staging: et131x: Remove et131x_send_packets() function
[deliverable/linux.git] / drivers / staging / et131x / et131x.c
CommitLineData
26ef1021 1/* Agere Systems Inc.
d2796743
ME
2 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
3 *
4 * Copyright © 2005 Agere Systems Inc.
5 * All rights reserved.
6 * http://www.agere.com
7 *
8 * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
9 *
10 *------------------------------------------------------------------------------
11 *
12 * SOFTWARE LICENSE
13 *
14 * This software is provided subject to the following terms and conditions,
15 * which you should read carefully before using the software. Using this
16 * software indicates your acceptance of these terms and conditions. If you do
17 * not agree with these terms and conditions, do not use the software.
18 *
19 * Copyright © 2005 Agere Systems Inc.
20 * All rights reserved.
21 *
22 * Redistribution and use in source or binary forms, with or without
23 * modifications, are permitted provided that the following conditions are met:
24 *
25 * . Redistributions of source code must retain the above copyright notice, this
26 * list of conditions and the following Disclaimer as comments in the code as
27 * well as in the documentation and/or other materials provided with the
28 * distribution.
29 *
30 * . Redistributions in binary form must reproduce the above copyright notice,
31 * this list of conditions and the following Disclaimer in the documentation
32 * and/or other materials provided with the distribution.
33 *
34 * . Neither the name of Agere Systems Inc. nor the names of the contributors
35 * may be used to endorse or promote products derived from this software
36 * without specific prior written permission.
37 *
38 * Disclaimer
39 *
40 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
41 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
42 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
43 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
44 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
45 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
46 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
48 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
50 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
51 * DAMAGE.
d2796743
ME
52 */
53
e58b89da
TY
54#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
55
d2796743 56#include <linux/pci.h>
d2796743
ME
57#include <linux/module.h>
58#include <linux/types.h>
59#include <linux/kernel.h>
60
61#include <linux/sched.h>
62#include <linux/ptrace.h>
63#include <linux/slab.h>
64#include <linux/ctype.h>
65#include <linux/string.h>
66#include <linux/timer.h>
67#include <linux/interrupt.h>
68#include <linux/in.h>
69#include <linux/delay.h>
70#include <linux/bitops.h>
71#include <linux/io.h>
d2796743
ME
72
73#include <linux/netdevice.h>
74#include <linux/etherdevice.h>
75#include <linux/skbuff.h>
76#include <linux/if_arp.h>
77#include <linux/ioport.h>
78#include <linux/crc32.h>
79#include <linux/random.h>
80#include <linux/phy.h>
81
d2796743
ME
82#include "et131x.h"
83
84MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
85MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
86MODULE_LICENSE("Dual BSD/GPL");
397d3e60 87MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver for the ET1310 by Agere Systems");
d2796743 88
bd156af6
ME
89/* EEPROM defines */
90#define MAX_NUM_REGISTER_POLLS 1000
91#define MAX_NUM_WRITE_RETRIES 2
92
93/* MAC defines */
94#define COUNTER_WRAP_16_BIT 0x10000
95#define COUNTER_WRAP_12_BIT 0x1000
96
97/* PCI defines */
98#define INTERNAL_MEM_SIZE 0x400 /* 1024 of internal memory */
99#define INTERNAL_MEM_RX_OFFSET 0x1FF /* 50% Tx, 50% Rx */
100
101/* ISR defines */
26ef1021 102/* For interrupts, normal running is:
bd156af6
ME
103 * rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
104 * watchdog_interrupt & txdma_xfer_done
105 *
106 * In both cases, when flow control is enabled for either Tx or bi-direction,
107 * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
108 * buffer rings are running low.
109 */
110#define INT_MASK_DISABLE 0xffffffff
111
112/* NOTE: Masking out MAC_STAT Interrupt for now...
113 * #define INT_MASK_ENABLE 0xfff6bf17
114 * #define INT_MASK_ENABLE_NO_FLOW 0xfff6bfd7
115 */
116#define INT_MASK_ENABLE 0xfffebf17
117#define INT_MASK_ENABLE_NO_FLOW 0xfffebfd7
118
1c1c1b5f
ME
119/* General defines */
120/* Packet and header sizes */
121#define NIC_MIN_PACKET_SIZE 60
122
123/* Multicast list size */
124#define NIC_MAX_MCAST_LIST 128
125
126/* Supported Filters */
127#define ET131X_PACKET_TYPE_DIRECTED 0x0001
128#define ET131X_PACKET_TYPE_MULTICAST 0x0002
129#define ET131X_PACKET_TYPE_BROADCAST 0x0004
130#define ET131X_PACKET_TYPE_PROMISCUOUS 0x0008
131#define ET131X_PACKET_TYPE_ALL_MULTICAST 0x0010
132
133/* Tx Timeout */
134#define ET131X_TX_TIMEOUT (1 * HZ)
135#define NIC_SEND_HANG_THRESHOLD 0
136
137/* MP_TCB flags */
c655dee9
ME
138#define FMP_DEST_MULTI 0x00000001
139#define FMP_DEST_BROAD 0x00000002
1c1c1b5f
ME
140
141/* MP_ADAPTER flags */
c655dee9 142#define FMP_ADAPTER_INTERRUPT_IN_USE 0x00000008
1c1c1b5f
ME
143
144/* MP_SHARED flags */
c655dee9 145#define FMP_ADAPTER_LOWER_POWER 0x00200000
1c1c1b5f 146
c655dee9
ME
147#define FMP_ADAPTER_NON_RECOVER_ERROR 0x00800000
148#define FMP_ADAPTER_HARDWARE_ERROR 0x04000000
1c1c1b5f 149
c655dee9 150#define FMP_ADAPTER_FAIL_SEND_MASK 0x3ff00000
1c1c1b5f
ME
151
152/* Some offsets in PCI config space that are actually used. */
1c1c1b5f
ME
153#define ET1310_PCI_MAC_ADDRESS 0xA4
154#define ET1310_PCI_EEPROM_STATUS 0xB2
155#define ET1310_PCI_ACK_NACK 0xC0
156#define ET1310_PCI_REPLAY 0xC2
157#define ET1310_PCI_L0L1LATENCY 0xCF
158
26d19bf6 159/* PCI Product IDs */
1c1c1b5f
ME
160#define ET131X_PCI_DEVICE_ID_GIG 0xED00 /* ET1310 1000 Base-T 8 */
161#define ET131X_PCI_DEVICE_ID_FAST 0xED01 /* ET1310 100 Base-T */
162
163/* Define order of magnitude converter */
164#define NANO_IN_A_MICRO 1000
165
166#define PARM_RX_NUM_BUFS_DEF 4
167#define PARM_RX_TIME_INT_DEF 10
168#define PARM_RX_MEM_END_DEF 0x2bc
169#define PARM_TX_TIME_INT_DEF 40
170#define PARM_TX_NUM_BUFS_DEF 4
171#define PARM_DMA_CACHE_DEF 0
172
562550b0 173/* RX defines */
788ca84a
ME
174#define FBR_CHUNKS 32
175#define MAX_DESC_PER_RING_RX 1024
562550b0
ME
176
177/* number of RFDs - default and min */
562550b0 178#define RFD_LOW_WATER_MARK 40
562550b0 179#define NIC_DEFAULT_NUM_RFD 1024
6abafc16 180#define NUM_FBRS 2
562550b0 181
b60e6d0a 182#define MAX_PACKETS_HANDLED 256
562550b0 183
562550b0
ME
184#define ALCATEL_MULTICAST_PKT 0x01000000
185#define ALCATEL_BROADCAST_PKT 0x02000000
186
187/* typedefs for Free Buffer Descriptors */
188struct fbr_desc {
189 u32 addr_lo;
190 u32 addr_hi;
191 u32 word2; /* Bits 10-31 reserved, 0-9 descriptor */
192};
193
194/* Packet Status Ring Descriptors
195 *
196 * Word 0:
197 *
198 * top 16 bits are from the Alcatel Status Word as enumerated in
199 * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
200 *
201 * 0: hp hash pass
202 * 1: ipa IP checksum assist
203 * 2: ipp IP checksum pass
204 * 3: tcpa TCP checksum assist
205 * 4: tcpp TCP checksum pass
206 * 5: wol WOL Event
207 * 6: rxmac_error RXMAC Error Indicator
208 * 7: drop Drop packet
209 * 8: ft Frame Truncated
210 * 9: jp Jumbo Packet
211 * 10: vp VLAN Packet
212 * 11-15: unused
213 * 16: asw_prev_pkt_dropped e.g. IFG too small on previous
214 * 17: asw_RX_DV_event short receive event detected
215 * 18: asw_false_carrier_event bad carrier since last good packet
216 * 19: asw_code_err one or more nibbles signalled as errors
217 * 20: asw_CRC_err CRC error
218 * 21: asw_len_chk_err frame length field incorrect
219 * 22: asw_too_long frame length > 1518 bytes
220 * 23: asw_OK valid CRC + no code error
221 * 24: asw_multicast has a multicast address
222 * 25: asw_broadcast has a broadcast address
223 * 26: asw_dribble_nibble spurious bits after EOP
224 * 27: asw_control_frame is a control frame
225 * 28: asw_pause_frame is a pause frame
226 * 29: asw_unsupported_op unsupported OP code
227 * 30: asw_VLAN_tag VLAN tag detected
228 * 31: asw_long_evt Rx long event
229 *
230 * Word 1:
231 * 0-15: length length in bytes
232 * 16-25: bi Buffer Index
233 * 26-27: ri Ring Index
234 * 28-31: reserved
235 */
236
237struct pkt_stat_desc {
238 u32 word0;
239 u32 word1;
240};
241
242/* Typedefs for the RX DMA status word */
243
26ef1021 244/* rx status word 0 holds part of the status bits of the Rx DMA engine
562550b0
ME
245 * that get copied out to memory by the ET-1310. Word 0 is a 32 bit word
246 * which contains the Free Buffer ring 0 and 1 available offset.
247 *
248 * bit 0-9 FBR1 offset
249 * bit 10 Wrap flag for FBR1
250 * bit 16-25 FBR0 offset
251 * bit 26 Wrap flag for FBR0
252 */
253
26ef1021 254/* RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
562550b0
ME
255 * that get copied out to memory by the ET-1310. Word 3 is a 32 bit word
256 * which contains the Packet Status Ring available offset.
257 *
258 * bit 0-15 reserved
259 * bit 16-27 PSRoffset
260 * bit 28 PSRwrap
261 * bit 29-31 unused
262 */
263
26ef1021 264/* struct rx_status_block is a structure representing the status of the Rx
562550b0
ME
265 * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
266 */
267struct rx_status_block {
268 u32 word0;
269 u32 word1;
270};
271
26ef1021 272/* Structure for look-up table holding free buffer ring pointers, addresses
6abafc16 273 * and state.
562550b0
ME
274 */
275struct fbr_lookup {
6abafc16 276 void *virt[MAX_DESC_PER_RING_RX];
6abafc16
ME
277 u32 bus_high[MAX_DESC_PER_RING_RX];
278 u32 bus_low[MAX_DESC_PER_RING_RX];
279 void *ring_virtaddr;
280 dma_addr_t ring_physaddr;
281 void *mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
282 dma_addr_t mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
6abafc16
ME
283 u32 local_full;
284 u32 num_entries;
983e4b35 285 dma_addr_t buffsize;
562550b0
ME
286};
287
868bf442 288/* struct rx_ring is the structure representing the adaptor's local
562550b0
ME
289 * reference(s) to the rings
290 */
291struct rx_ring {
6abafc16 292 struct fbr_lookup *fbr[NUM_FBRS];
562550b0
ME
293 void *ps_ring_virtaddr;
294 dma_addr_t ps_ring_physaddr;
295 u32 local_psr_full;
296 u32 psr_num_entries;
297
298 struct rx_status_block *rx_status_block;
299 dma_addr_t rx_status_bus;
300
562550b0
ME
301 /* RECV */
302 struct list_head recv_list;
303 u32 num_ready_recv;
304
305 u32 num_rfd;
306
307 bool unfinished_receives;
562550b0
ME
308};
309
17ec9ff3 310/* TX defines */
26ef1021 311/* word 2 of the control bits in the Tx Descriptor ring for the ET-1310
17ec9ff3
ME
312 *
313 * 0-15: length of packet
314 * 16-27: VLAN tag
315 * 28: VLAN CFI
316 * 29-31: VLAN priority
317 *
318 * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
319 *
320 * 0: last packet in the sequence
321 * 1: first packet in the sequence
322 * 2: interrupt the processor when this pkt sent
323 * 3: Control word - no packet data
324 * 4: Issue half-duplex backpressure : XON/XOFF
325 * 5: send pause frame
326 * 6: Tx frame has error
327 * 7: append CRC
328 * 8: MAC override
329 * 9: pad packet
330 * 10: Packet is a Huge packet
331 * 11: append VLAN tag
332 * 12: IP checksum assist
333 * 13: TCP checksum assist
334 * 14: UDP checksum assist
335 */
336
a129be84
ME
337#define TXDESC_FLAG_LASTPKT 0x0001
338#define TXDESC_FLAG_FIRSTPKT 0x0002
339#define TXDESC_FLAG_INTPROC 0x0004
340
17ec9ff3
ME
341/* struct tx_desc represents each descriptor on the ring */
342struct tx_desc {
343 u32 addr_hi;
344 u32 addr_lo;
345 u32 len_vlan; /* control words how to xmit the */
346 u32 flags; /* data (detailed above) */
347};
348
26ef1021 349/* The status of the Tx DMA engine it sits in free memory, and is pointed to
17ec9ff3
ME
350 * by 0x101c / 0x1020. This is a DMA10 type
351 */
352
353/* TCB (Transmit Control Block: Host Side) */
354struct tcb {
355 struct tcb *next; /* Next entry in ring */
356 u32 flags; /* Our flags for the packet */
357 u32 count; /* Used to spot stuck/lost packets */
358 u32 stale; /* Used to spot stuck/lost packets */
359 struct sk_buff *skb; /* Network skb we are tied to */
360 u32 index; /* Ring indexes */
361 u32 index_start;
362};
363
364/* Structure representing our local reference(s) to the ring */
365struct tx_ring {
366 /* TCB (Transmit Control Block) memory and lists */
367 struct tcb *tcb_ring;
368
369 /* List of TCBs that are ready to be used */
370 struct tcb *tcb_qhead;
371 struct tcb *tcb_qtail;
372
373 /* list of TCBs that are currently being sent. NOTE that access to all
374 * three of these (including used) are controlled via the
375 * TCBSendQLock. This lock should be secured prior to incementing /
376 * decrementing used, or any queue manipulation on send_head /
377 * tail
378 */
379 struct tcb *send_head;
380 struct tcb *send_tail;
381 int used;
382
383 /* The actual descriptor ring */
384 struct tx_desc *tx_desc_ring;
385 dma_addr_t tx_desc_ring_pa;
386
387 /* send_idx indicates where we last wrote to in the descriptor ring. */
388 u32 send_idx;
389
390 /* The location of the write-back status block */
391 u32 *tx_status;
392 dma_addr_t tx_status_pa;
393
394 /* Packets since the last IRQ: used for interrupt coalescing */
395 int since_irq;
396};
397
26ef1021 398/* Do not change these values: if changed, then change also in respective
fd0651a6
ME
399 * TXdma and Rxdma engines
400 */
401#define NUM_DESC_PER_RING_TX 512 /* TX Do not change these values */
402#define NUM_TCB 64
403
26ef1021 404/* These values are all superseded by registry entries to facilitate tuning.
fd0651a6
ME
405 * Once the desired performance has been achieved, the optimal registry values
406 * should be re-populated to these #defines:
407 */
fd0651a6
ME
408#define TX_ERROR_PERIOD 1000
409
410#define LO_MARK_PERCENT_FOR_PSR 15
411#define LO_MARK_PERCENT_FOR_RX 15
412
413/* RFD (Receive Frame Descriptor) */
414struct rfd {
415 struct list_head list_node;
416 struct sk_buff *skb;
417 u32 len; /* total size of receive frame */
418 u16 bufferindex;
419 u8 ringindex;
420};
421
422/* Flow Control */
423#define FLOW_BOTH 0
424#define FLOW_TXONLY 1
425#define FLOW_RXONLY 2
426#define FLOW_NONE 3
427
428/* Struct to define some device statistics */
429struct ce_stats {
430 /* MIB II variables
431 *
432 * NOTE: atomic_t types are only guaranteed to store 24-bits; if we
433 * MUST have 32, then we'll need another way to perform atomic
434 * operations
435 */
436 u32 unicast_pkts_rcvd;
437 atomic_t unicast_pkts_xmtd;
438 u32 multicast_pkts_rcvd;
439 atomic_t multicast_pkts_xmtd;
440 u32 broadcast_pkts_rcvd;
441 atomic_t broadcast_pkts_xmtd;
442 u32 rcvd_pkts_dropped;
443
444 /* Tx Statistics. */
445 u32 tx_underflows;
446
447 u32 tx_collisions;
448 u32 tx_excessive_collisions;
449 u32 tx_first_collisions;
450 u32 tx_late_collisions;
451 u32 tx_max_pkt_errs;
452 u32 tx_deferred;
453
454 /* Rx Statistics. */
455 u32 rx_overflows;
456
457 u32 rx_length_errs;
458 u32 rx_align_errs;
459 u32 rx_crc_errs;
460 u32 rx_code_violations;
461 u32 rx_other_errs;
462
463 u32 synchronous_iterations;
464 u32 interrupt_status;
465};
466
467/* The private adapter structure */
468struct et131x_adapter {
469 struct net_device *netdev;
470 struct pci_dev *pdev;
471 struct mii_bus *mii_bus;
472 struct phy_device *phydev;
c2ebf58b 473 struct napi_struct napi;
fd0651a6
ME
474
475 /* Flags that indicate current state of the adapter */
476 u32 flags;
477
478 /* local link state, to determine if a state change has occurred */
479 int link;
480
481 /* Configuration */
482 u8 rom_addr[ETH_ALEN];
483 u8 addr[ETH_ALEN];
484 bool has_eeprom;
485 u8 eeprom_data[2];
486
487 /* Spinlocks */
fd0651a6
ME
488 spinlock_t tcb_send_qlock;
489 spinlock_t tcb_ready_qlock;
490 spinlock_t send_hw_lock;
491
492 spinlock_t rcv_lock;
fd0651a6 493
fd0651a6
ME
494 /* Packet Filter and look ahead size */
495 u32 packet_filter;
496
497 /* multicast list */
498 u32 multicast_addr_count;
499 u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN];
500
501 /* Pointer to the device's PCI register space */
502 struct address_map __iomem *regs;
503
504 /* Registry parameters */
505 u8 wanted_flow; /* Flow we want for 802.3x flow control */
506 u32 registry_jumbo_packet; /* Max supported ethernet packet size */
507
508 /* Derived from the registry: */
509 u8 flowcontrol; /* flow control validated by the far-end */
510
511 /* Minimize init-time */
512 struct timer_list error_timer;
513
514 /* variable putting the phy into coma mode when boot up with no cable
515 * plugged in after 5 seconds
516 */
517 u8 boot_coma;
518
519 /* Next two used to save power information at power down. This
520 * information will be used during power up to set up parts of Power
521 * Management in JAGCore
522 */
523 u16 pdown_speed;
524 u8 pdown_duplex;
525
526 /* Tx Memory Variables */
527 struct tx_ring tx_ring;
528
529 /* Rx Memory Variables */
530 struct rx_ring rx_ring;
531
532 /* Stats */
533 struct ce_stats stats;
fd0651a6
ME
534};
535
d2796743
ME
536static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status)
537{
538 u32 reg;
539 int i;
540
26ef1021 541 /* 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
d2796743
ME
542 * bits 7,1:0 both equal to 1, at least once after reset.
543 * Subsequent operations need only to check that bits 1:0 are equal
544 * to 1 prior to starting a single byte read/write
545 */
546
547 for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) {
548 /* Read registers grouped in DWORD1 */
549 if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, &reg))
550 return -EIO;
551
552 /* I2C idle and Phy Queue Avail both true */
553 if ((reg & 0x3000) == 0x3000) {
554 if (status)
555 *status = reg;
556 return reg & 0xFF;
557 }
558 }
559 return -ETIMEDOUT;
560}
561
26ef1021 562/* eeprom_write - Write a byte to the ET1310's EEPROM
d2796743
ME
563 * @adapter: pointer to our private adapter structure
564 * @addr: the address to write
565 * @data: the value to write
566 *
567 * Returns 1 for a successful write.
568 */
569static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data)
570{
571 struct pci_dev *pdev = adapter->pdev;
572 int index = 0;
573 int retries;
574 int err = 0;
d2796743
ME
575 int writeok = 0;
576 u32 status;
577 u32 val = 0;
578
26ef1021 579 /* For an EEPROM, an I2C single byte write is defined as a START
d2796743
ME
580 * condition followed by the device address, EEPROM address, one byte
581 * of data and a STOP condition. The STOP condition will trigger the
582 * EEPROM's internally timed write cycle to the nonvolatile memory.
583 * All inputs are disabled during this write cycle and the EEPROM will
584 * not respond to any access until the internal write is complete.
585 */
586
587 err = eeprom_wait_ready(pdev, NULL);
8dd4a966 588 if (err < 0)
d2796743
ME
589 return err;
590
26ef1021
ME
591 /* 2. Write to the LBCIF Control Register: bit 7=1, bit 6=1, bit 3=0,
592 * and bits 1:0 both =0. Bit 5 should be set according to the
593 * type of EEPROM being accessed (1=two byte addressing, 0=one
594 * byte addressing).
595 */
d2796743 596 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
096e6224
ME
597 LBCIF_CONTROL_LBCIF_ENABLE |
598 LBCIF_CONTROL_I2C_WRITE))
d2796743
ME
599 return -EIO;
600
d2796743 601 /* Prepare EEPROM address for Step 3 */
d2796743
ME
602 for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
603 /* Write the address to the LBCIF Address Register */
604 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
605 break;
26ef1021 606 /* Write the data to the LBCIF Data Register (the I2C write
d2796743
ME
607 * will begin).
608 */
609 if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data))
610 break;
26ef1021 611 /* Monitor bit 1:0 of the LBCIF Status Register. When bits
d2796743
ME
612 * 1:0 are both equal to 1, the I2C write has completed and the
613 * internal write cycle of the EEPROM is about to start.
614 * (bits 1:0 = 01 is a legal state while waiting from both
615 * equal to 1, but bits 1:0 = 10 is invalid and implies that
616 * something is broken).
617 */
618 err = eeprom_wait_ready(pdev, &status);
619 if (err < 0)
620 return 0;
621
26ef1021 622 /* Check bit 3 of the LBCIF Status Register. If equal to 1,
d2796743
ME
623 * an error has occurred.Don't break here if we are revision
624 * 1, this is so we do a blind write for load bug.
625 */
626 if ((status & LBCIF_STATUS_GENERAL_ERROR)
627 && adapter->pdev->revision == 0)
628 break;
629
26ef1021 630 /* Check bit 2 of the LBCIF Status Register. If equal to 1 an
d2796743
ME
631 * ACK error has occurred on the address phase of the write.
632 * This could be due to an actual hardware failure or the
633 * EEPROM may still be in its internal write cycle from a
634 * previous write. This write operation was ignored and must be
635 *repeated later.
636 */
637 if (status & LBCIF_STATUS_ACK_ERROR) {
26ef1021 638 /* This could be due to an actual hardware failure
d2796743
ME
639 * or the EEPROM may still be in its internal write
640 * cycle from a previous write. This write operation
641 * was ignored and must be repeated later.
