staging: et131x: Remove spinlock fbr_lock
[deliverable/linux.git] / drivers / staging / et131x / et131x.c
CommitLineData
26ef1021 1/* Agere Systems Inc.
d2796743
ME
2 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
3 *
4 * Copyright © 2005 Agere Systems Inc.
5 * All rights reserved.
6 * http://www.agere.com
7 *
8 * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
9 *
10 *------------------------------------------------------------------------------
11 *
12 * SOFTWARE LICENSE
13 *
14 * This software is provided subject to the following terms and conditions,
15 * which you should read carefully before using the software. Using this
16 * software indicates your acceptance of these terms and conditions. If you do
17 * not agree with these terms and conditions, do not use the software.
18 *
19 * Copyright © 2005 Agere Systems Inc.
20 * All rights reserved.
21 *
22 * Redistribution and use in source or binary forms, with or without
23 * modifications, are permitted provided that the following conditions are met:
24 *
25 * . Redistributions of source code must retain the above copyright notice, this
26 * list of conditions and the following Disclaimer as comments in the code as
27 * well as in the documentation and/or other materials provided with the
28 * distribution.
29 *
30 * . Redistributions in binary form must reproduce the above copyright notice,
31 * this list of conditions and the following Disclaimer in the documentation
32 * and/or other materials provided with the distribution.
33 *
34 * . Neither the name of Agere Systems Inc. nor the names of the contributors
35 * may be used to endorse or promote products derived from this software
36 * without specific prior written permission.
37 *
38 * Disclaimer
39 *
40 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
41 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
42 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
43 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
44 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
45 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
46 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
48 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
50 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
51 * DAMAGE.
d2796743
ME
52 */
53
e58b89da
TY
54#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
55
d2796743 56#include <linux/pci.h>
d2796743
ME
57#include <linux/module.h>
58#include <linux/types.h>
59#include <linux/kernel.h>
60
61#include <linux/sched.h>
62#include <linux/ptrace.h>
63#include <linux/slab.h>
64#include <linux/ctype.h>
65#include <linux/string.h>
66#include <linux/timer.h>
67#include <linux/interrupt.h>
68#include <linux/in.h>
69#include <linux/delay.h>
70#include <linux/bitops.h>
71#include <linux/io.h>
d2796743
ME
72
73#include <linux/netdevice.h>
74#include <linux/etherdevice.h>
75#include <linux/skbuff.h>
76#include <linux/if_arp.h>
77#include <linux/ioport.h>
78#include <linux/crc32.h>
79#include <linux/random.h>
80#include <linux/phy.h>
81
d2796743
ME
82#include "et131x.h"
83
84MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
85MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
86MODULE_LICENSE("Dual BSD/GPL");
397d3e60 87MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver for the ET1310 by Agere Systems");
d2796743 88
bd156af6
ME
89/* EEPROM defines */
90#define MAX_NUM_REGISTER_POLLS 1000
91#define MAX_NUM_WRITE_RETRIES 2
92
93/* MAC defines */
94#define COUNTER_WRAP_16_BIT 0x10000
95#define COUNTER_WRAP_12_BIT 0x1000
96
97/* PCI defines */
98#define INTERNAL_MEM_SIZE 0x400 /* 1024 of internal memory */
99#define INTERNAL_MEM_RX_OFFSET 0x1FF /* 50% Tx, 50% Rx */
100
101/* ISR defines */
26ef1021 102/* For interrupts, normal running is:
bd156af6
ME
103 * rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
104 * watchdog_interrupt & txdma_xfer_done
105 *
106 * In both cases, when flow control is enabled for either Tx or bi-direction,
107 * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
108 * buffer rings are running low.
109 */
110#define INT_MASK_DISABLE 0xffffffff
111
112/* NOTE: Masking out MAC_STAT Interrupt for now...
113 * #define INT_MASK_ENABLE 0xfff6bf17
114 * #define INT_MASK_ENABLE_NO_FLOW 0xfff6bfd7
115 */
116#define INT_MASK_ENABLE 0xfffebf17
117#define INT_MASK_ENABLE_NO_FLOW 0xfffebfd7
118
1c1c1b5f
ME
119/* General defines */
120/* Packet and header sizes */
121#define NIC_MIN_PACKET_SIZE 60
122
123/* Multicast list size */
124#define NIC_MAX_MCAST_LIST 128
125
126/* Supported Filters */
127#define ET131X_PACKET_TYPE_DIRECTED 0x0001
128#define ET131X_PACKET_TYPE_MULTICAST 0x0002
129#define ET131X_PACKET_TYPE_BROADCAST 0x0004
130#define ET131X_PACKET_TYPE_PROMISCUOUS 0x0008
131#define ET131X_PACKET_TYPE_ALL_MULTICAST 0x0010
132
133/* Tx Timeout */
134#define ET131X_TX_TIMEOUT (1 * HZ)
135#define NIC_SEND_HANG_THRESHOLD 0
136
137/* MP_TCB flags */
c655dee9
ME
138#define FMP_DEST_MULTI 0x00000001
139#define FMP_DEST_BROAD 0x00000002
1c1c1b5f
ME
140
141/* MP_ADAPTER flags */
c655dee9 142#define FMP_ADAPTER_INTERRUPT_IN_USE 0x00000008
1c1c1b5f
ME
143
144/* MP_SHARED flags */
c655dee9 145#define FMP_ADAPTER_LOWER_POWER 0x00200000
1c1c1b5f 146
c655dee9
ME
147#define FMP_ADAPTER_NON_RECOVER_ERROR 0x00800000
148#define FMP_ADAPTER_HARDWARE_ERROR 0x04000000
1c1c1b5f 149
c655dee9 150#define FMP_ADAPTER_FAIL_SEND_MASK 0x3ff00000
1c1c1b5f
ME
151
152/* Some offsets in PCI config space that are actually used. */
1c1c1b5f
ME
153#define ET1310_PCI_MAC_ADDRESS 0xA4
154#define ET1310_PCI_EEPROM_STATUS 0xB2
155#define ET1310_PCI_ACK_NACK 0xC0
156#define ET1310_PCI_REPLAY 0xC2
157#define ET1310_PCI_L0L1LATENCY 0xCF
158
26d19bf6 159/* PCI Product IDs */
1c1c1b5f
ME
160#define ET131X_PCI_DEVICE_ID_GIG 0xED00 /* ET1310 1000 Base-T 8 */
161#define ET131X_PCI_DEVICE_ID_FAST 0xED01 /* ET1310 100 Base-T */
162
163/* Define order of magnitude converter */
164#define NANO_IN_A_MICRO 1000
165
166#define PARM_RX_NUM_BUFS_DEF 4
167#define PARM_RX_TIME_INT_DEF 10
168#define PARM_RX_MEM_END_DEF 0x2bc
169#define PARM_TX_TIME_INT_DEF 40
170#define PARM_TX_NUM_BUFS_DEF 4
171#define PARM_DMA_CACHE_DEF 0
172
562550b0 173/* RX defines */
788ca84a
ME
174#define FBR_CHUNKS 32
175#define MAX_DESC_PER_RING_RX 1024
562550b0
ME
176
177/* number of RFDs - default and min */
562550b0 178#define RFD_LOW_WATER_MARK 40
562550b0 179#define NIC_DEFAULT_NUM_RFD 1024
6abafc16 180#define NUM_FBRS 2
562550b0 181
b60e6d0a 182#define MAX_PACKETS_HANDLED 256
562550b0 183
562550b0
ME
184#define ALCATEL_MULTICAST_PKT 0x01000000
185#define ALCATEL_BROADCAST_PKT 0x02000000
186
187/* typedefs for Free Buffer Descriptors */
188struct fbr_desc {
189 u32 addr_lo;
190 u32 addr_hi;
191 u32 word2; /* Bits 10-31 reserved, 0-9 descriptor */
192};
193
194/* Packet Status Ring Descriptors
195 *
196 * Word 0:
197 *
198 * top 16 bits are from the Alcatel Status Word as enumerated in
199 * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
200 *
201 * 0: hp hash pass
202 * 1: ipa IP checksum assist
203 * 2: ipp IP checksum pass
204 * 3: tcpa TCP checksum assist
205 * 4: tcpp TCP checksum pass
206 * 5: wol WOL Event
207 * 6: rxmac_error RXMAC Error Indicator
208 * 7: drop Drop packet
209 * 8: ft Frame Truncated
210 * 9: jp Jumbo Packet
211 * 10: vp VLAN Packet
212 * 11-15: unused
213 * 16: asw_prev_pkt_dropped e.g. IFG too small on previous
214 * 17: asw_RX_DV_event short receive event detected
215 * 18: asw_false_carrier_event bad carrier since last good packet
216 * 19: asw_code_err one or more nibbles signalled as errors
217 * 20: asw_CRC_err CRC error
218 * 21: asw_len_chk_err frame length field incorrect
219 * 22: asw_too_long frame length > 1518 bytes
220 * 23: asw_OK valid CRC + no code error
221 * 24: asw_multicast has a multicast address
222 * 25: asw_broadcast has a broadcast address
223 * 26: asw_dribble_nibble spurious bits after EOP
224 * 27: asw_control_frame is a control frame
225 * 28: asw_pause_frame is a pause frame
226 * 29: asw_unsupported_op unsupported OP code
227 * 30: asw_VLAN_tag VLAN tag detected
228 * 31: asw_long_evt Rx long event
229 *
230 * Word 1:
231 * 0-15: length length in bytes
232 * 16-25: bi Buffer Index
233 * 26-27: ri Ring Index
234 * 28-31: reserved
235 */
236
237struct pkt_stat_desc {
238 u32 word0;
239 u32 word1;
240};
241
242/* Typedefs for the RX DMA status word */
243
26ef1021 244/* rx status word 0 holds part of the status bits of the Rx DMA engine
562550b0
ME
245 * that get copied out to memory by the ET-1310. Word 0 is a 32 bit word
246 * which contains the Free Buffer ring 0 and 1 available offset.
247 *
248 * bit 0-9 FBR1 offset
249 * bit 10 Wrap flag for FBR1
250 * bit 16-25 FBR0 offset
251 * bit 26 Wrap flag for FBR0
252 */
253
26ef1021 254/* RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
562550b0
ME
255 * that get copied out to memory by the ET-1310. Word 3 is a 32 bit word
256 * which contains the Packet Status Ring available offset.
257 *
258 * bit 0-15 reserved
259 * bit 16-27 PSRoffset
260 * bit 28 PSRwrap
261 * bit 29-31 unused
262 */
263
26ef1021 264/* struct rx_status_block is a structure representing the status of the Rx
562550b0
ME
265 * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
266 */
267struct rx_status_block {
268 u32 word0;
269 u32 word1;
270};
271
26ef1021 272/* Structure for look-up table holding free buffer ring pointers, addresses
6abafc16 273 * and state.
562550b0
ME
274 */
275struct fbr_lookup {
6abafc16 276 void *virt[MAX_DESC_PER_RING_RX];
6abafc16
ME
277 u32 bus_high[MAX_DESC_PER_RING_RX];
278 u32 bus_low[MAX_DESC_PER_RING_RX];
279 void *ring_virtaddr;
280 dma_addr_t ring_physaddr;
281 void *mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
282 dma_addr_t mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
6abafc16
ME
283 u32 local_full;
284 u32 num_entries;
983e4b35 285 dma_addr_t buffsize;
562550b0
ME
286};
287
868bf442 288/* struct rx_ring is the structure representing the adaptor's local
562550b0
ME
289 * reference(s) to the rings
290 */
291struct rx_ring {
6abafc16 292 struct fbr_lookup *fbr[NUM_FBRS];
562550b0
ME
293 void *ps_ring_virtaddr;
294 dma_addr_t ps_ring_physaddr;
295 u32 local_psr_full;
296 u32 psr_num_entries;
297
298 struct rx_status_block *rx_status_block;
299 dma_addr_t rx_status_bus;
300
562550b0
ME
301 /* RECV */
302 struct list_head recv_list;
303 u32 num_ready_recv;
304
305 u32 num_rfd;
306
307 bool unfinished_receives;
562550b0
ME
308};
309
17ec9ff3 310/* TX defines */
26ef1021 311/* word 2 of the control bits in the Tx Descriptor ring for the ET-1310
17ec9ff3
ME
312 *
313 * 0-15: length of packet
314 * 16-27: VLAN tag
315 * 28: VLAN CFI
316 * 29-31: VLAN priority
317 *
318 * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
319 *
320 * 0: last packet in the sequence
321 * 1: first packet in the sequence
322 * 2: interrupt the processor when this pkt sent
323 * 3: Control word - no packet data
324 * 4: Issue half-duplex backpressure : XON/XOFF
325 * 5: send pause frame
326 * 6: Tx frame has error
327 * 7: append CRC
328 * 8: MAC override
329 * 9: pad packet
330 * 10: Packet is a Huge packet
331 * 11: append VLAN tag
332 * 12: IP checksum assist
333 * 13: TCP checksum assist
334 * 14: UDP checksum assist
335 */
336
a129be84
ME
337#define TXDESC_FLAG_LASTPKT 0x0001
338#define TXDESC_FLAG_FIRSTPKT 0x0002
339#define TXDESC_FLAG_INTPROC 0x0004
340
17ec9ff3
ME
341/* struct tx_desc represents each descriptor on the ring */
342struct tx_desc {
343 u32 addr_hi;
344 u32 addr_lo;
345 u32 len_vlan; /* control words how to xmit the */
346 u32 flags; /* data (detailed above) */
347};
348
26ef1021 349/* The status of the Tx DMA engine it sits in free memory, and is pointed to
17ec9ff3
ME
350 * by 0x101c / 0x1020. This is a DMA10 type
351 */
352
353/* TCB (Transmit Control Block: Host Side) */
354struct tcb {
355 struct tcb *next; /* Next entry in ring */
356 u32 flags; /* Our flags for the packet */
357 u32 count; /* Used to spot stuck/lost packets */
358 u32 stale; /* Used to spot stuck/lost packets */
359 struct sk_buff *skb; /* Network skb we are tied to */
360 u32 index; /* Ring indexes */
361 u32 index_start;
362};
363
364/* Structure representing our local reference(s) to the ring */
365struct tx_ring {
366 /* TCB (Transmit Control Block) memory and lists */
367 struct tcb *tcb_ring;
368
369 /* List of TCBs that are ready to be used */
370 struct tcb *tcb_qhead;
371 struct tcb *tcb_qtail;
372
373 /* list of TCBs that are currently being sent. NOTE that access to all
374 * three of these (including used) are controlled via the
375 * TCBSendQLock. This lock should be secured prior to incementing /
376 * decrementing used, or any queue manipulation on send_head /
377 * tail
378 */
379 struct tcb *send_head;
380 struct tcb *send_tail;
381 int used;
382
383 /* The actual descriptor ring */
384 struct tx_desc *tx_desc_ring;
385 dma_addr_t tx_desc_ring_pa;
386
387 /* send_idx indicates where we last wrote to in the descriptor ring. */
388 u32 send_idx;
389
390 /* The location of the write-back status block */
391 u32 *tx_status;
392 dma_addr_t tx_status_pa;
393
394 /* Packets since the last IRQ: used for interrupt coalescing */
395 int since_irq;
396};
397
26ef1021 398/* Do not change these values: if changed, then change also in respective
fd0651a6
ME
399 * TXdma and Rxdma engines
400 */
401#define NUM_DESC_PER_RING_TX 512 /* TX Do not change these values */
402#define NUM_TCB 64
403
26ef1021 404/* These values are all superseded by registry entries to facilitate tuning.
