staging: et131x: Only configure regs if link state changes
[deliverable/linux.git] / drivers / staging / et131x / et131x.c
CommitLineData
d2796743
ME
1/*
2 * Agere Systems Inc.
3 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
4 *
5 * Copyright © 2005 Agere Systems Inc.
6 * All rights reserved.
7 * http://www.agere.com
8 *
9 * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
10 *
11 *------------------------------------------------------------------------------
12 *
13 * SOFTWARE LICENSE
14 *
15 * This software is provided subject to the following terms and conditions,
16 * which you should read carefully before using the software. Using this
17 * software indicates your acceptance of these terms and conditions. If you do
18 * not agree with these terms and conditions, do not use the software.
19 *
20 * Copyright © 2005 Agere Systems Inc.
21 * All rights reserved.
22 *
23 * Redistribution and use in source or binary forms, with or without
24 * modifications, are permitted provided that the following conditions are met:
25 *
26 * . Redistributions of source code must retain the above copyright notice, this
27 * list of conditions and the following Disclaimer as comments in the code as
28 * well as in the documentation and/or other materials provided with the
29 * distribution.
30 *
31 * . Redistributions in binary form must reproduce the above copyright notice,
32 * this list of conditions and the following Disclaimer in the documentation
33 * and/or other materials provided with the distribution.
34 *
35 * . Neither the name of Agere Systems Inc. nor the names of the contributors
36 * may be used to endorse or promote products derived from this software
37 * without specific prior written permission.
38 *
39 * Disclaimer
40 *
41 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
42 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
43 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
44 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
45 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
46 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
47 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
48 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
49 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
51 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
52 * DAMAGE.
53 *
54 */
55
e58b89da
TY
56#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
57
d2796743
ME
58#include <linux/pci.h>
59#include <linux/init.h>
60#include <linux/module.h>
61#include <linux/types.h>
62#include <linux/kernel.h>
63
64#include <linux/sched.h>
65#include <linux/ptrace.h>
66#include <linux/slab.h>
67#include <linux/ctype.h>
68#include <linux/string.h>
69#include <linux/timer.h>
70#include <linux/interrupt.h>
71#include <linux/in.h>
72#include <linux/delay.h>
73#include <linux/bitops.h>
74#include <linux/io.h>
d2796743
ME
75
76#include <linux/netdevice.h>
77#include <linux/etherdevice.h>
78#include <linux/skbuff.h>
79#include <linux/if_arp.h>
80#include <linux/ioport.h>
81#include <linux/crc32.h>
82#include <linux/random.h>
83#include <linux/phy.h>
84
d2796743
ME
85#include "et131x.h"
86
87MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
88MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
89MODULE_LICENSE("Dual BSD/GPL");
397d3e60 90MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver for the ET1310 by Agere Systems");
d2796743 91
bd156af6
ME
92/* EEPROM defines */
93#define MAX_NUM_REGISTER_POLLS 1000
94#define MAX_NUM_WRITE_RETRIES 2
95
96/* MAC defines */
97#define COUNTER_WRAP_16_BIT 0x10000
98#define COUNTER_WRAP_12_BIT 0x1000
99
100/* PCI defines */
101#define INTERNAL_MEM_SIZE 0x400 /* 1024 of internal memory */
102#define INTERNAL_MEM_RX_OFFSET 0x1FF /* 50% Tx, 50% Rx */
103
104/* ISR defines */
105/*
106 * For interrupts, normal running is:
107 * rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
108 * watchdog_interrupt & txdma_xfer_done
109 *
110 * In both cases, when flow control is enabled for either Tx or bi-direction,
111 * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
112 * buffer rings are running low.
113 */
114#define INT_MASK_DISABLE 0xffffffff
115
116/* NOTE: Masking out MAC_STAT Interrupt for now...
117 * #define INT_MASK_ENABLE 0xfff6bf17
118 * #define INT_MASK_ENABLE_NO_FLOW 0xfff6bfd7
119 */
120#define INT_MASK_ENABLE 0xfffebf17
121#define INT_MASK_ENABLE_NO_FLOW 0xfffebfd7
122
1c1c1b5f
ME
123/* General defines */
124/* Packet and header sizes */
125#define NIC_MIN_PACKET_SIZE 60
126
127/* Multicast list size */
128#define NIC_MAX_MCAST_LIST 128
129
130/* Supported Filters */
131#define ET131X_PACKET_TYPE_DIRECTED 0x0001
132#define ET131X_PACKET_TYPE_MULTICAST 0x0002
133#define ET131X_PACKET_TYPE_BROADCAST 0x0004
134#define ET131X_PACKET_TYPE_PROMISCUOUS 0x0008
135#define ET131X_PACKET_TYPE_ALL_MULTICAST 0x0010
136
137/* Tx Timeout */
138#define ET131X_TX_TIMEOUT (1 * HZ)
139#define NIC_SEND_HANG_THRESHOLD 0
140
141/* MP_TCB flags */
142#define fMP_DEST_MULTI 0x00000001
143#define fMP_DEST_BROAD 0x00000002
144
145/* MP_ADAPTER flags */
1c1c1b5f 146#define fMP_ADAPTER_INTERRUPT_IN_USE 0x00000008
1c1c1b5f
ME
147
148/* MP_SHARED flags */
1c1c1b5f
ME
149#define fMP_ADAPTER_LOWER_POWER 0x00200000
150
151#define fMP_ADAPTER_NON_RECOVER_ERROR 0x00800000
1c1c1b5f 152#define fMP_ADAPTER_HARDWARE_ERROR 0x04000000
1c1c1b5f
ME
153
154#define fMP_ADAPTER_FAIL_SEND_MASK 0x3ff00000
1c1c1b5f
ME
155
156/* Some offsets in PCI config space that are actually used. */
1c1c1b5f
ME
157#define ET1310_PCI_MAC_ADDRESS 0xA4
158#define ET1310_PCI_EEPROM_STATUS 0xB2
159#define ET1310_PCI_ACK_NACK 0xC0
160#define ET1310_PCI_REPLAY 0xC2
161#define ET1310_PCI_L0L1LATENCY 0xCF
162
26d19bf6 163/* PCI Product IDs */
1c1c1b5f
ME
164#define ET131X_PCI_DEVICE_ID_GIG 0xED00 /* ET1310 1000 Base-T 8 */
165#define ET131X_PCI_DEVICE_ID_FAST 0xED01 /* ET1310 100 Base-T */
166
167/* Define order of magnitude converter */
168#define NANO_IN_A_MICRO 1000
169
170#define PARM_RX_NUM_BUFS_DEF 4
171#define PARM_RX_TIME_INT_DEF 10
172#define PARM_RX_MEM_END_DEF 0x2bc
173#define PARM_TX_TIME_INT_DEF 40
174#define PARM_TX_NUM_BUFS_DEF 4
175#define PARM_DMA_CACHE_DEF 0
176
562550b0 177/* RX defines */
788ca84a
ME
178#define FBR_CHUNKS 32
179#define MAX_DESC_PER_RING_RX 1024
562550b0
ME
180
181/* number of RFDs - default and min */
562550b0 182#define RFD_LOW_WATER_MARK 40
562550b0 183#define NIC_DEFAULT_NUM_RFD 1024
6abafc16 184#define NUM_FBRS 2
562550b0
ME
185
186#define NUM_PACKETS_HANDLED 256
187
562550b0
ME
188#define ALCATEL_MULTICAST_PKT 0x01000000
189#define ALCATEL_BROADCAST_PKT 0x02000000
190
191/* typedefs for Free Buffer Descriptors */
192struct fbr_desc {
193 u32 addr_lo;
194 u32 addr_hi;
195 u32 word2; /* Bits 10-31 reserved, 0-9 descriptor */
196};
197
198/* Packet Status Ring Descriptors
199 *
200 * Word 0:
201 *
202 * top 16 bits are from the Alcatel Status Word as enumerated in
203 * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
204 *
205 * 0: hp hash pass
206 * 1: ipa IP checksum assist
207 * 2: ipp IP checksum pass
208 * 3: tcpa TCP checksum assist
209 * 4: tcpp TCP checksum pass
210 * 5: wol WOL Event
211 * 6: rxmac_error RXMAC Error Indicator
212 * 7: drop Drop packet
213 * 8: ft Frame Truncated
214 * 9: jp Jumbo Packet
215 * 10: vp VLAN Packet
216 * 11-15: unused
217 * 16: asw_prev_pkt_dropped e.g. IFG too small on previous
218 * 17: asw_RX_DV_event short receive event detected
219 * 18: asw_false_carrier_event bad carrier since last good packet
220 * 19: asw_code_err one or more nibbles signalled as errors
221 * 20: asw_CRC_err CRC error
222 * 21: asw_len_chk_err frame length field incorrect
223 * 22: asw_too_long frame length > 1518 bytes
224 * 23: asw_OK valid CRC + no code error
225 * 24: asw_multicast has a multicast address
226 * 25: asw_broadcast has a broadcast address
227 * 26: asw_dribble_nibble spurious bits after EOP
228 * 27: asw_control_frame is a control frame
229 * 28: asw_pause_frame is a pause frame
230 * 29: asw_unsupported_op unsupported OP code
231 * 30: asw_VLAN_tag VLAN tag detected
232 * 31: asw_long_evt Rx long event
233 *
234 * Word 1:
235 * 0-15: length length in bytes
236 * 16-25: bi Buffer Index
237 * 26-27: ri Ring Index
238 * 28-31: reserved
239 */
240
241struct pkt_stat_desc {
242 u32 word0;
243 u32 word1;
244};
245
246/* Typedefs for the RX DMA status word */
247
248/*
249 * rx status word 0 holds part of the status bits of the Rx DMA engine
250 * that get copied out to memory by the ET-1310. Word 0 is a 32 bit word
251 * which contains the Free Buffer ring 0 and 1 available offset.
252 *
253 * bit 0-9 FBR1 offset
254 * bit 10 Wrap flag for FBR1
255 * bit 16-25 FBR0 offset
256 * bit 26 Wrap flag for FBR0
257 */
258
259/*
260 * RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
261 * that get copied out to memory by the ET-1310. Word 3 is a 32 bit word
262 * which contains the Packet Status Ring available offset.
263 *
264 * bit 0-15 reserved
265 * bit 16-27 PSRoffset
266 * bit 28 PSRwrap
267 * bit 29-31 unused
268 */
269
270/*
271 * struct rx_status_block is a structure representing the status of the Rx
272 * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
273 */
274struct rx_status_block {
275 u32 word0;
276 u32 word1;
277};
278
279/*
6abafc16
ME
280 * Structure for look-up table holding free buffer ring pointers, addresses
281 * and state.
562550b0
ME
282 */
283struct fbr_lookup {
6abafc16 284 void *virt[MAX_DESC_PER_RING_RX];
6abafc16
ME
285 u32 bus_high[MAX_DESC_PER_RING_RX];
286 u32 bus_low[MAX_DESC_PER_RING_RX];
287 void *ring_virtaddr;
288 dma_addr_t ring_physaddr;
289 void *mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
290 dma_addr_t mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
6abafc16
ME
291 u32 local_full;
292 u32 num_entries;
983e4b35 293 dma_addr_t buffsize;
562550b0
ME
294};
295
296/*
297 * struct rx_ring is the sructure representing the adaptor's local
298 * reference(s) to the rings
299 */
300struct rx_ring {
6abafc16 301 struct fbr_lookup *fbr[NUM_FBRS];
562550b0
ME
302 void *ps_ring_virtaddr;
303 dma_addr_t ps_ring_physaddr;
304 u32 local_psr_full;
305 u32 psr_num_entries;
306
307 struct rx_status_block *rx_status_block;
308 dma_addr_t rx_status_bus;
309
562550b0
ME
310 /* RECV */
311 struct list_head recv_list;
312 u32 num_ready_recv;
313
314 u32 num_rfd;
315
316 bool unfinished_receives;
562550b0
ME
317};
318
17ec9ff3
ME
319/* TX defines */
320/*
321 * word 2 of the control bits in the Tx Descriptor ring for the ET-1310
322 *
323 * 0-15: length of packet
324 * 16-27: VLAN tag
325 * 28: VLAN CFI
326 * 29-31: VLAN priority
327 *
328 * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
329 *
330 * 0: last packet in the sequence
331 * 1: first packet in the sequence
332 * 2: interrupt the processor when this pkt sent
333 * 3: Control word - no packet data
334 * 4: Issue half-duplex backpressure : XON/XOFF
335 * 5: send pause frame
336 * 6: Tx frame has error
337 * 7: append CRC
338 * 8: MAC override
339 * 9: pad packet
340 * 10: Packet is a Huge packet
341 * 11: append VLAN tag
342 * 12: IP checksum assist
343 * 13: TCP checksum assist
344 * 14: UDP checksum assist
345 */
346
a129be84
ME
347#define TXDESC_FLAG_LASTPKT 0x0001
348#define TXDESC_FLAG_FIRSTPKT 0x0002
349#define TXDESC_FLAG_INTPROC 0x0004
350
17ec9ff3
ME
351/* struct tx_desc represents each descriptor on the ring */
352struct tx_desc {
353 u32 addr_hi;
354 u32 addr_lo;
355 u32 len_vlan; /* control words how to xmit the */
356 u32 flags; /* data (detailed above) */
357};
358
359/*
360 * The status of the Tx DMA engine it sits in free memory, and is pointed to
361 * by 0x101c / 0x1020. This is a DMA10 type
362 */
363
364/* TCB (Transmit Control Block: Host Side) */
365struct tcb {
366 struct tcb *next; /* Next entry in ring */
367 u32 flags; /* Our flags for the packet */
368 u32 count; /* Used to spot stuck/lost packets */
369 u32 stale; /* Used to spot stuck/lost packets */
370 struct sk_buff *skb; /* Network skb we are tied to */
371 u32 index; /* Ring indexes */
372 u32 index_start;
373};
374
375/* Structure representing our local reference(s) to the ring */
376struct tx_ring {
377 /* TCB (Transmit Control Block) memory and lists */
378 struct tcb *tcb_ring;
379
380 /* List of TCBs that are ready to be used */
381 struct tcb *tcb_qhead;
382 struct tcb *tcb_qtail;
383
384 /* list of TCBs that are currently being sent. NOTE that access to all
385 * three of these (including used) are controlled via the
386 * TCBSendQLock. This lock should be secured prior to incementing /
387 * decrementing used, or any queue manipulation on send_head /
388 * tail
389 */
390 struct tcb *send_head;
391 struct tcb *send_tail;
392 int used;
393
394 /* The actual descriptor ring */
395 struct tx_desc *tx_desc_ring;
396 dma_addr_t tx_desc_ring_pa;
397
398 /* send_idx indicates where we last wrote to in the descriptor ring. */
399 u32 send_idx;
400
401 /* The location of the write-back status block */
402 u32 *tx_status;
403 dma_addr_t tx_status_pa;
404
405 /* Packets since the last IRQ: used for interrupt coalescing */
406 int since_irq;
407};
408
fd0651a6
ME
409/*
410 * Do not change these values: if changed, then change also in respective
411 * TXdma and Rxdma engines
412 */
413#define NUM_DESC_PER_RING_TX 512 /* TX Do not change these values */
414#define NUM_TCB 64
415
416/*
417 * These values are all superseded by registry entries to facilitate tuning.
418 * Once the desired performance has been achieved, the optimal registry values
419 * should be re-populated to these #defines:
420 */
fd0651a6
ME
421#define TX_ERROR_PERIOD 1000
422
423#define LO_MARK_PERCENT_FOR_PSR 15
424#define LO_MARK_PERCENT_FOR_RX 15
425
426/* RFD (Receive Frame Descriptor) */
427struct rfd {
428 struct list_head list_node;
429 struct sk_buff *skb;
430 u32 len; /* total size of receive frame */
431 u16 bufferindex;
432 u8 ringindex;
433};
434
435/* Flow Control */
436#define FLOW_BOTH 0
437#define FLOW_TXONLY 1
438#define FLOW_RXONLY 2
439#define FLOW_NONE 3
440
441/* Struct to define some device statistics */
442struct ce_stats {
443 /* MIB II variables
444 *
445 * NOTE: atomic_t types are only guaranteed to store 24-bits; if we
446 * MUST have 32, then we'll need another way to perform atomic
447 * operations
448 */
449 u32 unicast_pkts_rcvd;
450 atomic_t unicast_pkts_xmtd;
451 u32 multicast_pkts_rcvd;
452 atomic_t multicast_pkts_xmtd;
453 u32 broadcast_pkts_rcvd;
454 atomic_t broadcast_pkts_xmtd;
455 u32 rcvd_pkts_dropped;
456
457 /* Tx Statistics. */
458 u32 tx_underflows;
459
460 u32 tx_collisions;
461 u32 tx_excessive_collisions;
462 u32 tx_first_collisions;
463 u32 tx_late_collisions;
464 u32 tx_max_pkt_errs;
465 u32 tx_deferred;
466
467 /* Rx Statistics. */
468 u32 rx_overflows;
469
470 u32 rx_length_errs;
471 u32 rx_align_errs;
472 u32 rx_crc_errs;
473 u32 rx_code_violations;
474 u32 rx_other_errs;
475
476 u32 synchronous_iterations;
477 u32 interrupt_status;
478};
479
480/* The private adapter structure */
481struct et131x_adapter {
482 struct net_device *netdev;
483 struct pci_dev *pdev;
484 struct mii_bus *mii_bus;
485 struct phy_device *phydev;
486 struct work_struct task;
487
488 /* Flags that indicate current state of the adapter */
489 u32 flags;
490
491 /* local link state, to determine if a state change has occurred */
492 int link;
493
494 /* Configuration */
495 u8 rom_addr[ETH_ALEN];
496 u8 addr[ETH_ALEN];
497 bool has_eeprom;
498 u8 eeprom_data[2];
499
500 /* Spinlocks */
501 spinlock_t lock;
502
503 spinlock_t tcb_send_qlock;
504 spinlock_t tcb_ready_qlock;
505 spinlock_t send_hw_lock;
506
507 spinlock_t rcv_lock;
508 spinlock_t rcv_pend_lock;
509 spinlock_t fbr_lock;
510
511 spinlock_t phy_lock;
512
513 /* Packet Filter and look ahead size */
514 u32 packet_filter;
515
516 /* multicast list */
517 u32 multicast_addr_count;
518 u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN];
519
520 /* Pointer to the device's PCI register space */
521 struct address_map __iomem *regs;
522
523 /* Registry parameters */
524 u8 wanted_flow; /* Flow we want for 802.3x flow control */
525 u32 registry_jumbo_packet; /* Max supported ethernet packet size */
526
527 /* Derived from the registry: */
528 u8 flowcontrol; /* flow control validated by the far-end */
529
530 /* Minimize init-time */
531 struct timer_list error_timer;
532
533 /* variable putting the phy into coma mode when boot up with no cable
534 * plugged in after 5 seconds
535 */
536 u8 boot_coma;
537
538 /* Next two used to save power information at power down. This
539 * information will be used during power up to set up parts of Power
540 * Management in JAGCore
541 */
542 u16 pdown_speed;
543 u8 pdown_duplex;
544
545 /* Tx Memory Variables */
546 struct tx_ring tx_ring;
547
548 /* Rx Memory Variables */
549 struct rx_ring rx_ring;
550
551 /* Stats */
552 struct ce_stats stats;
553
554 struct net_device_stats net_stats;
555};
556
d2796743
ME
557static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status)
558{
559 u32 reg;
560 int i;
561
562 /*
563 * 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
564 * bits 7,1:0 both equal to 1, at least once after reset.
565 * Subsequent operations need only to check that bits 1:0 are equal
566 * to 1 prior to starting a single byte read/write
567 */
568
569 for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) {
570 /* Read registers grouped in DWORD1 */
571 if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, &reg))
572 return -EIO;
573
574 /* I2C idle and Phy Queue Avail both true */
575 if ((reg & 0x3000) == 0x3000) {
576 if (status)
577 *status = reg;
578 return reg & 0xFF;
579 }
580 }
581 return -ETIMEDOUT;
582}
583
d2796743
ME
584/**
585 * eeprom_write - Write a byte to the ET1310's EEPROM
586 * @adapter: pointer to our private adapter structure
587 * @addr: the address to write
588 * @data: the value to write
589 *
590 * Returns 1 for a successful write.
591 */
592static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data)
593{
594 struct pci_dev *pdev = adapter->pdev;
595 int index = 0;
596 int retries;
597 int err = 0;
598 int i2c_wack = 0;
599 int writeok = 0;
600 u32 status;
601 u32 val = 0;
602
603 /*
604 * For an EEPROM, an I2C single byte write is defined as a START
605 * condition followed by the device address, EEPROM address, one byte
606 * of data and a STOP condition. The STOP condition will trigger the
607 * EEPROM's internally timed write cycle to the nonvolatile memory.
608 * All inputs are disabled during this write cycle and the EEPROM will
609 * not respond to any access until the internal write is complete.
610 */
611
612 err = eeprom_wait_ready(pdev, NULL);
613 if (err)
614 return err;
615
616 /*
617 * 2. Write to the LBCIF Control Register: bit 7=1, bit 6=1, bit 3=0,
618 * and bits 1:0 both =0. Bit 5 should be set according to the
619 * type of EEPROM being accessed (1=two byte addressing, 0=one
620 * byte addressing).
621 */
622 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
623 LBCIF_CONTROL_LBCIF_ENABLE | LBCIF_CONTROL_I2C_WRITE))
624 return -EIO;
625
626 i2c_wack = 1;
627
628 /* Prepare EEPROM address for Step 3 */
629
630 for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
631 /* Write the address to the LBCIF Address Register */
632 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
633 break;
634 /*
635 * Write the data to the LBCIF Data Register (the I2C write
636 * will begin).
637 */
638 if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data))
639 break;
640 /*
641 * Monitor bit 1:0 of the LBCIF Status Register. When bits
642 * 1:0 are both equal to 1, the I2C write has completed and the
643 * internal write cycle of the EEPROM is about to start.
644 * (bits 1:0 = 01 is a legal state while waiting from both
645 * equal to 1, but bits 1:0 = 10 is invalid and implies that
646 * something is broken).
647 */
648 err = eeprom_wait_ready(pdev, &status);
649 if (err < 0)
650 return 0;
651
652 /*
653 * Check bit 3 of the LBCIF Status Register. If equal to 1,
654 * an error has occurred.Don't break here if we are revision
655 * 1, this is so we do a blind write for load bug.
656 */
657 if ((status & LBCIF_STATUS_GENERAL_ERROR)
658 && adapter->pdev->revision == 0)
659 break;
660
661 /*
662 * Check bit 2 of the LBCIF Status Register. If equal to 1 an
663 * ACK error has occurred on the address phase of the write.
664 * This could be due to an actual hardware failure or the
665 * EEPROM may still be in its internal write cycle from a
666 * previous write. This write operation was ignored and must be
667 *repeated later.
668 */
669 if (status & LBCIF_STATUS_ACK_ERROR) {
670 /*
671 * This could be due to an actual hardware failure
672 * or the EEPROM may still be in its internal write
673 * cycle from a previous write. This write operation
674 * was ignored and must be repeated later.
675 */
676 udelay(10);
677 continue;
678 }
679
680 writeok = 1;
681 break;
682 }
683
684 /*
685 * Set bit 6 of the LBCIF Control Register = 0.
686 */
687 udelay(10);
688
689 while (i2c_wack) {
690 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
691 LBCIF_CONTROL_LBCIF_ENABLE))
692 writeok = 0;
693
694 /* Do read until internal ACK_ERROR goes away meaning write
695 * completed
696 */
697 do {
698 pci_write_config_dword(pdev,
699 LBCIF_ADDRESS_REGISTER,
700 addr);
701 do {
702 pci_read_config_dword(pdev,
703 LBCIF_DATA_REGISTER, &val);
704 } while ((val & 0x00010000) == 0);
705 } while (val & 0x00040000);
706
707 if ((val & 0xFF00) != 0xC000 || index == 10000)
708 break;
709 index++;
710 }
711 return writeok ? 0 : -EIO;
712}
713
714/**
715 * eeprom_read - Read a byte from the ET1310's EEPROM
716 * @adapter: pointer to our private adapter structure
717 * @addr: the address from which to read
718 * @pdata: a pointer to a byte in which to store the value of the read
719 * @eeprom_id: the ID of the EEPROM
720 * @addrmode: how the EEPROM is to be accessed
721 *
722 * Returns 1 for a successful read
723 */
724static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata)
725{
726 struct pci_dev *pdev = adapter->pdev;
727 int err;
728 u32 status;
729
730 /*
731 * A single byte read is similar to the single byte write, with the
732 * exception of the data flow:
733 */
734
735 err = eeprom_wait_ready(pdev, NULL);
736 if (err)
737 return err;
738 /*
739 * Write to the LBCIF Control Register: bit 7=1, bit 6=0, bit 3=0,
740 * and bits 1:0 both =0. Bit 5 should be set according to the type
741 * of EEPROM being accessed (1=two byte addressing, 0=one byte
742 * addressing).
743 */
744 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
745 LBCIF_CONTROL_LBCIF_ENABLE))
746 return -EIO;
747 /*
748 * Write the address to the LBCIF Address Register (I2C read will
749 * begin).