642 */
643 udelay(10);
644 continue;
645 }
646
647 writeok = 1;
648 break;
649 }
650
26ef1021 651 /* Set bit 6 of the LBCIF Control Register = 0.
d2796743
ME
652 */
653 udelay(10);
654
5a5835ea 655 while (1) {
d2796743 656 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
096e6224 657 LBCIF_CONTROL_LBCIF_ENABLE))
d2796743
ME
658 writeok = 0;
659
660 /* Do read until internal ACK_ERROR goes away meaning write
661 * completed
662 */
663 do {
664 pci_write_config_dword(pdev,
665 LBCIF_ADDRESS_REGISTER,
666 addr);
667 do {
668 pci_read_config_dword(pdev,
096e6224
ME
669 LBCIF_DATA_REGISTER,
670 &val);
d2796743
ME
671 } while ((val & 0x00010000) == 0);
672 } while (val & 0x00040000);
673
674 if ((val & 0xFF00) != 0xC000 || index == 10000)
675 break;
676 index++;
677 }
678 return writeok ? 0 : -EIO;
679}
680
26ef1021 681/* eeprom_read - Read a byte from the ET1310's EEPROM
d2796743
ME
682 * @adapter: pointer to our private adapter structure
683 * @addr: the address from which to read
684 * @pdata: a pointer to a byte in which to store the value of the read
685 * @eeprom_id: the ID of the EEPROM
686 * @addrmode: how the EEPROM is to be accessed
687 *
688 * Returns 1 for a successful read
689 */
690static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata)
691{
692 struct pci_dev *pdev = adapter->pdev;
693 int err;
694 u32 status;
695
26ef1021 696 /* A single byte read is similar to the single byte write, with the
d2796743
ME
697 * exception of the data flow:
698 */
699
700 err = eeprom_wait_ready(pdev, NULL);
8dd4a966 701 if (err < 0)
d2796743 702 return err;
26ef1021 703 /* Write to the LBCIF Control Register: bit 7=1, bit 6=0, bit 3=0,
d2796743
ME
704 * and bits 1:0 both =0. Bit 5 should be set according to the type
705 * of EEPROM being accessed (1=two byte addressing, 0=one byte
706 * addressing).
707 */
708 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
709 LBCIF_CONTROL_LBCIF_ENABLE))
710 return -EIO;
26ef1021 711 /* Write the address to the LBCIF Address Register (I2C read will
d2796743
ME
712 * begin).
713 */
714 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
715 return -EIO;
26ef1021 716 /* Monitor bit 0 of the LBCIF Status Register. When = 1, I2C read
d2796743
ME
717 * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
718 * has occurred).
719 */
720 err = eeprom_wait_ready(pdev, &status);
721 if (err < 0)
722 return err;
26ef1021 723 /* Regardless of error status, read data byte from LBCIF Data
d2796743
ME
724 * Register.
725 */
726 *pdata = err;
26ef1021 727 /* Check bit 2 of the LBCIF Status Register. If = 1,
d2796743
ME
728 * then an error has occurred.
729 */
730 return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0;
731}
732
eb7a6ca6 733static int et131x_init_eeprom(struct et131x_adapter *adapter)
d2796743
ME
734{
735 struct pci_dev *pdev = adapter->pdev;
736 u8 eestatus;
737
738 /* We first need to check the EEPROM Status code located at offset
739 * 0xB2 of config space
740 */
a129be84 741 pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus);
d2796743
ME
742
743 /* THIS IS A WORKAROUND:
744 * I need to call this function twice to get my card in a
745 * LG M1 Express Dual running. I tried also a msleep before this
a129be84 746 * function, because I thought there could be some time conditions
d2796743
ME
747 * but it didn't work. Call the whole function twice also work.
748 */
749 if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) {
750 dev_err(&pdev->dev,
096e6224 751 "Could not read PCI config space for EEPROM Status\n");
d2796743
ME
752 return -EIO;
753 }
754
755 /* Determine if the error(s) we care about are present. If they are
756 * present we need to fail.
757 */
758 if (eestatus & 0x4C) {
759 int write_failed = 0;
f03fcca0 760
d2796743
ME
761 if (pdev->revision == 0x01) {
762 int i;
763 static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF };
764
765 /* Re-write the first 4 bytes if we have an eeprom
766 * present and the revision id is 1, this fixes the
767 * corruption seen with 1310 B Silicon
768 */
769 for (i = 0; i < 3; i++)
770 if (eeprom_write(adapter, i, eedata[i]) < 0)
771 write_failed = 1;
772 }
773 if (pdev->revision != 0x01 || write_failed) {
774 dev_err(&pdev->dev,
096e6224
ME
775 "Fatal EEPROM Status Error - 0x%04x\n",
776 eestatus);
d2796743
ME
777
778 /* This error could mean that there was an error
779 * reading the eeprom or that the eeprom doesn't exist.
780 * We will treat each case the same and not try to
781 * gather additional information that normally would
782 * come from the eeprom, like MAC Address
783 */
784 adapter->has_eeprom = 0;
785 return -EIO;
786 }
787 }
788 adapter->has_eeprom = 1;
789
790 /* Read the EEPROM for information regarding LED behavior. Refer to
791 * ET1310_phy.c, et131x_xcvr_init(), for its use.
792 */
793 eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]);
794 eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]);
795
796 if (adapter->eeprom_data[0] != 0xcd)
797 /* Disable all optional features */
798 adapter->eeprom_data[1] = 0x00;
799
800 return 0;
801}
802
26ef1021 803/* et131x_rx_dma_enable - re-start of Rx_DMA on the ET1310.
8310c602
ME
804 * @adapter: pointer to our adapter structure
805 */
eb7a6ca6 806static void et131x_rx_dma_enable(struct et131x_adapter *adapter)
8310c602
ME
807{
808 /* Setup the receive dma configuration register for normal operation */
3040d056 809 u32 csr = ET_RXDMA_CSR_FBR1_ENABLE;
8f7fa96a 810 struct rx_ring *rx_ring = &adapter->rx_ring;
8310c602 811
8f7fa96a 812 if (rx_ring->fbr[1]->buffsize == 4096)
3040d056 813 csr |= ET_RXDMA_CSR_FBR1_SIZE_LO;
8f7fa96a 814 else if (rx_ring->fbr[1]->buffsize == 8192)
3040d056 815 csr |= ET_RXDMA_CSR_FBR1_SIZE_HI;
8f7fa96a 816 else if (rx_ring->fbr[1]->buffsize == 16384)
3040d056 817 csr |= ET_RXDMA_CSR_FBR1_SIZE_LO | ET_RXDMA_CSR_FBR1_SIZE_HI;
b5254867 818
3040d056 819 csr |= ET_RXDMA_CSR_FBR0_ENABLE;
8f7fa96a 820 if (rx_ring->fbr[0]->buffsize == 256)
3040d056 821 csr |= ET_RXDMA_CSR_FBR0_SIZE_LO;
8f7fa96a 822 else if (rx_ring->fbr[0]->buffsize == 512)
3040d056 823 csr |= ET_RXDMA_CSR_FBR0_SIZE_HI;
8f7fa96a 824 else if (rx_ring->fbr[0]->buffsize == 1024)
3040d056 825 csr |= ET_RXDMA_CSR_FBR0_SIZE_LO | ET_RXDMA_CSR_FBR0_SIZE_HI;
8310c602
ME
826 writel(csr, &adapter->regs->rxdma.csr);
827
828 csr = readl(&adapter->regs->rxdma.csr);
3040d056 829 if (csr & ET_RXDMA_CSR_HALT_STATUS) {
8310c602
ME
830 udelay(5);
831 csr = readl(&adapter->regs->rxdma.csr);
3040d056 832 if (csr & ET_RXDMA_CSR_HALT_STATUS) {
8310c602 833 dev_err(&adapter->pdev->dev,
096e6224 834 "RX Dma failed to exit halt state. CSR 0x%08x\n",
8310c602
ME
835 csr);
836 }
837 }
838}
839
26ef1021 840/* et131x_rx_dma_disable - Stop of Rx_DMA on the ET1310
8310c602
ME
841 * @adapter: pointer to our adapter structure
842 */
eb7a6ca6 843static void et131x_rx_dma_disable(struct et131x_adapter *adapter)
8310c602
ME
844{
845 u32 csr;
846 /* Setup the receive dma configuration register */
3040d056
ME
847 writel(ET_RXDMA_CSR_HALT | ET_RXDMA_CSR_FBR1_ENABLE,
848 &adapter->regs->rxdma.csr);
8310c602 849 csr = readl(&adapter->regs->rxdma.csr);
3040d056 850 if (!(csr & ET_RXDMA_CSR_HALT_STATUS)) {
8310c602
ME
851 udelay(5);
852 csr = readl(&adapter->regs->rxdma.csr);
3040d056 853 if (!(csr & ET_RXDMA_CSR_HALT_STATUS))
8310c602 854 dev_err(&adapter->pdev->dev,
096e6224
ME
855 "RX Dma failed to enter halt state. CSR 0x%08x\n",
856 csr);
8310c602
ME
857 }
858}
859
26ef1021 860/* et131x_tx_dma_enable - re-start of Tx_DMA on the ET1310.
8310c602
ME
861 * @adapter: pointer to our adapter structure
862 *
863 * Mainly used after a return to the D0 (full-power) state from a lower state.
864 */
eb7a6ca6 865static void et131x_tx_dma_enable(struct et131x_adapter *adapter)
8310c602
ME
866{
867 /* Setup the transmit dma configuration register for normal
868 * operation
869 */
096e6224
ME
870 writel(ET_TXDMA_SNGL_EPKT | (PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
871 &adapter->regs->txdma.csr);
8310c602
ME
872}
873
874static inline void add_10bit(u32 *v, int n)
875{
876 *v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP);
877}
878
879static inline void add_12bit(u32 *v, int n)
880{
881 *v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP);
882}
883
26ef1021 884/* et1310_config_mac_regs1 - Initialize the first part of MAC regs
d2796743
ME
885 * @adapter: pointer to our adapter structure
886 */
eb7a6ca6 887static void et1310_config_mac_regs1(struct et131x_adapter *adapter)
d2796743
ME
888{
889 struct mac_regs __iomem *macregs = &adapter->regs->mac;
890 u32 station1;
891 u32 station2;
892 u32 ipg;
893
894 /* First we need to reset everything. Write to MAC configuration
895 * register 1 to perform reset.
896 */
a129be84
ME
897 writel(ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
898 ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
899 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC,
900 &macregs->cfg1);
d2796743
ME
901
902 /* Next lets configure the MAC Inter-packet gap register */
903 ipg = 0x38005860; /* IPG1 0x38 IPG2 0x58 B2B 0x60 */
904 ipg |= 0x50 << 8; /* ifg enforce 0x50 */
905 writel(ipg, &macregs->ipg);
906
907 /* Next lets configure the MAC Half Duplex register */
908 /* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
909 writel(0x00A1F037, &macregs->hfdp);
910
911 /* Next lets configure the MAC Interface Control register */
912 writel(0, &macregs->if_ctrl);
913
914 /* Let's move on to setting up the mii management configuration */
a129be84 915 writel(ET_MAC_MIIMGMT_CLK_RST, &macregs->mii_mgmt_cfg);
d2796743
ME
916
917 /* Next lets configure the MAC Station Address register. These
918 * values are read from the EEPROM during initialization and stored
919 * in the adapter structure. We write what is stored in the adapter
920 * structure to the MAC Station Address registers high and low. This
921 * station address is used for generating and checking pause control
922 * packets.
923 */
924 station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) |
925 (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT);
926 station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) |
927 (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) |
928 (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) |
929 adapter->addr[2];
930 writel(station1, &macregs->station_addr_1);
931 writel(station2, &macregs->station_addr_2);
932
ac399bc0 933 /* Max ethernet packet in bytes that will be passed by the mac without
d2796743
ME
934 * being truncated. Allow the MAC to pass 4 more than our max packet
935 * size. This is 4 for the Ethernet CRC.
936 *
937 * Packets larger than (registry_jumbo_packet) that do not contain a
938 * VLAN ID will be dropped by the Rx function.
939 */
940 writel(adapter->registry_jumbo_packet + 4, &macregs->max_fm_len);
941
942 /* clear out MAC config reset */
943 writel(0, &macregs->cfg1);
944}
945
26ef1021 946/* et1310_config_mac_regs2 - Initialize the second part of MAC regs
d2796743
ME
947 * @adapter: pointer to our adapter structure
948 */
eb7a6ca6 949static void et1310_config_mac_regs2(struct et131x_adapter *adapter)
d2796743
ME
950{
951 int32_t delay = 0;
952 struct mac_regs __iomem *mac = &adapter->regs->mac;
953 struct phy_device *phydev = adapter->phydev;
954 u32 cfg1;
955 u32 cfg2;
956 u32 ifctrl;
957 u32 ctl;
958
959 ctl = readl(&adapter->regs->txmac.ctl);
960 cfg1 = readl(&mac->cfg1);
961 cfg2 = readl(&mac->cfg2);
962 ifctrl = readl(&mac->if_ctrl);
963
964 /* Set up the if mode bits */
a129be84 965 cfg2 &= ~ET_MAC_CFG2_IFMODE_MASK;
76af0140 966 if (phydev->speed == SPEED_1000) {
a129be84 967 cfg2 |= ET_MAC_CFG2_IFMODE_1000;
d2796743 968 /* Phy mode bit */
a129be84 969 ifctrl &= ~ET_MAC_IFCTRL_PHYMODE;
d2796743 970 } else {
a129be84
ME
971 cfg2 |= ET_MAC_CFG2_IFMODE_100;
972 ifctrl |= ET_MAC_IFCTRL_PHYMODE;
d2796743
ME
973 }
974
975 /* We need to enable Rx/Tx */
a129be84
ME
976 cfg1 |= ET_MAC_CFG1_RX_ENABLE | ET_MAC_CFG1_TX_ENABLE |
977 ET_MAC_CFG1_TX_FLOW;
d2796743 978 /* Initialize loop back to off */
a129be84 979 cfg1 &= ~(ET_MAC_CFG1_LOOPBACK | ET_MAC_CFG1_RX_FLOW);
d2796743 980 if (adapter->flowcontrol == FLOW_RXONLY ||
096e6224 981 adapter->flowcontrol == FLOW_BOTH)
a129be84 982 cfg1 |= ET_MAC_CFG1_RX_FLOW;
d2796743
ME
983 writel(cfg1, &mac->cfg1);
984
985 /* Now we need to initialize the MAC Configuration 2 register */
986 /* preamble 7, check length, huge frame off, pad crc, crc enable
26ef1021
ME
987 * full duplex off
988 */
a129be84
ME
989 cfg2 |= 0x7 << ET_MAC_CFG2_PREAMBLE_SHIFT;
990 cfg2 |= ET_MAC_CFG2_IFMODE_LEN_CHECK;
991 cfg2 |= ET_MAC_CFG2_IFMODE_PAD_CRC;
992 cfg2 |= ET_MAC_CFG2_IFMODE_CRC_ENABLE;
993 cfg2 &= ~ET_MAC_CFG2_IFMODE_HUGE_FRAME;
994 cfg2 &= ~ET_MAC_CFG2_IFMODE_FULL_DPLX;
d2796743
ME
995
996 /* Turn on duplex if needed */
76af0140 997 if (phydev->duplex == DUPLEX_FULL)
a129be84 998 cfg2 |= ET_MAC_CFG2_IFMODE_FULL_DPLX;
d2796743 999
a129be84 1000 ifctrl &= ~ET_MAC_IFCTRL_GHDMODE;
76af0140 1001 if (phydev->duplex == DUPLEX_HALF)
a129be84 1002 ifctrl |= ET_MAC_IFCTRL_GHDMODE;
d2796743
ME
1003
1004 writel(ifctrl, &mac->if_ctrl);
1005 writel(cfg2, &mac->cfg2);
1006
1007 do {
1008 udelay(10);
1009 delay++;
1010 cfg1 = readl(&mac->cfg1);
a129be84 1011 } while ((cfg1 & ET_MAC_CFG1_WAIT) != ET_MAC_CFG1_WAIT && delay < 100);
d2796743
ME
1012
1013 if (delay == 100) {
1014 dev_warn(&adapter->pdev->dev,
096e6224
ME
1015 "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
1016 cfg1);
d2796743
ME
1017 }
1018
1019 /* Enable txmac */
a129be84 1020 ctl |= ET_TX_CTRL_TXMAC_ENABLE | ET_TX_CTRL_FC_DISABLE;
d2796743
ME
1021 writel(ctl, &adapter->regs->txmac.ctl);
1022
1023 /* Ready to start the RXDMA/TXDMA engine */
c655dee9 1024 if (adapter->flags & FMP_ADAPTER_LOWER_POWER) {
d2796743
ME
1025 et131x_rx_dma_enable(adapter);
1026 et131x_tx_dma_enable(adapter);
1027 }
1028}
1029
26ef1021 1030/* et1310_in_phy_coma - check if the device is in phy coma
2288760e
ME
1031 * @adapter: pointer to our adapter structure
1032 *
1033 * Returns 0 if the device is not in phy coma, 1 if it is in phy coma
1034 */
eb7a6ca6 1035static int et1310_in_phy_coma(struct et131x_adapter *adapter)
2288760e 1036{
12a2f3f3 1037 u32 pmcsr = readl(&adapter->regs->global.pm_csr);
2288760e
ME
1038
1039 return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0;
1040}
1041
eb7a6ca6 1042static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter)
a4d444bd
ME
1043{
1044 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
834d0ee3
FR
1045 u32 hash1 = 0;
1046 u32 hash2 = 0;
1047 u32 hash3 = 0;
1048 u32 hash4 = 0;
a4d444bd
ME
1049 u32 pm_csr;
1050
1051 /* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
1052 * the multi-cast LIST. If it is NOT specified, (and "ALL" is not
1053 * specified) then we should pass NO multi-cast addresses to the
1054 * driver.
1055 */
1056 if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) {
834d0ee3
FR
1057 int i;
1058
a4d444bd 1059 /* Loop through our multicast array and set up the device */
834d0ee3
FR
1060 for (i = 0; i < adapter->multicast_addr_count; i++) {
1061 u32 result;
1062
1063 result = ether_crc(6, adapter->multicast_list[i]);
a4d444bd
ME
1064
1065 result = (result & 0x3F800000) >> 23;
1066
1067 if (result < 32) {
1068 hash1 |= (1 << result);
1069 } else if ((31 < result) && (result < 64)) {
1070 result -= 32;
1071 hash2 |= (1 << result);
1072 } else if ((63 < result) && (result < 96)) {
1073 result -= 64;
1074 hash3 |= (1 << result);
1075 } else {
1076 result -= 96;
1077 hash4 |= (1 << result);
1078 }
1079 }
1080 }
1081
1082 /* Write out the new hash to the device */
1083 pm_csr = readl(&adapter->regs->global.pm_csr);
1084 if (!et1310_in_phy_coma(adapter)) {
1085 writel(hash1, &rxmac->multi_hash1);
1086 writel(hash2, &rxmac->multi_hash2);
1087 writel(hash3, &rxmac->multi_hash3);
1088 writel(hash4, &rxmac->multi_hash4);
1089 }
1090}
1091
eb7a6ca6 1092static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter)
a4d444bd
ME
1093{
1094 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1095 u32 uni_pf1;
1096 u32 uni_pf2;
1097 u32 uni_pf3;
1098 u32 pm_csr;
1099
1100 /* Set up unicast packet filter reg 3 to be the first two octets of
1101 * the MAC address for both address
1102 *
1103 * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
1104 * MAC address for second address
1105 *
1106 * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
1107 * MAC address for first address
1108 */
a129be84
ME
1109 uni_pf3 = (adapter->addr[0] << ET_RX_UNI_PF_ADDR2_1_SHIFT) |
1110 (adapter->addr[1] << ET_RX_UNI_PF_ADDR2_2_SHIFT) |
1111 (adapter->addr[0] << ET_RX_UNI_PF_ADDR1_1_SHIFT) |
a4d444bd
ME
1112 adapter->addr[1];
1113
a129be84
ME
1114 uni_pf2 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR2_3_SHIFT) |
1115 (adapter->addr[3] << ET_RX_UNI_PF_ADDR2_4_SHIFT) |
1116 (adapter->addr[4] << ET_RX_UNI_PF_ADDR2_5_SHIFT) |
a4d444bd
ME
1117 adapter->addr[5];
1118
a129be84
ME
1119 uni_pf1 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR1_3_SHIFT) |
1120 (adapter->addr[3] << ET_RX_UNI_PF_ADDR1_4_SHIFT) |
1121 (adapter->addr[4] << ET_RX_UNI_PF_ADDR1_5_SHIFT) |
a4d444bd
ME
1122 adapter->addr[5];
1123
1124 pm_csr = readl(&adapter->regs->global.pm_csr);
1125 if (!et1310_in_phy_coma(adapter)) {
1126 writel(uni_pf1, &rxmac->uni_pf_addr1);
1127 writel(uni_pf2, &rxmac->uni_pf_addr2);
1128 writel(uni_pf3, &rxmac->uni_pf_addr3);
1129 }
1130}
1131
eb7a6ca6 1132static void et1310_config_rxmac_regs(struct et131x_adapter *adapter)
d2796743
ME
1133{
1134 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1135 struct phy_device *phydev = adapter->phydev;
1136 u32 sa_lo;
1137 u32 sa_hi = 0;
1138 u32 pf_ctrl = 0;
1a5a5cbc 1139 u32 __iomem *wolw;
d2796743
ME
1140
1141 /* Disable the MAC while it is being configured (also disable WOL) */
1142 writel(0x8, &rxmac->ctrl);
1143
1144 /* Initialize WOL to disabled. */
1145 writel(0, &rxmac->crc0);
1146 writel(0, &rxmac->crc12);
1147 writel(0, &rxmac->crc34);
1148
1149 /* We need to set the WOL mask0 - mask4 next. We initialize it to
1150 * its default Values of 0x00000000 because there are not WOL masks
1151 * as of this time.
1152 */
6697b870
ME
1153 for (wolw = &rxmac->mask0_word0; wolw <= &rxmac->mask4_word3; wolw++)
1154 writel(0, wolw);
d2796743
ME
1155
1156 /* Lets setup the WOL Source Address */
a129be84
ME
1157 sa_lo = (adapter->addr[2] << ET_RX_WOL_LO_SA3_SHIFT) |
1158 (adapter->addr[3] << ET_RX_WOL_LO_SA4_SHIFT) |
1159 (adapter->addr[4] << ET_RX_WOL_LO_SA5_SHIFT) |
d2796743
ME
1160 adapter->addr[5];
1161 writel(sa_lo, &rxmac->sa_lo);
1162
a129be84 1163 sa_hi = (u32) (adapter->addr[0] << ET_RX_WOL_HI_SA1_SHIFT) |
d2796743
ME
1164 adapter->addr[1];
1165 writel(sa_hi, &rxmac->sa_hi);
1166
1167 /* Disable all Packet Filtering */
1168 writel(0, &rxmac->pf_ctrl);
1169
1170 /* Let's initialize the Unicast Packet filtering address */
1171 if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) {
1172 et1310_setup_device_for_unicast(adapter);
a129be84 1173 pf_ctrl |= ET_RX_PFCTRL_UNICST_FILTER_ENABLE;
d2796743
ME
1174 } else {
1175 writel(0, &rxmac->uni_pf_addr1);
1176 writel(0, &rxmac->uni_pf_addr2);
1177 writel(0, &rxmac->uni_pf_addr3);
1178 }
1179
1180 /* Let's initialize the Multicast hash */
1181 if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
a129be84 1182 pf_ctrl |= ET_RX_PFCTRL_MLTCST_FILTER_ENABLE;
d2796743
ME
1183 et1310_setup_device_for_multicast(adapter);
1184 }
1185
1186 /* Runt packet filtering. Didn't work in version A silicon. */
a129be84
ME
1187 pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << ET_RX_PFCTRL_MIN_PKT_SZ_SHIFT;
1188 pf_ctrl |= ET_RX_PFCTRL_FRAG_FILTER_ENABLE;
d2796743
ME
1189
1190 if (adapter->registry_jumbo_packet > 8192)
1191 /* In order to transmit jumbo packets greater than 8k, the
1192 * FIFO between RxMAC and RxDMA needs to be reduced in size
1193 * to (16k - Jumbo packet size). In order to implement this,
1194 * we must use "cut through" mode in the RxMAC, which chops
1195 * packets down into segments which are (max_size * 16). In
1196 * this case we selected 256 bytes, since this is the size of
1197 * the PCI-Express TLP's that the 1310 uses.
1198 *
1199 * seg_en on, fc_en off, size 0x10
1200 */
1201 writel(0x41, &rxmac->mcif_ctrl_max_seg);
1202 else
1203 writel(0, &rxmac->mcif_ctrl_max_seg);
1204
1205 /* Initialize the MCIF water marks */
1206 writel(0, &rxmac->mcif_water_mark);
1207
1208 /* Initialize the MIF control */
1209 writel(0, &rxmac->mif_ctrl);
1210
1211 /* Initialize the Space Available Register */
1212 writel(0, &rxmac->space_avail);
1213
1214 /* Initialize the the mif_ctrl register
1215 * bit 3: Receive code error. One or more nibbles were signaled as
1216 * errors during the reception of the packet. Clear this
1217 * bit in Gigabit, set it in 100Mbit. This was derived
1218 * experimentally at UNH.
