *data)
11e865c1
GP
2146{
2147
2148 switch (data[0]) {
2149 case INSN_CONFIG_DIO_QUERY:
2150 data[1] =
2151 (s->io_bits & (1 << CR_CHAN(insn->
2152 chanspec))) ? COMEDI_OUTPUT :
2153 COMEDI_INPUT;
2154 return insn->n;
2155 break;
2156 case COMEDI_INPUT:
2157 s->io_bits &= ~(1 << CR_CHAN(insn->chanspec));
2158 break;
2159 case COMEDI_OUTPUT:
2160 s->io_bits |= 1 << CR_CHAN(insn->chanspec);
2161 break;
2162 default:
2163 return -EINVAL;
2164 break;
2165 }
2166 DEBIwrite(dev, diopriv->WRDOut, s->io_bits);
2167
2168 return 1;
2169}
2170
e473e912 2171static int s626_dio_set_irq(comedi_device *dev, unsigned int chan)
11e865c1
GP
2172{
2173 unsigned int group;
2174 unsigned int bitmask;
2175 unsigned int status;
2176
b6c77757 2177 /* select dio bank */
11e865c1
GP
2178 group = chan / 16;
2179 bitmask = 1 << (chan - (16 * group));
2180 DEBUG("s626_dio_set_irq: enable interrupt on dio channel %d group %d\n",
2181 chan - (16 * group), group);
2182
b6c77757 2183 /* set channel to capture positive edge */
11e865c1
GP
2184 status = DEBIread(dev,
2185 ((dio_private *) (dev->subdevices + 2 +
2186 group)->private)->RDEdgSel);
2187 DEBIwrite(dev,
2188 ((dio_private *) (dev->subdevices + 2 +
2189 group)->private)->WREdgSel, bitmask | status);
2190
b6c77757 2191 /* enable interrupt on selected channel */
11e865c1
GP
2192 status = DEBIread(dev,
2193 ((dio_private *) (dev->subdevices + 2 +
2194 group)->private)->RDIntSel);
2195 DEBIwrite(dev,
2196 ((dio_private *) (dev->subdevices + 2 +
2197 group)->private)->WRIntSel, bitmask | status);
2198
b6c77757 2199 /* enable edge capture write command */
11e865c1
GP
2200 DEBIwrite(dev, LP_MISC1, MISC1_EDCAP);
2201
b6c77757 2202 /* enable edge capture on selected channel */
11e865c1
GP
2203 status = DEBIread(dev,
2204 ((dio_private *) (dev->subdevices + 2 +
2205 group)->private)->RDCapSel);
2206 DEBIwrite(dev,
2207 ((dio_private *) (dev->subdevices + 2 +
2208 group)->private)->WRCapSel, bitmask | status);
2209
2210 return 0;
2211}
2212
e473e912 2213static int s626_dio_reset_irq(comedi_device *dev, unsigned int group,
11e865c1
GP
2214 unsigned int mask)
2215{
2216 DEBUG("s626_dio_reset_irq: disable interrupt on dio channel %d group %d\n", mask, group);
2217
b6c77757 2218 /* disable edge capture write command */
11e865c1
GP
2219 DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
2220
b6c77757 2221 /* enable edge capture on selected channel */
11e865c1
GP
2222 DEBIwrite(dev,
2223 ((dio_private *) (dev->subdevices + 2 +
2224 group)->private)->WRCapSel, mask);
2225
2226 return 0;
2227}
2228
e473e912 2229static int s626_dio_clear_irq(comedi_device *dev)
11e865c1
GP
2230{
2231 unsigned int group;
2232
b6c77757 2233 /* disable edge capture write command */
11e865c1
GP
2234 DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
2235
2236 for (group = 0; group < S626_DIO_BANKS; group++) {
b6c77757 2237 /* clear pending events and interrupt */
11e865c1
GP
2238 DEBIwrite(dev,
2239 ((dio_private *) (dev->subdevices + 2 +
2240 group)->private)->WRCapSel, 0xffff);
2241 }
2242
2243 return 0;
2244}
2245
2246/* Now this function initializes the value of the counter (data[0])
2247 and set the subdevice. To complete with trigger and interrupt
2248 configuration */
e473e912
BP
2249static int s626_enc_insn_config(comedi_device *dev, comedi_subdevice *s,
2250 comedi_insn *insn, lsampl_t *data)
11e865c1 2251{
b6c77757
BP
2252 uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | /* Preload upon */
2253 /* index. */
2254 (INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */
2255 (CLKSRC_COUNTER << BF_CLKSRC) | /* Operating mode is Counter. */
2256 (CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */
2257 /* ( CNTDIR_UP << BF_CLKPOL ) | // Count direction is Down. */
2258 (CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */
11e865c1
GP
2259 (CLKENAB_INDEX << BF_CLKENAB);
2260 /* uint16_t DisableIntSrc=TRUE; */
b6c77757 2261 /* uint32_t Preloadvalue; //Counter initial value */
11e865c1
GP
2262 uint16_t valueSrclatch = LATCHSRC_AB_READ;
2263 uint16_t enab = CLKENAB_ALWAYS;
2264 enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
2265
2266 DEBUG("s626_enc_insn_config: encoder config\n");
2267
b6c77757 2268 /* (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]); */
11e865c1
GP
2269
2270 k->SetMode(dev, k, Setup, TRUE);
2271 Preload(dev, k, *(insn->data));
2272 k->PulseIndex(dev, k);
2273 SetLatchSource(dev, k, valueSrclatch);
2274 k->SetEnable(dev, k, (uint16_t) (enab != 0));
2275
2276 return insn->n;
2277}
2278
e473e912
BP
2279static int s626_enc_insn_read(comedi_device *dev, comedi_subdevice *s,
2280 comedi_insn *insn, lsampl_t *data)
11e865c1
GP
2281{
2282
2283 int n;
2284 enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
2285
2286 DEBUG("s626_enc_insn_read: encoder read channel %d \n",
2287 CR_CHAN(insn->chanspec));
2288
2289 for (n = 0; n < insn->n; n++)
2290 data[n] = ReadLatch(dev, k);
2291
2292 DEBUG("s626_enc_insn_read: encoder sample %d\n", data[n]);
2293
2294 return n;
2295}
2296
e473e912
BP
2297static int s626_enc_insn_write(comedi_device *dev, comedi_subdevice *s,
2298 comedi_insn *insn, lsampl_t *data)
11e865c1
GP
2299{
2300
2301 enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
2302
2303 DEBUG("s626_enc_insn_write: encoder write channel %d \n",
2304 CR_CHAN(insn->chanspec));
2305
b6c77757 2306 /* Set the preload register */
11e865c1
GP
2307 Preload(dev, k, data[0]);
2308
b6c77757
BP
2309 /* Software index pulse forces the preload register to load */
2310 /* into the counter */
11e865c1
GP
2311 k->SetLoadTrig(dev, k, 0);
2312 k->PulseIndex(dev, k);
2313 k->SetLoadTrig(dev, k, 2);
2314
2315 DEBUG("s626_enc_insn_write: End encoder write\n");
2316
2317 return 1;
2318}
2319
e473e912 2320static void s626_timer_load(comedi_device *dev, enc_private *k, int tick)
11e865c1 2321{
b6c77757
BP
2322 uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | /* Preload upon */
2323 /* index. */
2324 (INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */
2325 (CLKSRC_TIMER << BF_CLKSRC) | /* Operating mode is Timer. */
2326 (CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */
2327 (CNTDIR_DOWN << BF_CLKPOL) | /* Count direction is Down. */
2328 (CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */
11e865c1
GP
2329 (CLKENAB_INDEX << BF_CLKENAB);
2330 uint16_t valueSrclatch = LATCHSRC_A_INDXA;
b6c77757 2331 /* uint16_t enab=CLKENAB_ALWAYS; */
11e865c1
GP
2332
2333 k->SetMode(dev, k, Setup, FALSE);
2334
b6c77757 2335 /* Set the preload register */
11e865c1
GP
