staging: delete non-required instances of include <linux/init.h>
[deliverable/linux.git] / drivers / staging / et131x / et131x.c
CommitLineData
26ef1021 1/* Agere Systems Inc.
d2796743
ME
2 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
3 *
4 * Copyright © 2005 Agere Systems Inc.
5 * All rights reserved.
6 * http://www.agere.com
7 *
8 * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
9 *
10 *------------------------------------------------------------------------------
11 *
12 * SOFTWARE LICENSE
13 *
14 * This software is provided subject to the following terms and conditions,
15 * which you should read carefully before using the software. Using this
16 * software indicates your acceptance of these terms and conditions. If you do
17 * not agree with these terms and conditions, do not use the software.
18 *
19 * Copyright © 2005 Agere Systems Inc.
20 * All rights reserved.
21 *
22 * Redistribution and use in source or binary forms, with or without
23 * modifications, are permitted provided that the following conditions are met:
24 *
25 * . Redistributions of source code must retain the above copyright notice, this
26 * list of conditions and the following Disclaimer as comments in the code as
27 * well as in the documentation and/or other materials provided with the
28 * distribution.
29 *
30 * . Redistributions in binary form must reproduce the above copyright notice,
31 * this list of conditions and the following Disclaimer in the documentation
32 * and/or other materials provided with the distribution.
33 *
34 * . Neither the name of Agere Systems Inc. nor the names of the contributors
35 * may be used to endorse or promote products derived from this software
36 * without specific prior written permission.
37 *
38 * Disclaimer
39 *
40 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
41 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
42 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
43 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
44 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
45 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
46 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
48 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
50 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
51 * DAMAGE.
d2796743
ME
52 */
53
e58b89da
TY
54#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
55
d2796743 56#include <linux/pci.h>
d2796743
ME
57#include <linux/module.h>
58#include <linux/types.h>
59#include <linux/kernel.h>
60
61#include <linux/sched.h>
62#include <linux/ptrace.h>
63#include <linux/slab.h>
64#include <linux/ctype.h>
65#include <linux/string.h>
66#include <linux/timer.h>
67#include <linux/interrupt.h>
68#include <linux/in.h>
69#include <linux/delay.h>
70#include <linux/bitops.h>
71#include <linux/io.h>
d2796743
ME
72
73#include <linux/netdevice.h>
74#include <linux/etherdevice.h>
75#include <linux/skbuff.h>
76#include <linux/if_arp.h>
77#include <linux/ioport.h>
78#include <linux/crc32.h>
79#include <linux/random.h>
80#include <linux/phy.h>
81
d2796743
ME
82#include "et131x.h"
83
84MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
85MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
86MODULE_LICENSE("Dual BSD/GPL");
397d3e60 87MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver for the ET1310 by Agere Systems");
d2796743 88
bd156af6
ME
89/* EEPROM defines */
90#define MAX_NUM_REGISTER_POLLS 1000
91#define MAX_NUM_WRITE_RETRIES 2
92
93/* MAC defines */
94#define COUNTER_WRAP_16_BIT 0x10000
95#define COUNTER_WRAP_12_BIT 0x1000
96
97/* PCI defines */
98#define INTERNAL_MEM_SIZE 0x400 /* 1024 of internal memory */
99#define INTERNAL_MEM_RX_OFFSET 0x1FF /* 50% Tx, 50% Rx */
100
101/* ISR defines */
26ef1021 102/* For interrupts, normal running is:
bd156af6
ME
103 * rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
104 * watchdog_interrupt & txdma_xfer_done
105 *
106 * In both cases, when flow control is enabled for either Tx or bi-direction,
107 * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
108 * buffer rings are running low.
109 */
110#define INT_MASK_DISABLE 0xffffffff
111
112/* NOTE: Masking out MAC_STAT Interrupt for now...
113 * #define INT_MASK_ENABLE 0xfff6bf17
114 * #define INT_MASK_ENABLE_NO_FLOW 0xfff6bfd7
115 */
116#define INT_MASK_ENABLE 0xfffebf17
117#define INT_MASK_ENABLE_NO_FLOW 0xfffebfd7
118
1c1c1b5f
ME
119/* General defines */
120/* Packet and header sizes */
121#define NIC_MIN_PACKET_SIZE 60
122
123/* Multicast list size */
124#define NIC_MAX_MCAST_LIST 128
125
126/* Supported Filters */
127#define ET131X_PACKET_TYPE_DIRECTED 0x0001
128#define ET131X_PACKET_TYPE_MULTICAST 0x0002
129#define ET131X_PACKET_TYPE_BROADCAST 0x0004
130#define ET131X_PACKET_TYPE_PROMISCUOUS 0x0008
131#define ET131X_PACKET_TYPE_ALL_MULTICAST 0x0010
132
133/* Tx Timeout */
134#define ET131X_TX_TIMEOUT (1 * HZ)
135#define NIC_SEND_HANG_THRESHOLD 0
136
137/* MP_TCB flags */
c655dee9
ME
138#define FMP_DEST_MULTI 0x00000001
139#define FMP_DEST_BROAD 0x00000002
1c1c1b5f
ME
140
141/* MP_ADAPTER flags */
c655dee9 142#define FMP_ADAPTER_INTERRUPT_IN_USE 0x00000008
1c1c1b5f
ME
143
144/* MP_SHARED flags */
c655dee9 145#define FMP_ADAPTER_LOWER_POWER 0x00200000
1c1c1b5f 146
c655dee9
ME
147#define FMP_ADAPTER_NON_RECOVER_ERROR 0x00800000
148#define FMP_ADAPTER_HARDWARE_ERROR 0x04000000
1c1c1b5f 149
c655dee9 150#define FMP_ADAPTER_FAIL_SEND_MASK 0x3ff00000
1c1c1b5f
ME
151
152/* Some offsets in PCI config space that are actually used. */
1c1c1b5f
ME
153#define ET1310_PCI_MAC_ADDRESS 0xA4
154#define ET1310_PCI_EEPROM_STATUS 0xB2
155#define ET1310_PCI_ACK_NACK 0xC0
156#define ET1310_PCI_REPLAY 0xC2
157#define ET1310_PCI_L0L1LATENCY 0xCF
158
26d19bf6 159/* PCI Product IDs */
1c1c1b5f
ME
160#define ET131X_PCI_DEVICE_ID_GIG 0xED00 /* ET1310 1000 Base-T 8 */
161#define ET131X_PCI_DEVICE_ID_FAST 0xED01 /* ET1310 100 Base-T */
162
163/* Define order of magnitude converter */
164#define NANO_IN_A_MICRO 1000
165
166#define PARM_RX_NUM_BUFS_DEF 4
167#define PARM_RX_TIME_INT_DEF 10
168#define PARM_RX_MEM_END_DEF 0x2bc
169#define PARM_TX_TIME_INT_DEF 40
170#define PARM_TX_NUM_BUFS_DEF 4
171#define PARM_DMA_CACHE_DEF 0
172
562550b0 173/* RX defines */
788ca84a
ME
174#define FBR_CHUNKS 32
175#define MAX_DESC_PER_RING_RX 1024
562550b0
ME
176
177/* number of RFDs - default and min */
562550b0 178#define RFD_LOW_WATER_MARK 40
562550b0 179#define NIC_DEFAULT_NUM_RFD 1024
6abafc16 180#define NUM_FBRS 2
562550b0
ME
181
182#define NUM_PACKETS_HANDLED 256
183
562550b0
ME
184#define ALCATEL_MULTICAST_PKT 0x01000000
185#define ALCATEL_BROADCAST_PKT 0x02000000
186
187/* typedefs for Free Buffer Descriptors */
188struct fbr_desc {
189 u32 addr_lo;
190 u32 addr_hi;
191 u32 word2; /* Bits 10-31 reserved, 0-9 descriptor */
192};
193
194/* Packet Status Ring Descriptors
195 *
196 * Word 0:
197 *
198 * top 16 bits are from the Alcatel Status Word as enumerated in
199 * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
200 *
201 * 0: hp hash pass
202 * 1: ipa IP checksum assist
203 * 2: ipp IP checksum pass
204 * 3: tcpa TCP checksum assist
205 * 4: tcpp TCP checksum pass
206 * 5: wol WOL Event
207 * 6: rxmac_error RXMAC Error Indicator
208 * 7: drop Drop packet
209 * 8: ft Frame Truncated
210 * 9: jp Jumbo Packet
211 * 10: vp VLAN Packet
212 * 11-15: unused
213 * 16: asw_prev_pkt_dropped e.g. IFG too small on previous
214 * 17: asw_RX_DV_event short receive event detected
215 * 18: asw_false_carrier_event bad carrier since last good packet
216 * 19: asw_code_err one or more nibbles signalled as errors
217 * 20: asw_CRC_err CRC error
218 * 21: asw_len_chk_err frame length field incorrect
219 * 22: asw_too_long frame length > 1518 bytes
220 * 23: asw_OK valid CRC + no code error
221 * 24: asw_multicast has a multicast address
222 * 25: asw_broadcast has a broadcast address
223 * 26: asw_dribble_nibble spurious bits after EOP
224 * 27: asw_control_frame is a control frame
225 * 28: asw_pause_frame is a pause frame
226 * 29: asw_unsupported_op unsupported OP code
227 * 30: asw_VLAN_tag VLAN tag detected
228 * 31: asw_long_evt Rx long event
229 *
230 * Word 1:
231 * 0-15: length length in bytes
232 * 16-25: bi Buffer Index
233 * 26-27: ri Ring Index
234 * 28-31: reserved
235 */
236
237struct pkt_stat_desc {
238 u32 word0;
239 u32 word1;
240};
241
242/* Typedefs for the RX DMA status word */
243
26ef1021 244/* rx status word 0 holds part of the status bits of the Rx DMA engine
562550b0
ME
245 * that get copied out to memory by the ET-1310. Word 0 is a 32 bit word
246 * which contains the Free Buffer ring 0 and 1 available offset.
247 *
248 * bit 0-9 FBR1 offset
249 * bit 10 Wrap flag for FBR1
250 * bit 16-25 FBR0 offset
251 * bit 26 Wrap flag for FBR0
252 */
253
26ef1021 254/* RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
562550b0
ME
255 * that get copied out to memory by the ET-1310. Word 3 is a 32 bit word
256 * which contains the Packet Status Ring available offset.
257 *
258 * bit 0-15 reserved
259 * bit 16-27 PSRoffset
260 * bit 28 PSRwrap
261 * bit 29-31 unused
262 */
263
26ef1021 264/* struct rx_status_block is a structure representing the status of the Rx
562550b0
ME
265 * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
266 */
267struct rx_status_block {
268 u32 word0;
269 u32 word1;
270};
271
26ef1021 272/* Structure for look-up table holding free buffer ring pointers, addresses
6abafc16 273 * and state.
562550b0
ME
274 */
275struct fbr_lookup {
6abafc16 276 void *virt[MAX_DESC_PER_RING_RX];
6abafc16
ME
277 u32 bus_high[MAX_DESC_PER_RING_RX];
278 u32 bus_low[MAX_DESC_PER_RING_RX];
279 void *ring_virtaddr;
280 dma_addr_t ring_physaddr;
281 void *mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
282 dma_addr_t mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
6abafc16
ME
283 u32 local_full;
284 u32 num_entries;
983e4b35 285 dma_addr_t buffsize;
562550b0
ME
286};
287
26ef1021 288/* struct rx_ring is the sructure representing the adaptor's local
562550b0
ME
289 * reference(s) to the rings
290 */
291struct rx_ring {
6abafc16 292 struct fbr_lookup *fbr[NUM_FBRS];
562550b0
ME
293 void *ps_ring_virtaddr;
294 dma_addr_t ps_ring_physaddr;
295 u32 local_psr_full;
296 u32 psr_num_entries;
297
298 struct rx_status_block *rx_status_block;
299 dma_addr_t rx_status_bus;
300
562550b0
ME
301 /* RECV */
302 struct list_head recv_list;
303 u32 num_ready_recv;
304
305 u32 num_rfd;
306
307 bool unfinished_receives;
562550b0
ME
308};
309
17ec9ff3 310/* TX defines */
26ef1021 311/* word 2 of the control bits in the Tx Descriptor ring for the ET-1310
17ec9ff3
ME
312 *
313 * 0-15: length of packet
314 * 16-27: VLAN tag
315 * 28: VLAN CFI
316 * 29-31: VLAN priority
317 *
318 * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
319 *
320 * 0: last packet in the sequence
321 * 1: first packet in the sequence
322 * 2: interrupt the processor when this pkt sent
323 * 3: Control word - no packet data
324 * 4: Issue half-duplex backpressure : XON/XOFF
325 * 5: send pause frame
326 * 6: Tx frame has error
327 * 7: append CRC
328 * 8: MAC override
329 * 9: pad packet
330 * 10: Packet is a Huge packet
331 * 11: append VLAN tag
332 * 12: IP checksum assist
333 * 13: TCP checksum assist
334 * 14: UDP checksum assist
335 */
336
a129be84
ME
337#define TXDESC_FLAG_LASTPKT 0x0001
338#define TXDESC_FLAG_FIRSTPKT 0x0002
339#define TXDESC_FLAG_INTPROC 0x0004
340
17ec9ff3
ME
341/* struct tx_desc represents each descriptor on the ring */
342struct tx_desc {
343 u32 addr_hi;
344 u32 addr_lo;
345 u32 len_vlan; /* control words how to xmit the */
346 u32 flags; /* data (detailed above) */
347};
348
26ef1021 349/* The status of the Tx DMA engine it sits in free memory, and is pointed to
17ec9ff3
ME
350 * by 0x101c / 0x1020. This is a DMA10 type
351 */
352
353/* TCB (Transmit Control Block: Host Side) */
354struct tcb {
355 struct tcb *next; /* Next entry in ring */
356 u32 flags; /* Our flags for the packet */
357 u32 count; /* Used to spot stuck/lost packets */
358 u32 stale; /* Used to spot stuck/lost packets */
359 struct sk_buff *skb; /* Network skb we are tied to */
360 u32 index; /* Ring indexes */
361 u32 index_start;
362};
363
364/* Structure representing our local reference(s) to the ring */
365struct tx_ring {
366 /* TCB (Transmit Control Block) memory and lists */
367 struct tcb *tcb_ring;
368
369 /* List of TCBs that are ready to be used */
370 struct tcb *tcb_qhead;
371 struct tcb *tcb_qtail;
372
373 /* list of TCBs that are currently being sent. NOTE that access to all
374 * three of these (including used) are controlled via the
375 * TCBSendQLock. This lock should be secured prior to incementing /
376 * decrementing used, or any queue manipulation on send_head /
377 * tail
378 */
379 struct tcb *send_head;
380 struct tcb *send_tail;
381 int used;
382
383 /* The actual descriptor ring */
384 struct tx_desc *tx_desc_ring;
385 dma_addr_t tx_desc_ring_pa;
386
387 /* send_idx indicates where we last wrote to in the descriptor ring. */
388 u32 send_idx;
389
390 /* The location of the write-back status block */
391 u32 *tx_status;
392 dma_addr_t tx_status_pa;
393
394 /* Packets since the last IRQ: used for interrupt coalescing */
395 int since_irq;
396};
397
26ef1021 398/* Do not change these values: if changed, then change also in respective
fd0651a6
ME
399 * TXdma and Rxdma engines
400 */
401#define NUM_DESC_PER_RING_TX 512 /* TX Do not change these values */
402#define NUM_TCB 64
403
26ef1021 404/* These values are all superseded by registry entries to facilitate tuning.
fd0651a6
ME
405 * Once the desired performance has been achieved, the optimal registry values
406 * should be re-populated to these #defines:
407 */
fd0651a6
ME
408#define TX_ERROR_PERIOD 1000
409
410#define LO_MARK_PERCENT_FOR_PSR 15
411#define LO_MARK_PERCENT_FOR_RX 15
412
413/* RFD (Receive Frame Descriptor) */
414struct rfd {
415 struct list_head list_node;
416 struct sk_buff *skb;
417 u32 len; /* total size of receive frame */
418 u16 bufferindex;
419 u8 ringindex;
420};
421
422/* Flow Control */
423#define FLOW_BOTH 0
424#define FLOW_TXONLY 1
425#define FLOW_RXONLY 2
426#define FLOW_NONE 3
427
428/* Struct to define some device statistics */
429struct ce_stats {
430 /* MIB II variables
431 *
432 * NOTE: atomic_t types are only guaranteed to store 24-bits; if we
433 * MUST have 32, then we'll need another way to perform atomic
434 * operations
435 */
436 u32 unicast_pkts_rcvd;
437 atomic_t unicast_pkts_xmtd;
438 u32 multicast_pkts_rcvd;
439 atomic_t multicast_pkts_xmtd;
440 u32 broadcast_pkts_rcvd;
441 atomic_t broadcast_pkts_xmtd;
442 u32 rcvd_pkts_dropped;
443
444 /* Tx Statistics. */
445 u32 tx_underflows;
446
447 u32 tx_collisions;
448 u32 tx_excessive_collisions;
449 u32 tx_first_collisions;
450 u32 tx_late_collisions;
451 u32 tx_max_pkt_errs;
452 u32 tx_deferred;
453
454 /* Rx Statistics. */
455 u32 rx_overflows;
456
457 u32 rx_length_errs;
458 u32 rx_align_errs;
459 u32 rx_crc_errs;
460 u32 rx_code_violations;
461 u32 rx_other_errs;
462
463 u32 synchronous_iterations;
464 u32 interrupt_status;
465};
466
467/* The private adapter structure */
468struct et131x_adapter {
469 struct net_device *netdev;
470 struct pci_dev *pdev;
471 struct mii_bus *mii_bus;
472 struct phy_device *phydev;
473 struct work_struct task;
474
475 /* Flags that indicate current state of the adapter */
476 u32 flags;
477
478 /* local link state, to determine if a state change has occurred */
479 int link;
480
481 /* Configuration */
482 u8 rom_addr[ETH_ALEN];
483 u8 addr[ETH_ALEN];
484 bool has_eeprom;
485 u8 eeprom_data[2];
486
487 /* Spinlocks */
488 spinlock_t lock;
489
490 spinlock_t tcb_send_qlock;
491 spinlock_t tcb_ready_qlock;
492 spinlock_t send_hw_lock;
493
494 spinlock_t rcv_lock;
fd0651a6
ME
495 spinlock_t fbr_lock;
496
fd0651a6
ME
497 /* Packet Filter and look ahead size */
498 u32 packet_filter;
499
500 /* multicast list */
501 u32 multicast_addr_count;
502 u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN];
503
504 /* Pointer to the device's PCI register space */
505 struct address_map __iomem *regs;
506
507 /* Registry parameters */
508 u8 wanted_flow; /* Flow we want for 802.3x flow control */
509 u32 registry_jumbo_packet; /* Max supported ethernet packet size */
510
511 /* Derived from the registry: */
512 u8 flowcontrol; /* flow control validated by the far-end */
513
514 /* Minimize init-time */
515 struct timer_list error_timer;
516
517 /* variable putting the phy into coma mode when boot up with no cable
518 * plugged in after 5 seconds
519 */
520 u8 boot_coma;
521
522 /* Next two used to save power information at power down. This
523 * information will be used during power up to set up parts of Power
524 * Management in JAGCore
525 */
526 u16 pdown_speed;
527 u8 pdown_duplex;
528
529 /* Tx Memory Variables */
530 struct tx_ring tx_ring;
531
532 /* Rx Memory Variables */
533 struct rx_ring rx_ring;
534
535 /* Stats */
536 struct ce_stats stats;
537
538 struct net_device_stats net_stats;
539};
540
d2796743
ME
541static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status)
542{
543 u32 reg;
544 int i;
545
26ef1021 546 /* 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
d2796743
ME
547 * bits 7,1:0 both equal to 1, at least once after reset.
548 * Subsequent operations need only to check that bits 1:0 are equal
549 * to 1 prior to starting a single byte read/write
550 */
551
552 for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) {
553 /* Read registers grouped in DWORD1 */
554 if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, &reg))
555 return -EIO;
556
557 /* I2C idle and Phy Queue Avail both true */
558 if ((reg & 0x3000) == 0x3000) {
559 if (status)
560 *status = reg;
561 return reg & 0xFF;
562 }
563 }
564 return -ETIMEDOUT;
565}
566
26ef1021 567/* eeprom_write - Write a byte to the ET1310's EEPROM
d2796743
ME
568 * @adapter: pointer to our private adapter structure
569 * @addr: the address to write
570 * @data: the value to write
571 *
572 * Returns 1 for a successful write.
573 */
574static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data)
575{
576 struct pci_dev *pdev = adapter->pdev;
577 int index = 0;
578 int retries;
579 int err = 0;
580 int i2c_wack = 0;
581 int writeok = 0;
582 u32 status;
583 u32 val = 0;
584
26ef1021 585 /* For an EEPROM, an I2C single byte write is defined as a START
d2796743
ME
586 * condition followed by the device address, EEPROM address, one byte
587 * of data and a STOP condition. The STOP condition will trigger the
588 * EEPROM's internally timed write cycle to the nonvolatile memory.
589 * All inputs are disabled during this write cycle and the EEPROM will
590 * not respond to any access until the internal write is complete.
591 */
592
593 err = eeprom_wait_ready(pdev, NULL);
8dd4a966 594 if (err < 0)
d2796743
ME
595 return err;
596
26ef1021
ME
597 /* 2. Write to the LBCIF Control Register: bit 7=1, bit 6=1, bit 3=0,
598 * and bits 1:0 both =0. Bit 5 should be set according to the
599 * type of EEPROM being accessed (1=two byte addressing, 0=one
600 * byte addressing).
601 */
d2796743
ME
602 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
603 LBCIF_CONTROL_LBCIF_ENABLE | LBCIF_CONTROL_I2C_WRITE))
604 return -EIO;
605
606 i2c_wack = 1;
607
608 /* Prepare EEPROM address for Step 3 */
609
610 for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
611 /* Write the address to the LBCIF Address Register */
612 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
613 break;
26ef1021 614 /* Write the data to the LBCIF Data Register (the I2C write
d2796743
ME
615 * will begin).
616 */
617 if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data))
618 break;
26ef1021 619 /* Monitor bit 1:0 of the LBCIF Status Register. When bits
d2796743
ME
620 * 1:0 are both equal to 1, the I2C write has completed and the
621 * internal write cycle of the EEPROM is about to start.
622 * (bits 1:0 = 01 is a legal state while waiting from both
623 * equal to 1, but bits 1:0 = 10 is invalid and implies that
624 * something is broken).
625 */
626 err = eeprom_wait_ready(pdev, &status);
627 if (err < 0)
628 return 0;
629
26ef1021 630 /* Check bit 3 of the LBCIF Status Register. If equal to 1,
d2796743
ME
631 * an error has occurred.Don't break here if we are revision
632 * 1, this is so we do a blind write for load bug.
633 */
634 if ((status & LBCIF_STATUS_GENERAL_ERROR)
635 && adapter->pdev->revision == 0)
636 break;
637
26ef1021 638 /* Check bit 2 of the LBCIF Status Register. If equal to 1 an
d2796743
ME
639 * ACK error has occurred on the address phase of the write.
640 * This could be due to an actual hardware failure or the
641 * EEPROM may still be in its internal write cycle from a
642 * previous write. This write operation was ignored and must be
643 *repeated later.
644 */
645 if (status & LBCIF_STATUS_ACK_ERROR) {
26ef1021 646 /* This could be due to an actual hardware failure
d2796743
ME
647 * or the EEPROM may still be in its internal write
648 * cycle from a previous write. This write operation
649 * was ignored and must be repeated later.
650 */
651 udelay(10);
652 continue;
653 }
654
655 writeok = 1;
656 break;
657 }
658
26ef1021 659 /* Set bit 6 of the LBCIF Control Register = 0.
d2796743
ME
660 */
661 udelay(10);
662
663 while (i2c_wack) {
664 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
665 LBCIF_CONTROL_LBCIF_ENABLE))
666 writeok = 0;
667
668 /* Do read until internal ACK_ERROR goes away meaning write
669 * completed
670 */
671 do {
672 pci_write_config_dword(pdev,
673 LBCIF_ADDRESS_REGISTER,
674 addr);
675 do {
676 pci_read_config_dword(pdev,
677 LBCIF_DATA_REGISTER, &val);
678 } while ((val & 0x00010000) == 0);
679 } while (val & 0x00040000);
680
681 if ((val & 0xFF00) != 0xC000 || index == 10000)
682 break;
683 index++;
684 }
685 return writeok ? 0 : -EIO;
686}
687
26ef1021 688/* eeprom_read - Read a byte from the ET1310's EEPROM
d2796743
ME
689 * @adapter: pointer to our private adapter structure
690 * @addr: the address from which to read
691 * @pdata: a pointer to a byte in which to store the value of the read
692 * @eeprom_id: the ID of the EEPROM
693 * @addrmode: how the EEPROM is to be accessed
694 *
695 * Returns 1 for a successful read
696 */
697static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata)
698{
699 struct pci_dev *pdev = adapter->pdev;
700 int err;
701 u32 status;
702
26ef1021 703 /* A single byte read is similar to the single byte write, with the
d2796743
ME
704 * exception of the data flow:
705 */
706
707 err = eeprom_wait_ready(pdev, NULL);
8dd4a966 708 if (err < 0)
d2796743 709 return err;
26ef1021 710 /* Write to the LBCIF Control Register: bit 7=1, bit 6=0, bit 3=0,
d2796743
ME
711 * and bits 1:0 both =0. Bit 5 should be set according to the type
712 * of EEPROM being accessed (1=two byte addressing, 0=one byte
713 * addressing).