750 */
751 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
752 return -EIO;
753 /*
754 * Monitor bit 0 of the LBCIF Status Register. When = 1, I2C read
755 * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
756 * has occurred).
757 */
758 err = eeprom_wait_ready(pdev, &status);
759 if (err < 0)
760 return err;
761 /*
762 * Regardless of error status, read data byte from LBCIF Data
763 * Register.
764 */
765 *pdata = err;
766 /*
767 * Check bit 2 of the LBCIF Status Register. If = 1,
768 * then an error has occurred.
769 */
770 return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0;
771}
772
eb7a6ca6 773static int et131x_init_eeprom(struct et131x_adapter *adapter)
d2796743
ME
774{
775 struct pci_dev *pdev = adapter->pdev;
776 u8 eestatus;
777
778 /* We first need to check the EEPROM Status code located at offset
779 * 0xB2 of config space
780 */
a129be84 781 pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus);
d2796743
ME
782
783 /* THIS IS A WORKAROUND:
784 * I need to call this function twice to get my card in a
785 * LG M1 Express Dual running. I tried also a msleep before this
a129be84 786 * function, because I thought there could be some time conditions
d2796743
ME
787 * but it didn't work. Call the whole function twice also work.
788 */
789 if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) {
790 dev_err(&pdev->dev,
791 "Could not read PCI config space for EEPROM Status\n");
792 return -EIO;
793 }
794
795 /* Determine if the error(s) we care about are present. If they are
796 * present we need to fail.
797 */
798 if (eestatus & 0x4C) {
799 int write_failed = 0;
800 if (pdev->revision == 0x01) {
801 int i;
802 static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF };
803
804 /* Re-write the first 4 bytes if we have an eeprom
805 * present and the revision id is 1, this fixes the
806 * corruption seen with 1310 B Silicon
807 */
808 for (i = 0; i < 3; i++)
809 if (eeprom_write(adapter, i, eedata[i]) < 0)
810 write_failed = 1;
811 }
812 if (pdev->revision != 0x01 || write_failed) {
813 dev_err(&pdev->dev,
814 "Fatal EEPROM Status Error - 0x%04x\n", eestatus);
815
816 /* This error could mean that there was an error
817 * reading the eeprom or that the eeprom doesn't exist.
818 * We will treat each case the same and not try to
819 * gather additional information that normally would
820 * come from the eeprom, like MAC Address
821 */
822 adapter->has_eeprom = 0;
823 return -EIO;
824 }
825 }
826 adapter->has_eeprom = 1;
827
828 /* Read the EEPROM for information regarding LED behavior. Refer to
829 * ET1310_phy.c, et131x_xcvr_init(), for its use.
830 */
831 eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]);
832 eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]);
833
834 if (adapter->eeprom_data[0] != 0xcd)
835 /* Disable all optional features */
836 adapter->eeprom_data[1] = 0x00;
837
838 return 0;
839}
840
8310c602
ME
841/**
842 * et131x_rx_dma_enable - re-start of Rx_DMA on the ET1310.
843 * @adapter: pointer to our adapter structure
844 */
eb7a6ca6 845static void et131x_rx_dma_enable(struct et131x_adapter *adapter)
8310c602
ME
846{
847 /* Setup the receive dma configuration register for normal operation */
3040d056 848 u32 csr = ET_RXDMA_CSR_FBR1_ENABLE;
8310c602 849
f0ada678 850 if (adapter->rx_ring.fbr[1]->buffsize == 4096)
3040d056 851 csr |= ET_RXDMA_CSR_FBR1_SIZE_LO;
f0ada678 852 else if (adapter->rx_ring.fbr[1]->buffsize == 8192)
3040d056 853 csr |= ET_RXDMA_CSR_FBR1_SIZE_HI;
f0ada678 854 else if (adapter->rx_ring.fbr[1]->buffsize == 16384)
3040d056 855 csr |= ET_RXDMA_CSR_FBR1_SIZE_LO | ET_RXDMA_CSR_FBR1_SIZE_HI;
b5254867 856
3040d056 857 csr |= ET_RXDMA_CSR_FBR0_ENABLE;
f0ada678 858 if (adapter->rx_ring.fbr[0]->buffsize == 256)
3040d056 859 csr |= ET_RXDMA_CSR_FBR0_SIZE_LO;
f0ada678 860 else if (adapter->rx_ring.fbr[0]->buffsize == 512)
3040d056 861 csr |= ET_RXDMA_CSR_FBR0_SIZE_HI;
f0ada678 862 else if (adapter->rx_ring.fbr[0]->buffsize == 1024)
3040d056 863 csr |= ET_RXDMA_CSR_FBR0_SIZE_LO | ET_RXDMA_CSR_FBR0_SIZE_HI;
8310c602
ME
864 writel(csr, &adapter->regs->rxdma.csr);
865
866 csr = readl(&adapter->regs->rxdma.csr);
3040d056 867 if (csr & ET_RXDMA_CSR_HALT_STATUS) {
8310c602
ME
868 udelay(5);
869 csr = readl(&adapter->regs->rxdma.csr);
3040d056 870 if (csr & ET_RXDMA_CSR_HALT_STATUS) {
8310c602
ME
871 dev_err(&adapter->pdev->dev,
872 "RX Dma failed to exit halt state. CSR 0x%08x\n",
873 csr);
874 }
875 }
876}
877
878/**
879 * et131x_rx_dma_disable - Stop of Rx_DMA on the ET1310
880 * @adapter: pointer to our adapter structure
881 */
eb7a6ca6 882static void et131x_rx_dma_disable(struct et131x_adapter *adapter)
8310c602
ME
883{
884 u32 csr;
885 /* Setup the receive dma configuration register */
3040d056
ME
886 writel(ET_RXDMA_CSR_HALT | ET_RXDMA_CSR_FBR1_ENABLE,
887 &adapter->regs->rxdma.csr);
8310c602 888 csr = readl(&adapter->regs->rxdma.csr);
3040d056 889 if (!(csr & ET_RXDMA_CSR_HALT_STATUS)) {
8310c602
ME
890 udelay(5);
891 csr = readl(&adapter->regs->rxdma.csr);
3040d056 892 if (!(csr & ET_RXDMA_CSR_HALT_STATUS))
8310c602 893 dev_err(&adapter->pdev->dev,
3040d056
ME
894 "RX Dma failed to enter halt state. CSR 0x%08x\n",
895 csr);
8310c602
ME
896 }
897}
898
899/**
900 * et131x_tx_dma_enable - re-start of Tx_DMA on the ET1310.
901 * @adapter: pointer to our adapter structure
902 *
903 * Mainly used after a return to the D0 (full-power) state from a lower state.
904 */
eb7a6ca6 905static void et131x_tx_dma_enable(struct et131x_adapter *adapter)
8310c602
ME
906{
907 /* Setup the transmit dma configuration register for normal
908 * operation
909 */
910 writel(ET_TXDMA_SNGL_EPKT|(PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
911 &adapter->regs->txdma.csr);
912}
913
914static inline void add_10bit(u32 *v, int n)
915{
916 *v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP);
917}
918
919static inline void add_12bit(u32 *v, int n)
920{
921 *v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP);
922}
923
d2796743
ME
924/**
925 * et1310_config_mac_regs1 - Initialize the first part of MAC regs
926 * @adapter: pointer to our adapter structure
927 */
eb7a6ca6 928static void et1310_config_mac_regs1(struct et131x_adapter *adapter)
d2796743
ME
929{
930 struct mac_regs __iomem *macregs = &adapter->regs->mac;
931 u32 station1;
932 u32 station2;
933 u32 ipg;
934
935 /* First we need to reset everything. Write to MAC configuration
936 * register 1 to perform reset.
937 */
a129be84
ME
938 writel(ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
939 ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
940 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC,
941 &macregs->cfg1);
d2796743
ME
942
943 /* Next lets configure the MAC Inter-packet gap register */
944 ipg = 0x38005860; /* IPG1 0x38 IPG2 0x58 B2B 0x60 */
945 ipg |= 0x50 << 8; /* ifg enforce 0x50 */
946 writel(ipg, &macregs->ipg);
947
948 /* Next lets configure the MAC Half Duplex register */
949 /* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
950 writel(0x00A1F037, &macregs->hfdp);
951
952 /* Next lets configure the MAC Interface Control register */
953 writel(0, &macregs->if_ctrl);
954
955 /* Let's move on to setting up the mii management configuration */
a129be84 956 writel(ET_MAC_MIIMGMT_CLK_RST, &macregs->mii_mgmt_cfg);
d2796743
ME
957
958 /* Next lets configure the MAC Station Address register. These
959 * values are read from the EEPROM during initialization and stored
960 * in the adapter structure. We write what is stored in the adapter
961 * structure to the MAC Station Address registers high and low. This
962 * station address is used for generating and checking pause control
963 * packets.
964 */
965 station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) |
966 (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT);
967 station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) |
968 (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) |
969 (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) |
970 adapter->addr[2];
971 writel(station1, &macregs->station_addr_1);
972 writel(station2, &macregs->station_addr_2);
973
ac399bc0 974 /* Max ethernet packet in bytes that will be passed by the mac without
d2796743
ME
975 * being truncated. Allow the MAC to pass 4 more than our max packet
976 * size. This is 4 for the Ethernet CRC.
977 *
978 * Packets larger than (registry_jumbo_packet) that do not contain a
979 * VLAN ID will be dropped by the Rx function.
980 */
981 writel(adapter->registry_jumbo_packet + 4, &macregs->max_fm_len);
982
983 /* clear out MAC config reset */
984 writel(0, &macregs->cfg1);
985}
986
987/**
988 * et1310_config_mac_regs2 - Initialize the second part of MAC regs
989 * @adapter: pointer to our adapter structure
990 */
eb7a6ca6 991static void et1310_config_mac_regs2(struct et131x_adapter *adapter)
d2796743
ME
992{
993 int32_t delay = 0;
994 struct mac_regs __iomem *mac = &adapter->regs->mac;
995 struct phy_device *phydev = adapter->phydev;
996 u32 cfg1;
997 u32 cfg2;
998 u32 ifctrl;
999 u32 ctl;
1000
1001 ctl = readl(&adapter->regs->txmac.ctl);
1002 cfg1 = readl(&mac->cfg1);
1003 cfg2 = readl(&mac->cfg2);
1004 ifctrl = readl(&mac->if_ctrl);
1005
1006 /* Set up the if mode bits */
a129be84 1007 cfg2 &= ~ET_MAC_CFG2_IFMODE_MASK;
d2796743 1008 if (phydev && phydev->speed == SPEED_1000) {
a129be84 1009 cfg2 |= ET_MAC_CFG2_IFMODE_1000;
d2796743 1010 /* Phy mode bit */
a129be84 1011 ifctrl &= ~ET_MAC_IFCTRL_PHYMODE;
d2796743 1012 } else {
a129be84
ME
1013 cfg2 |= ET_MAC_CFG2_IFMODE_100;
1014 ifctrl |= ET_MAC_IFCTRL_PHYMODE;
d2796743
ME
1015 }
1016
1017 /* We need to enable Rx/Tx */
a129be84
ME
1018 cfg1 |= ET_MAC_CFG1_RX_ENABLE | ET_MAC_CFG1_TX_ENABLE |
1019 ET_MAC_CFG1_TX_FLOW;
d2796743 1020 /* Initialize loop back to off */
a129be84 1021 cfg1 &= ~(ET_MAC_CFG1_LOOPBACK | ET_MAC_CFG1_RX_FLOW);
d2796743
ME
1022 if (adapter->flowcontrol == FLOW_RXONLY ||
1023 adapter->flowcontrol == FLOW_BOTH)
a129be84 1024 cfg1 |= ET_MAC_CFG1_RX_FLOW;
d2796743
ME
1025 writel(cfg1, &mac->cfg1);
1026
1027 /* Now we need to initialize the MAC Configuration 2 register */
1028 /* preamble 7, check length, huge frame off, pad crc, crc enable
1029 full duplex off */
a129be84
ME
1030 cfg2 |= 0x7 << ET_MAC_CFG2_PREAMBLE_SHIFT;
1031 cfg2 |= ET_MAC_CFG2_IFMODE_LEN_CHECK;
1032 cfg2 |= ET_MAC_CFG2_IFMODE_PAD_CRC;
1033 cfg2 |= ET_MAC_CFG2_IFMODE_CRC_ENABLE;
1034 cfg2 &= ~ET_MAC_CFG2_IFMODE_HUGE_FRAME;
1035 cfg2 &= ~ET_MAC_CFG2_IFMODE_FULL_DPLX;
d2796743
ME
1036
1037 /* Turn on duplex if needed */
1038 if (phydev && phydev->duplex == DUPLEX_FULL)
a129be84 1039 cfg2 |= ET_MAC_CFG2_IFMODE_FULL_DPLX;
d2796743 1040
a129be84 1041 ifctrl &= ~ET_MAC_IFCTRL_GHDMODE;
d2796743 1042 if (phydev && phydev->duplex == DUPLEX_HALF)
a129be84 1043 ifctrl |= ET_MAC_IFCTRL_GHDMODE;
d2796743
ME
1044
1045 writel(ifctrl, &mac->if_ctrl);
1046 writel(cfg2, &mac->cfg2);
1047
1048 do {
1049 udelay(10);
1050 delay++;
1051 cfg1 = readl(&mac->cfg1);
a129be84 1052 } while ((cfg1 & ET_MAC_CFG1_WAIT) != ET_MAC_CFG1_WAIT && delay < 100);
d2796743
ME
1053
1054 if (delay == 100) {
1055 dev_warn(&adapter->pdev->dev,
1056 "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
1057 cfg1);
1058 }
1059
1060 /* Enable txmac */
a129be84 1061 ctl |= ET_TX_CTRL_TXMAC_ENABLE | ET_TX_CTRL_FC_DISABLE;
d2796743
ME
1062 writel(ctl, &adapter->regs->txmac.ctl);
1063
1064 /* Ready to start the RXDMA/TXDMA engine */
1065 if (adapter->flags & fMP_ADAPTER_LOWER_POWER) {
1066 et131x_rx_dma_enable(adapter);
1067 et131x_tx_dma_enable(adapter);
1068 }
1069}
1070
2288760e
ME
1071/**
1072 * et1310_in_phy_coma - check if the device is in phy coma
1073 * @adapter: pointer to our adapter structure
1074 *
1075 * Returns 0 if the device is not in phy coma, 1 if it is in phy coma
1076 */
eb7a6ca6 1077static int et1310_in_phy_coma(struct et131x_adapter *adapter)
2288760e
ME
1078{
1079 u32 pmcsr;
1080
1081 pmcsr = readl(&adapter->regs->global.pm_csr);
1082
1083 return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0;
1084}
1085
eb7a6ca6 1086static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter)
a4d444bd
ME
1087{
1088 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
834d0ee3
FR
1089 u32 hash1 = 0;
1090 u32 hash2 = 0;
1091 u32 hash3 = 0;
1092 u32 hash4 = 0;
a4d444bd
ME
1093 u32 pm_csr;
1094
1095 /* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
1096 * the multi-cast LIST. If it is NOT specified, (and "ALL" is not
1097 * specified) then we should pass NO multi-cast addresses to the
1098 * driver.
1099 */
1100 if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) {
834d0ee3
FR
1101 int i;
1102
a4d444bd 1103 /* Loop through our multicast array and set up the device */
834d0ee3
FR
1104 for (i = 0; i < adapter->multicast_addr_count; i++) {
1105 u32 result;
1106
1107 result = ether_crc(6, adapter->multicast_list[i]);
a4d444bd
ME
1108
1109 result = (result & 0x3F800000) >> 23;
1110
1111 if (result < 32) {
1112 hash1 |= (1 << result);
1113 } else if ((31 < result) && (result < 64)) {
1114 result -= 32;
1115 hash2 |= (1 << result);
1116 } else if ((63 < result) && (result < 96)) {
1117 result -= 64;
1118 hash3 |= (1 << result);
1119 } else {
1120 result -= 96;
1121 hash4 |= (1 << result);
1122 }
1123 }
1124 }
1125
1126 /* Write out the new hash to the device */
1127 pm_csr = readl(&adapter->regs->global.pm_csr);
1128 if (!et1310_in_phy_coma(adapter)) {
1129 writel(hash1, &rxmac->multi_hash1);
1130 writel(hash2, &rxmac->multi_hash2);
1131 writel(hash3, &rxmac->multi_hash3);
1132 writel(hash4, &rxmac->multi_hash4);
1133 }
1134}
1135
eb7a6ca6 1136static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter)
a4d444bd
ME
1137{
1138 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1139 u32 uni_pf1;
1140 u32 uni_pf2;
1141 u32 uni_pf3;
1142 u32 pm_csr;
1143
1144 /* Set up unicast packet filter reg 3 to be the first two octets of
1145 * the MAC address for both address
1146 *
1147 * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
1148 * MAC address for second address
1149 *
1150 * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
1151 * MAC address for first address
1152 */
a129be84
ME
1153 uni_pf3 = (adapter->addr[0] << ET_RX_UNI_PF_ADDR2_1_SHIFT) |
1154 (adapter->addr[1] << ET_RX_UNI_PF_ADDR2_2_SHIFT) |
1155 (adapter->addr[0] << ET_RX_UNI_PF_ADDR1_1_SHIFT) |
a4d444bd
ME
1156 adapter->addr[1];
1157
a129be84
ME
1158 uni_pf2 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR2_3_SHIFT) |
1159 (adapter->addr[3] << ET_RX_UNI_PF_ADDR2_4_SHIFT) |
1160 (adapter->addr[4] << ET_RX_UNI_PF_ADDR2_5_SHIFT) |
a4d444bd
ME
1161 adapter->addr[5];
1162
a129be84
ME
1163 uni_pf1 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR1_3_SHIFT) |
1164 (adapter->addr[3] << ET_RX_UNI_PF_ADDR1_4_SHIFT) |
1165 (adapter->addr[4] << ET_RX_UNI_PF_ADDR1_5_SHIFT) |
a4d444bd
ME
1166 adapter->addr[5];
1167
1168 pm_csr = readl(&adapter->regs->global.pm_csr);
1169 if (!et1310_in_phy_coma(adapter)) {
1170 writel(uni_pf1, &rxmac->uni_pf_addr1);
1171 writel(uni_pf2, &rxmac->uni_pf_addr2);
1172 writel(uni_pf3, &rxmac->uni_pf_addr3);
1173 }
1174}
1175
eb7a6ca6 1176static void et1310_config_rxmac_regs(struct et131x_adapter *adapter)
d2796743
ME
1177{
1178 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1179 struct phy_device *phydev = adapter->phydev;
1180 u32 sa_lo;
1181 u32 sa_hi = 0;
1182 u32 pf_ctrl = 0;
1183
1184 /* Disable the MAC while it is being configured (also disable WOL) */
1185 writel(0x8, &rxmac->ctrl);
1186
1187 /* Initialize WOL to disabled. */
1188 writel(0, &rxmac->crc0);
1189 writel(0, &rxmac->crc12);
1190 writel(0, &rxmac->crc34);
1191
1192 /* We need to set the WOL mask0 - mask4 next. We initialize it to
1193 * its default Values of 0x00000000 because there are not WOL masks
1194 * as of this time.
1195 */
1196 writel(0, &rxmac->mask0_word0);
1197 writel(0, &rxmac->mask0_word1);
1198 writel(0, &rxmac->mask0_word2);
1199 writel(0, &rxmac->mask0_word3);
1200
1201 writel(0, &rxmac->mask1_word0);
1202 writel(0, &rxmac->mask1_word1);
1203 writel(0, &rxmac->mask1_word2);
1204 writel(0, &rxmac->mask1_word3);
1205
1206 writel(0, &rxmac->mask2_word0);
1207 writel(0, &rxmac->mask2_word1);
1208 writel(0, &rxmac->mask2_word2);
1209 writel(0, &rxmac->mask2_word3);
1210
1211 writel(0, &rxmac->mask3_word0);
1212 writel(0, &rxmac->mask3_word1);
1213 writel(0, &rxmac->mask3_word2);
1214 writel(0, &rxmac->mask3_word3);
1215
1216 writel(0, &rxmac->mask4_word0);
1217 writel(0, &rxmac->mask4_word1);
1218 writel(0, &rxmac->mask4_word2);
1219 writel(0, &rxmac->mask4_word3);
1220
1221 /* Lets setup the WOL Source Address */
a129be84
ME
1222 sa_lo = (adapter->addr[2] << ET_RX_WOL_LO_SA3_SHIFT) |
1223 (adapter->addr[3] << ET_RX_WOL_LO_SA4_SHIFT) |
1224 (adapter->addr[4] << ET_RX_WOL_LO_SA5_SHIFT) |
d2796743
ME
1225 adapter->addr[5];
1226 writel(sa_lo, &rxmac->sa_lo);
1227
a129be84 1228 sa_hi = (u32) (adapter->addr[0] << ET_RX_WOL_HI_SA1_SHIFT) |
d2796743
ME
1229 adapter->addr[1];
1230 writel(sa_hi, &rxmac->sa_hi);
1231
1232 /* Disable all Packet Filtering */
1233 writel(0, &rxmac->pf_ctrl);
1234
1235 /* Let's initialize the Unicast Packet filtering address */
1236 if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) {
1237 et1310_setup_device_for_unicast(adapter);
a129be84 1238 pf_ctrl |= ET_RX_PFCTRL_UNICST_FILTER_ENABLE;
d2796743
ME
1239 } else {
1240 writel(0, &rxmac->uni_pf_addr1);
1241 writel(0, &rxmac->uni_pf_addr2);
1242 writel(0, &rxmac->uni_pf_addr3);
1243 }
1244
1245 /* Let's initialize the Multicast hash */
1246 if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
a129be84 1247 pf_ctrl |= ET_RX_PFCTRL_MLTCST_FILTER_ENABLE;
d2796743
ME
1248 et1310_setup_device_for_multicast(adapter);
1249 }
1250
1251 /* Runt packet filtering. Didn't work in version A silicon. */
a129be84
ME
1252 pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << ET_RX_PFCTRL_MIN_PKT_SZ_SHIFT;
1253 pf_ctrl |= ET_RX_PFCTRL_FRAG_FILTER_ENABLE;
d2796743
ME
1254
1255 if (adapter->registry_jumbo_packet > 8192)
1256 /* In order to transmit jumbo packets greater than 8k, the
1257 * FIFO between RxMAC and RxDMA needs to be reduced in size
1258 * to (16k - Jumbo packet size). In order to implement this,
1259 * we must use "cut through" mode in the RxMAC, which chops
1260 * packets down into segments which are (max_size * 16). In
1261 * this case we selected 256 bytes, since this is the size of
1262 * the PCI-Express TLP's that the 1310 uses.
1263 *
1264 * seg_en on, fc_en off, size 0x10
1265 */
1266 writel(0x41, &rxmac->mcif_ctrl_max_seg);
1267 else
1268 writel(0, &rxmac->mcif_ctrl_max_seg);
1269
1270 /* Initialize the MCIF water marks */
1271 writel(0, &rxmac->mcif_water_mark);
1272
1273 /* Initialize the MIF control */
1274 writel(0, &rxmac->mif_ctrl);
1275
1276 /* Initialize the Space Available Register */
1277 writel(0, &rxmac->space_avail);
1278
1279 /* Initialize the the mif_ctrl register
1280 * bit 3: Receive code error. One or more nibbles were signaled as
1281 * errors during the reception of the packet. Clear this
1282 * bit in Gigabit, set it in 100Mbit. This was derived
1283 * experimentally at UNH.
1284 * bit 4: Receive CRC error. The packet's CRC did not match the
1285 * internally generated CRC.
1286 * bit 5: Receive length check error. Indicates that frame length
1287 * field value in the packet does not match the actual data
1288 * byte length and is not a type field.
1289 * bit 16: Receive frame truncated.
1290 * bit 17: Drop packet enable
1291 */
1292 if (phydev && phydev->speed == SPEED_100)
1293 writel(0x30038, &rxmac->mif_ctrl);
1294 else
1295 writel(0x30030, &rxmac->mif_ctrl);
1296
1297 /* Finally we initialize RxMac to be enabled & WOL disabled. Packet
1298 * filter is always enabled since it is where the runt packets are
1299 * supposed to be dropped. For version A silicon, runt packet
1300 * dropping doesn't work, so it is disabled in the pf_ctrl register,
1301 * but we still leave the packet filter on.
1302 */
1303 writel(pf_ctrl, &rxmac->pf_ctrl);
a129be84 1304 writel(ET_RX_CTRL_RXMAC_ENABLE | ET_RX_CTRL_WOL_DISABLE, &rxmac->ctrl);
d2796743
ME
1305}
1306
eb7a6ca6 1307static void et1310_config_txmac_regs(struct et131x_adapter *adapter)
d2796743
ME
1308{
1309 struct txmac_regs __iomem *txmac = &adapter->regs->txmac;
1310
1311 /* We need to update the Control Frame Parameters
1312 * cfpt - control frame pause timer set to 64 (0x40)
1313 * cfep - control frame extended pause timer set to 0x0
1314 */
1315 if (adapter->flowcontrol == FLOW_NONE)
1316 writel(0, &txmac->cf_param);
1317 else
1318 writel(0x40, &txmac->cf_param);
1319}
1320
eb7a6ca6 1321static void et1310_config_macstat_regs(struct et131x_adapter *adapter)
d2796743
ME
1322{
1323 struct macstat_regs __iomem *macstat =
1324 &adapter->regs->macstat;
1325
1326 /* Next we need to initialize all the macstat registers to zero on
1327 * the device.