1219 * bit 4: Receive CRC error. The packet's CRC did not match the
1220 * internally generated CRC.
1221 * bit 5: Receive length check error. Indicates that frame length
1222 * field value in the packet does not match the actual data
1223 * byte length and is not a type field.
1224 * bit 16: Receive frame truncated.
1225 * bit 17: Drop packet enable
1226 */
1227 if (phydev && phydev->speed == SPEED_100)
1228 writel(0x30038, &rxmac->mif_ctrl);
1229 else
1230 writel(0x30030, &rxmac->mif_ctrl);
1231
1232 /* Finally we initialize RxMac to be enabled & WOL disabled. Packet
1233 * filter is always enabled since it is where the runt packets are
1234 * supposed to be dropped. For version A silicon, runt packet
1235 * dropping doesn't work, so it is disabled in the pf_ctrl register,
1236 * but we still leave the packet filter on.
1237 */
1238 writel(pf_ctrl, &rxmac->pf_ctrl);
a129be84 1239 writel(ET_RX_CTRL_RXMAC_ENABLE | ET_RX_CTRL_WOL_DISABLE, &rxmac->ctrl);
d2796743
ME
1240}
1241
eb7a6ca6 1242static void et1310_config_txmac_regs(struct et131x_adapter *adapter)
d2796743
ME
1243{
1244 struct txmac_regs __iomem *txmac = &adapter->regs->txmac;
1245
1246 /* We need to update the Control Frame Parameters
1247 * cfpt - control frame pause timer set to 64 (0x40)
1248 * cfep - control frame extended pause timer set to 0x0
1249 */
1250 if (adapter->flowcontrol == FLOW_NONE)
1251 writel(0, &txmac->cf_param);
1252 else
1253 writel(0x40, &txmac->cf_param);
1254}
1255
eb7a6ca6 1256static void et1310_config_macstat_regs(struct et131x_adapter *adapter)
d2796743 1257{
becce4a4 1258 struct macstat_regs __iomem *macstat = &adapter->regs->macstat;
1a5a5cbc 1259 u32 __iomem *reg;
d2796743 1260
becce4a4
ME
1261 /* initialize all the macstat registers to zero on the device */
1262 for (reg = &macstat->txrx_0_64_byte_frames;
1263 reg <= &macstat->carry_reg2; reg++)
1264 writel(0, reg);
d2796743
ME
1265
1266 /* Unmask any counters that we want to track the overflow of.
1267 * Initially this will be all counters. It may become clear later
1268 * that we do not need to track all counters.
1269 */
1270 writel(0xFFFFBE32, &macstat->carry_reg1_mask);
1271 writel(0xFFFE7E8B, &macstat->carry_reg2_mask);
1272}
1273
26ef1021 1274/* et131x_phy_mii_read - Read from the PHY through the MII Interface on the MAC
2288760e
ME
1275 * @adapter: pointer to our private adapter structure
1276 * @addr: the address of the transceiver
1277 * @reg: the register to read
1278 * @value: pointer to a 16-bit value in which the value will be stored
2288760e 1279 */
eb7a6ca6 1280static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr,
096e6224 1281 u8 reg, u16 *value)
2288760e
ME
1282{
1283 struct mac_regs __iomem *mac = &adapter->regs->mac;
1284 int status = 0;
1285 u32 delay = 0;
1286 u32 mii_addr;
1287 u32 mii_cmd;
1288 u32 mii_indicator;
1289
1290 /* Save a local copy of the registers we are dealing with so we can
1291 * set them back
1292 */
1293 mii_addr = readl(&mac->mii_mgmt_addr);
1294 mii_cmd = readl(&mac->mii_mgmt_cmd);
1295
1296 /* Stop the current operation */
1297 writel(0, &mac->mii_mgmt_cmd);
1298
1299 /* Set up the register we need to read from on the correct PHY */
a129be84 1300 writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
2288760e
ME
1301
1302 writel(0x1, &mac->mii_mgmt_cmd);
1303
1304 do {
1305 udelay(50);
1306 delay++;
1307 mii_indicator = readl(&mac->mii_mgmt_indicator);
a129be84 1308 } while ((mii_indicator & ET_MAC_MGMT_WAIT) && delay < 50);
2288760e
ME
1309
1310 /* If we hit the max delay, we could not read the register */
1311 if (delay == 50) {
1312 dev_warn(&adapter->pdev->dev,
096e6224 1313 "reg 0x%08x could not be read\n", reg);
2288760e 1314 dev_warn(&adapter->pdev->dev, "status is 0x%08x\n",
096e6224 1315 mii_indicator);
2288760e
ME
1316
1317 status = -EIO;
a863a15b 1318 goto out;
2288760e
ME
1319 }
1320
1321 /* If we hit here we were able to read the register and we need to
26ef1021
ME
1322 * return the value to the caller
1323 */
a129be84 1324 *value = readl(&mac->mii_mgmt_stat) & ET_MAC_MIIMGMT_STAT_PHYCRTL_MASK;
2288760e 1325
a863a15b 1326out:
2288760e
ME
1327 /* Stop the read operation */
1328 writel(0, &mac->mii_mgmt_cmd);
1329
1330 /* set the registers we touched back to the state at which we entered
1331 * this function
1332 */
1333 writel(mii_addr, &mac->mii_mgmt_addr);
1334 writel(mii_cmd, &mac->mii_mgmt_cmd);
1335
1336 return status;
1337}
1338
eb7a6ca6 1339static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value)
2288760e
ME
1340{
1341 struct phy_device *phydev = adapter->phydev;
1342
1343 if (!phydev)
1344 return -EIO;
1345
1346 return et131x_phy_mii_read(adapter, phydev->addr, reg, value);
1347}
1348
26ef1021 1349/* et131x_mii_write - Write to a PHY reg through the MII interface of the MAC
2288760e
ME
1350 * @adapter: pointer to our private adapter structure
1351 * @reg: the register to read
1352 * @value: 16-bit value to write
2288760e 1353 */
ec0a38bf
ME
1354static int et131x_mii_write(struct et131x_adapter *adapter, u8 addr, u8 reg,
1355 u16 value)
2288760e
ME
1356{
1357 struct mac_regs __iomem *mac = &adapter->regs->mac;
2288760e 1358 int status = 0;
2288760e
ME
1359 u32 delay = 0;
1360 u32 mii_addr;
1361 u32 mii_cmd;
1362 u32 mii_indicator;
1363
2288760e
ME
1364 /* Save a local copy of the registers we are dealing with so we can
1365 * set them back
1366 */
1367 mii_addr = readl(&mac->mii_mgmt_addr);
1368 mii_cmd = readl(&mac->mii_mgmt_cmd);
1369
1370 /* Stop the current operation */
1371 writel(0, &mac->mii_mgmt_cmd);
1372
1373 /* Set up the register we need to write to on the correct PHY */
a129be84 1374 writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
2288760e
ME
1375
1376 /* Add the value to write to the registers to the mac */
1377 writel(value, &mac->mii_mgmt_ctrl);
1378
1379 do {
1380 udelay(50);
1381 delay++;
1382 mii_indicator = readl(&mac->mii_mgmt_indicator);
a129be84 1383 } while ((mii_indicator & ET_MAC_MGMT_BUSY) && delay < 100);
2288760e
ME
1384
1385 /* If we hit the max delay, we could not write the register */
1386 if (delay == 100) {
1387 u16 tmp;
1388
1389 dev_warn(&adapter->pdev->dev,
096e6224 1390 "reg 0x%08x could not be written", reg);
2288760e 1391 dev_warn(&adapter->pdev->dev, "status is 0x%08x\n",
096e6224 1392 mii_indicator);
2288760e 1393 dev_warn(&adapter->pdev->dev, "command is 0x%08x\n",
096e6224 1394 readl(&mac->mii_mgmt_cmd));
2288760e
ME
1395
1396 et131x_mii_read(adapter, reg, &tmp);
1397
1398 status = -EIO;
1399 }
1400 /* Stop the write operation */
1401 writel(0, &mac->mii_mgmt_cmd);
1402
26ef1021 1403 /* set the registers we touched back to the state at which we entered
2288760e
ME
1404 * this function
1405 */
1406 writel(mii_addr, &mac->mii_mgmt_addr);
1407 writel(mii_cmd, &mac->mii_mgmt_cmd);
1408
1409 return status;
1410}
1411
19d857de
ME
1412static void et1310_phy_read_mii_bit(struct et131x_adapter *adapter,
1413 u16 regnum,
1414 u16 bitnum,
1415 u8 *value)
2288760e
ME
1416{
1417 u16 reg;
a129be84 1418 u16 mask = 1 << bitnum;
2288760e
ME
1419
1420 /* Read the requested register */
1421 et131x_mii_read(adapter, regnum, &reg);
1422
19d857de 1423 *value = (reg & mask) >> bitnum;
2288760e
ME
1424}
1425
eb7a6ca6 1426static void et1310_config_flow_control(struct et131x_adapter *adapter)
d2796743
ME
1427{
1428 struct phy_device *phydev = adapter->phydev;
1429
1430 if (phydev->duplex == DUPLEX_HALF) {
1431 adapter->flowcontrol = FLOW_NONE;
1432 } else {
1433 char remote_pause, remote_async_pause;
1434
19d857de
ME
1435 et1310_phy_read_mii_bit(adapter, 5, 10, &remote_pause);
1436 et1310_phy_read_mii_bit(adapter, 5, 11, &remote_async_pause);
d2796743 1437
19d857de 1438 if (remote_pause && remote_async_pause) {
d2796743 1439 adapter->flowcontrol = adapter->wanted_flow;
19d857de 1440 } else if (remote_pause && !remote_async_pause) {
d2796743
ME
1441 if (adapter->wanted_flow == FLOW_BOTH)
1442 adapter->flowcontrol = FLOW_BOTH;
1443 else
1444 adapter->flowcontrol = FLOW_NONE;
19d857de 1445 } else if (!remote_pause && !remote_async_pause) {
d2796743 1446 adapter->flowcontrol = FLOW_NONE;
19d857de 1447 } else {
d2796743
ME
1448 if (adapter->wanted_flow == FLOW_BOTH)
1449 adapter->flowcontrol = FLOW_RXONLY;
1450 else
1451 adapter->flowcontrol = FLOW_NONE;
1452 }
1453 }
1454}
1455
15ae239d 1456/* et1310_update_macstat_host_counters - Update local copy of the statistics */
eb7a6ca6 1457static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter)
d2796743
ME
1458{
1459 struct ce_stats *stats = &adapter->stats;
1460 struct macstat_regs __iomem *macstat =
1461 &adapter->regs->macstat;
1462
1463 stats->tx_collisions += readl(&macstat->tx_total_collisions);
1464 stats->tx_first_collisions += readl(&macstat->tx_single_collisions);
1465 stats->tx_deferred += readl(&macstat->tx_deferred);
1466 stats->tx_excessive_collisions +=
1467 readl(&macstat->tx_multiple_collisions);
1468 stats->tx_late_collisions += readl(&macstat->tx_late_collisions);
1469 stats->tx_underflows += readl(&macstat->tx_undersize_frames);
1470 stats->tx_max_pkt_errs += readl(&macstat->tx_oversize_frames);
1471
1472 stats->rx_align_errs += readl(&macstat->rx_align_errs);
1473 stats->rx_crc_errs += readl(&macstat->rx_code_errs);
1474 stats->rcvd_pkts_dropped += readl(&macstat->rx_drops);
1475 stats->rx_overflows += readl(&macstat->rx_oversize_packets);
1476 stats->rx_code_violations += readl(&macstat->rx_fcs_errs);
1477 stats->rx_length_errs += readl(&macstat->rx_frame_len_errs);
1478 stats->rx_other_errs += readl(&macstat->rx_fragment_packets);
1479}
1480
26ef1021 1481/* et1310_handle_macstat_interrupt
d2796743
ME
1482 *
1483 * One of the MACSTAT counters has wrapped. Update the local copy of
1484 * the statistics held in the adapter structure, checking the "wrap"
1485 * bit for each counter.
1486 */
eb7a6ca6 1487static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter)
d2796743
ME
1488{
1489 u32 carry_reg1;
1490 u32 carry_reg2;
1491
1492 /* Read the interrupt bits from the register(s). These are Clear On
1493 * Write.
1494 */
1495 carry_reg1 = readl(&adapter->regs->macstat.carry_reg1);
1496 carry_reg2 = readl(&adapter->regs->macstat.carry_reg2);
1497
1498 writel(carry_reg1, &adapter->regs->macstat.carry_reg1);
1499 writel(carry_reg2, &adapter->regs->macstat.carry_reg2);
1500
1501 /* We need to do update the host copy of all the MAC_STAT counters.
1502 * For each counter, check it's overflow bit. If the overflow bit is
1503 * set, then increment the host version of the count by one complete
1504 * revolution of the counter. This routine is called when the counter
1505 * block indicates that one of the counters has wrapped.
1506 */
1507 if (carry_reg1 & (1 << 14))
1508 adapter->stats.rx_code_violations += COUNTER_WRAP_16_BIT;
1509 if (carry_reg1 & (1 << 8))
1510 adapter->stats.rx_align_errs += COUNTER_WRAP_12_BIT;
1511 if (carry_reg1 & (1 << 7))
1512 adapter->stats.rx_length_errs += COUNTER_WRAP_16_BIT;
1513 if (carry_reg1 & (1 << 2))
1514 adapter->stats.rx_other_errs += COUNTER_WRAP_16_BIT;
1515 if (carry_reg1 & (1 << 6))
1516 adapter->stats.rx_crc_errs += COUNTER_WRAP_16_BIT;
1517 if (carry_reg1 & (1 << 3))
1518 adapter->stats.rx_overflows += COUNTER_WRAP_16_BIT;
1519 if (carry_reg1 & (1 << 0))
1520 adapter->stats.rcvd_pkts_dropped += COUNTER_WRAP_16_BIT;
1521 if (carry_reg2 & (1 << 16))
1522 adapter->stats.tx_max_pkt_errs += COUNTER_WRAP_12_BIT;
1523 if (carry_reg2 & (1 << 15))
1524 adapter->stats.tx_underflows += COUNTER_WRAP_12_BIT;
1525 if (carry_reg2 & (1 << 6))
1526 adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT;
1527 if (carry_reg2 & (1 << 8))
1528 adapter->stats.tx_deferred += COUNTER_WRAP_12_BIT;
1529 if (carry_reg2 & (1 << 5))
1530 adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT;
1531 if (carry_reg2 & (1 << 4))
1532 adapter->stats.tx_late_collisions += COUNTER_WRAP_12_BIT;
1533 if (carry_reg2 & (1 << 2))
1534 adapter->stats.tx_collisions += COUNTER_WRAP_12_BIT;
1535}
1536
eb7a6ca6 1537static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg)
d2796743
ME
1538{
1539 struct net_device *netdev = bus->priv;
1540 struct et131x_adapter *adapter = netdev_priv(netdev);
1541 u16 value;
1542 int ret;
1543
1544 ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value);
1545
1546 if (ret < 0)
1547 return ret;
1548 else
1549 return value;
1550}
1551
bf3313a1 1552static int et131x_mdio_write(struct mii_bus *bus, int phy_addr,
1553 int reg, u16 value)
d2796743
ME
1554{
1555 struct net_device *netdev = bus->priv;
1556 struct et131x_adapter *adapter = netdev_priv(netdev);
1557
ec0a38bf 1558 return et131x_mii_write(adapter, phy_addr, reg, value);
d2796743
ME
1559}
1560
1ff70a7c 1561/* et1310_phy_power_switch - PHY power control
d2796743
ME
1562 * @adapter: device to control
1563 * @down: true for off/false for back on
1564 *
1565 * one hundred, ten, one thousand megs
1566 * How would you like to have your LAN accessed
1567 * Can't you see that this code processed
1568 * Phy power, phy power..
1569 */
1ff70a7c 1570static void et1310_phy_power_switch(struct et131x_adapter *adapter, bool down)
d2796743
ME
1571{
1572 u16 data;
ec0a38bf 1573 struct phy_device *phydev = adapter->phydev;
d2796743
ME
1574
1575 et131x_mii_read(adapter, MII_BMCR, &data);
1576 data &= ~BMCR_PDOWN;
1577 if (down)
1578 data |= BMCR_PDOWN;
ec0a38bf 1579 et131x_mii_write(adapter, phydev->addr, MII_BMCR, data);
d2796743
ME
1580}
1581
15ae239d 1582/* et131x_xcvr_init - Init the phy if we are setting it into force mode */
eb7a6ca6 1583static void et131x_xcvr_init(struct et131x_adapter *adapter)
d2796743 1584{
d2796743 1585 u16 lcr2;
ec0a38bf 1586 struct phy_device *phydev = adapter->phydev;
d2796743 1587
d2796743
ME
1588 /* Set the LED behavior such that LED 1 indicates speed (off =
1589 * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
1590 * link and activity (on for link, blink off for activity).
1591 *
1592 * NOTE: Some customizations have been added here for specific
1593 * vendors; The LED behavior is now determined by vendor data in the
1594 * EEPROM. However, the above description is the default.
1595 */
1596 if ((adapter->eeprom_data[1] & 0x4) == 0) {
1597 et131x_mii_read(adapter, PHY_LED_2, &lcr2);
1598
b5b86a4d 1599 lcr2 &= (ET_LED2_LED_100TX | ET_LED2_LED_1000T);
d2796743
ME
1600 lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT);
1601
1602 if ((adapter->eeprom_data[1] & 0x8) == 0)
1603 lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT);
1604 else
1605 lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT);
1606
ec0a38bf 1607 et131x_mii_write(adapter, phydev->addr, PHY_LED_2, lcr2);
d2796743
ME
1608 }
1609}
1610
26ef1021 1611/* et131x_configure_global_regs - configure JAGCore global regs
36f2771a
ME
1612 *
1613 * Used to configure the global registers on the JAGCore
1614 */
eb7a6ca6 1615static void et131x_configure_global_regs(struct et131x_adapter *adapter)
36f2771a
ME
1616{
1617 struct global_regs __iomem *regs = &adapter->regs->global;
1618
1619 writel(0, &regs->rxq_start_addr);
1620 writel(INTERNAL_MEM_SIZE - 1, &regs->txq_end_addr);
1621
1622 if (adapter->registry_jumbo_packet < 2048) {
1623 /* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
1624 * block of RAM that the driver can split between Tx
1625 * and Rx as it desires. Our default is to split it
1626 * 50/50:
1627 */
1628 writel(PARM_RX_MEM_END_DEF, &regs->rxq_end_addr);
1629 writel(PARM_RX_MEM_END_DEF + 1, &regs->txq_start_addr);
1630 } else if (adapter->registry_jumbo_packet < 8192) {
1631 /* For jumbo packets > 2k but < 8k, split 50-50. */
1632 writel(INTERNAL_MEM_RX_OFFSET, &regs->rxq_end_addr);
1633 writel(INTERNAL_MEM_RX_OFFSET + 1, &regs->txq_start_addr);
1634 } else {
1635 /* 9216 is the only packet size greater than 8k that
1636 * is available. The Tx buffer has to be big enough
1637 * for one whole packet on the Tx side. We'll make
1638 * the Tx 9408, and give the rest to Rx
1639 */
1640 writel(0x01b3, &regs->rxq_end_addr);
1641 writel(0x01b4, &regs->txq_start_addr);
1642 }
1643
1644 /* Initialize the loopback register. Disable all loopbacks. */
1645 writel(0, &regs->loopback);
1646
1647 /* MSI Register */
1648 writel(0, &regs->msi_config);
1649
1650 /* By default, disable the watchdog timer. It will be enabled when
1651 * a packet is queued.
1652 */
1653 writel(0, &regs->watchdog_timer);
1654}
1655
15ae239d 1656/* et131x_config_rx_dma_regs - Start of Rx_DMA init sequence */
eb7a6ca6 1657static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
36f2771a
ME
1658{
1659 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
1660 struct rx_ring *rx_local = &adapter->rx_ring;
1661 struct fbr_desc *fbr_entry;
1662 u32 entry;
1663 u32 psr_num_des;
1664 unsigned long flags;
788ca84a 1665 u8 id;
36f2771a
ME
1666
1667 /* Halt RXDMA to perform the reconfigure. */
1668 et131x_rx_dma_disable(adapter);
1669
25e8e8ab
ME
1670 /* Load the completion writeback physical address */
1671 writel(upper_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_hi);
1672 writel(lower_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_lo);
36f2771a
ME
1673
1674 memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
1675
1676 /* Set the address and parameters of the packet status ring into the
1677 * 1310's registers
1678 */
25e8e8ab
ME
1679 writel(upper_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_hi);
1680 writel(lower_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_lo);
36f2771a
ME
1681 writel(rx_local->psr_num_entries - 1, &rx_dma->psr_num_des);
1682 writel(0, &rx_dma->psr_full_offset);
1683
a129be84 1684 psr_num_des = readl(&rx_dma->psr_num_des) & ET_RXDMA_PSR_NUM_DES_MASK;
36f2771a
ME
1685 writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
1686 &rx_dma->psr_min_des);
1687
1688 spin_lock_irqsave(&adapter->rcv_lock, flags);
1689
1690 /* These local variables track the PSR in the adapter structure */
1691 rx_local->local_psr_full = 0;
1692
788ca84a 1693 for (id = 0; id < NUM_FBRS; id++) {
c0594ee9
ME
1694 u32 __iomem *num_des;
1695 u32 __iomem *full_offset;
1696 u32 __iomem *min_des;
1697 u32 __iomem *base_hi;
1698 u32 __iomem *base_lo;
efc56817 1699 struct fbr_lookup *fbr = rx_local->fbr[id];
788ca84a
ME
1700
1701 if (id == 0) {
788ca84a
ME
1702 num_des = &rx_dma->fbr0_num_des;
1703 full_offset = &rx_dma->fbr0_full_offset;
1704 min_des = &rx_dma->fbr0_min_des;
1705 base_hi = &rx_dma->fbr0_base_hi;
1706 base_lo = &rx_dma->fbr0_base_lo;
f0ada678
ME
1707 } else {
1708 num_des = &rx_dma->fbr1_num_des;
1709 full_offset = &rx_dma->fbr1_full_offset;
1710 min_des = &rx_dma->fbr1_min_des;
1711 base_hi = &rx_dma->fbr1_base_hi;
1712 base_lo = &rx_dma->fbr1_base_lo;
788ca84a 1713 }
36f2771a 1714
788ca84a 1715 /* Now's the best time to initialize FBR contents */
57cc0279 1716 fbr_entry = fbr->ring_virtaddr;
efc56817
ZG
1717 for (entry = 0; entry < fbr->num_entries; entry++) {
1718 fbr_entry->addr_hi = fbr->bus_high[entry];
1719 fbr_entry->addr_lo = fbr->bus_low[entry];
788ca84a
ME
1720 fbr_entry->word2 = entry;
1721 fbr_entry++;
1722 }
36f2771a 1723
788ca84a
ME
1724 /* Set the address and parameters of Free buffer ring 1 and 0
1725 * into the 1310's registers
1726 */
efc56817
ZG
1727 writel(upper_32_bits(fbr->ring_physaddr), base_hi);
1728 writel(lower_32_bits(fbr->ring_physaddr), base_lo);
1729 writel(fbr->num_entries - 1, num_des);
788ca84a 1730 writel(ET_DMA10_WRAP, full_offset);
36f2771a 1731
788ca84a
ME
1732 /* This variable tracks the free buffer ring 1 full position,
1733 * so it has to match the above.
1734 */
efc56817
ZG
1735 fbr->local_full = ET_DMA10_WRAP;
1736 writel(((fbr->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
788ca84a
ME
1737 min_des);
1738 }
36f2771a
ME
1739
1740 /* Program the number of packets we will receive before generating an
1741 * interrupt.
1742 * For version B silicon, this value gets updated once autoneg is
1743 *complete.
1744 */
1745 writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
1746
1747 /* The "time_done" is not working correctly to coalesce interrupts
1748 * after a given time period, but rather is giving us an interrupt
1749 * regardless of whether we have received packets.
1750 * This value gets updated once autoneg is complete.