714 */
715 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
716 LBCIF_CONTROL_LBCIF_ENABLE))
717 return -EIO;
26ef1021 718 /* Write the address to the LBCIF Address Register (I2C read will
d2796743
ME
719 * begin).
720 */
721 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
722 return -EIO;
26ef1021 723 /* Monitor bit 0 of the LBCIF Status Register. When = 1, I2C read
d2796743
ME
724 * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
725 * has occurred).
726 */
727 err = eeprom_wait_ready(pdev, &status);
728 if (err < 0)
729 return err;
26ef1021 730 /* Regardless of error status, read data byte from LBCIF Data
d2796743
ME
731 * Register.
732 */
733 *pdata = err;
26ef1021 734 /* Check bit 2 of the LBCIF Status Register. If = 1,
d2796743
ME
735 * then an error has occurred.
736 */
737 return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0;
738}
739
eb7a6ca6 740static int et131x_init_eeprom(struct et131x_adapter *adapter)
d2796743
ME
741{
742 struct pci_dev *pdev = adapter->pdev;
743 u8 eestatus;
744
745 /* We first need to check the EEPROM Status code located at offset
746 * 0xB2 of config space
747 */
a129be84 748 pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus);
d2796743
ME
749
750 /* THIS IS A WORKAROUND:
751 * I need to call this function twice to get my card in a
752 * LG M1 Express Dual running. I tried also a msleep before this
a129be84 753 * function, because I thought there could be some time conditions
d2796743
ME
754 * but it didn't work. Call the whole function twice also work.
755 */
756 if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) {
757 dev_err(&pdev->dev,
758 "Could not read PCI config space for EEPROM Status\n");
759 return -EIO;
760 }
761
762 /* Determine if the error(s) we care about are present. If they are
763 * present we need to fail.
764 */
765 if (eestatus & 0x4C) {
766 int write_failed = 0;
767 if (pdev->revision == 0x01) {
768 int i;
769 static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF };
770
771 /* Re-write the first 4 bytes if we have an eeprom
772 * present and the revision id is 1, this fixes the
773 * corruption seen with 1310 B Silicon
774 */
775 for (i = 0; i < 3; i++)
776 if (eeprom_write(adapter, i, eedata[i]) < 0)
777 write_failed = 1;
778 }
779 if (pdev->revision != 0x01 || write_failed) {
780 dev_err(&pdev->dev,
781 "Fatal EEPROM Status Error - 0x%04x\n", eestatus);
782
783 /* This error could mean that there was an error
784 * reading the eeprom or that the eeprom doesn't exist.
785 * We will treat each case the same and not try to
786 * gather additional information that normally would
787 * come from the eeprom, like MAC Address
788 */
789 adapter->has_eeprom = 0;
790 return -EIO;
791 }
792 }
793 adapter->has_eeprom = 1;
794
795 /* Read the EEPROM for information regarding LED behavior. Refer to
796 * ET1310_phy.c, et131x_xcvr_init(), for its use.
797 */
798 eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]);
799 eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]);
800
801 if (adapter->eeprom_data[0] != 0xcd)
802 /* Disable all optional features */
803 adapter->eeprom_data[1] = 0x00;
804
805 return 0;
806}
807
26ef1021 808/* et131x_rx_dma_enable - re-start of Rx_DMA on the ET1310.
8310c602
ME
809 * @adapter: pointer to our adapter structure
810 */
eb7a6ca6 811static void et131x_rx_dma_enable(struct et131x_adapter *adapter)
8310c602
ME
812{
813 /* Setup the receive dma configuration register for normal operation */
3040d056 814 u32 csr = ET_RXDMA_CSR_FBR1_ENABLE;
8f7fa96a 815 struct rx_ring *rx_ring = &adapter->rx_ring;
8310c602 816
8f7fa96a 817 if (rx_ring->fbr[1]->buffsize == 4096)
3040d056 818 csr |= ET_RXDMA_CSR_FBR1_SIZE_LO;
8f7fa96a 819 else if (rx_ring->fbr[1]->buffsize == 8192)
3040d056 820 csr |= ET_RXDMA_CSR_FBR1_SIZE_HI;
8f7fa96a 821 else if (rx_ring->fbr[1]->buffsize == 16384)
3040d056 822 csr |= ET_RXDMA_CSR_FBR1_SIZE_LO | ET_RXDMA_CSR_FBR1_SIZE_HI;
b5254867 823
3040d056 824 csr |= ET_RXDMA_CSR_FBR0_ENABLE;
8f7fa96a 825 if (rx_ring->fbr[0]->buffsize == 256)
3040d056 826 csr |= ET_RXDMA_CSR_FBR0_SIZE_LO;
8f7fa96a 827 else if (rx_ring->fbr[0]->buffsize == 512)
3040d056 828 csr |= ET_RXDMA_CSR_FBR0_SIZE_HI;
8f7fa96a 829 else if (rx_ring->fbr[0]->buffsize == 1024)
3040d056 830 csr |= ET_RXDMA_CSR_FBR0_SIZE_LO | ET_RXDMA_CSR_FBR0_SIZE_HI;
8310c602
ME
831 writel(csr, &adapter->regs->rxdma.csr);
832
833 csr = readl(&adapter->regs->rxdma.csr);
3040d056 834 if (csr & ET_RXDMA_CSR_HALT_STATUS) {
8310c602
ME
835 udelay(5);
836 csr = readl(&adapter->regs->rxdma.csr);
3040d056 837 if (csr & ET_RXDMA_CSR_HALT_STATUS) {
8310c602
ME
838 dev_err(&adapter->pdev->dev,
839 "RX Dma failed to exit halt state. CSR 0x%08x\n",
840 csr);
841 }
842 }
843}
844
26ef1021 845/* et131x_rx_dma_disable - Stop of Rx_DMA on the ET1310
8310c602
ME
846 * @adapter: pointer to our adapter structure
847 */
eb7a6ca6 848static void et131x_rx_dma_disable(struct et131x_adapter *adapter)
8310c602
ME
849{
850 u32 csr;
851 /* Setup the receive dma configuration register */
3040d056
ME
852 writel(ET_RXDMA_CSR_HALT | ET_RXDMA_CSR_FBR1_ENABLE,
853 &adapter->regs->rxdma.csr);
8310c602 854 csr = readl(&adapter->regs->rxdma.csr);
3040d056 855 if (!(csr & ET_RXDMA_CSR_HALT_STATUS)) {
8310c602
ME
856 udelay(5);
857 csr = readl(&adapter->regs->rxdma.csr);
3040d056 858 if (!(csr & ET_RXDMA_CSR_HALT_STATUS))
8310c602 859 dev_err(&adapter->pdev->dev,
3040d056
ME
860 "RX Dma failed to enter halt state. CSR 0x%08x\n",
861 csr);
8310c602
ME
862 }
863}
864
26ef1021 865/* et131x_tx_dma_enable - re-start of Tx_DMA on the ET1310.
8310c602
ME
866 * @adapter: pointer to our adapter structure
867 *
868 * Mainly used after a return to the D0 (full-power) state from a lower state.
869 */
eb7a6ca6 870static void et131x_tx_dma_enable(struct et131x_adapter *adapter)
8310c602
ME
871{
872 /* Setup the transmit dma configuration register for normal
873 * operation
874 */
875 writel(ET_TXDMA_SNGL_EPKT|(PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
876 &adapter->regs->txdma.csr);
877}
878
879static inline void add_10bit(u32 *v, int n)
880{
881 *v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP);
882}
883
884static inline void add_12bit(u32 *v, int n)
885{
886 *v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP);
887}
888
26ef1021 889/* et1310_config_mac_regs1 - Initialize the first part of MAC regs
d2796743
ME
890 * @adapter: pointer to our adapter structure
891 */
eb7a6ca6 892static void et1310_config_mac_regs1(struct et131x_adapter *adapter)
d2796743
ME
893{
894 struct mac_regs __iomem *macregs = &adapter->regs->mac;
895 u32 station1;
896 u32 station2;
897 u32 ipg;
898
899 /* First we need to reset everything. Write to MAC configuration
900 * register 1 to perform reset.
901 */
a129be84
ME
902 writel(ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
903 ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
904 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC,
905 &macregs->cfg1);
d2796743
ME
906
907 /* Next lets configure the MAC Inter-packet gap register */
908 ipg = 0x38005860; /* IPG1 0x38 IPG2 0x58 B2B 0x60 */
909 ipg |= 0x50 << 8; /* ifg enforce 0x50 */
910 writel(ipg, &macregs->ipg);
911
912 /* Next lets configure the MAC Half Duplex register */
913 /* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
914 writel(0x00A1F037, &macregs->hfdp);
915
916 /* Next lets configure the MAC Interface Control register */
917 writel(0, &macregs->if_ctrl);
918
919 /* Let's move on to setting up the mii management configuration */
a129be84 920 writel(ET_MAC_MIIMGMT_CLK_RST, &macregs->mii_mgmt_cfg);
d2796743
ME
921
922 /* Next lets configure the MAC Station Address register. These
923 * values are read from the EEPROM during initialization and stored
924 * in the adapter structure. We write what is stored in the adapter
925 * structure to the MAC Station Address registers high and low. This
926 * station address is used for generating and checking pause control
927 * packets.
928 */
929 station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) |
930 (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT);
931 station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) |
932 (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) |
933 (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) |
934 adapter->addr[2];
935 writel(station1, &macregs->station_addr_1);
936 writel(station2, &macregs->station_addr_2);
937
ac399bc0 938 /* Max ethernet packet in bytes that will be passed by the mac without
d2796743
ME
939 * being truncated. Allow the MAC to pass 4 more than our max packet
940 * size. This is 4 for the Ethernet CRC.
941 *
942 * Packets larger than (registry_jumbo_packet) that do not contain a
943 * VLAN ID will be dropped by the Rx function.
944 */
945 writel(adapter->registry_jumbo_packet + 4, &macregs->max_fm_len);
946
947 /* clear out MAC config reset */
948 writel(0, &macregs->cfg1);
949}
950
26ef1021 951/* et1310_config_mac_regs2 - Initialize the second part of MAC regs
d2796743
ME
952 * @adapter: pointer to our adapter structure
953 */
eb7a6ca6 954static void et1310_config_mac_regs2(struct et131x_adapter *adapter)
d2796743
ME
955{
956 int32_t delay = 0;
957 struct mac_regs __iomem *mac = &adapter->regs->mac;
958 struct phy_device *phydev = adapter->phydev;
959 u32 cfg1;
960 u32 cfg2;
961 u32 ifctrl;
962 u32 ctl;
963
964 ctl = readl(&adapter->regs->txmac.ctl);
965 cfg1 = readl(&mac->cfg1);
966 cfg2 = readl(&mac->cfg2);
967 ifctrl = readl(&mac->if_ctrl);
968
969 /* Set up the if mode bits */
a129be84 970 cfg2 &= ~ET_MAC_CFG2_IFMODE_MASK;
76af0140 971 if (phydev->speed == SPEED_1000) {
a129be84 972 cfg2 |= ET_MAC_CFG2_IFMODE_1000;
d2796743 973 /* Phy mode bit */
a129be84 974 ifctrl &= ~ET_MAC_IFCTRL_PHYMODE;
d2796743 975 } else {
a129be84
ME
976 cfg2 |= ET_MAC_CFG2_IFMODE_100;
977 ifctrl |= ET_MAC_IFCTRL_PHYMODE;
d2796743
ME
978 }
979
980 /* We need to enable Rx/Tx */
a129be84
ME
981 cfg1 |= ET_MAC_CFG1_RX_ENABLE | ET_MAC_CFG1_TX_ENABLE |
982 ET_MAC_CFG1_TX_FLOW;
d2796743 983 /* Initialize loop back to off */
a129be84 984 cfg1 &= ~(ET_MAC_CFG1_LOOPBACK | ET_MAC_CFG1_RX_FLOW);
d2796743
ME
985 if (adapter->flowcontrol == FLOW_RXONLY ||
986 adapter->flowcontrol == FLOW_BOTH)
a129be84 987 cfg1 |= ET_MAC_CFG1_RX_FLOW;
d2796743
ME
988 writel(cfg1, &mac->cfg1);
989
990 /* Now we need to initialize the MAC Configuration 2 register */
991 /* preamble 7, check length, huge frame off, pad crc, crc enable
26ef1021
ME
992 * full duplex off
993 */
a129be84
ME
994 cfg2 |= 0x7 << ET_MAC_CFG2_PREAMBLE_SHIFT;
995 cfg2 |= ET_MAC_CFG2_IFMODE_LEN_CHECK;
996 cfg2 |= ET_MAC_CFG2_IFMODE_PAD_CRC;
997 cfg2 |= ET_MAC_CFG2_IFMODE_CRC_ENABLE;
998 cfg2 &= ~ET_MAC_CFG2_IFMODE_HUGE_FRAME;
999 cfg2 &= ~ET_MAC_CFG2_IFMODE_FULL_DPLX;
d2796743
ME
1000
1001 /* Turn on duplex if needed */
76af0140 1002 if (phydev->duplex == DUPLEX_FULL)
a129be84 1003 cfg2 |= ET_MAC_CFG2_IFMODE_FULL_DPLX;
d2796743 1004
a129be84 1005 ifctrl &= ~ET_MAC_IFCTRL_GHDMODE;
76af0140 1006 if (phydev->duplex == DUPLEX_HALF)
a129be84 1007 ifctrl |= ET_MAC_IFCTRL_GHDMODE;
d2796743
ME
1008
1009 writel(ifctrl, &mac->if_ctrl);
1010 writel(cfg2, &mac->cfg2);
1011
1012 do {
1013 udelay(10);
1014 delay++;
1015 cfg1 = readl(&mac->cfg1);
a129be84 1016 } while ((cfg1 & ET_MAC_CFG1_WAIT) != ET_MAC_CFG1_WAIT && delay < 100);
d2796743
ME
1017
1018 if (delay == 100) {
1019 dev_warn(&adapter->pdev->dev,
1020 "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
1021 cfg1);
1022 }
1023
1024 /* Enable txmac */
a129be84 1025 ctl |= ET_TX_CTRL_TXMAC_ENABLE | ET_TX_CTRL_FC_DISABLE;
d2796743
ME
1026 writel(ctl, &adapter->regs->txmac.ctl);
1027
1028 /* Ready to start the RXDMA/TXDMA engine */
c655dee9 1029 if (adapter->flags & FMP_ADAPTER_LOWER_POWER) {
d2796743
ME
1030 et131x_rx_dma_enable(adapter);
1031 et131x_tx_dma_enable(adapter);
1032 }
1033}
1034
26ef1021 1035/* et1310_in_phy_coma - check if the device is in phy coma
2288760e
ME
1036 * @adapter: pointer to our adapter structure
1037 *
1038 * Returns 0 if the device is not in phy coma, 1 if it is in phy coma
1039 */
eb7a6ca6 1040static int et1310_in_phy_coma(struct et131x_adapter *adapter)
2288760e 1041{
12a2f3f3 1042 u32 pmcsr = readl(&adapter->regs->global.pm_csr);
2288760e
ME
1043
1044 return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0;
1045}
1046
eb7a6ca6 1047static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter)
a4d444bd
ME
1048{
1049 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
834d0ee3
FR
1050 u32 hash1 = 0;
1051 u32 hash2 = 0;
1052 u32 hash3 = 0;
1053 u32 hash4 = 0;
a4d444bd
ME
1054 u32 pm_csr;
1055
1056 /* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
1057 * the multi-cast LIST. If it is NOT specified, (and "ALL" is not
1058 * specified) then we should pass NO multi-cast addresses to the
1059 * driver.
1060 */
1061 if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) {
834d0ee3
FR
1062 int i;
1063
a4d444bd 1064 /* Loop through our multicast array and set up the device */
834d0ee3
FR
1065 for (i = 0; i < adapter->multicast_addr_count; i++) {
1066 u32 result;
1067
1068 result = ether_crc(6, adapter->multicast_list[i]);
a4d444bd
ME
1069
1070 result = (result & 0x3F800000) >> 23;
1071
1072 if (result < 32) {
1073 hash1 |= (1 << result);
1074 } else if ((31 < result) && (result < 64)) {
1075 result -= 32;
1076 hash2 |= (1 << result);
1077 } else if ((63 < result) && (result < 96)) {
1078 result -= 64;
1079 hash3 |= (1 << result);
1080 } else {
1081 result -= 96;
1082 hash4 |= (1 << result);
1083 }
1084 }
1085 }
1086
1087 /* Write out the new hash to the device */
1088 pm_csr = readl(&adapter->regs->global.pm_csr);
1089 if (!et1310_in_phy_coma(adapter)) {
1090 writel(hash1, &rxmac->multi_hash1);
1091 writel(hash2, &rxmac->multi_hash2);
1092 writel(hash3, &rxmac->multi_hash3);
1093 writel(hash4, &rxmac->multi_hash4);
1094 }
1095}
1096
eb7a6ca6 1097static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter)
a4d444bd
ME
1098{
1099 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1100 u32 uni_pf1;
1101 u32 uni_pf2;
1102 u32 uni_pf3;
1103 u32 pm_csr;
1104
1105 /* Set up unicast packet filter reg 3 to be the first two octets of
1106 * the MAC address for both address
1107 *
1108 * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
1109 * MAC address for second address
1110 *
1111 * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
1112 * MAC address for first address
1113 */
a129be84
ME
1114 uni_pf3 = (adapter->addr[0] << ET_RX_UNI_PF_ADDR2_1_SHIFT) |
1115 (adapter->addr[1] << ET_RX_UNI_PF_ADDR2_2_SHIFT) |
1116 (adapter->addr[0] << ET_RX_UNI_PF_ADDR1_1_SHIFT) |
a4d444bd
ME
1117 adapter->addr[1];
1118
a129be84
ME
1119 uni_pf2 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR2_3_SHIFT) |
1120 (adapter->addr[3] << ET_RX_UNI_PF_ADDR2_4_SHIFT) |
1121 (adapter->addr[4] << ET_RX_UNI_PF_ADDR2_5_SHIFT) |
a4d444bd
ME
1122 adapter->addr[5];
1123
a129be84
ME
1124 uni_pf1 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR1_3_SHIFT) |
1125 (adapter->addr[3] << ET_RX_UNI_PF_ADDR1_4_SHIFT) |
1126 (adapter->addr[4] << ET_RX_UNI_PF_ADDR1_5_SHIFT) |
a4d444bd
ME
1127 adapter->addr[5];
1128
1129 pm_csr = readl(&adapter->regs->global.pm_csr);
1130 if (!et1310_in_phy_coma(adapter)) {
1131 writel(uni_pf1, &rxmac->uni_pf_addr1);
1132 writel(uni_pf2, &rxmac->uni_pf_addr2);
1133 writel(uni_pf3, &rxmac->uni_pf_addr3);
1134 }
1135}
1136
eb7a6ca6 1137static void et1310_config_rxmac_regs(struct et131x_adapter *adapter)
d2796743
ME
1138{
1139 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1140 struct phy_device *phydev = adapter->phydev;
1141 u32 sa_lo;
1142 u32 sa_hi = 0;
1143 u32 pf_ctrl = 0;
1144
1145 /* Disable the MAC while it is being configured (also disable WOL) */
1146 writel(0x8, &rxmac->ctrl);
1147
1148 /* Initialize WOL to disabled. */
1149 writel(0, &rxmac->crc0);
1150 writel(0, &rxmac->crc12);
1151 writel(0, &rxmac->crc34);
1152
1153 /* We need to set the WOL mask0 - mask4 next. We initialize it to
1154 * its default Values of 0x00000000 because there are not WOL masks
1155 * as of this time.
1156 */
1157 writel(0, &rxmac->mask0_word0);
1158 writel(0, &rxmac->mask0_word1);
1159 writel(0, &rxmac->mask0_word2);
1160 writel(0, &rxmac->mask0_word3);
1161
1162 writel(0, &rxmac->mask1_word0);
1163 writel(0, &rxmac->mask1_word1);
1164 writel(0, &rxmac->mask1_word2);
1165 writel(0, &rxmac->mask1_word3);
1166
1167 writel(0, &rxmac->mask2_word0);
1168 writel(0, &rxmac->mask2_word1);
1169 writel(0, &rxmac->mask2_word2);
1170 writel(0, &rxmac->mask2_word3);
1171
1172 writel(0, &rxmac->mask3_word0);
1173 writel(0, &rxmac->mask3_word1);
1174 writel(0, &rxmac->mask3_word2);
1175 writel(0, &rxmac->mask3_word3);
1176
1177 writel(0, &rxmac->mask4_word0);
1178 writel(0, &rxmac->mask4_word1);
1179 writel(0, &rxmac->mask4_word2);
1180 writel(0, &rxmac->mask4_word3);
1181
1182 /* Lets setup the WOL Source Address */
a129be84
ME
1183 sa_lo = (adapter->addr[2] << ET_RX_WOL_LO_SA3_SHIFT) |
1184 (adapter->addr[3] << ET_RX_WOL_LO_SA4_SHIFT) |
1185 (adapter->addr[4] << ET_RX_WOL_LO_SA5_SHIFT) |
d2796743
ME
1186 adapter->addr[5];
1187 writel(sa_lo, &rxmac->sa_lo);
1188
a129be84 1189 sa_hi = (u32) (adapter->addr[0] << ET_RX_WOL_HI_SA1_SHIFT) |
d2796743
ME
1190 adapter->addr[1];
1191 writel(sa_hi, &rxmac->sa_hi);
1192
1193 /* Disable all Packet Filtering */
1194 writel(0, &rxmac->pf_ctrl);
1195
1196 /* Let's initialize the Unicast Packet filtering address */
1197 if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) {
1198 et1310_setup_device_for_unicast(adapter);
a129be84 1199 pf_ctrl |= ET_RX_PFCTRL_UNICST_FILTER_ENABLE;
d2796743
ME
1200 } else {
1201 writel(0, &rxmac->uni_pf_addr1);
1202 writel(0, &rxmac->uni_pf_addr2);
1203 writel(0, &rxmac->uni_pf_addr3);
1204 }
1205
1206 /* Let's initialize the Multicast hash */
1207 if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
a129be84 1208 pf_ctrl |= ET_RX_PFCTRL_MLTCST_FILTER_ENABLE;
d2796743
ME
1209 et1310_setup_device_for_multicast(adapter);
1210 }
1211
1212 /* Runt packet filtering. Didn't work in version A silicon. */
a129be84
ME
1213 pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << ET_RX_PFCTRL_MIN_PKT_SZ_SHIFT;
1214 pf_ctrl |= ET_RX_PFCTRL_FRAG_FILTER_ENABLE;
d2796743
ME
1215
1216 if (adapter->registry_jumbo_packet > 8192)
1217 /* In order to transmit jumbo packets greater than 8k, the
1218 * FIFO between RxMAC and RxDMA needs to be reduced in size
1219 * to (16k - Jumbo packet size). In order to implement this,
1220 * we must use "cut through" mode in the RxMAC, which chops
1221 * packets down into segments which are (max_size * 16). In
1222 * this case we selected 256 bytes, since this is the size of
1223 * the PCI-Express TLP's that the 1310 uses.
1224 *
1225 * seg_en on, fc_en off, size 0x10
1226 */
1227 writel(0x41, &rxmac->mcif_ctrl_max_seg);
1228 else
1229 writel(0, &rxmac->mcif_ctrl_max_seg);
1230
1231 /* Initialize the MCIF water marks */
1232 writel(0, &rxmac->mcif_water_mark);
1233
1234 /* Initialize the MIF control */
1235 writel(0, &rxmac->mif_ctrl);
1236
1237 /* Initialize the Space Available Register */
1238 writel(0, &rxmac->space_avail);
1239
1240 /* Initialize the the mif_ctrl register
1241 * bit 3: Receive code error. One or more nibbles were signaled as
1242 * errors during the reception of the packet. Clear this
1243 * bit in Gigabit, set it in 100Mbit. This was derived
1244 * experimentally at UNH.
1245 * bit 4: Receive CRC error. The packet's CRC did not match the
1246 * internally generated CRC.
1247 * bit 5: Receive length check error. Indicates that frame length
1248 * field value in the packet does not match the actual data
1249 * byte length and is not a type field.