2336 Preload(dev, k, tick);
2337
b6c77757
BP
2338 /* Software index pulse forces the preload register to load */
2339 /* into the counter */
11e865c1
GP
2340 k->SetLoadTrig(dev, k, 0);
2341 k->PulseIndex(dev, k);
2342
b6c77757 2343 /* set reload on counter overflow */
11e865c1
GP
2344 k->SetLoadTrig(dev, k, 1);
2345
b6c77757 2346 /* set interrupt on overflow */
11e865c1
GP
2347 k->SetIntSrc(dev, k, INTSRC_OVER);
2348
2349 SetLatchSource(dev, k, valueSrclatch);
b6c77757 2350 /* k->SetEnable(dev,k,(uint16_t)(enab != 0)); */
11e865c1
GP
2351}
2352
b6c77757 2353/* *********** DAC FUNCTIONS *********** */
11e865c1 2354
b6c77757
BP
2355/* Slot 0 base settings. */
2356#define VECT0 ( XSD2 | RSD3 | SIB_A2 )
2357/* Slot 0 always shifts in 0xFF and store it to FB_BUFFER2. */
11e865c1 2358
b6c77757 2359/* TrimDac LogicalChan-to-PhysicalChan mapping table. */
11e865c1
GP
2360static uint8_t trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 };
2361
b6c77757 2362/* TrimDac LogicalChan-to-EepromAdrs mapping table. */
11e865c1
GP
2363static uint8_t trimadrs[] =
2364 { 0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63 };
2365
e473e912 2366static void LoadTrimDACs(comedi_device *dev)
11e865c1
GP
2367{
2368 register uint8_t i;
2369
b6c77757 2370 /* Copy TrimDac setpoint values from EEPROM to TrimDacs. */
11e865c1
GP
2371 for (i = 0; i < (sizeof(trimchan) / sizeof(trimchan[0])); i++)
2372 WriteTrimDAC(dev, i, I2Cread(dev, trimadrs[i]));
2373}
2374
e473e912 2375static void WriteTrimDAC(comedi_device *dev, uint8_t LogicalChan,
11e865c1
GP
2376 uint8_t DacData)
2377{
2378 uint32_t chan;
2379
b6c77757 2380 /* Save the new setpoint in case the application needs to read it back later. */
11e865c1
GP
2381 devpriv->TrimSetpoint[LogicalChan] = (uint8_t) DacData;
2382
b6c77757 2383 /* Map logical channel number to physical channel number. */
11e865c1
GP
2384 chan = (uint32_t) trimchan[LogicalChan];
2385
b6c77757
BP
2386 /* Set up TSL2 records for TrimDac write operation. All slots shift
2387 * 0xFF in from pulled-up SD3 so that the end of the slot sequence
2388 * can be detected.
2389 */
2390
2391 SETVECT(2, XSD2 | XFIFO_1 | WS3);
2392 /* Slot 2: Send high uint8_t to target TrimDac. */
2393 SETVECT(3, XSD2 | XFIFO_0 | WS3);
2394 /* Slot 3: Send low uint8_t to target TrimDac. */
2395 SETVECT(4, XSD2 | XFIFO_3 | WS1);
2396 /* Slot 4: Send NOP high uint8_t to DAC0 to keep clock running. */
2397 SETVECT(5, XSD2 | XFIFO_2 | WS1 | EOS);
2398 /* Slot 5: Send NOP low uint8_t to DAC0. */
2399
2400 /* Construct and transmit target DAC's serial packet:
2401 * ( 0000 AAAA ), ( DDDD DDDD ),( 0x00 ),( 0x00 ) where A<3:0> is the
2402 * DAC channel's address, and D<7:0> is the DAC setpoint. Append a
2403 * WORD value (that writes a channel 0 NOP command to a non-existent
2404 * main DAC channel) that serves to keep the clock running after the
2405 * packet has been sent to the target DAC.
2406 */
11e865c1 2407
b6c77757
BP
2408 /* Address the DAC channel within the trimdac device. */
2409 SendDAC(dev, ((uint32_t) chan << 8)
2410 | (uint32_t) DacData); /* Include DAC setpoint data. */
2411}
11e865c1 2412
b6c77757
BP
2413/* ************** EEPROM ACCESS FUNCTIONS ************** */
2414/* Read uint8_t from EEPROM. */
11e865c1 2415
e473e912 2416static uint8_t I2Cread(comedi_device *dev, uint8_t addr)
11e865c1
GP
2417{
2418 uint8_t rtnval;
2419
b6c77757
BP
2420 /* Send EEPROM target address. */
2421 if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CW)
2422 /* Byte2 = I2C command: write to I2C EEPROM device. */
2423 | I2C_B1(I2C_ATTRSTOP, addr)
2424 /* Byte1 = EEPROM internal target address. */
2425 | I2C_B0(I2C_ATTRNOP, 0))) /* Byte0 = Not sent. */
11e865c1 2426 {
b6c77757 2427 /* Abort function and declare error if handshake failed. */
11e865c1
GP
2428 DEBUG("I2Cread: error handshake I2Cread a\n");
2429 return 0;
2430 }
b6c77757
BP
2431 /* Execute EEPROM read. */
2432 if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CR) /* Byte2 = I2C */
2433 /* command: read */
2434 /* from I2C EEPROM */
2435 /* device. */
2436 | I2C_B1(I2C_ATTRSTOP, 0) /* Byte1 receives */
2437 /* uint8_t from */
2438 /* EEPROM. */
2439 | I2C_B0(I2C_ATTRNOP, 0))) /* Byte0 = Not */
2440 /* sent. */
11e865c1 2441 {
b6c77757 2442 /* Abort function and declare error if handshake failed. */
11e865c1
GP
2443 DEBUG("I2Cread: error handshake I2Cread b\n");
2444 return 0;
2445 }
b6c77757 2446 /* Return copy of EEPROM value. */
11e865c1
GP
2447 rtnval = (uint8_t) (RR7146(P_I2CCTRL) >> 16);
2448 return rtnval;
2449}
2450
e473e912 2451static uint32_t I2Chandshake(comedi_device *dev, uint32_t val)
11e865c1 2452{
b6c77757 2453 /* Write I2C command to I2C Transfer Control shadow register. */
11e865c1
GP
2454 WR7146(P_I2CCTRL, val);
2455
b6c77757
BP
2456 /* Upload I2C shadow registers into working registers and wait for */
2457 /* upload confirmation. */
11e865c1
GP
2458
2459 MC_ENABLE(P_MC2, MC2_UPLD_IIC);
2460 while (!MC_TEST(P_MC2, MC2_UPLD_IIC)) ;
2461
b6c77757 2462 /* Wait until I2C bus transfer is finished or an error occurs. */
11e865c1
GP
2463 while ((RR7146(P_I2CCTRL) & (I2C_BUSY | I2C_ERR)) == I2C_BUSY) ;
2464
b6c77757 2465 /* Return non-zero if I2C error occured. */
11e865c1
GP
2466 return RR7146(P_I2CCTRL) & I2C_ERR;
2467
2468}
2469
b6c77757 2470/* Private helper function: Write setpoint to an application DAC channel. */
11e865c1 2471
e473e912 2472static void SetDAC(comedi_device *dev, uint16_t chan, short dacdata)
11e865c1
GP
2473{
2474 register uint16_t signmask;
2475 register uint32_t WSImage;
2476
b6c77757
BP
2477 /* Adjust DAC data polarity and set up Polarity Control Register */
2478 /* image. */
11e865c1
GP
2479 signmask = 1 << chan;
2480 if (dacdata < 0) {
2481 dacdata = -dacdata;
2482 devpriv->Dacpol |= signmask;
2483 } else
2484 devpriv->Dacpol &= ~signmask;
2485
b6c77757 2486 /* Limit DAC setpoint value to valid range. */
11e865c1
GP
2487 if ((uint16_t) dacdata > 0x1FFF)
2488 dacdata = 0x1FFF;
2489
b6c77757
BP
2490 /* Set up TSL2 records (aka "vectors") for DAC update. Vectors V2
2491 * and V3 transmit the setpoint to the target DAC. V4 and V5 send
2492 * data to a non-existent TrimDac channel just to keep the clock
2493 * running after sending data to the target DAC. This is necessary
2494 * to eliminate the clock glitch that would otherwise occur at the
2495 * end of the target DAC's serial data stream. When the sequence
2496 * restarts at V0 (after executing V5), the gate array automatically
2497 * disables gating for the DAC clock and all DAC chip selects.