fd0651a6
ME
405 * Once the desired performance has been achieved, the optimal registry values
406 * should be re-populated to these #defines:
407 */
fd0651a6
ME
408#define TX_ERROR_PERIOD 1000
409
410#define LO_MARK_PERCENT_FOR_PSR 15
411#define LO_MARK_PERCENT_FOR_RX 15
412
413/* RFD (Receive Frame Descriptor) */
414struct rfd {
415 struct list_head list_node;
416 struct sk_buff *skb;
417 u32 len; /* total size of receive frame */
418 u16 bufferindex;
419 u8 ringindex;
420};
421
422/* Flow Control */
423#define FLOW_BOTH 0
424#define FLOW_TXONLY 1
425#define FLOW_RXONLY 2
426#define FLOW_NONE 3
427
428/* Struct to define some device statistics */
429struct ce_stats {
430 /* MIB II variables
431 *
432 * NOTE: atomic_t types are only guaranteed to store 24-bits; if we
433 * MUST have 32, then we'll need another way to perform atomic
434 * operations
435 */
436 u32 unicast_pkts_rcvd;
437 atomic_t unicast_pkts_xmtd;
438 u32 multicast_pkts_rcvd;
439 atomic_t multicast_pkts_xmtd;
440 u32 broadcast_pkts_rcvd;
441 atomic_t broadcast_pkts_xmtd;
442 u32 rcvd_pkts_dropped;
443
444 /* Tx Statistics. */
445 u32 tx_underflows;
446
447 u32 tx_collisions;
448 u32 tx_excessive_collisions;
449 u32 tx_first_collisions;
450 u32 tx_late_collisions;
451 u32 tx_max_pkt_errs;
452 u32 tx_deferred;
453
454 /* Rx Statistics. */
455 u32 rx_overflows;
456
457 u32 rx_length_errs;
458 u32 rx_align_errs;
459 u32 rx_crc_errs;
460 u32 rx_code_violations;
461 u32 rx_other_errs;
462
463 u32 synchronous_iterations;
464 u32 interrupt_status;
465};
466
467/* The private adapter structure */
468struct et131x_adapter {
469 struct net_device *netdev;
470 struct pci_dev *pdev;
471 struct mii_bus *mii_bus;
472 struct phy_device *phydev;
c2ebf58b 473 struct napi_struct napi;
fd0651a6
ME
474
475 /* Flags that indicate current state of the adapter */
476 u32 flags;
477
478 /* local link state, to determine if a state change has occurred */
479 int link;
480
481 /* Configuration */
482 u8 rom_addr[ETH_ALEN];
483 u8 addr[ETH_ALEN];
484 bool has_eeprom;
485 u8 eeprom_data[2];
486
487 /* Spinlocks */
fd0651a6
ME
488 spinlock_t tcb_send_qlock;
489 spinlock_t tcb_ready_qlock;
490 spinlock_t send_hw_lock;
491
492 spinlock_t rcv_lock;
fd0651a6 493
fd0651a6
ME
494 /* Packet Filter and look ahead size */
495 u32 packet_filter;
496
497 /* multicast list */
498 u32 multicast_addr_count;
499 u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN];
500
501 /* Pointer to the device's PCI register space */
502 struct address_map __iomem *regs;
503
504 /* Registry parameters */
505 u8 wanted_flow; /* Flow we want for 802.3x flow control */
506 u32 registry_jumbo_packet; /* Max supported ethernet packet size */
507
508 /* Derived from the registry: */
509 u8 flowcontrol; /* flow control validated by the far-end */
510
511 /* Minimize init-time */
512 struct timer_list error_timer;
513
514 /* variable putting the phy into coma mode when boot up with no cable
515 * plugged in after 5 seconds
516 */
517 u8 boot_coma;
518
519 /* Next two used to save power information at power down. This
520 * information will be used during power up to set up parts of Power
521 * Management in JAGCore
522 */
523 u16 pdown_speed;
524 u8 pdown_duplex;
525
526 /* Tx Memory Variables */
527 struct tx_ring tx_ring;
528
529 /* Rx Memory Variables */
530 struct rx_ring rx_ring;
531
532 /* Stats */
533 struct ce_stats stats;
fd0651a6
ME
534};
535
d2796743
ME
536static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status)
537{
538 u32 reg;
539 int i;
540
26ef1021 541 /* 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
d2796743
ME
542 * bits 7,1:0 both equal to 1, at least once after reset.
543 * Subsequent operations need only to check that bits 1:0 are equal
544 * to 1 prior to starting a single byte read/write
545 */
546
547 for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) {
548 /* Read registers grouped in DWORD1 */
549 if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, &reg))
550 return -EIO;
551
552 /* I2C idle and Phy Queue Avail both true */
553 if ((reg & 0x3000) == 0x3000) {
554 if (status)
555 *status = reg;
556 return reg & 0xFF;
557 }
558 }
559 return -ETIMEDOUT;
560}
561
26ef1021 562/* eeprom_write - Write a byte to the ET1310's EEPROM
d2796743
ME
563 * @adapter: pointer to our private adapter structure
564 * @addr: the address to write
565 * @data: the value to write
566 *
567 * Returns 1 for a successful write.
568 */
569static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data)
570{
571 struct pci_dev *pdev = adapter->pdev;
572 int index = 0;
573 int retries;
574 int err = 0;
d2796743
ME
575 int writeok = 0;
576 u32 status;
577 u32 val = 0;
578
26ef1021 579 /* For an EEPROM, an I2C single byte write is defined as a START
d2796743
ME
580 * condition followed by the device address, EEPROM address, one byte
581 * of data and a STOP condition. The STOP condition will trigger the
582 * EEPROM's internally timed write cycle to the nonvolatile memory.
583 * All inputs are disabled during this write cycle and the EEPROM will
584 * not respond to any access until the internal write is complete.
585 */
586
587 err = eeprom_wait_ready(pdev, NULL);
8dd4a966 588 if (err < 0)
d2796743
ME
589 return err;
590
26ef1021
ME
591 /* 2. Write to the LBCIF Control Register: bit 7=1, bit 6=1, bit 3=0,
592 * and bits 1:0 both =0. Bit 5 should be set according to the
593 * type of EEPROM being accessed (1=two byte addressing, 0=one
594 * byte addressing).
595 */
d2796743
ME
596 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
597 LBCIF_CONTROL_LBCIF_ENABLE | LBCIF_CONTROL_I2C_WRITE))
598 return -EIO;
599
d2796743
ME
600 /* Prepare EEPROM address for Step 3 */
601
602 for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
603 /* Write the address to the LBCIF Address Register */
604 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
605 break;
26ef1021 606 /* Write the data to the LBCIF Data Register (the I2C write
d2796743
ME
607 * will begin).
608 */
609 if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data))
610 break;
26ef1021 611 /* Monitor bit 1:0 of the LBCIF Status Register. When bits
d2796743
ME
612 * 1:0 are both equal to 1, the I2C write has completed and the
613 * internal write cycle of the EEPROM is about to start.
614 * (bits 1:0 = 01 is a legal state while waiting from both
615 * equal to 1, but bits 1:0 = 10 is invalid and implies that
616 * something is broken).
617 */
618 err = eeprom_wait_ready(pdev, &status);
619 if (err < 0)
620 return 0;
621
26ef1021 622 /* Check bit 3 of the LBCIF Status Register. If equal to 1,
d2796743
ME
623 * an error has occurred.Don't break here if we are revision
624 * 1, this is so we do a blind write for load bug.
625 */
626 if ((status & LBCIF_STATUS_GENERAL_ERROR)
627 && adapter->pdev->revision == 0)
628 break;
629
26ef1021 630 /* Check bit 2 of the LBCIF Status Register. If equal to 1 an
d2796743
ME
631 * ACK error has occurred on the address phase of the write.
632 * This could be due to an actual hardware failure or the
633 * EEPROM may still be in its internal write cycle from a
634 * previous write. This write operation was ignored and must be
635 *repeated later.
636 */
637 if (status & LBCIF_STATUS_ACK_ERROR) {
26ef1021 638 /* This could be due to an actual hardware failure
d2796743
ME
639 * or the EEPROM may still be in its internal write
640 * cycle from a previous write. This write operation
641 * was ignored and must be repeated later.
642 */
643 udelay(10);
644 continue;
645 }
646
647 writeok = 1;
648 break;
649 }
650
26ef1021 651 /* Set bit 6 of the LBCIF Control Register = 0.
d2796743
ME
652 */
653 udelay(10);
654
5a5835ea 655 while (1) {
d2796743
ME
656 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
657 LBCIF_CONTROL_LBCIF_ENABLE))
658 writeok = 0;
659
660 /* Do read until internal ACK_ERROR goes away meaning write
661 * completed
662 */
663 do {
664 pci_write_config_dword(pdev,
665 LBCIF_ADDRESS_REGISTER,
666 addr);
667 do {
668 pci_read_config_dword(pdev,
669 LBCIF_DATA_REGISTER, &val);
670 } while ((val & 0x00010000) == 0);
671 } while (val & 0x00040000);
672
673 if ((val & 0xFF00) != 0xC000 || index == 10000)
674 break;
675 index++;
676 }
677 return writeok ? 0 : -EIO;
678}
679
26ef1021 680/* eeprom_read - Read a byte from the ET1310's EEPROM
d2796743
ME
681 * @adapter: pointer to our private adapter structure
682 * @addr: the address from which to read
683 * @pdata: a pointer to a byte in which to store the value of the read
684 * @eeprom_id: the ID of the EEPROM
685 * @addrmode: how the EEPROM is to be accessed
686 *
687 * Returns 1 for a successful read
688 */
689static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata)
690{
691 struct pci_dev *pdev = adapter->pdev;
692 int err;
693 u32 status;
694
26ef1021 695 /* A single byte read is similar to the single byte write, with the
d2796743
ME
696 * exception of the data flow:
697 */
698
699 err = eeprom_wait_ready(pdev, NULL);
8dd4a966 700 if (err < 0)
d2796743 701 return err;
26ef1021 702 /* Write to the LBCIF Control Register: bit 7=1, bit 6=0, bit 3=0,
d2796743
ME
703 * and bits 1:0 both =0. Bit 5 should be set according to the type
704 * of EEPROM being accessed (1=two byte addressing, 0=one byte
705 * addressing).
706 */
707 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
708 LBCIF_CONTROL_LBCIF_ENABLE))
709 return -EIO;
26ef1021 710 /* Write the address to the LBCIF Address Register (I2C read will
d2796743
ME
711 * begin).
712 */
713 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
714 return -EIO;
26ef1021 715 /* Monitor bit 0 of the LBCIF Status Register. When = 1, I2C read
d2796743
ME
716 * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
717 * has occurred).
718 */
719 err = eeprom_wait_ready(pdev, &status);
720 if (err < 0)
721 return err;
26ef1021 722 /* Regardless of error status, read data byte from LBCIF Data
d2796743
ME
723 * Register.
724 */
725 *pdata = err;
26ef1021 726 /* Check bit 2 of the LBCIF Status Register. If = 1,
d2796743
ME
727 * then an error has occurred.
728 */
729 return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0;
730}
731
eb7a6ca6 732static int et131x_init_eeprom(struct et131x_adapter *adapter)
d2796743
ME
733{
734 struct pci_dev *pdev = adapter->pdev;
735 u8 eestatus;
736
737 /* We first need to check the EEPROM Status code located at offset
738 * 0xB2 of config space
739 */
a129be84 740 pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus);
d2796743
ME
741
742 /* THIS IS A WORKAROUND:
743 * I need to call this function twice to get my card in a
744 * LG M1 Express Dual running. I tried also a msleep before this
a129be84 745 * function, because I thought there could be some time conditions
d2796743
ME
746 * but it didn't work. Call the whole function twice also work.
747 */
748 if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) {
749 dev_err(&pdev->dev,
750 "Could not read PCI config space for EEPROM Status\n");
751 return -EIO;
752 }
753
754 /* Determine if the error(s) we care about are present. If they are
755 * present we need to fail.
756 */
757 if (eestatus & 0x4C) {
758 int write_failed = 0;
f03fcca0 759
d2796743
ME
760 if (pdev->revision == 0x01) {
761 int i;
762 static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF };
763
764 /* Re-write the first 4 bytes if we have an eeprom
765 * present and the revision id is 1, this fixes the
766 * corruption seen with 1310 B Silicon
767 */
768 for (i = 0; i < 3; i++)
769 if (eeprom_write(adapter, i, eedata[i]) < 0)
770 write_failed = 1;
771 }
772 if (pdev->revision != 0x01 || write_failed) {
773 dev_err(&pdev->dev,
774 "Fatal EEPROM Status Error - 0x%04x\n", eestatus);
775
776 /* This error could mean that there was an error
777 * reading the eeprom or that the eeprom doesn't exist.
778 * We will treat each case the same and not try to
779 * gather additional information that normally would
780 * come from the eeprom, like MAC Address
781 */
782 adapter->has_eeprom = 0;
783 return -EIO;
784 }
785 }
786 adapter->has_eeprom = 1;
787
788 /* Read the EEPROM for information regarding LED behavior. Refer to
789 * ET1310_phy.c, et131x_xcvr_init(), for its use.
790 */
791 eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]);
792 eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]);
793
794 if (adapter->eeprom_data[0] != 0xcd)
795 /* Disable all optional features */
796 adapter->eeprom_data[1] = 0x00;
797
798 return 0;
799}
800
26ef1021 801/* et131x_rx_dma_enable - re-start of Rx_DMA on the ET1310.
8310c602
ME
802 * @adapter: pointer to our adapter structure
803 */
eb7a6ca6 804static void et131x_rx_dma_enable(struct et131x_adapter *adapter)
8310c602
ME
805{
806 /* Setup the receive dma configuration register for normal operation */
3040d056 807 u32 csr = ET_RXDMA_CSR_FBR1_ENABLE;
8f7fa96a 808 struct rx_ring *rx_ring = &adapter->rx_ring;
8310c602 809
8f7fa96a 810 if (rx_ring->fbr[1]->buffsize == 4096)
3040d056 811 csr |= ET_RXDMA_CSR_FBR1_SIZE_LO;
8f7fa96a 812 else if (rx_ring->fbr[1]->buffsize == 8192)
3040d056 813 csr |= ET_RXDMA_CSR_FBR1_SIZE_HI;
8f7fa96a 814 else if (rx_ring->fbr[1]->buffsize == 16384)
3040d056 815 csr |= ET_RXDMA_CSR_FBR1_SIZE_LO | ET_RXDMA_CSR_FBR1_SIZE_HI;
b5254867 816
3040d056 817 csr |= ET_RXDMA_CSR_FBR0_ENABLE;
8f7fa96a 818 if (rx_ring->fbr[0]->buffsize == 256)
3040d056 819 csr |= ET_RXDMA_CSR_FBR0_SIZE_LO;
8f7fa96a 820 else if (rx_ring->fbr[0]->buffsize == 512)
3040d056 821 csr |= ET_RXDMA_CSR_FBR0_SIZE_HI;
8f7fa96a 822 else if (rx_ring->fbr[0]->buffsize == 1024)
3040d056 823 csr |= ET_RXDMA_CSR_FBR0_SIZE_LO | ET_RXDMA_CSR_FBR0_SIZE_HI;
8310c602
ME
824 writel(csr, &adapter->regs->rxdma.csr);
825
826 csr = readl(&adapter->regs->rxdma.csr);
3040d056 827 if (csr & ET_RXDMA_CSR_HALT_STATUS) {
8310c602
ME
828 udelay(5);
829 csr = readl(&adapter->regs->rxdma.csr);
3040d056 830 if (csr & ET_RXDMA_CSR_HALT_STATUS) {
8310c602
ME
831 dev_err(&adapter->pdev->dev,
832 "RX Dma failed to exit halt state. CSR 0x%08x\n",
833 csr);
834 }
835 }
836}
837
26ef1021 838/* et131x_rx_dma_disable - Stop of Rx_DMA on the ET1310
8310c602
ME
839 * @adapter: pointer to our adapter structure
840 */
eb7a6ca6 841static void et131x_rx_dma_disable(struct et131x_adapter *adapter)
8310c602
ME
842{
843 u32 csr;
844 /* Setup the receive dma configuration register */
3040d056
ME
845 writel(ET_RXDMA_CSR_HALT | ET_RXDMA_CSR_FBR1_ENABLE,
846 &adapter->regs->rxdma.csr);
8310c602 847 csr = readl(&adapter->regs->rxdma.csr);
3040d056 848 if (!(csr & ET_RXDMA_CSR_HALT_STATUS)) {
8310c602
ME
849 udelay(5);
850 csr = readl(&adapter->regs->rxdma.csr);
3040d056 851 if (!(csr & ET_RXDMA_CSR_HALT_STATUS))
8310c602 852 dev_err(&adapter->pdev->dev,
3040d056
ME
853 "RX Dma failed to enter halt state. CSR 0x%08x\n",
854 csr);
8310c602
ME
855 }
856}
857
26ef1021 858/* et131x_tx_dma_enable - re-start of Tx_DMA on the ET1310.
8310c602
ME
859 * @adapter: pointer to our adapter structure
860 *
861 * Mainly used after a return to the D0 (full-power) state from a lower state.