1328 */
1329 writel(0, &macstat->txrx_0_64_byte_frames);
1330 writel(0, &macstat->txrx_65_127_byte_frames);
1331 writel(0, &macstat->txrx_128_255_byte_frames);
1332 writel(0, &macstat->txrx_256_511_byte_frames);
1333 writel(0, &macstat->txrx_512_1023_byte_frames);
1334 writel(0, &macstat->txrx_1024_1518_byte_frames);
1335 writel(0, &macstat->txrx_1519_1522_gvln_frames);
1336
1337 writel(0, &macstat->rx_bytes);
1338 writel(0, &macstat->rx_packets);
1339 writel(0, &macstat->rx_fcs_errs);
1340 writel(0, &macstat->rx_multicast_packets);
1341 writel(0, &macstat->rx_broadcast_packets);
1342 writel(0, &macstat->rx_control_frames);
1343 writel(0, &macstat->rx_pause_frames);
1344 writel(0, &macstat->rx_unknown_opcodes);
1345 writel(0, &macstat->rx_align_errs);
1346 writel(0, &macstat->rx_frame_len_errs);
1347 writel(0, &macstat->rx_code_errs);
1348 writel(0, &macstat->rx_carrier_sense_errs);
1349 writel(0, &macstat->rx_undersize_packets);
1350 writel(0, &macstat->rx_oversize_packets);
1351 writel(0, &macstat->rx_fragment_packets);
1352 writel(0, &macstat->rx_jabbers);
1353 writel(0, &macstat->rx_drops);
1354
1355 writel(0, &macstat->tx_bytes);
1356 writel(0, &macstat->tx_packets);
1357 writel(0, &macstat->tx_multicast_packets);
1358 writel(0, &macstat->tx_broadcast_packets);
1359 writel(0, &macstat->tx_pause_frames);
1360 writel(0, &macstat->tx_deferred);
1361 writel(0, &macstat->tx_excessive_deferred);
1362 writel(0, &macstat->tx_single_collisions);
1363 writel(0, &macstat->tx_multiple_collisions);
1364 writel(0, &macstat->tx_late_collisions);
1365 writel(0, &macstat->tx_excessive_collisions);
1366 writel(0, &macstat->tx_total_collisions);
1367 writel(0, &macstat->tx_pause_honored_frames);
1368 writel(0, &macstat->tx_drops);
1369 writel(0, &macstat->tx_jabbers);
1370 writel(0, &macstat->tx_fcs_errs);
1371 writel(0, &macstat->tx_control_frames);
1372 writel(0, &macstat->tx_oversize_frames);
1373 writel(0, &macstat->tx_undersize_frames);
1374 writel(0, &macstat->tx_fragments);
1375 writel(0, &macstat->carry_reg1);
1376 writel(0, &macstat->carry_reg2);
1377
1378 /* Unmask any counters that we want to track the overflow of.
1379 * Initially this will be all counters. It may become clear later
1380 * that we do not need to track all counters.
1381 */
1382 writel(0xFFFFBE32, &macstat->carry_reg1_mask);
1383 writel(0xFFFE7E8B, &macstat->carry_reg2_mask);
1384}
1385
2288760e
ME
1386/**
1387 * et131x_phy_mii_read - Read from the PHY through the MII Interface on the MAC
1388 * @adapter: pointer to our private adapter structure
1389 * @addr: the address of the transceiver
1390 * @reg: the register to read
1391 * @value: pointer to a 16-bit value in which the value will be stored
1392 *
1393 * Returns 0 on success, errno on failure (as defined in errno.h)
1394 */
eb7a6ca6 1395static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr,
2288760e
ME
1396 u8 reg, u16 *value)
1397{
1398 struct mac_regs __iomem *mac = &adapter->regs->mac;
1399 int status = 0;
1400 u32 delay = 0;
1401 u32 mii_addr;
1402 u32 mii_cmd;
1403 u32 mii_indicator;
1404
1405 /* Save a local copy of the registers we are dealing with so we can
1406 * set them back
1407 */
1408 mii_addr = readl(&mac->mii_mgmt_addr);
1409 mii_cmd = readl(&mac->mii_mgmt_cmd);
1410
1411 /* Stop the current operation */
1412 writel(0, &mac->mii_mgmt_cmd);
1413
1414 /* Set up the register we need to read from on the correct PHY */
a129be84 1415 writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
2288760e
ME
1416
1417 writel(0x1, &mac->mii_mgmt_cmd);
1418
1419 do {
1420 udelay(50);
1421 delay++;
1422 mii_indicator = readl(&mac->mii_mgmt_indicator);
a129be84 1423 } while ((mii_indicator & ET_MAC_MGMT_WAIT) && delay < 50);
2288760e
ME
1424
1425 /* If we hit the max delay, we could not read the register */
1426 if (delay == 50) {
1427 dev_warn(&adapter->pdev->dev,
1428 "reg 0x%08x could not be read\n", reg);
1429 dev_warn(&adapter->pdev->dev, "status is 0x%08x\n",
1430 mii_indicator);
1431
1432 status = -EIO;
1433 }
1434
1435 /* If we hit here we were able to read the register and we need to
1436 * return the value to the caller */
a129be84 1437 *value = readl(&mac->mii_mgmt_stat) & ET_MAC_MIIMGMT_STAT_PHYCRTL_MASK;
2288760e
ME
1438
1439 /* Stop the read operation */
1440 writel(0, &mac->mii_mgmt_cmd);
1441
1442 /* set the registers we touched back to the state at which we entered
1443 * this function
1444 */
1445 writel(mii_addr, &mac->mii_mgmt_addr);
1446 writel(mii_cmd, &mac->mii_mgmt_cmd);
1447
1448 return status;
1449}
1450
eb7a6ca6 1451static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value)
2288760e
ME
1452{
1453 struct phy_device *phydev = adapter->phydev;
1454
1455 if (!phydev)
1456 return -EIO;
1457
1458 return et131x_phy_mii_read(adapter, phydev->addr, reg, value);
1459}
1460
1461/**
1462 * et131x_mii_write - Write to a PHY register through the MII interface of the MAC
1463 * @adapter: pointer to our private adapter structure
1464 * @reg: the register to read
1465 * @value: 16-bit value to write
1466 *
1467 * FIXME: one caller in netdev still
1468 *
1469 * Return 0 on success, errno on failure (as defined in errno.h)
1470 */
eb7a6ca6 1471static int et131x_mii_write(struct et131x_adapter *adapter, u8 reg, u16 value)
2288760e
ME
1472{
1473 struct mac_regs __iomem *mac = &adapter->regs->mac;
1474 struct phy_device *phydev = adapter->phydev;
1475 int status = 0;
1476 u8 addr;
1477 u32 delay = 0;
1478 u32 mii_addr;
1479 u32 mii_cmd;
1480 u32 mii_indicator;
1481
1482 if (!phydev)
1483 return -EIO;
1484
1485 addr = phydev->addr;
1486
1487 /* Save a local copy of the registers we are dealing with so we can
1488 * set them back
1489 */
1490 mii_addr = readl(&mac->mii_mgmt_addr);
1491 mii_cmd = readl(&mac->mii_mgmt_cmd);
1492
1493 /* Stop the current operation */
1494 writel(0, &mac->mii_mgmt_cmd);
1495
1496 /* Set up the register we need to write to on the correct PHY */
a129be84 1497 writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
2288760e
ME
1498
1499 /* Add the value to write to the registers to the mac */
1500 writel(value, &mac->mii_mgmt_ctrl);
1501
1502 do {
1503 udelay(50);
1504 delay++;
1505 mii_indicator = readl(&mac->mii_mgmt_indicator);
a129be84 1506 } while ((mii_indicator & ET_MAC_MGMT_BUSY) && delay < 100);
2288760e
ME
1507
1508 /* If we hit the max delay, we could not write the register */
1509 if (delay == 100) {
1510 u16 tmp;
1511
1512 dev_warn(&adapter->pdev->dev,
1513 "reg 0x%08x could not be written", reg);
1514 dev_warn(&adapter->pdev->dev, "status is 0x%08x\n",
1515 mii_indicator);
1516 dev_warn(&adapter->pdev->dev, "command is 0x%08x\n",
1517 readl(&mac->mii_mgmt_cmd));
1518
1519 et131x_mii_read(adapter, reg, &tmp);
1520
1521 status = -EIO;
1522 }
1523 /* Stop the write operation */
1524 writel(0, &mac->mii_mgmt_cmd);
1525
1526 /*
1527 * set the registers we touched back to the state at which we entered
1528 * this function
1529 */
1530 writel(mii_addr, &mac->mii_mgmt_addr);
1531 writel(mii_cmd, &mac->mii_mgmt_cmd);
1532
1533 return status;
1534}
1535
1536/* Still used from _mac for BIT_READ */
eb7a6ca6
FR
1537static void et1310_phy_access_mii_bit(struct et131x_adapter *adapter,
1538 u16 action, u16 regnum, u16 bitnum,
1539 u8 *value)
2288760e
ME
1540{
1541 u16 reg;
a129be84 1542 u16 mask = 1 << bitnum;
2288760e
ME
1543
1544 /* Read the requested register */
1545 et131x_mii_read(adapter, regnum, &reg);
1546
1547 switch (action) {
1548 case TRUEPHY_BIT_READ:
1549 *value = (reg & mask) >> bitnum;
1550 break;
1551
1552 case TRUEPHY_BIT_SET:
1553 et131x_mii_write(adapter, regnum, reg | mask);
1554 break;
1555
1556 case TRUEPHY_BIT_CLEAR:
1557 et131x_mii_write(adapter, regnum, reg & ~mask);
1558 break;
1559
1560 default:
1561 break;
1562 }
1563}
1564
eb7a6ca6 1565static void et1310_config_flow_control(struct et131x_adapter *adapter)
d2796743
ME
1566{
1567 struct phy_device *phydev = adapter->phydev;
1568
1569 if (phydev->duplex == DUPLEX_HALF) {
1570 adapter->flowcontrol = FLOW_NONE;
1571 } else {
1572 char remote_pause, remote_async_pause;
1573
1574 et1310_phy_access_mii_bit(adapter,
1575 TRUEPHY_BIT_READ, 5, 10, &remote_pause);
1576 et1310_phy_access_mii_bit(adapter,
1577 TRUEPHY_BIT_READ, 5, 11,
1578 &remote_async_pause);
1579
1580 if ((remote_pause == TRUEPHY_BIT_SET) &&
1581 (remote_async_pause == TRUEPHY_BIT_SET)) {
1582 adapter->flowcontrol = adapter->wanted_flow;
1583 } else if ((remote_pause == TRUEPHY_BIT_SET) &&
1584 (remote_async_pause == TRUEPHY_BIT_CLEAR)) {
1585 if (adapter->wanted_flow == FLOW_BOTH)
1586 adapter->flowcontrol = FLOW_BOTH;
1587 else
1588 adapter->flowcontrol = FLOW_NONE;
1589 } else if ((remote_pause == TRUEPHY_BIT_CLEAR) &&
1590 (remote_async_pause == TRUEPHY_BIT_CLEAR)) {
1591 adapter->flowcontrol = FLOW_NONE;
1592 } else {/* if (remote_pause == TRUEPHY_CLEAR_BIT &&
1593 remote_async_pause == TRUEPHY_SET_BIT) */
1594 if (adapter->wanted_flow == FLOW_BOTH)
1595 adapter->flowcontrol = FLOW_RXONLY;
1596 else
1597 adapter->flowcontrol = FLOW_NONE;
1598 }
1599 }
1600}
1601
1602/**
1603 * et1310_update_macstat_host_counters - Update the local copy of the statistics
1604 * @adapter: pointer to the adapter structure
1605 */
eb7a6ca6 1606static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter)
d2796743
ME
1607{
1608 struct ce_stats *stats = &adapter->stats;
1609 struct macstat_regs __iomem *macstat =
1610 &adapter->regs->macstat;
1611
1612 stats->tx_collisions += readl(&macstat->tx_total_collisions);
1613 stats->tx_first_collisions += readl(&macstat->tx_single_collisions);
1614 stats->tx_deferred += readl(&macstat->tx_deferred);
1615 stats->tx_excessive_collisions +=
1616 readl(&macstat->tx_multiple_collisions);
1617 stats->tx_late_collisions += readl(&macstat->tx_late_collisions);
1618 stats->tx_underflows += readl(&macstat->tx_undersize_frames);
1619 stats->tx_max_pkt_errs += readl(&macstat->tx_oversize_frames);
1620
1621 stats->rx_align_errs += readl(&macstat->rx_align_errs);
1622 stats->rx_crc_errs += readl(&macstat->rx_code_errs);
1623 stats->rcvd_pkts_dropped += readl(&macstat->rx_drops);
1624 stats->rx_overflows += readl(&macstat->rx_oversize_packets);
1625 stats->rx_code_violations += readl(&macstat->rx_fcs_errs);
1626 stats->rx_length_errs += readl(&macstat->rx_frame_len_errs);
1627 stats->rx_other_errs += readl(&macstat->rx_fragment_packets);
1628}
1629
1630/**
1631 * et1310_handle_macstat_interrupt
1632 * @adapter: pointer to the adapter structure
1633 *
1634 * One of the MACSTAT counters has wrapped. Update the local copy of
1635 * the statistics held in the adapter structure, checking the "wrap"
1636 * bit for each counter.
1637 */
eb7a6ca6 1638static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter)
d2796743
ME
1639{
1640 u32 carry_reg1;
1641 u32 carry_reg2;
1642
1643 /* Read the interrupt bits from the register(s). These are Clear On
1644 * Write.
1645 */
1646 carry_reg1 = readl(&adapter->regs->macstat.carry_reg1);
1647 carry_reg2 = readl(&adapter->regs->macstat.carry_reg2);
1648
1649 writel(carry_reg1, &adapter->regs->macstat.carry_reg1);
1650 writel(carry_reg2, &adapter->regs->macstat.carry_reg2);
1651
1652 /* We need to do update the host copy of all the MAC_STAT counters.
1653 * For each counter, check it's overflow bit. If the overflow bit is
1654 * set, then increment the host version of the count by one complete
1655 * revolution of the counter. This routine is called when the counter
1656 * block indicates that one of the counters has wrapped.
1657 */
1658 if (carry_reg1 & (1 << 14))
1659 adapter->stats.rx_code_violations += COUNTER_WRAP_16_BIT;
1660 if (carry_reg1 & (1 << 8))
1661 adapter->stats.rx_align_errs += COUNTER_WRAP_12_BIT;
1662 if (carry_reg1 & (1 << 7))
1663 adapter->stats.rx_length_errs += COUNTER_WRAP_16_BIT;
1664 if (carry_reg1 & (1 << 2))
1665 adapter->stats.rx_other_errs += COUNTER_WRAP_16_BIT;
1666 if (carry_reg1 & (1 << 6))
1667 adapter->stats.rx_crc_errs += COUNTER_WRAP_16_BIT;
1668 if (carry_reg1 & (1 << 3))
1669 adapter->stats.rx_overflows += COUNTER_WRAP_16_BIT;
1670 if (carry_reg1 & (1 << 0))
1671 adapter->stats.rcvd_pkts_dropped += COUNTER_WRAP_16_BIT;
1672 if (carry_reg2 & (1 << 16))
1673 adapter->stats.tx_max_pkt_errs += COUNTER_WRAP_12_BIT;
1674 if (carry_reg2 & (1 << 15))
1675 adapter->stats.tx_underflows += COUNTER_WRAP_12_BIT;
1676 if (carry_reg2 & (1 << 6))
1677 adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT;
1678 if (carry_reg2 & (1 << 8))
1679 adapter->stats.tx_deferred += COUNTER_WRAP_12_BIT;
1680 if (carry_reg2 & (1 << 5))
1681 adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT;
1682 if (carry_reg2 & (1 << 4))
1683 adapter->stats.tx_late_collisions += COUNTER_WRAP_12_BIT;
1684 if (carry_reg2 & (1 << 2))
1685 adapter->stats.tx_collisions += COUNTER_WRAP_12_BIT;
1686}
1687
eb7a6ca6 1688static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg)
d2796743
ME
1689{
1690 struct net_device *netdev = bus->priv;
1691 struct et131x_adapter *adapter = netdev_priv(netdev);
1692 u16 value;
1693 int ret;
1694
1695 ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value);
1696
1697 if (ret < 0)
1698 return ret;
1699 else
1700 return value;
1701}
1702
bf3313a1 1703static int et131x_mdio_write(struct mii_bus *bus, int phy_addr,
1704 int reg, u16 value)
d2796743
ME
1705{
1706 struct net_device *netdev = bus->priv;
1707 struct et131x_adapter *adapter = netdev_priv(netdev);
1708
1709 return et131x_mii_write(adapter, reg, value);
1710}
1711
eb7a6ca6 1712static int et131x_mdio_reset(struct mii_bus *bus)
d2796743
ME
1713{
1714 struct net_device *netdev = bus->priv;
1715 struct et131x_adapter *adapter = netdev_priv(netdev);
1716
1717 et131x_mii_write(adapter, MII_BMCR, BMCR_RESET);
1718
1719 return 0;
1720}
1721
d2796743
ME
1722/**
1723 * et1310_phy_power_down - PHY power control
1724 * @adapter: device to control
1725 * @down: true for off/false for back on
1726 *
1727 * one hundred, ten, one thousand megs
1728 * How would you like to have your LAN accessed
1729 * Can't you see that this code processed
1730 * Phy power, phy power..
1731 */
eb7a6ca6 1732static void et1310_phy_power_down(struct et131x_adapter *adapter, bool down)
d2796743
ME
1733{
1734 u16 data;
1735
1736 et131x_mii_read(adapter, MII_BMCR, &data);
1737 data &= ~BMCR_PDOWN;
1738 if (down)
1739 data |= BMCR_PDOWN;
1740 et131x_mii_write(adapter, MII_BMCR, data);
1741}
1742
d2796743
ME
1743/**
1744 * et131x_xcvr_init - Init the phy if we are setting it into force mode
1745 * @adapter: pointer to our private adapter structure
1746 *
1747 */
eb7a6ca6 1748static void et131x_xcvr_init(struct et131x_adapter *adapter)
d2796743 1749{
d2796743
ME
1750 u16 lcr2;
1751
d2796743
ME
1752 /* Set the LED behavior such that LED 1 indicates speed (off =
1753 * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
1754 * link and activity (on for link, blink off for activity).
1755 *
1756 * NOTE: Some customizations have been added here for specific
1757 * vendors; The LED behavior is now determined by vendor data in the
1758 * EEPROM. However, the above description is the default.
1759 */
1760 if ((adapter->eeprom_data[1] & 0x4) == 0) {
1761 et131x_mii_read(adapter, PHY_LED_2, &lcr2);
1762
b5b86a4d 1763 lcr2 &= (ET_LED2_LED_100TX | ET_LED2_LED_1000T);
d2796743
ME
1764 lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT);
1765
1766 if ((adapter->eeprom_data[1] & 0x8) == 0)
1767 lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT);
1768 else
1769 lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT);
1770
1771 et131x_mii_write(adapter, PHY_LED_2, lcr2);
1772 }
1773}
1774
36f2771a 1775/**
c35eb3ae 1776 * et131x_configure_global_regs - configure JAGCore global regs
36f2771a
ME
1777 * @adapter: pointer to our adapter structure
1778 *
1779 * Used to configure the global registers on the JAGCore
1780 */
eb7a6ca6 1781static void et131x_configure_global_regs(struct et131x_adapter *adapter)
36f2771a
ME
1782{
1783 struct global_regs __iomem *regs = &adapter->regs->global;
1784
1785 writel(0, &regs->rxq_start_addr);
1786 writel(INTERNAL_MEM_SIZE - 1, &regs->txq_end_addr);
1787
1788 if (adapter->registry_jumbo_packet < 2048) {
1789 /* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
1790 * block of RAM that the driver can split between Tx
1791 * and Rx as it desires. Our default is to split it
1792 * 50/50:
1793 */
1794 writel(PARM_RX_MEM_END_DEF, &regs->rxq_end_addr);
1795 writel(PARM_RX_MEM_END_DEF + 1, &regs->txq_start_addr);
1796 } else if (adapter->registry_jumbo_packet < 8192) {
1797 /* For jumbo packets > 2k but < 8k, split 50-50. */
1798 writel(INTERNAL_MEM_RX_OFFSET, &regs->rxq_end_addr);
1799 writel(INTERNAL_MEM_RX_OFFSET + 1, &regs->txq_start_addr);
1800 } else {
1801 /* 9216 is the only packet size greater than 8k that
1802 * is available. The Tx buffer has to be big enough
1803 * for one whole packet on the Tx side. We'll make
1804 * the Tx 9408, and give the rest to Rx
1805 */
1806 writel(0x01b3, &regs->rxq_end_addr);
1807 writel(0x01b4, &regs->txq_start_addr);
1808 }
1809
1810 /* Initialize the loopback register. Disable all loopbacks. */
1811 writel(0, &regs->loopback);
1812
1813 /* MSI Register */
1814 writel(0, &regs->msi_config);
1815
1816 /* By default, disable the watchdog timer. It will be enabled when
1817 * a packet is queued.
1818 */
1819 writel(0, &regs->watchdog_timer);
1820}
1821
36f2771a
ME
1822/**
1823 * et131x_config_rx_dma_regs - Start of Rx_DMA init sequence
1824 * @adapter: pointer to our adapter structure
1825 */
eb7a6ca6 1826static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
36f2771a
ME
1827{
1828 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
1829 struct rx_ring *rx_local = &adapter->rx_ring;
1830 struct fbr_desc *fbr_entry;
1831 u32 entry;
1832 u32 psr_num_des;
1833 unsigned long flags;
788ca84a 1834 u8 id;
36f2771a
ME
1835
1836 /* Halt RXDMA to perform the reconfigure. */
1837 et131x_rx_dma_disable(adapter);
1838
25e8e8ab
ME
1839 /* Load the completion writeback physical address */
1840 writel(upper_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_hi);
1841 writel(lower_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_lo);
36f2771a
ME
1842
1843 memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
1844
1845 /* Set the address and parameters of the packet status ring into the
1846 * 1310's registers
1847 */
25e8e8ab
ME
1848 writel(upper_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_hi);
1849 writel(lower_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_lo);
36f2771a
ME
1850 writel(rx_local->psr_num_entries - 1, &rx_dma->psr_num_des);
1851 writel(0, &rx_dma->psr_full_offset);
1852
a129be84 1853 psr_num_des = readl(&rx_dma->psr_num_des) & ET_RXDMA_PSR_NUM_DES_MASK;
36f2771a
ME
1854 writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
1855 &rx_dma->psr_min_des);
1856
1857 spin_lock_irqsave(&adapter->rcv_lock, flags);
1858
1859 /* These local variables track the PSR in the adapter structure */
1860 rx_local->local_psr_full = 0;
1861
788ca84a
ME
1862 for (id = 0; id < NUM_FBRS; id++) {
1863 u32 *num_des;
1864 u32 *full_offset;
1865 u32 *min_des;
1866 u32 *base_hi;
1867 u32 *base_lo;
1868
1869 if (id == 0) {
788ca84a
ME
1870 num_des = &rx_dma->fbr0_num_des;
1871 full_offset = &rx_dma->fbr0_full_offset;
1872 min_des = &rx_dma->fbr0_min_des;
1873 base_hi = &rx_dma->fbr0_base_hi;
1874 base_lo = &rx_dma->fbr0_base_lo;
f0ada678
ME
1875 } else {
1876 num_des = &rx_dma->fbr1_num_des;
1877 full_offset = &rx_dma->fbr1_full_offset;
1878 min_des = &rx_dma->fbr1_min_des;
1879 base_hi = &rx_dma->fbr1_base_hi;
1880 base_lo = &rx_dma->fbr1_base_lo;
788ca84a 1881 }
36f2771a 1882
788ca84a 1883 /* Now's the best time to initialize FBR contents */
3781683e
ME
1884 fbr_entry =
1885 (struct fbr_desc *) rx_local->fbr[id]->ring_virtaddr;
1886 for (entry = 0;
1887 entry < rx_local->fbr[id]->num_entries; entry++) {
788ca84a
ME
1888 fbr_entry->addr_hi = rx_local->fbr[id]->bus_high[entry];
1889 fbr_entry->addr_lo = rx_local->fbr[id]->bus_low[entry];
1890 fbr_entry->word2 = entry;
1891 fbr_entry++;
1892 }
36f2771a 1893
788ca84a
ME
1894 /* Set the address and parameters of Free buffer ring 1 and 0
1895 * into the 1310's registers
1896 */
3781683e
ME
1897 writel(upper_32_bits(rx_local->fbr[id]->ring_physaddr),
1898 base_hi);
1899 writel(lower_32_bits(rx_local->fbr[id]->ring_physaddr),
1900 base_lo);
788ca84a
ME
1901 writel(rx_local->fbr[id]->num_entries - 1, num_des);
1902 writel(ET_DMA10_WRAP, full_offset);
36f2771a 1903
788ca84a
ME
1904 /* This variable tracks the free buffer ring 1 full position,
1905 * so it has to match the above.