1250 * bit 16: Receive frame truncated.
1251 * bit 17: Drop packet enable
1252 */
1253 if (phydev && phydev->speed == SPEED_100)
1254 writel(0x30038, &rxmac->mif_ctrl);
1255 else
1256 writel(0x30030, &rxmac->mif_ctrl);
1257
1258 /* Finally we initialize RxMac to be enabled & WOL disabled. Packet
1259 * filter is always enabled since it is where the runt packets are
1260 * supposed to be dropped. For version A silicon, runt packet
1261 * dropping doesn't work, so it is disabled in the pf_ctrl register,
1262 * but we still leave the packet filter on.
1263 */
1264 writel(pf_ctrl, &rxmac->pf_ctrl);
a129be84 1265 writel(ET_RX_CTRL_RXMAC_ENABLE | ET_RX_CTRL_WOL_DISABLE, &rxmac->ctrl);
d2796743
ME
1266}
1267
eb7a6ca6 1268static void et1310_config_txmac_regs(struct et131x_adapter *adapter)
d2796743
ME
1269{
1270 struct txmac_regs __iomem *txmac = &adapter->regs->txmac;
1271
1272 /* We need to update the Control Frame Parameters
1273 * cfpt - control frame pause timer set to 64 (0x40)
1274 * cfep - control frame extended pause timer set to 0x0
1275 */
1276 if (adapter->flowcontrol == FLOW_NONE)
1277 writel(0, &txmac->cf_param);
1278 else
1279 writel(0x40, &txmac->cf_param);
1280}
1281
eb7a6ca6 1282static void et1310_config_macstat_regs(struct et131x_adapter *adapter)
d2796743
ME
1283{
1284 struct macstat_regs __iomem *macstat =
1285 &adapter->regs->macstat;
1286
1287 /* Next we need to initialize all the macstat registers to zero on
1288 * the device.
1289 */
1290 writel(0, &macstat->txrx_0_64_byte_frames);
1291 writel(0, &macstat->txrx_65_127_byte_frames);
1292 writel(0, &macstat->txrx_128_255_byte_frames);
1293 writel(0, &macstat->txrx_256_511_byte_frames);
1294 writel(0, &macstat->txrx_512_1023_byte_frames);
1295 writel(0, &macstat->txrx_1024_1518_byte_frames);
1296 writel(0, &macstat->txrx_1519_1522_gvln_frames);
1297
1298 writel(0, &macstat->rx_bytes);
1299 writel(0, &macstat->rx_packets);
1300 writel(0, &macstat->rx_fcs_errs);
1301 writel(0, &macstat->rx_multicast_packets);
1302 writel(0, &macstat->rx_broadcast_packets);
1303 writel(0, &macstat->rx_control_frames);
1304 writel(0, &macstat->rx_pause_frames);
1305 writel(0, &macstat->rx_unknown_opcodes);
1306 writel(0, &macstat->rx_align_errs);
1307 writel(0, &macstat->rx_frame_len_errs);
1308 writel(0, &macstat->rx_code_errs);
1309 writel(0, &macstat->rx_carrier_sense_errs);
1310 writel(0, &macstat->rx_undersize_packets);
1311 writel(0, &macstat->rx_oversize_packets);
1312 writel(0, &macstat->rx_fragment_packets);
1313 writel(0, &macstat->rx_jabbers);
1314 writel(0, &macstat->rx_drops);
1315
1316 writel(0, &macstat->tx_bytes);
1317 writel(0, &macstat->tx_packets);
1318 writel(0, &macstat->tx_multicast_packets);
1319 writel(0, &macstat->tx_broadcast_packets);
1320 writel(0, &macstat->tx_pause_frames);
1321 writel(0, &macstat->tx_deferred);
1322 writel(0, &macstat->tx_excessive_deferred);
1323 writel(0, &macstat->tx_single_collisions);
1324 writel(0, &macstat->tx_multiple_collisions);
1325 writel(0, &macstat->tx_late_collisions);
1326 writel(0, &macstat->tx_excessive_collisions);
1327 writel(0, &macstat->tx_total_collisions);
1328 writel(0, &macstat->tx_pause_honored_frames);
1329 writel(0, &macstat->tx_drops);
1330 writel(0, &macstat->tx_jabbers);
1331 writel(0, &macstat->tx_fcs_errs);
1332 writel(0, &macstat->tx_control_frames);
1333 writel(0, &macstat->tx_oversize_frames);
1334 writel(0, &macstat->tx_undersize_frames);
1335 writel(0, &macstat->tx_fragments);
1336 writel(0, &macstat->carry_reg1);
1337 writel(0, &macstat->carry_reg2);
1338
1339 /* Unmask any counters that we want to track the overflow of.
1340 * Initially this will be all counters. It may become clear later
1341 * that we do not need to track all counters.
1342 */
1343 writel(0xFFFFBE32, &macstat->carry_reg1_mask);
1344 writel(0xFFFE7E8B, &macstat->carry_reg2_mask);
1345}
1346
26ef1021 1347/* et131x_phy_mii_read - Read from the PHY through the MII Interface on the MAC
2288760e
ME
1348 * @adapter: pointer to our private adapter structure
1349 * @addr: the address of the transceiver
1350 * @reg: the register to read
1351 * @value: pointer to a 16-bit value in which the value will be stored
2288760e 1352 */
eb7a6ca6 1353static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr,
2288760e
ME
1354 u8 reg, u16 *value)
1355{
1356 struct mac_regs __iomem *mac = &adapter->regs->mac;
1357 int status = 0;
1358 u32 delay = 0;
1359 u32 mii_addr;
1360 u32 mii_cmd;
1361 u32 mii_indicator;
1362
1363 /* Save a local copy of the registers we are dealing with so we can
1364 * set them back
1365 */
1366 mii_addr = readl(&mac->mii_mgmt_addr);
1367 mii_cmd = readl(&mac->mii_mgmt_cmd);
1368
1369 /* Stop the current operation */
1370 writel(0, &mac->mii_mgmt_cmd);
1371
1372 /* Set up the register we need to read from on the correct PHY */
a129be84 1373 writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
2288760e
ME
1374
1375 writel(0x1, &mac->mii_mgmt_cmd);
1376
1377 do {
1378 udelay(50);
1379 delay++;
1380 mii_indicator = readl(&mac->mii_mgmt_indicator);
a129be84 1381 } while ((mii_indicator & ET_MAC_MGMT_WAIT) && delay < 50);
2288760e
ME
1382
1383 /* If we hit the max delay, we could not read the register */
1384 if (delay == 50) {
1385 dev_warn(&adapter->pdev->dev,
1386 "reg 0x%08x could not be read\n", reg);
1387 dev_warn(&adapter->pdev->dev, "status is 0x%08x\n",
1388 mii_indicator);
1389
1390 status = -EIO;
1391 }
1392
1393 /* If we hit here we were able to read the register and we need to
26ef1021
ME
1394 * return the value to the caller
1395 */
a129be84 1396 *value = readl(&mac->mii_mgmt_stat) & ET_MAC_MIIMGMT_STAT_PHYCRTL_MASK;
2288760e
ME
1397
1398 /* Stop the read operation */
1399 writel(0, &mac->mii_mgmt_cmd);
1400
1401 /* set the registers we touched back to the state at which we entered
1402 * this function
1403 */
1404 writel(mii_addr, &mac->mii_mgmt_addr);
1405 writel(mii_cmd, &mac->mii_mgmt_cmd);
1406
1407 return status;
1408}
1409
eb7a6ca6 1410static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value)
2288760e
ME
1411{
1412 struct phy_device *phydev = adapter->phydev;
1413
1414 if (!phydev)
1415 return -EIO;
1416
1417 return et131x_phy_mii_read(adapter, phydev->addr, reg, value);
1418}
1419
26ef1021 1420/* et131x_mii_write - Write to a PHY reg through the MII interface of the MAC
2288760e
ME
1421 * @adapter: pointer to our private adapter structure
1422 * @reg: the register to read
1423 * @value: 16-bit value to write
2288760e 1424 */
eb7a6ca6 1425static int et131x_mii_write(struct et131x_adapter *adapter, u8 reg, u16 value)
2288760e
ME
1426{
1427 struct mac_regs __iomem *mac = &adapter->regs->mac;
1428 struct phy_device *phydev = adapter->phydev;
1429 int status = 0;
1430 u8 addr;
1431 u32 delay = 0;
1432 u32 mii_addr;
1433 u32 mii_cmd;
1434 u32 mii_indicator;
1435
1436 if (!phydev)
1437 return -EIO;
1438
1439 addr = phydev->addr;
1440
1441 /* Save a local copy of the registers we are dealing with so we can
1442 * set them back
1443 */
1444 mii_addr = readl(&mac->mii_mgmt_addr);
1445 mii_cmd = readl(&mac->mii_mgmt_cmd);
1446
1447 /* Stop the current operation */
1448 writel(0, &mac->mii_mgmt_cmd);
1449
1450 /* Set up the register we need to write to on the correct PHY */
a129be84 1451 writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
2288760e
ME
1452
1453 /* Add the value to write to the registers to the mac */
1454 writel(value, &mac->mii_mgmt_ctrl);
1455
1456 do {
1457 udelay(50);
1458 delay++;
1459 mii_indicator = readl(&mac->mii_mgmt_indicator);
a129be84 1460 } while ((mii_indicator & ET_MAC_MGMT_BUSY) && delay < 100);
2288760e
ME
1461
1462 /* If we hit the max delay, we could not write the register */
1463 if (delay == 100) {
1464 u16 tmp;
1465
1466 dev_warn(&adapter->pdev->dev,
1467 "reg 0x%08x could not be written", reg);
1468 dev_warn(&adapter->pdev->dev, "status is 0x%08x\n",
1469 mii_indicator);
1470 dev_warn(&adapter->pdev->dev, "command is 0x%08x\n",
1471 readl(&mac->mii_mgmt_cmd));
1472
1473 et131x_mii_read(adapter, reg, &tmp);
1474
1475 status = -EIO;
1476 }
1477 /* Stop the write operation */
1478 writel(0, &mac->mii_mgmt_cmd);
1479
26ef1021 1480 /* set the registers we touched back to the state at which we entered
2288760e
ME
1481 * this function
1482 */
1483 writel(mii_addr, &mac->mii_mgmt_addr);
1484 writel(mii_cmd, &mac->mii_mgmt_cmd);
1485
1486 return status;
1487}
1488
19d857de
ME
1489static void et1310_phy_read_mii_bit(struct et131x_adapter *adapter,
1490 u16 regnum,
1491 u16 bitnum,
1492 u8 *value)
2288760e
ME
1493{
1494 u16 reg;
a129be84 1495 u16 mask = 1 << bitnum;
2288760e
ME
1496
1497 /* Read the requested register */
1498 et131x_mii_read(adapter, regnum, &reg);
1499
19d857de 1500 *value = (reg & mask) >> bitnum;
2288760e
ME
1501}
1502
eb7a6ca6 1503static void et1310_config_flow_control(struct et131x_adapter *adapter)
d2796743
ME
1504{
1505 struct phy_device *phydev = adapter->phydev;
1506
1507 if (phydev->duplex == DUPLEX_HALF) {
1508 adapter->flowcontrol = FLOW_NONE;
1509 } else {
1510 char remote_pause, remote_async_pause;
1511
19d857de
ME
1512 et1310_phy_read_mii_bit(adapter, 5, 10, &remote_pause);
1513 et1310_phy_read_mii_bit(adapter, 5, 11, &remote_async_pause);
d2796743 1514
19d857de 1515 if (remote_pause && remote_async_pause) {
d2796743 1516 adapter->flowcontrol = adapter->wanted_flow;
19d857de 1517 } else if (remote_pause && !remote_async_pause) {
d2796743
ME
1518 if (adapter->wanted_flow == FLOW_BOTH)
1519 adapter->flowcontrol = FLOW_BOTH;
1520 else
1521 adapter->flowcontrol = FLOW_NONE;
19d857de 1522 } else if (!remote_pause && !remote_async_pause) {
d2796743 1523 adapter->flowcontrol = FLOW_NONE;
19d857de 1524 } else {
d2796743
ME
1525 if (adapter->wanted_flow == FLOW_BOTH)
1526 adapter->flowcontrol = FLOW_RXONLY;
1527 else
1528 adapter->flowcontrol = FLOW_NONE;
1529 }
1530 }
1531}
1532
15ae239d 1533/* et1310_update_macstat_host_counters - Update local copy of the statistics */
eb7a6ca6 1534static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter)
d2796743
ME
1535{
1536 struct ce_stats *stats = &adapter->stats;
1537 struct macstat_regs __iomem *macstat =
1538 &adapter->regs->macstat;
1539
1540 stats->tx_collisions += readl(&macstat->tx_total_collisions);
1541 stats->tx_first_collisions += readl(&macstat->tx_single_collisions);
1542 stats->tx_deferred += readl(&macstat->tx_deferred);
1543 stats->tx_excessive_collisions +=
1544 readl(&macstat->tx_multiple_collisions);
1545 stats->tx_late_collisions += readl(&macstat->tx_late_collisions);
1546 stats->tx_underflows += readl(&macstat->tx_undersize_frames);
1547 stats->tx_max_pkt_errs += readl(&macstat->tx_oversize_frames);
1548
1549 stats->rx_align_errs += readl(&macstat->rx_align_errs);
1550 stats->rx_crc_errs += readl(&macstat->rx_code_errs);
1551 stats->rcvd_pkts_dropped += readl(&macstat->rx_drops);
1552 stats->rx_overflows += readl(&macstat->rx_oversize_packets);
1553 stats->rx_code_violations += readl(&macstat->rx_fcs_errs);
1554 stats->rx_length_errs += readl(&macstat->rx_frame_len_errs);
1555 stats->rx_other_errs += readl(&macstat->rx_fragment_packets);
1556}
1557
26ef1021 1558/* et1310_handle_macstat_interrupt
d2796743
ME
1559 *
1560 * One of the MACSTAT counters has wrapped. Update the local copy of
1561 * the statistics held in the adapter structure, checking the "wrap"
1562 * bit for each counter.
1563 */
eb7a6ca6 1564static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter)
d2796743
ME
1565{
1566 u32 carry_reg1;
1567 u32 carry_reg2;
1568
1569 /* Read the interrupt bits from the register(s). These are Clear On
1570 * Write.
1571 */
1572 carry_reg1 = readl(&adapter->regs->macstat.carry_reg1);
1573 carry_reg2 = readl(&adapter->regs->macstat.carry_reg2);
1574
1575 writel(carry_reg1, &adapter->regs->macstat.carry_reg1);
1576 writel(carry_reg2, &adapter->regs->macstat.carry_reg2);
1577
1578 /* We need to do update the host copy of all the MAC_STAT counters.
1579 * For each counter, check it's overflow bit. If the overflow bit is
1580 * set, then increment the host version of the count by one complete
1581 * revolution of the counter. This routine is called when the counter
1582 * block indicates that one of the counters has wrapped.
1583 */
1584 if (carry_reg1 & (1 << 14))
1585 adapter->stats.rx_code_violations += COUNTER_WRAP_16_BIT;
1586 if (carry_reg1 & (1 << 8))
1587 adapter->stats.rx_align_errs += COUNTER_WRAP_12_BIT;
1588 if (carry_reg1 & (1 << 7))
1589 adapter->stats.rx_length_errs += COUNTER_WRAP_16_BIT;
1590 if (carry_reg1 & (1 << 2))
1591 adapter->stats.rx_other_errs += COUNTER_WRAP_16_BIT;
1592 if (carry_reg1 & (1 << 6))
1593 adapter->stats.rx_crc_errs += COUNTER_WRAP_16_BIT;
1594 if (carry_reg1 & (1 << 3))
1595 adapter->stats.rx_overflows += COUNTER_WRAP_16_BIT;
1596 if (carry_reg1 & (1 << 0))
1597 adapter->stats.rcvd_pkts_dropped += COUNTER_WRAP_16_BIT;
1598 if (carry_reg2 & (1 << 16))
1599 adapter->stats.tx_max_pkt_errs += COUNTER_WRAP_12_BIT;
1600 if (carry_reg2 & (1 << 15))
1601 adapter->stats.tx_underflows += COUNTER_WRAP_12_BIT;
1602 if (carry_reg2 & (1 << 6))
1603 adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT;
1604 if (carry_reg2 & (1 << 8))
1605 adapter->stats.tx_deferred += COUNTER_WRAP_12_BIT;
1606 if (carry_reg2 & (1 << 5))
1607 adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT;
1608 if (carry_reg2 & (1 << 4))
1609 adapter->stats.tx_late_collisions += COUNTER_WRAP_12_BIT;
1610 if (carry_reg2 & (1 << 2))
1611 adapter->stats.tx_collisions += COUNTER_WRAP_12_BIT;
1612}
1613
eb7a6ca6 1614static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg)
d2796743
ME
1615{
1616 struct net_device *netdev = bus->priv;
1617 struct et131x_adapter *adapter = netdev_priv(netdev);
1618 u16 value;
1619 int ret;
1620
1621 ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value);
1622
1623 if (ret < 0)
1624 return ret;
1625 else
1626 return value;
1627}
1628
bf3313a1 1629static int et131x_mdio_write(struct mii_bus *bus, int phy_addr,
1630 int reg, u16 value)
d2796743
ME
1631{
1632 struct net_device *netdev = bus->priv;
1633 struct et131x_adapter *adapter = netdev_priv(netdev);
1634
1635 return et131x_mii_write(adapter, reg, value);
1636}
1637
eb7a6ca6 1638static int et131x_mdio_reset(struct mii_bus *bus)
d2796743
ME
1639{
1640 struct net_device *netdev = bus->priv;
1641 struct et131x_adapter *adapter = netdev_priv(netdev);
1642
1643 et131x_mii_write(adapter, MII_BMCR, BMCR_RESET);
1644
1645 return 0;
1646}
1647
1ff70a7c 1648/* et1310_phy_power_switch - PHY power control
d2796743
ME
1649 * @adapter: device to control
1650 * @down: true for off/false for back on
1651 *
1652 * one hundred, ten, one thousand megs
1653 * How would you like to have your LAN accessed
1654 * Can't you see that this code processed
1655 * Phy power, phy power..
1656 */
1ff70a7c 1657static void et1310_phy_power_switch(struct et131x_adapter *adapter, bool down)
d2796743
ME
1658{
1659 u16 data;
1660
1661 et131x_mii_read(adapter, MII_BMCR, &data);
1662 data &= ~BMCR_PDOWN;
1663 if (down)
1664 data |= BMCR_PDOWN;
1665 et131x_mii_write(adapter, MII_BMCR, data);
1666}
1667
15ae239d 1668/* et131x_xcvr_init - Init the phy if we are setting it into force mode */
eb7a6ca6 1669static void et131x_xcvr_init(struct et131x_adapter *adapter)
d2796743 1670{
d2796743
ME
1671 u16 lcr2;
1672
d2796743
ME
1673 /* Set the LED behavior such that LED 1 indicates speed (off =
1674 * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
1675 * link and activity (on for link, blink off for activity).
1676 *
1677 * NOTE: Some customizations have been added here for specific
1678 * vendors; The LED behavior is now determined by vendor data in the
1679 * EEPROM. However, the above description is the default.
1680 */
1681 if ((adapter->eeprom_data[1] & 0x4) == 0) {
1682 et131x_mii_read(adapter, PHY_LED_2, &lcr2);
1683
b5b86a4d 1684 lcr2 &= (ET_LED2_LED_100TX | ET_LED2_LED_1000T);
d2796743
ME
1685 lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT);
1686
1687 if ((adapter->eeprom_data[1] & 0x8) == 0)
1688 lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT);
1689 else
1690 lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT);
1691
1692 et131x_mii_write(adapter, PHY_LED_2, lcr2);
1693 }
1694}
1695
26ef1021 1696/* et131x_configure_global_regs - configure JAGCore global regs
36f2771a
ME
1697 *
1698 * Used to configure the global registers on the JAGCore
1699 */
eb7a6ca6 1700static void et131x_configure_global_regs(struct et131x_adapter *adapter)
36f2771a
ME
1701{
1702 struct global_regs __iomem *regs = &adapter->regs->global;
1703
1704 writel(0, &regs->rxq_start_addr);
1705 writel(INTERNAL_MEM_SIZE - 1, &regs->txq_end_addr);
1706
1707 if (adapter->registry_jumbo_packet < 2048) {
1708 /* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
1709 * block of RAM that the driver can split between Tx
1710 * and Rx as it desires. Our default is to split it
1711 * 50/50:
1712 */
1713 writel(PARM_RX_MEM_END_DEF, &regs->rxq_end_addr);
1714 writel(PARM_RX_MEM_END_DEF + 1, &regs->txq_start_addr);
1715 } else if (adapter->registry_jumbo_packet < 8192) {
1716 /* For jumbo packets > 2k but < 8k, split 50-50. */
1717 writel(INTERNAL_MEM_RX_OFFSET, &regs->rxq_end_addr);
1718 writel(INTERNAL_MEM_RX_OFFSET + 1, &regs->txq_start_addr);
1719 } else {
1720 /* 9216 is the only packet size greater than 8k that
1721 * is available. The Tx buffer has to be big enough
1722 * for one whole packet on the Tx side. We'll make
1723 * the Tx 9408, and give the rest to Rx
1724 */
1725 writel(0x01b3, &regs->rxq_end_addr);
1726 writel(0x01b4, &regs->txq_start_addr);
1727 }
1728
1729 /* Initialize the loopback register. Disable all loopbacks. */
1730 writel(0, &regs->loopback);
1731
1732 /* MSI Register */
1733 writel(0, &regs->msi_config);
1734
1735 /* By default, disable the watchdog timer. It will be enabled when
1736 * a packet is queued.
1737 */
1738 writel(0, &regs->watchdog_timer);
1739}
1740
15ae239d 1741/* et131x_config_rx_dma_regs - Start of Rx_DMA init sequence */
eb7a6ca6 1742static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
36f2771a
ME
1743{
1744 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
1745 struct rx_ring *rx_local = &adapter->rx_ring;
1746 struct fbr_desc *fbr_entry;
1747 u32 entry;
1748 u32 psr_num_des;
1749 unsigned long flags;
788ca84a 1750 u8 id;
36f2771a
ME
1751
1752 /* Halt RXDMA to perform the reconfigure. */
1753 et131x_rx_dma_disable(adapter);
1754
25e8e8ab
ME
1755 /* Load the completion writeback physical address */
1756 writel(upper_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_hi);
1757 writel(lower_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_lo);
36f2771a
ME
1758
1759 memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
1760
1761 /* Set the address and parameters of the packet status ring into the
1762 * 1310's registers
1763 */
25e8e8ab
ME
1764 writel(upper_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_hi);
1765 writel(lower_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_lo);
36f2771a
ME
1766 writel(rx_local->psr_num_entries - 1, &rx_dma->psr_num_des);
1767 writel(0, &rx_dma->psr_full_offset);
1768
a129be84 1769 psr_num_des = readl(&rx_dma->psr_num_des) & ET_RXDMA_PSR_NUM_DES_MASK;
36f2771a
ME
1770 writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
1771 &rx_dma->psr_min_des);
1772
1773 spin_lock_irqsave(&adapter->rcv_lock, flags);
1774
1775 /* These local variables track the PSR in the adapter structure */
1776 rx_local->local_psr_full = 0;
1777
788ca84a 1778 for (id = 0; id < NUM_FBRS; id++) {
c0594ee9
ME
1779 u32 __iomem *num_des;
1780 u32 __iomem *full_offset;
1781 u32 __iomem *min_des;
1782 u32 __iomem *base_hi;
1783 u32 __iomem *base_lo;
efc56817 1784 struct fbr_lookup *fbr = rx_local->fbr[id];
788ca84a
ME
1785
1786 if (id == 0) {
788ca84a
ME
1787 num_des = &rx_dma->fbr0_num_des;
1788 full_offset = &rx_dma->fbr0_full_offset;
1789 min_des = &rx_dma->fbr0_min_des;
1790 base_hi = &rx_dma->fbr0_base_hi;
1791 base_lo = &rx_dma->fbr0_base_lo;
f0ada678
ME
1792 } else {
1793 num_des = &rx_dma->fbr1_num_des;
1794 full_offset = &rx_dma->fbr1_full_offset;
1795 min_des = &rx_dma->fbr1_min_des;
1796 base_hi = &rx_dma->fbr1_base_hi;
1797 base_lo = &rx_dma->fbr1_base_lo;
788ca84a 1798 }
36f2771a 1799
788ca84a 1800 /* Now's the best time to initialize FBR contents */
57cc0279 1801 fbr_entry = fbr->ring_virtaddr;
efc56817
ZG
1802 for (entry = 0; entry < fbr->num_entries; entry++) {
1803 fbr_entry->addr_hi = fbr->bus_high[entry];
1804 fbr_entry->addr_lo = fbr->bus_low[entry];
788ca84a
ME
1805 fbr_entry->word2 = entry;
1806 fbr_entry++;
1807 }
36f2771a 1808
788ca84a
ME
1809 /* Set the address and parameters of Free buffer ring 1 and 0
1810 * into the 1310's registers
1811 */
efc56817
ZG
1812 writel(upper_32_bits(fbr->ring_physaddr), base_hi);
1813 writel(lower_32_bits(fbr->ring_physaddr), base_lo);
1814 writel(fbr->num_entries - 1, num_des);
788ca84a 1815 writel(ET_DMA10_WRAP, full_offset);
36f2771a 1816
788ca84a
ME
1817 /* This variable tracks the free buffer ring 1 full position,
1818 * so it has to match the above.