862 */
eb7a6ca6 863static void et131x_tx_dma_enable(struct et131x_adapter *adapter)
8310c602
ME
864{
865 /* Setup the transmit dma configuration register for normal
866 * operation
867 */
868 writel(ET_TXDMA_SNGL_EPKT|(PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
869 &adapter->regs->txdma.csr);
870}
871
872static inline void add_10bit(u32 *v, int n)
873{
874 *v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP);
875}
876
877static inline void add_12bit(u32 *v, int n)
878{
879 *v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP);
880}
881
26ef1021 882/* et1310_config_mac_regs1 - Initialize the first part of MAC regs
d2796743
ME
883 * @adapter: pointer to our adapter structure
884 */
eb7a6ca6 885static void et1310_config_mac_regs1(struct et131x_adapter *adapter)
d2796743
ME
886{
887 struct mac_regs __iomem *macregs = &adapter->regs->mac;
888 u32 station1;
889 u32 station2;
890 u32 ipg;
891
892 /* First we need to reset everything. Write to MAC configuration
893 * register 1 to perform reset.
894 */
a129be84
ME
895 writel(ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
896 ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
897 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC,
898 &macregs->cfg1);
d2796743
ME
899
900 /* Next lets configure the MAC Inter-packet gap register */
901 ipg = 0x38005860; /* IPG1 0x38 IPG2 0x58 B2B 0x60 */
902 ipg |= 0x50 << 8; /* ifg enforce 0x50 */
903 writel(ipg, &macregs->ipg);
904
905 /* Next lets configure the MAC Half Duplex register */
906 /* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
907 writel(0x00A1F037, &macregs->hfdp);
908
909 /* Next lets configure the MAC Interface Control register */
910 writel(0, &macregs->if_ctrl);
911
912 /* Let's move on to setting up the mii management configuration */
a129be84 913 writel(ET_MAC_MIIMGMT_CLK_RST, &macregs->mii_mgmt_cfg);
d2796743
ME
914
915 /* Next lets configure the MAC Station Address register. These
916 * values are read from the EEPROM during initialization and stored
917 * in the adapter structure. We write what is stored in the adapter
918 * structure to the MAC Station Address registers high and low. This
919 * station address is used for generating and checking pause control
920 * packets.
921 */
922 station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) |
923 (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT);
924 station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) |
925 (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) |
926 (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) |
927 adapter->addr[2];
928 writel(station1, &macregs->station_addr_1);
929 writel(station2, &macregs->station_addr_2);
930
ac399bc0 931 /* Max ethernet packet in bytes that will be passed by the mac without
d2796743
ME
932 * being truncated. Allow the MAC to pass 4 more than our max packet
933 * size. This is 4 for the Ethernet CRC.
934 *
935 * Packets larger than (registry_jumbo_packet) that do not contain a
936 * VLAN ID will be dropped by the Rx function.
937 */
938 writel(adapter->registry_jumbo_packet + 4, &macregs->max_fm_len);
939
940 /* clear out MAC config reset */
941 writel(0, &macregs->cfg1);
942}
943
26ef1021 944/* et1310_config_mac_regs2 - Initialize the second part of MAC regs
d2796743
ME
945 * @adapter: pointer to our adapter structure
946 */
eb7a6ca6 947static void et1310_config_mac_regs2(struct et131x_adapter *adapter)
d2796743
ME
948{
949 int32_t delay = 0;
950 struct mac_regs __iomem *mac = &adapter->regs->mac;
951 struct phy_device *phydev = adapter->phydev;
952 u32 cfg1;
953 u32 cfg2;
954 u32 ifctrl;
955 u32 ctl;
956
957 ctl = readl(&adapter->regs->txmac.ctl);
958 cfg1 = readl(&mac->cfg1);
959 cfg2 = readl(&mac->cfg2);
960 ifctrl = readl(&mac->if_ctrl);
961
962 /* Set up the if mode bits */
a129be84 963 cfg2 &= ~ET_MAC_CFG2_IFMODE_MASK;
76af0140 964 if (phydev->speed == SPEED_1000) {
a129be84 965 cfg2 |= ET_MAC_CFG2_IFMODE_1000;
d2796743 966 /* Phy mode bit */
a129be84 967 ifctrl &= ~ET_MAC_IFCTRL_PHYMODE;
d2796743 968 } else {
a129be84
ME
969 cfg2 |= ET_MAC_CFG2_IFMODE_100;
970 ifctrl |= ET_MAC_IFCTRL_PHYMODE;
d2796743
ME
971 }
972
973 /* We need to enable Rx/Tx */
a129be84
ME
974 cfg1 |= ET_MAC_CFG1_RX_ENABLE | ET_MAC_CFG1_TX_ENABLE |
975 ET_MAC_CFG1_TX_FLOW;
d2796743 976 /* Initialize loop back to off */
a129be84 977 cfg1 &= ~(ET_MAC_CFG1_LOOPBACK | ET_MAC_CFG1_RX_FLOW);
d2796743
ME
978 if (adapter->flowcontrol == FLOW_RXONLY ||
979 adapter->flowcontrol == FLOW_BOTH)
a129be84 980 cfg1 |= ET_MAC_CFG1_RX_FLOW;
d2796743
ME
981 writel(cfg1, &mac->cfg1);
982
983 /* Now we need to initialize the MAC Configuration 2 register */
984 /* preamble 7, check length, huge frame off, pad crc, crc enable
26ef1021
ME
985 * full duplex off
986 */
a129be84
ME
987 cfg2 |= 0x7 << ET_MAC_CFG2_PREAMBLE_SHIFT;
988 cfg2 |= ET_MAC_CFG2_IFMODE_LEN_CHECK;
989 cfg2 |= ET_MAC_CFG2_IFMODE_PAD_CRC;
990 cfg2 |= ET_MAC_CFG2_IFMODE_CRC_ENABLE;
991 cfg2 &= ~ET_MAC_CFG2_IFMODE_HUGE_FRAME;
992 cfg2 &= ~ET_MAC_CFG2_IFMODE_FULL_DPLX;
d2796743
ME
993
994 /* Turn on duplex if needed */
76af0140 995 if (phydev->duplex == DUPLEX_FULL)
a129be84 996 cfg2 |= ET_MAC_CFG2_IFMODE_FULL_DPLX;
d2796743 997
a129be84 998 ifctrl &= ~ET_MAC_IFCTRL_GHDMODE;
76af0140 999 if (phydev->duplex == DUPLEX_HALF)
a129be84 1000 ifctrl |= ET_MAC_IFCTRL_GHDMODE;
d2796743
ME
1001
1002 writel(ifctrl, &mac->if_ctrl);
1003 writel(cfg2, &mac->cfg2);
1004
1005 do {
1006 udelay(10);
1007 delay++;
1008 cfg1 = readl(&mac->cfg1);
a129be84 1009 } while ((cfg1 & ET_MAC_CFG1_WAIT) != ET_MAC_CFG1_WAIT && delay < 100);
d2796743
ME
1010
1011 if (delay == 100) {
1012 dev_warn(&adapter->pdev->dev,
1013 "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
1014 cfg1);
1015 }
1016
1017 /* Enable txmac */
a129be84 1018 ctl |= ET_TX_CTRL_TXMAC_ENABLE | ET_TX_CTRL_FC_DISABLE;
d2796743
ME
1019 writel(ctl, &adapter->regs->txmac.ctl);
1020
1021 /* Ready to start the RXDMA/TXDMA engine */
c655dee9 1022 if (adapter->flags & FMP_ADAPTER_LOWER_POWER) {
d2796743
ME
1023 et131x_rx_dma_enable(adapter);
1024 et131x_tx_dma_enable(adapter);
1025 }
1026}
1027
26ef1021 1028/* et1310_in_phy_coma - check if the device is in phy coma
2288760e
ME
1029 * @adapter: pointer to our adapter structure
1030 *
1031 * Returns 0 if the device is not in phy coma, 1 if it is in phy coma
1032 */
eb7a6ca6 1033static int et1310_in_phy_coma(struct et131x_adapter *adapter)
2288760e 1034{
12a2f3f3 1035 u32 pmcsr = readl(&adapter->regs->global.pm_csr);
2288760e
ME
1036
1037 return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0;
1038}
1039
eb7a6ca6 1040static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter)
a4d444bd
ME
1041{
1042 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
834d0ee3
FR
1043 u32 hash1 = 0;
1044 u32 hash2 = 0;
1045 u32 hash3 = 0;
1046 u32 hash4 = 0;
a4d444bd
ME
1047 u32 pm_csr;
1048
1049 /* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
1050 * the multi-cast LIST. If it is NOT specified, (and "ALL" is not
1051 * specified) then we should pass NO multi-cast addresses to the
1052 * driver.
1053 */
1054 if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) {
834d0ee3
FR
1055 int i;
1056
a4d444bd 1057 /* Loop through our multicast array and set up the device */
834d0ee3
FR
1058 for (i = 0; i < adapter->multicast_addr_count; i++) {
1059 u32 result;
1060
1061 result = ether_crc(6, adapter->multicast_list[i]);
a4d444bd
ME
1062
1063 result = (result & 0x3F800000) >> 23;
1064
1065 if (result < 32) {
1066 hash1 |= (1 << result);
1067 } else if ((31 < result) && (result < 64)) {
1068 result -= 32;
1069 hash2 |= (1 << result);
1070 } else if ((63 < result) && (result < 96)) {
1071 result -= 64;
1072 hash3 |= (1 << result);
1073 } else {
1074 result -= 96;
1075 hash4 |= (1 << result);
1076 }
1077 }
1078 }
1079
1080 /* Write out the new hash to the device */
1081 pm_csr = readl(&adapter->regs->global.pm_csr);
1082 if (!et1310_in_phy_coma(adapter)) {
1083 writel(hash1, &rxmac->multi_hash1);
1084 writel(hash2, &rxmac->multi_hash2);
1085 writel(hash3, &rxmac->multi_hash3);
1086 writel(hash4, &rxmac->multi_hash4);
1087 }
1088}
1089
eb7a6ca6 1090static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter)
a4d444bd
ME
1091{
1092 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1093 u32 uni_pf1;
1094 u32 uni_pf2;
1095 u32 uni_pf3;
1096 u32 pm_csr;
1097
1098 /* Set up unicast packet filter reg 3 to be the first two octets of
1099 * the MAC address for both address
1100 *
1101 * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
1102 * MAC address for second address
1103 *
1104 * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
1105 * MAC address for first address
1106 */
a129be84
ME
1107 uni_pf3 = (adapter->addr[0] << ET_RX_UNI_PF_ADDR2_1_SHIFT) |
1108 (adapter->addr[1] << ET_RX_UNI_PF_ADDR2_2_SHIFT) |
1109 (adapter->addr[0] << ET_RX_UNI_PF_ADDR1_1_SHIFT) |
a4d444bd
ME
1110 adapter->addr[1];
1111
a129be84
ME
1112 uni_pf2 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR2_3_SHIFT) |
1113 (adapter->addr[3] << ET_RX_UNI_PF_ADDR2_4_SHIFT) |
1114 (adapter->addr[4] << ET_RX_UNI_PF_ADDR2_5_SHIFT) |
a4d444bd
ME
1115 adapter->addr[5];
1116
a129be84
ME
1117 uni_pf1 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR1_3_SHIFT) |
1118 (adapter->addr[3] << ET_RX_UNI_PF_ADDR1_4_SHIFT) |
1119 (adapter->addr[4] << ET_RX_UNI_PF_ADDR1_5_SHIFT) |
a4d444bd
ME
1120 adapter->addr[5];
1121
1122 pm_csr = readl(&adapter->regs->global.pm_csr);
1123 if (!et1310_in_phy_coma(adapter)) {
1124 writel(uni_pf1, &rxmac->uni_pf_addr1);
1125 writel(uni_pf2, &rxmac->uni_pf_addr2);
1126 writel(uni_pf3, &rxmac->uni_pf_addr3);
1127 }
1128}
1129
eb7a6ca6 1130static void et1310_config_rxmac_regs(struct et131x_adapter *adapter)
d2796743
ME
1131{
1132 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1133 struct phy_device *phydev = adapter->phydev;
1134 u32 sa_lo;
1135 u32 sa_hi = 0;
1136 u32 pf_ctrl = 0;
1a5a5cbc 1137 u32 __iomem *wolw;
d2796743
ME
1138
1139 /* Disable the MAC while it is being configured (also disable WOL) */
1140 writel(0x8, &rxmac->ctrl);
1141
1142 /* Initialize WOL to disabled. */
1143 writel(0, &rxmac->crc0);
1144 writel(0, &rxmac->crc12);
1145 writel(0, &rxmac->crc34);
1146
1147 /* We need to set the WOL mask0 - mask4 next. We initialize it to
1148 * its default Values of 0x00000000 because there are not WOL masks
1149 * as of this time.
1150 */
6697b870
ME
1151 for (wolw = &rxmac->mask0_word0; wolw <= &rxmac->mask4_word3; wolw++)
1152 writel(0, wolw);
d2796743
ME
1153
1154 /* Lets setup the WOL Source Address */
a129be84
ME
1155 sa_lo = (adapter->addr[2] << ET_RX_WOL_LO_SA3_SHIFT) |
1156 (adapter->addr[3] << ET_RX_WOL_LO_SA4_SHIFT) |
1157 (adapter->addr[4] << ET_RX_WOL_LO_SA5_SHIFT) |
d2796743
ME
1158 adapter->addr[5];
1159 writel(sa_lo, &rxmac->sa_lo);
1160
a129be84 1161 sa_hi = (u32) (adapter->addr[0] << ET_RX_WOL_HI_SA1_SHIFT) |
d2796743
ME
1162 adapter->addr[1];
1163 writel(sa_hi, &rxmac->sa_hi);
1164
1165 /* Disable all Packet Filtering */
1166 writel(0, &rxmac->pf_ctrl);
1167
1168 /* Let's initialize the Unicast Packet filtering address */
1169 if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) {
1170 et1310_setup_device_for_unicast(adapter);
a129be84 1171 pf_ctrl |= ET_RX_PFCTRL_UNICST_FILTER_ENABLE;
d2796743
ME
1172 } else {
1173 writel(0, &rxmac->uni_pf_addr1);
1174 writel(0, &rxmac->uni_pf_addr2);
1175 writel(0, &rxmac->uni_pf_addr3);
1176 }
1177
1178 /* Let's initialize the Multicast hash */
1179 if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
a129be84 1180 pf_ctrl |= ET_RX_PFCTRL_MLTCST_FILTER_ENABLE;
d2796743
ME
1181 et1310_setup_device_for_multicast(adapter);
1182 }
1183
1184 /* Runt packet filtering. Didn't work in version A silicon. */
a129be84
ME
1185 pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << ET_RX_PFCTRL_MIN_PKT_SZ_SHIFT;
1186 pf_ctrl |= ET_RX_PFCTRL_FRAG_FILTER_ENABLE;
d2796743
ME
1187
1188 if (adapter->registry_jumbo_packet > 8192)
1189 /* In order to transmit jumbo packets greater than 8k, the
1190 * FIFO between RxMAC and RxDMA needs to be reduced in size
1191 * to (16k - Jumbo packet size). In order to implement this,
1192 * we must use "cut through" mode in the RxMAC, which chops
1193 * packets down into segments which are (max_size * 16). In
1194 * this case we selected 256 bytes, since this is the size of
1195 * the PCI-Express TLP's that the 1310 uses.
1196 *
1197 * seg_en on, fc_en off, size 0x10
1198 */
1199 writel(0x41, &rxmac->mcif_ctrl_max_seg);
1200 else
1201 writel(0, &rxmac->mcif_ctrl_max_seg);
1202
1203 /* Initialize the MCIF water marks */
1204 writel(0, &rxmac->mcif_water_mark);
1205
1206 /* Initialize the MIF control */
1207 writel(0, &rxmac->mif_ctrl);
1208
1209 /* Initialize the Space Available Register */
1210 writel(0, &rxmac->space_avail);
1211
1212 /* Initialize the the mif_ctrl register
1213 * bit 3: Receive code error. One or more nibbles were signaled as
1214 * errors during the reception of the packet. Clear this
1215 * bit in Gigabit, set it in 100Mbit. This was derived
1216 * experimentally at UNH.
1217 * bit 4: Receive CRC error. The packet's CRC did not match the
1218 * internally generated CRC.
1219 * bit 5: Receive length check error. Indicates that frame length
1220 * field value in the packet does not match the actual data
1221 * byte length and is not a type field.