1751 */
1752 writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
1753
1754 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
1755}
1756
26ef1021 1757/* et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
36f2771a
ME
1758 *
1759 * Configure the transmit engine with the ring buffers we have created
1760 * and prepare it for use.
1761 */
eb7a6ca6 1762static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter)
36f2771a
ME
1763{
1764 struct txdma_regs __iomem *txdma = &adapter->regs->txdma;
76981cf1 1765 struct tx_ring *tx_ring = &adapter->tx_ring;
36f2771a
ME
1766
1767 /* Load the hardware with the start of the transmit descriptor ring. */
76981cf1
ZG
1768 writel(upper_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_hi);
1769 writel(lower_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_lo);
36f2771a
ME
1770
1771 /* Initialise the transmit DMA engine */
1772 writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des);
1773
1774 /* Load the completion writeback physical address */
76981cf1
ZG
1775 writel(upper_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_hi);
1776 writel(lower_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_lo);
36f2771a 1777
76981cf1 1778 *tx_ring->tx_status = 0;
36f2771a
ME
1779
1780 writel(0, &txdma->service_request);
76981cf1 1781 tx_ring->send_idx = 0;
36f2771a
ME
1782}
1783
15ae239d 1784/* et131x_adapter_setup - Set the adapter up as per cassini+ documentation */
eb7a6ca6 1785static void et131x_adapter_setup(struct et131x_adapter *adapter)
36f2771a
ME
1786{
1787 /* Configure the JAGCore */
1788 et131x_configure_global_regs(adapter);
1789
1790 et1310_config_mac_regs1(adapter);
1791
1792 /* Configure the MMC registers */
1793 /* All we need to do is initialize the Memory Control Register */
1794 writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl);
1795
1796 et1310_config_rxmac_regs(adapter);
1797 et1310_config_txmac_regs(adapter);
1798
1799 et131x_config_rx_dma_regs(adapter);
1800 et131x_config_tx_dma_regs(adapter);
1801
1802 et1310_config_macstat_regs(adapter);
1803
1ff70a7c 1804 et1310_phy_power_switch(adapter, 0);
36f2771a
ME
1805 et131x_xcvr_init(adapter);
1806}
1807
15ae239d 1808/* et131x_soft_reset - Issue soft reset to the hardware, complete for ET1310 */
eb7a6ca6 1809static void et131x_soft_reset(struct et131x_adapter *adapter)
5da2b158 1810{
a129be84 1811 u32 reg;
5da2b158 1812
a129be84
ME
1813 /* Disable MAC Core */
1814 reg = ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
1815 ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1816 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1817 writel(reg, &adapter->regs->mac.cfg1);
1818
1819 reg = ET_RESET_ALL;
1820 writel(reg, &adapter->regs->global.sw_reset);
1821
1822 reg = ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1823 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1824 writel(reg, &adapter->regs->mac.cfg1);
1825 writel(0, &adapter->regs->mac.cfg1);
5da2b158
ME
1826}
1827
26ef1021 1828/* et131x_enable_interrupts - enable interrupt
a4d444bd
ME
1829 *
1830 * Enable the appropriate interrupts on the ET131x according to our
1831 * configuration
1832 */
eb7a6ca6 1833static void et131x_enable_interrupts(struct et131x_adapter *adapter)
a4d444bd
ME
1834{
1835 u32 mask;
1836
1837 /* Enable all global interrupts */
1838 if (adapter->flowcontrol == FLOW_TXONLY ||
12a2f3f3 1839 adapter->flowcontrol == FLOW_BOTH)
a4d444bd
ME
1840 mask = INT_MASK_ENABLE;
1841 else
1842 mask = INT_MASK_ENABLE_NO_FLOW;
1843
1844 writel(mask, &adapter->regs->global.int_mask);
1845}
1846
26ef1021 1847/* et131x_disable_interrupts - interrupt disable
a4d444bd
ME
1848 *
1849 * Block all interrupts from the et131x device at the device itself
1850 */
eb7a6ca6 1851static void et131x_disable_interrupts(struct et131x_adapter *adapter)
a4d444bd
ME
1852{
1853 /* Disable all global interrupts */
1854 writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask);
1855}
1856
15ae239d 1857/* et131x_tx_dma_disable - Stop of Tx_DMA on the ET1310 */
eb7a6ca6 1858static void et131x_tx_dma_disable(struct et131x_adapter *adapter)
a4d444bd 1859{
868bf442 1860 /* Setup the transmit dma configuration register */
3040d056 1861 writel(ET_TXDMA_CSR_HALT | ET_TXDMA_SNGL_EPKT,
096e6224 1862 &adapter->regs->txdma.csr);
a4d444bd
ME
1863}
1864
15ae239d 1865/* et131x_enable_txrx - Enable tx/rx queues */
eb7a6ca6 1866static void et131x_enable_txrx(struct net_device *netdev)
a4d444bd
ME
1867{
1868 struct et131x_adapter *adapter = netdev_priv(netdev);
1869
1870 /* Enable the Tx and Rx DMA engines (if not already enabled) */
1871 et131x_rx_dma_enable(adapter);
1872 et131x_tx_dma_enable(adapter);
1873
1874 /* Enable device interrupts */
c655dee9 1875 if (adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE)
a4d444bd
ME
1876 et131x_enable_interrupts(adapter);
1877
1878 /* We're ready to move some data, so start the queue */
1879 netif_start_queue(netdev);
1880}
1881
15ae239d 1882/* et131x_disable_txrx - Disable tx/rx queues */
eb7a6ca6 1883static void et131x_disable_txrx(struct net_device *netdev)
a4d444bd
ME
1884{
1885 struct et131x_adapter *adapter = netdev_priv(netdev);
1886
1887 /* First thing is to stop the queue */
1888 netif_stop_queue(netdev);
1889
1890 /* Stop the Tx and Rx DMA engines */
1891 et131x_rx_dma_disable(adapter);
1892 et131x_tx_dma_disable(adapter);
1893
1894 /* Disable device interrupts */
1895 et131x_disable_interrupts(adapter);
1896}
1897
15ae239d 1898/* et131x_init_send - Initialize send data structures */
eb7a6ca6 1899static void et131x_init_send(struct et131x_adapter *adapter)
8310c602 1900{
8310c602 1901 u32 ct;
76981cf1
ZG
1902 struct tx_ring *tx_ring = &adapter->tx_ring;
1903 struct tcb *tcb = tx_ring->tcb_ring;
8310c602
ME
1904
1905 tx_ring->tcb_qhead = tcb;
1906
1907 memset(tcb, 0, sizeof(struct tcb) * NUM_TCB);
1908
1909 /* Go through and set up each TCB */
1910 for (ct = 0; ct++ < NUM_TCB; tcb++)
1911 /* Set the link pointer in HW TCB to the next TCB in the
1912 * chain
1913 */
1914 tcb->next = tcb + 1;
1915
1916 /* Set the tail pointer */
1917 tcb--;
1918 tx_ring->tcb_qtail = tcb;
1919 tcb->next = NULL;
1920 /* Curr send queue should now be empty */
1921 tx_ring->send_head = NULL;
1922 tx_ring->send_tail = NULL;
1923}
1924
26ef1021 1925/* et1310_enable_phy_coma - called when network cable is unplugged
d2796743
ME
1926 *
1927 * driver receive an phy status change interrupt while in D0 and check that
1928 * phy_status is down.
1929 *
1930 * -- gate off JAGCore;
1931 * -- set gigE PHY in Coma mode
1932 * -- wake on phy_interrupt; Perform software reset JAGCore,
1933 * re-initialize jagcore and gigE PHY
1934 *
1935 * Add D0-ASPM-PhyLinkDown Support:
1936 * -- while in D0, when there is a phy_interrupt indicating phy link
1937 * down status, call the MPSetPhyComa routine to enter this active
1938 * state power saving mode
1939 * -- while in D0-ASPM-PhyLinkDown mode, when there is a phy_interrupt
1940 * indicating linkup status, call the MPDisablePhyComa routine to
1941 * restore JAGCore and gigE PHY
1942 */
eb7a6ca6 1943static void et1310_enable_phy_coma(struct et131x_adapter *adapter)
d2796743
ME
1944{
1945 unsigned long flags;
1946 u32 pmcsr;
1947
1948 pmcsr = readl(&adapter->regs->global.pm_csr);
1949
1950 /* Save the GbE PHY speed and duplex modes. Need to restore this
1951 * when cable is plugged back in
1952 */
d2796743
ME
1953
1954 /* Stop sending packets. */
1955 spin_lock_irqsave(&adapter->send_hw_lock, flags);
c655dee9 1956 adapter->flags |= FMP_ADAPTER_LOWER_POWER;
d2796743
ME
1957 spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
1958
1959 /* Wait for outstanding Receive packets */
1960
1961 et131x_disable_txrx(adapter->netdev);
1962
1963 /* Gate off JAGCore 3 clock domains */
1964 pmcsr &= ~ET_PMCSR_INIT;
1965 writel(pmcsr, &adapter->regs->global.pm_csr);
1966
1967 /* Program gigE PHY in to Coma mode */
1968 pmcsr |= ET_PM_PHY_SW_COMA;
1969 writel(pmcsr, &adapter->regs->global.pm_csr);
1970}
1971
15ae239d 1972/* et1310_disable_phy_coma - Disable the Phy Coma Mode */
eb7a6ca6 1973static void et1310_disable_phy_coma(struct et131x_adapter *adapter)
d2796743
ME
1974{
1975 u32 pmcsr;
1976
1977 pmcsr = readl(&adapter->regs->global.pm_csr);
1978
1979 /* Disable phy_sw_coma register and re-enable JAGCore clocks */
1980 pmcsr |= ET_PMCSR_INIT;
1981 pmcsr &= ~ET_PM_PHY_SW_COMA;
1982 writel(pmcsr, &adapter->regs->global.pm_csr);
1983
1984 /* Restore the GbE PHY speed and duplex modes;
1985 * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
1986 */
d2796743
ME
1987
1988 /* Re-initialize the send structures */
1989 et131x_init_send(adapter);
1990
d2796743
ME
1991 /* Bring the device back to the state it was during init prior to
1992 * autonegotiation being complete. This way, when we get the auto-neg
1993 * complete interrupt, we can complete init by calling ConfigMacREGS2.
1994 */
1995 et131x_soft_reset(adapter);
1996
1997 /* setup et1310 as per the documentation ?? */
1998 et131x_adapter_setup(adapter);
1999
2000 /* Allow Tx to restart */
c655dee9 2001 adapter->flags &= ~FMP_ADAPTER_LOWER_POWER;
d2796743
ME
2002
2003 et131x_enable_txrx(adapter->netdev);
2004}
2005
d2796743
ME
2006static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
2007{
2008 u32 tmp_free_buff_ring = *free_buff_ring;
f03fcca0 2009
d2796743
ME
2010 tmp_free_buff_ring++;
2011 /* This works for all cases where limit < 1024. The 1023 case
26ef1021
ME
2012 * works because 1023++ is 1024 which means the if condition is not
2013 * taken but the carry of the bit into the wrap bit toggles the wrap
2014 * value correctly
2015 */
d2796743
ME
2016 if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
2017 tmp_free_buff_ring &= ~ET_DMA10_MASK;
2018 tmp_free_buff_ring ^= ET_DMA10_WRAP;
2019 }
2020 /* For the 1023 case */
12a2f3f3 2021 tmp_free_buff_ring &= (ET_DMA10_MASK | ET_DMA10_WRAP);
d2796743
ME
2022 *free_buff_ring = tmp_free_buff_ring;
2023 return tmp_free_buff_ring;
2024}
2025
26ef1021 2026/* et131x_rx_dma_memory_alloc
d2796743
ME
2027 *
2028 * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
2029 * and the Packet Status Ring.
2030 */
eb7a6ca6 2031static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
d2796743 2032{
788ca84a 2033 u8 id;
d2796743
ME
2034 u32 i, j;
2035 u32 bufsize;
87648933
ME
2036 u32 pktstat_ringsize;
2037 u32 fbr_chunksize;
8f7fa96a 2038 struct rx_ring *rx_ring = &adapter->rx_ring;
bad5d26f 2039 struct fbr_lookup *fbr;
d2796743 2040
d2796743 2041 /* Alloc memory for the lookup table */
e592a9b0 2042 rx_ring->fbr[0] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
a9f48883
A
2043 if (rx_ring->fbr[0] == NULL)
2044 return -ENOMEM;
f0ada678 2045 rx_ring->fbr[1] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
a9f48883
A
2046 if (rx_ring->fbr[1] == NULL)
2047 return -ENOMEM;
d2796743
ME
2048
2049 /* The first thing we will do is configure the sizes of the buffer
2050 * rings. These will change based on jumbo packet support. Larger
2051 * jumbo packets increases the size of each entry in FBR0, and the
2052 * number of entries in FBR0, while at the same time decreasing the
2053 * number of entries in FBR1.
2054 *
2055 * FBR1 holds "large" frames, FBR0 holds "small" frames. If FBR1
2056 * entries are huge in order to accommodate a "jumbo" frame, then it
2057 * will have less entries. Conversely, FBR1 will now be relied upon
2058 * to carry more "normal" frames, thus it's entry size also increases
2059 * and the number of entries goes up too (since it now carries
2060 * "small" + "regular" packets.
2061 *
2062 * In this scheme, we try to maintain 512 entries between the two
2063 * rings. Also, FBR1 remains a constant size - when it's size doubles
2064 * the number of entries halves. FBR0 increases in size, however.
2065 */
2066
2067 if (adapter->registry_jumbo_packet < 2048) {
f0ada678 2068 rx_ring->fbr[0]->buffsize = 256;
e592a9b0 2069 rx_ring->fbr[0]->num_entries = 512;
f0ada678
ME
2070 rx_ring->fbr[1]->buffsize = 2048;
2071 rx_ring->fbr[1]->num_entries = 512;
d2796743 2072 } else if (adapter->registry_jumbo_packet < 4096) {
f0ada678
ME
2073 rx_ring->fbr[0]->buffsize = 512;
2074 rx_ring->fbr[0]->num_entries = 1024;
2075 rx_ring->fbr[1]->buffsize = 4096;
2076 rx_ring->fbr[1]->num_entries = 512;
d2796743 2077 } else {
f0ada678
ME
2078 rx_ring->fbr[0]->buffsize = 1024;
2079 rx_ring->fbr[0]->num_entries = 768;
2080 rx_ring->fbr[1]->buffsize = 16384;
2081 rx_ring->fbr[1]->num_entries = 128;
d2796743
ME
2082 }
2083
bad5d26f
ZG
2084 rx_ring->psr_num_entries = rx_ring->fbr[0]->num_entries +
2085 rx_ring->fbr[1]->num_entries;
d2796743 2086
788ca84a 2087 for (id = 0; id < NUM_FBRS; id++) {
bad5d26f 2088 fbr = rx_ring->fbr[id];
788ca84a 2089 /* Allocate an area of memory for Free Buffer Ring */
bad5d26f
ZG
2090 bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
2091 fbr->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2092 bufsize,
2093 &fbr->ring_physaddr,
2094 GFP_KERNEL);
2095 if (!fbr->ring_virtaddr) {
d2796743 2096 dev_err(&adapter->pdev->dev,
096e6224
ME
2097 "Cannot alloc memory for Free Buffer Ring %d\n",
2098 id);
d2796743
ME
2099 return -ENOMEM;
2100 }
d2796743
ME
2101 }
2102
788ca84a 2103 for (id = 0; id < NUM_FBRS; id++) {
bad5d26f
ZG
2104 fbr = rx_ring->fbr[id];
2105 fbr_chunksize = (FBR_CHUNKS * fbr->buffsize);
87648933 2106
bad5d26f 2107 for (i = 0; i < fbr->num_entries / FBR_CHUNKS; i++) {
788ca84a 2108 dma_addr_t fbr_tmp_physaddr;
788ca84a 2109
bad5d26f 2110 fbr->mem_virtaddrs[i] = dma_alloc_coherent(
788ca84a 2111 &adapter->pdev->dev, fbr_chunksize,
bad5d26f 2112 &fbr->mem_physaddrs[i],
788ca84a 2113 GFP_KERNEL);
d2796743 2114
bad5d26f 2115 if (!fbr->mem_virtaddrs[i]) {
788ca84a
ME
2116 dev_err(&adapter->pdev->dev,
2117 "Could not alloc memory\n");
2118 return -ENOMEM;
2119 }
d2796743 2120
788ca84a 2121 /* See NOTE in "Save Physical Address" comment above */
bad5d26f 2122 fbr_tmp_physaddr = fbr->mem_physaddrs[i];
788ca84a 2123
788ca84a
ME
2124 for (j = 0; j < FBR_CHUNKS; j++) {
2125 u32 index = (i * FBR_CHUNKS) + j;
2126
2127 /* Save the Virtual address of this index for
2128 * quick access later
2129 */
bad5d26f
ZG
2130 fbr->virt[index] = (u8 *)fbr->mem_virtaddrs[i] +
2131 (j * fbr->buffsize);
788ca84a
ME
2132
2133 /* now store the physical address in the
2134 * descriptor so the device can access it
2135 */
bad5d26f 2136 fbr->bus_high[index] =
788ca84a 2137 upper_32_bits(fbr_tmp_physaddr);
bad5d26f 2138 fbr->bus_low[index] =
788ca84a
ME
2139 lower_32_bits(fbr_tmp_physaddr);
2140
bad5d26f 2141 fbr_tmp_physaddr += fbr->buffsize;
788ca84a 2142 }
d2796743
ME
2143 }
2144 }
d2796743
ME
2145
2146 /* Allocate an area of memory for FIFO of Packet Status ring entries */
2147 pktstat_ringsize =
bad5d26f 2148 sizeof(struct pkt_stat_desc) * rx_ring->psr_num_entries;
d2796743 2149
0d1b7a84 2150 rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
d2796743 2151 pktstat_ringsize,
0d1b7a84
ME
2152 &rx_ring->ps_ring_physaddr,
2153 GFP_KERNEL);
d2796743
ME
2154
2155 if (!rx_ring->ps_ring_virtaddr) {
2156 dev_err(&adapter->pdev->dev,
096e6224 2157 "Cannot alloc memory for Packet Status Ring\n");
d2796743
ME
2158 return -ENOMEM;
2159 }
d2796743 2160
26ef1021 2161 /* NOTE : dma_alloc_coherent(), used above to alloc DMA regions,
d2796743
ME
2162 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2163 * are ever returned, make sure the high part is retrieved here before
2164 * storing the adjusted address.
2165 */
2166
2167 /* Allocate an area of memory for writeback of status information */
0d1b7a84 2168 rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev,
d2796743 2169 sizeof(struct rx_status_block),
0d1b7a84
ME
2170 &rx_ring->rx_status_bus,
2171 GFP_KERNEL);
d2796743
ME
2172 if (!rx_ring->rx_status_block) {
2173 dev_err(&adapter->pdev->dev,
096e6224 2174 "Cannot alloc memory for Status Block\n");
d2796743
ME
2175 return -ENOMEM;
2176 }
2177 rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
d2796743 2178
d2796743
ME
2179 /* The RFDs are going to be put on lists later on, so initialize the
2180 * lists now.
2181 */
2182 INIT_LIST_HEAD(&rx_ring->recv_list);
2183 return 0;
2184}
2185
15ae239d 2186/* et131x_rx_dma_memory_free - Free all memory allocated within this module */
eb7a6ca6 2187static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
d2796743 2188{
788ca84a 2189 u8 id;
d2796743
ME
2190 u32 index;
2191 u32 bufsize;
2192 u32 pktstat_ringsize;
2193 struct rfd *rfd;
8f7fa96a 2194 struct rx_ring *rx_ring = &adapter->rx_ring;
f876f59e 2195 struct fbr_lookup *fbr;
d2796743 2196
d2796743
ME
2197 /* Free RFDs and associated packet descriptors */
2198 WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
2199
2200 while (!list_empty(&rx_ring->recv_list)) {
57cc0279
ZG
2201 rfd = list_entry(rx_ring->recv_list.next,
2202 struct rfd, list_node);
d2796743
ME
2203
2204 list_del(&rfd->list_node);
2205 rfd->skb = NULL;
d959df0a 2206 kfree(rfd);
d2796743
ME
2207 }
2208
788ca84a
ME
2209 /* Free Free Buffer Rings */
2210 for (id = 0; id < NUM_FBRS; id++) {
f876f59e
ZG
2211 fbr = rx_ring->fbr[id];
2212
a9f48883 2213 if (!fbr || !fbr->ring_virtaddr)
823bb2e8 2214 continue;
d2796743 2215
823bb2e8
ME
2216 /* First the packet memory */
2217 for (index = 0;
f876f59e 2218 index < fbr->num_entries / FBR_CHUNKS;
823bb2e8 2219 index++) {
f876f59e
ZG
2220 if (fbr->mem_virtaddrs[index]) {
2221 bufsize = fbr->buffsize * FBR_CHUNKS;
d2796743 2222
823bb2e8 2223 dma_free_coherent(&adapter->pdev->dev,
f876f59e
ZG
2224 bufsize,
2225 fbr->mem_virtaddrs[index],
2226 fbr->mem_physaddrs[index]);
d2796743 2227
f876f59e 2228 fbr->mem_virtaddrs[index] = NULL;
823bb2e8 2229 }
d2796743 2230 }
823bb2e8 2231
f876f59e 2232 bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
823bb2e8 2233
f876f59e
ZG
2234 dma_free_coherent(&adapter->pdev->dev,
2235 bufsize,
2236 fbr->ring_virtaddr,
2237 fbr->ring_physaddr);
823bb2e8 2238
f876f59e 2239 fbr->ring_virtaddr = NULL;
d2796743 2240 }
d2796743
ME
2241
2242 /* Free Packet Status Ring */
2243 if (rx_ring->ps_ring_virtaddr) {
242187aa 2244 pktstat_ringsize = sizeof(struct pkt_stat_desc) *
8f7fa96a 2245 rx_ring->psr_num_entries;
d2796743 2246
675c8f68 2247 dma_free_coherent(&adapter->pdev->dev, pktstat_ringsize,
096e6224
ME
2248 rx_ring->ps_ring_virtaddr,
2249 rx_ring->ps_ring_physaddr);
d2796743
ME
2250
2251 rx_ring->ps_ring_virtaddr = NULL;
2252 }
2253
2254 /* Free area of memory for the writeback of status information */
2255 if (rx_ring->rx_status_block) {
675c8f68 2256 dma_free_coherent(&adapter->pdev->dev,
096e6224
ME
2257 sizeof(struct rx_status_block),
2258 rx_ring->rx_status_block,
2259 rx_ring->rx_status_bus);
d2796743
ME
2260 rx_ring->rx_status_block = NULL;
2261 }
2262
d2796743 2263 /* Free the FBR Lookup Table */
e592a9b0 2264 kfree(rx_ring->fbr[0]);
f0ada678 2265 kfree(rx_ring->fbr[1]);
d2796743
ME
2266
2267 /* Reset Counters */
2268 rx_ring->num_ready_recv = 0;
2269}
2270
15ae239d 2271/* et131x_init_recv - Initialize receive data structures */
eb7a6ca6 2272static int et131x_init_recv(struct et131x_adapter *adapter)
d2796743 2273{
d959df0a 2274 struct rfd *rfd;
d2796743 2275 u32 rfdct;
8f7fa96a 2276 struct rx_ring *rx_ring = &adapter->rx_ring;
d2796743
ME
2277
2278 /* Setup each RFD */
2279 for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
d959df0a 2280 rfd = kzalloc(sizeof(struct rfd), GFP_ATOMIC | GFP_DMA);
78110bb8 2281 if (!rfd)
d959df0a 2282 return -ENOMEM;
d2796743
ME
2283
2284 rfd->skb = NULL;
2285
2286 /* Add this RFD to the recv_list */
2287 list_add_tail(&rfd->list_node, &rx_ring->recv_list);
2288
4eb94628 2289 /* Increment the available RFD's */
d2796743 2290 rx_ring->num_ready_recv++;
d2796743
ME
2291 }
2292
d959df0a 2293 return 0;
d2796743
ME
2294}
2295
15ae239d 2296/* et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate */
eb7a6ca6 2297static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
d2796743
ME
2298{
2299 struct phy_device *phydev = adapter->phydev;
2300
d2796743
ME
2301 /* For version B silicon, we do not use the RxDMA timer for 10 and 100
2302 * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
2303 */
2304 if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
2305 writel(0, &adapter->regs->rxdma.max_pkt_time);
2306 writel(1, &adapter->regs->rxdma.num_pkt_done);
2307 }
2308}
2309
26ef1021 2310/* NICReturnRFD - Recycle a RFD and put it back onto the receive list
d2796743
ME
2311 * @adapter: pointer to our adapter
2312 * @rfd: pointer to the RFD
2313 */
2314static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
2315{
2316 struct rx_ring *rx_local = &adapter->rx_ring;
2317 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
2318 u16 buff_index = rfd->bufferindex;
2319 u8 ring_index = rfd->ringindex;
2320 unsigned long flags;
39bdb4a0 2321 struct fbr_lookup *fbr = rx_local->fbr[ring_index];
d2796743
ME
2322
2323 /* We don't use any of the OOB data besides status. Otherwise, we
2324 * need to clean up OOB data
2325 */
39bdb4a0
ZG
2326 if (buff_index < fbr->num_entries) {
2327 u32 free_buff_ring;
c0594ee9 2328 u32 __iomem *offset;
788ca84a
ME
2329 struct fbr_desc *next;
2330
f0ada678 2331 if (ring_index == 0)
788ca84a 2332 offset = &rx_dma->fbr0_full_offset;
f0ada678
ME
2333 else
2334 offset = &rx_dma->fbr1_full_offset;
788ca84a 2335
39bdb4a0
ZG
2336 next = (struct fbr_desc *)(fbr->ring_virtaddr) +
2337 INDEX10(fbr->local_full);
788ca84a
ME
2338
2339 /* Handle the Free Buffer Ring advancement here. Write
2340 * the PA / Buffer Index for the returned buffer into
2341 * the oldest (next to be freed)FBR entry
2342 */
39bdb4a0
ZG
2343 next->addr_hi = fbr->bus_high[buff_index];
2344 next->addr_lo = fbr->bus_low[buff_index];
788ca84a
ME
2345 next->word2 = buff_index;
2346
39bdb4a0
ZG
2347 free_buff_ring = bump_free_buff_ring(&fbr->local_full,
2348 fbr->num_entries - 1);
2349 writel(free_buff_ring, offset);
d2796743
ME
2350 } else {
2351 dev_err(&adapter->pdev->dev,
096e6224 2352 "%s illegal Buffer Index returned\n", __func__);
d2796743
ME
2353 }
2354
2355 /* The processing on this RFD is done, so put it back on the tail of
2356 * our list
2357 */
2358 spin_lock_irqsave(&adapter->rcv_lock, flags);
2359 list_add_tail(&rfd->list_node, &rx_local->recv_list);
2360 rx_local->num_ready_recv++;
2361 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2362
2363 WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
2364}
2365
26ef1021 2366/* nic_rx_pkts - Checks the hardware for available packets
54dbf04f
ME
2367 *
2368 * Returns rfd, a pointer to our MPRFD.