2498 */
2499
2500 WSImage = (chan & 2) ? WS1 : WS2;
2501 /* Choose DAC chip select to be asserted. */
2502 SETVECT(2, XSD2 | XFIFO_1 | WSImage);
2503 /* Slot 2: Transmit high data byte to target DAC. */
2504 SETVECT(3, XSD2 | XFIFO_0 | WSImage);
2505 /* Slot 3: Transmit low data byte to target DAC. */
2506 SETVECT(4, XSD2 | XFIFO_3 | WS3);
2507 /* Slot 4: Transmit to non-existent TrimDac channel to keep clock */
2508 SETVECT(5, XSD2 | XFIFO_2 | WS3 | EOS);
2509 /* Slot 5: running after writing target DAC's low data byte. */
2510
2511 /* Construct and transmit target DAC's serial packet:
2512 * ( A10D DDDD ),( DDDD DDDD ),( 0x0F ),( 0x00 ) where A is chan<0>,
2513 * and D<12:0> is the DAC setpoint. Append a WORD value (that writes
2514 * to a non-existent TrimDac channel) that serves to keep the clock
2515 * running after the packet has been sent to the target DAC.
2516 */
2517 SendDAC(dev, 0x0F000000
2518 /* Continue clock after target DAC data (write to non-existent trimdac). */
2519 | 0x00004000
2520 /* Address the two main dual-DAC devices (TSL's chip select enables
2521 * target device). */
2522 | ((uint32_t) (chan & 1) << 15)
2523 /* Address the DAC channel within the device. */
2524 | (uint32_t) dacdata); /* Include DAC setpoint data. */
11e865c1
GP
2525
2526}
2527
b6c77757
BP
2528/* Private helper function: Transmit serial data to DAC via Audio
2529 * channel 2. Assumes: (1) TSL2 slot records initialized, and (2)
2530 * Dacpol contains valid target image.
2531 */
11e865c1 2532
e473e912 2533static void SendDAC(comedi_device *dev, uint32_t val)
11e865c1
GP
2534{
2535
b6c77757 2536 /* START THE SERIAL CLOCK RUNNING ------------- */
11e865c1 2537
b6c77757
BP
2538 /* Assert DAC polarity control and enable gating of DAC serial clock
2539 * and audio bit stream signals. At this point in time we must be
2540 * assured of being in time slot 0. If we are not in slot 0, the
2541 * serial clock and audio stream signals will be disabled; this is
2542 * because the following DEBIwrite statement (which enables signals
2543 * to be passed through the gate array) would execute before the
2544 * trailing edge of WS1/WS3 (which turns off the signals), thus
2545 * causing the signals to be inactive during the DAC write.
2546 */
11e865c1
GP
2547 DEBIwrite(dev, LP_DACPOL, devpriv->Dacpol);
2548
b6c77757 2549 /* TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- */
11e865c1 2550
b6c77757 2551 /* Copy DAC setpoint value to DAC's output DMA buffer. */
11e865c1 2552
b6c77757 2553 /* WR7146( (uint32_t)devpriv->pDacWBuf, val ); */
11e865c1
GP
2554 *devpriv->pDacWBuf = val;
2555
b6c77757
BP
2556 /* enab the output DMA transfer. This will cause the DMAC to copy
2557 * the DAC's data value to A2's output FIFO. The DMA transfer will
2558 * then immediately terminate because the protection address is
2559 * reached upon transfer of the first DWORD value.
2560 */
11e865c1
GP
2561 MC_ENABLE(P_MC1, MC1_A2OUT);
2562
b6c77757 2563 /* While the DMA transfer is executing ... */
11e865c1 2564
b6c77757
BP
2565 /* Reset Audio2 output FIFO's underflow flag (along with any other
2566 * FIFO underflow/overflow flags). When set, this flag will
2567 * indicate that we have emerged from slot 0.
2568 */
11e865c1
GP
2569 WR7146(P_ISR, ISR_AFOU);
2570
b6c77757
BP
2571 /* Wait for the DMA transfer to finish so that there will be data
2572 * available in the FIFO when time slot 1 tries to transfer a DWORD
2573 * from the FIFO to the output buffer register. We test for DMA
2574 * Done by polling the DMAC enable flag; this flag is automatically
2575 * cleared when the transfer has finished.
2576 */
11e865c1
GP
2577 while ((RR7146(P_MC1) & MC1_A2OUT) != 0) ;
2578
b6c77757 2579 /* START THE OUTPUT STREAM TO THE TARGET DAC -------------------- */
11e865c1 2580
b6c77757
BP
2581 /* FIFO data is now available, so we enable execution of time slots
2582 * 1 and higher by clearing the EOS flag in slot 0. Note that SD3
2583 * will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
2584 * detection.
2585 */
11e865c1
GP
2586 SETVECT(0, XSD2 | RSD3 | SIB_A2);
2587
b6c77757
BP
2588 /* Wait for slot 1 to execute to ensure that the Packet will be
2589 * transmitted. This is detected by polling the Audio2 output FIFO
2590 * underflow flag, which will be set when slot 1 execution has
2591 * finished transferring the DAC's data DWORD from the output FIFO
2592 * to the output buffer register.