1222 * bit 16: Receive frame truncated.
1223 * bit 17: Drop packet enable
1224 */
1225 if (phydev && phydev->speed == SPEED_100)
1226 writel(0x30038, &rxmac->mif_ctrl);
1227 else
1228 writel(0x30030, &rxmac->mif_ctrl);
1229
1230 /* Finally we initialize RxMac to be enabled & WOL disabled. Packet
1231 * filter is always enabled since it is where the runt packets are
1232 * supposed to be dropped. For version A silicon, runt packet
1233 * dropping doesn't work, so it is disabled in the pf_ctrl register,
1234 * but we still leave the packet filter on.
1235 */
1236 writel(pf_ctrl, &rxmac->pf_ctrl);
a129be84 1237 writel(ET_RX_CTRL_RXMAC_ENABLE | ET_RX_CTRL_WOL_DISABLE, &rxmac->ctrl);
d2796743
ME
1238}
1239
eb7a6ca6 1240static void et1310_config_txmac_regs(struct et131x_adapter *adapter)
d2796743
ME
1241{
1242 struct txmac_regs __iomem *txmac = &adapter->regs->txmac;
1243
1244 /* We need to update the Control Frame Parameters
1245 * cfpt - control frame pause timer set to 64 (0x40)
1246 * cfep - control frame extended pause timer set to 0x0
1247 */
1248 if (adapter->flowcontrol == FLOW_NONE)
1249 writel(0, &txmac->cf_param);
1250 else
1251 writel(0x40, &txmac->cf_param);
1252}
1253
eb7a6ca6 1254static void et1310_config_macstat_regs(struct et131x_adapter *adapter)
d2796743 1255{
becce4a4 1256 struct macstat_regs __iomem *macstat = &adapter->regs->macstat;
1a5a5cbc 1257 u32 __iomem *reg;
d2796743 1258
becce4a4
ME
1259 /* initialize all the macstat registers to zero on the device */
1260 for (reg = &macstat->txrx_0_64_byte_frames;
1261 reg <= &macstat->carry_reg2; reg++)
1262 writel(0, reg);
d2796743
ME
1263
1264 /* Unmask any counters that we want to track the overflow of.
1265 * Initially this will be all counters. It may become clear later
1266 * that we do not need to track all counters.
1267 */
1268 writel(0xFFFFBE32, &macstat->carry_reg1_mask);
1269 writel(0xFFFE7E8B, &macstat->carry_reg2_mask);
1270}
1271
26ef1021 1272/* et131x_phy_mii_read - Read from the PHY through the MII Interface on the MAC
2288760e
ME
1273 * @adapter: pointer to our private adapter structure
1274 * @addr: the address of the transceiver
1275 * @reg: the register to read
1276 * @value: pointer to a 16-bit value in which the value will be stored
2288760e 1277 */
eb7a6ca6 1278static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr,
2288760e
ME
1279 u8 reg, u16 *value)
1280{
1281 struct mac_regs __iomem *mac = &adapter->regs->mac;
1282 int status = 0;
1283 u32 delay = 0;
1284 u32 mii_addr;
1285 u32 mii_cmd;
1286 u32 mii_indicator;
1287
1288 /* Save a local copy of the registers we are dealing with so we can
1289 * set them back
1290 */
1291 mii_addr = readl(&mac->mii_mgmt_addr);
1292 mii_cmd = readl(&mac->mii_mgmt_cmd);
1293
1294 /* Stop the current operation */
1295 writel(0, &mac->mii_mgmt_cmd);
1296
1297 /* Set up the register we need to read from on the correct PHY */
a129be84 1298 writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
2288760e
ME
1299
1300 writel(0x1, &mac->mii_mgmt_cmd);
1301
1302 do {
1303 udelay(50);
1304 delay++;
1305 mii_indicator = readl(&mac->mii_mgmt_indicator);
a129be84 1306 } while ((mii_indicator & ET_MAC_MGMT_WAIT) && delay < 50);
2288760e
ME
1307
1308 /* If we hit the max delay, we could not read the register */
1309 if (delay == 50) {
1310 dev_warn(&adapter->pdev->dev,
1311 "reg 0x%08x could not be read\n", reg);
1312 dev_warn(&adapter->pdev->dev, "status is 0x%08x\n",
1313 mii_indicator);
1314
1315 status = -EIO;
a863a15b 1316 goto out;
2288760e
ME
1317 }
1318
1319 /* If we hit here we were able to read the register and we need to
26ef1021
ME
1320 * return the value to the caller
1321 */
a129be84 1322 *value = readl(&mac->mii_mgmt_stat) & ET_MAC_MIIMGMT_STAT_PHYCRTL_MASK;
2288760e 1323
a863a15b 1324out:
2288760e
ME
1325 /* Stop the read operation */
1326 writel(0, &mac->mii_mgmt_cmd);
1327
1328 /* set the registers we touched back to the state at which we entered
1329 * this function
1330 */
1331 writel(mii_addr, &mac->mii_mgmt_addr);
1332 writel(mii_cmd, &mac->mii_mgmt_cmd);
1333
1334 return status;
1335}
1336
eb7a6ca6 1337static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value)
2288760e
ME
1338{
1339 struct phy_device *phydev = adapter->phydev;
1340
1341 if (!phydev)
1342 return -EIO;
1343
1344 return et131x_phy_mii_read(adapter, phydev->addr, reg, value);
1345}
1346
26ef1021 1347/* et131x_mii_write - Write to a PHY reg through the MII interface of the MAC
2288760e
ME
1348 * @adapter: pointer to our private adapter structure
1349 * @reg: the register to read
1350 * @value: 16-bit value to write
2288760e 1351 */
ec0a38bf
ME
1352static int et131x_mii_write(struct et131x_adapter *adapter, u8 addr, u8 reg,
1353 u16 value)
2288760e
ME
1354{
1355 struct mac_regs __iomem *mac = &adapter->regs->mac;
2288760e 1356 int status = 0;
2288760e
ME
1357 u32 delay = 0;
1358 u32 mii_addr;
1359 u32 mii_cmd;
1360 u32 mii_indicator;
1361
2288760e
ME
1362 /* Save a local copy of the registers we are dealing with so we can
1363 * set them back
1364 */
1365 mii_addr = readl(&mac->mii_mgmt_addr);
1366 mii_cmd = readl(&mac->mii_mgmt_cmd);
1367
1368 /* Stop the current operation */
1369 writel(0, &mac->mii_mgmt_cmd);
1370
1371 /* Set up the register we need to write to on the correct PHY */
a129be84 1372 writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
2288760e
ME
1373
1374 /* Add the value to write to the registers to the mac */
1375 writel(value, &mac->mii_mgmt_ctrl);
1376
1377 do {
1378 udelay(50);
1379 delay++;
1380 mii_indicator = readl(&mac->mii_mgmt_indicator);
a129be84 1381 } while ((mii_indicator & ET_MAC_MGMT_BUSY) && delay < 100);
2288760e
ME
1382
1383 /* If we hit the max delay, we could not write the register */
1384 if (delay == 100) {
1385 u16 tmp;
1386
1387 dev_warn(&adapter->pdev->dev,
1388 "reg 0x%08x could not be written", reg);
1389 dev_warn(&adapter->pdev->dev, "status is 0x%08x\n",
1390 mii_indicator);
1391 dev_warn(&adapter->pdev->dev, "command is 0x%08x\n",
1392 readl(&mac->mii_mgmt_cmd));
1393
1394 et131x_mii_read(adapter, reg, &tmp);
1395
1396 status = -EIO;
1397 }
1398 /* Stop the write operation */
1399 writel(0, &mac->mii_mgmt_cmd);
1400
26ef1021 1401 /* set the registers we touched back to the state at which we entered
2288760e
ME
1402 * this function
1403 */
1404 writel(mii_addr, &mac->mii_mgmt_addr);
1405 writel(mii_cmd, &mac->mii_mgmt_cmd);
1406
1407 return status;
1408}
1409
19d857de
ME
1410static void et1310_phy_read_mii_bit(struct et131x_adapter *adapter,
1411 u16 regnum,
1412 u16 bitnum,
1413 u8 *value)
2288760e
ME
1414{
1415 u16 reg;
a129be84 1416 u16 mask = 1 << bitnum;
2288760e
ME
1417
1418 /* Read the requested register */
1419 et131x_mii_read(adapter, regnum, &reg);
1420
19d857de 1421 *value = (reg & mask) >> bitnum;
2288760e
ME
1422}
1423
eb7a6ca6 1424static void et1310_config_flow_control(struct et131x_adapter *adapter)
d2796743
ME
1425{
1426 struct phy_device *phydev = adapter->phydev;
1427
1428 if (phydev->duplex == DUPLEX_HALF) {
1429 adapter->flowcontrol = FLOW_NONE;
1430 } else {
1431 char remote_pause, remote_async_pause;
1432
19d857de
ME
1433 et1310_phy_read_mii_bit(adapter, 5, 10, &remote_pause);
1434 et1310_phy_read_mii_bit(adapter, 5, 11, &remote_async_pause);
d2796743 1435
19d857de 1436 if (remote_pause && remote_async_pause) {
d2796743 1437 adapter->flowcontrol = adapter->wanted_flow;
19d857de 1438 } else if (remote_pause && !remote_async_pause) {
d2796743
ME
1439 if (adapter->wanted_flow == FLOW_BOTH)
1440 adapter->flowcontrol = FLOW_BOTH;
1441 else
1442 adapter->flowcontrol = FLOW_NONE;
19d857de 1443 } else if (!remote_pause && !remote_async_pause) {
d2796743 1444 adapter->flowcontrol = FLOW_NONE;
19d857de 1445 } else {
d2796743
ME
1446 if (adapter->wanted_flow == FLOW_BOTH)
1447 adapter->flowcontrol = FLOW_RXONLY;
1448 else
1449 adapter->flowcontrol = FLOW_NONE;
1450 }
1451 }
1452}
1453
15ae239d 1454/* et1310_update_macstat_host_counters - Update local copy of the statistics */
eb7a6ca6 1455static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter)
d2796743
ME
1456{
1457 struct ce_stats *stats = &adapter->stats;
1458 struct macstat_regs __iomem *macstat =
1459 &adapter->regs->macstat;
1460
1461 stats->tx_collisions += readl(&macstat->tx_total_collisions);
1462 stats->tx_first_collisions += readl(&macstat->tx_single_collisions);
1463 stats->tx_deferred += readl(&macstat->tx_deferred);
1464 stats->tx_excessive_collisions +=
1465 readl(&macstat->tx_multiple_collisions);
1466 stats->tx_late_collisions += readl(&macstat->tx_late_collisions);
1467 stats->tx_underflows += readl(&macstat->tx_undersize_frames);
1468 stats->tx_max_pkt_errs += readl(&macstat->tx_oversize_frames);
1469
1470 stats->rx_align_errs += readl(&macstat->rx_align_errs);
1471 stats->rx_crc_errs += readl(&macstat->rx_code_errs);
1472 stats->rcvd_pkts_dropped += readl(&macstat->rx_drops);
1473 stats->rx_overflows += readl(&macstat->rx_oversize_packets);
1474 stats->rx_code_violations += readl(&macstat->rx_fcs_errs);
1475 stats->rx_length_errs += readl(&macstat->rx_frame_len_errs);
1476 stats->rx_other_errs += readl(&macstat->rx_fragment_packets);
1477}
1478
26ef1021 1479/* et1310_handle_macstat_interrupt
d2796743
ME
1480 *
1481 * One of the MACSTAT counters has wrapped. Update the local copy of
1482 * the statistics held in the adapter structure, checking the "wrap"
1483 * bit for each counter.
1484 */
eb7a6ca6 1485static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter)
d2796743
ME
1486{
1487 u32 carry_reg1;
1488 u32 carry_reg2;
1489
1490 /* Read the interrupt bits from the register(s). These are Clear On
1491 * Write.
1492 */
1493 carry_reg1 = readl(&adapter->regs->macstat.carry_reg1);
1494 carry_reg2 = readl(&adapter->regs->macstat.carry_reg2);
1495
1496 writel(carry_reg1, &adapter->regs->macstat.carry_reg1);
1497 writel(carry_reg2, &adapter->regs->macstat.carry_reg2);
1498
1499 /* We need to do update the host copy of all the MAC_STAT counters.
1500 * For each counter, check it's overflow bit. If the overflow bit is
1501 * set, then increment the host version of the count by one complete
1502 * revolution of the counter. This routine is called when the counter
1503 * block indicates that one of the counters has wrapped.
1504 */
1505 if (carry_reg1 & (1 << 14))
1506 adapter->stats.rx_code_violations += COUNTER_WRAP_16_BIT;
1507 if (carry_reg1 & (1 << 8))
1508 adapter->stats.rx_align_errs += COUNTER_WRAP_12_BIT;
1509 if (carry_reg1 & (1 << 7))
1510 adapter->stats.rx_length_errs += COUNTER_WRAP_16_BIT;
1511 if (carry_reg1 & (1 << 2))
1512 adapter->stats.rx_other_errs += COUNTER_WRAP_16_BIT;
1513 if (carry_reg1 & (1 << 6))
1514 adapter->stats.rx_crc_errs += COUNTER_WRAP_16_BIT;
1515 if (carry_reg1 & (1 << 3))
1516 adapter->stats.rx_overflows += COUNTER_WRAP_16_BIT;
1517 if (carry_reg1 & (1 << 0))
1518 adapter->stats.rcvd_pkts_dropped += COUNTER_WRAP_16_BIT;
1519 if (carry_reg2 & (1 << 16))
1520 adapter->stats.tx_max_pkt_errs += COUNTER_WRAP_12_BIT;
1521 if (carry_reg2 & (1 << 15))
1522 adapter->stats.tx_underflows += COUNTER_WRAP_12_BIT;
1523 if (carry_reg2 & (1 << 6))
1524 adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT;
1525 if (carry_reg2 & (1 << 8))
1526 adapter->stats.tx_deferred += COUNTER_WRAP_12_BIT;
1527 if (carry_reg2 & (1 << 5))
1528 adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT;
1529 if (carry_reg2 & (1 << 4))
1530 adapter->stats.tx_late_collisions += COUNTER_WRAP_12_BIT;
1531 if (carry_reg2 & (1 << 2))
1532 adapter->stats.tx_collisions += COUNTER_WRAP_12_BIT;
1533}
1534
eb7a6ca6 1535static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg)
d2796743
ME
1536{
1537 struct net_device *netdev = bus->priv;
1538 struct et131x_adapter *adapter = netdev_priv(netdev);
1539 u16 value;
1540 int ret;
1541
1542 ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value);
1543
1544 if (ret < 0)
1545 return ret;
1546 else
1547 return value;
1548}
1549
bf3313a1 1550static int et131x_mdio_write(struct mii_bus *bus, int phy_addr,
1551 int reg, u16 value)
d2796743
ME
1552{
1553 struct net_device *netdev = bus->priv;
1554 struct et131x_adapter *adapter = netdev_priv(netdev);
1555
ec0a38bf 1556 return et131x_mii_write(adapter, phy_addr, reg, value);
d2796743
ME
1557}
1558
1ff70a7c 1559/* et1310_phy_power_switch - PHY power control
d2796743
ME
1560 * @adapter: device to control
1561 * @down: true for off/false for back on
1562 *
1563 * one hundred, ten, one thousand megs
1564 * How would you like to have your LAN accessed
1565 * Can't you see that this code processed
1566 * Phy power, phy power..
1567 */
1ff70a7c 1568static void et1310_phy_power_switch(struct et131x_adapter *adapter, bool down)
d2796743
ME
1569{
1570 u16 data;
ec0a38bf 1571 struct phy_device *phydev = adapter->phydev;
d2796743
ME
1572
1573 et131x_mii_read(adapter, MII_BMCR, &data);
1574 data &= ~BMCR_PDOWN;
1575 if (down)
1576 data |= BMCR_PDOWN;
ec0a38bf 1577 et131x_mii_write(adapter, phydev->addr, MII_BMCR, data);
d2796743
ME
1578}
1579
15ae239d 1580/* et131x_xcvr_init - Init the phy if we are setting it into force mode */
eb7a6ca6 1581static void et131x_xcvr_init(struct et131x_adapter *adapter)
d2796743 1582{
d2796743 1583 u16 lcr2;
ec0a38bf 1584 struct phy_device *phydev = adapter->phydev;
d2796743 1585
d2796743
ME
1586 /* Set the LED behavior such that LED 1 indicates speed (off =
1587 * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
1588 * link and activity (on for link, blink off for activity).