2369 *
2370 * Checks the hardware for available packets, using completion ring
2371 * If packets are available, it gets an RFD from the recv_list, attaches
2372 * the packet to it, puts the RFD in the RecvPendList, and also returns
2373 * the pointer to the RFD.
2374 */
d2796743
ME
2375static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
2376{
2377 struct rx_ring *rx_local = &adapter->rx_ring;
2378 struct rx_status_block *status;
2379 struct pkt_stat_desc *psr;
186c426d 2380 struct rfd *rfd;
d2796743
ME
2381 u32 i;
2382 u8 *buf;
2383 unsigned long flags;
2384 struct list_head *element;
2385 u8 ring_index;
2386 u16 buff_index;
2387 u32 len;
2388 u32 word0;
2389 u32 word1;
186c426d 2390 struct sk_buff *skb;
297bb9db 2391 struct fbr_lookup *fbr;
d2796743
ME
2392
2393 /* RX Status block is written by the DMA engine prior to every
2394 * interrupt. It contains the next to be used entry in the Packet
2395 * Status Ring, and also the two Free Buffer rings.
2396 */
2397 status = rx_local->rx_status_block;
2398 word1 = status->word1 >> 16; /* Get the useful bits */
2399
2400 /* Check the PSR and wrap bits do not match */
2401 if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
242187aa 2402 return NULL; /* Looks like this ring is not updated yet */
d2796743
ME
2403
2404 /* The packet status ring indicates that data is available. */
2405 psr = (struct pkt_stat_desc *) (rx_local->ps_ring_virtaddr) +
2406 (rx_local->local_psr_full & 0xFFF);
2407
242187aa
ME
2408 /* Grab any information that is required once the PSR is advanced,
2409 * since we can no longer rely on the memory being accurate
d2796743
ME
2410 */
2411 len = psr->word1 & 0xFFFF;
2412 ring_index = (psr->word1 >> 26) & 0x03;
297bb9db 2413 fbr = rx_local->fbr[ring_index];
d2796743
ME
2414 buff_index = (psr->word1 >> 16) & 0x3FF;
2415 word0 = psr->word0;
2416
2417 /* Indicate that we have used this PSR entry. */
2418 /* FIXME wrap 12 */
2419 add_12bit(&rx_local->local_psr_full, 1);
2420 if (
2421 (rx_local->local_psr_full & 0xFFF) > rx_local->psr_num_entries - 1) {
2422 /* Clear psr full and toggle the wrap bit */
2423 rx_local->local_psr_full &= ~0xFFF;
2424 rx_local->local_psr_full ^= 0x1000;
2425 }
2426
242187aa 2427 writel(rx_local->local_psr_full, &adapter->regs->rxdma.psr_full_offset);
d2796743 2428
297bb9db 2429 if (ring_index > 1 || buff_index > fbr->num_entries - 1) {
d2796743
ME
2430 /* Illegal buffer or ring index cannot be used by S/W*/
2431 dev_err(&adapter->pdev->dev,
242187aa
ME
2432 "NICRxPkts PSR Entry %d indicates length of %d and/or bad bi(%d)\n",
2433 rx_local->local_psr_full & 0xFFF, len, buff_index);
d2796743
ME
2434 return NULL;
2435 }
2436
2437 /* Get and fill the RFD. */
2438 spin_lock_irqsave(&adapter->rcv_lock, flags);
2439
d2796743 2440 element = rx_local->recv_list.next;
57cc0279 2441 rfd = list_entry(element, struct rfd, list_node);
d2796743 2442
242187aa 2443 if (!rfd) {
d2796743
ME
2444 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2445 return NULL;
2446 }
2447
2448 list_del(&rfd->list_node);
2449 rx_local->num_ready_recv--;
2450
2451 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2452
2453 rfd->bufferindex = buff_index;
2454 rfd->ringindex = ring_index;
2455
242187aa
ME
2456 /* In V1 silicon, there is a bug which screws up filtering of runt
2457 * packets. Therefore runt packet filtering is disabled in the MAC and
2458 * the packets are dropped here. They are also counted here.
d2796743
ME
2459 */
2460 if (len < (NIC_MIN_PACKET_SIZE + 4)) {
2461 adapter->stats.rx_other_errs++;
2462 len = 0;
2463 }
2464
242187aa
ME
2465 if (len == 0) {
2466 rfd->len = 0;
2467 goto out;
2468 }
2469
2470 /* Determine if this is a multicast packet coming in */
2471 if ((word0 & ALCATEL_MULTICAST_PKT) &&
2472 !(word0 & ALCATEL_BROADCAST_PKT)) {
2473 /* Promiscuous mode and Multicast mode are not mutually
2474 * exclusive as was first thought. I guess Promiscuous is just
2475 * considered a super-set of the other filters. Generally filter
2476 * is 0x2b when in promiscuous mode.
2477 */
2478 if ((adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST)
2479 && !(adapter->packet_filter & ET131X_PACKET_TYPE_PROMISCUOUS)
2480 && !(adapter->packet_filter &
d2796743 2481 ET131X_PACKET_TYPE_ALL_MULTICAST)) {
297bb9db 2482 buf = fbr->virt[buff_index];
d2796743 2483
242187aa
ME
2484 /* Loop through our list to see if the destination
2485 * address of this packet matches one in our list.
2486 */
2487 for (i = 0; i < adapter->multicast_addr_count; i++) {
2488 if (buf[0] == adapter->multicast_list[i][0]
2489 && buf[1] == adapter->multicast_list[i][1]
2490 && buf[2] == adapter->multicast_list[i][2]
2491 && buf[3] == adapter->multicast_list[i][3]
2492 && buf[4] == adapter->multicast_list[i][4]
2493 && buf[5] == adapter->multicast_list[i][5]) {
2494 break;
d2796743 2495 }
d2796743
ME
2496 }
2497
242187aa
ME
2498 /* If our index is equal to the number of Multicast
2499 * address we have, then this means we did not find this
2500 * packet's matching address in our list. Set the len to
2501 * zero, so we free our RFD when we return from this
2502 * function.
d2796743 2503 */
242187aa
ME
2504 if (i == adapter->multicast_addr_count)
2505 len = 0;
2506 }
d2796743 2507
242187aa
ME
2508 if (len > 0)
2509 adapter->stats.multicast_pkts_rcvd++;
2510 } else if (word0 & ALCATEL_BROADCAST_PKT) {
2511 adapter->stats.broadcast_pkts_rcvd++;
2512 } else {
2513 /* Not sure what this counter measures in promiscuous mode.
2514 * Perhaps we should check the MAC address to see if it is
2515 * directed to us in promiscuous mode.
2516 */
2517 adapter->stats.unicast_pkts_rcvd++;
2518 }
d2796743 2519
12a2f3f3 2520 if (!len) {
242187aa
ME
2521 rfd->len = 0;
2522 goto out;
2523 }
d2796743 2524
242187aa 2525 rfd->len = len;
d2796743 2526
242187aa
ME
2527 skb = dev_alloc_skb(rfd->len + 2);
2528 if (!skb) {
2529 dev_err(&adapter->pdev->dev, "Couldn't alloc an SKB for Rx\n");
2530 return NULL;
2531 }
d2796743 2532
1f765d9f 2533 adapter->netdev->stats.rx_bytes += rfd->len;
d2796743 2534
297bb9db 2535 memcpy(skb_put(skb, rfd->len), fbr->virt[buff_index], rfd->len);
d2796743 2536
242187aa
ME
2537 skb->protocol = eth_type_trans(skb, adapter->netdev);
2538 skb->ip_summed = CHECKSUM_NONE;
c2ebf58b 2539 netif_receive_skb(skb);
d2796743 2540
242187aa 2541out:
d2796743
ME
2542 nic_return_rfd(adapter, rfd);
2543 return rfd;
2544}
2545
c2ebf58b 2546/* et131x_handle_recv_pkts - Interrupt handler for receive processing
d2796743
ME
2547 *
2548 * Assumption, Rcv spinlock has been acquired.
2549 */
c2ebf58b 2550static int et131x_handle_recv_pkts(struct et131x_adapter *adapter, int budget)
d2796743
ME
2551{
2552 struct rfd *rfd = NULL;
c2ebf58b
ME
2553 int count = 0;
2554 int limit = budget;
d2796743 2555 bool done = true;
8f7fa96a 2556 struct rx_ring *rx_ring = &adapter->rx_ring;
d2796743 2557
c2ebf58b
ME
2558 if (budget > MAX_PACKETS_HANDLED)
2559 limit = MAX_PACKETS_HANDLED;
2560
d2796743 2561 /* Process up to available RFD's */
c2ebf58b 2562 while (count < limit) {
8f7fa96a
ZG
2563 if (list_empty(&rx_ring->recv_list)) {
2564 WARN_ON(rx_ring->num_ready_recv != 0);
d2796743
ME
2565 done = false;
2566 break;
2567 }
2568
2569 rfd = nic_rx_pkts(adapter);
2570
2571 if (rfd == NULL)
2572 break;
2573
2574 /* Do not receive any packets until a filter has been set.
2575 * Do not receive any packets until we have link.
2576 * If length is zero, return the RFD in order to advance the
2577 * Free buffer ring.
2578 */
2579 if (!adapter->packet_filter ||
2580 !netif_carrier_ok(adapter->netdev) ||
2581 rfd->len == 0)
2582 continue;
2583
2584 /* Increment the number of packets we received */
1f765d9f 2585 adapter->netdev->stats.rx_packets++;
d2796743
ME
2586
2587 /* Set the status on the packet, either resources or success */
8f7fa96a 2588 if (rx_ring->num_ready_recv < RFD_LOW_WATER_MARK)
0cdc6ee8
ME
2589 dev_warn(&adapter->pdev->dev, "RFD's are running out\n");
2590
d2796743
ME
2591 count++;
2592 }
2593
c2ebf58b 2594 if (count == limit || !done) {
8f7fa96a 2595 rx_ring->unfinished_receives = true;
d2796743
ME
2596 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2597 &adapter->regs->global.watchdog_timer);
2598 } else
2599 /* Watchdog timer will disable itself if appropriate. */
8f7fa96a 2600 rx_ring->unfinished_receives = false;
c2ebf58b
ME
2601
2602 return count;
d2796743
ME
2603}
2604
26ef1021 2605/* et131x_tx_dma_memory_alloc
d2796743
ME
2606 *
2607 * Allocates memory that will be visible both to the device and to the CPU.
2608 * The OS will pass us packets, pointers to which we will insert in the Tx
2609 * Descriptor queue. The device will read this queue to find the packets in
2610 * memory. The device will update the "status" in memory each time it xmits a
2611 * packet.
2612 */
eb7a6ca6 2613static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
d2796743
ME
2614{
2615 int desc_size = 0;
2616 struct tx_ring *tx_ring = &adapter->tx_ring;
2617
2618 /* Allocate memory for the TCB's (Transmit Control Block) */
76981cf1
ZG
2619 tx_ring->tcb_ring = kcalloc(NUM_TCB, sizeof(struct tcb),
2620 GFP_ATOMIC | GFP_DMA);
2621 if (!tx_ring->tcb_ring)
d2796743 2622 return -ENOMEM;
d2796743 2623
d3c75e8d 2624 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
57cc0279
ZG
2625 tx_ring->tx_desc_ring = dma_alloc_coherent(&adapter->pdev->dev,
2626 desc_size,
2627 &tx_ring->tx_desc_ring_pa,
2628 GFP_KERNEL);
76981cf1 2629 if (!tx_ring->tx_desc_ring) {
d2796743 2630 dev_err(&adapter->pdev->dev,
09a3fc2b 2631 "Cannot alloc memory for Tx Ring\n");
d2796743
ME
2632 return -ENOMEM;
2633 }
2634
2635 /* Save physical address
2636 *
26dc751e 2637 * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
d2796743
ME
2638 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2639 * are ever returned, make sure the high part is retrieved here before
2640 * storing the adjusted address.
2641 */
2642 /* Allocate memory for the Tx status block */
0d1b7a84 2643 tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev,
d2796743 2644 sizeof(u32),
0d1b7a84
ME
2645 &tx_ring->tx_status_pa,
2646 GFP_KERNEL);
76981cf1 2647 if (!tx_ring->tx_status_pa) {
d2796743 2648 dev_err(&adapter->pdev->dev,
76981cf1 2649 "Cannot alloc memory for Tx status block\n");
d2796743
ME
2650 return -ENOMEM;
2651 }
2652 return 0;
2653}
2654
15ae239d 2655/* et131x_tx_dma_memory_free - Free all memory allocated within this module */
eb7a6ca6 2656static void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
d2796743
ME
2657{
2658 int desc_size = 0;
76981cf1 2659 struct tx_ring *tx_ring = &adapter->tx_ring;
d2796743 2660
76981cf1 2661 if (tx_ring->tx_desc_ring) {
d2796743 2662 /* Free memory relating to Tx rings here */
d3c75e8d 2663 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
675c8f68 2664 dma_free_coherent(&adapter->pdev->dev,
76981cf1
ZG
2665 desc_size,
2666 tx_ring->tx_desc_ring,
2667 tx_ring->tx_desc_ring_pa);
2668 tx_ring->tx_desc_ring = NULL;
d2796743
ME
2669 }
2670
2671 /* Free memory for the Tx status block */
76981cf1 2672 if (tx_ring->tx_status) {
675c8f68 2673 dma_free_coherent(&adapter->pdev->dev,
76981cf1
ZG
2674 sizeof(u32),
2675 tx_ring->tx_status,
2676 tx_ring->tx_status_pa);
d2796743 2677
76981cf1 2678 tx_ring->tx_status = NULL;
d2796743
ME
2679 }
2680 /* Free the memory for the tcb structures */
76981cf1 2681 kfree(tx_ring->tcb_ring);
d2796743
ME
2682}
2683
26ef1021 2684/* nic_send_packet - NIC specific send handler for version B silicon.
d2796743
ME
2685 * @adapter: pointer to our adapter
2686 * @tcb: pointer to struct tcb
d2796743
ME
2687 */
2688static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb)
2689{
2690 u32 i;
2691 struct tx_desc desc[24]; /* 24 x 16 byte */
2692 u32 frag = 0;
2693 u32 thiscopy, remainder;
2694 struct sk_buff *skb = tcb->skb;
2695 u32 nr_frags = skb_shinfo(skb)->nr_frags + 1;
2696 struct skb_frag_struct *frags = &skb_shinfo(skb)->frags[0];
2697 unsigned long flags;
2698 struct phy_device *phydev = adapter->phydev;
998f6dfb 2699 dma_addr_t dma_addr;
76981cf1 2700 struct tx_ring *tx_ring = &adapter->tx_ring;
d2796743
ME
2701
2702 /* Part of the optimizations of this send routine restrict us to
2703 * sending 24 fragments at a pass. In practice we should never see
2704 * more than 5 fragments.
2705 *
2706 * NOTE: The older version of this function (below) can handle any
2707 * number of fragments. If needed, we can call this function,
2708 * although it is less efficient.
2709 */
9c7bc376
RK
2710
2711 /* nr_frags should be no more than 18. */
2712 BUILD_BUG_ON(MAX_SKB_FRAGS + 1 > 23);
d2796743
ME
2713
2714 memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1));
2715
2716 for (i = 0; i < nr_frags; i++) {
2717 /* If there is something in this element, lets get a
2718 * descriptor from the ring and get the necessary data
2719 */
2720 if (i == 0) {
2721 /* If the fragments are smaller than a standard MTU,
2722 * then map them to a single descriptor in the Tx
2723 * Desc ring. However, if they're larger, as is
2724 * possible with support for jumbo packets, then
2725 * split them each across 2 descriptors.
2726 *
2727 * This will work until we determine why the hardware
2728 * doesn't seem to like large fragments.
2729 */
f1b540b9 2730 if (skb_headlen(skb) <= 1514) {
d2796743 2731 /* Low 16bits are length, high is vlan and
26ef1021
ME
2732 * unused currently so zero
2733 */
f1b540b9 2734 desc[frag].len_vlan = skb_headlen(skb);
998f6dfb
ME
2735 dma_addr = dma_map_single(&adapter->pdev->dev,
2736 skb->data,
2737 skb_headlen(skb),
2738 DMA_TO_DEVICE);
2739 desc[frag].addr_lo = lower_32_bits(dma_addr);
2740 desc[frag].addr_hi = upper_32_bits(dma_addr);
2741 frag++;
d2796743 2742 } else {
f1b540b9 2743 desc[frag].len_vlan = skb_headlen(skb) / 2;
998f6dfb 2744 dma_addr = dma_map_single(&adapter->pdev->dev,
096e6224
ME
2745 skb->data,
2746 (skb_headlen(skb) / 2),
2747 DMA_TO_DEVICE);
998f6dfb
ME
2748 desc[frag].addr_lo = lower_32_bits(dma_addr);
2749 desc[frag].addr_hi = upper_32_bits(dma_addr);
2750 frag++;
d2796743 2751
f1b540b9 2752 desc[frag].len_vlan = skb_headlen(skb) / 2;
998f6dfb 2753 dma_addr = dma_map_single(&adapter->pdev->dev,
096e6224
ME
2754 skb->data +
2755 (skb_headlen(skb) / 2),
2756 (skb_headlen(skb) / 2),
2757 DMA_TO_DEVICE);
998f6dfb
ME
2758 desc[frag].addr_lo = lower_32_bits(dma_addr);
2759 desc[frag].addr_hi = upper_32_bits(dma_addr);
2760 frag++;
d2796743
ME
2761 }
2762 } else {
998f6dfb
ME
2763 desc[frag].len_vlan = frags[i - 1].size;
2764 dma_addr = skb_frag_dma_map(&adapter->pdev->dev,
2765 &frags[i - 1],
2766 0,
2767 frags[i - 1].size,
2768 DMA_TO_DEVICE);
2769 desc[frag].addr_lo = lower_32_bits(dma_addr);
2770 desc[frag].addr_hi = upper_32_bits(dma_addr);
2771 frag++;
d2796743
ME
2772 }
2773 }
2774
d2796743 2775 if (phydev && phydev->speed == SPEED_1000) {
76981cf1 2776 if (++tx_ring->since_irq == PARM_TX_NUM_BUFS_DEF) {
d2796743 2777 /* Last element & Interrupt flag */
c655dee9
ME
2778 desc[frag - 1].flags =
2779 TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
76981cf1 2780 tx_ring->since_irq = 0;
d2796743 2781 } else { /* Last element */
a129be84 2782 desc[frag - 1].flags = TXDESC_FLAG_LASTPKT;
d2796743
ME
2783 }
2784 } else
c655dee9
ME
2785 desc[frag - 1].flags =
2786 TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
d2796743 2787
a129be84 2788 desc[0].flags |= TXDESC_FLAG_FIRSTPKT;
d2796743 2789
76981cf1 2790 tcb->index_start = tx_ring->send_idx;
d2796743
ME
2791 tcb->stale = 0;
2792
2793 spin_lock_irqsave(&adapter->send_hw_lock, flags);
2794
76981cf1 2795 thiscopy = NUM_DESC_PER_RING_TX - INDEX10(tx_ring->send_idx);
d2796743
ME
2796
2797 if (thiscopy >= frag) {
2798 remainder = 0;
2799 thiscopy = frag;
2800 } else {
2801 remainder = frag - thiscopy;
2802 }
2803
76981cf1
ZG
2804 memcpy(tx_ring->tx_desc_ring + INDEX10(tx_ring->send_idx),
2805 desc,
d2796743
ME
2806 sizeof(struct tx_desc) * thiscopy);
2807
76981cf1 2808 add_10bit(&tx_ring->send_idx, thiscopy);
d2796743 2809
76981cf1 2810 if (INDEX10(tx_ring->send_idx) == 0 ||
096e6224 2811 INDEX10(tx_ring->send_idx) == NUM_DESC_PER_RING_TX) {
76981cf1
ZG
2812 tx_ring->send_idx &= ~ET_DMA10_MASK;
2813 tx_ring->send_idx ^= ET_DMA10_WRAP;
d2796743
ME
2814 }
2815
2816 if (remainder) {
76981cf1 2817 memcpy(tx_ring->tx_desc_ring,
d2796743
ME
2818 desc + thiscopy,
2819 sizeof(struct tx_desc) * remainder);
2820
76981cf1 2821 add_10bit(&tx_ring->send_idx, remainder);
d2796743
ME
2822 }
2823
76981cf1
ZG
2824 if (INDEX10(tx_ring->send_idx) == 0) {
2825 if (tx_ring->send_idx)
d2796743
ME
2826 tcb->index = NUM_DESC_PER_RING_TX - 1;
2827 else
2828 tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1);
2829 } else
76981cf1 2830 tcb->index = tx_ring->send_idx - 1;
d2796743
ME
2831
2832 spin_lock(&adapter->tcb_send_qlock);
2833
76981cf1
ZG
2834 if (tx_ring->send_tail)
2835 tx_ring->send_tail->next = tcb;
d2796743 2836 else
76981cf1 2837 tx_ring->send_head = tcb;
d2796743 2838
76981cf1 2839 tx_ring->send_tail = tcb;
d2796743
ME
2840
2841 WARN_ON(tcb->next != NULL);
2842
76981cf1 2843 tx_ring->used++;
d2796743
ME
2844
2845 spin_unlock(&adapter->tcb_send_qlock);
2846
2847 /* Write the new write pointer back to the device. */
76981cf1 2848 writel(tx_ring->send_idx, &adapter->regs->txdma.service_request);
d2796743
ME
2849
2850 /* For Gig only, we use Tx Interrupt coalescing. Enable the software
2851 * timer to wake us up if this packet isn't followed by N more.