1906 */
1907 rx_local->fbr[id]->local_full = ET_DMA10_WRAP;
1908 writel(((rx_local->fbr[id]->num_entries *
1909 LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1910 min_des);
1911 }
36f2771a
ME
1912
1913 /* Program the number of packets we will receive before generating an
1914 * interrupt.
1915 * For version B silicon, this value gets updated once autoneg is
1916 *complete.
1917 */
1918 writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
1919
1920 /* The "time_done" is not working correctly to coalesce interrupts
1921 * after a given time period, but rather is giving us an interrupt
1922 * regardless of whether we have received packets.
1923 * This value gets updated once autoneg is complete.
1924 */
1925 writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
1926
1927 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
1928}
1929
1930/**
1931 * et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
1932 * @adapter: pointer to our private adapter structure
1933 *
1934 * Configure the transmit engine with the ring buffers we have created
1935 * and prepare it for use.
1936 */
eb7a6ca6 1937static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter)
36f2771a
ME
1938{
1939 struct txdma_regs __iomem *txdma = &adapter->regs->txdma;
1940
1941 /* Load the hardware with the start of the transmit descriptor ring. */
25e8e8ab 1942 writel(upper_32_bits(adapter->tx_ring.tx_desc_ring_pa),
36f2771a 1943 &txdma->pr_base_hi);
25e8e8ab 1944 writel(lower_32_bits(adapter->tx_ring.tx_desc_ring_pa),
36f2771a
ME
1945 &txdma->pr_base_lo);
1946
1947 /* Initialise the transmit DMA engine */
1948 writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des);
1949
1950 /* Load the completion writeback physical address */
25e8e8ab
ME
1951 writel(upper_32_bits(adapter->tx_ring.tx_status_pa),
1952 &txdma->dma_wb_base_hi);
1953 writel(lower_32_bits(adapter->tx_ring.tx_status_pa),
1954 &txdma->dma_wb_base_lo);
36f2771a
ME
1955
1956 *adapter->tx_ring.tx_status = 0;
1957
1958 writel(0, &txdma->service_request);
1959 adapter->tx_ring.send_idx = 0;
1960}
1961
1962/**
1963 * et131x_adapter_setup - Set the adapter up as per cassini+ documentation
1964 * @adapter: pointer to our private adapter structure
1965 *
1966 * Returns 0 on success, errno on failure (as defined in errno.h)
1967 */
eb7a6ca6 1968static void et131x_adapter_setup(struct et131x_adapter *adapter)
36f2771a
ME
1969{
1970 /* Configure the JAGCore */
1971 et131x_configure_global_regs(adapter);
1972
1973 et1310_config_mac_regs1(adapter);
1974
1975 /* Configure the MMC registers */
1976 /* All we need to do is initialize the Memory Control Register */
1977 writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl);
1978
1979 et1310_config_rxmac_regs(adapter);
1980 et1310_config_txmac_regs(adapter);
1981
1982 et131x_config_rx_dma_regs(adapter);
1983 et131x_config_tx_dma_regs(adapter);
1984
1985 et1310_config_macstat_regs(adapter);
1986
1987 et1310_phy_power_down(adapter, 0);
1988 et131x_xcvr_init(adapter);
1989}
1990
5da2b158
ME
1991/**
1992 * et131x_soft_reset - Issue a soft reset to the hardware, complete for ET1310
1993 * @adapter: pointer to our private adapter structure
1994 */
eb7a6ca6 1995static void et131x_soft_reset(struct et131x_adapter *adapter)
5da2b158 1996{
a129be84 1997 u32 reg;
5da2b158 1998
a129be84
ME
1999 /* Disable MAC Core */
2000 reg = ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
2001 ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
2002 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
2003 writel(reg, &adapter->regs->mac.cfg1);
2004
2005 reg = ET_RESET_ALL;
2006 writel(reg, &adapter->regs->global.sw_reset);
2007
2008 reg = ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
2009 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
2010 writel(reg, &adapter->regs->mac.cfg1);
2011 writel(0, &adapter->regs->mac.cfg1);
5da2b158
ME
2012}
2013
a4d444bd
ME
2014/**
2015 * et131x_enable_interrupts - enable interrupt
2016 * @adapter: et131x device
2017 *
2018 * Enable the appropriate interrupts on the ET131x according to our
2019 * configuration
2020 */
eb7a6ca6 2021static void et131x_enable_interrupts(struct et131x_adapter *adapter)
a4d444bd
ME
2022{
2023 u32 mask;
2024
2025 /* Enable all global interrupts */
2026 if (adapter->flowcontrol == FLOW_TXONLY ||
2027 adapter->flowcontrol == FLOW_BOTH)
2028 mask = INT_MASK_ENABLE;
2029 else
2030 mask = INT_MASK_ENABLE_NO_FLOW;
2031
2032 writel(mask, &adapter->regs->global.int_mask);
2033}
2034
2035/**
2036 * et131x_disable_interrupts - interrupt disable
2037 * @adapter: et131x device
2038 *
2039 * Block all interrupts from the et131x device at the device itself
2040 */
eb7a6ca6 2041static void et131x_disable_interrupts(struct et131x_adapter *adapter)
a4d444bd
ME
2042{
2043 /* Disable all global interrupts */
2044 writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask);
2045}
2046
2047/**
2048 * et131x_tx_dma_disable - Stop of Tx_DMA on the ET1310
2049 * @adapter: pointer to our adapter structure
2050 */
eb7a6ca6 2051static void et131x_tx_dma_disable(struct et131x_adapter *adapter)
a4d444bd
ME
2052{
2053 /* Setup the tramsmit dma configuration register */
3040d056 2054 writel(ET_TXDMA_CSR_HALT | ET_TXDMA_SNGL_EPKT,
a4d444bd
ME
2055 &adapter->regs->txdma.csr);
2056}
2057
a4d444bd
ME
2058/**
2059 * et131x_enable_txrx - Enable tx/rx queues
2060 * @netdev: device to be enabled
2061 */
eb7a6ca6 2062static void et131x_enable_txrx(struct net_device *netdev)
a4d444bd
ME
2063{
2064 struct et131x_adapter *adapter = netdev_priv(netdev);
2065
2066 /* Enable the Tx and Rx DMA engines (if not already enabled) */
2067 et131x_rx_dma_enable(adapter);
2068 et131x_tx_dma_enable(adapter);
2069
2070 /* Enable device interrupts */
2071 if (adapter->flags & fMP_ADAPTER_INTERRUPT_IN_USE)
2072 et131x_enable_interrupts(adapter);
2073
2074 /* We're ready to move some data, so start the queue */
2075 netif_start_queue(netdev);
2076}
2077
2078/**
2079 * et131x_disable_txrx - Disable tx/rx queues
2080 * @netdev: device to be disabled
2081 */
eb7a6ca6 2082static void et131x_disable_txrx(struct net_device *netdev)
a4d444bd
ME
2083{
2084 struct et131x_adapter *adapter = netdev_priv(netdev);
2085
2086 /* First thing is to stop the queue */
2087 netif_stop_queue(netdev);
2088
2089 /* Stop the Tx and Rx DMA engines */
2090 et131x_rx_dma_disable(adapter);
2091 et131x_tx_dma_disable(adapter);
2092
2093 /* Disable device interrupts */
2094 et131x_disable_interrupts(adapter);
2095}
2096
8310c602
ME
2097/**
2098 * et131x_init_send - Initialize send data structures
2099 * @adapter: pointer to our private adapter structure
2100 */
eb7a6ca6 2101static void et131x_init_send(struct et131x_adapter *adapter)
8310c602
ME
2102{
2103 struct tcb *tcb;
2104 u32 ct;
2105 struct tx_ring *tx_ring;
2106
2107 /* Setup some convenience pointers */
2108 tx_ring = &adapter->tx_ring;
2109 tcb = adapter->tx_ring.tcb_ring;
2110
2111 tx_ring->tcb_qhead = tcb;
2112
2113 memset(tcb, 0, sizeof(struct tcb) * NUM_TCB);
2114
2115 /* Go through and set up each TCB */
2116 for (ct = 0; ct++ < NUM_TCB; tcb++)
2117 /* Set the link pointer in HW TCB to the next TCB in the
2118 * chain
2119 */
2120 tcb->next = tcb + 1;
2121
2122 /* Set the tail pointer */
2123 tcb--;
2124 tx_ring->tcb_qtail = tcb;
2125 tcb->next = NULL;
2126 /* Curr send queue should now be empty */
2127 tx_ring->send_head = NULL;
2128 tx_ring->send_tail = NULL;
2129}
2130
d2796743
ME
2131/**
2132 * et1310_enable_phy_coma - called when network cable is unplugged
2133 * @adapter: pointer to our adapter structure
2134 *
2135 * driver receive an phy status change interrupt while in D0 and check that
2136 * phy_status is down.
2137 *
2138 * -- gate off JAGCore;
2139 * -- set gigE PHY in Coma mode
2140 * -- wake on phy_interrupt; Perform software reset JAGCore,
2141 * re-initialize jagcore and gigE PHY
2142 *
2143 * Add D0-ASPM-PhyLinkDown Support:
2144 * -- while in D0, when there is a phy_interrupt indicating phy link
2145 * down status, call the MPSetPhyComa routine to enter this active
2146 * state power saving mode
2147 * -- while in D0-ASPM-PhyLinkDown mode, when there is a phy_interrupt
2148 * indicating linkup status, call the MPDisablePhyComa routine to
2149 * restore JAGCore and gigE PHY
2150 */
eb7a6ca6 2151static void et1310_enable_phy_coma(struct et131x_adapter *adapter)
d2796743
ME
2152{
2153 unsigned long flags;
2154 u32 pmcsr;
2155
2156 pmcsr = readl(&adapter->regs->global.pm_csr);
2157
2158 /* Save the GbE PHY speed and duplex modes. Need to restore this
2159 * when cable is plugged back in
2160 */
2161 /*
2162 * TODO - when PM is re-enabled, check if we need to
2163 * perform a similar task as this -
2164 * adapter->pdown_speed = adapter->ai_force_speed;
2165 * adapter->pdown_duplex = adapter->ai_force_duplex;
2166 */
2167
2168 /* Stop sending packets. */
2169 spin_lock_irqsave(&adapter->send_hw_lock, flags);
2170 adapter->flags |= fMP_ADAPTER_LOWER_POWER;
2171 spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
2172
2173 /* Wait for outstanding Receive packets */
2174
2175 et131x_disable_txrx(adapter->netdev);
2176
2177 /* Gate off JAGCore 3 clock domains */
2178 pmcsr &= ~ET_PMCSR_INIT;
2179 writel(pmcsr, &adapter->regs->global.pm_csr);
2180
2181 /* Program gigE PHY in to Coma mode */
2182 pmcsr |= ET_PM_PHY_SW_COMA;
2183 writel(pmcsr, &adapter->regs->global.pm_csr);
2184}
2185
2186/**
2187 * et1310_disable_phy_coma - Disable the Phy Coma Mode
2188 * @adapter: pointer to our adapter structure
2189 */
eb7a6ca6 2190static void et1310_disable_phy_coma(struct et131x_adapter *adapter)
d2796743
ME
2191{
2192 u32 pmcsr;
2193
2194 pmcsr = readl(&adapter->regs->global.pm_csr);
2195
2196 /* Disable phy_sw_coma register and re-enable JAGCore clocks */
2197 pmcsr |= ET_PMCSR_INIT;
2198 pmcsr &= ~ET_PM_PHY_SW_COMA;
2199 writel(pmcsr, &adapter->regs->global.pm_csr);
2200
2201 /* Restore the GbE PHY speed and duplex modes;
2202 * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
2203 */
2204 /* TODO - when PM is re-enabled, check if we need to
2205 * perform a similar task as this -
2206 * adapter->ai_force_speed = adapter->pdown_speed;
2207 * adapter->ai_force_duplex = adapter->pdown_duplex;
2208 */
2209
2210 /* Re-initialize the send structures */
2211 et131x_init_send(adapter);
2212
d2796743
ME
2213 /* Bring the device back to the state it was during init prior to
2214 * autonegotiation being complete. This way, when we get the auto-neg
2215 * complete interrupt, we can complete init by calling ConfigMacREGS2.
2216 */
2217 et131x_soft_reset(adapter);
2218
2219 /* setup et1310 as per the documentation ?? */
2220 et131x_adapter_setup(adapter);
2221
2222 /* Allow Tx to restart */
2223 adapter->flags &= ~fMP_ADAPTER_LOWER_POWER;
2224
2225 et131x_enable_txrx(adapter->netdev);
2226}
2227
d2796743
ME
2228static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
2229{
2230 u32 tmp_free_buff_ring = *free_buff_ring;
2231 tmp_free_buff_ring++;
2232 /* This works for all cases where limit < 1024. The 1023 case
2233 works because 1023++ is 1024 which means the if condition is not
2234 taken but the carry of the bit into the wrap bit toggles the wrap
2235 value correctly */
2236 if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
2237 tmp_free_buff_ring &= ~ET_DMA10_MASK;
2238 tmp_free_buff_ring ^= ET_DMA10_WRAP;
2239 }
2240 /* For the 1023 case */
2241 tmp_free_buff_ring &= (ET_DMA10_MASK|ET_DMA10_WRAP);
2242 *free_buff_ring = tmp_free_buff_ring;
2243 return tmp_free_buff_ring;
2244}
2245
2246/**
2247 * et131x_rx_dma_memory_alloc
2248 * @adapter: pointer to our private adapter structure
2249 *
2250 * Returns 0 on success and errno on failure (as defined in errno.h)
2251 *
2252 * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
2253 * and the Packet Status Ring.
2254 */
eb7a6ca6 2255static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
d2796743 2256{
788ca84a 2257 u8 id;
d2796743
ME
2258 u32 i, j;
2259 u32 bufsize;
87648933
ME
2260 u32 pktstat_ringsize;
2261 u32 fbr_chunksize;
d2796743
ME
2262 struct rx_ring *rx_ring;
2263
2264 /* Setup some convenience pointers */
2265 rx_ring = &adapter->rx_ring;
2266
2267 /* Alloc memory for the lookup table */
e592a9b0 2268 rx_ring->fbr[0] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
f0ada678 2269 rx_ring->fbr[1] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
d2796743
ME
2270
2271 /* The first thing we will do is configure the sizes of the buffer
2272 * rings. These will change based on jumbo packet support. Larger
2273 * jumbo packets increases the size of each entry in FBR0, and the
2274 * number of entries in FBR0, while at the same time decreasing the
2275 * number of entries in FBR1.
2276 *
2277 * FBR1 holds "large" frames, FBR0 holds "small" frames. If FBR1
2278 * entries are huge in order to accommodate a "jumbo" frame, then it
2279 * will have less entries. Conversely, FBR1 will now be relied upon
2280 * to carry more "normal" frames, thus it's entry size also increases
2281 * and the number of entries goes up too (since it now carries
2282 * "small" + "regular" packets.
2283 *
2284 * In this scheme, we try to maintain 512 entries between the two
2285 * rings. Also, FBR1 remains a constant size - when it's size doubles
2286 * the number of entries halves. FBR0 increases in size, however.
2287 */
2288
2289 if (adapter->registry_jumbo_packet < 2048) {
f0ada678 2290 rx_ring->fbr[0]->buffsize = 256;
e592a9b0 2291 rx_ring->fbr[0]->num_entries = 512;
f0ada678
ME
2292 rx_ring->fbr[1]->buffsize = 2048;
2293 rx_ring->fbr[1]->num_entries = 512;
d2796743 2294 } else if (adapter->registry_jumbo_packet < 4096) {
f0ada678
ME
2295 rx_ring->fbr[0]->buffsize = 512;
2296 rx_ring->fbr[0]->num_entries = 1024;
2297 rx_ring->fbr[1]->buffsize = 4096;
2298 rx_ring->fbr[1]->num_entries = 512;
d2796743 2299 } else {
f0ada678
ME
2300 rx_ring->fbr[0]->buffsize = 1024;
2301 rx_ring->fbr[0]->num_entries = 768;
2302 rx_ring->fbr[1]->buffsize = 16384;
2303 rx_ring->fbr[1]->num_entries = 128;
d2796743
ME
2304 }
2305
09a3fc2b 2306 adapter->rx_ring.psr_num_entries =
f0ada678
ME
2307 adapter->rx_ring.fbr[0]->num_entries +
2308 adapter->rx_ring.fbr[1]->num_entries;
d2796743 2309
788ca84a
ME
2310 for (id = 0; id < NUM_FBRS; id++) {
2311 /* Allocate an area of memory for Free Buffer Ring */
3781683e
ME
2312 bufsize =
2313 (sizeof(struct fbr_desc) * rx_ring->fbr[id]->num_entries);
788ca84a
ME
2314 rx_ring->fbr[id]->ring_virtaddr =
2315 dma_alloc_coherent(&adapter->pdev->dev,
0d1b7a84 2316 bufsize,
788ca84a 2317 &rx_ring->fbr[id]->ring_physaddr,
0d1b7a84 2318 GFP_KERNEL);
788ca84a 2319 if (!rx_ring->fbr[id]->ring_virtaddr) {
d2796743 2320 dev_err(&adapter->pdev->dev,
788ca84a 2321 "Cannot alloc memory for Free Buffer Ring %d\n", id);
d2796743
ME
2322 return -ENOMEM;
2323 }
d2796743
ME
2324 }
2325
788ca84a 2326 for (id = 0; id < NUM_FBRS; id++) {
d3c75e8d 2327 fbr_chunksize = (FBR_CHUNKS * rx_ring->fbr[id]->buffsize);
87648933 2328
3781683e
ME
2329 for (i = 0;
2330 i < (rx_ring->fbr[id]->num_entries / FBR_CHUNKS); i++) {
788ca84a 2331 dma_addr_t fbr_tmp_physaddr;
788ca84a 2332
788ca84a
ME
2333 rx_ring->fbr[id]->mem_virtaddrs[i] = dma_alloc_coherent(
2334 &adapter->pdev->dev, fbr_chunksize,
2335 &rx_ring->fbr[id]->mem_physaddrs[i],
2336 GFP_KERNEL);
d2796743 2337
788ca84a
ME
2338 if (!rx_ring->fbr[id]->mem_virtaddrs[i]) {
2339 dev_err(&adapter->pdev->dev,
2340 "Could not alloc memory\n");
2341 return -ENOMEM;
2342 }
d2796743 2343
788ca84a
ME
2344 /* See NOTE in "Save Physical Address" comment above */
2345 fbr_tmp_physaddr = rx_ring->fbr[id]->mem_physaddrs[i];
2346
788ca84a
ME
2347 for (j = 0; j < FBR_CHUNKS; j++) {
2348 u32 index = (i * FBR_CHUNKS) + j;
2349
2350 /* Save the Virtual address of this index for
2351 * quick access later
2352 */
2353 rx_ring->fbr[id]->virt[index] =
2354 (u8 *) rx_ring->fbr[id]->mem_virtaddrs[i] +
d3c75e8d 2355 (j * rx_ring->fbr[id]->buffsize);
788ca84a
ME
2356
2357 /* now store the physical address in the
2358 * descriptor so the device can access it
2359 */
2360 rx_ring->fbr[id]->bus_high[index] =
2361 upper_32_bits(fbr_tmp_physaddr);
2362 rx_ring->fbr[id]->bus_low[index] =
2363 lower_32_bits(fbr_tmp_physaddr);
2364
2365 fbr_tmp_physaddr += rx_ring->fbr[id]->buffsize;
788ca84a 2366 }
d2796743
ME
2367 }
2368 }
d2796743
ME
2369
2370 /* Allocate an area of memory for FIFO of Packet Status ring entries */
2371 pktstat_ringsize =
2372 sizeof(struct pkt_stat_desc) * adapter->rx_ring.psr_num_entries;
2373
0d1b7a84 2374 rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
d2796743 2375 pktstat_ringsize,
0d1b7a84
ME
2376 &rx_ring->ps_ring_physaddr,
2377 GFP_KERNEL);
d2796743
ME
2378
2379 if (!rx_ring->ps_ring_virtaddr) {
2380 dev_err(&adapter->pdev->dev,
2381 "Cannot alloc memory for Packet Status Ring\n");
2382 return -ENOMEM;
2383 }
e58b89da
TY
2384 pr_info("Packet Status Ring %llx\n",
2385 (unsigned long long) rx_ring->ps_ring_physaddr);
d2796743
ME
2386
2387 /*
26dc751e 2388 * NOTE : dma_alloc_coherent(), used above to alloc DMA regions,
d2796743
ME
2389 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2390 * are ever returned, make sure the high part is retrieved here before
2391 * storing the adjusted address.
2392 */
2393
2394 /* Allocate an area of memory for writeback of status information */
0d1b7a84 2395 rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev,
d2796743 2396 sizeof(struct rx_status_block),
0d1b7a84
ME
2397 &rx_ring->rx_status_bus,
2398 GFP_KERNEL);
d2796743
ME
2399 if (!rx_ring->rx_status_block) {
2400 dev_err(&adapter->pdev->dev,
2401 "Cannot alloc memory for Status Block\n");
2402 return -ENOMEM;
2403 }
2404 rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
e58b89da 2405 pr_info("PRS %llx\n", (unsigned long long)rx_ring->rx_status_bus);
d2796743 2406
d2796743
ME
2407 /* The RFDs are going to be put on lists later on, so initialize the
2408 * lists now.
2409 */
2410 INIT_LIST_HEAD(&rx_ring->recv_list);
2411 return 0;
2412}
2413
2414/**
2415 * et131x_rx_dma_memory_free - Free all memory allocated within this module.
2416 * @adapter: pointer to our private adapter structure
2417 */
eb7a6ca6 2418static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
d2796743 2419{
788ca84a 2420 u8 id;
d2796743
ME
2421 u32 index;
2422 u32 bufsize;
2423 u32 pktstat_ringsize;
2424 struct rfd *rfd;
2425 struct rx_ring *rx_ring;
2426
2427 /* Setup some convenience pointers */
2428 rx_ring = &adapter->rx_ring;
2429
2430 /* Free RFDs and associated packet descriptors */
2431 WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
2432
2433 while (!list_empty(&rx_ring->recv_list)) {
2434 rfd = (struct rfd *) list_entry(rx_ring->recv_list.next,
2435 struct rfd, list_node);
2436
2437 list_del(&rfd->list_node);
2438 rfd->skb = NULL;
d959df0a 2439 kfree(rfd);
d2796743
ME
2440 }
2441
788ca84a
ME
2442 /* Free Free Buffer Rings */
2443 for (id = 0; id < NUM_FBRS; id++) {
823bb2e8
ME
2444 if (!rx_ring->fbr[id]->ring_virtaddr)
2445 continue;
d2796743 2446
823bb2e8
ME
2447 /* First the packet memory */
2448 for (index = 0;
2449 index < (rx_ring->fbr[id]->num_entries / FBR_CHUNKS);
2450 index++) {
2451 if (rx_ring->fbr[id]->mem_virtaddrs[index]) {
3781683e
ME
2452 bufsize =
2453 rx_ring->fbr[id]->buffsize * FBR_CHUNKS;
d2796743 2454
823bb2e8
ME
2455 dma_free_coherent(&adapter->pdev->dev,
2456 bufsize,
2457 rx_ring->fbr[id]->mem_virtaddrs[index],
2458 rx_ring->fbr[id]->mem_physaddrs[index]);
d2796743 2459
823bb2e8
ME
2460 rx_ring->fbr[id]->mem_virtaddrs[index] = NULL;
2461 }
d2796743 2462 }
823bb2e8
ME
2463
2464 bufsize =
2465 sizeof(struct fbr_desc) * rx_ring->fbr[id]->num_entries;
2466
2467 dma_free_coherent(&adapter->pdev->dev, bufsize,
2468 rx_ring->fbr[id]->ring_virtaddr,
2469 rx_ring->fbr[id]->ring_physaddr);
2470
2471 rx_ring->fbr[id]->ring_virtaddr = NULL;
d2796743 2472 }
d2796743
ME
2473
2474 /* Free Packet Status Ring */
2475 if (rx_ring->ps_ring_virtaddr) {
242187aa
ME
2476 pktstat_ringsize = sizeof(struct pkt_stat_desc) *
2477 adapter->rx_ring.psr_num_entries;
d2796743 2478
675c8f68 2479 dma_free_coherent(&adapter->pdev->dev, pktstat_ringsize,
d2796743
ME
2480 rx_ring->ps_ring_virtaddr,
2481 rx_ring->ps_ring_physaddr);
2482
2483 rx_ring->ps_ring_virtaddr = NULL;
2484 }
2485
2486 /* Free area of memory for the writeback of status information */
2487 if (rx_ring->rx_status_block) {
675c8f68 2488 dma_free_coherent(&adapter->pdev->dev,
d2796743
ME
2489 sizeof(struct rx_status_block),
2490 rx_ring->rx_status_block, rx_ring->rx_status_bus);
2491 rx_ring->rx_status_block = NULL;
2492 }
2493
d2796743 2494 /* Free the FBR Lookup Table */
e592a9b0 2495 kfree(rx_ring->fbr[0]);
f0ada678 2496 kfree(rx_ring->fbr[1]);
d2796743
ME
2497
2498 /* Reset Counters */
2499 rx_ring->num_ready_recv = 0;
2500}
2501
2502/**
2503 * et131x_init_recv - Initialize receive data structures.