1589 *
1590 * NOTE: Some customizations have been added here for specific
1591 * vendors; The LED behavior is now determined by vendor data in the
1592 * EEPROM. However, the above description is the default.
1593 */
1594 if ((adapter->eeprom_data[1] & 0x4) == 0) {
1595 et131x_mii_read(adapter, PHY_LED_2, &lcr2);
1596
b5b86a4d 1597 lcr2 &= (ET_LED2_LED_100TX | ET_LED2_LED_1000T);
d2796743
ME
1598 lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT);
1599
1600 if ((adapter->eeprom_data[1] & 0x8) == 0)
1601 lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT);
1602 else
1603 lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT);
1604
ec0a38bf 1605 et131x_mii_write(adapter, phydev->addr, PHY_LED_2, lcr2);
d2796743
ME
1606 }
1607}
1608
26ef1021 1609/* et131x_configure_global_regs - configure JAGCore global regs
36f2771a
ME
1610 *
1611 * Used to configure the global registers on the JAGCore
1612 */
eb7a6ca6 1613static void et131x_configure_global_regs(struct et131x_adapter *adapter)
36f2771a
ME
1614{
1615 struct global_regs __iomem *regs = &adapter->regs->global;
1616
1617 writel(0, &regs->rxq_start_addr);
1618 writel(INTERNAL_MEM_SIZE - 1, &regs->txq_end_addr);
1619
1620 if (adapter->registry_jumbo_packet < 2048) {
1621 /* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
1622 * block of RAM that the driver can split between Tx
1623 * and Rx as it desires. Our default is to split it
1624 * 50/50:
1625 */
1626 writel(PARM_RX_MEM_END_DEF, &regs->rxq_end_addr);
1627 writel(PARM_RX_MEM_END_DEF + 1, &regs->txq_start_addr);
1628 } else if (adapter->registry_jumbo_packet < 8192) {
1629 /* For jumbo packets > 2k but < 8k, split 50-50. */
1630 writel(INTERNAL_MEM_RX_OFFSET, &regs->rxq_end_addr);
1631 writel(INTERNAL_MEM_RX_OFFSET + 1, &regs->txq_start_addr);
1632 } else {
1633 /* 9216 is the only packet size greater than 8k that
1634 * is available. The Tx buffer has to be big enough
1635 * for one whole packet on the Tx side. We'll make
1636 * the Tx 9408, and give the rest to Rx
1637 */
1638 writel(0x01b3, &regs->rxq_end_addr);
1639 writel(0x01b4, &regs->txq_start_addr);
1640 }
1641
1642 /* Initialize the loopback register. Disable all loopbacks. */
1643 writel(0, &regs->loopback);
1644
1645 /* MSI Register */
1646 writel(0, &regs->msi_config);
1647
1648 /* By default, disable the watchdog timer. It will be enabled when
1649 * a packet is queued.
1650 */
1651 writel(0, &regs->watchdog_timer);
1652}
1653
15ae239d 1654/* et131x_config_rx_dma_regs - Start of Rx_DMA init sequence */
eb7a6ca6 1655static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
36f2771a
ME
1656{
1657 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
1658 struct rx_ring *rx_local = &adapter->rx_ring;
1659 struct fbr_desc *fbr_entry;
1660 u32 entry;
1661 u32 psr_num_des;
1662 unsigned long flags;
788ca84a 1663 u8 id;
36f2771a
ME
1664
1665 /* Halt RXDMA to perform the reconfigure. */
1666 et131x_rx_dma_disable(adapter);
1667
25e8e8ab
ME
1668 /* Load the completion writeback physical address */
1669 writel(upper_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_hi);
1670 writel(lower_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_lo);
36f2771a
ME
1671
1672 memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
1673
1674 /* Set the address and parameters of the packet status ring into the
1675 * 1310's registers
1676 */
25e8e8ab
ME
1677 writel(upper_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_hi);
1678 writel(lower_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_lo);
36f2771a
ME
1679 writel(rx_local->psr_num_entries - 1, &rx_dma->psr_num_des);
1680 writel(0, &rx_dma->psr_full_offset);
1681
a129be84 1682 psr_num_des = readl(&rx_dma->psr_num_des) & ET_RXDMA_PSR_NUM_DES_MASK;
36f2771a
ME
1683 writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
1684 &rx_dma->psr_min_des);
1685
1686 spin_lock_irqsave(&adapter->rcv_lock, flags);
1687
1688 /* These local variables track the PSR in the adapter structure */
1689 rx_local->local_psr_full = 0;
1690
788ca84a 1691 for (id = 0; id < NUM_FBRS; id++) {
c0594ee9
ME
1692 u32 __iomem *num_des;
1693 u32 __iomem *full_offset;
1694 u32 __iomem *min_des;
1695 u32 __iomem *base_hi;
1696 u32 __iomem *base_lo;
efc56817 1697 struct fbr_lookup *fbr = rx_local->fbr[id];
788ca84a
ME
1698
1699 if (id == 0) {
788ca84a
ME
1700 num_des = &rx_dma->fbr0_num_des;
1701 full_offset = &rx_dma->fbr0_full_offset;
1702 min_des = &rx_dma->fbr0_min_des;
1703 base_hi = &rx_dma->fbr0_base_hi;
1704 base_lo = &rx_dma->fbr0_base_lo;
f0ada678
ME
1705 } else {
1706 num_des = &rx_dma->fbr1_num_des;
1707 full_offset = &rx_dma->fbr1_full_offset;
1708 min_des = &rx_dma->fbr1_min_des;
1709 base_hi = &rx_dma->fbr1_base_hi;
1710 base_lo = &rx_dma->fbr1_base_lo;
788ca84a 1711 }
36f2771a 1712
788ca84a 1713 /* Now's the best time to initialize FBR contents */
57cc0279 1714 fbr_entry = fbr->ring_virtaddr;
efc56817
ZG
1715 for (entry = 0; entry < fbr->num_entries; entry++) {
1716 fbr_entry->addr_hi = fbr->bus_high[entry];
1717 fbr_entry->addr_lo = fbr->bus_low[entry];
788ca84a
ME
1718 fbr_entry->word2 = entry;
1719 fbr_entry++;
1720 }
36f2771a 1721
788ca84a
ME
1722 /* Set the address and parameters of Free buffer ring 1 and 0
1723 * into the 1310's registers
1724 */
efc56817
ZG
1725 writel(upper_32_bits(fbr->ring_physaddr), base_hi);
1726 writel(lower_32_bits(fbr->ring_physaddr), base_lo);
1727 writel(fbr->num_entries - 1, num_des);
788ca84a 1728 writel(ET_DMA10_WRAP, full_offset);
36f2771a 1729
788ca84a
ME
1730 /* This variable tracks the free buffer ring 1 full position,
1731 * so it has to match the above.
1732 */
efc56817
ZG
1733 fbr->local_full = ET_DMA10_WRAP;
1734 writel(((fbr->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
788ca84a
ME
1735 min_des);
1736 }
36f2771a
ME
1737
1738 /* Program the number of packets we will receive before generating an
1739 * interrupt.
1740 * For version B silicon, this value gets updated once autoneg is
1741 *complete.
1742 */
1743 writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
1744
1745 /* The "time_done" is not working correctly to coalesce interrupts
1746 * after a given time period, but rather is giving us an interrupt
1747 * regardless of whether we have received packets.
1748 * This value gets updated once autoneg is complete.
1749 */
1750 writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
1751
1752 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
1753}
1754
26ef1021 1755/* et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
36f2771a
ME
1756 *
1757 * Configure the transmit engine with the ring buffers we have created
1758 * and prepare it for use.
1759 */
eb7a6ca6 1760static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter)
36f2771a
ME
1761{
1762 struct txdma_regs __iomem *txdma = &adapter->regs->txdma;
76981cf1 1763 struct tx_ring *tx_ring = &adapter->tx_ring;
36f2771a
ME
1764
1765 /* Load the hardware with the start of the transmit descriptor ring. */
76981cf1
ZG
1766 writel(upper_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_hi);
1767 writel(lower_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_lo);
36f2771a
ME
1768
1769 /* Initialise the transmit DMA engine */
1770 writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des);
1771
1772 /* Load the completion writeback physical address */
76981cf1
ZG
1773 writel(upper_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_hi);
1774 writel(lower_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_lo);
36f2771a 1775
76981cf1 1776 *tx_ring->tx_status = 0;
36f2771a
ME
1777
1778 writel(0, &txdma->service_request);
76981cf1 1779 tx_ring->send_idx = 0;
36f2771a
ME
1780}
1781
15ae239d 1782/* et131x_adapter_setup - Set the adapter up as per cassini+ documentation */
eb7a6ca6 1783static void et131x_adapter_setup(struct et131x_adapter *adapter)
36f2771a
ME
1784{
1785 /* Configure the JAGCore */
1786 et131x_configure_global_regs(adapter);
1787
1788 et1310_config_mac_regs1(adapter);
1789
1790 /* Configure the MMC registers */
1791 /* All we need to do is initialize the Memory Control Register */
1792 writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl);
1793
1794 et1310_config_rxmac_regs(adapter);
1795 et1310_config_txmac_regs(adapter);
1796
1797 et131x_config_rx_dma_regs(adapter);
1798 et131x_config_tx_dma_regs(adapter);
1799
1800 et1310_config_macstat_regs(adapter);
1801
1ff70a7c 1802 et1310_phy_power_switch(adapter, 0);
36f2771a
ME
1803 et131x_xcvr_init(adapter);
1804}
1805
15ae239d 1806/* et131x_soft_reset - Issue soft reset to the hardware, complete for ET1310 */
eb7a6ca6 1807static void et131x_soft_reset(struct et131x_adapter *adapter)
5da2b158 1808{
a129be84 1809 u32 reg;
5da2b158 1810
a129be84
ME
1811 /* Disable MAC Core */
1812 reg = ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
1813 ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1814 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1815 writel(reg, &adapter->regs->mac.cfg1);
1816
1817 reg = ET_RESET_ALL;
1818 writel(reg, &adapter->regs->global.sw_reset);
1819
1820 reg = ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1821 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1822 writel(reg, &adapter->regs->mac.cfg1);
1823 writel(0, &adapter->regs->mac.cfg1);
5da2b158
ME
1824}
1825
26ef1021 1826/* et131x_enable_interrupts - enable interrupt
a4d444bd
ME
1827 *
1828 * Enable the appropriate interrupts on the ET131x according to our
1829 * configuration
1830 */
eb7a6ca6 1831static void et131x_enable_interrupts(struct et131x_adapter *adapter)
a4d444bd
ME
1832{
1833 u32 mask;
1834
1835 /* Enable all global interrupts */
1836 if (adapter->flowcontrol == FLOW_TXONLY ||
12a2f3f3 1837 adapter->flowcontrol == FLOW_BOTH)
a4d444bd
ME
1838 mask = INT_MASK_ENABLE;
1839 else
1840 mask = INT_MASK_ENABLE_NO_FLOW;
1841
1842 writel(mask, &adapter->regs->global.int_mask);
1843}
1844
26ef1021 1845/* et131x_disable_interrupts - interrupt disable
a4d444bd
ME
1846 *
1847 * Block all interrupts from the et131x device at the device itself
1848 */
eb7a6ca6 1849static void et131x_disable_interrupts(struct et131x_adapter *adapter)
a4d444bd
ME
1850{
1851 /* Disable all global interrupts */
1852 writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask);
1853}
1854
15ae239d 1855/* et131x_tx_dma_disable - Stop of Tx_DMA on the ET1310 */
eb7a6ca6 1856static void et131x_tx_dma_disable(struct et131x_adapter *adapter)
a4d444bd 1857{
868bf442 1858 /* Setup the transmit dma configuration register */
3040d056 1859 writel(ET_TXDMA_CSR_HALT | ET_TXDMA_SNGL_EPKT,
a4d444bd
ME
1860 &adapter->regs->txdma.csr);
1861}
1862
15ae239d 1863/* et131x_enable_txrx - Enable tx/rx queues */
eb7a6ca6 1864static void et131x_enable_txrx(struct net_device *netdev)
a4d444bd
ME
1865{
1866 struct et131x_adapter *adapter = netdev_priv(netdev);
1867
1868 /* Enable the Tx and Rx DMA engines (if not already enabled) */
1869 et131x_rx_dma_enable(adapter);
1870 et131x_tx_dma_enable(adapter);
1871
1872 /* Enable device interrupts */
c655dee9 1873 if (adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE)
a4d444bd
ME
1874 et131x_enable_interrupts(adapter);
1875
1876 /* We're ready to move some data, so start the queue */
1877 netif_start_queue(netdev);
1878}
1879
15ae239d 1880/* et131x_disable_txrx - Disable tx/rx queues */
eb7a6ca6 1881static void et131x_disable_txrx(struct net_device *netdev)
a4d444bd
ME
1882{
1883 struct et131x_adapter *adapter = netdev_priv(netdev);
1884
1885 /* First thing is to stop the queue */
1886 netif_stop_queue(netdev);
1887
1888 /* Stop the Tx and Rx DMA engines */
1889 et131x_rx_dma_disable(adapter);
1890 et131x_tx_dma_disable(adapter);
1891
1892 /* Disable device interrupts */
1893 et131x_disable_interrupts(adapter);
1894}
1895
15ae239d 1896/* et131x_init_send - Initialize send data structures */
eb7a6ca6 1897static void et131x_init_send(struct et131x_adapter *adapter)
8310c602 1898{
8310c602 1899 u32 ct;
76981cf1
ZG
1900 struct tx_ring *tx_ring = &adapter->tx_ring;
1901 struct tcb *tcb = tx_ring->tcb_ring;
8310c602
ME
1902
1903 tx_ring->tcb_qhead = tcb;
1904
1905 memset(tcb, 0, sizeof(struct tcb) * NUM_TCB);
1906
1907 /* Go through and set up each TCB */
1908 for (ct = 0; ct++ < NUM_TCB; tcb++)
1909 /* Set the link pointer in HW TCB to the next TCB in the
1910 * chain
1911 */
1912 tcb->next = tcb + 1;
1913
1914 /* Set the tail pointer */
1915 tcb--;
1916 tx_ring->tcb_qtail = tcb;
1917 tcb->next = NULL;
1918 /* Curr send queue should now be empty */
1919 tx_ring->send_head = NULL;
1920 tx_ring->send_tail = NULL;
1921}
1922
26ef1021 1923/* et1310_enable_phy_coma - called when network cable is unplugged
d2796743
ME
1924 *
1925 * driver receive an phy status change interrupt while in D0 and check that
1926 * phy_status is down.
1927 *
1928 * -- gate off JAGCore;
1929 * -- set gigE PHY in Coma mode
1930 * -- wake on phy_interrupt; Perform software reset JAGCore,
1931 * re-initialize jagcore and gigE PHY
1932 *
1933 * Add D0-ASPM-PhyLinkDown Support:
1934 * -- while in D0, when there is a phy_interrupt indicating phy link
1935 * down status, call the MPSetPhyComa routine to enter this active
1936 * state power saving mode
1937 * -- while in D0-ASPM-PhyLinkDown mode, when there is a phy_interrupt
1938 * indicating linkup status, call the MPDisablePhyComa routine to
1939 * restore JAGCore and gigE PHY
1940 */
eb7a6ca6 1941static void et1310_enable_phy_coma(struct et131x_adapter *adapter)
d2796743
ME
1942{
1943 unsigned long flags;
1944 u32 pmcsr;
1945
1946 pmcsr = readl(&adapter->regs->global.pm_csr);
1947
1948 /* Save the GbE PHY speed and duplex modes. Need to restore this
1949 * when cable is plugged back in
1950 */
d2796743
ME
1951
1952 /* Stop sending packets. */
1953 spin_lock_irqsave(&adapter->send_hw_lock, flags);
c655dee9 1954 adapter->flags |= FMP_ADAPTER_LOWER_POWER;
d2796743
ME
1955 spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
1956
1957 /* Wait for outstanding Receive packets */
1958
1959 et131x_disable_txrx(adapter->netdev);
1960
1961 /* Gate off JAGCore 3 clock domains */
1962 pmcsr &= ~ET_PMCSR_INIT;
1963 writel(pmcsr, &adapter->regs->global.pm_csr);
1964
1965 /* Program gigE PHY in to Coma mode */
1966 pmcsr |= ET_PM_PHY_SW_COMA;
1967 writel(pmcsr, &adapter->regs->global.pm_csr);
1968}
1969
15ae239d 1970/* et1310_disable_phy_coma - Disable the Phy Coma Mode */
eb7a6ca6 1971static void et1310_disable_phy_coma(struct et131x_adapter *adapter)
d2796743
ME
1972{
1973 u32 pmcsr;
1974
1975 pmcsr = readl(&adapter->regs->global.pm_csr);
1976
1977 /* Disable phy_sw_coma register and re-enable JAGCore clocks */
1978 pmcsr |= ET_PMCSR_INIT;
1979 pmcsr &= ~ET_PM_PHY_SW_COMA;
1980 writel(pmcsr, &adapter->regs->global.pm_csr);
1981
1982 /* Restore the GbE PHY speed and duplex modes;
1983 * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
1984 */
d2796743
ME
1985
1986 /* Re-initialize the send structures */
1987 et131x_init_send(adapter);
1988
d2796743
ME
1989 /* Bring the device back to the state it was during init prior to
1990 * autonegotiation being complete. This way, when we get the auto-neg
1991 * complete interrupt, we can complete init by calling ConfigMacREGS2.