2593 */
11e865c1
GP
2594 while ((RR7146(P_SSR) & SSR_AF2_OUT) == 0) ;
2595
b6c77757
BP
2596 /* Set up to trap execution at slot 0 when the TSL sequencer cycles
2597 * back to slot 0 after executing the EOS in slot 5. Also,
2598 * simultaneously shift out and in the 0x00 that is ALWAYS the value
2599 * stored in the last byte to be shifted out of the FIFO's DWORD
2600 * buffer register.
2601 */
11e865c1
GP
2602 SETVECT(0, XSD2 | XFIFO_2 | RSD2 | SIB_A2 | EOS);
2603
b6c77757
BP
2604 /* WAIT FOR THE TRANSACTION TO FINISH ----------------------- */
2605
2606 /* Wait for the TSL to finish executing all time slots before
2607 * exiting this function. We must do this so that the next DAC
2608 * write doesn't start, thereby enabling clock/chip select signals:
2609 *
2610 * 1. Before the TSL sequence cycles back to slot 0, which disables
2611 * the clock/cs signal gating and traps slot // list execution.
2612 * we have not yet finished slot 5 then the clock/cs signals are
2613 * still gated and we have not finished transmitting the stream.
2614 *
2615 * 2. While slots 2-5 are executing due to a late slot 0 trap. In
2616 * this case, the slot sequence is currently repeating, but with
2617 * clock/cs signals disabled. We must wait for slot 0 to trap
2618 * execution before setting up the next DAC setpoint DMA transfer
2619 * and enabling the clock/cs signals. To detect the end of slot 5,
2620 * we test for the FB_BUFFER2 MSB contents to be equal to 0xFF. If
2621 * the TSL has not yet finished executing slot 5 ...
2622 */
11e865c1 2623 if ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0) {
b6c77757
BP
2624 /* The trap was set on time and we are still executing somewhere
2625 * in slots 2-5, so we now wait for slot 0 to execute and trap
2626 * TSL execution. This is detected when FB_BUFFER2 MSB changes
2627 * from 0xFF to 0x00, which slot 0 causes to happen by shifting
2628 * out/in on SD2 the 0x00 that is always referenced by slot 5.
2629 */
2630 while ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0) ;
11e865c1 2631 }
b6c77757
BP
2632 /* Either (1) we were too late setting the slot 0 trap; the TSL
2633 * sequencer restarted slot 0 before we could set the EOS trap flag,
2634 * or (2) we were not late and execution is now trapped at slot 0.
2635 * In either case, we must now change slot 0 so that it will store
2636 * value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes.
2637 * In order to do this, we reprogram slot 0 so that it will shift in
2638 * SD3, which is driven only by a pull-up resistor.
2639 */
11e865c1
GP
2640 SETVECT(0, RSD3 | SIB_A2 | EOS);
2641
b6c77757
BP
2642 /* Wait for slot 0 to execute, at which time the TSL is setup for
2643 * the next DAC write. This is detected when FB_BUFFER2 MSB changes
2644 * from 0x00 to 0xFF.
2645 */
11e865c1
GP
2646 while ((RR7146(P_FB_BUFFER2) & 0xFF000000) == 0) ;
2647}
2648
e473e912 2649static void WriteMISC2(comedi_device *dev, uint16_t NewImage)
11e865c1 2650{
b6c77757
BP
2651 DEBIwrite(dev, LP_MISC1, MISC1_WENABLE); /* enab writes to */
2652 /* MISC2 register. */
2653 DEBIwrite(dev, LP_WRMISC2, NewImage); /* Write new image to MISC2. */
2654 DEBIwrite(dev, LP_MISC1, MISC1_WDISABLE); /* Disable writes to MISC2. */
11e865c1
GP
2655}
2656
b6c77757 2657/* Initialize the DEBI interface for all transfers. */
11e865c1 2658
e473e912 2659static uint16_t DEBIread(comedi_device *dev, uint16_t addr)
11e865c1
GP
2660{
2661 uint16_t retval;
2662
b6c77757 2663 /* Set up DEBI control register value in shadow RAM. */
11e865c1
GP
2664 WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr);
2665
b6c77757 2666 /* Execute the DEBI transfer. */
11e865c1
GP
2667 DEBItransfer(dev);
2668
b6c77757 2669 /* Fetch target register value. */
11e865c1
GP
2670 retval = (uint16_t) RR7146(P_DEBIAD);
2671
b6c77757 2672 /* Return register value. */
11e865c1
GP
2673 return retval;
2674}
2675
b6c77757
BP
2676/* Execute a DEBI transfer. This must be called from within a */
2677/* critical section. */
e473e912 2678static void DEBItransfer(comedi_device *dev)
11e865c1 2679{
b6c77757 2680 /* Initiate upload of shadow RAM to DEBI control register. */
11e865c1
GP
2681 MC_ENABLE(P_MC2, MC2_UPLD_DEBI);
2682
b6c77757
BP
2683 /* Wait for completion of upload from shadow RAM to DEBI control */
2684 /* register. */
11e865c1
GP
2685 while (!MC_TEST(P_MC2, MC2_UPLD_DEBI)) ;
2686
b6c77757 2687 /* Wait until DEBI transfer is done. */
11e865c1
GP
2688 while (RR7146(P_PSR) & PSR_DEBI_S) ;
2689}
2690
b6c77757 2691/* Write a value to a gate array register. */
e473e912 2692static void DEBIwrite(comedi_device *dev, uint16_t addr, uint16_t wdata)
11e865c1
GP
2693{
2694
b6c77757 2695 /* Set up DEBI control register value in shadow RAM. */
11e865c1
GP
2696 WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr);
2697 WR7146(P_DEBIAD, wdata);
2698
b6c77757 2699 /* Execute the DEBI transfer. */
11e865c1
GP
2700 DEBItransfer(dev);
2701}
2702
b6c77757
BP
2703/* Replace the specified bits in a gate array register. Imports: mask
2704 * specifies bits that are to be preserved, wdata is new value to be
2705 * or'd with the masked original.
2706 */
e473e912 2707static void DEBIreplace(comedi_device *dev, uint16_t addr, uint16_t mask,
11e865c1
GP
2708 uint16_t wdata)
2709{
2710
b6c77757
BP
2711 /* Copy target gate array register into P_DEBIAD register. */
2712 WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr);
2713 /* Set up DEBI control reg value in shadow RAM. */
2714 DEBItransfer(dev); /* Execute the DEBI Read transfer. */
11e865c1 2715
b6c77757
BP
2716 /* Write back the modified image. */
2717 WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr);
2718 /* Set up DEBI control reg value in shadow RAM. */
11e865c1 2719
b6c77757
BP
2720 WR7146(P_DEBIAD, wdata | ((uint16_t) RR7146(P_DEBIAD) & mask));
2721 /* Modify the register image. */
2722 DEBItransfer(dev); /* Execute the DEBI Write transfer. */
11e865c1
GP
2723}
2724
e473e912 2725static void CloseDMAB(comedi_device *dev, DMABUF *pdma, size_t bsize)
11e865c1
GP
2726{
2727 void *vbptr;
2728 dma_addr_t vpptr;
2729
2730 DEBUG("CloseDMAB: Entering S626DRV_CloseDMAB():\n");
2731 if (pdma == NULL)
2732 return;
b6c77757 2733 /* find the matching allocation from the board struct */
11e865c1
GP
2734
2735 vbptr = pdma->LogicalBase;
2736 vpptr = pdma->PhysicalBase;
2737 if (vbptr) {
2738 pci_free_consistent(devpriv->pdev, bsize, vbptr, vpptr);
2739 pdma->LogicalBase = 0;
2740 pdma->PhysicalBase = 0;
2741
2742 DEBUG("CloseDMAB(): Logical=%p, bsize=%d, Physical=0x%x\n",
2743 vbptr, bsize, (uint32_t) vpptr);
2744 }
2745}
2746
b6c77757
BP
2747/* ****** COUNTER FUNCTIONS ******* */
2748/* All counter functions address a specific counter by means of the
2749 * "Counter" argument, which is a logical counter number. The Counter
2750 * argument may have any of the following legal values: 0=0A, 1=1A,
2751 * 2=2A, 3=0B, 4=1B, 5=2B.