2504 * @adapter: pointer to our private adapter structure
2505 *
2506 * Returns 0 on success and errno on failure (as defined in errno.h)
2507 */
eb7a6ca6 2508static int et131x_init_recv(struct et131x_adapter *adapter)
d2796743 2509{
d959df0a 2510 struct rfd *rfd;
d2796743
ME
2511 u32 rfdct;
2512 u32 numrfd = 0;
2513 struct rx_ring *rx_ring;
2514
2515 /* Setup some convenience pointers */
2516 rx_ring = &adapter->rx_ring;
2517
2518 /* Setup each RFD */
2519 for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
d959df0a 2520 rfd = kzalloc(sizeof(struct rfd), GFP_ATOMIC | GFP_DMA);
d2796743
ME
2521
2522 if (!rfd) {
d959df0a
ME
2523 dev_err(&adapter->pdev->dev, "Couldn't alloc RFD\n");
2524 return -ENOMEM;
d2796743
ME
2525 }
2526
2527 rfd->skb = NULL;
2528
2529 /* Add this RFD to the recv_list */
2530 list_add_tail(&rfd->list_node, &rx_ring->recv_list);
2531
2532 /* Increment both the available RFD's, and the total RFD's. */
2533 rx_ring->num_ready_recv++;
2534 numrfd++;
2535 }
2536
d959df0a 2537 return 0;
d2796743
ME
2538}
2539
d2796743
ME
2540/**
2541 * et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate.
2542 * @adapter: pointer to our adapter structure
2543 */
eb7a6ca6 2544static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
d2796743
ME
2545{
2546 struct phy_device *phydev = adapter->phydev;
2547
2548 if (!phydev)
2549 return;
2550
2551 /* For version B silicon, we do not use the RxDMA timer for 10 and 100
2552 * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
2553 */
2554 if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
2555 writel(0, &adapter->regs->rxdma.max_pkt_time);
2556 writel(1, &adapter->regs->rxdma.num_pkt_done);
2557 }
2558}
2559
2560/**
2561 * NICReturnRFD - Recycle a RFD and put it back onto the receive list
2562 * @adapter: pointer to our adapter
2563 * @rfd: pointer to the RFD
2564 */
2565static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
2566{
2567 struct rx_ring *rx_local = &adapter->rx_ring;
2568 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
2569 u16 buff_index = rfd->bufferindex;
2570 u8 ring_index = rfd->ringindex;
2571 unsigned long flags;
2572
2573 /* We don't use any of the OOB data besides status. Otherwise, we
2574 * need to clean up OOB data
2575 */
f0ada678 2576 if (buff_index < rx_local->fbr[ring_index]->num_entries) {
788ca84a 2577 u32 *offset;
788ca84a
ME
2578 struct fbr_desc *next;
2579
d2796743
ME
2580 spin_lock_irqsave(&adapter->fbr_lock, flags);
2581
f0ada678 2582 if (ring_index == 0)
788ca84a 2583 offset = &rx_dma->fbr0_full_offset;
f0ada678
ME
2584 else
2585 offset = &rx_dma->fbr1_full_offset;
788ca84a 2586
3781683e
ME
2587 next = (struct fbr_desc *)
2588 (rx_local->fbr[ring_index]->ring_virtaddr) +
f0ada678 2589 INDEX10(rx_local->fbr[ring_index]->local_full);
788ca84a
ME
2590
2591 /* Handle the Free Buffer Ring advancement here. Write
2592 * the PA / Buffer Index for the returned buffer into
2593 * the oldest (next to be freed)FBR entry
2594 */
f0ada678
ME
2595 next->addr_hi = rx_local->fbr[ring_index]->bus_high[buff_index];
2596 next->addr_lo = rx_local->fbr[ring_index]->bus_low[buff_index];
788ca84a
ME
2597 next->word2 = buff_index;
2598
3781683e
ME
2599 writel(bump_free_buff_ring(
2600 &rx_local->fbr[ring_index]->local_full,
2601 rx_local->fbr[ring_index]->num_entries - 1),
2602 offset);
788ca84a 2603
d2796743
ME
2604 spin_unlock_irqrestore(&adapter->fbr_lock, flags);
2605 } else {
2606 dev_err(&adapter->pdev->dev,
2607 "%s illegal Buffer Index returned\n", __func__);
2608 }
2609
2610 /* The processing on this RFD is done, so put it back on the tail of
2611 * our list
2612 */
2613 spin_lock_irqsave(&adapter->rcv_lock, flags);
2614 list_add_tail(&rfd->list_node, &rx_local->recv_list);
2615 rx_local->num_ready_recv++;
2616 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2617
2618 WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
2619}
2620
54dbf04f
ME
2621/**
2622 * nic_rx_pkts - Checks the hardware for available packets
2623 * @adapter: pointer to our adapter
2624 *
2625 * Returns rfd, a pointer to our MPRFD.
2626 *
2627 * Checks the hardware for available packets, using completion ring
2628 * If packets are available, it gets an RFD from the recv_list, attaches
2629 * the packet to it, puts the RFD in the RecvPendList, and also returns
2630 * the pointer to the RFD.
2631 */
d2796743
ME
2632static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
2633{
2634 struct rx_ring *rx_local = &adapter->rx_ring;
2635 struct rx_status_block *status;
2636 struct pkt_stat_desc *psr;
186c426d 2637 struct rfd *rfd;
d2796743
ME
2638 u32 i;
2639 u8 *buf;
2640 unsigned long flags;
2641 struct list_head *element;
2642 u8 ring_index;
2643 u16 buff_index;
2644 u32 len;
2645 u32 word0;
2646 u32 word1;
186c426d 2647 struct sk_buff *skb;
d2796743
ME
2648
2649 /* RX Status block is written by the DMA engine prior to every
2650 * interrupt. It contains the next to be used entry in the Packet
2651 * Status Ring, and also the two Free Buffer rings.
2652 */
2653 status = rx_local->rx_status_block;
2654 word1 = status->word1 >> 16; /* Get the useful bits */
2655
2656 /* Check the PSR and wrap bits do not match */
2657 if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
242187aa 2658 return NULL; /* Looks like this ring is not updated yet */
d2796743
ME
2659
2660 /* The packet status ring indicates that data is available. */
2661 psr = (struct pkt_stat_desc *) (rx_local->ps_ring_virtaddr) +
2662 (rx_local->local_psr_full & 0xFFF);
2663
242187aa
ME
2664 /* Grab any information that is required once the PSR is advanced,
2665 * since we can no longer rely on the memory being accurate
d2796743
ME
2666 */
2667 len = psr->word1 & 0xFFFF;
2668 ring_index = (psr->word1 >> 26) & 0x03;
2669 buff_index = (psr->word1 >> 16) & 0x3FF;
2670 word0 = psr->word0;
2671
2672 /* Indicate that we have used this PSR entry. */
2673 /* FIXME wrap 12 */
2674 add_12bit(&rx_local->local_psr_full, 1);
2675 if (
2676 (rx_local->local_psr_full & 0xFFF) > rx_local->psr_num_entries - 1) {
2677 /* Clear psr full and toggle the wrap bit */
2678 rx_local->local_psr_full &= ~0xFFF;
2679 rx_local->local_psr_full ^= 0x1000;
2680 }
2681
242187aa 2682 writel(rx_local->local_psr_full, &adapter->regs->rxdma.psr_full_offset);
d2796743 2683
d2796743 2684 if (ring_index > 1 ||
f0ada678 2685 buff_index > rx_local->fbr[ring_index]->num_entries - 1) {
d2796743
ME
2686 /* Illegal buffer or ring index cannot be used by S/W*/
2687 dev_err(&adapter->pdev->dev,
242187aa
ME
2688 "NICRxPkts PSR Entry %d indicates length of %d and/or bad bi(%d)\n",
2689 rx_local->local_psr_full & 0xFFF, len, buff_index);
d2796743
ME
2690 return NULL;
2691 }
2692
2693 /* Get and fill the RFD. */
2694 spin_lock_irqsave(&adapter->rcv_lock, flags);
2695
d2796743
ME
2696 element = rx_local->recv_list.next;
2697 rfd = (struct rfd *) list_entry(element, struct rfd, list_node);
2698
242187aa 2699 if (!rfd) {
d2796743
ME
2700 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2701 return NULL;
2702 }
2703
2704 list_del(&rfd->list_node);
2705 rx_local->num_ready_recv--;
2706
2707 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2708
2709 rfd->bufferindex = buff_index;
2710 rfd->ringindex = ring_index;
2711
242187aa
ME
2712 /* In V1 silicon, there is a bug which screws up filtering of runt
2713 * packets. Therefore runt packet filtering is disabled in the MAC and
2714 * the packets are dropped here. They are also counted here.
d2796743
ME
2715 */
2716 if (len < (NIC_MIN_PACKET_SIZE + 4)) {
2717 adapter->stats.rx_other_errs++;
2718 len = 0;
2719 }
2720
242187aa
ME
2721 if (len == 0) {
2722 rfd->len = 0;
2723 goto out;
2724 }
2725
2726 /* Determine if this is a multicast packet coming in */
2727 if ((word0 & ALCATEL_MULTICAST_PKT) &&
2728 !(word0 & ALCATEL_BROADCAST_PKT)) {
2729 /* Promiscuous mode and Multicast mode are not mutually
2730 * exclusive as was first thought. I guess Promiscuous is just
2731 * considered a super-set of the other filters. Generally filter
2732 * is 0x2b when in promiscuous mode.
2733 */
2734 if ((adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST)
2735 && !(adapter->packet_filter & ET131X_PACKET_TYPE_PROMISCUOUS)
2736 && !(adapter->packet_filter &
d2796743 2737 ET131X_PACKET_TYPE_ALL_MULTICAST)) {
f0ada678 2738 buf = rx_local->fbr[ring_index]->virt[buff_index];
d2796743 2739
242187aa
ME
2740 /* Loop through our list to see if the destination
2741 * address of this packet matches one in our list.
2742 */
2743 for (i = 0; i < adapter->multicast_addr_count; i++) {
2744 if (buf[0] == adapter->multicast_list[i][0]
2745 && buf[1] == adapter->multicast_list[i][1]
2746 && buf[2] == adapter->multicast_list[i][2]
2747 && buf[3] == adapter->multicast_list[i][3]
2748 && buf[4] == adapter->multicast_list[i][4]
2749 && buf[5] == adapter->multicast_list[i][5]) {
2750 break;
d2796743 2751 }
d2796743
ME
2752 }
2753
242187aa
ME
2754 /* If our index is equal to the number of Multicast
2755 * address we have, then this means we did not find this
2756 * packet's matching address in our list. Set the len to
2757 * zero, so we free our RFD when we return from this
2758 * function.
d2796743 2759 */
242187aa
ME
2760 if (i == adapter->multicast_addr_count)
2761 len = 0;
2762 }
d2796743 2763
242187aa
ME
2764 if (len > 0)
2765 adapter->stats.multicast_pkts_rcvd++;
2766 } else if (word0 & ALCATEL_BROADCAST_PKT) {
2767 adapter->stats.broadcast_pkts_rcvd++;
2768 } else {
2769 /* Not sure what this counter measures in promiscuous mode.
2770 * Perhaps we should check the MAC address to see if it is
2771 * directed to us in promiscuous mode.
2772 */
2773 adapter->stats.unicast_pkts_rcvd++;
2774 }
d2796743 2775
242187aa
ME
2776 if (len == 0) {
2777 rfd->len = 0;
2778 goto out;
2779 }
d2796743 2780
242187aa 2781 rfd->len = len;
d2796743 2782
242187aa
ME
2783 skb = dev_alloc_skb(rfd->len + 2);
2784 if (!skb) {
2785 dev_err(&adapter->pdev->dev, "Couldn't alloc an SKB for Rx\n");
2786 return NULL;
2787 }
d2796743 2788
242187aa 2789 adapter->net_stats.rx_bytes += rfd->len;
d2796743 2790
242187aa 2791 memcpy(skb_put(skb, rfd->len),
f0ada678 2792 rx_local->fbr[ring_index]->virt[buff_index],
242187aa 2793 rfd->len);
d2796743 2794
242187aa
ME
2795 skb->dev = adapter->netdev;
2796 skb->protocol = eth_type_trans(skb, adapter->netdev);
2797 skb->ip_summed = CHECKSUM_NONE;
2798 netif_rx_ni(skb);
d2796743 2799
242187aa 2800out:
d2796743
ME
2801 nic_return_rfd(adapter, rfd);
2802 return rfd;
2803}
2804
d2796743
ME
2805/**
2806 * et131x_handle_recv_interrupt - Interrupt handler for receive processing
2807 * @adapter: pointer to our adapter
2808 *
2809 * Assumption, Rcv spinlock has been acquired.
2810 */
eb7a6ca6 2811static void et131x_handle_recv_interrupt(struct et131x_adapter *adapter)
d2796743
ME
2812{
2813 struct rfd *rfd = NULL;
2814 u32 count = 0;
2815 bool done = true;
2816
2817 /* Process up to available RFD's */
2818 while (count < NUM_PACKETS_HANDLED) {
2819 if (list_empty(&adapter->rx_ring.recv_list)) {
2820 WARN_ON(adapter->rx_ring.num_ready_recv != 0);
2821 done = false;
2822 break;
2823 }
2824
2825 rfd = nic_rx_pkts(adapter);
2826
2827 if (rfd == NULL)
2828 break;
2829
2830 /* Do not receive any packets until a filter has been set.
2831 * Do not receive any packets until we have link.
2832 * If length is zero, return the RFD in order to advance the
2833 * Free buffer ring.
2834 */
2835 if (!adapter->packet_filter ||
2836 !netif_carrier_ok(adapter->netdev) ||
2837 rfd->len == 0)
2838 continue;
2839
2840 /* Increment the number of packets we received */
2841 adapter->net_stats.rx_packets++;
2842
2843 /* Set the status on the packet, either resources or success */
2844 if (adapter->rx_ring.num_ready_recv < RFD_LOW_WATER_MARK) {
2845 dev_warn(&adapter->pdev->dev,
2846 "RFD's are running out\n");
2847 }
2848 count++;
2849 }
2850
2851 if (count == NUM_PACKETS_HANDLED || !done) {
2852 adapter->rx_ring.unfinished_receives = true;
2853 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2854 &adapter->regs->global.watchdog_timer);
2855 } else
2856 /* Watchdog timer will disable itself if appropriate. */
2857 adapter->rx_ring.unfinished_receives = false;
2858}
2859
d2796743
ME
2860/**
2861 * et131x_tx_dma_memory_alloc
2862 * @adapter: pointer to our private adapter structure
2863 *
2864 * Returns 0 on success and errno on failure (as defined in errno.h).
2865 *
2866 * Allocates memory that will be visible both to the device and to the CPU.
2867 * The OS will pass us packets, pointers to which we will insert in the Tx
2868 * Descriptor queue. The device will read this queue to find the packets in
2869 * memory. The device will update the "status" in memory each time it xmits a
2870 * packet.
2871 */
eb7a6ca6 2872static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
d2796743
ME
2873{
2874 int desc_size = 0;
2875 struct tx_ring *tx_ring = &adapter->tx_ring;
2876
2877 /* Allocate memory for the TCB's (Transmit Control Block) */
2878 adapter->tx_ring.tcb_ring =
2879 kcalloc(NUM_TCB, sizeof(struct tcb), GFP_ATOMIC | GFP_DMA);
2880 if (!adapter->tx_ring.tcb_ring) {
2881 dev_err(&adapter->pdev->dev, "Cannot alloc memory for TCBs\n");
2882 return -ENOMEM;
2883 }
2884
d3c75e8d 2885 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
d2796743 2886 tx_ring->tx_desc_ring =
09a3fc2b
ME
2887 (struct tx_desc *) dma_alloc_coherent(&adapter->pdev->dev,
2888 desc_size,
2889 &tx_ring->tx_desc_ring_pa,
2890 GFP_KERNEL);
d2796743
ME
2891 if (!adapter->tx_ring.tx_desc_ring) {
2892 dev_err(&adapter->pdev->dev,
09a3fc2b 2893 "Cannot alloc memory for Tx Ring\n");
d2796743
ME
2894 return -ENOMEM;
2895 }
2896
2897 /* Save physical address
2898 *
26dc751e 2899 * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
d2796743
ME
2900 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2901 * are ever returned, make sure the high part is retrieved here before
2902 * storing the adjusted address.
2903 */
2904 /* Allocate memory for the Tx status block */
0d1b7a84 2905 tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev,
d2796743 2906 sizeof(u32),
0d1b7a84
ME
2907 &tx_ring->tx_status_pa,
2908 GFP_KERNEL);
d2796743
ME
2909 if (!adapter->tx_ring.tx_status_pa) {
2910 dev_err(&adapter->pdev->dev,
2911 "Cannot alloc memory for Tx status block\n");
2912 return -ENOMEM;
2913 }
2914 return 0;
2915}
2916
2917/**
2918 * et131x_tx_dma_memory_free - Free all memory allocated within this module
2919 * @adapter: pointer to our private adapter structure
2920 *
2921 * Returns 0 on success and errno on failure (as defined in errno.h).
2922 */
eb7a6ca6 2923static void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
d2796743
ME
2924{
2925 int desc_size = 0;
2926
2927 if (adapter->tx_ring.tx_desc_ring) {
2928 /* Free memory relating to Tx rings here */
d3c75e8d 2929 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
675c8f68 2930 dma_free_coherent(&adapter->pdev->dev,
d2796743
ME
2931 desc_size,
2932 adapter->tx_ring.tx_desc_ring,
2933 adapter->tx_ring.tx_desc_ring_pa);
2934 adapter->tx_ring.tx_desc_ring = NULL;
2935 }
2936
2937 /* Free memory for the Tx status block */
2938 if (adapter->tx_ring.tx_status) {
675c8f68 2939 dma_free_coherent(&adapter->pdev->dev,
d2796743
ME
2940 sizeof(u32),
2941 adapter->tx_ring.tx_status,
2942 adapter->tx_ring.tx_status_pa);
2943
2944 adapter->tx_ring.tx_status = NULL;
2945 }
2946 /* Free the memory for the tcb structures */
2947 kfree(adapter->tx_ring.tcb_ring);
2948}
2949
d2796743
ME
2950/**
2951 * nic_send_packet - NIC specific send handler for version B silicon.
2952 * @adapter: pointer to our adapter
2953 * @tcb: pointer to struct tcb
2954 *
2955 * Returns 0 or errno.
2956 */
2957static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb)
2958{
2959 u32 i;
2960 struct tx_desc desc[24]; /* 24 x 16 byte */
2961 u32 frag = 0;
2962 u32 thiscopy, remainder;
2963 struct sk_buff *skb = tcb->skb;
2964 u32 nr_frags = skb_shinfo(skb)->nr_frags + 1;
2965 struct skb_frag_struct *frags = &skb_shinfo(skb)->frags[0];
2966 unsigned long flags;
2967 struct phy_device *phydev = adapter->phydev;
998f6dfb 2968 dma_addr_t dma_addr;
d2796743
ME
2969
2970 /* Part of the optimizations of this send routine restrict us to
2971 * sending 24 fragments at a pass. In practice we should never see
2972 * more than 5 fragments.
2973 *
2974 * NOTE: The older version of this function (below) can handle any
2975 * number of fragments. If needed, we can call this function,
2976 * although it is less efficient.
2977 */
2978 if (nr_frags > 23)
2979 return -EIO;
2980
2981 memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1));
2982
2983 for (i = 0; i < nr_frags; i++) {
2984 /* If there is something in this element, lets get a
2985 * descriptor from the ring and get the necessary data
2986 */
2987 if (i == 0) {
2988 /* If the fragments are smaller than a standard MTU,
2989 * then map them to a single descriptor in the Tx
2990 * Desc ring. However, if they're larger, as is
2991 * possible with support for jumbo packets, then
2992 * split them each across 2 descriptors.
2993 *
2994 * This will work until we determine why the hardware
2995 * doesn't seem to like large fragments.
2996 */
f1b540b9 2997 if (skb_headlen(skb) <= 1514) {
d2796743
ME
2998 /* Low 16bits are length, high is vlan and
2999 unused currently so zero */
f1b540b9 3000 desc[frag].len_vlan = skb_headlen(skb);
998f6dfb
ME
3001 dma_addr = dma_map_single(&adapter->pdev->dev,
3002 skb->data,
3003 skb_headlen(skb),
3004 DMA_TO_DEVICE);
3005 desc[frag].addr_lo = lower_32_bits(dma_addr);
3006 desc[frag].addr_hi = upper_32_bits(dma_addr);
3007 frag++;
d2796743 3008 } else {
f1b540b9 3009 desc[frag].len_vlan = skb_headlen(skb) / 2;
998f6dfb 3010 dma_addr = dma_map_single(&adapter->pdev->dev,
3781683e
ME
3011 skb->data,
3012 (skb_headlen(skb) / 2),
3013 DMA_TO_DEVICE);
998f6dfb
ME
3014 desc[frag].addr_lo = lower_32_bits(dma_addr);
3015 desc[frag].addr_hi = upper_32_bits(dma_addr);
3016 frag++;
d2796743 3017
f1b540b9 3018 desc[frag].len_vlan = skb_headlen(skb) / 2;
998f6dfb 3019 dma_addr = dma_map_single(&adapter->pdev->dev,
3781683e
ME
3020 skb->data +
3021 (skb_headlen(skb) / 2),
3022 (skb_headlen(skb) / 2),
3023 DMA_TO_DEVICE);
998f6dfb
ME
3024 desc[frag].addr_lo = lower_32_bits(dma_addr);
3025 desc[frag].addr_hi = upper_32_bits(dma_addr);
3026 frag++;
d2796743
ME
3027 }
3028 } else {
998f6dfb
ME
3029 desc[frag].len_vlan = frags[i - 1].size;
3030 dma_addr = skb_frag_dma_map(&adapter->pdev->dev,
3031 &frags[i - 1],
3032 0,
3033 frags[i - 1].size,
3034 DMA_TO_DEVICE);
3035 desc[frag].addr_lo = lower_32_bits(dma_addr);
3036 desc[frag].addr_hi = upper_32_bits(dma_addr);
3037 frag++;
d2796743
ME
3038 }
3039 }
3040
d2796743
ME
3041 if (phydev && phydev->speed == SPEED_1000) {
3042 if (++adapter->tx_ring.since_irq == PARM_TX_NUM_BUFS_DEF) {
3043 /* Last element & Interrupt flag */
a129be84 3044 desc[frag - 1].flags = TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
d2796743
ME
3045 adapter->tx_ring.since_irq = 0;
3046 } else { /* Last element */
a129be84 3047 desc[frag - 1].flags = TXDESC_FLAG_LASTPKT;
d2796743
ME
3048 }
3049 } else
a129be84 3050 desc[frag - 1].flags = TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
d2796743 3051
a129be84 3052 desc[0].flags |= TXDESC_FLAG_FIRSTPKT;
d2796743
ME
3053
3054 tcb->index_start = adapter->tx_ring.send_idx;
3055 tcb->stale = 0;
3056
3057 spin_lock_irqsave(&adapter->send_hw_lock, flags);
3058
a129be84 3059 thiscopy = NUM_DESC_PER_RING_TX - INDEX10(adapter->tx_ring.send_idx);
d2796743
ME
3060
3061 if (thiscopy >= frag) {
3062 remainder = 0;
3063 thiscopy = frag;
3064 } else {
3065 remainder = frag - thiscopy;
3066 }
3067
3068 memcpy(adapter->tx_ring.tx_desc_ring +
3069 INDEX10(adapter->tx_ring.send_idx), desc,
3070 sizeof(struct tx_desc) * thiscopy);
3071
3072 add_10bit(&adapter->tx_ring.send_idx, thiscopy);
3073
3074 if (INDEX10(adapter->tx_ring.send_idx) == 0 ||
3075 INDEX10(adapter->tx_ring.send_idx) == NUM_DESC_PER_RING_TX) {
3076 adapter->tx_ring.send_idx &= ~ET_DMA10_MASK;
3077 adapter->tx_ring.send_idx ^= ET_DMA10_WRAP;
3078 }
3079
3080 if (remainder) {
3081 memcpy(adapter->tx_ring.tx_desc_ring,
3082 desc + thiscopy,
3083 sizeof(struct tx_desc) * remainder);
3084
3085 add_10bit(&adapter->tx_ring.send_idx, remainder);
3086 }
3087
3088 if (INDEX10(adapter->tx_ring.send_idx) == 0) {
3089 if (adapter->tx_ring.send_idx)
3090 tcb->index = NUM_DESC_PER_RING_TX - 1;
3091 else
3092 tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1);
3093 } else
3094 tcb->index = adapter->tx_ring.send_idx - 1;
3095
3096 spin_lock(&adapter->tcb_send_qlock);
3097
3098 if (adapter->tx_ring.send_tail)
3099 adapter->tx_ring.send_tail->next = tcb;
3100 else
3101 adapter->tx_ring.send_head = tcb;
3102
3103 adapter->tx_ring.send_tail = tcb;
3104
3105 WARN_ON(tcb->next != NULL);
3106
3107 adapter->tx_ring.used++;
3108
3109 spin_unlock(&adapter->tcb_send_qlock);
3110
3111 /* Write the new write pointer back to the device. */
3112 writel(adapter->tx_ring.send_idx,
3113 &adapter->regs->txdma.service_request);
3114
3115 /* For Gig only, we use Tx Interrupt coalescing. Enable the software
3116 * timer to wake us up if this packet isn't followed by N more.