1819 */
efc56817
ZG
1820 fbr->local_full = ET_DMA10_WRAP;
1821 writel(((fbr->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
788ca84a
ME
1822 min_des);
1823 }
36f2771a
ME
1824
1825 /* Program the number of packets we will receive before generating an
1826 * interrupt.
1827 * For version B silicon, this value gets updated once autoneg is
1828 *complete.
1829 */
1830 writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
1831
1832 /* The "time_done" is not working correctly to coalesce interrupts
1833 * after a given time period, but rather is giving us an interrupt
1834 * regardless of whether we have received packets.
1835 * This value gets updated once autoneg is complete.
1836 */
1837 writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
1838
1839 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
1840}
1841
26ef1021 1842/* et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
36f2771a
ME
1843 *
1844 * Configure the transmit engine with the ring buffers we have created
1845 * and prepare it for use.
1846 */
eb7a6ca6 1847static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter)
36f2771a
ME
1848{
1849 struct txdma_regs __iomem *txdma = &adapter->regs->txdma;
76981cf1 1850 struct tx_ring *tx_ring = &adapter->tx_ring;
36f2771a
ME
1851
1852 /* Load the hardware with the start of the transmit descriptor ring. */
76981cf1
ZG
1853 writel(upper_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_hi);
1854 writel(lower_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_lo);
36f2771a
ME
1855
1856 /* Initialise the transmit DMA engine */
1857 writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des);
1858
1859 /* Load the completion writeback physical address */
76981cf1
ZG
1860 writel(upper_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_hi);
1861 writel(lower_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_lo);
36f2771a 1862
76981cf1 1863 *tx_ring->tx_status = 0;
36f2771a
ME
1864
1865 writel(0, &txdma->service_request);
76981cf1 1866 tx_ring->send_idx = 0;
36f2771a
ME
1867}
1868
15ae239d 1869/* et131x_adapter_setup - Set the adapter up as per cassini+ documentation */
eb7a6ca6 1870static void et131x_adapter_setup(struct et131x_adapter *adapter)
36f2771a
ME
1871{
1872 /* Configure the JAGCore */
1873 et131x_configure_global_regs(adapter);
1874
1875 et1310_config_mac_regs1(adapter);
1876
1877 /* Configure the MMC registers */
1878 /* All we need to do is initialize the Memory Control Register */
1879 writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl);
1880
1881 et1310_config_rxmac_regs(adapter);
1882 et1310_config_txmac_regs(adapter);
1883
1884 et131x_config_rx_dma_regs(adapter);
1885 et131x_config_tx_dma_regs(adapter);
1886
1887 et1310_config_macstat_regs(adapter);
1888
1ff70a7c 1889 et1310_phy_power_switch(adapter, 0);
36f2771a
ME
1890 et131x_xcvr_init(adapter);
1891}
1892
15ae239d 1893/* et131x_soft_reset - Issue soft reset to the hardware, complete for ET1310 */
eb7a6ca6 1894static void et131x_soft_reset(struct et131x_adapter *adapter)
5da2b158 1895{
a129be84 1896 u32 reg;
5da2b158 1897
a129be84
ME
1898 /* Disable MAC Core */
1899 reg = ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
1900 ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1901 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1902 writel(reg, &adapter->regs->mac.cfg1);
1903
1904 reg = ET_RESET_ALL;
1905 writel(reg, &adapter->regs->global.sw_reset);
1906
1907 reg = ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1908 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1909 writel(reg, &adapter->regs->mac.cfg1);
1910 writel(0, &adapter->regs->mac.cfg1);
5da2b158
ME
1911}
1912
26ef1021 1913/* et131x_enable_interrupts - enable interrupt
a4d444bd
ME
1914 *
1915 * Enable the appropriate interrupts on the ET131x according to our
1916 * configuration
1917 */
eb7a6ca6 1918static void et131x_enable_interrupts(struct et131x_adapter *adapter)
a4d444bd
ME
1919{
1920 u32 mask;
1921
1922 /* Enable all global interrupts */
1923 if (adapter->flowcontrol == FLOW_TXONLY ||
12a2f3f3 1924 adapter->flowcontrol == FLOW_BOTH)
a4d444bd
ME
1925 mask = INT_MASK_ENABLE;
1926 else
1927 mask = INT_MASK_ENABLE_NO_FLOW;
1928
1929 writel(mask, &adapter->regs->global.int_mask);
1930}
1931
26ef1021 1932/* et131x_disable_interrupts - interrupt disable
a4d444bd
ME
1933 *
1934 * Block all interrupts from the et131x device at the device itself
1935 */
eb7a6ca6 1936static void et131x_disable_interrupts(struct et131x_adapter *adapter)
a4d444bd
ME
1937{
1938 /* Disable all global interrupts */
1939 writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask);
1940}
1941
15ae239d 1942/* et131x_tx_dma_disable - Stop of Tx_DMA on the ET1310 */
eb7a6ca6 1943static void et131x_tx_dma_disable(struct et131x_adapter *adapter)
a4d444bd
ME
1944{
1945 /* Setup the tramsmit dma configuration register */
3040d056 1946 writel(ET_TXDMA_CSR_HALT | ET_TXDMA_SNGL_EPKT,
a4d444bd
ME
1947 &adapter->regs->txdma.csr);
1948}
1949
15ae239d 1950/* et131x_enable_txrx - Enable tx/rx queues */
eb7a6ca6 1951static void et131x_enable_txrx(struct net_device *netdev)
a4d444bd
ME
1952{
1953 struct et131x_adapter *adapter = netdev_priv(netdev);
1954
1955 /* Enable the Tx and Rx DMA engines (if not already enabled) */
1956 et131x_rx_dma_enable(adapter);
1957 et131x_tx_dma_enable(adapter);
1958
1959 /* Enable device interrupts */
c655dee9 1960 if (adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE)
a4d444bd
ME
1961 et131x_enable_interrupts(adapter);
1962
1963 /* We're ready to move some data, so start the queue */
1964 netif_start_queue(netdev);
1965}
1966
15ae239d 1967/* et131x_disable_txrx - Disable tx/rx queues */
eb7a6ca6 1968static void et131x_disable_txrx(struct net_device *netdev)
a4d444bd
ME
1969{
1970 struct et131x_adapter *adapter = netdev_priv(netdev);
1971
1972 /* First thing is to stop the queue */
1973 netif_stop_queue(netdev);
1974
1975 /* Stop the Tx and Rx DMA engines */
1976 et131x_rx_dma_disable(adapter);
1977 et131x_tx_dma_disable(adapter);
1978
1979 /* Disable device interrupts */
1980 et131x_disable_interrupts(adapter);
1981}
1982
15ae239d 1983/* et131x_init_send - Initialize send data structures */
eb7a6ca6 1984static void et131x_init_send(struct et131x_adapter *adapter)
8310c602 1985{
8310c602 1986 u32 ct;
76981cf1
ZG
1987 struct tx_ring *tx_ring = &adapter->tx_ring;
1988 struct tcb *tcb = tx_ring->tcb_ring;
8310c602
ME
1989
1990 tx_ring->tcb_qhead = tcb;
1991
1992 memset(tcb, 0, sizeof(struct tcb) * NUM_TCB);
1993
1994 /* Go through and set up each TCB */
1995 for (ct = 0; ct++ < NUM_TCB; tcb++)
1996 /* Set the link pointer in HW TCB to the next TCB in the
1997 * chain
1998 */
1999 tcb->next = tcb + 1;
2000
2001 /* Set the tail pointer */
2002 tcb--;
2003 tx_ring->tcb_qtail = tcb;
2004 tcb->next = NULL;
2005 /* Curr send queue should now be empty */
2006 tx_ring->send_head = NULL;
2007 tx_ring->send_tail = NULL;
2008}
2009
26ef1021 2010/* et1310_enable_phy_coma - called when network cable is unplugged
d2796743
ME
2011 *
2012 * driver receive an phy status change interrupt while in D0 and check that
2013 * phy_status is down.
2014 *
2015 * -- gate off JAGCore;
2016 * -- set gigE PHY in Coma mode
2017 * -- wake on phy_interrupt; Perform software reset JAGCore,
2018 * re-initialize jagcore and gigE PHY
2019 *
2020 * Add D0-ASPM-PhyLinkDown Support:
2021 * -- while in D0, when there is a phy_interrupt indicating phy link
2022 * down status, call the MPSetPhyComa routine to enter this active
2023 * state power saving mode
2024 * -- while in D0-ASPM-PhyLinkDown mode, when there is a phy_interrupt
2025 * indicating linkup status, call the MPDisablePhyComa routine to
2026 * restore JAGCore and gigE PHY
2027 */
eb7a6ca6 2028static void et1310_enable_phy_coma(struct et131x_adapter *adapter)
d2796743
ME
2029{
2030 unsigned long flags;
2031 u32 pmcsr;
2032
2033 pmcsr = readl(&adapter->regs->global.pm_csr);
2034
2035 /* Save the GbE PHY speed and duplex modes. Need to restore this
2036 * when cable is plugged back in
2037 */
d2796743
ME
2038
2039 /* Stop sending packets. */
2040 spin_lock_irqsave(&adapter->send_hw_lock, flags);
c655dee9 2041 adapter->flags |= FMP_ADAPTER_LOWER_POWER;
d2796743
ME
2042 spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
2043
2044 /* Wait for outstanding Receive packets */
2045
2046 et131x_disable_txrx(adapter->netdev);
2047
2048 /* Gate off JAGCore 3 clock domains */
2049 pmcsr &= ~ET_PMCSR_INIT;
2050 writel(pmcsr, &adapter->regs->global.pm_csr);
2051
2052 /* Program gigE PHY in to Coma mode */
2053 pmcsr |= ET_PM_PHY_SW_COMA;
2054 writel(pmcsr, &adapter->regs->global.pm_csr);
2055}
2056
15ae239d 2057/* et1310_disable_phy_coma - Disable the Phy Coma Mode */
eb7a6ca6 2058static void et1310_disable_phy_coma(struct et131x_adapter *adapter)
d2796743
ME
2059{
2060 u32 pmcsr;
2061
2062 pmcsr = readl(&adapter->regs->global.pm_csr);
2063
2064 /* Disable phy_sw_coma register and re-enable JAGCore clocks */
2065 pmcsr |= ET_PMCSR_INIT;
2066 pmcsr &= ~ET_PM_PHY_SW_COMA;
2067 writel(pmcsr, &adapter->regs->global.pm_csr);
2068
2069 /* Restore the GbE PHY speed and duplex modes;
2070 * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
2071 */
d2796743
ME
2072
2073 /* Re-initialize the send structures */
2074 et131x_init_send(adapter);
2075
d2796743
ME
2076 /* Bring the device back to the state it was during init prior to
2077 * autonegotiation being complete. This way, when we get the auto-neg
2078 * complete interrupt, we can complete init by calling ConfigMacREGS2.
2079 */
2080 et131x_soft_reset(adapter);
2081
2082 /* setup et1310 as per the documentation ?? */
2083 et131x_adapter_setup(adapter);
2084
2085 /* Allow Tx to restart */
c655dee9 2086 adapter->flags &= ~FMP_ADAPTER_LOWER_POWER;
d2796743
ME
2087
2088 et131x_enable_txrx(adapter->netdev);
2089}
2090
d2796743
ME
2091static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
2092{
2093 u32 tmp_free_buff_ring = *free_buff_ring;
2094 tmp_free_buff_ring++;
2095 /* This works for all cases where limit < 1024. The 1023 case
26ef1021
ME
2096 * works because 1023++ is 1024 which means the if condition is not
2097 * taken but the carry of the bit into the wrap bit toggles the wrap
2098 * value correctly
2099 */
d2796743
ME
2100 if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
2101 tmp_free_buff_ring &= ~ET_DMA10_MASK;
2102 tmp_free_buff_ring ^= ET_DMA10_WRAP;
2103 }
2104 /* For the 1023 case */
12a2f3f3 2105 tmp_free_buff_ring &= (ET_DMA10_MASK | ET_DMA10_WRAP);
d2796743
ME
2106 *free_buff_ring = tmp_free_buff_ring;
2107 return tmp_free_buff_ring;
2108}
2109
26ef1021 2110/* et131x_rx_dma_memory_alloc
d2796743
ME
2111 *
2112 * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
2113 * and the Packet Status Ring.
2114 */
eb7a6ca6 2115static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
d2796743 2116{
788ca84a 2117 u8 id;
d2796743
ME
2118 u32 i, j;
2119 u32 bufsize;
87648933
ME
2120 u32 pktstat_ringsize;
2121 u32 fbr_chunksize;
8f7fa96a 2122 struct rx_ring *rx_ring = &adapter->rx_ring;
bad5d26f 2123 struct fbr_lookup *fbr;
d2796743 2124
d2796743 2125 /* Alloc memory for the lookup table */
e592a9b0 2126 rx_ring->fbr[0] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
f0ada678 2127 rx_ring->fbr[1] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
d2796743
ME
2128
2129 /* The first thing we will do is configure the sizes of the buffer
2130 * rings. These will change based on jumbo packet support. Larger
2131 * jumbo packets increases the size of each entry in FBR0, and the
2132 * number of entries in FBR0, while at the same time decreasing the
2133 * number of entries in FBR1.
2134 *
2135 * FBR1 holds "large" frames, FBR0 holds "small" frames. If FBR1
2136 * entries are huge in order to accommodate a "jumbo" frame, then it
2137 * will have less entries. Conversely, FBR1 will now be relied upon
2138 * to carry more "normal" frames, thus it's entry size also increases
2139 * and the number of entries goes up too (since it now carries
2140 * "small" + "regular" packets.
2141 *
2142 * In this scheme, we try to maintain 512 entries between the two
2143 * rings. Also, FBR1 remains a constant size - when it's size doubles
2144 * the number of entries halves. FBR0 increases in size, however.
2145 */
2146
2147 if (adapter->registry_jumbo_packet < 2048) {
f0ada678 2148 rx_ring->fbr[0]->buffsize = 256;
e592a9b0 2149 rx_ring->fbr[0]->num_entries = 512;
f0ada678
ME
2150 rx_ring->fbr[1]->buffsize = 2048;
2151 rx_ring->fbr[1]->num_entries = 512;
d2796743 2152 } else if (adapter->registry_jumbo_packet < 4096) {
f0ada678
ME
2153 rx_ring->fbr[0]->buffsize = 512;
2154 rx_ring->fbr[0]->num_entries = 1024;
2155 rx_ring->fbr[1]->buffsize = 4096;
2156 rx_ring->fbr[1]->num_entries = 512;
d2796743 2157 } else {
f0ada678
ME
2158 rx_ring->fbr[0]->buffsize = 1024;
2159 rx_ring->fbr[0]->num_entries = 768;
2160 rx_ring->fbr[1]->buffsize = 16384;
2161 rx_ring->fbr[1]->num_entries = 128;
d2796743
ME
2162 }
2163
bad5d26f
ZG
2164 rx_ring->psr_num_entries = rx_ring->fbr[0]->num_entries +
2165 rx_ring->fbr[1]->num_entries;
d2796743 2166
788ca84a 2167 for (id = 0; id < NUM_FBRS; id++) {
bad5d26f 2168 fbr = rx_ring->fbr[id];
788ca84a 2169 /* Allocate an area of memory for Free Buffer Ring */
bad5d26f
ZG
2170 bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
2171 fbr->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2172 bufsize,
2173 &fbr->ring_physaddr,
2174 GFP_KERNEL);
2175 if (!fbr->ring_virtaddr) {
d2796743 2176 dev_err(&adapter->pdev->dev,
788ca84a 2177 "Cannot alloc memory for Free Buffer Ring %d\n", id);
d2796743
ME
2178 return -ENOMEM;
2179 }
d2796743
ME
2180 }
2181
788ca84a 2182 for (id = 0; id < NUM_FBRS; id++) {
bad5d26f
ZG
2183 fbr = rx_ring->fbr[id];
2184 fbr_chunksize = (FBR_CHUNKS * fbr->buffsize);
87648933 2185
bad5d26f 2186 for (i = 0; i < fbr->num_entries / FBR_CHUNKS; i++) {
788ca84a 2187 dma_addr_t fbr_tmp_physaddr;
788ca84a 2188
bad5d26f 2189 fbr->mem_virtaddrs[i] = dma_alloc_coherent(
788ca84a 2190 &adapter->pdev->dev, fbr_chunksize,
bad5d26f 2191 &fbr->mem_physaddrs[i],
788ca84a 2192 GFP_KERNEL);
d2796743 2193
bad5d26f 2194 if (!fbr->mem_virtaddrs[i]) {
788ca84a
ME
2195 dev_err(&adapter->pdev->dev,
2196 "Could not alloc memory\n");
2197 return -ENOMEM;
2198 }
d2796743 2199
788ca84a 2200 /* See NOTE in "Save Physical Address" comment above */
bad5d26f 2201 fbr_tmp_physaddr = fbr->mem_physaddrs[i];
788ca84a 2202
788ca84a
ME
2203 for (j = 0; j < FBR_CHUNKS; j++) {
2204 u32 index = (i * FBR_CHUNKS) + j;
2205
2206 /* Save the Virtual address of this index for
2207 * quick access later
2208 */
bad5d26f
ZG
2209 fbr->virt[index] = (u8 *)fbr->mem_virtaddrs[i] +
2210 (j * fbr->buffsize);
788ca84a
ME
2211
2212 /* now store the physical address in the
2213 * descriptor so the device can access it
2214 */
bad5d26f 2215 fbr->bus_high[index] =
788ca84a 2216 upper_32_bits(fbr_tmp_physaddr);
bad5d26f 2217 fbr->bus_low[index] =
788ca84a
ME
2218 lower_32_bits(fbr_tmp_physaddr);
2219
bad5d26f 2220 fbr_tmp_physaddr += fbr->buffsize;
788ca84a 2221 }
d2796743
ME
2222 }
2223 }
d2796743
ME
2224
2225 /* Allocate an area of memory for FIFO of Packet Status ring entries */
2226 pktstat_ringsize =
bad5d26f 2227 sizeof(struct pkt_stat_desc) * rx_ring->psr_num_entries;
d2796743 2228
0d1b7a84 2229 rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
d2796743 2230 pktstat_ringsize,
0d1b7a84
ME
2231 &rx_ring->ps_ring_physaddr,
2232 GFP_KERNEL);
d2796743
ME
2233
2234 if (!rx_ring->ps_ring_virtaddr) {
2235 dev_err(&adapter->pdev->dev,
2236 "Cannot alloc memory for Packet Status Ring\n");
2237 return -ENOMEM;
2238 }
d2796743 2239
26ef1021 2240 /* NOTE : dma_alloc_coherent(), used above to alloc DMA regions,
d2796743
ME
2241 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2242 * are ever returned, make sure the high part is retrieved here before
2243 * storing the adjusted address.
2244 */
2245
2246 /* Allocate an area of memory for writeback of status information */
0d1b7a84 2247 rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev,
d2796743 2248 sizeof(struct rx_status_block),
0d1b7a84
ME
2249 &rx_ring->rx_status_bus,
2250 GFP_KERNEL);
d2796743
ME
2251 if (!rx_ring->rx_status_block) {
2252 dev_err(&adapter->pdev->dev,
2253 "Cannot alloc memory for Status Block\n");
2254 return -ENOMEM;
2255 }
2256 rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
d2796743 2257
d2796743
ME
2258 /* The RFDs are going to be put on lists later on, so initialize the
2259 * lists now.
2260 */
2261 INIT_LIST_HEAD(&rx_ring->recv_list);
2262 return 0;
2263}
2264
15ae239d 2265/* et131x_rx_dma_memory_free - Free all memory allocated within this module */
eb7a6ca6 2266static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
d2796743 2267{
788ca84a 2268 u8 id;
d2796743
ME
2269 u32 index;
2270 u32 bufsize;
2271 u32 pktstat_ringsize;
2272 struct rfd *rfd;
8f7fa96a 2273 struct rx_ring *rx_ring = &adapter->rx_ring;
f876f59e 2274 struct fbr_lookup *fbr;
d2796743 2275
d2796743
ME
2276 /* Free RFDs and associated packet descriptors */
2277 WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
2278
2279 while (!list_empty(&rx_ring->recv_list)) {
57cc0279
ZG
2280 rfd = list_entry(rx_ring->recv_list.next,
2281 struct rfd, list_node);
d2796743
ME
2282
2283 list_del(&rfd->list_node);
2284 rfd->skb = NULL;
d959df0a 2285 kfree(rfd);
d2796743
ME
2286 }
2287
788ca84a
ME
2288 /* Free Free Buffer Rings */
2289 for (id = 0; id < NUM_FBRS; id++) {
f876f59e
ZG
2290 fbr = rx_ring->fbr[id];
2291
2292 if (!fbr->ring_virtaddr)
823bb2e8 2293 continue;
d2796743 2294
823bb2e8
ME
2295 /* First the packet memory */
2296 for (index = 0;
f876f59e 2297 index < fbr->num_entries / FBR_CHUNKS;
823bb2e8 2298 index++) {
f876f59e
ZG
2299 if (fbr->mem_virtaddrs[index]) {
2300 bufsize = fbr->buffsize * FBR_CHUNKS;
d2796743 2301
823bb2e8 2302 dma_free_coherent(&adapter->pdev->dev,
f876f59e
ZG
2303 bufsize,
2304 fbr->mem_virtaddrs[index],
2305 fbr->mem_physaddrs[index]);
d2796743 2306
f876f59e 2307 fbr->mem_virtaddrs[index] = NULL;
823bb2e8 2308 }
d2796743 2309 }
823bb2e8 2310
f876f59e 2311 bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
823bb2e8 2312
f876f59e
ZG
2313 dma_free_coherent(&adapter->pdev->dev,
2314 bufsize,
2315 fbr->ring_virtaddr,
2316 fbr->ring_physaddr);
823bb2e8 2317
f876f59e 2318 fbr->ring_virtaddr = NULL;
d2796743 2319 }
d2796743
ME
2320
2321 /* Free Packet Status Ring */
2322 if (rx_ring->ps_ring_virtaddr) {
242187aa 2323 pktstat_ringsize = sizeof(struct pkt_stat_desc) *
8f7fa96a 2324 rx_ring->psr_num_entries;
d2796743 2325
675c8f68 2326 dma_free_coherent(&adapter->pdev->dev, pktstat_ringsize,
d2796743
ME
2327 rx_ring->ps_ring_virtaddr,
2328 rx_ring->ps_ring_physaddr);
2329
2330 rx_ring->ps_ring_virtaddr = NULL;
2331 }
2332
2333 /* Free area of memory for the writeback of status information */
2334 if (rx_ring->rx_status_block) {
675c8f68 2335 dma_free_coherent(&adapter->pdev->dev,
d2796743
ME
2336 sizeof(struct rx_status_block),
2337 rx_ring->rx_status_block, rx_ring->rx_status_bus);
2338 rx_ring->rx_status_block = NULL;
2339 }
2340
d2796743 2341 /* Free the FBR Lookup Table */
e592a9b0 2342 kfree(rx_ring->fbr[0]);
f0ada678 2343 kfree(rx_ring->fbr[1]);
d2796743
ME
2344
2345 /* Reset Counters */
2346 rx_ring->num_ready_recv = 0;
2347}
2348
15ae239d 2349/* et131x_init_recv - Initialize receive data structures */
eb7a6ca6 2350static int et131x_init_recv(struct et131x_adapter *adapter)
d2796743 2351{
d959df0a 2352 struct rfd *rfd;
d2796743 2353 u32 rfdct;
8f7fa96a 2354 struct rx_ring *rx_ring = &adapter->rx_ring;
d2796743
ME
2355
2356 /* Setup each RFD */
2357 for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
d959df0a 2358 rfd = kzalloc(sizeof(struct rfd), GFP_ATOMIC | GFP_DMA);
78110bb8 2359 if (!rfd)
d959df0a 2360 return -ENOMEM;
d2796743
ME
2361
2362 rfd->skb = NULL;
2363
2364 /* Add this RFD to the recv_list */
2365 list_add_tail(&rfd->list_node, &rx_ring->recv_list);
2366
4eb94628 2367 /* Increment the available RFD's */
d2796743 2368 rx_ring->num_ready_recv++;
d2796743
ME
2369 }
2370
d959df0a 2371 return 0;
d2796743
ME
2372}
2373
15ae239d 2374/* et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate */
eb7a6ca6 2375static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
d2796743
ME
2376{
2377 struct phy_device *phydev = adapter->phydev;
2378
d2796743
ME
2379 /* For version B silicon, we do not use the RxDMA timer for 10 and 100
2380 * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
2381 */
2382 if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
2383 writel(0, &adapter->regs->rxdma.max_pkt_time);
2384 writel(1, &adapter->regs->rxdma.num_pkt_done);
2385 }
2386}
2387
26ef1021 2388/* NICReturnRFD - Recycle a RFD and put it back onto the receive list
d2796743
ME
2389 * @adapter: pointer to our adapter
2390 * @rfd: pointer to the RFD
2391 */
2392static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
2393{
2394 struct rx_ring *rx_local = &adapter->rx_ring;
2395 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
2396 u16 buff_index = rfd->bufferindex;
2397 u8 ring_index = rfd->ringindex;
2398 unsigned long flags;
39bdb4a0 2399 struct fbr_lookup *fbr = rx_local->fbr[ring_index];
d2796743
ME
2400
2401 /* We don't use any of the OOB data besides status. Otherwise, we
2402 * need to clean up OOB data
2403 */
39bdb4a0
ZG
2404 if (buff_index < fbr->num_entries) {
2405 u32 free_buff_ring;
c0594ee9 2406 u32 __iomem *offset;
788ca84a
ME
2407 struct fbr_desc *next;
2408
d2796743
ME
2409 spin_lock_irqsave(&adapter->fbr_lock, flags);
2410
f0ada678 2411 if (ring_index == 0)
788ca84a 2412 offset = &rx_dma->fbr0_full_offset;
f0ada678
ME
2413 else
2414 offset = &rx_dma->fbr1_full_offset;
788ca84a 2415
39bdb4a0
ZG
2416 next = (struct fbr_desc *)(fbr->ring_virtaddr) +
2417 INDEX10(fbr->local_full);
788ca84a
ME
2418
2419 /* Handle the Free Buffer Ring advancement here. Write
2420 * the PA / Buffer Index for the returned buffer into
2421 * the oldest (next to be freed)FBR entry
2422 */
39bdb4a0
ZG
2423 next->addr_hi = fbr->bus_high[buff_index];
2424 next->addr_lo = fbr->bus_low[buff_index];
788ca84a
ME
2425 next->word2 = buff_index;
2426
39bdb4a0
ZG
2427 free_buff_ring = bump_free_buff_ring(&fbr->local_full,
2428 fbr->num_entries - 1);
2429 writel(free_buff_ring, offset);
788ca84a 2430
d2796743
ME
2431 spin_unlock_irqrestore(&adapter->fbr_lock, flags);
2432 } else {
2433 dev_err(&adapter->pdev->dev,
2434 "%s illegal Buffer Index returned\n", __func__);
2435 }
2436
2437 /* The processing on this RFD is done, so put it back on the tail of
2438 * our list
2439 */
2440 spin_lock_irqsave(&adapter->rcv_lock, flags);
2441 list_add_tail(&rfd->list_node, &rx_local->recv_list);
2442 rx_local->num_ready_recv++;
2443 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2444
2445 WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
2446}
2447
26ef1021 2448/* nic_rx_pkts - Checks the hardware for available packets
54dbf04f
ME
2449 *
2450 * Returns rfd, a pointer to our MPRFD.