2852 */
2853 if (phydev && phydev->speed == SPEED_1000) {
2854 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2855 &adapter->regs->global.watchdog_timer);
2856 }
2857 spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
2858
2859 return 0;
2860}
2861
26ef1021 2862/* send_packet - Do the work to send a packet
d2796743
ME
2863 *
2864 * Assumption: Send spinlock has been acquired
2865 */
2866static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter)
2867{
2868 int status;
76981cf1 2869 struct tcb *tcb;
d2796743
ME
2870 u16 *shbufva;
2871 unsigned long flags;
76981cf1 2872 struct tx_ring *tx_ring = &adapter->tx_ring;
d2796743
ME
2873
2874 /* All packets must have at least a MAC address and a protocol type */
2875 if (skb->len < ETH_HLEN)
2876 return -EIO;
2877
2878 /* Get a TCB for this packet */
2879 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2880
76981cf1 2881 tcb = tx_ring->tcb_qhead;
d2796743
ME
2882
2883 if (tcb == NULL) {
2884 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2885 return -ENOMEM;
2886 }
2887
76981cf1 2888 tx_ring->tcb_qhead = tcb->next;
d2796743 2889
76981cf1
ZG
2890 if (tx_ring->tcb_qhead == NULL)
2891 tx_ring->tcb_qtail = NULL;
d2796743
ME
2892
2893 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2894
2895 tcb->skb = skb;
2896
f1b540b9 2897 if (skb->data != NULL && skb_headlen(skb) >= 6) {
d2796743
ME
2898 shbufva = (u16 *) skb->data;
2899
2900 if ((shbufva[0] == 0xffff) &&
0cdc6ee8 2901 (shbufva[1] == 0xffff) && (shbufva[2] == 0xffff))
c655dee9 2902 tcb->flags |= FMP_DEST_BROAD;
0cdc6ee8 2903 else if ((shbufva[0] & 0x3) == 0x0001)
c655dee9 2904 tcb->flags |= FMP_DEST_MULTI;
d2796743
ME
2905 }
2906
2907 tcb->next = NULL;
2908
2909 /* Call the NIC specific send handler. */
2910 status = nic_send_packet(adapter, tcb);
2911
2912 if (status != 0) {
2913 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2914
76981cf1
ZG
2915 if (tx_ring->tcb_qtail)
2916 tx_ring->tcb_qtail->next = tcb;
d2796743
ME
2917 else
2918 /* Apparently ready Q is empty. */
76981cf1 2919 tx_ring->tcb_qhead = tcb;
d2796743 2920
76981cf1 2921 tx_ring->tcb_qtail = tcb;
d2796743
ME
2922 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2923 return status;
2924 }
76981cf1 2925 WARN_ON(tx_ring->used > NUM_TCB);
d2796743
ME
2926 return 0;
2927}
2928
26ef1021 2929/* free_send_packet - Recycle a struct tcb
d2796743
ME
2930 * @adapter: pointer to our adapter
2931 * @tcb: pointer to struct tcb
2932 *
2933 * Complete the packet if necessary
2934 * Assumption - Send spinlock has been acquired
2935 */
2936static inline void free_send_packet(struct et131x_adapter *adapter,
096e6224 2937 struct tcb *tcb)
d2796743
ME
2938{
2939 unsigned long flags;
2940 struct tx_desc *desc = NULL;
1f765d9f 2941 struct net_device_stats *stats = &adapter->netdev->stats;
76981cf1 2942 struct tx_ring *tx_ring = &adapter->tx_ring;
983e4b35 2943 u64 dma_addr;
d2796743 2944
c655dee9 2945 if (tcb->flags & FMP_DEST_BROAD)
d2796743 2946 atomic_inc(&adapter->stats.broadcast_pkts_xmtd);
c655dee9 2947 else if (tcb->flags & FMP_DEST_MULTI)
d2796743
ME
2948 atomic_inc(&adapter->stats.multicast_pkts_xmtd);
2949 else
2950 atomic_inc(&adapter->stats.unicast_pkts_xmtd);
2951
2952 if (tcb->skb) {
2953 stats->tx_bytes += tcb->skb->len;
2954
2955 /* Iterate through the TX descriptors on the ring
2956 * corresponding to this packet and umap the fragments
2957 * they point to
2958 */
2959 do {
76981cf1 2960 desc = tx_ring->tx_desc_ring +
57cc0279 2961 INDEX10(tcb->index_start);
d2796743 2962
998f6dfb 2963 dma_addr = desc->addr_lo;
983e4b35 2964 dma_addr |= (u64)desc->addr_hi << 32;
998f6dfb 2965
26dc751e 2966 dma_unmap_single(&adapter->pdev->dev,
998f6dfb 2967 dma_addr,
26dc751e 2968 desc->len_vlan, DMA_TO_DEVICE);
d2796743
ME
2969
2970 add_10bit(&tcb->index_start, 1);
2971 if (INDEX10(tcb->index_start) >=
2972 NUM_DESC_PER_RING_TX) {
2973 tcb->index_start &= ~ET_DMA10_MASK;
2974 tcb->index_start ^= ET_DMA10_WRAP;
2975 }
76981cf1 2976 } while (desc != tx_ring->tx_desc_ring + INDEX10(tcb->index));
d2796743
ME
2977
2978 dev_kfree_skb_any(tcb->skb);
2979 }
2980
2981 memset(tcb, 0, sizeof(struct tcb));
2982
2983 /* Add the TCB to the Ready Q */
2984 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2985
1f765d9f 2986 stats->tx_packets++;
d2796743 2987
76981cf1
ZG
2988 if (tx_ring->tcb_qtail)
2989 tx_ring->tcb_qtail->next = tcb;
d2796743
ME
2990 else
2991 /* Apparently ready Q is empty. */
76981cf1 2992 tx_ring->tcb_qhead = tcb;
d2796743 2993
76981cf1 2994 tx_ring->tcb_qtail = tcb;
d2796743
ME
2995
2996 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
76981cf1 2997 WARN_ON(tx_ring->used < 0);
d2796743
ME
2998}
2999
26ef1021 3000/* et131x_free_busy_send_packets - Free and complete the stopped active sends
d2796743
ME
3001 *
3002 * Assumption - Send spinlock has been acquired
3003 */
eb7a6ca6 3004static void et131x_free_busy_send_packets(struct et131x_adapter *adapter)
d2796743
ME
3005{
3006 struct tcb *tcb;
3007 unsigned long flags;
3008 u32 freed = 0;
76981cf1 3009 struct tx_ring *tx_ring = &adapter->tx_ring;
d2796743
ME
3010
3011 /* Any packets being sent? Check the first TCB on the send list */
3012 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3013
76981cf1 3014 tcb = tx_ring->send_head;
d2796743
ME
3015
3016 while (tcb != NULL && freed < NUM_TCB) {
3017 struct tcb *next = tcb->next;
3018
76981cf1 3019 tx_ring->send_head = next;
d2796743
ME
3020
3021 if (next == NULL)
76981cf1 3022 tx_ring->send_tail = NULL;
d2796743 3023
76981cf1 3024 tx_ring->used--;
d2796743
ME
3025
3026 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3027
3028 freed++;
3029 free_send_packet(adapter, tcb);
3030
3031 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3032
76981cf1 3033 tcb = tx_ring->send_head;
d2796743
ME
3034 }
3035
3036 WARN_ON(freed == NUM_TCB);
3037
3038 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3039
76981cf1 3040 tx_ring->used = 0;
d2796743
ME
3041}
3042
c2ebf58b 3043/* et131x_handle_send_pkts - Interrupt handler for sending processing
d2796743
ME
3044 *
3045 * Re-claim the send resources, complete sends and get more to send from
3046 * the send wait queue.
3047 *
3048 * Assumption - Send spinlock has been acquired
3049 */
c2ebf58b 3050static void et131x_handle_send_pkts(struct et131x_adapter *adapter)
d2796743
ME
3051{
3052 unsigned long flags;
3053 u32 serviced;
3054 struct tcb *tcb;
3055 u32 index;
76981cf1 3056 struct tx_ring *tx_ring = &adapter->tx_ring;
d2796743
ME
3057
3058 serviced = readl(&adapter->regs->txdma.new_service_complete);
3059 index = INDEX10(serviced);
3060
3061 /* Has the ring wrapped? Process any descriptors that do not have
3062 * the same "wrap" indicator as the current completion indicator
3063 */
3064 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3065
76981cf1 3066 tcb = tx_ring->send_head;
d2796743
ME
3067
3068 while (tcb &&
3069 ((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
3070 index < INDEX10(tcb->index)) {
76981cf1
ZG
3071 tx_ring->used--;
3072 tx_ring->send_head = tcb->next;
d2796743 3073 if (tcb->next == NULL)
76981cf1 3074 tx_ring->send_tail = NULL;
d2796743
ME
3075
3076 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3077 free_send_packet(adapter, tcb);
3078 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3079
3080 /* Goto the next packet */
76981cf1 3081 tcb = tx_ring->send_head;
d2796743
ME
3082 }
3083 while (tcb &&
3084 !((serviced ^ tcb->index) & ET_DMA10_WRAP)
3085 && index > (tcb->index & ET_DMA10_MASK)) {
76981cf1
ZG
3086 tx_ring->used--;
3087 tx_ring->send_head = tcb->next;
d2796743 3088 if (tcb->next == NULL)
76981cf1 3089 tx_ring->send_tail = NULL;
d2796743
ME
3090
3091 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3092 free_send_packet(adapter, tcb);
3093 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3094
3095 /* Goto the next packet */
76981cf1 3096 tcb = tx_ring->send_head;
d2796743
ME
3097 }
3098
3099 /* Wake up the queue when we hit a low-water mark */
76981cf1 3100 if (tx_ring->used <= NUM_TCB / 3)
d2796743
ME
3101 netif_wake_queue(adapter->netdev);
3102
3103 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3104}
3105
d2796743
ME
3106static int et131x_get_settings(struct net_device *netdev,
3107 struct ethtool_cmd *cmd)
3108{
3109 struct et131x_adapter *adapter = netdev_priv(netdev);
3110
3111 return phy_ethtool_gset(adapter->phydev, cmd);
3112}
3113
3114static int et131x_set_settings(struct net_device *netdev,
3115 struct ethtool_cmd *cmd)
3116{
3117 struct et131x_adapter *adapter = netdev_priv(netdev);
3118
3119 return phy_ethtool_sset(adapter->phydev, cmd);
3120}
3121
3122static int et131x_get_regs_len(struct net_device *netdev)
3123{
3124#define ET131X_REGS_LEN 256
3125 return ET131X_REGS_LEN * sizeof(u32);
3126}
3127
3128static void et131x_get_regs(struct net_device *netdev,
3129 struct ethtool_regs *regs, void *regs_data)
3130{
3131 struct et131x_adapter *adapter = netdev_priv(netdev);
3132 struct address_map __iomem *aregs = adapter->regs;
3133 u32 *regs_buff = regs_data;
3134 u32 num = 0;
c8b0a484 3135 u16 tmp;
d2796743
ME
3136
3137 memset(regs_data, 0, et131x_get_regs_len(netdev));
3138
3139 regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
3140 adapter->pdev->device;
3141
3142 /* PHY regs */
c8b0a484
ME
3143 et131x_mii_read(adapter, MII_BMCR, &tmp);
3144 regs_buff[num++] = tmp;
3145 et131x_mii_read(adapter, MII_BMSR, &tmp);
3146 regs_buff[num++] = tmp;
3147 et131x_mii_read(adapter, MII_PHYSID1, &tmp);
3148 regs_buff[num++] = tmp;
3149 et131x_mii_read(adapter, MII_PHYSID2, &tmp);
3150 regs_buff[num++] = tmp;
3151 et131x_mii_read(adapter, MII_ADVERTISE, &tmp);
3152 regs_buff[num++] = tmp;
3153 et131x_mii_read(adapter, MII_LPA, &tmp);
3154 regs_buff[num++] = tmp;
3155 et131x_mii_read(adapter, MII_EXPANSION, &tmp);
3156 regs_buff[num++] = tmp;
d2796743 3157 /* Autoneg next page transmit reg */
c8b0a484
ME
3158 et131x_mii_read(adapter, 0x07, &tmp);
3159 regs_buff[num++] = tmp;
d2796743 3160 /* Link partner next page reg */
c8b0a484
ME
3161 et131x_mii_read(adapter, 0x08, &tmp);
3162 regs_buff[num++] = tmp;
3163 et131x_mii_read(adapter, MII_CTRL1000, &tmp);
3164 regs_buff[num++] = tmp;
3165 et131x_mii_read(adapter, MII_STAT1000, &tmp);
3166 regs_buff[num++] = tmp;
3167 et131x_mii_read(adapter, 0x0b, &tmp);
3168 regs_buff[num++] = tmp;
3169 et131x_mii_read(adapter, 0x0c, &tmp);
3170 regs_buff[num++] = tmp;
3171 et131x_mii_read(adapter, MII_MMD_CTRL, &tmp);
3172 regs_buff[num++] = tmp;
3173 et131x_mii_read(adapter, MII_MMD_DATA, &tmp);
3174 regs_buff[num++] = tmp;
3175 et131x_mii_read(adapter, MII_ESTATUS, &tmp);
3176 regs_buff[num++] = tmp;
3177
3178 et131x_mii_read(adapter, PHY_INDEX_REG, &tmp);
3179 regs_buff[num++] = tmp;
3180 et131x_mii_read(adapter, PHY_DATA_REG, &tmp);
3181 regs_buff[num++] = tmp;
3182 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG, &tmp);
3183 regs_buff[num++] = tmp;
3184 et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL, &tmp);
3185 regs_buff[num++] = tmp;
3186 et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL + 1, &tmp);
3187 regs_buff[num++] = tmp;
3188
3189 et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL, &tmp);
3190 regs_buff[num++] = tmp;
3191 et131x_mii_read(adapter, PHY_CONFIG, &tmp);
3192 regs_buff[num++] = tmp;
3193 et131x_mii_read(adapter, PHY_PHY_CONTROL, &tmp);
3194 regs_buff[num++] = tmp;
3195 et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &tmp);
3196 regs_buff[num++] = tmp;
3197 et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &tmp);
3198 regs_buff[num++] = tmp;
3199 et131x_mii_read(adapter, PHY_PHY_STATUS, &tmp);
3200 regs_buff[num++] = tmp;
3201 et131x_mii_read(adapter, PHY_LED_1, &tmp);
3202 regs_buff[num++] = tmp;
3203 et131x_mii_read(adapter, PHY_LED_2, &tmp);
3204 regs_buff[num++] = tmp;
d2796743
ME
3205
3206 /* Global regs */
3207 regs_buff[num++] = readl(&aregs->global.txq_start_addr);
3208 regs_buff[num++] = readl(&aregs->global.txq_end_addr);
3209 regs_buff[num++] = readl(&aregs->global.rxq_start_addr);
3210 regs_buff[num++] = readl(&aregs->global.rxq_end_addr);
3211 regs_buff[num++] = readl(&aregs->global.pm_csr);
3212 regs_buff[num++] = adapter->stats.interrupt_status;
3213 regs_buff[num++] = readl(&aregs->global.int_mask);
3214 regs_buff[num++] = readl(&aregs->global.int_alias_clr_en);
3215 regs_buff[num++] = readl(&aregs->global.int_status_alias);
3216 regs_buff[num++] = readl(&aregs->global.sw_reset);
3217 regs_buff[num++] = readl(&aregs->global.slv_timer);
3218 regs_buff[num++] = readl(&aregs->global.msi_config);
3219 regs_buff[num++] = readl(&aregs->global.loopback);
3220 regs_buff[num++] = readl(&aregs->global.watchdog_timer);
3221
3222 /* TXDMA regs */
3223 regs_buff[num++] = readl(&aregs->txdma.csr);
3224 regs_buff[num++] = readl(&aregs->txdma.pr_base_hi);
3225 regs_buff[num++] = readl(&aregs->txdma.pr_base_lo);
3226 regs_buff[num++] = readl(&aregs->txdma.pr_num_des);
3227 regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr);
3228 regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext);
3229 regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr);
3230 regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi);
3231 regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo);
3232 regs_buff[num++] = readl(&aregs->txdma.service_request);
3233 regs_buff[num++] = readl(&aregs->txdma.service_complete);
3234 regs_buff[num++] = readl(&aregs->txdma.cache_rd_index);
3235 regs_buff[num++] = readl(&aregs->txdma.cache_wr_index);
3236 regs_buff[num++] = readl(&aregs->txdma.tx_dma_error);
3237 regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt);
3238 regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt);
3239 regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt);
3240 regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt);
3241 regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt);
3242 regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt);
3243 regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt);
3244 regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt);
3245 regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt);
3246 regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt);
3247 regs_buff[num++] = readl(&aregs->txdma.new_service_complete);
3248 regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt);
3249
3250 /* RXDMA regs */
3251 regs_buff[num++] = readl(&aregs->rxdma.csr);
3252 regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi);
3253 regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo);
3254 regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done);
3255 regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time);
3256 regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr);
3257 regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext);
3258 regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr);
3259 regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi);
3260 regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo);
3261 regs_buff[num++] = readl(&aregs->rxdma.psr_num_des);
3262 regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset);
3263 regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset);
3264 regs_buff[num++] = readl(&aregs->rxdma.psr_access_index);
3265 regs_buff[num++] = readl(&aregs->rxdma.psr_min_des);
3266 regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo);
3267 regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi);
3268 regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des);
3269 regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset);
3270 regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset);
3271 regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index);
3272 regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des);
3273 regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo);
3274 regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi);
3275 regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des);
3276 regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset);
3277 regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset);
3278 regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index);
3279 regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des);
3280}
3281
d2796743
ME
3282static void et131x_get_drvinfo(struct net_device *netdev,
3283 struct ethtool_drvinfo *info)
3284{
3285 struct et131x_adapter *adapter = netdev_priv(netdev);
3286
7826d43f
JP
3287 strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
3288 strlcpy(info->version, DRIVER_VERSION, sizeof(info->version));
3289 strlcpy(info->bus_info, pci_name(adapter->pdev),
3290 sizeof(info->bus_info));
d2796743
ME
3291}
3292
3293static struct ethtool_ops et131x_ethtool_ops = {
3294 .get_settings = et131x_get_settings,
3295 .set_settings = et131x_set_settings,
3296 .get_drvinfo = et131x_get_drvinfo,
3297 .get_regs_len = et131x_get_regs_len,
3298 .get_regs = et131x_get_regs,
242187aa 3299 .get_link = ethtool_op_get_link,
d2796743 3300};
26ef1021 3301
15ae239d 3302/* et131x_hwaddr_init - set up the MAC Address on the ET1310 */
eb7a6ca6 3303static void et131x_hwaddr_init(struct et131x_adapter *adapter)
d2796743
ME
3304{
3305 /* If have our default mac from init and no mac address from
3306 * EEPROM then we need to generate the last octet and set it on the
3307 * device
3308 */
c14d01b8 3309 if (is_zero_ether_addr(adapter->rom_addr)) {
26ef1021 3310 /* We need to randomly generate the last octet so we
d2796743
ME
3311 * decrease our chances of setting the mac address to
3312 * same as another one of our cards in the system
3313 */
3314 get_random_bytes(&adapter->addr[5], 1);
26ef1021 3315 /* We have the default value in the register we are
d2796743
ME
3316 * working with so we need to copy the current
3317 * address into the permanent address
3318 */
3319 memcpy(adapter->rom_addr,
096e6224 3320 adapter->addr, ETH_ALEN);
d2796743
ME
3321 } else {
3322 /* We do not have an override address, so set the
3323 * current address to the permanent address and add
3324 * it to the device
3325 */
3326 memcpy(adapter->addr,
3327 adapter->rom_addr, ETH_ALEN);
3328 }
3329}
3330
26ef1021 3331/* et131x_pci_init - initial PCI setup
d2796743
ME
3332 *
3333 * Perform the initial setup of PCI registers and if possible initialise
3334 * the MAC address. At this point the I/O registers have yet to be mapped
3335 */
3336static int et131x_pci_init(struct et131x_adapter *adapter,
12a2f3f3 3337 struct pci_dev *pdev)
d2796743 3338{
d14e3d05 3339 u16 max_payload;
d14e3d05
FR
3340 int i, rc;
3341
3342 rc = et131x_init_eeprom(adapter);
3343 if (rc < 0)
3344 goto out;
3345
532c5f69 3346 if (!pci_is_pcie(pdev)) {
d14e3d05
FR
3347 dev_err(&pdev->dev, "Missing PCIe capabilities\n");
3348 goto err_out;
3349 }
bf3313a1 3350
9db008d0 3351 /* Let's set up the PORT LOGIC Register. */
d2796743
ME
3352
3353 /* Program the Ack/Nak latency and replay timers */
9db008d0 3354 max_payload = pdev->pcie_mpss;
d2796743
ME
3355
3356 if (max_payload < 2) {
3357 static const u16 acknak[2] = { 0x76, 0xD0 };
3358 static const u16 replay[2] = { 0x1E0, 0x2ED };
3359
3360 if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK,
096e6224 3361 acknak[max_payload])) {
d2796743 3362 dev_err(&pdev->dev,
096e6224 3363 "Could not write PCI config space for ACK/NAK\n");
d14e3d05 3364 goto err_out;
d2796743
ME
3365 }
3366 if (pci_write_config_word(pdev, ET1310_PCI_REPLAY,
096e6224 3367 replay[max_payload])) {
d2796743 3368 dev_err(&pdev->dev,
096e6224 3369 "Could not write PCI config space for Replay Timer\n");
d14e3d05 3370 goto err_out;
d2796743
ME
3371 }
3372 }
3373
3374 /* l0s and l1 latency timers. We are using default values.
3375 * Representing 001 for L0s and 010 for L1
3376 */
3377 if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) {
3378 dev_err(&pdev->dev,
096e6224 3379 "Could not write PCI config space for Latency Timers\n");
d14e3d05 3380 goto err_out;
d2796743
ME
3381 }
3382
3383 /* Change the max read size to 2k */
9db008d0 3384 if (pcie_set_readrq(pdev, 2048)) {
d2796743 3385 dev_err(&pdev->dev,
532c5f69 3386 "Couldn't change PCI config space for Max read size\n");
d14e3d05 3387 goto err_out;
d2796743
ME
3388 }
3389
3390 /* Get MAC address from config space if an eeprom exists, otherwise
3391 * the MAC address there will not be valid
3392 */
3393 if (!adapter->has_eeprom) {
3394 et131x_hwaddr_init(adapter);
3395 return 0;
3396 }
3397
3398 for (i = 0; i < ETH_ALEN; i++) {
3399 if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i,
096e6224 3400 adapter->rom_addr + i)) {
d2796743 3401 dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n");
d14e3d05 3402 goto err_out;
d2796743
ME
3403 }
3404 }
015851c3 3405 ether_addr_copy(adapter->addr, adapter->rom_addr);
d14e3d05
FR
3406out:
3407 return rc;
3408err_out:
3409 rc = -EIO;
3410 goto out;
d2796743
ME
3411}
3412
26ef1021 3413/* et131x_error_timer_handler
d2796743
ME
3414 * @data: timer-specific variable; here a pointer to our adapter structure
3415 *
3416 * The routine called when the error timer expires, to track the number of
3417 * recurring errors.
3418 */
eb7a6ca6 3419static void et131x_error_timer_handler(unsigned long data)
d2796743
ME
3420{
3421 struct et131x_adapter *adapter = (struct et131x_adapter *) data;
3422 struct phy_device *phydev = adapter->phydev;
3423
3424 if (et1310_in_phy_coma(adapter)) {
3425 /* Bring the device immediately out of coma, to
3426 * prevent it from sleeping indefinitely, this
26ef1021
ME
3427 * mechanism could be improved!
3428 */
d2796743
ME
3429 et1310_disable_phy_coma(adapter);
3430 adapter->boot_coma = 20;
3431 } else {
3432 et1310_update_macstat_host_counters(adapter);
3433 }
3434
3435 if (!phydev->link && adapter->boot_coma < 11)
3436 adapter->boot_coma++;
3437
3438 if (adapter->boot_coma == 10) {
3439 if (!phydev->link) {
3440 if (!et1310_in_phy_coma(adapter)) {
3441 /* NOTE - This was originally a 'sync with
3442 * interrupt'. How to do that under Linux?