2752 */
11e865c1 2753
b6c77757 2754/* Forward declarations for functions that are common to both A and B counters: */
11e865c1 2755
b6c77757 2756/* ****** PRIVATE COUNTER FUNCTIONS ****** */
11e865c1 2757
b6c77757 2758/* Read a counter's output latch. */
11e865c1 2759
e473e912 2760static uint32_t ReadLatch(comedi_device *dev, enc_private *k)
11e865c1
GP
2761{
2762 register uint32_t value;
b6c77757 2763 /* DEBUG FIXME DEBUG("ReadLatch: Read Latch enter\n"); */
11e865c1 2764
b6c77757 2765 /* Latch counts and fetch LSW of latched counts value. */
11e865c1
GP
2766 value = (uint32_t) DEBIread(dev, k->MyLatchLsw);
2767
b6c77757 2768 /* Fetch MSW of latched counts and combine with LSW. */
11e865c1
GP
2769 value |= ((uint32_t) DEBIread(dev, k->MyLatchLsw + 2) << 16);
2770
b6c77757 2771 /* DEBUG FIXME DEBUG("ReadLatch: Read Latch exit\n"); */
11e865c1 2772
b6c77757 2773 /* Return latched counts. */
11e865c1
GP
2774 return value;
2775}
2776
b6c77757 2777/* Reset a counter's index and overflow event capture flags. */
11e865c1 2778
e473e912 2779static void ResetCapFlags_A(comedi_device *dev, enc_private *k)
11e865c1
GP
2780{
2781 DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
2782 CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A);
2783}
2784
e473e912 2785static void ResetCapFlags_B(comedi_device *dev, enc_private *k)
11e865c1
GP
2786{
2787 DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
2788 CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B);
2789}
2790
b6c77757
BP
2791/* Return counter setup in a format (COUNTER_SETUP) that is consistent */
2792/* for both A and B counters. */
11e865c1 2793
e473e912 2794static uint16_t GetMode_A(comedi_device *dev, enc_private *k)
11e865c1
GP
2795{
2796 register uint16_t cra;
2797 register uint16_t crb;
2798 register uint16_t setup;
2799
b6c77757 2800 /* Fetch CRA and CRB register images. */
11e865c1
GP
2801 cra = DEBIread(dev, k->MyCRA);
2802 crb = DEBIread(dev, k->MyCRB);
2803
b6c77757
BP
2804 /* Populate the standardized counter setup bit fields. Note: */
2805 /* IndexSrc is restricted to ENC_X or IndxPol. */
2806 setup = ((cra & STDMSK_LOADSRC) /* LoadSrc = LoadSrcA. */
2807 | ((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC) /* LatchSrc = LatchSrcA. */
2808 | ((cra << (STDBIT_INTSRC - CRABIT_INTSRC_A)) & STDMSK_INTSRC) /* IntSrc = IntSrcA. */
2809 | ((cra << (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1))) & STDMSK_INDXSRC) /* IndxSrc = IndxSrcA<1>. */
2810 | ((cra >> (CRABIT_INDXPOL_A - STDBIT_INDXPOL)) & STDMSK_INDXPOL) /* IndxPol = IndxPolA. */
2811 | ((crb >> (CRBBIT_CLKENAB_A - STDBIT_CLKENAB)) & STDMSK_CLKENAB)); /* ClkEnab = ClkEnabA. */
2812
2813 /* Adjust mode-dependent parameters. */
2814 if (cra & (2 << CRABIT_CLKSRC_A)) /* If Timer mode (ClkSrcA<1> == 1): */
2815 setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC) /* Indicate Timer mode. */
2816 | ((cra << (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) & STDMSK_CLKPOL) /* Set ClkPol to indicate count direction (ClkSrcA<0>). */
2817 | (MULT_X1 << STDBIT_CLKMULT)); /* ClkMult must be 1x in Timer mode. */
2818
2819 else /* If Counter mode (ClkSrcA<1> == 0): */
2820 setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC) /* Indicate Counter mode. */
2821 | ((cra >> (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) & STDMSK_CLKPOL) /* Pass through ClkPol. */
2822 | (((cra & CRAMSK_CLKMULT_A) == (MULT_X0 << CRABIT_CLKMULT_A)) ? /* Force ClkMult to 1x if not legal, else pass through. */
11e865c1
GP
2823 (MULT_X1 << STDBIT_CLKMULT) :
2824 ((cra >> (CRABIT_CLKMULT_A -
2825 STDBIT_CLKMULT)) &
2826 STDMSK_CLKMULT)));
2827
b6c77757 2828 /* Return adjusted counter setup. */
11e865c1
GP
2829 return setup;
2830}
2831
e473e912 2832static uint16_t GetMode_B(comedi_device *dev, enc_private *k)
11e865c1
GP
2833{
2834 register uint16_t cra;
2835 register uint16_t crb;
2836 register uint16_t setup;
2837
b6c77757 2838 /* Fetch CRA and CRB register images. */
11e865c1
GP
2839 cra = DEBIread(dev, k->MyCRA);
2840 crb = DEBIread(dev, k->MyCRB);
2841
b6c77757
BP
2842 /* Populate the standardized counter setup bit fields. Note: */
2843 /* IndexSrc is restricted to ENC_X or IndxPol. */
2844 setup = (((crb << (STDBIT_INTSRC - CRBBIT_INTSRC_B)) & STDMSK_INTSRC) /* IntSrc = IntSrcB. */
2845 | ((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC) /* LatchSrc = LatchSrcB. */
2846 | ((crb << (STDBIT_LOADSRC - CRBBIT_LOADSRC_B)) & STDMSK_LOADSRC) /* LoadSrc = LoadSrcB. */
2847 | ((crb << (STDBIT_INDXPOL - CRBBIT_INDXPOL_B)) & STDMSK_INDXPOL) /* IndxPol = IndxPolB. */
2848 | ((crb >> (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) & STDMSK_CLKENAB) /* ClkEnab = ClkEnabB. */
2849 | ((cra >> ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)) & STDMSK_INDXSRC)); /* IndxSrc = IndxSrcB<1>. */
2850
2851 /* Adjust mode-dependent parameters. */
2852 if ((crb & CRBMSK_CLKMULT_B) == (MULT_X0 << CRBBIT_CLKMULT_B)) /* If Extender mode (ClkMultB == MULT_X0): */
2853 setup |= ((CLKSRC_EXTENDER << STDBIT_CLKSRC) /* Indicate Extender mode. */
2854 | (MULT_X1 << STDBIT_CLKMULT) /* Indicate multiplier is 1x. */
2855 | ((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL)); /* Set ClkPol equal to Timer count direction (ClkSrcB<0>). */
2856
2857 else if (cra & (2 << CRABIT_CLKSRC_B)) /* If Timer mode (ClkSrcB<1> == 1): */
2858 setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC) /* Indicate Timer mode. */
2859 | (MULT_X1 << STDBIT_CLKMULT) /* Indicate multiplier is 1x. */
2860 | ((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL)); /* Set ClkPol equal to Timer count direction (ClkSrcB<0>). */
2861
2862 else /* If Counter mode (ClkSrcB<1> == 0): */
2863 setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC) /* Indicate Timer mode. */
2864 | ((crb >> (CRBBIT_CLKMULT_B - STDBIT_CLKMULT)) & STDMSK_CLKMULT) /* Clock multiplier is passed through. */
2865 | ((crb << (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) & STDMSK_CLKPOL)); /* Clock polarity is passed through. */
2866
2867 /* Return adjusted counter setup. */
11e865c1
GP
2868 return setup;
2869}
2870
b6c77757
BP
2871/*
2872 * Set the operating mode for the specified counter. The setup
2873 * parameter is treated as a COUNTER_SETUP data type. The following
2874 * parameters are programmable (all other parms are ignored): ClkMult,
2875 * ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc.