2451 *
2452 * Checks the hardware for available packets, using completion ring
2453 * If packets are available, it gets an RFD from the recv_list, attaches
2454 * the packet to it, puts the RFD in the RecvPendList, and also returns
2455 * the pointer to the RFD.
2456 */
d2796743
ME
2457static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
2458{
2459 struct rx_ring *rx_local = &adapter->rx_ring;
2460 struct rx_status_block *status;
2461 struct pkt_stat_desc *psr;
186c426d 2462 struct rfd *rfd;
d2796743
ME
2463 u32 i;
2464 u8 *buf;
2465 unsigned long flags;
2466 struct list_head *element;
2467 u8 ring_index;
2468 u16 buff_index;
2469 u32 len;
2470 u32 word0;
2471 u32 word1;
186c426d 2472 struct sk_buff *skb;
297bb9db 2473 struct fbr_lookup *fbr;
d2796743
ME
2474
2475 /* RX Status block is written by the DMA engine prior to every
2476 * interrupt. It contains the next to be used entry in the Packet
2477 * Status Ring, and also the two Free Buffer rings.
2478 */
2479 status = rx_local->rx_status_block;
2480 word1 = status->word1 >> 16; /* Get the useful bits */
2481
2482 /* Check the PSR and wrap bits do not match */
2483 if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
242187aa 2484 return NULL; /* Looks like this ring is not updated yet */
d2796743
ME
2485
2486 /* The packet status ring indicates that data is available. */
2487 psr = (struct pkt_stat_desc *) (rx_local->ps_ring_virtaddr) +
2488 (rx_local->local_psr_full & 0xFFF);
2489
242187aa
ME
2490 /* Grab any information that is required once the PSR is advanced,
2491 * since we can no longer rely on the memory being accurate
d2796743
ME
2492 */
2493 len = psr->word1 & 0xFFFF;
2494 ring_index = (psr->word1 >> 26) & 0x03;
297bb9db 2495 fbr = rx_local->fbr[ring_index];
d2796743
ME
2496 buff_index = (psr->word1 >> 16) & 0x3FF;
2497 word0 = psr->word0;
2498
2499 /* Indicate that we have used this PSR entry. */
2500 /* FIXME wrap 12 */
2501 add_12bit(&rx_local->local_psr_full, 1);
2502 if (
2503 (rx_local->local_psr_full & 0xFFF) > rx_local->psr_num_entries - 1) {
2504 /* Clear psr full and toggle the wrap bit */
2505 rx_local->local_psr_full &= ~0xFFF;
2506 rx_local->local_psr_full ^= 0x1000;
2507 }
2508
242187aa 2509 writel(rx_local->local_psr_full, &adapter->regs->rxdma.psr_full_offset);
d2796743 2510
297bb9db 2511 if (ring_index > 1 || buff_index > fbr->num_entries - 1) {
d2796743
ME
2512 /* Illegal buffer or ring index cannot be used by S/W*/
2513 dev_err(&adapter->pdev->dev,
242187aa
ME
2514 "NICRxPkts PSR Entry %d indicates length of %d and/or bad bi(%d)\n",
2515 rx_local->local_psr_full & 0xFFF, len, buff_index);
d2796743
ME
2516 return NULL;
2517 }
2518
2519 /* Get and fill the RFD. */
2520 spin_lock_irqsave(&adapter->rcv_lock, flags);
2521
d2796743 2522 element = rx_local->recv_list.next;
57cc0279 2523 rfd = list_entry(element, struct rfd, list_node);
d2796743 2524
242187aa 2525 if (!rfd) {
d2796743
ME
2526 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2527 return NULL;
2528 }
2529
2530 list_del(&rfd->list_node);
2531 rx_local->num_ready_recv--;
2532
2533 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2534
2535 rfd->bufferindex = buff_index;
2536 rfd->ringindex = ring_index;
2537
242187aa
ME
2538 /* In V1 silicon, there is a bug which screws up filtering of runt
2539 * packets. Therefore runt packet filtering is disabled in the MAC and
2540 * the packets are dropped here. They are also counted here.
d2796743
ME
2541 */
2542 if (len < (NIC_MIN_PACKET_SIZE + 4)) {
2543 adapter->stats.rx_other_errs++;
2544 len = 0;
2545 }
2546
242187aa
ME
2547 if (len == 0) {
2548 rfd->len = 0;
2549 goto out;
2550 }
2551
2552 /* Determine if this is a multicast packet coming in */
2553 if ((word0 & ALCATEL_MULTICAST_PKT) &&
2554 !(word0 & ALCATEL_BROADCAST_PKT)) {
2555 /* Promiscuous mode and Multicast mode are not mutually
2556 * exclusive as was first thought. I guess Promiscuous is just
2557 * considered a super-set of the other filters. Generally filter
2558 * is 0x2b when in promiscuous mode.
2559 */
2560 if ((adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST)
2561 && !(adapter->packet_filter & ET131X_PACKET_TYPE_PROMISCUOUS)
2562 && !(adapter->packet_filter &
d2796743 2563 ET131X_PACKET_TYPE_ALL_MULTICAST)) {
297bb9db 2564 buf = fbr->virt[buff_index];
d2796743 2565
242187aa
ME
2566 /* Loop through our list to see if the destination
2567 * address of this packet matches one in our list.
2568 */
2569 for (i = 0; i < adapter->multicast_addr_count; i++) {
2570 if (buf[0] == adapter->multicast_list[i][0]
2571 && buf[1] == adapter->multicast_list[i][1]
2572 && buf[2] == adapter->multicast_list[i][2]
2573 && buf[3] == adapter->multicast_list[i][3]
2574 && buf[4] == adapter->multicast_list[i][4]
2575 && buf[5] == adapter->multicast_list[i][5]) {
2576 break;
d2796743 2577 }
d2796743
ME
2578 }
2579
242187aa
ME
2580 /* If our index is equal to the number of Multicast
2581 * address we have, then this means we did not find this
2582 * packet's matching address in our list. Set the len to
2583 * zero, so we free our RFD when we return from this
2584 * function.
d2796743 2585 */
242187aa
ME
2586 if (i == adapter->multicast_addr_count)
2587 len = 0;
2588 }
d2796743 2589
242187aa
ME
2590 if (len > 0)
2591 adapter->stats.multicast_pkts_rcvd++;
2592 } else if (word0 & ALCATEL_BROADCAST_PKT) {
2593 adapter->stats.broadcast_pkts_rcvd++;
2594 } else {
2595 /* Not sure what this counter measures in promiscuous mode.
2596 * Perhaps we should check the MAC address to see if it is
2597 * directed to us in promiscuous mode.
2598 */
2599 adapter->stats.unicast_pkts_rcvd++;
2600 }
d2796743 2601
12a2f3f3 2602 if (!len) {
242187aa
ME
2603 rfd->len = 0;
2604 goto out;
2605 }
d2796743 2606
242187aa 2607 rfd->len = len;
d2796743 2608
242187aa
ME
2609 skb = dev_alloc_skb(rfd->len + 2);
2610 if (!skb) {
2611 dev_err(&adapter->pdev->dev, "Couldn't alloc an SKB for Rx\n");
2612 return NULL;
2613 }
d2796743 2614
242187aa 2615 adapter->net_stats.rx_bytes += rfd->len;
d2796743 2616
297bb9db 2617 memcpy(skb_put(skb, rfd->len), fbr->virt[buff_index], rfd->len);
d2796743 2618
242187aa
ME
2619 skb->protocol = eth_type_trans(skb, adapter->netdev);
2620 skb->ip_summed = CHECKSUM_NONE;
2621 netif_rx_ni(skb);
d2796743 2622
242187aa 2623out:
d2796743
ME
2624 nic_return_rfd(adapter, rfd);
2625 return rfd;
2626}
2627
26ef1021 2628/* et131x_handle_recv_interrupt - Interrupt handler for receive processing
d2796743
ME
2629 *
2630 * Assumption, Rcv spinlock has been acquired.
2631 */
eb7a6ca6 2632static void et131x_handle_recv_interrupt(struct et131x_adapter *adapter)
d2796743
ME
2633{
2634 struct rfd *rfd = NULL;
2635 u32 count = 0;
2636 bool done = true;
8f7fa96a 2637 struct rx_ring *rx_ring = &adapter->rx_ring;
d2796743
ME
2638
2639 /* Process up to available RFD's */
2640 while (count < NUM_PACKETS_HANDLED) {
8f7fa96a
ZG
2641 if (list_empty(&rx_ring->recv_list)) {
2642 WARN_ON(rx_ring->num_ready_recv != 0);
d2796743
ME
2643 done = false;
2644 break;
2645 }
2646
2647 rfd = nic_rx_pkts(adapter);
2648
2649 if (rfd == NULL)
2650 break;
2651
2652 /* Do not receive any packets until a filter has been set.
2653 * Do not receive any packets until we have link.
2654 * If length is zero, return the RFD in order to advance the
2655 * Free buffer ring.
2656 */
2657 if (!adapter->packet_filter ||
2658 !netif_carrier_ok(adapter->netdev) ||
2659 rfd->len == 0)
2660 continue;
2661
2662 /* Increment the number of packets we received */
2663 adapter->net_stats.rx_packets++;
2664
2665 /* Set the status on the packet, either resources or success */
8f7fa96a 2666 if (rx_ring->num_ready_recv < RFD_LOW_WATER_MARK)
0cdc6ee8
ME
2667 dev_warn(&adapter->pdev->dev, "RFD's are running out\n");
2668
d2796743
ME
2669 count++;
2670 }
2671
2672 if (count == NUM_PACKETS_HANDLED || !done) {
8f7fa96a 2673 rx_ring->unfinished_receives = true;
d2796743
ME
2674 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2675 &adapter->regs->global.watchdog_timer);
2676 } else
2677 /* Watchdog timer will disable itself if appropriate. */
8f7fa96a 2678 rx_ring->unfinished_receives = false;
d2796743
ME
2679}
2680
26ef1021 2681/* et131x_tx_dma_memory_alloc
d2796743
ME
2682 *
2683 * Allocates memory that will be visible both to the device and to the CPU.
2684 * The OS will pass us packets, pointers to which we will insert in the Tx
2685 * Descriptor queue. The device will read this queue to find the packets in
2686 * memory. The device will update the "status" in memory each time it xmits a
2687 * packet.
2688 */
eb7a6ca6 2689static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
d2796743
ME
2690{
2691 int desc_size = 0;
2692 struct tx_ring *tx_ring = &adapter->tx_ring;
2693
2694 /* Allocate memory for the TCB's (Transmit Control Block) */
76981cf1
ZG
2695 tx_ring->tcb_ring = kcalloc(NUM_TCB, sizeof(struct tcb),
2696 GFP_ATOMIC | GFP_DMA);
2697 if (!tx_ring->tcb_ring)
d2796743 2698 return -ENOMEM;
d2796743 2699
d3c75e8d 2700 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
57cc0279
ZG
2701 tx_ring->tx_desc_ring = dma_alloc_coherent(&adapter->pdev->dev,
2702 desc_size,
2703 &tx_ring->tx_desc_ring_pa,
2704 GFP_KERNEL);
76981cf1 2705 if (!tx_ring->tx_desc_ring) {
d2796743 2706 dev_err(&adapter->pdev->dev,
09a3fc2b 2707 "Cannot alloc memory for Tx Ring\n");
d2796743
ME
2708 return -ENOMEM;
2709 }
2710
2711 /* Save physical address
2712 *
26dc751e 2713 * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
d2796743
ME
2714 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2715 * are ever returned, make sure the high part is retrieved here before
2716 * storing the adjusted address.
2717 */
2718 /* Allocate memory for the Tx status block */
0d1b7a84 2719 tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev,
d2796743 2720 sizeof(u32),
0d1b7a84
ME
2721 &tx_ring->tx_status_pa,
2722 GFP_KERNEL);
76981cf1 2723 if (!tx_ring->tx_status_pa) {
d2796743 2724 dev_err(&adapter->pdev->dev,
76981cf1 2725 "Cannot alloc memory for Tx status block\n");
d2796743
ME
2726 return -ENOMEM;
2727 }
2728 return 0;
2729}
2730
15ae239d 2731/* et131x_tx_dma_memory_free - Free all memory allocated within this module */
eb7a6ca6 2732static void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
d2796743
ME
2733{
2734 int desc_size = 0;
76981cf1 2735 struct tx_ring *tx_ring = &adapter->tx_ring;
d2796743 2736
76981cf1 2737 if (tx_ring->tx_desc_ring) {
d2796743 2738 /* Free memory relating to Tx rings here */
d3c75e8d 2739 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
675c8f68 2740 dma_free_coherent(&adapter->pdev->dev,
76981cf1
ZG
2741 desc_size,
2742 tx_ring->tx_desc_ring,
2743 tx_ring->tx_desc_ring_pa);
2744 tx_ring->tx_desc_ring = NULL;
d2796743
ME
2745 }
2746
2747 /* Free memory for the Tx status block */
76981cf1 2748 if (tx_ring->tx_status) {
675c8f68 2749 dma_free_coherent(&adapter->pdev->dev,
76981cf1
ZG
2750 sizeof(u32),
2751 tx_ring->tx_status,
2752 tx_ring->tx_status_pa);
d2796743 2753
76981cf1 2754 tx_ring->tx_status = NULL;
d2796743
ME
2755 }
2756 /* Free the memory for the tcb structures */
76981cf1 2757 kfree(tx_ring->tcb_ring);
d2796743
ME
2758}
2759
26ef1021 2760/* nic_send_packet - NIC specific send handler for version B silicon.
d2796743
ME
2761 * @adapter: pointer to our adapter
2762 * @tcb: pointer to struct tcb
d2796743
ME
2763 */
2764static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb)
2765{
2766 u32 i;
2767 struct tx_desc desc[24]; /* 24 x 16 byte */
2768 u32 frag = 0;
2769 u32 thiscopy, remainder;
2770 struct sk_buff *skb = tcb->skb;
2771 u32 nr_frags = skb_shinfo(skb)->nr_frags + 1;
2772 struct skb_frag_struct *frags = &skb_shinfo(skb)->frags[0];
2773 unsigned long flags;
2774 struct phy_device *phydev = adapter->phydev;
998f6dfb 2775 dma_addr_t dma_addr;
76981cf1 2776 struct tx_ring *tx_ring = &adapter->tx_ring;
d2796743
ME
2777
2778 /* Part of the optimizations of this send routine restrict us to
2779 * sending 24 fragments at a pass. In practice we should never see
2780 * more than 5 fragments.
2781 *
2782 * NOTE: The older version of this function (below) can handle any
2783 * number of fragments. If needed, we can call this function,
2784 * although it is less efficient.
2785 */
9c7bc376
RK
2786
2787 /* nr_frags should be no more than 18. */
2788 BUILD_BUG_ON(MAX_SKB_FRAGS + 1 > 23);
d2796743
ME
2789
2790 memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1));
2791
2792 for (i = 0; i < nr_frags; i++) {
2793 /* If there is something in this element, lets get a
2794 * descriptor from the ring and get the necessary data
2795 */
2796 if (i == 0) {
2797 /* If the fragments are smaller than a standard MTU,
2798 * then map them to a single descriptor in the Tx
2799 * Desc ring. However, if they're larger, as is
2800 * possible with support for jumbo packets, then
2801 * split them each across 2 descriptors.
2802 *
2803 * This will work until we determine why the hardware
2804 * doesn't seem to like large fragments.
2805 */
f1b540b9 2806 if (skb_headlen(skb) <= 1514) {
d2796743 2807 /* Low 16bits are length, high is vlan and
26ef1021
ME
2808 * unused currently so zero
2809 */
f1b540b9 2810 desc[frag].len_vlan = skb_headlen(skb);
998f6dfb
ME
2811 dma_addr = dma_map_single(&adapter->pdev->dev,
2812 skb->data,
2813 skb_headlen(skb),
2814 DMA_TO_DEVICE);
2815 desc[frag].addr_lo = lower_32_bits(dma_addr);
2816 desc[frag].addr_hi = upper_32_bits(dma_addr);
2817 frag++;
d2796743 2818 } else {
f1b540b9 2819 desc[frag].len_vlan = skb_headlen(skb) / 2;
998f6dfb 2820 dma_addr = dma_map_single(&adapter->pdev->dev,
3781683e
ME
2821 skb->data,
2822 (skb_headlen(skb) / 2),
2823 DMA_TO_DEVICE);
998f6dfb
ME
2824 desc[frag].addr_lo = lower_32_bits(dma_addr);
2825 desc[frag].addr_hi = upper_32_bits(dma_addr);
2826 frag++;
d2796743 2827
f1b540b9 2828 desc[frag].len_vlan = skb_headlen(skb) / 2;
998f6dfb 2829 dma_addr = dma_map_single(&adapter->pdev->dev,
3781683e
ME
2830 skb->data +
2831 (skb_headlen(skb) / 2),
2832 (skb_headlen(skb) / 2),
2833 DMA_TO_DEVICE);
998f6dfb
ME
2834 desc[frag].addr_lo = lower_32_bits(dma_addr);
2835 desc[frag].addr_hi = upper_32_bits(dma_addr);
2836 frag++;
d2796743
ME
2837 }
2838 } else {
998f6dfb
ME
2839 desc[frag].len_vlan = frags[i - 1].size;
2840 dma_addr = skb_frag_dma_map(&adapter->pdev->dev,
2841 &frags[i - 1],
2842 0,
2843 frags[i - 1].size,
2844 DMA_TO_DEVICE);
2845 desc[frag].addr_lo = lower_32_bits(dma_addr);
2846 desc[frag].addr_hi = upper_32_bits(dma_addr);
2847 frag++;
d2796743
ME
2848 }
2849 }
2850
d2796743 2851 if (phydev && phydev->speed == SPEED_1000) {
76981cf1 2852 if (++tx_ring->since_irq == PARM_TX_NUM_BUFS_DEF) {
d2796743 2853 /* Last element & Interrupt flag */
c655dee9
ME
2854 desc[frag - 1].flags =
2855 TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
76981cf1 2856 tx_ring->since_irq = 0;
d2796743 2857 } else { /* Last element */
a129be84 2858 desc[frag - 1].flags = TXDESC_FLAG_LASTPKT;
d2796743
ME
2859 }
2860 } else
c655dee9
ME
2861 desc[frag - 1].flags =
2862 TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
d2796743 2863
a129be84 2864 desc[0].flags |= TXDESC_FLAG_FIRSTPKT;
d2796743 2865
76981cf1 2866 tcb->index_start = tx_ring->send_idx;
d2796743
ME
2867 tcb->stale = 0;
2868
2869 spin_lock_irqsave(&adapter->send_hw_lock, flags);
2870
76981cf1 2871 thiscopy = NUM_DESC_PER_RING_TX - INDEX10(tx_ring->send_idx);
d2796743
ME
2872
2873 if (thiscopy >= frag) {
2874 remainder = 0;
2875 thiscopy = frag;
2876 } else {
2877 remainder = frag - thiscopy;
2878 }
2879
76981cf1
ZG
2880 memcpy(tx_ring->tx_desc_ring + INDEX10(tx_ring->send_idx),
2881 desc,
d2796743
ME
2882 sizeof(struct tx_desc) * thiscopy);
2883
76981cf1 2884 add_10bit(&tx_ring->send_idx, thiscopy);
d2796743 2885
76981cf1
ZG
2886 if (INDEX10(tx_ring->send_idx) == 0 ||
2887 INDEX10(tx_ring->send_idx) == NUM_DESC_PER_RING_TX) {
2888 tx_ring->send_idx &= ~ET_DMA10_MASK;
2889 tx_ring->send_idx ^= ET_DMA10_WRAP;
d2796743
ME
2890 }
2891
2892 if (remainder) {
76981cf1 2893 memcpy(tx_ring->tx_desc_ring,
d2796743
ME
2894 desc + thiscopy,
2895 sizeof(struct tx_desc) * remainder);
2896
76981cf1 2897 add_10bit(&tx_ring->send_idx, remainder);
d2796743
ME
2898 }
2899
76981cf1
ZG
2900 if (INDEX10(tx_ring->send_idx) == 0) {
2901 if (tx_ring->send_idx)
d2796743
ME
2902 tcb->index = NUM_DESC_PER_RING_TX - 1;
2903 else
2904 tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1);
2905 } else
76981cf1 2906 tcb->index = tx_ring->send_idx - 1;
d2796743
ME
2907
2908 spin_lock(&adapter->tcb_send_qlock);
2909
76981cf1
ZG
2910 if (tx_ring->send_tail)
2911 tx_ring->send_tail->next = tcb;
d2796743 2912 else
76981cf1 2913 tx_ring->send_head = tcb;
d2796743 2914
76981cf1 2915 tx_ring->send_tail = tcb;
d2796743
ME
2916
2917 WARN_ON(tcb->next != NULL);
2918
76981cf1 2919 tx_ring->used++;
d2796743
ME
2920
2921 spin_unlock(&adapter->tcb_send_qlock);
2922
2923 /* Write the new write pointer back to the device. */
76981cf1 2924 writel(tx_ring->send_idx, &adapter->regs->txdma.service_request);
d2796743
ME
2925
2926 /* For Gig only, we use Tx Interrupt coalescing. Enable the software
2927 * timer to wake us up if this packet isn't followed by N more.