3443 */
3444 et131x_enable_interrupts(adapter);
3445 et1310_enable_phy_coma(adapter);
3446 }
3447 }
3448 }
3449
3450 /* This is a periodic timer, so reschedule */
242187aa 3451 mod_timer(&adapter->error_timer, jiffies + TX_ERROR_PERIOD * HZ / 1000);
d2796743
ME
3452}
3453
15ae239d 3454/* et131x_adapter_memory_free - Free all memory allocated for use by Tx & Rx */
d959df0a
ME
3455static void et131x_adapter_memory_free(struct et131x_adapter *adapter)
3456{
d959df0a
ME
3457 et131x_tx_dma_memory_free(adapter);
3458 et131x_rx_dma_memory_free(adapter);
3459}
3460
26ef1021 3461/* et131x_adapter_memory_alloc
d2796743
ME
3462 * Allocate all the memory blocks for send, receive and others.
3463 */
eb7a6ca6 3464static int et131x_adapter_memory_alloc(struct et131x_adapter *adapter)
d2796743
ME
3465{
3466 int status;
3467
3468 /* Allocate memory for the Tx Ring */
3469 status = et131x_tx_dma_memory_alloc(adapter);
12a2f3f3 3470 if (status) {
d2796743 3471 dev_err(&adapter->pdev->dev,
096e6224 3472 "et131x_tx_dma_memory_alloc FAILED\n");
a9f48883 3473 et131x_tx_dma_memory_free(adapter);
d2796743
ME
3474 return status;
3475 }
3476 /* Receive buffer memory allocation */
3477 status = et131x_rx_dma_memory_alloc(adapter);
12a2f3f3 3478 if (status) {
d2796743 3479 dev_err(&adapter->pdev->dev,
096e6224 3480 "et131x_rx_dma_memory_alloc FAILED\n");
a9f48883 3481 et131x_adapter_memory_free(adapter);
d2796743
ME
3482 return status;
3483 }
3484
3485 /* Init receive data structures */
3486 status = et131x_init_recv(adapter);
d959df0a 3487 if (status) {
12a2f3f3 3488 dev_err(&adapter->pdev->dev, "et131x_init_recv FAILED\n");
d959df0a 3489 et131x_adapter_memory_free(adapter);
d2796743
ME
3490 }
3491 return status;
3492}
3493
d2796743
ME
3494static void et131x_adjust_link(struct net_device *netdev)
3495{
3496 struct et131x_adapter *adapter = netdev_priv(netdev);
3497 struct phy_device *phydev = adapter->phydev;
3498
b96ab7cc
ME
3499 if (!phydev)
3500 return;
3501 if (phydev->link == adapter->link)
3502 return;
6903098c 3503
b96ab7cc
ME
3504 /* Check to see if we are in coma mode and if
3505 * so, disable it because we will not be able
3506 * to read PHY values until we are out.
3507 */
3508 if (et1310_in_phy_coma(adapter))
3509 et1310_disable_phy_coma(adapter);
6903098c 3510
b96ab7cc
ME
3511 adapter->link = phydev->link;
3512 phy_print_status(phydev);
6903098c 3513
b96ab7cc
ME
3514 if (phydev->link) {
3515 adapter->boot_coma = 20;
76af0140 3516 if (phydev->speed == SPEED_10) {
b96ab7cc
ME
3517 u16 register18;
3518
3519 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
096e6224 3520 &register18);
ec0a38bf
ME
3521 et131x_mii_write(adapter, phydev->addr,
3522 PHY_MPHY_CONTROL_REG, register18 | 0x4);
3523 et131x_mii_write(adapter, phydev->addr, PHY_INDEX_REG,
b96ab7cc 3524 register18 | 0x8402);
ec0a38bf 3525 et131x_mii_write(adapter, phydev->addr, PHY_DATA_REG,
b96ab7cc 3526 register18 | 511);
ec0a38bf
ME
3527 et131x_mii_write(adapter, phydev->addr,
3528 PHY_MPHY_CONTROL_REG, register18);
b96ab7cc 3529 }
6903098c 3530
b96ab7cc 3531 et1310_config_flow_control(adapter);
d2796743 3532
76af0140 3533 if (phydev->speed == SPEED_1000 &&
b96ab7cc
ME
3534 adapter->registry_jumbo_packet > 2048) {
3535 u16 reg;
d2796743 3536
b96ab7cc
ME
3537 et131x_mii_read(adapter, PHY_CONFIG, &reg);
3538 reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH;
3539 reg |= ET_PHY_CONFIG_FIFO_DEPTH_32;
ec0a38bf
ME
3540 et131x_mii_write(adapter, phydev->addr, PHY_CONFIG,
3541 reg);
b96ab7cc 3542 }
d2796743 3543
b96ab7cc
ME
3544 et131x_set_rx_dma_timer(adapter);
3545 et1310_config_mac_regs2(adapter);
3546 } else {
3547 adapter->boot_coma = 0;
d2796743 3548
b96ab7cc 3549 if (phydev->speed == SPEED_10) {
b96ab7cc
ME
3550 u16 register18;
3551
3552 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
096e6224 3553 &register18);
ec0a38bf 3554 et131x_mii_write(adapter, phydev->addr,
096e6224 3555 PHY_MPHY_CONTROL_REG, register18 | 0x4);
ec0a38bf 3556 et131x_mii_write(adapter, phydev->addr,
096e6224 3557 PHY_INDEX_REG, register18 | 0x8402);
ec0a38bf 3558 et131x_mii_write(adapter, phydev->addr,
096e6224 3559 PHY_DATA_REG, register18 | 511);
ec0a38bf 3560 et131x_mii_write(adapter, phydev->addr,
096e6224 3561 PHY_MPHY_CONTROL_REG, register18);
b96ab7cc 3562 }
d2796743 3563
b96ab7cc
ME
3564 /* Free the packets being actively sent & stopped */
3565 et131x_free_busy_send_packets(adapter);
d2796743 3566
b96ab7cc
ME
3567 /* Re-initialize the send structures */
3568 et131x_init_send(adapter);
3569
3570 /* Bring the device back to the state it was during
3571 * init prior to autonegotiation being complete. This
3572 * way, when we get the auto-neg complete interrupt,
3573 * we can complete init by calling config_mac_regs2.
3574 */
3575 et131x_soft_reset(adapter);
3576
3577 /* Setup ET1310 as per the documentation */
3578 et131x_adapter_setup(adapter);
d2796743 3579
b96ab7cc
ME
3580 /* perform reset of tx/rx */
3581 et131x_disable_txrx(netdev);
3582 et131x_enable_txrx(netdev);
d2796743
ME
3583 }
3584}
3585
3586static int et131x_mii_probe(struct net_device *netdev)
3587{
3588 struct et131x_adapter *adapter = netdev_priv(netdev);
3589 struct phy_device *phydev = NULL;
3590
3591 phydev = phy_find_first(adapter->mii_bus);
3592 if (!phydev) {
3593 dev_err(&adapter->pdev->dev, "no PHY found\n");
3594 return -ENODEV;
3595 }
3596
3597 phydev = phy_connect(netdev, dev_name(&phydev->dev),
f9a8f83b 3598 &et131x_adjust_link, PHY_INTERFACE_MODE_MII);
d2796743
ME
3599
3600 if (IS_ERR(phydev)) {
3601 dev_err(&adapter->pdev->dev, "Could not attach to PHY\n");
3602 return PTR_ERR(phydev);
3603 }
3604
bbf45bcf
ME
3605 phydev->supported &= (SUPPORTED_10baseT_Half |
3606 SUPPORTED_10baseT_Full |
3607 SUPPORTED_100baseT_Half |
3608 SUPPORTED_100baseT_Full |
3609 SUPPORTED_Autoneg |
3610 SUPPORTED_MII |
3611 SUPPORTED_TP);
d2796743
ME
3612
3613 if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST)
bbf45bcf
ME
3614 phydev->supported |= SUPPORTED_1000baseT_Half |
3615 SUPPORTED_1000baseT_Full;
d2796743
ME
3616
3617 phydev->advertising = phydev->supported;
bbf45bcf 3618 phydev->autoneg = AUTONEG_ENABLE;
d2796743
ME
3619 adapter->phydev = phydev;
3620
12a2f3f3
ME
3621 dev_info(&adapter->pdev->dev,
3622 "attached PHY driver [%s] (mii_bus:phy_addr=%s)\n",
d2796743
ME
3623 phydev->drv->name, dev_name(&phydev->dev));
3624
3625 return 0;
3626}
3627
26ef1021 3628/* et131x_adapter_init
d2796743
ME
3629 *
3630 * Initialize the data structures for the et131x_adapter object and link
3631 * them together with the platform provided device structures.
3632 */
3633static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev,
12a2f3f3 3634 struct pci_dev *pdev)
d2796743
ME
3635{
3636 static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
3637
3638 struct et131x_adapter *adapter;
3639
3640 /* Allocate private adapter struct and copy in relevant information */
3641 adapter = netdev_priv(netdev);
3642 adapter->pdev = pci_dev_get(pdev);
3643 adapter->netdev = netdev;
3644
d2796743 3645 /* Initialize spinlocks here */
d2796743
ME
3646 spin_lock_init(&adapter->tcb_send_qlock);
3647 spin_lock_init(&adapter->tcb_ready_qlock);
3648 spin_lock_init(&adapter->send_hw_lock);
3649 spin_lock_init(&adapter->rcv_lock);
d2796743
ME
3650
3651 adapter->registry_jumbo_packet = 1514; /* 1514-9216 */
3652
3653 /* Set the MAC address to a default */
015851c3 3654 ether_addr_copy(adapter->addr, default_mac);
d2796743
ME
3655
3656 return adapter;
3657}
3658
26ef1021 3659/* et131x_pci_remove
d2796743
ME
3660 *
3661 * Registered in the pci_driver structure, this function is called when the
3662 * PCI subsystem detects that a PCI device which matches the information
3663 * contained in the pci_device_id table has been removed.
3664 */
596c5dd3 3665static void et131x_pci_remove(struct pci_dev *pdev)
d2796743
ME
3666{
3667 struct net_device *netdev = pci_get_drvdata(pdev);
3668 struct et131x_adapter *adapter = netdev_priv(netdev);
3669
3670 unregister_netdev(netdev);
c2ebf58b 3671 netif_napi_del(&adapter->napi);
fa9f0a65 3672 phy_disconnect(adapter->phydev);
d2796743
ME
3673 mdiobus_unregister(adapter->mii_bus);
3674 kfree(adapter->mii_bus->irq);
3675 mdiobus_free(adapter->mii_bus);
3676
3677 et131x_adapter_memory_free(adapter);
3678 iounmap(adapter->regs);
3679 pci_dev_put(pdev);
3680
3681 free_netdev(netdev);
3682 pci_release_regions(pdev);
3683 pci_disable_device(pdev);
3684}
3685
15ae239d 3686/* et131x_up - Bring up a device for use. */
eb7a6ca6 3687static void et131x_up(struct net_device *netdev)
a4d444bd
ME
3688{
3689 struct et131x_adapter *adapter = netdev_priv(netdev);
3690
3691 et131x_enable_txrx(netdev);
3692 phy_start(adapter->phydev);
3693}
3694
15ae239d 3695/* et131x_down - Bring down the device */
eb7a6ca6 3696static void et131x_down(struct net_device *netdev)
a4d444bd
ME
3697{
3698 struct et131x_adapter *adapter = netdev_priv(netdev);
3699
3700 /* Save the timestamp for the TX watchdog, prevent a timeout */
3701 netdev->trans_start = jiffies;
3702
3703 phy_stop(adapter->phydev);
3704 et131x_disable_txrx(netdev);
3705}
3706
d2796743
ME
3707#ifdef CONFIG_PM_SLEEP
3708static int et131x_suspend(struct device *dev)
3709{
3710 struct pci_dev *pdev = to_pci_dev(dev);
3711 struct net_device *netdev = pci_get_drvdata(pdev);
3712
3713 if (netif_running(netdev)) {
3714 netif_device_detach(netdev);
3715 et131x_down(netdev);
3716 pci_save_state(pdev);
3717 }
3718
3719 return 0;
3720}
3721
3722static int et131x_resume(struct device *dev)
3723{
3724 struct pci_dev *pdev = to_pci_dev(dev);
3725 struct net_device *netdev = pci_get_drvdata(pdev);
3726
3727 if (netif_running(netdev)) {
3728 pci_restore_state(pdev);
3729 et131x_up(netdev);
3730 netif_device_attach(netdev);
3731 }
3732
3733 return 0;
3734}
3735
2e9ff8d9
ME
3736static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume);
3737#define ET131X_PM_OPS (&et131x_pm_ops)
3738#else
3739#define ET131X_PM_OPS NULL
3740#endif
3741
26ef1021 3742/* et131x_isr - The Interrupt Service Routine for the driver.
d2796743
ME
3743 * @irq: the IRQ on which the interrupt was received.
3744 * @dev_id: device-specific info (here a pointer to a net_device struct)
3745 *
3746 * Returns a value indicating if the interrupt was handled.
3747 */
c0594ee9 3748static irqreturn_t et131x_isr(int irq, void *dev_id)
d2796743
ME
3749{
3750 bool handled = true;
be40a261 3751 bool enable_interrupts = true;
d2796743 3752 struct net_device *netdev = (struct net_device *)dev_id;
8f7fa96a 3753 struct et131x_adapter *adapter = netdev_priv(netdev);
c2ebf58b 3754 struct address_map __iomem *iomem = adapter->regs;
8f7fa96a 3755 struct rx_ring *rx_ring = &adapter->rx_ring;
76981cf1 3756 struct tx_ring *tx_ring = &adapter->tx_ring;
d2796743
ME
3757 u32 status;
3758
3759 if (!netif_device_present(netdev)) {
3760 handled = false;
be40a261 3761 enable_interrupts = false;
d2796743
ME
3762 goto out;
3763 }
3764
d2796743
ME
3765 /* If the adapter is in low power state, then it should not
3766 * recognize any interrupt
3767 */
3768
3769 /* Disable Device Interrupts */
3770 et131x_disable_interrupts(adapter);
3771
3772 /* Get a copy of the value in the interrupt status register
3773 * so we can process the interrupting section
3774 */
3775 status = readl(&adapter->regs->global.int_status);
3776
3777 if (adapter->flowcontrol == FLOW_TXONLY ||
3778 adapter->flowcontrol == FLOW_BOTH) {
3779 status &= ~INT_MASK_ENABLE;
3780 } else {
3781 status &= ~INT_MASK_ENABLE_NO_FLOW;
3782 }
3783
3784 /* Make sure this is our interrupt */
3785 if (!status) {
3786 handled = false;
3787 et131x_enable_interrupts(adapter);
3788 goto out;
3789 }
3790
3791 /* This is our interrupt, so process accordingly */
d2796743 3792 if (status & ET_INTR_WATCHDOG) {
76981cf1 3793 struct tcb *tcb = tx_ring->send_head;
d2796743
ME
3794
3795 if (tcb)
3796 if (++tcb->stale > 1)
3797 status |= ET_INTR_TXDMA_ISR;
3798
8f7fa96a 3799 if (rx_ring->unfinished_receives)
d2796743
ME
3800 status |= ET_INTR_RXDMA_XFR_DONE;
3801 else if (tcb == NULL)
3802 writel(0, &adapter->regs->global.watchdog_timer);
3803
3804 status &= ~ET_INTR_WATCHDOG;
3805 }
3806
be40a261
ME
3807 if (status & (ET_INTR_RXDMA_XFR_DONE | ET_INTR_TXDMA_ISR)) {
3808 enable_interrupts = false;
c2ebf58b 3809 napi_schedule(&adapter->napi);
be40a261 3810 }
d2796743 3811
df7b3b8a 3812 status &= ~(ET_INTR_TXDMA_ISR | ET_INTR_RXDMA_XFR_DONE);
d2796743 3813
15ffde4d
ME
3814 if (!status)
3815 goto out;
d2796743 3816
15ffde4d
ME
3817 /* Handle the TXDMA Error interrupt */
3818 if (status & ET_INTR_TXDMA_ERR) {
15ffde4d 3819 /* Following read also clears the register (COR) */
12a2f3f3 3820 u32 txdma_err = readl(&iomem->txdma.tx_dma_error);
d2796743 3821
15ffde4d 3822 dev_warn(&adapter->pdev->dev,
096e6224
ME
3823 "TXDMA_ERR interrupt, error = %d\n",
3824 txdma_err);
15ffde4d 3825 }
d2796743 3826
15ffde4d
ME
3827 /* Handle Free Buffer Ring 0 and 1 Low interrupt */
3828 if (status & (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) {
26ef1021 3829 /* This indicates the number of unused buffers in RXDMA free
15ffde4d
ME
3830 * buffer ring 0 is <= the limit you programmed. Free buffer
3831 * resources need to be returned. Free buffers are consumed as
3832 * packets are passed from the network to the host. The host
3833 * becomes aware of the packets from the contents of the packet
3834 * status ring. This ring is queried when the packet done
3835 * interrupt occurs. Packets are then passed to the OS. When
3836 * the OS is done with the packets the resources can be
3837 * returned to the ET1310 for re-use. This interrupt is one
3838 * method of returning resources.
3839 */
d2796743 3840
26ef1021 3841 /* If the user has flow control on, then we will
15ffde4d
ME
3842 * send a pause packet, otherwise just exit
3843 */
3844 if (adapter->flowcontrol == FLOW_TXONLY ||
3845 adapter->flowcontrol == FLOW_BOTH) {
3846 u32 pm_csr;
d2796743 3847
26ef1021 3848 /* Tell the device to send a pause packet via the back
15ffde4d 3849 * pressure register (bp req and bp xon/xoff)
d2796743 3850 */
15ffde4d
ME
3851 pm_csr = readl(&iomem->global.pm_csr);
3852 if (!et1310_in_phy_coma(adapter))
3853 writel(3, &iomem->txmac.bp_ctrl);
d2796743 3854 }
15ffde4d 3855 }
d2796743 3856
15ffde4d
ME
3857 /* Handle Packet Status Ring Low Interrupt */
3858 if (status & ET_INTR_RXDMA_STAT_LOW) {
26ef1021 3859 /* Same idea as with the two Free Buffer Rings. Packets going
15ffde4d 3860 * from the network to the host each consume a free buffer
868bf442 3861 * resource and a packet status resource. These resources are
15ffde4d
ME
3862 * passed to the OS. When the OS is done with the resources,
3863 * they need to be returned to the ET1310. This is one method
3864 * of returning the resources.
3865 */
3866 }
d2796743 3867
15ffde4d
ME
3868 /* Handle RXDMA Error Interrupt */
3869 if (status & ET_INTR_RXDMA_ERR) {
26ef1021 3870 /* The rxdma_error interrupt is sent when a time-out on a
15ffde4d
ME
3871 * request issued by the JAGCore has occurred or a completion is
3872 * returned with an un-successful status. In both cases the
3873 * request is considered complete. The JAGCore will
3874 * automatically re-try the request in question. Normally
3875 * information on events like these are sent to the host using
3876 * the "Advanced Error Reporting" capability. This interrupt is
3877 * another way of getting similar information. The only thing
3878 * required is to clear the interrupt by reading the ISR in the
3879 * global resources. The JAGCore will do a re-try on the
3880 * request. Normally you should never see this interrupt. If
3881 * you start to see this interrupt occurring frequently then
3882 * something bad has occurred. A reset might be the thing to do.
3883 */
3884 /* TRAP();*/
d2796743 3885
15ffde4d 3886 dev_warn(&adapter->pdev->dev,
096e6224
ME
3887 "RxDMA_ERR interrupt, error %x\n",
3888 readl(&iomem->txmac.tx_test));
15ffde4d 3889 }
d2796743 3890
15ffde4d
ME
3891 /* Handle the Wake on LAN Event */
3892 if (status & ET_INTR_WOL) {
26ef1021 3893 /* This is a secondary interrupt for wake on LAN. The driver
15ffde4d
ME
3894 * should never see this, if it does, something serious is
3895 * wrong. We will TRAP the message when we are in DBG mode,
3896 * otherwise we will ignore it.
3897 */
3898 dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n");
3899 }
d2796743 3900
15ffde4d
ME
3901 /* Let's move on to the TxMac */
3902 if (status & ET_INTR_TXMAC) {
3903 u32 err = readl(&iomem->txmac.err);
d2796743 3904
26ef1021 3905 /* When any of the errors occur and TXMAC generates an
15ffde4d
ME
3906 * interrupt to report these errors, it usually means that
3907 * TXMAC has detected an error in the data stream retrieved
3908 * from the on-chip Tx Q. All of these errors are catastrophic
3909 * and TXMAC won't be able to recover data when these errors
3910 * occur. In a nutshell, the whole Tx path will have to be reset
3911 * and re-configured afterwards.
3912 */
3913 dev_warn(&adapter->pdev->dev,
3914 "TXMAC interrupt, error 0x%08x\n",
3915 err);
d2796743 3916
26ef1021 3917 /* If we are debugging, we want to see this error, otherwise we
15ffde4d
ME
3918 * just want the device to be reset and continue
3919 */
3920 }
d2796743 3921
15ffde4d
ME
3922 /* Handle RXMAC Interrupt */
3923 if (status & ET_INTR_RXMAC) {
26ef1021 3924 /* These interrupts are catastrophic to the device, what we need
15ffde4d
ME
3925 * to do is disable the interrupts and set the flag to cause us
3926 * to reset so we can solve this issue.
3927 */
c655dee9 3928 /* MP_SET_FLAG( adapter, FMP_ADAPTER_HARDWARE_ERROR); */
d2796743 3929
15ffde4d
ME
3930 dev_warn(&adapter->pdev->dev,
3931 "RXMAC interrupt, error 0x%08x. Requesting reset\n",
3932 readl(&iomem->rxmac.err_reg));
d2796743 3933
15ffde4d
ME
3934 dev_warn(&adapter->pdev->dev,
3935 "Enable 0x%08x, Diag 0x%08x\n",
3936 readl(&iomem->rxmac.ctrl),
3937 readl(&iomem->rxmac.rxq_diag));
d2796743 3938
26ef1021 3939 /* If we are debugging, we want to see this error, otherwise we
15ffde4d
ME
3940 * just want the device to be reset and continue
3941 */
3942 }
d2796743 3943
15ffde4d
ME
3944 /* Handle MAC_STAT Interrupt */
3945 if (status & ET_INTR_MAC_STAT) {
26ef1021 3946 /* This means at least one of the un-masked counters in the
15ffde4d
ME
3947 * MAC_STAT block has rolled over. Use this to maintain the top,
3948 * software managed bits of the counter(s).
3949 */
3950 et1310_handle_macstat_interrupt(adapter);
d2796743 3951 }
15ffde4d
ME
3952
3953 /* Handle SLV Timeout Interrupt */
3954 if (status & ET_INTR_SLV_TIMEOUT) {
26ef1021 3955 /* This means a timeout has occurred on a read or write request
15ffde4d
ME
3956 * to one of the JAGCore registers. The Global Resources block
3957 * has terminated the request and on a read request, returned a
3958 * "fake" value. The most likely reasons are: Bad Address or the
3959 * addressed module is in a power-down state and can't respond.