2876 */
11e865c1 2877
e473e912 2878static void SetMode_A(comedi_device *dev, enc_private *k, uint16_t Setup,
11e865c1
GP
2879 uint16_t DisableIntSrc)
2880{
2881 register uint16_t cra;
2882 register uint16_t crb;
b6c77757 2883 register uint16_t setup = Setup; /* Cache the Standard Setup. */
11e865c1 2884
b6c77757
BP
2885 /* Initialize CRA and CRB images. */
2886 cra = ((setup & CRAMSK_LOADSRC_A) /* Preload trigger is passed through. */
2887 | ((setup & STDMSK_INDXSRC) >> (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1)))); /* IndexSrc is restricted to ENC_X or IndxPol. */
11e865c1 2888
b6c77757
BP
2889 crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A /* Reset any pending CounterA event captures. */
2890 | ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_A - STDBIT_CLKENAB))); /* Clock enable is passed through. */
11e865c1 2891
b6c77757 2892 /* Force IntSrc to Disabled if DisableIntSrc is asserted. */
11e865c1
GP
2893 if (!DisableIntSrc)
2894 cra |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
2895 CRABIT_INTSRC_A));
2896
b6c77757 2897 /* Populate all mode-dependent attributes of CRA & CRB images. */
11e865c1 2898 switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
b6c77757
BP
2899 case CLKSRC_EXTENDER: /* Extender Mode: Force to Timer mode */
2900 /* (Extender valid only for B counters). */
2901
2902 case CLKSRC_TIMER: /* Timer Mode: */
2903 cra |= ((2 << CRABIT_CLKSRC_A) /* ClkSrcA<1> selects system clock */
2904 | ((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) /* with count direction (ClkSrcA<0>) obtained from ClkPol. */
2905 | (1 << CRABIT_CLKPOL_A) /* ClkPolA behaves as always-on clock enable. */
2906 | (MULT_X1 << CRABIT_CLKMULT_A)); /* ClkMult must be 1x. */
11e865c1
GP
2907 break;
2908
b6c77757
BP
2909 default: /* Counter Mode: */
2910 cra |= (CLKSRC_COUNTER /* Select ENC_C and ENC_D as clock/direction inputs. */
2911 | ((setup & STDMSK_CLKPOL) << (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) /* Clock polarity is passed through. */
2912 | (((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ? /* Force multiplier to x1 if not legal, otherwise pass through. */
11e865c1
GP
2913 (MULT_X1 << CRABIT_CLKMULT_A) :
2914 ((setup & STDMSK_CLKMULT) << (CRABIT_CLKMULT_A -
2915 STDBIT_CLKMULT))));
2916 }
2917
b6c77757
BP
2918 /* Force positive index polarity if IndxSrc is software-driven only, */
2919 /* otherwise pass it through. */
11e865c1
GP
2920 if (~setup & STDMSK_INDXSRC)
2921 cra |= ((setup & STDMSK_INDXPOL) << (CRABIT_INDXPOL_A -
2922 STDBIT_INDXPOL));
2923
b6c77757
BP
2924 /* If IntSrc has been forced to Disabled, update the MISC2 interrupt */
2925 /* enable mask to indicate the counter interrupt is disabled. */
11e865c1
GP
2926 if (DisableIntSrc)
2927 devpriv->CounterIntEnabs &= ~k->MyEventBits[3];
2928
b6c77757
BP
2929 /* While retaining CounterB and LatchSrc configurations, program the */
2930 /* new counter operating mode. */
11e865c1
GP
2931 DEBIreplace(dev, k->MyCRA, CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B, cra);
2932 DEBIreplace(dev, k->MyCRB,
2933 (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)), crb);
2934}
2935
e473e912 2936static void SetMode_B(comedi_device *dev, enc_private *k, uint16_t Setup,
11e865c1
GP
2937 uint16_t DisableIntSrc)
2938{
2939 register uint16_t cra;
2940 register uint16_t crb;
b6c77757 2941 register uint16_t setup = Setup; /* Cache the Standard Setup. */
11e865c1 2942
b6c77757
BP
2943 /* Initialize CRA and CRB images. */
2944 cra = ((setup & STDMSK_INDXSRC) << ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)); /* IndexSrc field is restricted to ENC_X or IndxPol. */
11e865c1 2945
b6c77757
BP
2946 crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B /* Reset event captures and disable interrupts. */
2947 | ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) /* Clock enable is passed through. */
2948 | ((setup & STDMSK_LOADSRC) >> (STDBIT_LOADSRC - CRBBIT_LOADSRC_B))); /* Preload trigger source is passed through. */
11e865c1 2949
b6c77757 2950 /* Force IntSrc to Disabled if DisableIntSrc is asserted. */
11e865c1
GP
2951 if (!DisableIntSrc)
2952 crb |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
2953 CRBBIT_INTSRC_B));
2954
b6c77757 2955 /* Populate all mode-dependent attributes of CRA & CRB images. */
11e865c1 2956 switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
b6c77757
BP
2957 case CLKSRC_TIMER: /* Timer Mode: */
2958 cra |= ((2 << CRABIT_CLKSRC_B) /* ClkSrcB<1> selects system clock */
2959 | ((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL))); /* with direction (ClkSrcB<0>) obtained from ClkPol. */
2960 crb |= ((1 << CRBBIT_CLKPOL_B) /* ClkPolB behaves as always-on clock enable. */
2961 | (MULT_X1 << CRBBIT_CLKMULT_B)); /* ClkMultB must be 1x. */
11e865c1
GP
2962 break;
2963
b6c77757
BP
2964 case CLKSRC_EXTENDER: /* Extender Mode: */