2928 */
2929 if (phydev && phydev->speed == SPEED_1000) {
2930 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2931 &adapter->regs->global.watchdog_timer);
2932 }
2933 spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
2934
2935 return 0;
2936}
2937
26ef1021 2938/* send_packet - Do the work to send a packet
d2796743
ME
2939 *
2940 * Assumption: Send spinlock has been acquired
2941 */
2942static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter)
2943{
2944 int status;
76981cf1 2945 struct tcb *tcb;
d2796743
ME
2946 u16 *shbufva;
2947 unsigned long flags;
76981cf1 2948 struct tx_ring *tx_ring = &adapter->tx_ring;
d2796743
ME
2949
2950 /* All packets must have at least a MAC address and a protocol type */
2951 if (skb->len < ETH_HLEN)
2952 return -EIO;
2953
2954 /* Get a TCB for this packet */
2955 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2956
76981cf1 2957 tcb = tx_ring->tcb_qhead;
d2796743
ME
2958
2959 if (tcb == NULL) {
2960 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2961 return -ENOMEM;
2962 }
2963
76981cf1 2964 tx_ring->tcb_qhead = tcb->next;
d2796743 2965
76981cf1
ZG
2966 if (tx_ring->tcb_qhead == NULL)
2967 tx_ring->tcb_qtail = NULL;
d2796743
ME
2968
2969 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2970
2971 tcb->skb = skb;
2972
f1b540b9 2973 if (skb->data != NULL && skb_headlen(skb) >= 6) {
d2796743
ME
2974 shbufva = (u16 *) skb->data;
2975
2976 if ((shbufva[0] == 0xffff) &&
0cdc6ee8 2977 (shbufva[1] == 0xffff) && (shbufva[2] == 0xffff))
c655dee9 2978 tcb->flags |= FMP_DEST_BROAD;
0cdc6ee8 2979 else if ((shbufva[0] & 0x3) == 0x0001)
c655dee9 2980 tcb->flags |= FMP_DEST_MULTI;
d2796743
ME
2981 }
2982
2983 tcb->next = NULL;
2984
2985 /* Call the NIC specific send handler. */
2986 status = nic_send_packet(adapter, tcb);
2987
2988 if (status != 0) {
2989 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2990
76981cf1
ZG
2991 if (tx_ring->tcb_qtail)
2992 tx_ring->tcb_qtail->next = tcb;
d2796743
ME
2993 else
2994 /* Apparently ready Q is empty. */
76981cf1 2995 tx_ring->tcb_qhead = tcb;
d2796743 2996
76981cf1 2997 tx_ring->tcb_qtail = tcb;
d2796743
ME
2998 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2999 return status;
3000 }
76981cf1 3001 WARN_ON(tx_ring->used > NUM_TCB);
d2796743
ME
3002 return 0;
3003}
3004
15ae239d 3005/* et131x_send_packets - This function is called by the OS to send packets */
eb7a6ca6 3006static int et131x_send_packets(struct sk_buff *skb, struct net_device *netdev)
d2796743
ME
3007{
3008 int status = 0;
06709e96 3009 struct et131x_adapter *adapter = netdev_priv(netdev);
76981cf1 3010 struct tx_ring *tx_ring = &adapter->tx_ring;
d2796743
ME
3011
3012 /* Send these packets
3013 *
3014 * NOTE: The Linux Tx entry point is only given one packet at a time
3015 * to Tx, so the PacketCount and it's array used makes no sense here
3016 */
3017
3018 /* TCB is not available */
76981cf1 3019 if (tx_ring->used >= NUM_TCB) {
d2796743
ME
3020 /* NOTE: If there's an error on send, no need to queue the
3021 * packet under Linux; if we just send an error up to the
3022 * netif layer, it will resend the skb to us.
3023 */
3024 status = -ENOMEM;
3025 } else {
3026 /* We need to see if the link is up; if it's not, make the
3027 * netif layer think we're good and drop the packet
3028 */
c655dee9 3029 if ((adapter->flags & FMP_ADAPTER_FAIL_SEND_MASK) ||
d2796743
ME
3030 !netif_carrier_ok(netdev)) {
3031 dev_kfree_skb_any(skb);
3032 skb = NULL;
3033
3034 adapter->net_stats.tx_dropped++;
3035 } else {
3036 status = send_packet(skb, adapter);
3037 if (status != 0 && status != -ENOMEM) {
3038 /* On any other error, make netif think we're
3039 * OK and drop the packet
3040 */
3041 dev_kfree_skb_any(skb);
3042 skb = NULL;
3043 adapter->net_stats.tx_dropped++;
3044 }
3045 }
3046 }
3047 return status;
3048}
3049
26ef1021 3050/* free_send_packet - Recycle a struct tcb
d2796743
ME
3051 * @adapter: pointer to our adapter
3052 * @tcb: pointer to struct tcb
3053 *
3054 * Complete the packet if necessary
3055 * Assumption - Send spinlock has been acquired
3056 */
3057static inline void free_send_packet(struct et131x_adapter *adapter,
3058 struct tcb *tcb)
3059{
3060 unsigned long flags;
3061 struct tx_desc *desc = NULL;
3062 struct net_device_stats *stats = &adapter->net_stats;
76981cf1 3063 struct tx_ring *tx_ring = &adapter->tx_ring;
983e4b35 3064 u64 dma_addr;
d2796743 3065
c655dee9 3066 if (tcb->flags & FMP_DEST_BROAD)
d2796743 3067 atomic_inc(&adapter->stats.broadcast_pkts_xmtd);
c655dee9 3068 else if (tcb->flags & FMP_DEST_MULTI)
d2796743
ME
3069 atomic_inc(&adapter->stats.multicast_pkts_xmtd);
3070 else
3071 atomic_inc(&adapter->stats.unicast_pkts_xmtd);
3072
3073 if (tcb->skb) {
3074 stats->tx_bytes += tcb->skb->len;
3075
3076 /* Iterate through the TX descriptors on the ring
3077 * corresponding to this packet and umap the fragments
3078 * they point to
3079 */
3080 do {
76981cf1 3081 desc = tx_ring->tx_desc_ring +
57cc0279 3082 INDEX10(tcb->index_start);
d2796743 3083
998f6dfb 3084 dma_addr = desc->addr_lo;
983e4b35 3085 dma_addr |= (u64)desc->addr_hi << 32;
998f6dfb 3086
26dc751e 3087 dma_unmap_single(&adapter->pdev->dev,
998f6dfb 3088 dma_addr,
26dc751e 3089 desc->len_vlan, DMA_TO_DEVICE);
d2796743
ME
3090
3091 add_10bit(&tcb->index_start, 1);
3092 if (INDEX10(tcb->index_start) >=
3093 NUM_DESC_PER_RING_TX) {
3094 tcb->index_start &= ~ET_DMA10_MASK;
3095 tcb->index_start ^= ET_DMA10_WRAP;
3096 }
76981cf1 3097 } while (desc != tx_ring->tx_desc_ring + INDEX10(tcb->index));
d2796743
ME
3098
3099 dev_kfree_skb_any(tcb->skb);
3100 }
3101
3102 memset(tcb, 0, sizeof(struct tcb));
3103
3104 /* Add the TCB to the Ready Q */
3105 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3106
3107 adapter->net_stats.tx_packets++;
3108
76981cf1
ZG
3109 if (tx_ring->tcb_qtail)
3110 tx_ring->tcb_qtail->next = tcb;
d2796743
ME
3111 else
3112 /* Apparently ready Q is empty. */
76981cf1 3113 tx_ring->tcb_qhead = tcb;
d2796743 3114
76981cf1 3115 tx_ring->tcb_qtail = tcb;
d2796743
ME
3116
3117 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
76981cf1 3118 WARN_ON(tx_ring->used < 0);
d2796743
ME
3119}
3120
26ef1021 3121/* et131x_free_busy_send_packets - Free and complete the stopped active sends
d2796743
ME
3122 *
3123 * Assumption - Send spinlock has been acquired
3124 */
eb7a6ca6 3125static void et131x_free_busy_send_packets(struct et131x_adapter *adapter)
d2796743
ME
3126{
3127 struct tcb *tcb;
3128 unsigned long flags;
3129 u32 freed = 0;
76981cf1 3130 struct tx_ring *tx_ring = &adapter->tx_ring;
d2796743
ME
3131
3132 /* Any packets being sent? Check the first TCB on the send list */
3133 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3134
76981cf1 3135 tcb = tx_ring->send_head;
d2796743
ME
3136
3137 while (tcb != NULL && freed < NUM_TCB) {
3138 struct tcb *next = tcb->next;
3139
76981cf1 3140 tx_ring->send_head = next;
d2796743
ME
3141
3142 if (next == NULL)
76981cf1 3143 tx_ring->send_tail = NULL;
d2796743 3144
76981cf1 3145 tx_ring->used--;
d2796743
ME
3146
3147 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3148
3149 freed++;
3150 free_send_packet(adapter, tcb);
3151
3152 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3153
76981cf1 3154 tcb = tx_ring->send_head;
d2796743
ME
3155 }
3156
3157 WARN_ON(freed == NUM_TCB);
3158
3159 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3160
76981cf1 3161 tx_ring->used = 0;
d2796743
ME
3162}
3163
26ef1021 3164/* et131x_handle_send_interrupt - Interrupt handler for sending processing
d2796743
ME
3165 *
3166 * Re-claim the send resources, complete sends and get more to send from
3167 * the send wait queue.
3168 *
3169 * Assumption - Send spinlock has been acquired
3170 */
eb7a6ca6 3171static void et131x_handle_send_interrupt(struct et131x_adapter *adapter)
d2796743
ME
3172{
3173 unsigned long flags;
3174 u32 serviced;
3175 struct tcb *tcb;
3176 u32 index;
76981cf1 3177 struct tx_ring *tx_ring = &adapter->tx_ring;
d2796743
ME
3178
3179 serviced = readl(&adapter->regs->txdma.new_service_complete);
3180 index = INDEX10(serviced);
3181
3182 /* Has the ring wrapped? Process any descriptors that do not have
3183 * the same "wrap" indicator as the current completion indicator
3184 */
3185 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3186
76981cf1 3187 tcb = tx_ring->send_head;
d2796743
ME
3188
3189 while (tcb &&
3190 ((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
3191 index < INDEX10(tcb->index)) {
76981cf1
ZG
3192 tx_ring->used--;
3193 tx_ring->send_head = tcb->next;
d2796743 3194 if (tcb->next == NULL)
76981cf1 3195 tx_ring->send_tail = NULL;
d2796743
ME
3196
3197 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3198 free_send_packet(adapter, tcb);
3199 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3200
3201 /* Goto the next packet */
76981cf1 3202 tcb = tx_ring->send_head;
d2796743
ME
3203 }
3204 while (tcb &&
3205 !((serviced ^ tcb->index) & ET_DMA10_WRAP)
3206 && index > (tcb->index & ET_DMA10_MASK)) {
76981cf1
ZG
3207 tx_ring->used--;
3208 tx_ring->send_head = tcb->next;
d2796743 3209 if (tcb->next == NULL)
76981cf1 3210 tx_ring->send_tail = NULL;
d2796743
ME
3211
3212 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3213 free_send_packet(adapter, tcb);
3214 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3215
3216 /* Goto the next packet */
76981cf1 3217 tcb = tx_ring->send_head;
d2796743
ME
3218 }
3219
3220 /* Wake up the queue when we hit a low-water mark */
76981cf1 3221 if (tx_ring->used <= NUM_TCB / 3)
d2796743
ME
3222 netif_wake_queue(adapter->netdev);
3223
3224 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3225}
3226
d2796743
ME
3227static int et131x_get_settings(struct net_device *netdev,
3228 struct ethtool_cmd *cmd)
3229{
3230 struct et131x_adapter *adapter = netdev_priv(netdev);
3231
3232 return phy_ethtool_gset(adapter->phydev, cmd);
3233}
3234
3235static int et131x_set_settings(struct net_device *netdev,
3236 struct ethtool_cmd *cmd)
3237{
3238 struct et131x_adapter *adapter = netdev_priv(netdev);
3239
3240 return phy_ethtool_sset(adapter->phydev, cmd);
3241}
3242
3243static int et131x_get_regs_len(struct net_device *netdev)
3244{
3245#define ET131X_REGS_LEN 256
3246 return ET131X_REGS_LEN * sizeof(u32);
3247}
3248
3249static void et131x_get_regs(struct net_device *netdev,
3250 struct ethtool_regs *regs, void *regs_data)
3251{
3252 struct et131x_adapter *adapter = netdev_priv(netdev);
3253 struct address_map __iomem *aregs = adapter->regs;
3254 u32 *regs_buff = regs_data;
3255 u32 num = 0;
c8b0a484 3256 u16 tmp;
d2796743
ME
3257
3258 memset(regs_data, 0, et131x_get_regs_len(netdev));
3259
3260 regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
3261 adapter->pdev->device;
3262
3263 /* PHY regs */
c8b0a484
ME
3264 et131x_mii_read(adapter, MII_BMCR, &tmp);
3265 regs_buff[num++] = tmp;
3266 et131x_mii_read(adapter, MII_BMSR, &tmp);
3267 regs_buff[num++] = tmp;
3268 et131x_mii_read(adapter, MII_PHYSID1, &tmp);
3269 regs_buff[num++] = tmp;
3270 et131x_mii_read(adapter, MII_PHYSID2, &tmp);
3271 regs_buff[num++] = tmp;
3272 et131x_mii_read(adapter, MII_ADVERTISE, &tmp);
3273 regs_buff[num++] = tmp;
3274 et131x_mii_read(adapter, MII_LPA, &tmp);
3275 regs_buff[num++] = tmp;
3276 et131x_mii_read(adapter, MII_EXPANSION, &tmp);
3277 regs_buff[num++] = tmp;
d2796743 3278 /* Autoneg next page transmit reg */
c8b0a484
ME
3279 et131x_mii_read(adapter, 0x07, &tmp);
3280 regs_buff[num++] = tmp;
d2796743 3281 /* Link partner next page reg */
c8b0a484
ME
3282 et131x_mii_read(adapter, 0x08, &tmp);
3283 regs_buff[num++] = tmp;
3284 et131x_mii_read(adapter, MII_CTRL1000, &tmp);
3285 regs_buff[num++] = tmp;
3286 et131x_mii_read(adapter, MII_STAT1000, &tmp);
3287 regs_buff[num++] = tmp;
3288 et131x_mii_read(adapter, 0x0b, &tmp);
3289 regs_buff[num++] = tmp;
3290 et131x_mii_read(adapter, 0x0c, &tmp);
3291 regs_buff[num++] = tmp;
3292 et131x_mii_read(adapter, MII_MMD_CTRL, &tmp);
3293 regs_buff[num++] = tmp;
3294 et131x_mii_read(adapter, MII_MMD_DATA, &tmp);
3295 regs_buff[num++] = tmp;
3296 et131x_mii_read(adapter, MII_ESTATUS, &tmp);
3297 regs_buff[num++] = tmp;
3298
3299 et131x_mii_read(adapter, PHY_INDEX_REG, &tmp);
3300 regs_buff[num++] = tmp;
3301 et131x_mii_read(adapter, PHY_DATA_REG, &tmp);
3302 regs_buff[num++] = tmp;
3303 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG, &tmp);
3304 regs_buff[num++] = tmp;
3305 et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL, &tmp);
3306 regs_buff[num++] = tmp;
3307 et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL + 1, &tmp);
3308 regs_buff[num++] = tmp;
3309
3310 et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL, &tmp);
3311 regs_buff[num++] = tmp;
3312 et131x_mii_read(adapter, PHY_CONFIG, &tmp);
3313 regs_buff[num++] = tmp;
3314 et131x_mii_read(adapter, PHY_PHY_CONTROL, &tmp);
3315 regs_buff[num++] = tmp;
3316 et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &tmp);
3317 regs_buff[num++] = tmp;
3318 et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &tmp);
3319 regs_buff[num++] = tmp;
3320 et131x_mii_read(adapter, PHY_PHY_STATUS, &tmp);
3321 regs_buff[num++] = tmp;
3322 et131x_mii_read(adapter, PHY_LED_1, &tmp);
3323 regs_buff[num++] = tmp;
3324 et131x_mii_read(adapter, PHY_LED_2, &tmp);
3325 regs_buff[num++] = tmp;
d2796743
ME
3326
3327 /* Global regs */
3328 regs_buff[num++] = readl(&aregs->global.txq_start_addr);
3329 regs_buff[num++] = readl(&aregs->global.txq_end_addr);
3330 regs_buff[num++] = readl(&aregs->global.rxq_start_addr);
3331 regs_buff[num++] = readl(&aregs->global.rxq_end_addr);
3332 regs_buff[num++] = readl(&aregs->global.pm_csr);
3333 regs_buff[num++] = adapter->stats.interrupt_status;
3334 regs_buff[num++] = readl(&aregs->global.int_mask);
3335 regs_buff[num++] = readl(&aregs->global.int_alias_clr_en);
3336 regs_buff[num++] = readl(&aregs->global.int_status_alias);
3337 regs_buff[num++] = readl(&aregs->global.sw_reset);
3338 regs_buff[num++] = readl(&aregs->global.slv_timer);
3339 regs_buff[num++] = readl(&aregs->global.msi_config);
3340 regs_buff[num++] = readl(&aregs->global.loopback);
3341 regs_buff[num++] = readl(&aregs->global.watchdog_timer);
3342
3343 /* TXDMA regs */
3344 regs_buff[num++] = readl(&aregs->txdma.csr);
3345 regs_buff[num++] = readl(&aregs->txdma.pr_base_hi);
3346 regs_buff[num++] = readl(&aregs->txdma.pr_base_lo);
3347 regs_buff[num++] = readl(&aregs->txdma.pr_num_des);
3348 regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr);
3349 regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext);
3350 regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr);
3351 regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi);
3352 regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo);
3353 regs_buff[num++] = readl(&aregs->txdma.service_request);
3354 regs_buff[num++] = readl(&aregs->txdma.service_complete);
3355 regs_buff[num++] = readl(&aregs->txdma.cache_rd_index);
3356 regs_buff[num++] = readl(&aregs->txdma.cache_wr_index);
3357 regs_buff[num++] = readl(&aregs->txdma.tx_dma_error);
3358 regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt);
3359 regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt);
3360 regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt);
3361 regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt);
3362 regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt);
3363 regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt);
3364 regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt);
3365 regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt);
3366 regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt);
3367 regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt);
3368 regs_buff[num++] = readl(&aregs->txdma.new_service_complete);
3369 regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt);
3370
3371 /* RXDMA regs */
3372 regs_buff[num++] = readl(&aregs->rxdma.csr);
3373 regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi);
3374 regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo);
3375 regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done);
3376 regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time);
3377 regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr);
3378 regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext);
3379 regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr);
3380 regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi);
3381 regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo);
3382 regs_buff[num++] = readl(&aregs->rxdma.psr_num_des);
3383 regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset);
3384 regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset);
3385 regs_buff[num++] = readl(&aregs->rxdma.psr_access_index);
3386 regs_buff[num++] = readl(&aregs->rxdma.psr_min_des);
3387 regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo);
3388 regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi);
3389 regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des);
3390 regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset);
3391 regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset);
3392 regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index);
3393 regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des);
3394 regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo);
3395 regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi);
3396 regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des);
3397 regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset);
3398 regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset);
3399 regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index);
3400 regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des);
3401}
3402
d2796743
ME
3403static void et131x_get_drvinfo(struct net_device *netdev,
3404 struct ethtool_drvinfo *info)
3405{
3406 struct et131x_adapter *adapter = netdev_priv(netdev);
3407
7826d43f
JP
3408 strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
3409 strlcpy(info->version, DRIVER_VERSION, sizeof(info->version));
3410 strlcpy(info->bus_info, pci_name(adapter->pdev),
3411 sizeof(info->bus_info));
d2796743
ME
3412}
3413
3414static struct ethtool_ops et131x_ethtool_ops = {
3415 .get_settings = et131x_get_settings,
3416 .set_settings = et131x_set_settings,
3417 .get_drvinfo = et131x_get_drvinfo,
3418 .get_regs_len = et131x_get_regs_len,
3419 .get_regs = et131x_get_regs,
242187aa 3420 .get_link = ethtool_op_get_link,
d2796743 3421};
26ef1021 3422
15ae239d 3423/* et131x_hwaddr_init - set up the MAC Address on the ET1310 */
eb7a6ca6 3424static void et131x_hwaddr_init(struct et131x_adapter *adapter)
d2796743
ME
3425{
3426 /* If have our default mac from init and no mac address from
3427 * EEPROM then we need to generate the last octet and set it on the
3428 * device
3429 */
c14d01b8 3430 if (is_zero_ether_addr(adapter->rom_addr)) {
26ef1021 3431 /* We need to randomly generate the last octet so we
d2796743
ME
3432 * decrease our chances of setting the mac address to
3433 * same as another one of our cards in the system
3434 */
3435 get_random_bytes(&adapter->addr[5], 1);
26ef1021 3436 /* We have the default value in the register we are
d2796743
ME
3437 * working with so we need to copy the current
3438 * address into the permanent address
3439 */
3440 memcpy(adapter->rom_addr,
3441 adapter->addr, ETH_ALEN);
3442 } else {
3443 /* We do not have an override address, so set the
3444 * current address to the permanent address and add
3445 * it to the device
3446 */
3447 memcpy(adapter->addr,
3448 adapter->rom_addr, ETH_ALEN);
3449 }
3450}
3451
26ef1021 3452/* et131x_pci_init - initial PCI setup
d2796743
ME
3453 *
3454 * Perform the initial setup of PCI registers and if possible initialise
3455 * the MAC address. At this point the I/O registers have yet to be mapped
3456 */
3457static int et131x_pci_init(struct et131x_adapter *adapter,
12a2f3f3 3458 struct pci_dev *pdev)
d2796743 3459{
d14e3d05 3460 u16 max_payload;
d14e3d05
FR
3461 int i, rc;
3462
3463 rc = et131x_init_eeprom(adapter);
3464 if (rc < 0)
3465 goto out;
3466
532c5f69 3467 if (!pci_is_pcie(pdev)) {
d14e3d05
FR
3468 dev_err(&pdev->dev, "Missing PCIe capabilities\n");
3469 goto err_out;
3470 }
bf3313a1 3471
9db008d0 3472 /* Let's set up the PORT LOGIC Register. */
d2796743
ME
3473
3474 /* Program the Ack/Nak latency and replay timers */
9db008d0 3475 max_payload = pdev->pcie_mpss;
d2796743
ME
3476
3477 if (max_payload < 2) {
3478 static const u16 acknak[2] = { 0x76, 0xD0 };
3479 static const u16 replay[2] = { 0x1E0, 0x2ED };
3480
3481 if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK,
3482 acknak[max_payload])) {
3483 dev_err(&pdev->dev,
3484 "Could not write PCI config space for ACK/NAK\n");
d14e3d05 3485 goto err_out;
d2796743
ME
3486 }
3487 if (pci_write_config_word(pdev, ET1310_PCI_REPLAY,
3488 replay[max_payload])) {
3489 dev_err(&pdev->dev,
3490 "Could not write PCI config space for Replay Timer\n");
d14e3d05 3491 goto err_out;
d2796743
ME
3492 }
3493 }
3494
3495 /* l0s and l1 latency timers. We are using default values.
3496 * Representing 001 for L0s and 010 for L1
3497 */
3498 if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) {
3499 dev_err(&pdev->dev,
3500 "Could not write PCI config space for Latency Timers\n");
d14e3d05 3501 goto err_out;
d2796743
ME
3502 }
3503
3504 /* Change the max read size to 2k */
9db008d0 3505 if (pcie_set_readrq(pdev, 2048)) {
d2796743 3506 dev_err(&pdev->dev,
532c5f69 3507 "Couldn't change PCI config space for Max read size\n");
d14e3d05 3508 goto err_out;
d2796743
ME
3509 }
3510
3511 /* Get MAC address from config space if an eeprom exists, otherwise
3512 * the MAC address there will not be valid
3513 */
3514 if (!adapter->has_eeprom) {
3515 et131x_hwaddr_init(adapter);
3516 return 0;
3517 }
3518
3519 for (i = 0; i < ETH_ALEN; i++) {
3520 if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i,
3521 adapter->rom_addr + i)) {
3522 dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n");
d14e3d05 3523 goto err_out;
d2796743
ME
3524 }
3525 }
3526 memcpy(adapter->addr, adapter->rom_addr, ETH_ALEN);
d14e3d05
FR
3527out:
3528 return rc;
3529err_out:
3530 rc = -EIO;
3531 goto out;
d2796743
ME
3532}
3533
26ef1021 3534/* et131x_error_timer_handler
d2796743
ME
3535 * @data: timer-specific variable; here a pointer to our adapter structure
3536 *
3537 * The routine called when the error timer expires, to track the number of
3538 * recurring errors.