3960 */
3961 }
c2ebf58b 3962
be40a261
ME
3963out:
3964 if (enable_interrupts)
c2ebf58b 3965 et131x_enable_interrupts(adapter);
c2ebf58b 3966
c2ebf58b
ME
3967 return IRQ_RETVAL(handled);
3968}
3969
3970static int et131x_poll(struct napi_struct *napi, int budget)
3971{
3972 struct et131x_adapter *adapter =
3973 container_of(napi, struct et131x_adapter, napi);
3974 int work_done = et131x_handle_recv_pkts(adapter, budget);
3975
3976 et131x_handle_send_pkts(adapter);
3977
3978 if (work_done < budget) {
3979 napi_complete(&adapter->napi);
3980 et131x_enable_interrupts(adapter);
3981 }
3982
3983 return work_done;
d2796743
ME
3984}
3985
15ae239d 3986/* et131x_stats - Return the current device statistics */
d2796743
ME
3987static struct net_device_stats *et131x_stats(struct net_device *netdev)
3988{
3989 struct et131x_adapter *adapter = netdev_priv(netdev);
1f765d9f 3990 struct net_device_stats *stats = &adapter->netdev->stats;
d2796743
ME
3991 struct ce_stats *devstat = &adapter->stats;
3992
3993 stats->rx_errors = devstat->rx_length_errs +
3994 devstat->rx_align_errs +
3995 devstat->rx_crc_errs +
3996 devstat->rx_code_violations +
3997 devstat->rx_other_errs;
3998 stats->tx_errors = devstat->tx_max_pkt_errs;
3999 stats->multicast = devstat->multicast_pkts_rcvd;
4000 stats->collisions = devstat->tx_collisions;
4001
4002 stats->rx_length_errors = devstat->rx_length_errs;
4003 stats->rx_over_errors = devstat->rx_overflows;
4004 stats->rx_crc_errors = devstat->rx_crc_errs;
4005
4006 /* NOTE: These stats don't have corresponding values in CE_STATS,
4007 * so we're going to have to update these directly from within the
4008 * TX/RX code
4009 */
4010 /* stats->rx_bytes = 20; devstat->; */
4011 /* stats->tx_bytes = 20; devstat->; */
4012 /* stats->rx_dropped = devstat->; */
4013 /* stats->tx_dropped = devstat->; */
4014
4015 /* NOTE: Not used, can't find analogous statistics */
4016 /* stats->rx_frame_errors = devstat->; */
4017 /* stats->rx_fifo_errors = devstat->; */
4018 /* stats->rx_missed_errors = devstat->; */
4019
4020 /* stats->tx_aborted_errors = devstat->; */
4021 /* stats->tx_carrier_errors = devstat->; */
4022 /* stats->tx_fifo_errors = devstat->; */
4023 /* stats->tx_heartbeat_errors = devstat->; */
4024 /* stats->tx_window_errors = devstat->; */
4025 return stats;
4026}
4027
15ae239d 4028/* et131x_open - Open the device for use. */
eb7a6ca6 4029static int et131x_open(struct net_device *netdev)
d2796743 4030{
d2796743 4031 struct et131x_adapter *adapter = netdev_priv(netdev);
5f3eb881
FR
4032 struct pci_dev *pdev = adapter->pdev;
4033 unsigned int irq = pdev->irq;
4034 int result;
d2796743
ME
4035
4036 /* Start the timer to track NIC errors */
4037 init_timer(&adapter->error_timer);
4038 adapter->error_timer.expires = jiffies + TX_ERROR_PERIOD * HZ / 1000;
4039 adapter->error_timer.function = et131x_error_timer_handler;
4040 adapter->error_timer.data = (unsigned long)adapter;
4041 add_timer(&adapter->error_timer);
4042
bf3313a1 4043 result = request_irq(irq, et131x_isr,
4044 IRQF_SHARED, netdev->name, netdev);
d2796743 4045 if (result) {
5f3eb881 4046 dev_err(&pdev->dev, "could not register IRQ %d\n", irq);
d2796743
ME
4047 return result;
4048 }
4049
c655dee9 4050 adapter->flags |= FMP_ADAPTER_INTERRUPT_IN_USE;
d2796743 4051
c2ebf58b
ME
4052 napi_enable(&adapter->napi);
4053
d2796743
ME
4054 et131x_up(netdev);
4055
4056 return result;
4057}
4058
15ae239d 4059/* et131x_close - Close the device */
eb7a6ca6 4060static int et131x_close(struct net_device *netdev)
d2796743
ME
4061{
4062 struct et131x_adapter *adapter = netdev_priv(netdev);
4063
4064 et131x_down(netdev);
c2ebf58b 4065 napi_disable(&adapter->napi);
d2796743 4066
c655dee9 4067 adapter->flags &= ~FMP_ADAPTER_INTERRUPT_IN_USE;
5f3eb881 4068 free_irq(adapter->pdev->irq, netdev);
d2796743
ME
4069
4070 /* Stop the error timer */
4071 return del_timer_sync(&adapter->error_timer);
4072}
4073
26ef1021 4074/* et131x_ioctl - The I/O Control handler for the driver
d2796743
ME
4075 * @netdev: device on which the control request is being made
4076 * @reqbuf: a pointer to the IOCTL request buffer
4077 * @cmd: the IOCTL command code
d2796743 4078 */
09a3fc2b
ME
4079static int et131x_ioctl(struct net_device *netdev, struct ifreq *reqbuf,
4080 int cmd)
d2796743
ME
4081{
4082 struct et131x_adapter *adapter = netdev_priv(netdev);
4083
4084 if (!adapter->phydev)
4085 return -EINVAL;
4086
4087 return phy_mii_ioctl(adapter->phydev, reqbuf, cmd);
4088}
4089
26ef1021 4090/* et131x_set_packet_filter - Configures the Rx Packet filtering on the device
d2796743
ME
4091 * @adapter: pointer to our private adapter structure
4092 *
4093 * FIXME: lot of dups with MAC code
d2796743
ME
4094 */
4095static int et131x_set_packet_filter(struct et131x_adapter *adapter)
4096{
834d0ee3 4097 int filter = adapter->packet_filter;
d2796743
ME
4098 u32 ctrl;
4099 u32 pf_ctrl;
4100
4101 ctrl = readl(&adapter->regs->rxmac.ctrl);
4102 pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl);
4103
4104 /* Default to disabled packet filtering. Enable it in the individual
4105 * case statements that require the device to filter something
4106 */
4107 ctrl |= 0x04;
4108
4109 /* Set us to be in promiscuous mode so we receive everything, this
4110 * is also true when we get a packet filter of 0
4111 */
4112 if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0)
4113 pf_ctrl &= ~7; /* Clear filter bits */
4114 else {
26ef1021 4115 /* Set us up with Multicast packet filtering. Three cases are
d2796743
ME
4116 * possible - (1) we have a multi-cast list, (2) we receive ALL
4117 * multicast entries or (3) we receive none.
4118 */
4119 if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST)
4120 pf_ctrl &= ~2; /* Multicast filter bit */
4121 else {
4122 et1310_setup_device_for_multicast(adapter);
4123 pf_ctrl |= 2;
4124 ctrl &= ~0x04;
4125 }
4126
4127 /* Set us up with Unicast packet filtering */
4128 if (filter & ET131X_PACKET_TYPE_DIRECTED) {
4129 et1310_setup_device_for_unicast(adapter);
4130 pf_ctrl |= 4;
4131 ctrl &= ~0x04;
4132 }
4133
4134 /* Set us up with Broadcast packet filtering */
4135 if (filter & ET131X_PACKET_TYPE_BROADCAST) {
4136 pf_ctrl |= 1; /* Broadcast filter bit */
4137 ctrl &= ~0x04;
4138 } else
4139 pf_ctrl &= ~1;
4140
4141 /* Setup the receive mac configuration registers - Packet
4142 * Filter control + the enable / disable for packet filter
4143 * in the control reg.
4144 */
4145 writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl);
4146 writel(ctrl, &adapter->regs->rxmac.ctrl);
4147 }
8ea6cdf5 4148 return 0;
d2796743
ME
4149}
4150
15ae239d 4151/* et131x_multicast - The handler to configure multicasting on the interface */
d2796743
ME
4152static void et131x_multicast(struct net_device *netdev)
4153{
4154 struct et131x_adapter *adapter = netdev_priv(netdev);
834d0ee3 4155 int packet_filter;
d2796743
ME
4156 struct netdev_hw_addr *ha;
4157 int i;
4158
d2796743
ME
4159 /* Before we modify the platform-independent filter flags, store them
4160 * locally. This allows us to determine if anything's changed and if
4161 * we even need to bother the hardware
4162 */
4163 packet_filter = adapter->packet_filter;
4164
4165 /* Clear the 'multicast' flag locally; because we only have a single
4166 * flag to check multicast, and multiple multicast addresses can be
4167 * set, this is the easiest way to determine if more than one
4168 * multicast address is being set.
4169 */
4170 packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
4171
4172 /* Check the net_device flags and set the device independent flags
4173 * accordingly
4174 */
4175
4176 if (netdev->flags & IFF_PROMISC)
4177 adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS;
4178 else
4179 adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS;
4180
4181 if (netdev->flags & IFF_ALLMULTI)
4182 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
4183
4184 if (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST)
4185 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
4186
4187 if (netdev_mc_count(netdev) < 1) {
4188 adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST;
4189 adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
4190 } else
4191 adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST;
4192
4193 /* Set values in the private adapter struct */
4194 i = 0;
4195 netdev_for_each_mc_addr(ha, netdev) {
4196 if (i == NIC_MAX_MCAST_LIST)
4197 break;
4198 memcpy(adapter->multicast_list[i++], ha->addr, ETH_ALEN);
4199 }
4200 adapter->multicast_addr_count = i;
4201
4202 /* Are the new flags different from the previous ones? If not, then no
4203 * action is required
4204 *
4205 * NOTE - This block will always update the multicast_list with the
4206 * hardware, even if the addresses aren't the same.
4207 */
15ae239d 4208 if (packet_filter != adapter->packet_filter)
d2796743 4209 et131x_set_packet_filter(adapter);
d2796743
ME
4210}
4211
15ae239d 4212/* et131x_tx - The handler to tx a packet on the device */
be40a261 4213static netdev_tx_t et131x_tx(struct sk_buff *skb, struct net_device *netdev)
d2796743
ME
4214{
4215 int status = 0;
06709e96 4216 struct et131x_adapter *adapter = netdev_priv(netdev);
76981cf1 4217 struct tx_ring *tx_ring = &adapter->tx_ring;
06709e96
ME
4218
4219 /* stop the queue if it's getting full */
76981cf1 4220 if (tx_ring->used >= NUM_TCB - 1 && !netif_queue_stopped(netdev))
06709e96 4221 netif_stop_queue(netdev);
d2796743
ME
4222
4223 /* Save the timestamp for the TX timeout watchdog */
4224 netdev->trans_start = jiffies;
4225
4792e6d1
ME
4226 /* TCB is not available */
4227 if (tx_ring->used >= NUM_TCB) {
4228 /* NOTE: If there's an error on send, no need to queue the
4229 * packet under Linux; if we just send an error up to the
4230 * netif layer, it will resend the skb to us.
4231 */
4232 status = -ENOMEM;
4233 } else {
4234 /* We need to see if the link is up; if it's not, make the
4235 * netif layer think we're good and drop the packet
4236 */
4237 if ((adapter->flags & FMP_ADAPTER_FAIL_SEND_MASK) ||
4238 !netif_carrier_ok(netdev)) {
4239 dev_kfree_skb_any(skb);
4240 skb = NULL;
4241
4242 adapter->netdev->stats.tx_dropped++;
4243 } else {
4244 status = send_packet(skb, adapter);
4245 if (status != 0 && status != -ENOMEM) {
4246 /* On any other error, make netif think we're
4247 * OK and drop the packet
4248 */
4249 dev_kfree_skb_any(skb);
4250 skb = NULL;
4251 adapter->netdev->stats.tx_dropped++;
4252 }
4253 }
4254 }
d2796743
ME
4255
4256 /* Check status and manage the netif queue if necessary */
4257 if (status != 0) {
09a3fc2b 4258 if (status == -ENOMEM)
d2796743 4259 status = NETDEV_TX_BUSY;
09a3fc2b 4260 else
d2796743 4261 status = NETDEV_TX_OK;
d2796743
ME
4262 }
4263 return status;
4264}
4265
26ef1021 4266/* et131x_tx_timeout - Timeout handler
d2796743
ME
4267 *
4268 * The handler called when a Tx request times out. The timeout period is
4269 * specified by the 'tx_timeo" element in the net_device structure (see
4270 * et131x_alloc_device() to see how this value is set).
4271 */
4272static void et131x_tx_timeout(struct net_device *netdev)
4273{
4274 struct et131x_adapter *adapter = netdev_priv(netdev);
76981cf1 4275 struct tx_ring *tx_ring = &adapter->tx_ring;
d2796743
ME
4276 struct tcb *tcb;
4277 unsigned long flags;
4278
4279 /* If the device is closed, ignore the timeout */
c655dee9 4280 if (~(adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE))
d2796743
ME
4281 return;
4282
4283 /* Any nonrecoverable hardware error?
4284 * Checks adapter->flags for any failure in phy reading
4285 */
c655dee9 4286 if (adapter->flags & FMP_ADAPTER_NON_RECOVER_ERROR)
d2796743
ME
4287 return;
4288
4289 /* Hardware failure? */
c655dee9 4290 if (adapter->flags & FMP_ADAPTER_HARDWARE_ERROR) {
d2796743
ME
4291 dev_err(&adapter->pdev->dev, "hardware error - reset\n");
4292 return;
4293 }
4294
4295 /* Is send stuck? */
4296 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
4297
76981cf1 4298 tcb = tx_ring->send_head;
d2796743
ME
4299
4300 if (tcb != NULL) {
4301 tcb->count++;
4302
4303 if (tcb->count > NIC_SEND_HANG_THRESHOLD) {
4304 spin_unlock_irqrestore(&adapter->tcb_send_qlock,
4305 flags);
4306
4307 dev_warn(&adapter->pdev->dev,
096e6224
ME
4308 "Send stuck - reset. tcb->WrIndex %x, flags 0x%08x\n",
4309 tcb->index,
4310 tcb->flags);
d2796743 4311
1f765d9f 4312 adapter->netdev->stats.tx_errors++;
d2796743
ME
4313
4314 /* perform reset of tx/rx */
4315 et131x_disable_txrx(netdev);
4316 et131x_enable_txrx(netdev);
4317 return;
4318 }
4319 }
4320
4321 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
4322}
4323
15ae239d 4324/* et131x_change_mtu - The handler called to change the MTU for the device */
d2796743
ME
4325static int et131x_change_mtu(struct net_device *netdev, int new_mtu)
4326{
4327 int result = 0;
4328 struct et131x_adapter *adapter = netdev_priv(netdev);
4329
4330 /* Make sure the requested MTU is valid */
4331 if (new_mtu < 64 || new_mtu > 9216)
4332 return -EINVAL;
4333
4334 et131x_disable_txrx(netdev);
d2796743
ME
4335
4336 /* Set the new MTU */
4337 netdev->mtu = new_mtu;
4338
4339 /* Free Rx DMA memory */
4340 et131x_adapter_memory_free(adapter);
4341
4342 /* Set the config parameter for Jumbo Packet support */
4343 adapter->registry_jumbo_packet = new_mtu + 14;
4344 et131x_soft_reset(adapter);
4345
4346 /* Alloc and init Rx DMA memory */
4347 result = et131x_adapter_memory_alloc(adapter);
4348 if (result != 0) {
4349 dev_warn(&adapter->pdev->dev,
096e6224 4350 "Change MTU failed; couldn't re-alloc DMA memory\n");
d2796743
ME
4351 return result;
4352 }
4353
4354 et131x_init_send(adapter);
4355
4356 et131x_hwaddr_init(adapter);
4357 memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
4358
4359 /* Init the device with the new settings */
4360 et131x_adapter_setup(adapter);
4361
4362 et131x_enable_txrx(netdev);
4363
4364 return result;
4365}
4366
d2796743
ME
4367static const struct net_device_ops et131x_netdev_ops = {
4368 .ndo_open = et131x_open,
4369 .ndo_stop = et131x_close,
4370 .ndo_start_xmit = et131x_tx,
aa77677e 4371 .ndo_set_rx_mode = et131x_multicast,
d2796743
ME
4372 .ndo_tx_timeout = et131x_tx_timeout,
4373 .ndo_change_mtu = et131x_change_mtu,
36087dc1 4374 .ndo_set_mac_address = eth_mac_addr,
d2796743
ME
4375 .ndo_validate_addr = eth_validate_addr,
4376 .ndo_get_stats = et131x_stats,
4377 .ndo_do_ioctl = et131x_ioctl,
4378};
4379
26ef1021 4380/* et131x_pci_setup - Perform device initialization
5da2b158
ME
4381 * @pdev: a pointer to the device's pci_dev structure
4382 * @ent: this device's entry in the pci_device_id table
4383 *
5da2b158
ME
4384 * Registered in the pci_driver structure, this function is called when the
4385 * PCI subsystem finds a new PCI device which matches the information
4386 * contained in the pci_device_id table. This routine is the equivalent to
4387 * a device insertion routine.
4388 */
fe5c49b3 4389static int et131x_pci_setup(struct pci_dev *pdev,
12a2f3f3 4390 const struct pci_device_id *ent)
5da2b158 4391{
5da2b158
ME
4392 struct net_device *netdev;
4393 struct et131x_adapter *adapter;
fa9f0a65 4394 int rc;
5da2b158
ME
4395 int ii;
4396
fa9f0a65
FR
4397 rc = pci_enable_device(pdev);
4398 if (rc < 0) {
5da2b158 4399 dev_err(&pdev->dev, "pci_enable_device() failed\n");
fa9f0a65 4400 goto out;
5da2b158
ME
4401 }
4402
4403 /* Perform some basic PCI checks */
4404 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4405 dev_err(&pdev->dev, "Can't find PCI device's base address\n");
fa9f0a65 4406 rc = -ENODEV;
5da2b158
ME
4407 goto err_disable;
4408 }
4409
fa9f0a65
FR
4410 rc = pci_request_regions(pdev, DRIVER_NAME);
4411 if (rc < 0) {
5da2b158
ME
4412 dev_err(&pdev->dev, "Can't get PCI resources\n");
4413 goto err_disable;
4414 }
4415
4416 pci_set_master(pdev);
4417
4418 /* Check the DMA addressing support of this device */
e22f0e3f
RK
4419 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
4420 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32))) {
5da2b158 4421 dev_err(&pdev->dev, "No usable DMA addressing method\n");
fa9f0a65 4422 rc = -EIO;
5da2b158
ME
4423 goto err_release_res;
4424 }
4425
4426 /* Allocate netdev and private adapter structs */
fa9f0a65 4427 netdev = alloc_etherdev(sizeof(struct et131x_adapter));
5da2b158
ME
4428 if (!netdev) {
4429 dev_err(&pdev->dev, "Couldn't alloc netdev struct\n");
fa9f0a65 4430 rc = -ENOMEM;
5da2b158
ME
4431 goto err_release_res;
4432 }
4433
fa9f0a65
FR
4434 netdev->watchdog_timeo = ET131X_TX_TIMEOUT;
4435 netdev->netdev_ops = &et131x_netdev_ops;
4436
5da2b158 4437 SET_NETDEV_DEV(netdev, &pdev->dev);
7ad24ea4 4438 netdev->ethtool_ops = &et131x_ethtool_ops;
5da2b158
ME
4439
4440 adapter = et131x_adapter_init(netdev, pdev);
4441
fa9f0a65
FR
4442 rc = et131x_pci_init(adapter, pdev);
4443 if (rc < 0)
4444 goto err_free_dev;
5da2b158
ME
4445
4446 /* Map the bus-relative registers to system virtual memory */
4447 adapter->regs = pci_ioremap_bar(pdev, 0);
4448 if (!adapter->regs) {
4449 dev_err(&pdev->dev, "Cannot map device registers\n");
fa9f0a65 4450 rc = -ENOMEM;
5da2b158
ME
4451 goto err_free_dev;
4452 }
4453
4454 /* If Phy COMA mode was enabled when we went down, disable it here. */
4455 writel(ET_PMCSR_INIT, &adapter->regs->global.pm_csr);
4456
4457 /* Issue a global reset to the et1310 */
4458 et131x_soft_reset(adapter);
4459
4460 /* Disable all interrupts (paranoid) */
4461 et131x_disable_interrupts(adapter);
4462
4463 /* Allocate DMA memory */
fa9f0a65
FR
4464 rc = et131x_adapter_memory_alloc(adapter);
4465 if (rc < 0) {
868bf442 4466 dev_err(&pdev->dev, "Could not alloc adapter memory (DMA)\n");
5da2b158
ME
4467 goto err_iounmap;
4468 }
4469
4470 /* Init send data structures */
4471 et131x_init_send(adapter);
4472
c2ebf58b 4473 netif_napi_add(netdev, &adapter->napi, et131x_poll, 64);
5da2b158
ME
4474
4475 /* Copy address into the net_device struct */
4476 memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
4477
fa9f0a65
FR
4478 rc = -ENOMEM;
4479
5da2b158
ME
4480 /* Setup the mii_bus struct */
4481 adapter->mii_bus = mdiobus_alloc();
4482 if (!adapter->mii_bus) {
4483 dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n");
4484 goto err_mem_free;
4485 }
4486
4487 adapter->mii_bus->name = "et131x_eth_mii";
4488 snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x",
096e6224 4489 (adapter->pdev->bus->number << 8) | adapter->pdev->devfn);
5da2b158
ME
4490 adapter->mii_bus->priv = netdev;
4491 adapter->mii_bus->read = et131x_mdio_read;
4492 adapter->mii_bus->write = et131x_mdio_write;
78110bb8
JP
4493 adapter->mii_bus->irq = kmalloc_array(PHY_MAX_ADDR, sizeof(int),
4494 GFP_KERNEL);
4495 if (!adapter->mii_bus->irq)
5da2b158 4496 goto err_mdio_free;
5da2b158
ME
4497
4498 for (ii = 0; ii < PHY_MAX_ADDR; ii++)
4499 adapter->mii_bus->irq[ii] = PHY_POLL;
4500
fa9f0a65
FR
4501 rc = mdiobus_register(adapter->mii_bus);
4502 if (rc < 0) {
5da2b158 4503 dev_err(&pdev->dev, "failed to register MII bus\n");
5da2b158
ME
4504 goto err_mdio_free_irq;
4505 }
4506
fa9f0a65
FR
4507 rc = et131x_mii_probe(netdev);
4508 if (rc < 0) {
5da2b158
ME
4509 dev_err(&pdev->dev, "failed to probe MII bus\n");
4510 goto err_mdio_unregister;
4511 }
4512
4513 /* Setup et1310 as per the documentation */
4514 et131x_adapter_setup(adapter);
4515
ec0a38bf
ME
4516 /* Init variable for counting how long we do not have link status */
4517 adapter->boot_coma = 0;
4518 et1310_disable_phy_coma(adapter);
4519
5da2b158
ME
4520 /* We can enable interrupts now
4521 *
4522 * NOTE - Because registration of interrupt handler is done in the
4523 * device's open(), defer enabling device interrupts to that
4524 * point
4525 */
4526
4527 /* Register the net_device struct with the Linux network layer */
fa9f0a65
FR
4528 rc = register_netdev(netdev);
4529 if (rc < 0) {
5da2b158 4530 dev_err(&pdev->dev, "register_netdev() failed\n");
fa9f0a65 4531 goto err_phy_disconnect;
5da2b158
ME
4532 }
4533
4534 /* Register the net_device struct with the PCI subsystem. Save a copy
4535 * of the PCI config space for this device now that the device has
4536 * been initialized, just in case it needs to be quickly restored.
4537 */
4538 pci_set_drvdata(pdev, netdev);
fa9f0a65
FR
4539out:
4540 return rc;
5da2b158 4541
fa9f0a65
FR
4542err_phy_disconnect:
4543 phy_disconnect(adapter->phydev);
5da2b158
ME
4544err_mdio_unregister:
4545 mdiobus_unregister(adapter->mii_bus);
4546err_mdio_free_irq:
4547 kfree(adapter->mii_bus->irq);
4548err_mdio_free:
4549 mdiobus_free(adapter->mii_bus);
4550err_mem_free:
4551 et131x_adapter_memory_free(adapter);
4552err_iounmap:
4553 iounmap(adapter->regs);
4554err_free_dev:
4555 pci_dev_put(pdev);
4556 free_netdev(netdev);
4557err_release_res:
4558 pci_release_regions(pdev);
4559err_disable:
4560 pci_disable_device(pdev);
fa9f0a65 4561 goto out;
5da2b158
ME
4562}
4563
41e043fc 4564static const struct pci_device_id et131x_pci_table[] = {
5da2b158
ME
4565 { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL},
4566 { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL},
4567 {0,}
4568};
4569MODULE_DEVICE_TABLE(pci, et131x_pci_table);
4570
4571static struct pci_driver et131x_driver = {
4572 .name = DRIVER_NAME,
4573 .id_table = et131x_pci_table,
4574 .probe = et131x_pci_setup,
0b5e4092 4575 .remove = et131x_pci_remove,
5da2b158
ME
4576 .driver.pm = ET131X_PM_OPS,
4577};
4578
89812b1f 4579module_pci_driver(et131x_driver);
This page took 0.694195 seconds and 5 git commands to generate.