2965 cra |= ((2 << CRABIT_CLKSRC_B) /* ClkSrcB source is OverflowA (same as "timer") */
2966 | ((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL))); /* with direction obtained from ClkPol. */
2967 crb |= ((1 << CRBBIT_CLKPOL_B) /* ClkPolB controls IndexB -- always set to active. */
2968 | (MULT_X0 << CRBBIT_CLKMULT_B)); /* ClkMultB selects OverflowA as the clock source. */
11e865c1
GP
2969 break;
2970
b6c77757
BP
2971 default: /* Counter Mode: */
2972 cra |= (CLKSRC_COUNTER << CRABIT_CLKSRC_B); /* Select ENC_C and ENC_D as clock/direction inputs. */
2973 crb |= (((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) /* ClkPol is passed through. */
2974 | (((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ? /* Force ClkMult to x1 if not legal, otherwise pass through. */
11e865c1
GP
2975 (MULT_X1 << CRBBIT_CLKMULT_B) :
2976 ((setup & STDMSK_CLKMULT) << (CRBBIT_CLKMULT_B -
2977 STDBIT_CLKMULT))));
2978 }
2979
b6c77757
BP
2980 /* Force positive index polarity if IndxSrc is software-driven only, */
2981 /* otherwise pass it through. */
11e865c1
GP
2982 if (~setup & STDMSK_INDXSRC)
2983 crb |= ((setup & STDMSK_INDXPOL) >> (STDBIT_INDXPOL -
2984 CRBBIT_INDXPOL_B));
2985
b6c77757
BP
2986 /* If IntSrc has been forced to Disabled, update the MISC2 interrupt */
2987 /* enable mask to indicate the counter interrupt is disabled. */
11e865c1
GP
2988 if (DisableIntSrc)
2989 devpriv->CounterIntEnabs &= ~k->MyEventBits[3];
2990
b6c77757
BP
2991 /* While retaining CounterA and LatchSrc configurations, program the */
2992 /* new counter operating mode. */
11e865c1
GP
2993 DEBIreplace(dev, k->MyCRA,
2994 (uint16_t) (~(CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B)), cra);
2995 DEBIreplace(dev, k->MyCRB, CRBMSK_CLKENAB_A | CRBMSK_LATCHSRC, crb);
2996}
2997
b6c77757 2998/* Return/set a counter's enable. enab: 0=always enabled, 1=enabled by index. */
11e865c1 2999
e473e912 3000static void SetEnable_A(comedi_device *dev, enc_private *k, uint16_t enab)
11e865c1
GP
3001{
3002 DEBUG("SetEnable_A: SetEnable_A enter 3541\n");
3003 DEBIreplace(dev, k->MyCRB,
3004 (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)),
3005 (uint16_t) (enab << CRBBIT_CLKENAB_A));
3006}
3007
e473e912 3008static void SetEnable_B(comedi_device *dev, enc_private *k, uint16_t enab)
11e865c1
GP
3009{
3010 DEBIreplace(dev, k->MyCRB,
3011 (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_B)),
3012 (uint16_t) (enab << CRBBIT_CLKENAB_B));
3013}
3014
e473e912 3015static uint16_t GetEnable_A(comedi_device *dev, enc_private *k)
11e865c1
GP
3016{
3017 return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_A) & 1;
3018}
3019
e473e912 3020static uint16_t GetEnable_B(comedi_device *dev, enc_private *k)
11e865c1
GP
3021{
3022 return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_B) & 1;
3023}
3024
b6c77757
BP
3025/* Return/set a counter pair's latch trigger source. 0: On read
3026 * access, 1: A index latches A, 2: B index latches B, 3: A overflow
3027 * latches B.
3028 */
11e865c1 3029
e473e912 3030static void SetLatchSource(comedi_device *dev, enc_private *k, uint16_t value)
11e865c1
GP
3031{
3032 DEBUG("SetLatchSource: SetLatchSource enter 3550 \n");
3033 DEBIreplace(dev, k->MyCRB,
3034 (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_LATCHSRC)),
3035 (uint16_t) (value << CRBBIT_LATCHSRC));
3036
3037 DEBUG("SetLatchSource: SetLatchSource exit \n");
3038}
3039
b6c77757
BP
3040/*
3041 * static uint16_t GetLatchSource(comedi_device *dev, enc_private *k )
3042 * {
3043 * return ( DEBIread( dev, k->MyCRB) >> CRBBIT_LATCHSRC ) & 3;
3044 * }
3045 */
11e865c1 3046
b6c77757
BP
3047/*
3048 * Return/set the event that will trigger transfer of the preload
3049 * register into the counter. 0=ThisCntr_Index, 1=ThisCntr_Overflow,
3050 * 2=OverflowA (B counters only), 3=disabled.
3051 */
11e865c1 3052
e473e912 3053static void SetLoadTrig_A(comedi_device *dev, enc_private *k, uint16_t Trig)
11e865c1
GP
3054{
3055 DEBIreplace(dev, k->MyCRA, (uint16_t) (~CRAMSK_LOADSRC_A),
3056 (uint16_t) (Trig << CRABIT_LOADSRC_A));
3057}
3058
e473e912 3059static void SetLoadTrig_B(comedi_device *dev, enc_private *k, uint16_t Trig)
11e865c1
GP
3060{
3061 DEBIreplace(dev, k->MyCRB,
3062 (uint16_t) (~(CRBMSK_LOADSRC_B | CRBMSK_INTCTRL)),
3063 (uint16_t) (Trig << CRBBIT_LOADSRC_B));
3064}
3065
e473e912 3066static uint16_t GetLoadTrig_A(comedi_device *dev, enc_private *k)
11e865c1
GP
3067{
3068 return (DEBIread(dev, k->MyCRA) >> CRABIT_LOADSRC_A) & 3;
3069}
3070
e473e912 3071static uint16_t GetLoadTrig_B(comedi_device *dev, enc_private *k)
11e865c1
GP
3072{
3073 return (DEBIread(dev, k->MyCRB) >> CRBBIT_LOADSRC_B) & 3;
3074}
3075
b6c77757
BP
3076/* Return/set counter interrupt source and clear any captured
3077 * index/overflow events. IntSource: 0=Disabled, 1=OverflowOnly,
3078 * 2=IndexOnly, 3=IndexAndOverflow.