1992 */
1993 et131x_soft_reset(adapter);
1994
1995 /* setup et1310 as per the documentation ?? */
1996 et131x_adapter_setup(adapter);
1997
1998 /* Allow Tx to restart */
c655dee9 1999 adapter->flags &= ~FMP_ADAPTER_LOWER_POWER;
d2796743
ME
2000
2001 et131x_enable_txrx(adapter->netdev);
2002}
2003
d2796743
ME
2004static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
2005{
2006 u32 tmp_free_buff_ring = *free_buff_ring;
f03fcca0 2007
d2796743
ME
2008 tmp_free_buff_ring++;
2009 /* This works for all cases where limit < 1024. The 1023 case
26ef1021
ME
2010 * works because 1023++ is 1024 which means the if condition is not
2011 * taken but the carry of the bit into the wrap bit toggles the wrap
2012 * value correctly
2013 */
d2796743
ME
2014 if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
2015 tmp_free_buff_ring &= ~ET_DMA10_MASK;
2016 tmp_free_buff_ring ^= ET_DMA10_WRAP;
2017 }
2018 /* For the 1023 case */
12a2f3f3 2019 tmp_free_buff_ring &= (ET_DMA10_MASK | ET_DMA10_WRAP);
d2796743
ME
2020 *free_buff_ring = tmp_free_buff_ring;
2021 return tmp_free_buff_ring;
2022}
2023
26ef1021 2024/* et131x_rx_dma_memory_alloc
d2796743
ME
2025 *
2026 * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
2027 * and the Packet Status Ring.
2028 */
eb7a6ca6 2029static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
d2796743 2030{
788ca84a 2031 u8 id;
d2796743
ME
2032 u32 i, j;
2033 u32 bufsize;
87648933
ME
2034 u32 pktstat_ringsize;
2035 u32 fbr_chunksize;
8f7fa96a 2036 struct rx_ring *rx_ring = &adapter->rx_ring;
bad5d26f 2037 struct fbr_lookup *fbr;
d2796743 2038
d2796743 2039 /* Alloc memory for the lookup table */
e592a9b0 2040 rx_ring->fbr[0] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
a9f48883
A
2041 if (rx_ring->fbr[0] == NULL)
2042 return -ENOMEM;
f0ada678 2043 rx_ring->fbr[1] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
a9f48883
A
2044 if (rx_ring->fbr[1] == NULL)
2045 return -ENOMEM;
d2796743
ME
2046
2047 /* The first thing we will do is configure the sizes of the buffer
2048 * rings. These will change based on jumbo packet support. Larger
2049 * jumbo packets increases the size of each entry in FBR0, and the
2050 * number of entries in FBR0, while at the same time decreasing the
2051 * number of entries in FBR1.
2052 *
2053 * FBR1 holds "large" frames, FBR0 holds "small" frames. If FBR1
2054 * entries are huge in order to accommodate a "jumbo" frame, then it
2055 * will have less entries. Conversely, FBR1 will now be relied upon
2056 * to carry more "normal" frames, thus it's entry size also increases
2057 * and the number of entries goes up too (since it now carries
2058 * "small" + "regular" packets.
2059 *
2060 * In this scheme, we try to maintain 512 entries between the two
2061 * rings. Also, FBR1 remains a constant size - when it's size doubles
2062 * the number of entries halves. FBR0 increases in size, however.
2063 */
2064
2065 if (adapter->registry_jumbo_packet < 2048) {
f0ada678 2066 rx_ring->fbr[0]->buffsize = 256;
e592a9b0 2067 rx_ring->fbr[0]->num_entries = 512;
f0ada678
ME
2068 rx_ring->fbr[1]->buffsize = 2048;
2069 rx_ring->fbr[1]->num_entries = 512;
d2796743 2070 } else if (adapter->registry_jumbo_packet < 4096) {
f0ada678
ME
2071 rx_ring->fbr[0]->buffsize = 512;
2072 rx_ring->fbr[0]->num_entries = 1024;
2073 rx_ring->fbr[1]->buffsize = 4096;
2074 rx_ring->fbr[1]->num_entries = 512;
d2796743 2075 } else {
f0ada678
ME
2076 rx_ring->fbr[0]->buffsize = 1024;
2077 rx_ring->fbr[0]->num_entries = 768;
2078 rx_ring->fbr[1]->buffsize = 16384;
2079 rx_ring->fbr[1]->num_entries = 128;
d2796743
ME
2080 }
2081
bad5d26f
ZG
2082 rx_ring->psr_num_entries = rx_ring->fbr[0]->num_entries +
2083 rx_ring->fbr[1]->num_entries;
d2796743 2084
788ca84a 2085 for (id = 0; id < NUM_FBRS; id++) {
bad5d26f 2086 fbr = rx_ring->fbr[id];
788ca84a 2087 /* Allocate an area of memory for Free Buffer Ring */
bad5d26f
ZG
2088 bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
2089 fbr->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2090 bufsize,
2091 &fbr->ring_physaddr,
2092 GFP_KERNEL);
2093 if (!fbr->ring_virtaddr) {
d2796743 2094 dev_err(&adapter->pdev->dev,
788ca84a 2095 "Cannot alloc memory for Free Buffer Ring %d\n", id);
d2796743
ME
2096 return -ENOMEM;
2097 }
d2796743
ME
2098 }
2099
788ca84a 2100 for (id = 0; id < NUM_FBRS; id++) {
bad5d26f
ZG
2101 fbr = rx_ring->fbr[id];
2102 fbr_chunksize = (FBR_CHUNKS * fbr->buffsize);
87648933 2103
bad5d26f 2104 for (i = 0; i < fbr->num_entries / FBR_CHUNKS; i++) {
788ca84a 2105 dma_addr_t fbr_tmp_physaddr;
788ca84a 2106
bad5d26f 2107 fbr->mem_virtaddrs[i] = dma_alloc_coherent(
788ca84a 2108 &adapter->pdev->dev, fbr_chunksize,
bad5d26f 2109 &fbr->mem_physaddrs[i],
788ca84a 2110 GFP_KERNEL);
d2796743 2111
bad5d26f 2112 if (!fbr->mem_virtaddrs[i]) {
788ca84a
ME
2113 dev_err(&adapter->pdev->dev,
2114 "Could not alloc memory\n");
2115 return -ENOMEM;
2116 }
d2796743 2117
788ca84a 2118 /* See NOTE in "Save Physical Address" comment above */
bad5d26f 2119 fbr_tmp_physaddr = fbr->mem_physaddrs[i];
788ca84a 2120
788ca84a
ME
2121 for (j = 0; j < FBR_CHUNKS; j++) {
2122 u32 index = (i * FBR_CHUNKS) + j;
2123
2124 /* Save the Virtual address of this index for
2125 * quick access later
2126 */
bad5d26f
ZG
2127 fbr->virt[index] = (u8 *)fbr->mem_virtaddrs[i] +
2128 (j * fbr->buffsize);
788ca84a
ME
2129
2130 /* now store the physical address in the
2131 * descriptor so the device can access it
2132 */
bad5d26f 2133 fbr->bus_high[index] =
788ca84a 2134 upper_32_bits(fbr_tmp_physaddr);
bad5d26f 2135 fbr->bus_low[index] =
788ca84a
ME
2136 lower_32_bits(fbr_tmp_physaddr);
2137
bad5d26f 2138 fbr_tmp_physaddr += fbr->buffsize;
788ca84a 2139 }
d2796743
ME
2140 }
2141 }
d2796743
ME
2142
2143 /* Allocate an area of memory for FIFO of Packet Status ring entries */
2144 pktstat_ringsize =
bad5d26f 2145 sizeof(struct pkt_stat_desc) * rx_ring->psr_num_entries;
d2796743 2146
0d1b7a84 2147 rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
d2796743 2148 pktstat_ringsize,
0d1b7a84
ME
2149 &rx_ring->ps_ring_physaddr,
2150 GFP_KERNEL);
d2796743
ME
2151
2152 if (!rx_ring->ps_ring_virtaddr) {
2153 dev_err(&adapter->pdev->dev,
2154 "Cannot alloc memory for Packet Status Ring\n");
2155 return -ENOMEM;
2156 }
d2796743 2157
26ef1021 2158 /* NOTE : dma_alloc_coherent(), used above to alloc DMA regions,
d2796743
ME
2159 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2160 * are ever returned, make sure the high part is retrieved here before
2161 * storing the adjusted address.
2162 */
2163
2164 /* Allocate an area of memory for writeback of status information */
0d1b7a84 2165 rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev,
d2796743 2166 sizeof(struct rx_status_block),
0d1b7a84
ME
2167 &rx_ring->rx_status_bus,
2168 GFP_KERNEL);
d2796743
ME
2169 if (!rx_ring->rx_status_block) {
2170 dev_err(&adapter->pdev->dev,
2171 "Cannot alloc memory for Status Block\n");
2172 return -ENOMEM;
2173 }
2174 rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
d2796743 2175
d2796743
ME
2176 /* The RFDs are going to be put on lists later on, so initialize the
2177 * lists now.
2178 */
2179 INIT_LIST_HEAD(&rx_ring->recv_list);
2180 return 0;
2181}
2182
15ae239d 2183/* et131x_rx_dma_memory_free - Free all memory allocated within this module */
eb7a6ca6 2184static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
d2796743 2185{
788ca84a 2186 u8 id;
d2796743
ME
2187 u32 index;
2188 u32 bufsize;
2189 u32 pktstat_ringsize;
2190 struct rfd *rfd;
8f7fa96a 2191 struct rx_ring *rx_ring = &adapter->rx_ring;
f876f59e 2192 struct fbr_lookup *fbr;
d2796743 2193
d2796743
ME
2194 /* Free RFDs and associated packet descriptors */
2195 WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
2196
2197 while (!list_empty(&rx_ring->recv_list)) {
57cc0279
ZG
2198 rfd = list_entry(rx_ring->recv_list.next,
2199 struct rfd, list_node);
d2796743
ME
2200
2201 list_del(&rfd->list_node);
2202 rfd->skb = NULL;
d959df0a 2203 kfree(rfd);
d2796743
ME
2204 }
2205
788ca84a
ME
2206 /* Free Free Buffer Rings */
2207 for (id = 0; id < NUM_FBRS; id++) {
f876f59e
ZG
2208 fbr = rx_ring->fbr[id];
2209
a9f48883 2210 if (!fbr || !fbr->ring_virtaddr)
823bb2e8 2211 continue;
d2796743 2212
823bb2e8
ME
2213 /* First the packet memory */
2214 for (index = 0;
f876f59e 2215 index < fbr->num_entries / FBR_CHUNKS;
823bb2e8 2216 index++) {
f876f59e
ZG
2217 if (fbr->mem_virtaddrs[index]) {
2218 bufsize = fbr->buffsize * FBR_CHUNKS;
d2796743 2219
823bb2e8 2220 dma_free_coherent(&adapter->pdev->dev,
f876f59e
ZG
2221 bufsize,
2222 fbr->mem_virtaddrs[index],
2223 fbr->mem_physaddrs[index]);
d2796743 2224
f876f59e 2225 fbr->mem_virtaddrs[index] = NULL;
823bb2e8 2226 }
d2796743 2227 }
823bb2e8 2228
f876f59e 2229 bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
823bb2e8 2230
f876f59e
ZG
2231 dma_free_coherent(&adapter->pdev->dev,
2232 bufsize,
2233 fbr->ring_virtaddr,
2234 fbr->ring_physaddr);
823bb2e8 2235
f876f59e 2236 fbr->ring_virtaddr = NULL;
d2796743 2237 }
d2796743
ME
2238
2239 /* Free Packet Status Ring */
2240 if (rx_ring->ps_ring_virtaddr) {
242187aa 2241 pktstat_ringsize = sizeof(struct pkt_stat_desc) *
8f7fa96a 2242 rx_ring->psr_num_entries;
d2796743 2243
675c8f68 2244 dma_free_coherent(&adapter->pdev->dev, pktstat_ringsize,
d2796743
ME
2245 rx_ring->ps_ring_virtaddr,
2246 rx_ring->ps_ring_physaddr);
2247
2248 rx_ring->ps_ring_virtaddr = NULL;
2249 }
2250
2251 /* Free area of memory for the writeback of status information */
2252 if (rx_ring->rx_status_block) {
675c8f68 2253 dma_free_coherent(&adapter->pdev->dev,
d2796743
ME
2254 sizeof(struct rx_status_block),
2255 rx_ring->rx_status_block, rx_ring->rx_status_bus);
2256 rx_ring->rx_status_block = NULL;
2257 }
2258
d2796743 2259 /* Free the FBR Lookup Table */
e592a9b0 2260 kfree(rx_ring->fbr[0]);
f0ada678 2261 kfree(rx_ring->fbr[1]);
d2796743
ME
2262
2263 /* Reset Counters */
2264 rx_ring->num_ready_recv = 0;
2265}
2266
15ae239d 2267/* et131x_init_recv - Initialize receive data structures */
eb7a6ca6 2268static int et131x_init_recv(struct et131x_adapter *adapter)
d2796743 2269{
d959df0a 2270 struct rfd *rfd;
d2796743 2271 u32 rfdct;
8f7fa96a 2272 struct rx_ring *rx_ring = &adapter->rx_ring;
d2796743
ME
2273
2274 /* Setup each RFD */
2275 for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
d959df0a 2276 rfd = kzalloc(sizeof(struct rfd), GFP_ATOMIC | GFP_DMA);
78110bb8 2277 if (!rfd)
d959df0a 2278 return -ENOMEM;
d2796743
ME
2279
2280 rfd->skb = NULL;
2281
2282 /* Add this RFD to the recv_list */
2283 list_add_tail(&rfd->list_node, &rx_ring->recv_list);
2284
4eb94628 2285 /* Increment the available RFD's */
d2796743 2286 rx_ring->num_ready_recv++;
d2796743
ME
2287 }
2288
d959df0a 2289 return 0;
d2796743
ME
2290}
2291
15ae239d 2292/* et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate */
eb7a6ca6 2293static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
d2796743
ME
2294{
2295 struct phy_device *phydev = adapter->phydev;
2296
d2796743
ME
2297 /* For version B silicon, we do not use the RxDMA timer for 10 and 100
2298 * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
2299 */
2300 if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
2301 writel(0, &adapter->regs->rxdma.max_pkt_time);
2302 writel(1, &adapter->regs->rxdma.num_pkt_done);
2303 }
2304}
2305
26ef1021 2306/* NICReturnRFD - Recycle a RFD and put it back onto the receive list
d2796743
ME
2307 * @adapter: pointer to our adapter
2308 * @rfd: pointer to the RFD
2309 */
2310static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
2311{
2312 struct rx_ring *rx_local = &adapter->rx_ring;
2313 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
2314 u16 buff_index = rfd->bufferindex;
2315 u8 ring_index = rfd->ringindex;
2316 unsigned long flags;
39bdb4a0 2317 struct fbr_lookup *fbr = rx_local->fbr[ring_index];
d2796743
ME
2318
2319 /* We don't use any of the OOB data besides status. Otherwise, we
2320 * need to clean up OOB data
2321 */
39bdb4a0
ZG
2322 if (buff_index < fbr->num_entries) {
2323 u32 free_buff_ring;
c0594ee9 2324 u32 __iomem *offset;
788ca84a
ME
2325 struct fbr_desc *next;
2326
f0ada678 2327 if (ring_index == 0)
788ca84a 2328 offset = &rx_dma->fbr0_full_offset;
f0ada678
ME
2329 else
2330 offset = &rx_dma->fbr1_full_offset;
788ca84a 2331
39bdb4a0
ZG
2332 next = (struct fbr_desc *)(fbr->ring_virtaddr) +
2333 INDEX10(fbr->local_full);
788ca84a
ME
2334
2335 /* Handle the Free Buffer Ring advancement here. Write
2336 * the PA / Buffer Index for the returned buffer into
2337 * the oldest (next to be freed)FBR entry
2338 */
39bdb4a0
ZG
2339 next->addr_hi = fbr->bus_high[buff_index];
2340 next->addr_lo = fbr->bus_low[buff_index];
788ca84a
ME
2341 next->word2 = buff_index;
2342
39bdb4a0
ZG
2343 free_buff_ring = bump_free_buff_ring(&fbr->local_full,
2344 fbr->num_entries - 1);
2345 writel(free_buff_ring, offset);
d2796743
ME
2346 } else {
2347 dev_err(&adapter->pdev->dev,
2348 "%s illegal Buffer Index returned\n", __func__);
2349 }
2350
2351 /* The processing on this RFD is done, so put it back on the tail of
2352 * our list
2353 */
2354 spin_lock_irqsave(&adapter->rcv_lock, flags);
2355 list_add_tail(&rfd->list_node, &rx_local->recv_list);
2356 rx_local->num_ready_recv++;
2357 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2358
2359 WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
2360}
2361
26ef1021 2362/* nic_rx_pkts - Checks the hardware for available packets
54dbf04f
ME
2363 *
2364 * Returns rfd, a pointer to our MPRFD.