3117 */
3118 if (phydev && phydev->speed == SPEED_1000) {
3119 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
3120 &adapter->regs->global.watchdog_timer);
3121 }
3122 spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
3123
3124 return 0;
3125}
3126
3127/**
3128 * send_packet - Do the work to send a packet
3129 * @skb: the packet(s) to send
3130 * @adapter: a pointer to the device's private adapter structure
3131 *
3132 * Return 0 in almost all cases; non-zero value in extreme hard failure only.
3133 *
3134 * Assumption: Send spinlock has been acquired
3135 */
3136static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter)
3137{
3138 int status;
3139 struct tcb *tcb = NULL;
3140 u16 *shbufva;
3141 unsigned long flags;
3142
3143 /* All packets must have at least a MAC address and a protocol type */
3144 if (skb->len < ETH_HLEN)
3145 return -EIO;
3146
3147 /* Get a TCB for this packet */
3148 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3149
3150 tcb = adapter->tx_ring.tcb_qhead;
3151
3152 if (tcb == NULL) {
3153 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3154 return -ENOMEM;
3155 }
3156
3157 adapter->tx_ring.tcb_qhead = tcb->next;
3158
3159 if (adapter->tx_ring.tcb_qhead == NULL)
3160 adapter->tx_ring.tcb_qtail = NULL;
3161
3162 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3163
3164 tcb->skb = skb;
3165
f1b540b9 3166 if (skb->data != NULL && skb_headlen(skb) >= 6) {
d2796743
ME
3167 shbufva = (u16 *) skb->data;
3168
3169 if ((shbufva[0] == 0xffff) &&
3170 (shbufva[1] == 0xffff) && (shbufva[2] == 0xffff)) {
3171 tcb->flags |= fMP_DEST_BROAD;
3172 } else if ((shbufva[0] & 0x3) == 0x0001) {
3173 tcb->flags |= fMP_DEST_MULTI;
3174 }
3175 }
3176
3177 tcb->next = NULL;
3178
3179 /* Call the NIC specific send handler. */
3180 status = nic_send_packet(adapter, tcb);
3181
3182 if (status != 0) {
3183 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3184
3185 if (adapter->tx_ring.tcb_qtail)
3186 adapter->tx_ring.tcb_qtail->next = tcb;
3187 else
3188 /* Apparently ready Q is empty. */
3189 adapter->tx_ring.tcb_qhead = tcb;
3190
3191 adapter->tx_ring.tcb_qtail = tcb;
3192 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3193 return status;
3194 }
3195 WARN_ON(adapter->tx_ring.used > NUM_TCB);
3196 return 0;
3197}
3198
3199/**
3200 * et131x_send_packets - This function is called by the OS to send packets
3201 * @skb: the packet(s) to send
3202 * @netdev:device on which to TX the above packet(s)
3203 *
3204 * Return 0 in almost all cases; non-zero value in extreme hard failure only
3205 */
eb7a6ca6 3206static int et131x_send_packets(struct sk_buff *skb, struct net_device *netdev)
d2796743
ME
3207{
3208 int status = 0;
06709e96 3209 struct et131x_adapter *adapter = netdev_priv(netdev);
d2796743
ME
3210
3211 /* Send these packets
3212 *
3213 * NOTE: The Linux Tx entry point is only given one packet at a time
3214 * to Tx, so the PacketCount and it's array used makes no sense here
3215 */
3216
3217 /* TCB is not available */
3218 if (adapter->tx_ring.used >= NUM_TCB) {
3219 /* NOTE: If there's an error on send, no need to queue the
3220 * packet under Linux; if we just send an error up to the
3221 * netif layer, it will resend the skb to us.
3222 */
3223 status = -ENOMEM;
3224 } else {
3225 /* We need to see if the link is up; if it's not, make the
3226 * netif layer think we're good and drop the packet
3227 */
3228 if ((adapter->flags & fMP_ADAPTER_FAIL_SEND_MASK) ||
3229 !netif_carrier_ok(netdev)) {
3230 dev_kfree_skb_any(skb);
3231 skb = NULL;
3232
3233 adapter->net_stats.tx_dropped++;
3234 } else {
3235 status = send_packet(skb, adapter);
3236 if (status != 0 && status != -ENOMEM) {
3237 /* On any other error, make netif think we're
3238 * OK and drop the packet
3239 */
3240 dev_kfree_skb_any(skb);
3241 skb = NULL;
3242 adapter->net_stats.tx_dropped++;
3243 }
3244 }
3245 }
3246 return status;
3247}
3248
3249/**
3250 * free_send_packet - Recycle a struct tcb
3251 * @adapter: pointer to our adapter
3252 * @tcb: pointer to struct tcb
3253 *
3254 * Complete the packet if necessary
3255 * Assumption - Send spinlock has been acquired
3256 */
3257static inline void free_send_packet(struct et131x_adapter *adapter,
3258 struct tcb *tcb)
3259{
3260 unsigned long flags;
3261 struct tx_desc *desc = NULL;
3262 struct net_device_stats *stats = &adapter->net_stats;
983e4b35 3263 u64 dma_addr;
d2796743
ME
3264
3265 if (tcb->flags & fMP_DEST_BROAD)
3266 atomic_inc(&adapter->stats.broadcast_pkts_xmtd);
3267 else if (tcb->flags & fMP_DEST_MULTI)
3268 atomic_inc(&adapter->stats.multicast_pkts_xmtd);
3269 else
3270 atomic_inc(&adapter->stats.unicast_pkts_xmtd);
3271
3272 if (tcb->skb) {
3273 stats->tx_bytes += tcb->skb->len;
3274
3275 /* Iterate through the TX descriptors on the ring
3276 * corresponding to this packet and umap the fragments
3277 * they point to
3278 */
3279 do {
3280 desc = (struct tx_desc *)
3281 (adapter->tx_ring.tx_desc_ring +
3282 INDEX10(tcb->index_start));
3283
998f6dfb 3284 dma_addr = desc->addr_lo;
983e4b35 3285 dma_addr |= (u64)desc->addr_hi << 32;
998f6dfb 3286
26dc751e 3287 dma_unmap_single(&adapter->pdev->dev,
998f6dfb 3288 dma_addr,
26dc751e 3289 desc->len_vlan, DMA_TO_DEVICE);
d2796743
ME
3290
3291 add_10bit(&tcb->index_start, 1);
3292 if (INDEX10(tcb->index_start) >=
3293 NUM_DESC_PER_RING_TX) {
3294 tcb->index_start &= ~ET_DMA10_MASK;
3295 tcb->index_start ^= ET_DMA10_WRAP;
3296 }
3297 } while (desc != (adapter->tx_ring.tx_desc_ring +
3298 INDEX10(tcb->index)));
3299
3300 dev_kfree_skb_any(tcb->skb);
3301 }
3302
3303 memset(tcb, 0, sizeof(struct tcb));
3304
3305 /* Add the TCB to the Ready Q */
3306 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3307
3308 adapter->net_stats.tx_packets++;
3309
3310 if (adapter->tx_ring.tcb_qtail)
3311 adapter->tx_ring.tcb_qtail->next = tcb;
3312 else
3313 /* Apparently ready Q is empty. */
3314 adapter->tx_ring.tcb_qhead = tcb;
3315
3316 adapter->tx_ring.tcb_qtail = tcb;
3317
3318 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3319 WARN_ON(adapter->tx_ring.used < 0);
3320}
3321
3322/**
3323 * et131x_free_busy_send_packets - Free and complete the stopped active sends
3324 * @adapter: pointer to our adapter
3325 *
3326 * Assumption - Send spinlock has been acquired
3327 */
eb7a6ca6 3328static void et131x_free_busy_send_packets(struct et131x_adapter *adapter)
d2796743
ME
3329{
3330 struct tcb *tcb;
3331 unsigned long flags;
3332 u32 freed = 0;
3333
3334 /* Any packets being sent? Check the first TCB on the send list */
3335 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3336
3337 tcb = adapter->tx_ring.send_head;
3338
3339 while (tcb != NULL && freed < NUM_TCB) {
3340 struct tcb *next = tcb->next;
3341
3342 adapter->tx_ring.send_head = next;
3343
3344 if (next == NULL)
3345 adapter->tx_ring.send_tail = NULL;
3346
3347 adapter->tx_ring.used--;
3348
3349 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3350
3351 freed++;
3352 free_send_packet(adapter, tcb);
3353
3354 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3355
3356 tcb = adapter->tx_ring.send_head;
3357 }
3358
3359 WARN_ON(freed == NUM_TCB);
3360
3361 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3362
3363 adapter->tx_ring.used = 0;
3364}
3365
3366/**
3367 * et131x_handle_send_interrupt - Interrupt handler for sending processing
3368 * @adapter: pointer to our adapter
3369 *
3370 * Re-claim the send resources, complete sends and get more to send from
3371 * the send wait queue.
3372 *
3373 * Assumption - Send spinlock has been acquired
3374 */
eb7a6ca6 3375static void et131x_handle_send_interrupt(struct et131x_adapter *adapter)
d2796743
ME
3376{
3377 unsigned long flags;
3378 u32 serviced;
3379 struct tcb *tcb;
3380 u32 index;
3381
3382 serviced = readl(&adapter->regs->txdma.new_service_complete);
3383 index = INDEX10(serviced);
3384
3385 /* Has the ring wrapped? Process any descriptors that do not have
3386 * the same "wrap" indicator as the current completion indicator
3387 */
3388 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3389
3390 tcb = adapter->tx_ring.send_head;
3391
3392 while (tcb &&
3393 ((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
3394 index < INDEX10(tcb->index)) {
3395 adapter->tx_ring.used--;
3396 adapter->tx_ring.send_head = tcb->next;
3397 if (tcb->next == NULL)
3398 adapter->tx_ring.send_tail = NULL;
3399
3400 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3401 free_send_packet(adapter, tcb);
3402 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3403
3404 /* Goto the next packet */
3405 tcb = adapter->tx_ring.send_head;
3406 }
3407 while (tcb &&
3408 !((serviced ^ tcb->index) & ET_DMA10_WRAP)
3409 && index > (tcb->index & ET_DMA10_MASK)) {
3410 adapter->tx_ring.used--;
3411 adapter->tx_ring.send_head = tcb->next;
3412 if (tcb->next == NULL)
3413 adapter->tx_ring.send_tail = NULL;
3414
3415 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3416 free_send_packet(adapter, tcb);
3417 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3418
3419 /* Goto the next packet */
3420 tcb = adapter->tx_ring.send_head;
3421 }
3422
3423 /* Wake up the queue when we hit a low-water mark */
3424 if (adapter->tx_ring.used <= NUM_TCB / 3)
3425 netif_wake_queue(adapter->netdev);
3426
3427 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3428}
3429
d2796743
ME
3430static int et131x_get_settings(struct net_device *netdev,
3431 struct ethtool_cmd *cmd)
3432{
3433 struct et131x_adapter *adapter = netdev_priv(netdev);
3434
3435 return phy_ethtool_gset(adapter->phydev, cmd);
3436}
3437
3438static int et131x_set_settings(struct net_device *netdev,
3439 struct ethtool_cmd *cmd)
3440{
3441 struct et131x_adapter *adapter = netdev_priv(netdev);
3442
3443 return phy_ethtool_sset(adapter->phydev, cmd);
3444}
3445
3446static int et131x_get_regs_len(struct net_device *netdev)
3447{
3448#define ET131X_REGS_LEN 256
3449 return ET131X_REGS_LEN * sizeof(u32);
3450}
3451
3452static void et131x_get_regs(struct net_device *netdev,
3453 struct ethtool_regs *regs, void *regs_data)
3454{
3455 struct et131x_adapter *adapter = netdev_priv(netdev);
3456 struct address_map __iomem *aregs = adapter->regs;
3457 u32 *regs_buff = regs_data;
3458 u32 num = 0;
3459
3460 memset(regs_data, 0, et131x_get_regs_len(netdev));
3461
3462 regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
3463 adapter->pdev->device;
3464
3465 /* PHY regs */
3466 et131x_mii_read(adapter, MII_BMCR, (u16 *)&regs_buff[num++]);
3467 et131x_mii_read(adapter, MII_BMSR, (u16 *)&regs_buff[num++]);
3468 et131x_mii_read(adapter, MII_PHYSID1, (u16 *)&regs_buff[num++]);
3469 et131x_mii_read(adapter, MII_PHYSID2, (u16 *)&regs_buff[num++]);
3470 et131x_mii_read(adapter, MII_ADVERTISE, (u16 *)&regs_buff[num++]);
3471 et131x_mii_read(adapter, MII_LPA, (u16 *)&regs_buff[num++]);
3472 et131x_mii_read(adapter, MII_EXPANSION, (u16 *)&regs_buff[num++]);
3473 /* Autoneg next page transmit reg */
3474 et131x_mii_read(adapter, 0x07, (u16 *)&regs_buff[num++]);
3475 /* Link partner next page reg */
3476 et131x_mii_read(adapter, 0x08, (u16 *)&regs_buff[num++]);
3477 et131x_mii_read(adapter, MII_CTRL1000, (u16 *)&regs_buff[num++]);
3478 et131x_mii_read(adapter, MII_STAT1000, (u16 *)&regs_buff[num++]);
01e14a4c
ME
3479 et131x_mii_read(adapter, 0x0b, (u16 *)&regs_buff[num++]);
3480 et131x_mii_read(adapter, 0x0c, (u16 *)&regs_buff[num++]);
3481 et131x_mii_read(adapter, MII_MMD_CTRL, (u16 *)&regs_buff[num++]);
3482 et131x_mii_read(adapter, MII_MMD_DATA, (u16 *)&regs_buff[num++]);
d2796743 3483 et131x_mii_read(adapter, MII_ESTATUS, (u16 *)&regs_buff[num++]);
01e14a4c 3484
d2796743
ME
3485 et131x_mii_read(adapter, PHY_INDEX_REG, (u16 *)&regs_buff[num++]);
3486 et131x_mii_read(adapter, PHY_DATA_REG, (u16 *)&regs_buff[num++]);
3487 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3488 (u16 *)&regs_buff[num++]);
3489 et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL,
3490 (u16 *)&regs_buff[num++]);
3491 et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL+1,
3492 (u16 *)&regs_buff[num++]);
01e14a4c 3493
d2796743
ME
3494 et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL,
3495 (u16 *)&regs_buff[num++]);
3496 et131x_mii_read(adapter, PHY_CONFIG, (u16 *)&regs_buff[num++]);
3497 et131x_mii_read(adapter, PHY_PHY_CONTROL, (u16 *)&regs_buff[num++]);
3498 et131x_mii_read(adapter, PHY_INTERRUPT_MASK, (u16 *)&regs_buff[num++]);
3499 et131x_mii_read(adapter, PHY_INTERRUPT_STATUS,
3500 (u16 *)&regs_buff[num++]);
3501 et131x_mii_read(adapter, PHY_PHY_STATUS, (u16 *)&regs_buff[num++]);
3502 et131x_mii_read(adapter, PHY_LED_1, (u16 *)&regs_buff[num++]);
3503 et131x_mii_read(adapter, PHY_LED_2, (u16 *)&regs_buff[num++]);
3504
3505 /* Global regs */
3506 regs_buff[num++] = readl(&aregs->global.txq_start_addr);
3507 regs_buff[num++] = readl(&aregs->global.txq_end_addr);
3508 regs_buff[num++] = readl(&aregs->global.rxq_start_addr);
3509 regs_buff[num++] = readl(&aregs->global.rxq_end_addr);
3510 regs_buff[num++] = readl(&aregs->global.pm_csr);
3511 regs_buff[num++] = adapter->stats.interrupt_status;
3512 regs_buff[num++] = readl(&aregs->global.int_mask);
3513 regs_buff[num++] = readl(&aregs->global.int_alias_clr_en);
3514 regs_buff[num++] = readl(&aregs->global.int_status_alias);
3515 regs_buff[num++] = readl(&aregs->global.sw_reset);
3516 regs_buff[num++] = readl(&aregs->global.slv_timer);
3517 regs_buff[num++] = readl(&aregs->global.msi_config);
3518 regs_buff[num++] = readl(&aregs->global.loopback);
3519 regs_buff[num++] = readl(&aregs->global.watchdog_timer);
3520
3521 /* TXDMA regs */
3522 regs_buff[num++] = readl(&aregs->txdma.csr);
3523 regs_buff[num++] = readl(&aregs->txdma.pr_base_hi);
3524 regs_buff[num++] = readl(&aregs->txdma.pr_base_lo);
3525 regs_buff[num++] = readl(&aregs->txdma.pr_num_des);
3526 regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr);
3527 regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext);
3528 regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr);
3529 regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi);
3530 regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo);
3531 regs_buff[num++] = readl(&aregs->txdma.service_request);
3532 regs_buff[num++] = readl(&aregs->txdma.service_complete);
3533 regs_buff[num++] = readl(&aregs->txdma.cache_rd_index);
3534 regs_buff[num++] = readl(&aregs->txdma.cache_wr_index);
3535 regs_buff[num++] = readl(&aregs->txdma.tx_dma_error);
3536 regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt);
3537 regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt);
3538 regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt);
3539 regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt);
3540 regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt);
3541 regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt);
3542 regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt);
3543 regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt);
3544 regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt);
3545 regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt);
3546 regs_buff[num++] = readl(&aregs->txdma.new_service_complete);
3547 regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt);
3548
3549 /* RXDMA regs */
3550 regs_buff[num++] = readl(&aregs->rxdma.csr);
3551 regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi);
3552 regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo);
3553 regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done);
3554 regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time);
3555 regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr);
3556 regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext);
3557 regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr);
3558 regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi);
3559 regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo);
3560 regs_buff[num++] = readl(&aregs->rxdma.psr_num_des);
3561 regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset);
3562 regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset);
3563 regs_buff[num++] = readl(&aregs->rxdma.psr_access_index);
3564 regs_buff[num++] = readl(&aregs->rxdma.psr_min_des);
3565 regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo);
3566 regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi);
3567 regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des);
3568 regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset);
3569 regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset);
3570 regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index);
3571 regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des);
3572 regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo);
3573 regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi);
3574 regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des);
3575 regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset);
3576 regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset);
3577 regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index);
3578 regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des);
3579}
3580
3581#define ET131X_DRVINFO_LEN 32 /* value from ethtool.h */
3582static void et131x_get_drvinfo(struct net_device *netdev,
3583 struct ethtool_drvinfo *info)
3584{
3585 struct et131x_adapter *adapter = netdev_priv(netdev);
3586
3587 strncpy(info->driver, DRIVER_NAME, ET131X_DRVINFO_LEN);
3588 strncpy(info->version, DRIVER_VERSION, ET131X_DRVINFO_LEN);
3589 strncpy(info->bus_info, pci_name(adapter->pdev), ET131X_DRVINFO_LEN);
3590}
3591
3592static struct ethtool_ops et131x_ethtool_ops = {
3593 .get_settings = et131x_get_settings,
3594 .set_settings = et131x_set_settings,
3595 .get_drvinfo = et131x_get_drvinfo,
3596 .get_regs_len = et131x_get_regs_len,
3597 .get_regs = et131x_get_regs,
242187aa 3598 .get_link = ethtool_op_get_link,
d2796743 3599};
d2796743
ME
3600/**
3601 * et131x_hwaddr_init - set up the MAC Address on the ET1310
3602 * @adapter: pointer to our private adapter structure
3603 */
eb7a6ca6 3604static void et131x_hwaddr_init(struct et131x_adapter *adapter)
d2796743
ME
3605{
3606 /* If have our default mac from init and no mac address from
3607 * EEPROM then we need to generate the last octet and set it on the
3608 * device
3609 */
c14d01b8 3610 if (is_zero_ether_addr(adapter->rom_addr)) {
d2796743
ME
3611 /*
3612 * We need to randomly generate the last octet so we
3613 * decrease our chances of setting the mac address to
3614 * same as another one of our cards in the system
3615 */
3616 get_random_bytes(&adapter->addr[5], 1);
3617 /*
3618 * We have the default value in the register we are
3619 * working with so we need to copy the current
3620 * address into the permanent address
3621 */
3622 memcpy(adapter->rom_addr,
3623 adapter->addr, ETH_ALEN);
3624 } else {
3625 /* We do not have an override address, so set the
3626 * current address to the permanent address and add
3627 * it to the device
3628 */
3629 memcpy(adapter->addr,
3630 adapter->rom_addr, ETH_ALEN);
3631 }
3632}
3633
3634/**
3635 * et131x_pci_init - initial PCI setup
3636 * @adapter: pointer to our private adapter structure
3637 * @pdev: our PCI device
3638 *
3639 * Perform the initial setup of PCI registers and if possible initialise
3640 * the MAC address. At this point the I/O registers have yet to be mapped
3641 */
3642static int et131x_pci_init(struct et131x_adapter *adapter,
3643 struct pci_dev *pdev)
3644{
d14e3d05 3645 u16 max_payload;
d14e3d05
FR
3646 int i, rc;
3647
3648 rc = et131x_init_eeprom(adapter);
3649 if (rc < 0)
3650 goto out;
3651
532c5f69 3652 if (!pci_is_pcie(pdev)) {
d14e3d05
FR
3653 dev_err(&pdev->dev, "Missing PCIe capabilities\n");
3654 goto err_out;
3655 }
bf3313a1 3656
d2796743
ME
3657 /* Let's set up the PORT LOGIC Register. First we need to know what
3658 * the max_payload_size is
3659 */
532c5f69 3660 if (pcie_capability_read_word(pdev, PCI_EXP_DEVCAP, &max_payload)) {
d2796743
ME
3661 dev_err(&pdev->dev,
3662 "Could not read PCI config space for Max Payload Size\n");
d14e3d05 3663 goto err_out;
d2796743
ME
3664 }
3665
3666 /* Program the Ack/Nak latency and replay timers */
d14e3d05 3667 max_payload &= 0x07;
d2796743
ME
3668
3669 if (max_payload < 2) {
3670 static const u16 acknak[2] = { 0x76, 0xD0 };
3671 static const u16 replay[2] = { 0x1E0, 0x2ED };
3672
3673 if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK,
3674 acknak[max_payload])) {
3675 dev_err(&pdev->dev,
3676 "Could not write PCI config space for ACK/NAK\n");
d14e3d05 3677 goto err_out;
d2796743
ME
3678 }
3679 if (pci_write_config_word(pdev, ET1310_PCI_REPLAY,
3680 replay[max_payload])) {
3681 dev_err(&pdev->dev,
3682 "Could not write PCI config space for Replay Timer\n");
d14e3d05 3683 goto err_out;
d2796743
ME
3684 }
3685 }
3686
3687 /* l0s and l1 latency timers. We are using default values.
3688 * Representing 001 for L0s and 010 for L1
3689 */
3690 if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) {
3691 dev_err(&pdev->dev,
3692 "Could not write PCI config space for Latency Timers\n");
d14e3d05 3693 goto err_out;
d2796743
ME
3694 }
3695
3696 /* Change the max read size to 2k */
532c5f69
JL
3697 if (pcie_capability_clear_and_set_word(pdev, PCI_EXP_DEVCTL,
3698 PCI_EXP_DEVCTL_READRQ, 0x4 << 12)) {
d2796743 3699 dev_err(&pdev->dev,
532c5f69 3700 "Couldn't change PCI config space for Max read size\n");
d14e3d05 3701 goto err_out;
d2796743
ME
3702 }
3703
3704 /* Get MAC address from config space if an eeprom exists, otherwise
3705 * the MAC address there will not be valid
3706 */
3707 if (!adapter->has_eeprom) {
3708 et131x_hwaddr_init(adapter);
3709 return 0;
3710 }
3711
3712 for (i = 0; i < ETH_ALEN; i++) {
3713 if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i,
3714 adapter->rom_addr + i)) {
3715 dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n");
d14e3d05 3716 goto err_out;
d2796743
ME
3717 }
3718 }
3719 memcpy(adapter->addr, adapter->rom_addr, ETH_ALEN);
d14e3d05
FR
3720out:
3721 return rc;
3722err_out:
3723 rc = -EIO;
3724 goto out;
d2796743
ME
3725}
3726
3727/**
3728 * et131x_error_timer_handler
3729 * @data: timer-specific variable; here a pointer to our adapter structure
3730 *
3731 * The routine called when the error timer expires, to track the number of
3732 * recurring errors.
3733 */
eb7a6ca6 3734static void et131x_error_timer_handler(unsigned long data)
d2796743
ME
3735{
3736 struct et131x_adapter *adapter = (struct et131x_adapter *) data;
3737 struct phy_device *phydev = adapter->phydev;
3738
3739 if (et1310_in_phy_coma(adapter)) {
3740 /* Bring the device immediately out of coma, to
3741 * prevent it from sleeping indefinitely, this
3742 * mechanism could be improved! */
3743 et1310_disable_phy_coma(adapter);
3744 adapter->boot_coma = 20;
3745 } else {
3746 et1310_update_macstat_host_counters(adapter);
3747 }
3748
3749 if (!phydev->link && adapter->boot_coma < 11)
3750 adapter->boot_coma++;
3751
3752 if (adapter->boot_coma == 10) {
3753 if (!phydev->link) {
3754 if (!et1310_in_phy_coma(adapter)) {
3755 /* NOTE - This was originally a 'sync with
3756 * interrupt'. How to do that under Linux?