3539 */
eb7a6ca6 3540static void et131x_error_timer_handler(unsigned long data)
d2796743
ME
3541{
3542 struct et131x_adapter *adapter = (struct et131x_adapter *) data;
3543 struct phy_device *phydev = adapter->phydev;
3544
3545 if (et1310_in_phy_coma(adapter)) {
3546 /* Bring the device immediately out of coma, to
3547 * prevent it from sleeping indefinitely, this
26ef1021
ME
3548 * mechanism could be improved!
3549 */
d2796743
ME
3550 et1310_disable_phy_coma(adapter);
3551 adapter->boot_coma = 20;
3552 } else {
3553 et1310_update_macstat_host_counters(adapter);
3554 }
3555
3556 if (!phydev->link && adapter->boot_coma < 11)
3557 adapter->boot_coma++;
3558
3559 if (adapter->boot_coma == 10) {
3560 if (!phydev->link) {
3561 if (!et1310_in_phy_coma(adapter)) {
3562 /* NOTE - This was originally a 'sync with
3563 * interrupt'. How to do that under Linux?
3564 */
3565 et131x_enable_interrupts(adapter);
3566 et1310_enable_phy_coma(adapter);
3567 }
3568 }
3569 }
3570
3571 /* This is a periodic timer, so reschedule */
242187aa 3572 mod_timer(&adapter->error_timer, jiffies + TX_ERROR_PERIOD * HZ / 1000);
d2796743
ME
3573}
3574
15ae239d 3575/* et131x_adapter_memory_free - Free all memory allocated for use by Tx & Rx */
d959df0a
ME
3576static void et131x_adapter_memory_free(struct et131x_adapter *adapter)
3577{
d959df0a
ME
3578 et131x_tx_dma_memory_free(adapter);
3579 et131x_rx_dma_memory_free(adapter);
3580}
3581
26ef1021 3582/* et131x_adapter_memory_alloc
d2796743
ME
3583 * Allocate all the memory blocks for send, receive and others.
3584 */
eb7a6ca6 3585static int et131x_adapter_memory_alloc(struct et131x_adapter *adapter)
d2796743
ME
3586{
3587 int status;
3588
3589 /* Allocate memory for the Tx Ring */
3590 status = et131x_tx_dma_memory_alloc(adapter);
12a2f3f3 3591 if (status) {
d2796743
ME
3592 dev_err(&adapter->pdev->dev,
3593 "et131x_tx_dma_memory_alloc FAILED\n");
3594 return status;
3595 }
3596 /* Receive buffer memory allocation */
3597 status = et131x_rx_dma_memory_alloc(adapter);
12a2f3f3 3598 if (status) {
d2796743
ME
3599 dev_err(&adapter->pdev->dev,
3600 "et131x_rx_dma_memory_alloc FAILED\n");
3601 et131x_tx_dma_memory_free(adapter);
3602 return status;
3603 }
3604
3605 /* Init receive data structures */
3606 status = et131x_init_recv(adapter);
d959df0a 3607 if (status) {
12a2f3f3 3608 dev_err(&adapter->pdev->dev, "et131x_init_recv FAILED\n");
d959df0a 3609 et131x_adapter_memory_free(adapter);
d2796743
ME
3610 }
3611 return status;
3612}
3613
d2796743
ME
3614static void et131x_adjust_link(struct net_device *netdev)
3615{
3616 struct et131x_adapter *adapter = netdev_priv(netdev);
3617 struct phy_device *phydev = adapter->phydev;
3618
b96ab7cc
ME
3619 if (!phydev)
3620 return;
3621 if (phydev->link == adapter->link)
3622 return;
6903098c 3623
b96ab7cc
ME
3624 /* Check to see if we are in coma mode and if
3625 * so, disable it because we will not be able
3626 * to read PHY values until we are out.
3627 */
3628 if (et1310_in_phy_coma(adapter))
3629 et1310_disable_phy_coma(adapter);
6903098c 3630
b96ab7cc
ME
3631 adapter->link = phydev->link;
3632 phy_print_status(phydev);
6903098c 3633
b96ab7cc
ME
3634 if (phydev->link) {
3635 adapter->boot_coma = 20;
76af0140 3636 if (phydev->speed == SPEED_10) {
b96ab7cc
ME
3637 u16 register18;
3638
3639 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3640 &register18);
3641 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
3642 register18 | 0x4);
3643 et131x_mii_write(adapter, PHY_INDEX_REG,
3644 register18 | 0x8402);
3645 et131x_mii_write(adapter, PHY_DATA_REG,
3646 register18 | 511);
3647 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
3648 register18);
3649 }
6903098c 3650
b96ab7cc 3651 et1310_config_flow_control(adapter);
d2796743 3652
76af0140 3653 if (phydev->speed == SPEED_1000 &&
b96ab7cc
ME
3654 adapter->registry_jumbo_packet > 2048) {
3655 u16 reg;
d2796743 3656
b96ab7cc
ME
3657 et131x_mii_read(adapter, PHY_CONFIG, &reg);
3658 reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH;
3659 reg |= ET_PHY_CONFIG_FIFO_DEPTH_32;
3660 et131x_mii_write(adapter, PHY_CONFIG, reg);
3661 }
d2796743 3662
b96ab7cc
ME
3663 et131x_set_rx_dma_timer(adapter);
3664 et1310_config_mac_regs2(adapter);
3665 } else {
3666 adapter->boot_coma = 0;
d2796743 3667
b96ab7cc 3668 if (phydev->speed == SPEED_10) {
b96ab7cc
ME
3669 u16 register18;
3670
3671 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3672 &register18);
3673 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
3674 register18 | 0x4);
3675 et131x_mii_write(adapter, PHY_INDEX_REG,
3676 register18 | 0x8402);
3677 et131x_mii_write(adapter, PHY_DATA_REG,
3678 register18 | 511);
3679 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
3680 register18);
3681 }
d2796743 3682
b96ab7cc
ME
3683 /* Free the packets being actively sent & stopped */
3684 et131x_free_busy_send_packets(adapter);
d2796743 3685
b96ab7cc
ME
3686 /* Re-initialize the send structures */
3687 et131x_init_send(adapter);
3688
3689 /* Bring the device back to the state it was during
3690 * init prior to autonegotiation being complete. This
3691 * way, when we get the auto-neg complete interrupt,
3692 * we can complete init by calling config_mac_regs2.
3693 */
3694 et131x_soft_reset(adapter);
3695
3696 /* Setup ET1310 as per the documentation */
3697 et131x_adapter_setup(adapter);
d2796743 3698
b96ab7cc
ME
3699 /* perform reset of tx/rx */
3700 et131x_disable_txrx(netdev);
3701 et131x_enable_txrx(netdev);
d2796743
ME
3702 }
3703}
3704
3705static int et131x_mii_probe(struct net_device *netdev)
3706{
3707 struct et131x_adapter *adapter = netdev_priv(netdev);
3708 struct phy_device *phydev = NULL;
3709
3710 phydev = phy_find_first(adapter->mii_bus);
3711 if (!phydev) {
3712 dev_err(&adapter->pdev->dev, "no PHY found\n");
3713 return -ENODEV;
3714 }
3715
3716 phydev = phy_connect(netdev, dev_name(&phydev->dev),
f9a8f83b 3717 &et131x_adjust_link, PHY_INTERFACE_MODE_MII);
d2796743
ME
3718
3719 if (IS_ERR(phydev)) {
3720 dev_err(&adapter->pdev->dev, "Could not attach to PHY\n");
3721 return PTR_ERR(phydev);
3722 }
3723
3724 phydev->supported &= (SUPPORTED_10baseT_Half
3725 | SUPPORTED_10baseT_Full
3726 | SUPPORTED_100baseT_Half
3727 | SUPPORTED_100baseT_Full
3728 | SUPPORTED_Autoneg
3729 | SUPPORTED_MII
3730 | SUPPORTED_TP);
3731
3732 if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST)
3733 phydev->supported |= SUPPORTED_1000baseT_Full;
3734
3735 phydev->advertising = phydev->supported;
3736 adapter->phydev = phydev;
3737
12a2f3f3
ME
3738 dev_info(&adapter->pdev->dev,
3739 "attached PHY driver [%s] (mii_bus:phy_addr=%s)\n",
d2796743
ME
3740 phydev->drv->name, dev_name(&phydev->dev));
3741
3742 return 0;
3743}
3744
26ef1021 3745/* et131x_adapter_init
d2796743
ME
3746 *
3747 * Initialize the data structures for the et131x_adapter object and link
3748 * them together with the platform provided device structures.
3749 */
3750static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev,
12a2f3f3 3751 struct pci_dev *pdev)
d2796743
ME
3752{
3753 static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
3754
3755 struct et131x_adapter *adapter;
3756
3757 /* Allocate private adapter struct and copy in relevant information */
3758 adapter = netdev_priv(netdev);
3759 adapter->pdev = pci_dev_get(pdev);
3760 adapter->netdev = netdev;
3761
d2796743
ME
3762 /* Initialize spinlocks here */
3763 spin_lock_init(&adapter->lock);
3764 spin_lock_init(&adapter->tcb_send_qlock);
3765 spin_lock_init(&adapter->tcb_ready_qlock);
3766 spin_lock_init(&adapter->send_hw_lock);
3767 spin_lock_init(&adapter->rcv_lock);
d2796743 3768 spin_lock_init(&adapter->fbr_lock);
d2796743
ME
3769
3770 adapter->registry_jumbo_packet = 1514; /* 1514-9216 */
3771
3772 /* Set the MAC address to a default */
3773 memcpy(adapter->addr, default_mac, ETH_ALEN);
3774
3775 return adapter;
3776}
3777
26ef1021 3778/* et131x_pci_remove
d2796743
ME
3779 *
3780 * Registered in the pci_driver structure, this function is called when the
3781 * PCI subsystem detects that a PCI device which matches the information
3782 * contained in the pci_device_id table has been removed.
3783 */
596c5dd3 3784static void et131x_pci_remove(struct pci_dev *pdev)
d2796743
ME
3785{
3786 struct net_device *netdev = pci_get_drvdata(pdev);
3787 struct et131x_adapter *adapter = netdev_priv(netdev);
3788
3789 unregister_netdev(netdev);
fa9f0a65 3790 phy_disconnect(adapter->phydev);
d2796743 3791 mdiobus_unregister(adapter->mii_bus);
ddd4bd3e 3792 cancel_work_sync(&adapter->task);
d2796743
ME
3793 kfree(adapter->mii_bus->irq);
3794 mdiobus_free(adapter->mii_bus);
3795
3796 et131x_adapter_memory_free(adapter);
3797 iounmap(adapter->regs);
3798 pci_dev_put(pdev);
3799
3800 free_netdev(netdev);
3801 pci_release_regions(pdev);
3802 pci_disable_device(pdev);
3803}
3804
15ae239d 3805/* et131x_up - Bring up a device for use. */
eb7a6ca6 3806static void et131x_up(struct net_device *netdev)
a4d444bd
ME
3807{
3808 struct et131x_adapter *adapter = netdev_priv(netdev);
3809
3810 et131x_enable_txrx(netdev);
3811 phy_start(adapter->phydev);
3812}
3813
15ae239d 3814/* et131x_down - Bring down the device */
eb7a6ca6 3815static void et131x_down(struct net_device *netdev)
a4d444bd
ME
3816{
3817 struct et131x_adapter *adapter = netdev_priv(netdev);
3818
3819 /* Save the timestamp for the TX watchdog, prevent a timeout */
3820 netdev->trans_start = jiffies;
3821
3822 phy_stop(adapter->phydev);
3823 et131x_disable_txrx(netdev);
3824}
3825
d2796743
ME
3826#ifdef CONFIG_PM_SLEEP
3827static int et131x_suspend(struct device *dev)
3828{
3829 struct pci_dev *pdev = to_pci_dev(dev);
3830 struct net_device *netdev = pci_get_drvdata(pdev);
3831
3832 if (netif_running(netdev)) {
3833 netif_device_detach(netdev);
3834 et131x_down(netdev);
3835 pci_save_state(pdev);
3836 }
3837
3838 return 0;
3839}
3840
3841static int et131x_resume(struct device *dev)
3842{
3843 struct pci_dev *pdev = to_pci_dev(dev);
3844 struct net_device *netdev = pci_get_drvdata(pdev);
3845
3846 if (netif_running(netdev)) {
3847 pci_restore_state(pdev);
3848 et131x_up(netdev);
3849 netif_device_attach(netdev);
3850 }
3851
3852 return 0;
3853}
3854
2e9ff8d9
ME
3855static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume);
3856#define ET131X_PM_OPS (&et131x_pm_ops)
3857#else
3858#define ET131X_PM_OPS NULL
3859#endif
3860
26ef1021 3861/* et131x_isr - The Interrupt Service Routine for the driver.
d2796743
ME
3862 * @irq: the IRQ on which the interrupt was received.
3863 * @dev_id: device-specific info (here a pointer to a net_device struct)
3864 *
3865 * Returns a value indicating if the interrupt was handled.
3866 */
c0594ee9 3867static irqreturn_t et131x_isr(int irq, void *dev_id)
d2796743
ME
3868{
3869 bool handled = true;
3870 struct net_device *netdev = (struct net_device *)dev_id;
8f7fa96a
ZG
3871 struct et131x_adapter *adapter = netdev_priv(netdev);
3872 struct rx_ring *rx_ring = &adapter->rx_ring;
76981cf1 3873 struct tx_ring *tx_ring = &adapter->tx_ring;
d2796743
ME
3874 u32 status;
3875
3876 if (!netif_device_present(netdev)) {
3877 handled = false;
3878 goto out;
3879 }
3880
d2796743
ME
3881 /* If the adapter is in low power state, then it should not
3882 * recognize any interrupt
3883 */
3884
3885 /* Disable Device Interrupts */
3886 et131x_disable_interrupts(adapter);
3887
3888 /* Get a copy of the value in the interrupt status register
3889 * so we can process the interrupting section
3890 */
3891 status = readl(&adapter->regs->global.int_status);
3892
3893 if (adapter->flowcontrol == FLOW_TXONLY ||
3894 adapter->flowcontrol == FLOW_BOTH) {
3895 status &= ~INT_MASK_ENABLE;
3896 } else {
3897 status &= ~INT_MASK_ENABLE_NO_FLOW;
3898 }
3899
3900 /* Make sure this is our interrupt */
3901 if (!status) {
3902 handled = false;
3903 et131x_enable_interrupts(adapter);
3904 goto out;
3905 }
3906
3907 /* This is our interrupt, so process accordingly */
3908
3909 if (status & ET_INTR_WATCHDOG) {
76981cf1 3910 struct tcb *tcb = tx_ring->send_head;
d2796743
ME
3911
3912 if (tcb)
3913 if (++tcb->stale > 1)
3914 status |= ET_INTR_TXDMA_ISR;
3915
8f7fa96a 3916 if (rx_ring->unfinished_receives)
d2796743
ME
3917 status |= ET_INTR_RXDMA_XFR_DONE;
3918 else if (tcb == NULL)
3919 writel(0, &adapter->regs->global.watchdog_timer);
3920
3921 status &= ~ET_INTR_WATCHDOG;
3922 }
3923
12a2f3f3 3924 if (!status) {
d2796743
ME
3925 /* This interrupt has in some way been "handled" by
3926 * the ISR. Either it was a spurious Rx interrupt, or
3927 * it was a Tx interrupt that has been filtered by
3928 * the ISR.
3929 */
3930 et131x_enable_interrupts(adapter);
3931 goto out;
3932 }
3933
3934 /* We need to save the interrupt status value for use in our
3935 * DPC. We will clear the software copy of that in that
3936 * routine.
3937 */
3938 adapter->stats.interrupt_status = status;
3939
3940 /* Schedule the ISR handler as a bottom-half task in the
3941 * kernel's tq_immediate queue, and mark the queue for
3942 * execution
3943 */
3944 schedule_work(&adapter->task);
3945out:
3946 return IRQ_RETVAL(handled);
3947}
3948
26ef1021 3949/* et131x_isr_handler - The ISR handler
d2796743
ME
3950 *
3951 * scheduled to run in a deferred context by the ISR. This is where the ISR's
3952 * work actually gets done.
3953 */
eb7a6ca6 3954static void et131x_isr_handler(struct work_struct *work)
d2796743
ME
3955{
3956 struct et131x_adapter *adapter =
3957 container_of(work, struct et131x_adapter, task);
3958 u32 status = adapter->stats.interrupt_status;
3959 struct address_map __iomem *iomem = adapter->regs;
3960
26ef1021 3961 /* These first two are by far the most common. Once handled, we clear
d2796743
ME
3962 * their two bits in the status word. If the word is now zero, we
3963 * exit.
3964 */
3965 /* Handle all the completed Transmit interrupts */
3966 if (status & ET_INTR_TXDMA_ISR)
3967 et131x_handle_send_interrupt(adapter);
3968
3969 /* Handle all the completed Receives interrupts */
3970 if (status & ET_INTR_RXDMA_XFR_DONE)
3971 et131x_handle_recv_interrupt(adapter);
3972
6ff6280f 3973 status &= ~(ET_INTR_TXDMA_ERR | ET_INTR_RXDMA_XFR_DONE);
d2796743 3974
15ffde4d
ME
3975 if (!status)
3976 goto out;
d2796743 3977
15ffde4d
ME
3978 /* Handle the TXDMA Error interrupt */
3979 if (status & ET_INTR_TXDMA_ERR) {
15ffde4d 3980 /* Following read also clears the register (COR) */
12a2f3f3 3981 u32 txdma_err = readl(&iomem->txdma.tx_dma_error);
d2796743 3982
15ffde4d
ME
3983 dev_warn(&adapter->pdev->dev,
3984 "TXDMA_ERR interrupt, error = %d\n",
3985 txdma_err);
3986 }
d2796743 3987
15ffde4d
ME
3988 /* Handle Free Buffer Ring 0 and 1 Low interrupt */
3989 if (status & (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) {
26ef1021 3990 /* This indicates the number of unused buffers in RXDMA free
15ffde4d
ME
3991 * buffer ring 0 is <= the limit you programmed. Free buffer
3992 * resources need to be returned. Free buffers are consumed as
3993 * packets are passed from the network to the host. The host
3994 * becomes aware of the packets from the contents of the packet
3995 * status ring. This ring is queried when the packet done
3996 * interrupt occurs. Packets are then passed to the OS. When
3997 * the OS is done with the packets the resources can be
3998 * returned to the ET1310 for re-use. This interrupt is one
3999 * method of returning resources.
4000 */
d2796743 4001
26ef1021 4002 /* If the user has flow control on, then we will
15ffde4d
ME
4003 * send a pause packet, otherwise just exit
4004 */
4005 if (adapter->flowcontrol == FLOW_TXONLY ||
4006 adapter->flowcontrol == FLOW_BOTH) {
4007 u32 pm_csr;
d2796743 4008
26ef1021 4009 /* Tell the device to send a pause packet via the back
15ffde4d 4010 * pressure register (bp req and bp xon/xoff)
d2796743 4011 */
15ffde4d
ME
4012 pm_csr = readl(&iomem->global.pm_csr);
4013 if (!et1310_in_phy_coma(adapter))
4014 writel(3, &iomem->txmac.bp_ctrl);
d2796743 4015 }
15ffde4d 4016 }
d2796743 4017
15ffde4d
ME
4018 /* Handle Packet Status Ring Low Interrupt */
4019 if (status & ET_INTR_RXDMA_STAT_LOW) {
26ef1021 4020 /* Same idea as with the two Free Buffer Rings. Packets going
15ffde4d
ME
4021 * from the network to the host each consume a free buffer
4022 * resource and a packet status resource. These resoures are
4023 * passed to the OS. When the OS is done with the resources,
4024 * they need to be returned to the ET1310. This is one method
4025 * of returning the resources.
4026 */
4027 }
d2796743 4028
15ffde4d
ME
4029 /* Handle RXDMA Error Interrupt */
4030 if (status & ET_INTR_RXDMA_ERR) {
26ef1021 4031 /* The rxdma_error interrupt is sent when a time-out on a
15ffde4d
ME
4032 * request issued by the JAGCore has occurred or a completion is
4033 * returned with an un-successful status. In both cases the
4034 * request is considered complete. The JAGCore will
4035 * automatically re-try the request in question. Normally
4036 * information on events like these are sent to the host using
4037 * the "Advanced Error Reporting" capability. This interrupt is
4038 * another way of getting similar information. The only thing
4039 * required is to clear the interrupt by reading the ISR in the
4040 * global resources. The JAGCore will do a re-try on the
4041 * request. Normally you should never see this interrupt. If
4042 * you start to see this interrupt occurring frequently then
4043 * something bad has occurred. A reset might be the thing to do.
4044 */
4045 /* TRAP();*/
d2796743 4046
15ffde4d
ME
4047 dev_warn(&adapter->pdev->dev,
4048 "RxDMA_ERR interrupt, error %x\n",
4049 readl(&iomem->txmac.tx_test));
4050 }
d2796743 4051
15ffde4d
ME
4052 /* Handle the Wake on LAN Event */
4053 if (status & ET_INTR_WOL) {
26ef1021 4054 /* This is a secondary interrupt for wake on LAN. The driver
15ffde4d
ME
4055 * should never see this, if it does, something serious is
4056 * wrong. We will TRAP the message when we are in DBG mode,
4057 * otherwise we will ignore it.
4058 */
4059 dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n");
4060 }
d2796743 4061
15ffde4d
ME
4062 /* Let's move on to the TxMac */
4063 if (status & ET_INTR_TXMAC) {
4064 u32 err = readl(&iomem->txmac.err);
d2796743 4065
26ef1021 4066 /* When any of the errors occur and TXMAC generates an
15ffde4d
ME
4067 * interrupt to report these errors, it usually means that
4068 * TXMAC has detected an error in the data stream retrieved
4069 * from the on-chip Tx Q. All of these errors are catastrophic
4070 * and TXMAC won't be able to recover data when these errors
4071 * occur. In a nutshell, the whole Tx path will have to be reset
4072 * and re-configured afterwards.
4073 */
4074 dev_warn(&adapter->pdev->dev,
4075 "TXMAC interrupt, error 0x%08x\n",
4076 err);
d2796743 4077
26ef1021 4078 /* If we are debugging, we want to see this error, otherwise we
15ffde4d
ME
4079 * just want the device to be reset and continue
4080 */
4081 }
d2796743 4082
15ffde4d
ME
4083 /* Handle RXMAC Interrupt */
4084 if (status & ET_INTR_RXMAC) {
26ef1021 4085 /* These interrupts are catastrophic to the device, what we need
15ffde4d
ME
4086 * to do is disable the interrupts and set the flag to cause us
4087 * to reset so we can solve this issue.
4088 */
c655dee9 4089 /* MP_SET_FLAG( adapter, FMP_ADAPTER_HARDWARE_ERROR); */
d2796743 4090
15ffde4d
ME
4091 dev_warn(&adapter->pdev->dev,
4092 "RXMAC interrupt, error 0x%08x. Requesting reset\n",
4093 readl(&iomem->rxmac.err_reg));
d2796743 4094
15ffde4d
ME
4095 dev_warn(&adapter->pdev->dev,
4096 "Enable 0x%08x, Diag 0x%08x\n",
4097 readl(&iomem->rxmac.ctrl),
4098 readl(&iomem->rxmac.rxq_diag));
d2796743 4099
26ef1021 4100 /* If we are debugging, we want to see this error, otherwise we
15ffde4d
ME
4101 * just want the device to be reset and continue
4102 */
4103 }
d2796743 4104
15ffde4d
ME
4105 /* Handle MAC_STAT Interrupt */
4106 if (status & ET_INTR_MAC_STAT) {
26ef1021 4107 /* This means at least one of the un-masked counters in the
15ffde4d
ME
4108 * MAC_STAT block has rolled over. Use this to maintain the top,
4109 * software managed bits of the counter(s).
4110 */
4111 et1310_handle_macstat_interrupt(adapter);
d2796743 4112 }
15ffde4d
ME
4113
4114 /* Handle SLV Timeout Interrupt */
4115 if (status & ET_INTR_SLV_TIMEOUT) {
26ef1021 4116 /* This means a timeout has occurred on a read or write request
15ffde4d
ME
4117 * to one of the JAGCore registers. The Global Resources block
4118 * has terminated the request and on a read request, returned a
4119 * "fake" value. The most likely reasons are: Bad Address or the
4120 * addressed module is in a power-down state and can't respond.