2365 *
2366 * Checks the hardware for available packets, using completion ring
2367 * If packets are available, it gets an RFD from the recv_list, attaches
2368 * the packet to it, puts the RFD in the RecvPendList, and also returns
2369 * the pointer to the RFD.
2370 */
d2796743
ME
2371static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
2372{
2373 struct rx_ring *rx_local = &adapter->rx_ring;
2374 struct rx_status_block *status;
2375 struct pkt_stat_desc *psr;
186c426d 2376 struct rfd *rfd;
d2796743
ME
2377 u32 i;
2378 u8 *buf;
2379 unsigned long flags;
2380 struct list_head *element;
2381 u8 ring_index;
2382 u16 buff_index;
2383 u32 len;
2384 u32 word0;
2385 u32 word1;
186c426d 2386 struct sk_buff *skb;
297bb9db 2387 struct fbr_lookup *fbr;
d2796743
ME
2388
2389 /* RX Status block is written by the DMA engine prior to every
2390 * interrupt. It contains the next to be used entry in the Packet
2391 * Status Ring, and also the two Free Buffer rings.
2392 */
2393 status = rx_local->rx_status_block;
2394 word1 = status->word1 >> 16; /* Get the useful bits */
2395
2396 /* Check the PSR and wrap bits do not match */
2397 if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
242187aa 2398 return NULL; /* Looks like this ring is not updated yet */
d2796743
ME
2399
2400 /* The packet status ring indicates that data is available. */
2401 psr = (struct pkt_stat_desc *) (rx_local->ps_ring_virtaddr) +
2402 (rx_local->local_psr_full & 0xFFF);
2403
242187aa
ME
2404 /* Grab any information that is required once the PSR is advanced,
2405 * since we can no longer rely on the memory being accurate
d2796743
ME
2406 */
2407 len = psr->word1 & 0xFFFF;
2408 ring_index = (psr->word1 >> 26) & 0x03;
297bb9db 2409 fbr = rx_local->fbr[ring_index];
d2796743
ME
2410 buff_index = (psr->word1 >> 16) & 0x3FF;
2411 word0 = psr->word0;
2412
2413 /* Indicate that we have used this PSR entry. */
2414 /* FIXME wrap 12 */
2415 add_12bit(&rx_local->local_psr_full, 1);
2416 if (
2417 (rx_local->local_psr_full & 0xFFF) > rx_local->psr_num_entries - 1) {
2418 /* Clear psr full and toggle the wrap bit */
2419 rx_local->local_psr_full &= ~0xFFF;
2420 rx_local->local_psr_full ^= 0x1000;
2421 }
2422
242187aa 2423 writel(rx_local->local_psr_full, &adapter->regs->rxdma.psr_full_offset);
d2796743 2424
297bb9db 2425 if (ring_index > 1 || buff_index > fbr->num_entries - 1) {
d2796743
ME
2426 /* Illegal buffer or ring index cannot be used by S/W*/
2427 dev_err(&adapter->pdev->dev,
242187aa
ME
2428 "NICRxPkts PSR Entry %d indicates length of %d and/or bad bi(%d)\n",
2429 rx_local->local_psr_full & 0xFFF, len, buff_index);
d2796743
ME
2430 return NULL;
2431 }
2432
2433 /* Get and fill the RFD. */
2434 spin_lock_irqsave(&adapter->rcv_lock, flags);
2435
d2796743 2436 element = rx_local->recv_list.next;
57cc0279 2437 rfd = list_entry(element, struct rfd, list_node);
d2796743 2438
242187aa 2439 if (!rfd) {
d2796743
ME
2440 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2441 return NULL;
2442 }
2443
2444 list_del(&rfd->list_node);
2445 rx_local->num_ready_recv--;
2446
2447 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2448
2449 rfd->bufferindex = buff_index;
2450 rfd->ringindex = ring_index;
2451
242187aa
ME
2452 /* In V1 silicon, there is a bug which screws up filtering of runt
2453 * packets. Therefore runt packet filtering is disabled in the MAC and
2454 * the packets are dropped here. They are also counted here.
d2796743
ME
2455 */
2456 if (len < (NIC_MIN_PACKET_SIZE + 4)) {
2457 adapter->stats.rx_other_errs++;
2458 len = 0;
2459 }
2460
242187aa
ME
2461 if (len == 0) {
2462 rfd->len = 0;
2463 goto out;
2464 }
2465
2466 /* Determine if this is a multicast packet coming in */
2467 if ((word0 & ALCATEL_MULTICAST_PKT) &&
2468 !(word0 & ALCATEL_BROADCAST_PKT)) {
2469 /* Promiscuous mode and Multicast mode are not mutually
2470 * exclusive as was first thought. I guess Promiscuous is just
2471 * considered a super-set of the other filters. Generally filter
2472 * is 0x2b when in promiscuous mode.
2473 */
2474 if ((adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST)
2475 && !(adapter->packet_filter & ET131X_PACKET_TYPE_PROMISCUOUS)
2476 && !(adapter->packet_filter &
d2796743 2477 ET131X_PACKET_TYPE_ALL_MULTICAST)) {
297bb9db 2478 buf = fbr->virt[buff_index];
d2796743 2479
242187aa
ME
2480 /* Loop through our list to see if the destination
2481 * address of this packet matches one in our list.
2482 */
2483 for (i = 0; i < adapter->multicast_addr_count; i++) {
2484 if (buf[0] == adapter->multicast_list[i][0]
2485 && buf[1] == adapter->multicast_list[i][1]
2486 && buf[2] == adapter->multicast_list[i][2]
2487 && buf[3] == adapter->multicast_list[i][3]
2488 && buf[4] == adapter->multicast_list[i][4]
2489 && buf[5] == adapter->multicast_list[i][5]) {
2490 break;
d2796743 2491 }
d2796743
ME
2492 }
2493
242187aa
ME
2494 /* If our index is equal to the number of Multicast
2495 * address we have, then this means we did not find this
2496 * packet's matching address in our list. Set the len to
2497 * zero, so we free our RFD when we return from this
2498 * function.
d2796743 2499 */
242187aa
ME
2500 if (i == adapter->multicast_addr_count)
2501 len = 0;
2502 }
d2796743 2503
242187aa
ME
2504 if (len > 0)
2505 adapter->stats.multicast_pkts_rcvd++;
2506 } else if (word0 & ALCATEL_BROADCAST_PKT) {
2507 adapter->stats.broadcast_pkts_rcvd++;
2508 } else {
2509 /* Not sure what this counter measures in promiscuous mode.
2510 * Perhaps we should check the MAC address to see if it is
2511 * directed to us in promiscuous mode.
2512 */
2513 adapter->stats.unicast_pkts_rcvd++;
2514 }
d2796743 2515
12a2f3f3 2516 if (!len) {
242187aa
ME
2517 rfd->len = 0;
2518 goto out;
2519 }
d2796743 2520
242187aa 2521 rfd->len = len;
d2796743 2522
242187aa
ME
2523 skb = dev_alloc_skb(rfd->len + 2);
2524 if (!skb) {
2525 dev_err(&adapter->pdev->dev, "Couldn't alloc an SKB for Rx\n");
2526 return NULL;
2527 }
d2796743 2528
1f765d9f 2529 adapter->netdev->stats.rx_bytes += rfd->len;
d2796743 2530
297bb9db 2531 memcpy(skb_put(skb, rfd->len), fbr->virt[buff_index], rfd->len);
d2796743 2532
242187aa
ME
2533 skb->protocol = eth_type_trans(skb, adapter->netdev);
2534 skb->ip_summed = CHECKSUM_NONE;
c2ebf58b 2535 netif_receive_skb(skb);
d2796743 2536
242187aa 2537out:
d2796743
ME
2538 nic_return_rfd(adapter, rfd);
2539 return rfd;
2540}
2541
c2ebf58b 2542/* et131x_handle_recv_pkts - Interrupt handler for receive processing
d2796743
ME
2543 *
2544 * Assumption, Rcv spinlock has been acquired.
2545 */
c2ebf58b 2546static int et131x_handle_recv_pkts(struct et131x_adapter *adapter, int budget)
d2796743
ME
2547{
2548 struct rfd *rfd = NULL;
c2ebf58b
ME
2549 int count = 0;
2550 int limit = budget;
d2796743 2551 bool done = true;
8f7fa96a 2552 struct rx_ring *rx_ring = &adapter->rx_ring;
d2796743 2553
c2ebf58b
ME
2554 if (budget > MAX_PACKETS_HANDLED)
2555 limit = MAX_PACKETS_HANDLED;
2556
d2796743 2557 /* Process up to available RFD's */
c2ebf58b 2558 while (count < limit) {
8f7fa96a
ZG
2559 if (list_empty(&rx_ring->recv_list)) {
2560 WARN_ON(rx_ring->num_ready_recv != 0);
d2796743
ME
2561 done = false;
2562 break;
2563 }
2564
2565 rfd = nic_rx_pkts(adapter);
2566
2567 if (rfd == NULL)
2568 break;
2569
2570 /* Do not receive any packets until a filter has been set.
2571 * Do not receive any packets until we have link.
2572 * If length is zero, return the RFD in order to advance the
2573 * Free buffer ring.
2574 */
2575 if (!adapter->packet_filter ||
2576 !netif_carrier_ok(adapter->netdev) ||
2577 rfd->len == 0)
2578 continue;
2579
2580 /* Increment the number of packets we received */
1f765d9f 2581 adapter->netdev->stats.rx_packets++;
d2796743
ME
2582
2583 /* Set the status on the packet, either resources or success */
8f7fa96a 2584 if (rx_ring->num_ready_recv < RFD_LOW_WATER_MARK)
0cdc6ee8
ME
2585 dev_warn(&adapter->pdev->dev, "RFD's are running out\n");
2586
d2796743
ME
2587 count++;
2588 }
2589
c2ebf58b 2590 if (count == limit || !done) {
8f7fa96a 2591 rx_ring->unfinished_receives = true;
d2796743
ME
2592 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2593 &adapter->regs->global.watchdog_timer);
2594 } else
2595 /* Watchdog timer will disable itself if appropriate. */
8f7fa96a 2596 rx_ring->unfinished_receives = false;
c2ebf58b
ME
2597
2598 return count;
d2796743
ME
2599}
2600
26ef1021 2601/* et131x_tx_dma_memory_alloc
d2796743
ME
2602 *
2603 * Allocates memory that will be visible both to the device and to the CPU.
2604 * The OS will pass us packets, pointers to which we will insert in the Tx
2605 * Descriptor queue. The device will read this queue to find the packets in
2606 * memory. The device will update the "status" in memory each time it xmits a
2607 * packet.
2608 */
eb7a6ca6 2609static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
d2796743
ME
2610{
2611 int desc_size = 0;
2612 struct tx_ring *tx_ring = &adapter->tx_ring;
2613
2614 /* Allocate memory for the TCB's (Transmit Control Block) */
76981cf1
ZG
2615 tx_ring->tcb_ring = kcalloc(NUM_TCB, sizeof(struct tcb),
2616 GFP_ATOMIC | GFP_DMA);
2617 if (!tx_ring->tcb_ring)
d2796743 2618 return -ENOMEM;
d2796743 2619
d3c75e8d 2620 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
57cc0279
ZG
2621 tx_ring->tx_desc_ring = dma_alloc_coherent(&adapter->pdev->dev,
2622 desc_size,
2623 &tx_ring->tx_desc_ring_pa,
2624 GFP_KERNEL);
76981cf1 2625 if (!tx_ring->tx_desc_ring) {
d2796743 2626 dev_err(&adapter->pdev->dev,
09a3fc2b 2627 "Cannot alloc memory for Tx Ring\n");
d2796743
ME
2628 return -ENOMEM;
2629 }
2630
2631 /* Save physical address
2632 *
26dc751e 2633 * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
d2796743
ME
2634 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2635 * are ever returned, make sure the high part is retrieved here before
2636 * storing the adjusted address.
2637 */
2638 /* Allocate memory for the Tx status block */
0d1b7a84 2639 tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev,
d2796743 2640 sizeof(u32),
0d1b7a84
ME
2641 &tx_ring->tx_status_pa,
2642 GFP_KERNEL);
76981cf1 2643 if (!tx_ring->tx_status_pa) {
d2796743 2644 dev_err(&adapter->pdev->dev,
76981cf1 2645 "Cannot alloc memory for Tx status block\n");
d2796743
ME
2646 return -ENOMEM;
2647 }
2648 return 0;
2649}
2650
15ae239d 2651/* et131x_tx_dma_memory_free - Free all memory allocated within this module */
eb7a6ca6 2652static void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
d2796743
ME
2653{
2654 int desc_size = 0;
76981cf1 2655 struct tx_ring *tx_ring = &adapter->tx_ring;
d2796743 2656
76981cf1 2657 if (tx_ring->tx_desc_ring) {
d2796743 2658 /* Free memory relating to Tx rings here */
d3c75e8d 2659 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
675c8f68 2660 dma_free_coherent(&adapter->pdev->dev,
76981cf1
ZG
2661 desc_size,
2662 tx_ring->tx_desc_ring,
2663 tx_ring->tx_desc_ring_pa);
2664 tx_ring->tx_desc_ring = NULL;
d2796743
ME
2665 }
2666
2667 /* Free memory for the Tx status block */
76981cf1 2668 if (tx_ring->tx_status) {
675c8f68 2669 dma_free_coherent(&adapter->pdev->dev,
76981cf1
ZG
2670 sizeof(u32),
2671 tx_ring->tx_status,
2672 tx_ring->tx_status_pa);
d2796743 2673
76981cf1 2674 tx_ring->tx_status = NULL;
d2796743
ME
2675 }
2676 /* Free the memory for the tcb structures */
76981cf1 2677 kfree(tx_ring->tcb_ring);
d2796743
ME
2678}
2679
26ef1021 2680/* nic_send_packet - NIC specific send handler for version B silicon.
d2796743
ME
2681 * @adapter: pointer to our adapter
2682 * @tcb: pointer to struct tcb
d2796743
ME
2683 */
2684static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb)
2685{
2686 u32 i;
2687 struct tx_desc desc[24]; /* 24 x 16 byte */
2688 u32 frag = 0;
2689 u32 thiscopy, remainder;
2690 struct sk_buff *skb = tcb->skb;
2691 u32 nr_frags = skb_shinfo(skb)->nr_frags + 1;
2692 struct skb_frag_struct *frags = &skb_shinfo(skb)->frags[0];
2693 unsigned long flags;
2694 struct phy_device *phydev = adapter->phydev;
998f6dfb 2695 dma_addr_t dma_addr;
76981cf1 2696 struct tx_ring *tx_ring = &adapter->tx_ring;
d2796743
ME
2697
2698 /* Part of the optimizations of this send routine restrict us to
2699 * sending 24 fragments at a pass. In practice we should never see
2700 * more than 5 fragments.