3757 */
3758 et131x_enable_interrupts(adapter);
3759 et1310_enable_phy_coma(adapter);
3760 }
3761 }
3762 }
3763
3764 /* This is a periodic timer, so reschedule */
242187aa 3765 mod_timer(&adapter->error_timer, jiffies + TX_ERROR_PERIOD * HZ / 1000);
d2796743
ME
3766}
3767
d959df0a
ME
3768/**
3769 * et131x_adapter_memory_free - Free all memory allocated for use by Tx & Rx
3770 * @adapter: pointer to our private adapter structure
3771 */
3772static void et131x_adapter_memory_free(struct et131x_adapter *adapter)
3773{
3774 /* Free DMA memory */
3775 et131x_tx_dma_memory_free(adapter);
3776 et131x_rx_dma_memory_free(adapter);
3777}
3778
d2796743
ME
3779/**
3780 * et131x_adapter_memory_alloc
3781 * @adapter: pointer to our private adapter structure
3782 *
3783 * Returns 0 on success, errno on failure (as defined in errno.h).
3784 *
3785 * Allocate all the memory blocks for send, receive and others.
3786 */
eb7a6ca6 3787static int et131x_adapter_memory_alloc(struct et131x_adapter *adapter)
d2796743
ME
3788{
3789 int status;
3790
3791 /* Allocate memory for the Tx Ring */
3792 status = et131x_tx_dma_memory_alloc(adapter);
3793 if (status != 0) {
3794 dev_err(&adapter->pdev->dev,
3795 "et131x_tx_dma_memory_alloc FAILED\n");
3796 return status;
3797 }
3798 /* Receive buffer memory allocation */
3799 status = et131x_rx_dma_memory_alloc(adapter);
3800 if (status != 0) {
3801 dev_err(&adapter->pdev->dev,
3802 "et131x_rx_dma_memory_alloc FAILED\n");
3803 et131x_tx_dma_memory_free(adapter);
3804 return status;
3805 }
3806
3807 /* Init receive data structures */
3808 status = et131x_init_recv(adapter);
d959df0a 3809 if (status) {
d2796743
ME
3810 dev_err(&adapter->pdev->dev,
3811 "et131x_init_recv FAILED\n");
d959df0a 3812 et131x_adapter_memory_free(adapter);
d2796743
ME
3813 }
3814 return status;
3815}
3816
d2796743
ME
3817static void et131x_adjust_link(struct net_device *netdev)
3818{
3819 struct et131x_adapter *adapter = netdev_priv(netdev);
3820 struct phy_device *phydev = adapter->phydev;
3821
d2796743
ME
3822 if (phydev && phydev->link != adapter->link) {
3823 /*
3824 * Check to see if we are in coma mode and if
3825 * so, disable it because we will not be able
3826 * to read PHY values until we are out.
3827 */
3828 if (et1310_in_phy_coma(adapter))
3829 et1310_disable_phy_coma(adapter);
3830
6903098c
ME
3831 adapter->link = phydev->link;
3832 phy_print_status(phydev);
3833
d2796743
ME
3834 if (phydev->link) {
3835 adapter->boot_coma = 20;
6903098c
ME
3836 if (phydev && phydev->speed == SPEED_10) {
3837 /*
3838 * NOTE - Is there a way to query this without
3839 * TruePHY?
3840 * && TRU_QueryCoreType(adapter->hTruePhy, 0)==
3841 * EMI_TRUEPHY_A13O) {
3842 */
3843 u16 register18;
3844
3845 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3846 &register18);
3847 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
3848 register18 | 0x4);
3849 et131x_mii_write(adapter, PHY_INDEX_REG,
3850 register18 | 0x8402);
3851 et131x_mii_write(adapter, PHY_DATA_REG,
3852 register18 | 511);
3853 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
3854 register18);
3855 }
3856
3857 et1310_config_flow_control(adapter);
3858
3859 if (phydev && phydev->speed == SPEED_1000 &&
3860 adapter->registry_jumbo_packet > 2048) {
3861 u16 reg;
3862
3863 et131x_mii_read(adapter, PHY_CONFIG, &reg);
3864 reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH;
3865 reg |= ET_PHY_CONFIG_FIFO_DEPTH_32;
3866 et131x_mii_write(adapter, PHY_CONFIG, reg);
3867 }
3868
3869 et131x_set_rx_dma_timer(adapter);
3870 et1310_config_mac_regs2(adapter);
d2796743 3871 } else {
d2796743
ME
3872 adapter->boot_coma = 0;
3873
3874 if (phydev->speed == SPEED_10) {
3875 /* NOTE - Is there a way to query this without
3876 * TruePHY?
3877 * && TRU_QueryCoreType(adapter->hTruePhy, 0) ==
3878 * EMI_TRUEPHY_A13O)
3879 */
3880 u16 register18;
3881
3882 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3883 &register18);
3884 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
3885 register18 | 0x4);
3886 et131x_mii_write(adapter, PHY_INDEX_REG,
3887 register18 | 0x8402);
3888 et131x_mii_write(adapter, PHY_DATA_REG,
3889 register18 | 511);
3890 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
3891 register18);
3892 }
3893
3894 /* Free the packets being actively sent & stopped */
3895 et131x_free_busy_send_packets(adapter);
3896
3897 /* Re-initialize the send structures */
3898 et131x_init_send(adapter);
3899
d2796743
ME
3900 /*
3901 * Bring the device back to the state it was during
3902 * init prior to autonegotiation being complete. This
3903 * way, when we get the auto-neg complete interrupt,
3904 * we can complete init by calling config_mac_regs2.
3905 */
3906 et131x_soft_reset(adapter);
3907
3908 /* Setup ET1310 as per the documentation */
3909 et131x_adapter_setup(adapter);
3910
3911 /* perform reset of tx/rx */
3912 et131x_disable_txrx(netdev);
3913 et131x_enable_txrx(netdev);
3914 }
3915
d2796743
ME
3916 }
3917}
3918
3919static int et131x_mii_probe(struct net_device *netdev)
3920{
3921 struct et131x_adapter *adapter = netdev_priv(netdev);
3922 struct phy_device *phydev = NULL;
3923
3924 phydev = phy_find_first(adapter->mii_bus);
3925 if (!phydev) {
3926 dev_err(&adapter->pdev->dev, "no PHY found\n");
3927 return -ENODEV;
3928 }
3929
3930 phydev = phy_connect(netdev, dev_name(&phydev->dev),
3931 &et131x_adjust_link, 0, PHY_INTERFACE_MODE_MII);
3932
3933 if (IS_ERR(phydev)) {
3934 dev_err(&adapter->pdev->dev, "Could not attach to PHY\n");
3935 return PTR_ERR(phydev);
3936 }
3937
3938 phydev->supported &= (SUPPORTED_10baseT_Half
3939 | SUPPORTED_10baseT_Full
3940 | SUPPORTED_100baseT_Half
3941 | SUPPORTED_100baseT_Full
3942 | SUPPORTED_Autoneg
3943 | SUPPORTED_MII
3944 | SUPPORTED_TP);
3945
3946 if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST)
3947 phydev->supported |= SUPPORTED_1000baseT_Full;
3948
3949 phydev->advertising = phydev->supported;
3950 adapter->phydev = phydev;
3951
397d3e60 3952 dev_info(&adapter->pdev->dev, "attached PHY driver [%s] (mii_bus:phy_addr=%s)\n",
d2796743
ME
3953 phydev->drv->name, dev_name(&phydev->dev));
3954
3955 return 0;
3956}
3957
3958/**
3959 * et131x_adapter_init
3960 * @adapter: pointer to the private adapter struct
3961 * @pdev: pointer to the PCI device
3962 *
3963 * Initialize the data structures for the et131x_adapter object and link
3964 * them together with the platform provided device structures.
3965 */
3966static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev,
3967 struct pci_dev *pdev)
3968{
3969 static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
3970
3971 struct et131x_adapter *adapter;
3972
3973 /* Allocate private adapter struct and copy in relevant information */
3974 adapter = netdev_priv(netdev);
3975 adapter->pdev = pci_dev_get(pdev);
3976 adapter->netdev = netdev;
3977
d2796743
ME
3978 /* Initialize spinlocks here */
3979 spin_lock_init(&adapter->lock);
3980 spin_lock_init(&adapter->tcb_send_qlock);
3981 spin_lock_init(&adapter->tcb_ready_qlock);
3982 spin_lock_init(&adapter->send_hw_lock);
3983 spin_lock_init(&adapter->rcv_lock);
3984 spin_lock_init(&adapter->rcv_pend_lock);
3985 spin_lock_init(&adapter->fbr_lock);
3986 spin_lock_init(&adapter->phy_lock);
3987
3988 adapter->registry_jumbo_packet = 1514; /* 1514-9216 */
3989
3990 /* Set the MAC address to a default */
3991 memcpy(adapter->addr, default_mac, ETH_ALEN);
3992
3993 return adapter;
3994}
3995
d2796743
ME
3996/**
3997 * et131x_pci_remove
3998 * @pdev: a pointer to the device's pci_dev structure
3999 *
4000 * Registered in the pci_driver structure, this function is called when the
4001 * PCI subsystem detects that a PCI device which matches the information
4002 * contained in the pci_device_id table has been removed.
4003 */
596c5dd3 4004static void et131x_pci_remove(struct pci_dev *pdev)
d2796743
ME
4005{
4006 struct net_device *netdev = pci_get_drvdata(pdev);
4007 struct et131x_adapter *adapter = netdev_priv(netdev);
4008
4009 unregister_netdev(netdev);
fa9f0a65 4010 phy_disconnect(adapter->phydev);
d2796743
ME
4011 mdiobus_unregister(adapter->mii_bus);
4012 kfree(adapter->mii_bus->irq);
4013 mdiobus_free(adapter->mii_bus);
4014
4015 et131x_adapter_memory_free(adapter);
4016 iounmap(adapter->regs);
4017 pci_dev_put(pdev);
4018
4019 free_netdev(netdev);
4020 pci_release_regions(pdev);
4021 pci_disable_device(pdev);
4022}
4023
a4d444bd
ME
4024/**
4025 * et131x_up - Bring up a device for use.
4026 * @netdev: device to be opened
4027 */
eb7a6ca6 4028static void et131x_up(struct net_device *netdev)
a4d444bd
ME
4029{
4030 struct et131x_adapter *adapter = netdev_priv(netdev);
4031
4032 et131x_enable_txrx(netdev);
4033 phy_start(adapter->phydev);
4034}
4035
4036/**
4037 * et131x_down - Bring down the device
ac399bc0 4038 * @netdev: device to be brought down
a4d444bd 4039 */
eb7a6ca6 4040static void et131x_down(struct net_device *netdev)
a4d444bd
ME
4041{
4042 struct et131x_adapter *adapter = netdev_priv(netdev);
4043
4044 /* Save the timestamp for the TX watchdog, prevent a timeout */
4045 netdev->trans_start = jiffies;
4046
4047 phy_stop(adapter->phydev);
4048 et131x_disable_txrx(netdev);
4049}
4050
d2796743
ME
4051#ifdef CONFIG_PM_SLEEP
4052static int et131x_suspend(struct device *dev)
4053{
4054 struct pci_dev *pdev = to_pci_dev(dev);
4055 struct net_device *netdev = pci_get_drvdata(pdev);
4056
4057 if (netif_running(netdev)) {
4058 netif_device_detach(netdev);
4059 et131x_down(netdev);
4060 pci_save_state(pdev);
4061 }
4062
4063 return 0;
4064}
4065
4066static int et131x_resume(struct device *dev)
4067{
4068 struct pci_dev *pdev = to_pci_dev(dev);
4069 struct net_device *netdev = pci_get_drvdata(pdev);
4070
4071 if (netif_running(netdev)) {
4072 pci_restore_state(pdev);
4073 et131x_up(netdev);
4074 netif_device_attach(netdev);
4075 }
4076
4077 return 0;
4078}
4079
2e9ff8d9
ME
4080static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume);
4081#define ET131X_PM_OPS (&et131x_pm_ops)
4082#else
4083#define ET131X_PM_OPS NULL
4084#endif
4085
d2796743
ME
4086/**
4087 * et131x_isr - The Interrupt Service Routine for the driver.
4088 * @irq: the IRQ on which the interrupt was received.
4089 * @dev_id: device-specific info (here a pointer to a net_device struct)
4090 *
4091 * Returns a value indicating if the interrupt was handled.
4092 */
4093irqreturn_t et131x_isr(int irq, void *dev_id)
4094{
4095 bool handled = true;
4096 struct net_device *netdev = (struct net_device *)dev_id;
4097 struct et131x_adapter *adapter = NULL;
4098 u32 status;
4099
4100 if (!netif_device_present(netdev)) {
4101 handled = false;
4102 goto out;
4103 }
4104
4105 adapter = netdev_priv(netdev);
4106
4107 /* If the adapter is in low power state, then it should not
4108 * recognize any interrupt
4109 */
4110
4111 /* Disable Device Interrupts */
4112 et131x_disable_interrupts(adapter);
4113
4114 /* Get a copy of the value in the interrupt status register
4115 * so we can process the interrupting section
4116 */
4117 status = readl(&adapter->regs->global.int_status);
4118
4119 if (adapter->flowcontrol == FLOW_TXONLY ||
4120 adapter->flowcontrol == FLOW_BOTH) {
4121 status &= ~INT_MASK_ENABLE;
4122 } else {
4123 status &= ~INT_MASK_ENABLE_NO_FLOW;
4124 }
4125
4126 /* Make sure this is our interrupt */
4127 if (!status) {
4128 handled = false;
4129 et131x_enable_interrupts(adapter);
4130 goto out;
4131 }
4132
4133 /* This is our interrupt, so process accordingly */
4134
4135 if (status & ET_INTR_WATCHDOG) {
4136 struct tcb *tcb = adapter->tx_ring.send_head;
4137
4138 if (tcb)
4139 if (++tcb->stale > 1)
4140 status |= ET_INTR_TXDMA_ISR;
4141
4142 if (adapter->rx_ring.unfinished_receives)
4143 status |= ET_INTR_RXDMA_XFR_DONE;
4144 else if (tcb == NULL)
4145 writel(0, &adapter->regs->global.watchdog_timer);
4146
4147 status &= ~ET_INTR_WATCHDOG;
4148 }
4149
4150 if (status == 0) {
4151 /* This interrupt has in some way been "handled" by
4152 * the ISR. Either it was a spurious Rx interrupt, or
4153 * it was a Tx interrupt that has been filtered by
4154 * the ISR.
4155 */
4156 et131x_enable_interrupts(adapter);
4157 goto out;
4158 }
4159
4160 /* We need to save the interrupt status value for use in our
4161 * DPC. We will clear the software copy of that in that
4162 * routine.
4163 */
4164 adapter->stats.interrupt_status = status;
4165
4166 /* Schedule the ISR handler as a bottom-half task in the
4167 * kernel's tq_immediate queue, and mark the queue for
4168 * execution
4169 */
4170 schedule_work(&adapter->task);
4171out:
4172 return IRQ_RETVAL(handled);
4173}
4174
4175/**
4176 * et131x_isr_handler - The ISR handler
4177 * @p_adapter, a pointer to the device's private adapter structure
4178 *
4179 * scheduled to run in a deferred context by the ISR. This is where the ISR's
4180 * work actually gets done.
4181 */
eb7a6ca6 4182static void et131x_isr_handler(struct work_struct *work)
d2796743
ME
4183{
4184 struct et131x_adapter *adapter =
4185 container_of(work, struct et131x_adapter, task);
4186 u32 status = adapter->stats.interrupt_status;
4187 struct address_map __iomem *iomem = adapter->regs;
4188
4189 /*
4190 * These first two are by far the most common. Once handled, we clear
4191 * their two bits in the status word. If the word is now zero, we
4192 * exit.
4193 */
4194 /* Handle all the completed Transmit interrupts */
4195 if (status & ET_INTR_TXDMA_ISR)
4196 et131x_handle_send_interrupt(adapter);
4197
4198 /* Handle all the completed Receives interrupts */
4199 if (status & ET_INTR_RXDMA_XFR_DONE)
4200 et131x_handle_recv_interrupt(adapter);
4201
4202 status &= 0xffffffd7;
4203
15ffde4d
ME
4204 if (!status)
4205 goto out;
d2796743 4206
15ffde4d
ME
4207 /* Handle the TXDMA Error interrupt */
4208 if (status & ET_INTR_TXDMA_ERR) {
4209 u32 txdma_err;
d2796743 4210
15ffde4d
ME
4211 /* Following read also clears the register (COR) */
4212 txdma_err = readl(&iomem->txdma.tx_dma_error);
d2796743 4213
15ffde4d
ME
4214 dev_warn(&adapter->pdev->dev,
4215 "TXDMA_ERR interrupt, error = %d\n",
4216 txdma_err);
4217 }
d2796743 4218
15ffde4d
ME
4219 /* Handle Free Buffer Ring 0 and 1 Low interrupt */
4220 if (status & (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) {
4221 /*
4222 * This indicates the number of unused buffers in RXDMA free
4223 * buffer ring 0 is <= the limit you programmed. Free buffer
4224 * resources need to be returned. Free buffers are consumed as
4225 * packets are passed from the network to the host. The host
4226 * becomes aware of the packets from the contents of the packet
4227 * status ring. This ring is queried when the packet done
4228 * interrupt occurs. Packets are then passed to the OS. When
4229 * the OS is done with the packets the resources can be
4230 * returned to the ET1310 for re-use. This interrupt is one
4231 * method of returning resources.
4232 */
d2796743 4233
15ffde4d
ME
4234 /*
4235 * If the user has flow control on, then we will
4236 * send a pause packet, otherwise just exit
4237 */
4238 if (adapter->flowcontrol == FLOW_TXONLY ||
4239 adapter->flowcontrol == FLOW_BOTH) {
4240 u32 pm_csr;
d2796743
ME
4241
4242 /*
15ffde4d
ME
4243 * Tell the device to send a pause packet via the back
4244 * pressure register (bp req and bp xon/xoff)
d2796743 4245 */
15ffde4d
ME
4246 pm_csr = readl(&iomem->global.pm_csr);
4247 if (!et1310_in_phy_coma(adapter))
4248 writel(3, &iomem->txmac.bp_ctrl);
d2796743 4249 }
15ffde4d 4250 }
d2796743 4251
15ffde4d
ME
4252 /* Handle Packet Status Ring Low Interrupt */
4253 if (status & ET_INTR_RXDMA_STAT_LOW) {
4254 /*
4255 * Same idea as with the two Free Buffer Rings. Packets going
4256 * from the network to the host each consume a free buffer
4257 * resource and a packet status resource. These resoures are
4258 * passed to the OS. When the OS is done with the resources,
4259 * they need to be returned to the ET1310. This is one method
4260 * of returning the resources.
4261 */
4262 }
d2796743 4263
15ffde4d
ME
4264 /* Handle RXDMA Error Interrupt */
4265 if (status & ET_INTR_RXDMA_ERR) {
4266 /*
4267 * The rxdma_error interrupt is sent when a time-out on a
4268 * request issued by the JAGCore has occurred or a completion is
4269 * returned with an un-successful status. In both cases the
4270 * request is considered complete. The JAGCore will
4271 * automatically re-try the request in question. Normally
4272 * information on events like these are sent to the host using
4273 * the "Advanced Error Reporting" capability. This interrupt is
4274 * another way of getting similar information. The only thing
4275 * required is to clear the interrupt by reading the ISR in the
4276 * global resources. The JAGCore will do a re-try on the
4277 * request. Normally you should never see this interrupt. If
4278 * you start to see this interrupt occurring frequently then
4279 * something bad has occurred. A reset might be the thing to do.
4280 */
4281 /* TRAP();*/
d2796743 4282
15ffde4d
ME
4283 dev_warn(&adapter->pdev->dev,
4284 "RxDMA_ERR interrupt, error %x\n",
4285 readl(&iomem->txmac.tx_test));
4286 }
d2796743 4287
15ffde4d
ME
4288 /* Handle the Wake on LAN Event */
4289 if (status & ET_INTR_WOL) {
4290 /*
4291 * This is a secondary interrupt for wake on LAN. The driver
4292 * should never see this, if it does, something serious is
4293 * wrong. We will TRAP the message when we are in DBG mode,
4294 * otherwise we will ignore it.
4295 */
4296 dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n");
4297 }
d2796743 4298
15ffde4d
ME
4299 /* Let's move on to the TxMac */
4300 if (status & ET_INTR_TXMAC) {
4301 u32 err = readl(&iomem->txmac.err);
d2796743 4302
15ffde4d
ME
4303 /*
4304 * When any of the errors occur and TXMAC generates an
4305 * interrupt to report these errors, it usually means that
4306 * TXMAC has detected an error in the data stream retrieved
4307 * from the on-chip Tx Q. All of these errors are catastrophic
4308 * and TXMAC won't be able to recover data when these errors
4309 * occur. In a nutshell, the whole Tx path will have to be reset
4310 * and re-configured afterwards.
4311 */
4312 dev_warn(&adapter->pdev->dev,
4313 "TXMAC interrupt, error 0x%08x\n",
4314 err);
d2796743 4315
15ffde4d
ME
4316 /*
4317 * If we are debugging, we want to see this error, otherwise we
4318 * just want the device to be reset and continue
4319 */
4320 }
d2796743 4321
15ffde4d
ME
4322 /* Handle RXMAC Interrupt */
4323 if (status & ET_INTR_RXMAC) {
4324 /*
4325 * These interrupts are catastrophic to the device, what we need
4326 * to do is disable the interrupts and set the flag to cause us
4327 * to reset so we can solve this issue.
4328 */
4329 /* MP_SET_FLAG( adapter, fMP_ADAPTER_HARDWARE_ERROR); */
d2796743 4330
15ffde4d
ME
4331 dev_warn(&adapter->pdev->dev,
4332 "RXMAC interrupt, error 0x%08x. Requesting reset\n",
4333 readl(&iomem->rxmac.err_reg));
d2796743 4334
15ffde4d
ME
4335 dev_warn(&adapter->pdev->dev,
4336 "Enable 0x%08x, Diag 0x%08x\n",
4337 readl(&iomem->rxmac.ctrl),
4338 readl(&iomem->rxmac.rxq_diag));
d2796743 4339
15ffde4d
ME
4340 /*
4341 * If we are debugging, we want to see this error, otherwise we
4342 * just want the device to be reset and continue
4343 */
4344 }
d2796743 4345
15ffde4d
ME
4346 /* Handle MAC_STAT Interrupt */
4347 if (status & ET_INTR_MAC_STAT) {
4348 /*
4349 * This means at least one of the un-masked counters in the
4350 * MAC_STAT block has rolled over. Use this to maintain the top,
4351 * software managed bits of the counter(s).
4352 */
4353 et1310_handle_macstat_interrupt(adapter);
d2796743 4354 }
15ffde4d
ME
4355
4356 /* Handle SLV Timeout Interrupt */
4357 if (status & ET_INTR_SLV_TIMEOUT) {
4358 /*
4359 * This means a timeout has occurred on a read or write request
4360 * to one of the JAGCore registers. The Global Resources block
4361 * has terminated the request and on a read request, returned a
4362 * "fake" value. The most likely reasons are: Bad Address or the
4363 * addressed module is in a power-down state and can't respond.
4364 */
4365 }
4366out:
d2796743
ME
4367 et131x_enable_interrupts(adapter);
4368}
4369
d2796743
ME
4370/**
4371 * et131x_stats - Return the current device statistics.
4372 * @netdev: device whose stats are being queried
4373 *
4374 * Returns 0 on success, errno on failure (as defined in errno.h)
4375 */
4376static struct net_device_stats *et131x_stats(struct net_device *netdev)
4377{
4378 struct et131x_adapter *adapter = netdev_priv(netdev);
4379 struct net_device_stats *stats = &adapter->net_stats;
4380 struct ce_stats *devstat = &adapter->stats;
4381
4382 stats->rx_errors = devstat->rx_length_errs +
4383 devstat->rx_align_errs +
4384 devstat->rx_crc_errs +
4385 devstat->rx_code_violations +
4386 devstat->rx_other_errs;
4387 stats->tx_errors = devstat->tx_max_pkt_errs;
4388 stats->multicast = devstat->multicast_pkts_rcvd;
4389 stats->collisions = devstat->tx_collisions;
4390
4391 stats->rx_length_errors = devstat->rx_length_errs;
4392 stats->rx_over_errors = devstat->rx_overflows;
4393 stats->rx_crc_errors = devstat->rx_crc_errs;
4394
4395 /* NOTE: These stats don't have corresponding values in CE_STATS,
4396 * so we're going to have to update these directly from within the
4397 * TX/RX code
4398 */
4399 /* stats->rx_bytes = 20; devstat->; */
4400 /* stats->tx_bytes = 20; devstat->; */
4401 /* stats->rx_dropped = devstat->; */
4402 /* stats->tx_dropped = devstat->; */
4403
4404 /* NOTE: Not used, can't find analogous statistics */
4405 /* stats->rx_frame_errors = devstat->; */
4406 /* stats->rx_fifo_errors = devstat->; */
4407 /* stats->rx_missed_errors = devstat->; */
4408
4409 /* stats->tx_aborted_errors = devstat->; */
4410 /* stats->tx_carrier_errors = devstat->; */
4411 /* stats->tx_fifo_errors = devstat->; */
4412 /* stats->tx_heartbeat_errors = devstat->; */
4413 /* stats->tx_window_errors = devstat->; */
4414 return stats;
4415}
4416
d2796743
ME
4417/**
4418 * et131x_open - Open the device for use.