3079 */
11e865c1 3080
e473e912 3081static void SetIntSrc_A(comedi_device *dev, enc_private *k,
11e865c1
GP
3082 uint16_t IntSource)
3083{
b6c77757 3084 /* Reset any pending counter overflow or index captures. */
11e865c1
GP
3085 DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
3086 CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A);
3087
b6c77757 3088 /* Program counter interrupt source. */
11e865c1
GP
3089 DEBIreplace(dev, k->MyCRA, ~CRAMSK_INTSRC_A,
3090 (uint16_t) (IntSource << CRABIT_INTSRC_A));
3091
b6c77757 3092 /* Update MISC2 interrupt enable mask. */
11e865c1
GP
3093 devpriv->CounterIntEnabs =
3094 (devpriv->CounterIntEnabs & ~k->MyEventBits[3]) | k->
3095 MyEventBits[IntSource];
3096}
3097
e473e912 3098static void SetIntSrc_B(comedi_device *dev, enc_private *k,
11e865c1
GP
3099 uint16_t IntSource)
3100{
3101 uint16_t crb;
3102
b6c77757 3103 /* Cache writeable CRB register image. */
11e865c1
GP
3104 crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL;
3105
b6c77757 3106 /* Reset any pending counter overflow or index captures. */
11e865c1
GP
3107 DEBIwrite(dev, k->MyCRB,
3108 (uint16_t) (crb | CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B));
3109
b6c77757 3110 /* Program counter interrupt source. */
11e865c1
GP
3111 DEBIwrite(dev, k->MyCRB,
3112 (uint16_t) ((crb & ~CRBMSK_INTSRC_B) | (IntSource <<
3113 CRBBIT_INTSRC_B)));
3114
b6c77757 3115 /* Update MISC2 interrupt enable mask. */
11e865c1
GP
3116 devpriv->CounterIntEnabs =
3117 (devpriv->CounterIntEnabs & ~k->MyEventBits[3]) | k->
3118 MyEventBits[IntSource];
3119}
3120
e473e912 3121static uint16_t GetIntSrc_A(comedi_device *dev, enc_private *k)
11e865c1
GP
3122{
3123 return (DEBIread(dev, k->MyCRA) >> CRABIT_INTSRC_A) & 3;
3124}
3125
e473e912 3126static uint16_t GetIntSrc_B(comedi_device *dev, enc_private *k)
11e865c1
GP
3127{
3128 return (DEBIread(dev, k->MyCRB) >> CRBBIT_INTSRC_B) & 3;
3129}
3130
b6c77757 3131/* Return/set the clock multiplier. */
11e865c1
GP
3132
3133/* static void SetClkMult(comedi_device *dev, enc_private *k, uint16_t value ) */
3134/* { */
3135/* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKMULT ) | ( value << STDBIT_CLKMULT ) ), FALSE ); */
3136/* } */
3137
3138/* static uint16_t GetClkMult(comedi_device *dev, enc_private *k ) */
3139/* { */
3140/* return ( k->GetMode(dev, k ) >> STDBIT_CLKMULT ) & 3; */
3141/* } */
3142
b6c77757 3143/* Return/set the clock polarity. */
11e865c1
GP
3144
3145/* static void SetClkPol( comedi_device *dev,enc_private *k, uint16_t value ) */
3146/* { */
3147/* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKPOL ) | ( value << STDBIT_CLKPOL ) ), FALSE ); */
3148/* } */
3149
3150/* static uint16_t GetClkPol(comedi_device *dev, enc_private *k ) */
3151/* { */
3152/* return ( k->GetMode(dev, k ) >> STDBIT_CLKPOL ) & 1; */
3153/* } */
3154
b6c77757 3155/* Return/set the clock source. */
11e865c1
GP
3156
3157/* static void SetClkSrc( comedi_device *dev,enc_private *k, uint16_t value ) */
3158/* { */
3159/* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKSRC ) | ( value << STDBIT_CLKSRC ) ), FALSE ); */
3160/* } */
3161
3162/* static uint16_t GetClkSrc( comedi_device *dev,enc_private *k ) */
3163/* { */
3164/* return ( k->GetMode(dev, k ) >> STDBIT_CLKSRC ) & 3; */
3165/* } */
3166
b6c77757 3167/* Return/set the index polarity. */
11e865c1
GP
3168
3169/* static void SetIndexPol(comedi_device *dev, enc_private *k, uint16_t value ) */
3170/* { */
3171/* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXPOL ) | ( (value != 0) << STDBIT_INDXPOL ) ), FALSE ); */
3172/* } */
3173
3174/* static uint16_t GetIndexPol(comedi_device *dev, enc_private *k ) */
3175/* { */
3176/* return ( k->GetMode(dev, k ) >> STDBIT_INDXPOL ) & 1; */
3177/* } */
3178
b6c77757 3179/* Return/set the index source. */
11e865c1
GP
3180
3181/* static void SetIndexSrc(comedi_device *dev, enc_private *k, uint16_t value ) */
3182/* { */
3183/* DEBUG("SetIndexSrc: set index src enter 3700\n"); */
3184/* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXSRC ) | ( (value != 0) << STDBIT_INDXSRC ) ), FALSE ); */
3185/* } */
3186
3187/* static uint16_t GetIndexSrc(comedi_device *dev, enc_private *k ) */
3188/* { */
3189/* return ( k->GetMode(dev, k ) >> STDBIT_INDXSRC ) & 1; */
3190/* } */
3191
b6c77757 3192/* Generate an index pulse. */
11e865c1 3193
e473e912 3194static void PulseIndex_A(comedi_device *dev, enc_private *k)
11e865c1
GP
3195{
3196 register uint16_t cra;
3197
3198 DEBUG("PulseIndex_A: pulse index enter\n");
3199
b6c77757 3200 cra = DEBIread(dev, k->MyCRA); /* Pulse index. */
11e865c1
GP
3201 DEBIwrite(dev, k->MyCRA, (uint16_t) (cra ^ CRAMSK_INDXPOL_A));
3202 DEBUG("PulseIndex_A: pulse index step1\n");
3203 DEBIwrite(dev, k->MyCRA, cra);
3204}
3205
e473e912 3206static void PulseIndex_B(comedi_device *dev, enc_private *k)
11e865c1
GP
3207{
3208 register uint16_t crb;
3209
b6c77757 3210 crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL; /* Pulse index. */
11e865c1
GP
3211 DEBIwrite(dev, k->MyCRB, (uint16_t) (crb ^ CRBMSK_INDXPOL_B));
3212 DEBIwrite(dev, k->MyCRB, crb);
3213}
3214
b6c77757 3215/* Write value into counter preload register. */
11e865c1 3216
e473e912 3217static void Preload(comedi_device *dev, enc_private *k, uint32_t value)
11e865c1
GP
3218{
3219 DEBUG("Preload: preload enter\n");
b6c77757 3220 DEBIwrite(dev, (uint16_t) (k->MyLatchLsw), (uint16_t) value); /* Write value to preload register. */
11e865c1
GP
3221 DEBUG("Preload: preload step 1\n");
3222 DEBIwrite(dev, (uint16_t) (k->MyLatchLsw + 2),
3223 (uint16_t) (value >> 16));
3224}
3225
e473e912 3226static void CountersInit(comedi_device *dev)
11e865c1
GP
3227{
3228 int chan;
3229 enc_private *k;
b6c77757
BP
3230 uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | /* Preload upon */
3231 /* index. */
3232 (INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */
3233 (CLKSRC_COUNTER << BF_CLKSRC) | /* Operating mode is counter. */
3234 (CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */
3235 (CNTDIR_UP << BF_CLKPOL) | /* Count direction is up. */
3236 (CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */
3237 (CLKENAB_INDEX << BF_CLKENAB); /* Enabled by index */
3238
3239 /* Disable all counter interrupts and clear any captured counter events. */
11e865c1
GP
3240 for (chan = 0; chan < S626_ENCODER_CHANNELS; chan++) {
3241 k = &encpriv[chan];
3242 k->SetMode(dev, k, Setup, TRUE);
3243 k->SetIntSrc(dev, k, 0);
3244 k->ResetCapFlags(dev, k);
3245 k->SetEnable(dev, k, CLKENAB_ALWAYS);
3246 }
3247 DEBUG("CountersInit: counters initialized \n");
3248
3249}
This page took 0.216447 seconds and 5 git commands to generate.