4121 */
4122 }
4123out:
d2796743
ME
4124 et131x_enable_interrupts(adapter);
4125}
4126
15ae239d 4127/* et131x_stats - Return the current device statistics */
d2796743
ME
4128static struct net_device_stats *et131x_stats(struct net_device *netdev)
4129{
4130 struct et131x_adapter *adapter = netdev_priv(netdev);
4131 struct net_device_stats *stats = &adapter->net_stats;
4132 struct ce_stats *devstat = &adapter->stats;
4133
4134 stats->rx_errors = devstat->rx_length_errs +
4135 devstat->rx_align_errs +
4136 devstat->rx_crc_errs +
4137 devstat->rx_code_violations +
4138 devstat->rx_other_errs;
4139 stats->tx_errors = devstat->tx_max_pkt_errs;
4140 stats->multicast = devstat->multicast_pkts_rcvd;
4141 stats->collisions = devstat->tx_collisions;
4142
4143 stats->rx_length_errors = devstat->rx_length_errs;
4144 stats->rx_over_errors = devstat->rx_overflows;
4145 stats->rx_crc_errors = devstat->rx_crc_errs;
4146
4147 /* NOTE: These stats don't have corresponding values in CE_STATS,
4148 * so we're going to have to update these directly from within the
4149 * TX/RX code
4150 */
4151 /* stats->rx_bytes = 20; devstat->; */
4152 /* stats->tx_bytes = 20; devstat->; */
4153 /* stats->rx_dropped = devstat->; */
4154 /* stats->tx_dropped = devstat->; */
4155
4156 /* NOTE: Not used, can't find analogous statistics */
4157 /* stats->rx_frame_errors = devstat->; */
4158 /* stats->rx_fifo_errors = devstat->; */
4159 /* stats->rx_missed_errors = devstat->; */
4160
4161 /* stats->tx_aborted_errors = devstat->; */
4162 /* stats->tx_carrier_errors = devstat->; */
4163 /* stats->tx_fifo_errors = devstat->; */
4164 /* stats->tx_heartbeat_errors = devstat->; */
4165 /* stats->tx_window_errors = devstat->; */
4166 return stats;
4167}
4168
15ae239d 4169/* et131x_open - Open the device for use. */
eb7a6ca6 4170static int et131x_open(struct net_device *netdev)
d2796743 4171{
d2796743 4172 struct et131x_adapter *adapter = netdev_priv(netdev);
5f3eb881
FR
4173 struct pci_dev *pdev = adapter->pdev;
4174 unsigned int irq = pdev->irq;
4175 int result;
d2796743
ME
4176
4177 /* Start the timer to track NIC errors */
4178 init_timer(&adapter->error_timer);
4179 adapter->error_timer.expires = jiffies + TX_ERROR_PERIOD * HZ / 1000;
4180 adapter->error_timer.function = et131x_error_timer_handler;
4181 adapter->error_timer.data = (unsigned long)adapter;
4182 add_timer(&adapter->error_timer);
4183
bf3313a1 4184 result = request_irq(irq, et131x_isr,
4185 IRQF_SHARED, netdev->name, netdev);
d2796743 4186 if (result) {
5f3eb881 4187 dev_err(&pdev->dev, "could not register IRQ %d\n", irq);
d2796743
ME
4188 return result;
4189 }
4190
c655dee9 4191 adapter->flags |= FMP_ADAPTER_INTERRUPT_IN_USE;
d2796743
ME
4192
4193 et131x_up(netdev);
4194
4195 return result;
4196}
4197
15ae239d 4198/* et131x_close - Close the device */
eb7a6ca6 4199static int et131x_close(struct net_device *netdev)
d2796743
ME
4200{
4201 struct et131x_adapter *adapter = netdev_priv(netdev);
4202
4203 et131x_down(netdev);
4204
c655dee9 4205 adapter->flags &= ~FMP_ADAPTER_INTERRUPT_IN_USE;
5f3eb881 4206 free_irq(adapter->pdev->irq, netdev);
d2796743
ME
4207
4208 /* Stop the error timer */
4209 return del_timer_sync(&adapter->error_timer);
4210}
4211
26ef1021 4212/* et131x_ioctl - The I/O Control handler for the driver
d2796743
ME
4213 * @netdev: device on which the control request is being made
4214 * @reqbuf: a pointer to the IOCTL request buffer
4215 * @cmd: the IOCTL command code
d2796743 4216 */
09a3fc2b
ME
4217static int et131x_ioctl(struct net_device *netdev, struct ifreq *reqbuf,
4218 int cmd)
d2796743
ME
4219{
4220 struct et131x_adapter *adapter = netdev_priv(netdev);
4221
4222 if (!adapter->phydev)
4223 return -EINVAL;
4224
4225 return phy_mii_ioctl(adapter->phydev, reqbuf, cmd);
4226}
4227
26ef1021 4228/* et131x_set_packet_filter - Configures the Rx Packet filtering on the device
d2796743
ME
4229 * @adapter: pointer to our private adapter structure
4230 *
4231 * FIXME: lot of dups with MAC code
d2796743
ME
4232 */
4233static int et131x_set_packet_filter(struct et131x_adapter *adapter)
4234{
834d0ee3 4235 int filter = adapter->packet_filter;
d2796743 4236 int status = 0;
d2796743
ME
4237 u32 ctrl;
4238 u32 pf_ctrl;
4239
4240 ctrl = readl(&adapter->regs->rxmac.ctrl);
4241 pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl);
4242
4243 /* Default to disabled packet filtering. Enable it in the individual
4244 * case statements that require the device to filter something
4245 */
4246 ctrl |= 0x04;
4247
4248 /* Set us to be in promiscuous mode so we receive everything, this
4249 * is also true when we get a packet filter of 0
4250 */
4251 if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0)
4252 pf_ctrl &= ~7; /* Clear filter bits */
4253 else {
26ef1021 4254 /* Set us up with Multicast packet filtering. Three cases are
d2796743
ME
4255 * possible - (1) we have a multi-cast list, (2) we receive ALL
4256 * multicast entries or (3) we receive none.
4257 */
4258 if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST)
4259 pf_ctrl &= ~2; /* Multicast filter bit */
4260 else {
4261 et1310_setup_device_for_multicast(adapter);
4262 pf_ctrl |= 2;
4263 ctrl &= ~0x04;
4264 }
4265
4266 /* Set us up with Unicast packet filtering */
4267 if (filter & ET131X_PACKET_TYPE_DIRECTED) {
4268 et1310_setup_device_for_unicast(adapter);
4269 pf_ctrl |= 4;
4270 ctrl &= ~0x04;
4271 }
4272
4273 /* Set us up with Broadcast packet filtering */
4274 if (filter & ET131X_PACKET_TYPE_BROADCAST) {
4275 pf_ctrl |= 1; /* Broadcast filter bit */
4276 ctrl &= ~0x04;
4277 } else
4278 pf_ctrl &= ~1;
4279
4280 /* Setup the receive mac configuration registers - Packet
4281 * Filter control + the enable / disable for packet filter
4282 * in the control reg.
4283 */
4284 writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl);
4285 writel(ctrl, &adapter->regs->rxmac.ctrl);
4286 }
4287 return status;
4288}
4289
15ae239d 4290/* et131x_multicast - The handler to configure multicasting on the interface */
d2796743
ME
4291static void et131x_multicast(struct net_device *netdev)
4292{
4293 struct et131x_adapter *adapter = netdev_priv(netdev);
834d0ee3 4294 int packet_filter;
d2796743
ME
4295 unsigned long flags;
4296 struct netdev_hw_addr *ha;
4297 int i;
4298
4299 spin_lock_irqsave(&adapter->lock, flags);
4300
4301 /* Before we modify the platform-independent filter flags, store them
4302 * locally. This allows us to determine if anything's changed and if
4303 * we even need to bother the hardware
4304 */
4305 packet_filter = adapter->packet_filter;
4306
4307 /* Clear the 'multicast' flag locally; because we only have a single
4308 * flag to check multicast, and multiple multicast addresses can be
4309 * set, this is the easiest way to determine if more than one
4310 * multicast address is being set.
4311 */
4312 packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
4313
4314 /* Check the net_device flags and set the device independent flags
4315 * accordingly
4316 */
4317
4318 if (netdev->flags & IFF_PROMISC)
4319 adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS;
4320 else
4321 adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS;
4322
4323 if (netdev->flags & IFF_ALLMULTI)
4324 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
4325
4326 if (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST)
4327 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
4328
4329 if (netdev_mc_count(netdev) < 1) {
4330 adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST;
4331 adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
4332 } else
4333 adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST;
4334
4335 /* Set values in the private adapter struct */
4336 i = 0;
4337 netdev_for_each_mc_addr(ha, netdev) {
4338 if (i == NIC_MAX_MCAST_LIST)
4339 break;
4340 memcpy(adapter->multicast_list[i++], ha->addr, ETH_ALEN);
4341 }
4342 adapter->multicast_addr_count = i;
4343
4344 /* Are the new flags different from the previous ones? If not, then no
4345 * action is required
4346 *
4347 * NOTE - This block will always update the multicast_list with the
4348 * hardware, even if the addresses aren't the same.
4349 */
15ae239d 4350 if (packet_filter != adapter->packet_filter)
d2796743 4351 et131x_set_packet_filter(adapter);
15ae239d 4352
d2796743
ME
4353 spin_unlock_irqrestore(&adapter->lock, flags);
4354}
4355
15ae239d 4356/* et131x_tx - The handler to tx a packet on the device */
d2796743
ME
4357static int et131x_tx(struct sk_buff *skb, struct net_device *netdev)
4358{
4359 int status = 0;
06709e96 4360 struct et131x_adapter *adapter = netdev_priv(netdev);
76981cf1 4361 struct tx_ring *tx_ring = &adapter->tx_ring;
06709e96
ME
4362
4363 /* stop the queue if it's getting full */
76981cf1 4364 if (tx_ring->used >= NUM_TCB - 1 && !netif_queue_stopped(netdev))
06709e96 4365 netif_stop_queue(netdev);
d2796743
ME
4366
4367 /* Save the timestamp for the TX timeout watchdog */
4368 netdev->trans_start = jiffies;
4369
4370 /* Call the device-specific data Tx routine */
4371 status = et131x_send_packets(skb, netdev);
4372
4373 /* Check status and manage the netif queue if necessary */
4374 if (status != 0) {
09a3fc2b 4375 if (status == -ENOMEM)
d2796743 4376 status = NETDEV_TX_BUSY;
09a3fc2b 4377 else
d2796743 4378 status = NETDEV_TX_OK;
d2796743
ME
4379 }
4380 return status;
4381}
4382
26ef1021 4383/* et131x_tx_timeout - Timeout handler
d2796743
ME
4384 *
4385 * The handler called when a Tx request times out. The timeout period is
4386 * specified by the 'tx_timeo" element in the net_device structure (see
4387 * et131x_alloc_device() to see how this value is set).
4388 */
4389static void et131x_tx_timeout(struct net_device *netdev)
4390{
4391 struct et131x_adapter *adapter = netdev_priv(netdev);
76981cf1 4392 struct tx_ring *tx_ring = &adapter->tx_ring;
d2796743
ME
4393 struct tcb *tcb;
4394 unsigned long flags;
4395
4396 /* If the device is closed, ignore the timeout */
c655dee9 4397 if (~(adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE))
d2796743
ME
4398 return;
4399
4400 /* Any nonrecoverable hardware error?
4401 * Checks adapter->flags for any failure in phy reading
4402 */
c655dee9 4403 if (adapter->flags & FMP_ADAPTER_NON_RECOVER_ERROR)
d2796743
ME
4404 return;
4405
4406 /* Hardware failure? */
c655dee9 4407 if (adapter->flags & FMP_ADAPTER_HARDWARE_ERROR) {
d2796743
ME
4408 dev_err(&adapter->pdev->dev, "hardware error - reset\n");
4409 return;
4410 }
4411
4412 /* Is send stuck? */
4413 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
4414
76981cf1 4415 tcb = tx_ring->send_head;
d2796743
ME
4416
4417 if (tcb != NULL) {
4418 tcb->count++;
4419
4420 if (tcb->count > NIC_SEND_HANG_THRESHOLD) {
4421 spin_unlock_irqrestore(&adapter->tcb_send_qlock,
4422 flags);
4423
4424 dev_warn(&adapter->pdev->dev,
4425 "Send stuck - reset. tcb->WrIndex %x, flags 0x%08x\n",
4426 tcb->index,
4427 tcb->flags);
4428
4429 adapter->net_stats.tx_errors++;
4430
4431 /* perform reset of tx/rx */
4432 et131x_disable_txrx(netdev);
4433 et131x_enable_txrx(netdev);
4434 return;
4435 }
4436 }
4437
4438 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
4439}
4440
15ae239d 4441/* et131x_change_mtu - The handler called to change the MTU for the device */
d2796743
ME
4442static int et131x_change_mtu(struct net_device *netdev, int new_mtu)
4443{
4444 int result = 0;
4445 struct et131x_adapter *adapter = netdev_priv(netdev);
4446
4447 /* Make sure the requested MTU is valid */
4448 if (new_mtu < 64 || new_mtu > 9216)
4449 return -EINVAL;
4450
4451 et131x_disable_txrx(netdev);
4452 et131x_handle_send_interrupt(adapter);
4453 et131x_handle_recv_interrupt(adapter);
4454
4455 /* Set the new MTU */
4456 netdev->mtu = new_mtu;
4457
4458 /* Free Rx DMA memory */
4459 et131x_adapter_memory_free(adapter);
4460
4461 /* Set the config parameter for Jumbo Packet support */
4462 adapter->registry_jumbo_packet = new_mtu + 14;
4463 et131x_soft_reset(adapter);
4464
4465 /* Alloc and init Rx DMA memory */
4466 result = et131x_adapter_memory_alloc(adapter);
4467 if (result != 0) {
4468 dev_warn(&adapter->pdev->dev,
4469 "Change MTU failed; couldn't re-alloc DMA memory\n");
4470 return result;
4471 }
4472
4473 et131x_init_send(adapter);
4474
4475 et131x_hwaddr_init(adapter);
4476 memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
4477
4478 /* Init the device with the new settings */
4479 et131x_adapter_setup(adapter);
4480
4481 et131x_enable_txrx(netdev);
4482
4483 return result;
4484}
4485
15ae239d 4486/* et131x_set_mac_addr - handler to change the MAC address for the device */
d2796743
ME
4487static int et131x_set_mac_addr(struct net_device *netdev, void *new_mac)
4488{
4489 int result = 0;
4490 struct et131x_adapter *adapter = netdev_priv(netdev);
4491 struct sockaddr *address = new_mac;
4492
d2796743
ME
4493 if (adapter == NULL)
4494 return -ENODEV;
4495
4496 /* Make sure the requested MAC is valid */
4497 if (!is_valid_ether_addr(address->sa_data))
d8aa3e26 4498 return -EADDRNOTAVAIL;
d2796743
ME
4499
4500 et131x_disable_txrx(netdev);
4501 et131x_handle_send_interrupt(adapter);
4502 et131x_handle_recv_interrupt(adapter);
4503
4504 /* Set the new MAC */
4505 /* netdev->set_mac_address = &new_mac; */
4506
4507 memcpy(netdev->dev_addr, address->sa_data, netdev->addr_len);
4508
e58b89da
TY
4509 netdev_info(netdev, "Setting MAC address to %pM\n",
4510 netdev->dev_addr);
d2796743
ME
4511
4512 /* Free Rx DMA memory */
4513 et131x_adapter_memory_free(adapter);
4514
4515 et131x_soft_reset(adapter);
4516
4517 /* Alloc and init Rx DMA memory */
4518 result = et131x_adapter_memory_alloc(adapter);
4519 if (result != 0) {
4520 dev_err(&adapter->pdev->dev,
4521 "Change MAC failed; couldn't re-alloc DMA memory\n");
4522 return result;
4523 }
4524
4525 et131x_init_send(adapter);
4526
4527 et131x_hwaddr_init(adapter);
4528
4529 /* Init the device with the new settings */
4530 et131x_adapter_setup(adapter);
4531
4532 et131x_enable_txrx(netdev);
4533
4534 return result;
4535}
4536
4537static const struct net_device_ops et131x_netdev_ops = {
4538 .ndo_open = et131x_open,
4539 .ndo_stop = et131x_close,
4540 .ndo_start_xmit = et131x_tx,
aa77677e 4541 .ndo_set_rx_mode = et131x_multicast,
d2796743
ME
4542 .ndo_tx_timeout = et131x_tx_timeout,
4543 .ndo_change_mtu = et131x_change_mtu,
4544 .ndo_set_mac_address = et131x_set_mac_addr,
4545 .ndo_validate_addr = eth_validate_addr,
4546 .ndo_get_stats = et131x_stats,
4547 .ndo_do_ioctl = et131x_ioctl,
4548};
4549
26ef1021 4550/* et131x_pci_setup - Perform device initialization
5da2b158
ME
4551 * @pdev: a pointer to the device's pci_dev structure
4552 * @ent: this device's entry in the pci_device_id table
4553 *
5da2b158
ME
4554 * Registered in the pci_driver structure, this function is called when the
4555 * PCI subsystem finds a new PCI device which matches the information
4556 * contained in the pci_device_id table. This routine is the equivalent to
4557 * a device insertion routine.
4558 */
fe5c49b3 4559static int et131x_pci_setup(struct pci_dev *pdev,
12a2f3f3 4560 const struct pci_device_id *ent)
5da2b158 4561{
5da2b158
ME
4562 struct net_device *netdev;
4563 struct et131x_adapter *adapter;
fa9f0a65 4564 int rc;
5da2b158
ME
4565 int ii;
4566
fa9f0a65
FR
4567 rc = pci_enable_device(pdev);
4568 if (rc < 0) {
5da2b158 4569 dev_err(&pdev->dev, "pci_enable_device() failed\n");
fa9f0a65 4570 goto out;
5da2b158
ME
4571 }
4572
4573 /* Perform some basic PCI checks */
4574 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4575 dev_err(&pdev->dev, "Can't find PCI device's base address\n");
fa9f0a65 4576 rc = -ENODEV;
5da2b158
ME
4577 goto err_disable;
4578 }
4579
fa9f0a65
FR
4580 rc = pci_request_regions(pdev, DRIVER_NAME);
4581 if (rc < 0) {
5da2b158
ME
4582 dev_err(&pdev->dev, "Can't get PCI resources\n");
4583 goto err_disable;
4584 }
4585
4586 pci_set_master(pdev);
4587
4588 /* Check the DMA addressing support of this device */
e22f0e3f
RK
4589 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
4590 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32))) {
5da2b158 4591 dev_err(&pdev->dev, "No usable DMA addressing method\n");
fa9f0a65 4592 rc = -EIO;
5da2b158
ME
4593 goto err_release_res;
4594 }
4595
4596 /* Allocate netdev and private adapter structs */
fa9f0a65 4597 netdev = alloc_etherdev(sizeof(struct et131x_adapter));
5da2b158
ME
4598 if (!netdev) {
4599 dev_err(&pdev->dev, "Couldn't alloc netdev struct\n");
fa9f0a65 4600 rc = -ENOMEM;
5da2b158
ME
4601 goto err_release_res;
4602 }
4603
fa9f0a65
FR
4604 netdev->watchdog_timeo = ET131X_TX_TIMEOUT;
4605 netdev->netdev_ops = &et131x_netdev_ops;
4606
5da2b158 4607 SET_NETDEV_DEV(netdev, &pdev->dev);
a6e28b34 4608 SET_ETHTOOL_OPS(netdev, &et131x_ethtool_ops);
5da2b158
ME
4609
4610 adapter = et131x_adapter_init(netdev, pdev);
4611
fa9f0a65
FR
4612 rc = et131x_pci_init(adapter, pdev);
4613 if (rc < 0)
4614 goto err_free_dev;
5da2b158
ME
4615
4616 /* Map the bus-relative registers to system virtual memory */
4617 adapter->regs = pci_ioremap_bar(pdev, 0);
4618 if (!adapter->regs) {
4619 dev_err(&pdev->dev, "Cannot map device registers\n");
fa9f0a65 4620 rc = -ENOMEM;
5da2b158
ME
4621 goto err_free_dev;
4622 }
4623
4624 /* If Phy COMA mode was enabled when we went down, disable it here. */
4625 writel(ET_PMCSR_INIT, &adapter->regs->global.pm_csr);
4626
4627 /* Issue a global reset to the et1310 */
4628 et131x_soft_reset(adapter);
4629
4630 /* Disable all interrupts (paranoid) */
4631 et131x_disable_interrupts(adapter);
4632
4633 /* Allocate DMA memory */
fa9f0a65
FR
4634 rc = et131x_adapter_memory_alloc(adapter);
4635 if (rc < 0) {
5da2b158
ME
4636 dev_err(&pdev->dev, "Could not alloc adapater memory (DMA)\n");
4637 goto err_iounmap;
4638 }
4639
4640 /* Init send data structures */
4641 et131x_init_send(adapter);
4642
4643 /* Set up the task structure for the ISR's deferred handler */
4644 INIT_WORK(&adapter->task, et131x_isr_handler);
4645
4646 /* Copy address into the net_device struct */
4647 memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
4648
4649 /* Init variable for counting how long we do not have link status */
4650 adapter->boot_coma = 0;
4651 et1310_disable_phy_coma(adapter);
4652
fa9f0a65
FR
4653 rc = -ENOMEM;
4654
5da2b158
ME
4655 /* Setup the mii_bus struct */
4656 adapter->mii_bus = mdiobus_alloc();
4657 if (!adapter->mii_bus) {
4658 dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n");
4659 goto err_mem_free;
4660 }
4661
4662 adapter->mii_bus->name = "et131x_eth_mii";
4663 snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x",
4664 (adapter->pdev->bus->number << 8) | adapter->pdev->devfn);
4665 adapter->mii_bus->priv = netdev;
4666 adapter->mii_bus->read = et131x_mdio_read;
4667 adapter->mii_bus->write = et131x_mdio_write;
4668 adapter->mii_bus->reset = et131x_mdio_reset;
78110bb8
JP
4669 adapter->mii_bus->irq = kmalloc_array(PHY_MAX_ADDR, sizeof(int),
4670 GFP_KERNEL);
4671 if (!adapter->mii_bus->irq)
5da2b158 4672 goto err_mdio_free;
5da2b158
ME
4673
4674 for (ii = 0; ii < PHY_MAX_ADDR; ii++)
4675 adapter->mii_bus->irq[ii] = PHY_POLL;
4676
fa9f0a65
FR
4677 rc = mdiobus_register(adapter->mii_bus);
4678 if (rc < 0) {
5da2b158 4679 dev_err(&pdev->dev, "failed to register MII bus\n");
5da2b158
ME
4680 goto err_mdio_free_irq;
4681 }
4682
fa9f0a65
FR
4683 rc = et131x_mii_probe(netdev);
4684 if (rc < 0) {
5da2b158
ME
4685 dev_err(&pdev->dev, "failed to probe MII bus\n");
4686 goto err_mdio_unregister;
4687 }
4688
4689 /* Setup et1310 as per the documentation */
4690 et131x_adapter_setup(adapter);
4691
4692 /* We can enable interrupts now
4693 *
4694 * NOTE - Because registration of interrupt handler is done in the
4695 * device's open(), defer enabling device interrupts to that
4696 * point
4697 */
4698
4699 /* Register the net_device struct with the Linux network layer */
fa9f0a65
FR
4700 rc = register_netdev(netdev);
4701 if (rc < 0) {
5da2b158 4702 dev_err(&pdev->dev, "register_netdev() failed\n");
fa9f0a65 4703 goto err_phy_disconnect;
5da2b158
ME
4704 }
4705
4706 /* Register the net_device struct with the PCI subsystem. Save a copy
4707 * of the PCI config space for this device now that the device has
4708 * been initialized, just in case it needs to be quickly restored.
4709 */
4710 pci_set_drvdata(pdev, netdev);
fa9f0a65
FR
4711out:
4712 return rc;
5da2b158 4713
fa9f0a65
FR
4714err_phy_disconnect:
4715 phy_disconnect(adapter->phydev);
5da2b158
ME
4716err_mdio_unregister:
4717 mdiobus_unregister(adapter->mii_bus);
4718err_mdio_free_irq:
4719 kfree(adapter->mii_bus->irq);
4720err_mdio_free:
4721 mdiobus_free(adapter->mii_bus);
4722err_mem_free:
4723 et131x_adapter_memory_free(adapter);
4724err_iounmap:
4725 iounmap(adapter->regs);
4726err_free_dev:
4727 pci_dev_put(pdev);
4728 free_netdev(netdev);
4729err_release_res:
4730 pci_release_regions(pdev);
4731err_disable:
4732 pci_disable_device(pdev);
fa9f0a65 4733 goto out;
5da2b158
ME
4734}
4735
41e043fc 4736static const struct pci_device_id et131x_pci_table[] = {
5da2b158
ME
4737 { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL},
4738 { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL},
4739 {0,}
4740};
4741MODULE_DEVICE_TABLE(pci, et131x_pci_table);
4742
4743static struct pci_driver et131x_driver = {
4744 .name = DRIVER_NAME,
4745 .id_table = et131x_pci_table,
4746 .probe = et131x_pci_setup,
0b5e4092 4747 .remove = et131x_pci_remove,
5da2b158
ME
4748 .driver.pm = ET131X_PM_OPS,
4749};
4750
89812b1f 4751module_pci_driver(et131x_driver);
This page took 0.549625 seconds and 5 git commands to generate.