4419 * @netdev: device to be opened
4420 *
4421 * Returns 0 on success, errno on failure (as defined in errno.h)
4422 */
eb7a6ca6 4423static int et131x_open(struct net_device *netdev)
d2796743 4424{
d2796743 4425 struct et131x_adapter *adapter = netdev_priv(netdev);
5f3eb881
FR
4426 struct pci_dev *pdev = adapter->pdev;
4427 unsigned int irq = pdev->irq;
4428 int result;
d2796743
ME
4429
4430 /* Start the timer to track NIC errors */
4431 init_timer(&adapter->error_timer);
4432 adapter->error_timer.expires = jiffies + TX_ERROR_PERIOD * HZ / 1000;
4433 adapter->error_timer.function = et131x_error_timer_handler;
4434 adapter->error_timer.data = (unsigned long)adapter;
4435 add_timer(&adapter->error_timer);
4436
bf3313a1 4437 result = request_irq(irq, et131x_isr,
4438 IRQF_SHARED, netdev->name, netdev);
d2796743 4439 if (result) {
5f3eb881 4440 dev_err(&pdev->dev, "could not register IRQ %d\n", irq);
d2796743
ME
4441 return result;
4442 }
4443
4444 adapter->flags |= fMP_ADAPTER_INTERRUPT_IN_USE;
4445
4446 et131x_up(netdev);
4447
4448 return result;
4449}
4450
d2796743
ME
4451/**
4452 * et131x_close - Close the device
4453 * @netdev: device to be closed
4454 *
4455 * Returns 0 on success, errno on failure (as defined in errno.h)
4456 */
eb7a6ca6 4457static int et131x_close(struct net_device *netdev)
d2796743
ME
4458{
4459 struct et131x_adapter *adapter = netdev_priv(netdev);
4460
4461 et131x_down(netdev);
4462
4463 adapter->flags &= ~fMP_ADAPTER_INTERRUPT_IN_USE;
5f3eb881 4464 free_irq(adapter->pdev->irq, netdev);
d2796743
ME
4465
4466 /* Stop the error timer */
4467 return del_timer_sync(&adapter->error_timer);
4468}
4469
4470/**
4471 * et131x_ioctl - The I/O Control handler for the driver
4472 * @netdev: device on which the control request is being made
4473 * @reqbuf: a pointer to the IOCTL request buffer
4474 * @cmd: the IOCTL command code
4475 *
4476 * Returns 0 on success, errno on failure (as defined in errno.h)
4477 */
09a3fc2b
ME
4478static int et131x_ioctl(struct net_device *netdev, struct ifreq *reqbuf,
4479 int cmd)
d2796743
ME
4480{
4481 struct et131x_adapter *adapter = netdev_priv(netdev);
4482
4483 if (!adapter->phydev)
4484 return -EINVAL;
4485
4486 return phy_mii_ioctl(adapter->phydev, reqbuf, cmd);
4487}
4488
4489/**
4490 * et131x_set_packet_filter - Configures the Rx Packet filtering on the device
4491 * @adapter: pointer to our private adapter structure
4492 *
4493 * FIXME: lot of dups with MAC code
4494 *
4495 * Returns 0 on success, errno on failure
4496 */
4497static int et131x_set_packet_filter(struct et131x_adapter *adapter)
4498{
834d0ee3 4499 int filter = adapter->packet_filter;
d2796743 4500 int status = 0;
d2796743
ME
4501 u32 ctrl;
4502 u32 pf_ctrl;
4503
4504 ctrl = readl(&adapter->regs->rxmac.ctrl);
4505 pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl);
4506
4507 /* Default to disabled packet filtering. Enable it in the individual
4508 * case statements that require the device to filter something
4509 */
4510 ctrl |= 0x04;
4511
4512 /* Set us to be in promiscuous mode so we receive everything, this
4513 * is also true when we get a packet filter of 0
4514 */
4515 if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0)
4516 pf_ctrl &= ~7; /* Clear filter bits */
4517 else {
4518 /*
4519 * Set us up with Multicast packet filtering. Three cases are
4520 * possible - (1) we have a multi-cast list, (2) we receive ALL
4521 * multicast entries or (3) we receive none.
4522 */
4523 if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST)
4524 pf_ctrl &= ~2; /* Multicast filter bit */
4525 else {
4526 et1310_setup_device_for_multicast(adapter);
4527 pf_ctrl |= 2;
4528 ctrl &= ~0x04;
4529 }
4530
4531 /* Set us up with Unicast packet filtering */
4532 if (filter & ET131X_PACKET_TYPE_DIRECTED) {
4533 et1310_setup_device_for_unicast(adapter);
4534 pf_ctrl |= 4;
4535 ctrl &= ~0x04;
4536 }
4537
4538 /* Set us up with Broadcast packet filtering */
4539 if (filter & ET131X_PACKET_TYPE_BROADCAST) {
4540 pf_ctrl |= 1; /* Broadcast filter bit */
4541 ctrl &= ~0x04;
4542 } else
4543 pf_ctrl &= ~1;
4544
4545 /* Setup the receive mac configuration registers - Packet
4546 * Filter control + the enable / disable for packet filter
4547 * in the control reg.
4548 */
4549 writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl);
4550 writel(ctrl, &adapter->regs->rxmac.ctrl);
4551 }
4552 return status;
4553}
4554
4555/**
4556 * et131x_multicast - The handler to configure multicasting on the interface
4557 * @netdev: a pointer to a net_device struct representing the device
4558 */
4559static void et131x_multicast(struct net_device *netdev)
4560{
4561 struct et131x_adapter *adapter = netdev_priv(netdev);
834d0ee3 4562 int packet_filter;
d2796743
ME
4563 unsigned long flags;
4564 struct netdev_hw_addr *ha;
4565 int i;
4566
4567 spin_lock_irqsave(&adapter->lock, flags);
4568
4569 /* Before we modify the platform-independent filter flags, store them
4570 * locally. This allows us to determine if anything's changed and if
4571 * we even need to bother the hardware
4572 */
4573 packet_filter = adapter->packet_filter;
4574
4575 /* Clear the 'multicast' flag locally; because we only have a single
4576 * flag to check multicast, and multiple multicast addresses can be
4577 * set, this is the easiest way to determine if more than one
4578 * multicast address is being set.
4579 */
4580 packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
4581
4582 /* Check the net_device flags and set the device independent flags
4583 * accordingly
4584 */
4585
4586 if (netdev->flags & IFF_PROMISC)
4587 adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS;
4588 else
4589 adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS;
4590
4591 if (netdev->flags & IFF_ALLMULTI)
4592 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
4593
4594 if (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST)
4595 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
4596
4597 if (netdev_mc_count(netdev) < 1) {
4598 adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST;
4599 adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
4600 } else
4601 adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST;
4602
4603 /* Set values in the private adapter struct */
4604 i = 0;
4605 netdev_for_each_mc_addr(ha, netdev) {
4606 if (i == NIC_MAX_MCAST_LIST)
4607 break;
4608 memcpy(adapter->multicast_list[i++], ha->addr, ETH_ALEN);
4609 }
4610 adapter->multicast_addr_count = i;
4611
4612 /* Are the new flags different from the previous ones? If not, then no
4613 * action is required
4614 *
4615 * NOTE - This block will always update the multicast_list with the
4616 * hardware, even if the addresses aren't the same.
4617 */
4618 if (packet_filter != adapter->packet_filter) {
4619 /* Call the device's filter function */
4620 et131x_set_packet_filter(adapter);
4621 }
4622 spin_unlock_irqrestore(&adapter->lock, flags);
4623}
4624
4625/**
4626 * et131x_tx - The handler to tx a packet on the device
4627 * @skb: data to be Tx'd
4628 * @netdev: device on which data is to be Tx'd
4629 *
4630 * Returns 0 on success, errno on failure (as defined in errno.h)
4631 */
4632static int et131x_tx(struct sk_buff *skb, struct net_device *netdev)
4633{
4634 int status = 0;
06709e96
ME
4635 struct et131x_adapter *adapter = netdev_priv(netdev);
4636
4637 /* stop the queue if it's getting full */
09a3fc2b
ME
4638 if (adapter->tx_ring.used >= NUM_TCB - 1 &&
4639 !netif_queue_stopped(netdev))
06709e96 4640 netif_stop_queue(netdev);
d2796743
ME
4641
4642 /* Save the timestamp for the TX timeout watchdog */
4643 netdev->trans_start = jiffies;
4644
4645 /* Call the device-specific data Tx routine */
4646 status = et131x_send_packets(skb, netdev);
4647
4648 /* Check status and manage the netif queue if necessary */
4649 if (status != 0) {
09a3fc2b 4650 if (status == -ENOMEM)
d2796743 4651 status = NETDEV_TX_BUSY;
09a3fc2b 4652 else
d2796743 4653 status = NETDEV_TX_OK;
d2796743
ME
4654 }
4655 return status;
4656}
4657
4658/**
4659 * et131x_tx_timeout - Timeout handler
4660 * @netdev: a pointer to a net_device struct representing the device
4661 *
4662 * The handler called when a Tx request times out. The timeout period is
4663 * specified by the 'tx_timeo" element in the net_device structure (see
4664 * et131x_alloc_device() to see how this value is set).
4665 */
4666static void et131x_tx_timeout(struct net_device *netdev)
4667{
4668 struct et131x_adapter *adapter = netdev_priv(netdev);
4669 struct tcb *tcb;
4670 unsigned long flags;
4671
4672 /* If the device is closed, ignore the timeout */
4673 if (~(adapter->flags & fMP_ADAPTER_INTERRUPT_IN_USE))
4674 return;
4675
4676 /* Any nonrecoverable hardware error?
4677 * Checks adapter->flags for any failure in phy reading
4678 */
4679 if (adapter->flags & fMP_ADAPTER_NON_RECOVER_ERROR)
4680 return;
4681
4682 /* Hardware failure? */
4683 if (adapter->flags & fMP_ADAPTER_HARDWARE_ERROR) {
4684 dev_err(&adapter->pdev->dev, "hardware error - reset\n");
4685 return;
4686 }
4687
4688 /* Is send stuck? */
4689 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
4690
4691 tcb = adapter->tx_ring.send_head;
4692
4693 if (tcb != NULL) {
4694 tcb->count++;
4695
4696 if (tcb->count > NIC_SEND_HANG_THRESHOLD) {
4697 spin_unlock_irqrestore(&adapter->tcb_send_qlock,
4698 flags);
4699
4700 dev_warn(&adapter->pdev->dev,
4701 "Send stuck - reset. tcb->WrIndex %x, flags 0x%08x\n",
4702 tcb->index,
4703 tcb->flags);
4704
4705 adapter->net_stats.tx_errors++;
4706
4707 /* perform reset of tx/rx */
4708 et131x_disable_txrx(netdev);
4709 et131x_enable_txrx(netdev);
4710 return;
4711 }
4712 }
4713
4714 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
4715}
4716
4717/**
4718 * et131x_change_mtu - The handler called to change the MTU for the device
4719 * @netdev: device whose MTU is to be changed
4720 * @new_mtu: the desired MTU
4721 *
4722 * Returns 0 on success, errno on failure (as defined in errno.h)
4723 */
4724static int et131x_change_mtu(struct net_device *netdev, int new_mtu)
4725{
4726 int result = 0;
4727 struct et131x_adapter *adapter = netdev_priv(netdev);
4728
4729 /* Make sure the requested MTU is valid */
4730 if (new_mtu < 64 || new_mtu > 9216)
4731 return -EINVAL;
4732
4733 et131x_disable_txrx(netdev);
4734 et131x_handle_send_interrupt(adapter);
4735 et131x_handle_recv_interrupt(adapter);
4736
4737 /* Set the new MTU */
4738 netdev->mtu = new_mtu;
4739
4740 /* Free Rx DMA memory */
4741 et131x_adapter_memory_free(adapter);
4742
4743 /* Set the config parameter for Jumbo Packet support */
4744 adapter->registry_jumbo_packet = new_mtu + 14;
4745 et131x_soft_reset(adapter);
4746
4747 /* Alloc and init Rx DMA memory */
4748 result = et131x_adapter_memory_alloc(adapter);
4749 if (result != 0) {
4750 dev_warn(&adapter->pdev->dev,
4751 "Change MTU failed; couldn't re-alloc DMA memory\n");
4752 return result;
4753 }
4754
4755 et131x_init_send(adapter);
4756
4757 et131x_hwaddr_init(adapter);
4758 memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
4759
4760 /* Init the device with the new settings */
4761 et131x_adapter_setup(adapter);
4762
4763 et131x_enable_txrx(netdev);
4764
4765 return result;
4766}
4767
4768/**
4769 * et131x_set_mac_addr - handler to change the MAC address for the device
4770 * @netdev: device whose MAC is to be changed
4771 * @new_mac: the desired MAC address
4772 *
4773 * Returns 0 on success, errno on failure (as defined in errno.h)
4774 *
4775 * IMPLEMENTED BY : blux http://berndlux.de 22.01.2007 21:14
4776 */
4777static int et131x_set_mac_addr(struct net_device *netdev, void *new_mac)
4778{
4779 int result = 0;
4780 struct et131x_adapter *adapter = netdev_priv(netdev);
4781 struct sockaddr *address = new_mac;
4782
4783 /* begin blux */
4784
4785 if (adapter == NULL)
4786 return -ENODEV;
4787
4788 /* Make sure the requested MAC is valid */
4789 if (!is_valid_ether_addr(address->sa_data))
d8aa3e26 4790 return -EADDRNOTAVAIL;
d2796743
ME
4791
4792 et131x_disable_txrx(netdev);
4793 et131x_handle_send_interrupt(adapter);
4794 et131x_handle_recv_interrupt(adapter);
4795
4796 /* Set the new MAC */
4797 /* netdev->set_mac_address = &new_mac; */
4798
4799 memcpy(netdev->dev_addr, address->sa_data, netdev->addr_len);
4800
e58b89da
TY
4801 netdev_info(netdev, "Setting MAC address to %pM\n",
4802 netdev->dev_addr);
d2796743
ME
4803
4804 /* Free Rx DMA memory */
4805 et131x_adapter_memory_free(adapter);
4806
4807 et131x_soft_reset(adapter);
4808
4809 /* Alloc and init Rx DMA memory */
4810 result = et131x_adapter_memory_alloc(adapter);
4811 if (result != 0) {
4812 dev_err(&adapter->pdev->dev,
4813 "Change MAC failed; couldn't re-alloc DMA memory\n");
4814 return result;
4815 }
4816
4817 et131x_init_send(adapter);
4818
4819 et131x_hwaddr_init(adapter);
4820
4821 /* Init the device with the new settings */
4822 et131x_adapter_setup(adapter);
4823
4824 et131x_enable_txrx(netdev);
4825
4826 return result;
4827}
4828
4829static const struct net_device_ops et131x_netdev_ops = {
4830 .ndo_open = et131x_open,
4831 .ndo_stop = et131x_close,
4832 .ndo_start_xmit = et131x_tx,
aa77677e 4833 .ndo_set_rx_mode = et131x_multicast,
d2796743
ME
4834 .ndo_tx_timeout = et131x_tx_timeout,
4835 .ndo_change_mtu = et131x_change_mtu,
4836 .ndo_set_mac_address = et131x_set_mac_addr,
4837 .ndo_validate_addr = eth_validate_addr,
4838 .ndo_get_stats = et131x_stats,
4839 .ndo_do_ioctl = et131x_ioctl,
4840};
4841
5da2b158
ME
4842/**
4843 * et131x_pci_setup - Perform device initialization
4844 * @pdev: a pointer to the device's pci_dev structure
4845 * @ent: this device's entry in the pci_device_id table
4846 *
4847 * Returns 0 on success, errno on failure (as defined in errno.h)
4848 *
4849 * Registered in the pci_driver structure, this function is called when the
4850 * PCI subsystem finds a new PCI device which matches the information
4851 * contained in the pci_device_id table. This routine is the equivalent to
4852 * a device insertion routine.
4853 */
fe5c49b3 4854static int et131x_pci_setup(struct pci_dev *pdev,
5da2b158
ME
4855 const struct pci_device_id *ent)
4856{
5da2b158
ME
4857 struct net_device *netdev;
4858 struct et131x_adapter *adapter;
fa9f0a65 4859 int rc;
5da2b158
ME
4860 int ii;
4861
fa9f0a65
FR
4862 rc = pci_enable_device(pdev);
4863 if (rc < 0) {
5da2b158 4864 dev_err(&pdev->dev, "pci_enable_device() failed\n");
fa9f0a65 4865 goto out;
5da2b158
ME
4866 }
4867
4868 /* Perform some basic PCI checks */
4869 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4870 dev_err(&pdev->dev, "Can't find PCI device's base address\n");
fa9f0a65 4871 rc = -ENODEV;
5da2b158
ME
4872 goto err_disable;
4873 }
4874
fa9f0a65
FR
4875 rc = pci_request_regions(pdev, DRIVER_NAME);
4876 if (rc < 0) {
5da2b158
ME
4877 dev_err(&pdev->dev, "Can't get PCI resources\n");
4878 goto err_disable;
4879 }
4880
4881 pci_set_master(pdev);
4882
4883 /* Check the DMA addressing support of this device */
4884 if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
fa9f0a65
FR
4885 rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
4886 if (rc < 0) {
5da2b158
ME
4887 dev_err(&pdev->dev,
4888 "Unable to obtain 64 bit DMA for consistent allocations\n");
4889 goto err_release_res;
4890 }
4891 } else if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) {
fa9f0a65
FR
4892 rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
4893 if (rc < 0) {
5da2b158
ME
4894 dev_err(&pdev->dev,
4895 "Unable to obtain 32 bit DMA for consistent allocations\n");
4896 goto err_release_res;
4897 }
4898 } else {
4899 dev_err(&pdev->dev, "No usable DMA addressing method\n");
fa9f0a65 4900 rc = -EIO;
5da2b158
ME
4901 goto err_release_res;
4902 }
4903
4904 /* Allocate netdev and private adapter structs */
fa9f0a65 4905 netdev = alloc_etherdev(sizeof(struct et131x_adapter));
5da2b158
ME
4906 if (!netdev) {
4907 dev_err(&pdev->dev, "Couldn't alloc netdev struct\n");
fa9f0a65 4908 rc = -ENOMEM;
5da2b158
ME
4909 goto err_release_res;
4910 }
4911
fa9f0a65
FR
4912 netdev->watchdog_timeo = ET131X_TX_TIMEOUT;
4913 netdev->netdev_ops = &et131x_netdev_ops;
4914
5da2b158 4915 SET_NETDEV_DEV(netdev, &pdev->dev);
a6e28b34 4916 SET_ETHTOOL_OPS(netdev, &et131x_ethtool_ops);
5da2b158
ME
4917
4918 adapter = et131x_adapter_init(netdev, pdev);
4919
fa9f0a65
FR
4920 rc = et131x_pci_init(adapter, pdev);
4921 if (rc < 0)
4922 goto err_free_dev;
5da2b158
ME
4923
4924 /* Map the bus-relative registers to system virtual memory */
4925 adapter->regs = pci_ioremap_bar(pdev, 0);
4926 if (!adapter->regs) {
4927 dev_err(&pdev->dev, "Cannot map device registers\n");
fa9f0a65 4928 rc = -ENOMEM;
5da2b158
ME
4929 goto err_free_dev;
4930 }
4931
4932 /* If Phy COMA mode was enabled when we went down, disable it here. */
4933 writel(ET_PMCSR_INIT, &adapter->regs->global.pm_csr);
4934
4935 /* Issue a global reset to the et1310 */
4936 et131x_soft_reset(adapter);
4937
4938 /* Disable all interrupts (paranoid) */
4939 et131x_disable_interrupts(adapter);
4940
4941 /* Allocate DMA memory */
fa9f0a65
FR
4942 rc = et131x_adapter_memory_alloc(adapter);
4943 if (rc < 0) {
5da2b158
ME
4944 dev_err(&pdev->dev, "Could not alloc adapater memory (DMA)\n");
4945 goto err_iounmap;
4946 }
4947
4948 /* Init send data structures */
4949 et131x_init_send(adapter);
4950
4951 /* Set up the task structure for the ISR's deferred handler */
4952 INIT_WORK(&adapter->task, et131x_isr_handler);
4953
4954 /* Copy address into the net_device struct */
4955 memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
4956
4957 /* Init variable for counting how long we do not have link status */
4958 adapter->boot_coma = 0;
4959 et1310_disable_phy_coma(adapter);
4960
fa9f0a65
FR
4961 rc = -ENOMEM;
4962
5da2b158
ME
4963 /* Setup the mii_bus struct */
4964 adapter->mii_bus = mdiobus_alloc();
4965 if (!adapter->mii_bus) {
4966 dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n");
4967 goto err_mem_free;
4968 }
4969
4970 adapter->mii_bus->name = "et131x_eth_mii";
4971 snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x",
4972 (adapter->pdev->bus->number << 8) | adapter->pdev->devfn);
4973 adapter->mii_bus->priv = netdev;
4974 adapter->mii_bus->read = et131x_mdio_read;
4975 adapter->mii_bus->write = et131x_mdio_write;
4976 adapter->mii_bus->reset = et131x_mdio_reset;
4977 adapter->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
4978 if (!adapter->mii_bus->irq) {
4979 dev_err(&pdev->dev, "mii_bus irq allocation failed\n");
4980 goto err_mdio_free;
4981 }
4982
4983 for (ii = 0; ii < PHY_MAX_ADDR; ii++)
4984 adapter->mii_bus->irq[ii] = PHY_POLL;
4985
fa9f0a65
FR
4986 rc = mdiobus_register(adapter->mii_bus);
4987 if (rc < 0) {
5da2b158 4988 dev_err(&pdev->dev, "failed to register MII bus\n");
5da2b158
ME
4989 goto err_mdio_free_irq;
4990 }
4991
fa9f0a65
FR
4992 rc = et131x_mii_probe(netdev);
4993 if (rc < 0) {
5da2b158
ME
4994 dev_err(&pdev->dev, "failed to probe MII bus\n");
4995 goto err_mdio_unregister;
4996 }
4997
4998 /* Setup et1310 as per the documentation */
4999 et131x_adapter_setup(adapter);
5000
5001 /* We can enable interrupts now
5002 *
5003 * NOTE - Because registration of interrupt handler is done in the
5004 * device's open(), defer enabling device interrupts to that
5005 * point
5006 */
5007
5008 /* Register the net_device struct with the Linux network layer */
fa9f0a65
FR
5009 rc = register_netdev(netdev);
5010 if (rc < 0) {
5da2b158 5011 dev_err(&pdev->dev, "register_netdev() failed\n");
fa9f0a65 5012 goto err_phy_disconnect;
5da2b158
ME
5013 }
5014
5015 /* Register the net_device struct with the PCI subsystem. Save a copy
5016 * of the PCI config space for this device now that the device has
5017 * been initialized, just in case it needs to be quickly restored.
5018 */
5019 pci_set_drvdata(pdev, netdev);
fa9f0a65
FR
5020out:
5021 return rc;
5da2b158 5022
fa9f0a65
FR
5023err_phy_disconnect:
5024 phy_disconnect(adapter->phydev);
5da2b158
ME
5025err_mdio_unregister:
5026 mdiobus_unregister(adapter->mii_bus);
5027err_mdio_free_irq:
5028 kfree(adapter->mii_bus->irq);
5029err_mdio_free:
5030 mdiobus_free(adapter->mii_bus);
5031err_mem_free:
5032 et131x_adapter_memory_free(adapter);
5033err_iounmap:
5034 iounmap(adapter->regs);
5035err_free_dev:
5036 pci_dev_put(pdev);
5037 free_netdev(netdev);
5038err_release_res:
5039 pci_release_regions(pdev);
5040err_disable:
5041 pci_disable_device(pdev);
fa9f0a65 5042 goto out;
5da2b158
ME
5043}
5044
5da2b158
ME
5045static DEFINE_PCI_DEVICE_TABLE(et131x_pci_table) = {
5046 { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL},
5047 { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL},
5048 {0,}
5049};
5050MODULE_DEVICE_TABLE(pci, et131x_pci_table);
5051
5052static struct pci_driver et131x_driver = {
5053 .name = DRIVER_NAME,
5054 .id_table = et131x_pci_table,
5055 .probe = et131x_pci_setup,
0b5e4092 5056 .remove = et131x_pci_remove,
5da2b158
ME
5057 .driver.pm = ET131X_PM_OPS,
5058};
5059
89812b1f 5060module_pci_driver(et131x_driver);
This page took 0.408249 seconds and 5 git commands to generate.