2701 *
2702 * NOTE: The older version of this function (below) can handle any
2703 * number of fragments. If needed, we can call this function,
2704 * although it is less efficient.
2705 */
9c7bc376
RK
2706
2707 /* nr_frags should be no more than 18. */
2708 BUILD_BUG_ON(MAX_SKB_FRAGS + 1 > 23);
d2796743
ME
2709
2710 memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1));
2711
2712 for (i = 0; i < nr_frags; i++) {
2713 /* If there is something in this element, lets get a
2714 * descriptor from the ring and get the necessary data
2715 */
2716 if (i == 0) {
2717 /* If the fragments are smaller than a standard MTU,
2718 * then map them to a single descriptor in the Tx
2719 * Desc ring. However, if they're larger, as is
2720 * possible with support for jumbo packets, then
2721 * split them each across 2 descriptors.
2722 *
2723 * This will work until we determine why the hardware
2724 * doesn't seem to like large fragments.
2725 */
f1b540b9 2726 if (skb_headlen(skb) <= 1514) {
d2796743 2727 /* Low 16bits are length, high is vlan and
26ef1021
ME
2728 * unused currently so zero
2729 */
f1b540b9 2730 desc[frag].len_vlan = skb_headlen(skb);
998f6dfb
ME
2731 dma_addr = dma_map_single(&adapter->pdev->dev,
2732 skb->data,
2733 skb_headlen(skb),
2734 DMA_TO_DEVICE);
2735 desc[frag].addr_lo = lower_32_bits(dma_addr);
2736 desc[frag].addr_hi = upper_32_bits(dma_addr);
2737 frag++;
d2796743 2738 } else {
f1b540b9 2739 desc[frag].len_vlan = skb_headlen(skb) / 2;
998f6dfb 2740 dma_addr = dma_map_single(&adapter->pdev->dev,
3781683e
ME
2741 skb->data,
2742 (skb_headlen(skb) / 2),
2743 DMA_TO_DEVICE);
998f6dfb
ME
2744 desc[frag].addr_lo = lower_32_bits(dma_addr);
2745 desc[frag].addr_hi = upper_32_bits(dma_addr);
2746 frag++;
d2796743 2747
f1b540b9 2748 desc[frag].len_vlan = skb_headlen(skb) / 2;
998f6dfb 2749 dma_addr = dma_map_single(&adapter->pdev->dev,
3781683e
ME
2750 skb->data +
2751 (skb_headlen(skb) / 2),
2752 (skb_headlen(skb) / 2),
2753 DMA_TO_DEVICE);
998f6dfb
ME
2754 desc[frag].addr_lo = lower_32_bits(dma_addr);
2755 desc[frag].addr_hi = upper_32_bits(dma_addr);
2756 frag++;
d2796743
ME
2757 }
2758 } else {
998f6dfb
ME
2759 desc[frag].len_vlan = frags[i - 1].size;
2760 dma_addr = skb_frag_dma_map(&adapter->pdev->dev,
2761 &frags[i - 1],
2762 0,
2763 frags[i - 1].size,
2764 DMA_TO_DEVICE);
2765 desc[frag].addr_lo = lower_32_bits(dma_addr);
2766 desc[frag].addr_hi = upper_32_bits(dma_addr);
2767 frag++;
d2796743
ME
2768 }
2769 }
2770
d2796743 2771 if (phydev && phydev->speed == SPEED_1000) {
76981cf1 2772 if (++tx_ring->since_irq == PARM_TX_NUM_BUFS_DEF) {
d2796743 2773 /* Last element & Interrupt flag */
c655dee9
ME
2774 desc[frag - 1].flags =
2775 TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
76981cf1 2776 tx_ring->since_irq = 0;
d2796743 2777 } else { /* Last element */
a129be84 2778 desc[frag - 1].flags = TXDESC_FLAG_LASTPKT;
d2796743
ME
2779 }
2780 } else
c655dee9
ME
2781 desc[frag - 1].flags =
2782 TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
d2796743 2783
a129be84 2784 desc[0].flags |= TXDESC_FLAG_FIRSTPKT;
d2796743 2785
76981cf1 2786 tcb->index_start = tx_ring->send_idx;
d2796743
ME
2787 tcb->stale = 0;
2788
2789 spin_lock_irqsave(&adapter->send_hw_lock, flags);
2790
76981cf1 2791 thiscopy = NUM_DESC_PER_RING_TX - INDEX10(tx_ring->send_idx);
d2796743
ME
2792
2793 if (thiscopy >= frag) {
2794 remainder = 0;
2795 thiscopy = frag;
2796 } else {
2797 remainder = frag - thiscopy;
2798 }
2799
76981cf1
ZG
2800 memcpy(tx_ring->tx_desc_ring + INDEX10(tx_ring->send_idx),
2801 desc,
d2796743
ME
2802 sizeof(struct tx_desc) * thiscopy);
2803
76981cf1 2804 add_10bit(&tx_ring->send_idx, thiscopy);
d2796743 2805
76981cf1
ZG
2806 if (INDEX10(tx_ring->send_idx) == 0 ||
2807 INDEX10(tx_ring->send_idx) == NUM_DESC_PER_RING_TX) {
2808 tx_ring->send_idx &= ~ET_DMA10_MASK;
2809 tx_ring->send_idx ^= ET_DMA10_WRAP;
d2796743
ME
2810 }
2811
2812 if (remainder) {
76981cf1 2813 memcpy(tx_ring->tx_desc_ring,
d2796743
ME
2814 desc + thiscopy,
2815 sizeof(struct tx_desc) * remainder);
2816
76981cf1 2817 add_10bit(&tx_ring->send_idx, remainder);
d2796743
ME
2818 }
2819
76981cf1
ZG
2820 if (INDEX10(tx_ring->send_idx) == 0) {
2821 if (tx_ring->send_idx)
d2796743
ME
2822 tcb->index = NUM_DESC_PER_RING_TX - 1;
2823 else
2824 tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1);
2825 } else
76981cf1 2826 tcb->index = tx_ring->send_idx - 1;
d2796743
ME
2827
2828 spin_lock(&adapter->tcb_send_qlock);
2829
76981cf1
ZG
2830 if (tx_ring->send_tail)
2831 tx_ring->send_tail->next = tcb;
d2796743 2832 else
76981cf1 2833 tx_ring->send_head = tcb;
d2796743 2834
76981cf1 2835 tx_ring->send_tail = tcb;
d2796743
ME
2836
2837 WARN_ON(tcb->next != NULL);
2838
76981cf1 2839 tx_ring->used++;
d2796743
ME
2840
2841 spin_unlock(&adapter->tcb_send_qlock);
2842
2843 /* Write the new write pointer back to the device. */
76981cf1 2844 writel(tx_ring->send_idx, &adapter->regs->txdma.service_request);
d2796743
ME
2845
2846 /* For Gig only, we use Tx Interrupt coalescing. Enable the software
2847 * timer to wake us up if this packet isn't followed by N more.
2848 */
2849 if (phydev && phydev->speed == SPEED_1000) {
2850 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2851 &adapter->regs->global.watchdog_timer);
2852 }
2853 spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
2854
2855 return 0;
2856}
2857
26ef1021 2858/* send_packet - Do the work to send a packet
d2796743
ME
2859 *
2860 * Assumption: Send spinlock has been acquired
2861 */
2862static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter)
2863{
2864 int status;
76981cf1 2865 struct tcb *tcb;
d2796743
ME
2866 u16 *shbufva;
2867 unsigned long flags;
76981cf1 2868 struct tx_ring *tx_ring = &adapter->tx_ring;
d2796743
ME
2869
2870 /* All packets must have at least a MAC address and a protocol type */
2871 if (skb->len < ETH_HLEN)
2872 return -EIO;
2873
2874 /* Get a TCB for this packet */
2875 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2876
76981cf1 2877 tcb = tx_ring->tcb_qhead;
d2796743
ME
2878
2879 if (tcb == NULL) {
2880 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2881 return -ENOMEM;
2882 }
2883
76981cf1 2884 tx_ring->tcb_qhead = tcb->next;
d2796743 2885
76981cf1
ZG
2886 if (tx_ring->tcb_qhead == NULL)
2887 tx_ring->tcb_qtail = NULL;
d2796743
ME
2888
2889 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2890
2891 tcb->skb = skb;
2892
f1b540b9 2893 if (skb->data != NULL && skb_headlen(skb) >= 6) {
d2796743
ME
2894 shbufva = (u16 *) skb->data;
2895
2896 if ((shbufva[0] == 0xffff) &&
0cdc6ee8 2897 (shbufva[1] == 0xffff) && (shbufva[2] == 0xffff))
c655dee9 2898 tcb->flags |= FMP_DEST_BROAD;
0cdc6ee8 2899 else if ((shbufva[0] & 0x3) == 0x0001)
c655dee9 2900 tcb->flags |= FMP_DEST_MULTI;
d2796743
ME
2901 }
2902
2903 tcb->next = NULL;
2904
2905 /* Call the NIC specific send handler. */
2906 status = nic_send_packet(adapter, tcb);
2907
2908 if (status != 0) {
2909 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2910
76981cf1
ZG
2911 if (tx_ring->tcb_qtail)
2912 tx_ring->tcb_qtail->next = tcb;
d2796743
ME
2913 else
2914 /* Apparently ready Q is empty. */
76981cf1 2915 tx_ring->tcb_qhead = tcb;
d2796743 2916
76981cf1 2917 tx_ring->tcb_qtail = tcb;
d2796743
ME
2918 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2919 return status;
2920 }
76981cf1 2921 WARN_ON(tx_ring->used > NUM_TCB);
d2796743
ME
2922 return 0;
2923}
2924
15ae239d 2925/* et131x_send_packets - This function is called by the OS to send packets */
eb7a6ca6 2926static int et131x_send_packets(struct sk_buff *skb, struct net_device *netdev)
d2796743
ME
2927{
2928 int status = 0;
06709e96 2929 struct et131x_adapter *adapter = netdev_priv(netdev);
76981cf1 2930 struct tx_ring *tx_ring = &adapter->tx_ring;
d2796743
ME
2931
2932 /* Send these packets
2933 *
2934 * NOTE: The Linux Tx entry point is only given one packet at a time
2935 * to Tx, so the PacketCount and it's array used makes no sense here
2936 */
2937
2938 /* TCB is not available */
76981cf1 2939 if (tx_ring->used >= NUM_TCB) {
d2796743
ME
2940 /* NOTE: If there's an error on send, no need to queue the
2941 * packet under Linux; if we just send an error up to the
2942 * netif layer, it will resend the skb to us.
2943 */
2944 status = -ENOMEM;
2945 } else {
2946 /* We need to see if the link is up; if it's not, make the
2947 * netif layer think we're good and drop the packet
2948 */
c655dee9 2949 if ((adapter->flags & FMP_ADAPTER_FAIL_SEND_MASK) ||
d2796743
ME
2950 !netif_carrier_ok(netdev)) {
2951 dev_kfree_skb_any(skb);
2952 skb = NULL;
2953
1f765d9f 2954 adapter->netdev->stats.tx_dropped++;
d2796743
ME
2955 } else {
2956 status = send_packet(skb, adapter);
2957 if (status != 0 && status != -ENOMEM) {
2958 /* On any other error, make netif think we're
2959 * OK and drop the packet
2960 */
2961 dev_kfree_skb_any(skb);
2962 skb = NULL;
1f765d9f 2963 adapter->netdev->stats.tx_dropped++;
d2796743
ME
2964 }
2965 }
2966 }
2967 return status;
2968}
2969
26ef1021 2970/* free_send_packet - Recycle a struct tcb
d2796743
ME
2971 * @adapter: pointer to our adapter
2972 * @tcb: pointer to struct tcb
2973 *
2974 * Complete the packet if necessary
2975 * Assumption - Send spinlock has been acquired
2976 */
2977static inline void free_send_packet(struct et131x_adapter *adapter,
2978 struct tcb *tcb)
2979{
2980 unsigned long flags;
2981 struct tx_desc *desc = NULL;
1f765d9f 2982 struct net_device_stats *stats = &adapter->netdev->stats;
76981cf1 2983 struct tx_ring *tx_ring = &adapter->tx_ring;
983e4b35 2984 u64 dma_addr;
d2796743 2985
c655dee9 2986 if (tcb->flags & FMP_DEST_BROAD)
d2796743 2987 atomic_inc(&adapter->stats.broadcast_pkts_xmtd);
c655dee9 2988 else if (tcb->flags & FMP_DEST_MULTI)
d2796743
ME
2989 atomic_inc(&adapter->stats.multicast_pkts_xmtd);
2990 else
2991 atomic_inc(&adapter->stats.unicast_pkts_xmtd);
2992
2993 if (tcb->skb) {
2994 stats->tx_bytes += tcb->skb->len;
2995
2996 /* Iterate through the TX descriptors on the ring
2997 * corresponding to this packet and umap the fragments
2998 * they point to
2999 */
3000 do {
76981cf1 3001 desc = tx_ring->tx_desc_ring +
57cc0279 3002 INDEX10(tcb->index_start);
d2796743 3003
998f6dfb 3004 dma_addr = desc->addr_lo;
983e4b35 3005 dma_addr |= (u64)desc->addr_hi << 32;
998f6dfb 3006
26dc751e 3007 dma_unmap_single(&adapter->pdev->dev,
998f6dfb 3008 dma_addr,
26dc751e 3009 desc->len_vlan, DMA_TO_DEVICE);
d2796743
ME
3010
3011 add_10bit(&tcb->index_start, 1);
3012 if (INDEX10(tcb->index_start) >=
3013 NUM_DESC_PER_RING_TX) {
3014 tcb->index_start &= ~ET_DMA10_MASK;
3015 tcb->index_start ^= ET_DMA10_WRAP;
3016 }
76981cf1 3017 } while (desc != tx_ring->tx_desc_ring + INDEX10(tcb->index));
d2796743
ME
3018
3019 dev_kfree_skb_any(tcb->skb);
3020 }
3021
3022 memset(tcb, 0, sizeof(struct tcb));
3023
3024 /* Add the TCB to the Ready Q */
3025 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3026
1f765d9f 3027 stats->tx_packets++;
d2796743 3028
76981cf1
ZG
3029 if (tx_ring->tcb_qtail)
3030 tx_ring->tcb_qtail->next = tcb;
d2796743
ME
3031 else
3032 /* Apparently ready Q is empty. */
76981cf1 3033 tx_ring->tcb_qhead = tcb;
d2796743 3034
76981cf1 3035 tx_ring->tcb_qtail = tcb;
d2796743
ME
3036
3037 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
76981cf1 3038 WARN_ON(tx_ring->used < 0);
d2796743
ME
3039}
3040
26ef1021 3041/* et131x_free_busy_send_packets - Free and complete the stopped active sends
d2796743
ME
3042 *
3043 * Assumption - Send spinlock has been acquired
3044 */
eb7a6ca6 3045static void et131x_free_busy_send_packets(struct et131x_adapter *adapter)
d2796743
ME
3046{
3047 struct tcb *tcb;
3048 unsigned long flags;
3049 u32 freed = 0;
76981cf1 3050 struct tx_ring *tx_ring = &adapter->tx_ring;
d2796743
ME
3051
3052 /* Any packets being sent? Check the first TCB on the send list */
3053 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3054
76981cf1 3055 tcb = tx_ring->send_head;
d2796743
ME
3056
3057 while (tcb != NULL && freed < NUM_TCB) {
3058 struct tcb *next = tcb->next;
3059
76981cf1 3060 tx_ring->send_head = next;
d2796743
ME
3061
3062 if (next == NULL)
76981cf1 3063 tx_ring->send_tail = NULL;
d2796743 3064
76981cf1 3065 tx_ring->used--;
d2796743
ME
3066
3067 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3068
3069 freed++;
3070 free_send_packet(adapter, tcb);
3071
3072 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3073
76981cf1 3074 tcb = tx_ring->send_head;
d2796743
ME
3075 }
3076
3077 WARN_ON(freed == NUM_TCB);
3078
3079 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3080
76981cf1 3081 tx_ring->used = 0;
d2796743
ME
3082}
3083
c2ebf58b 3084/* et131x_handle_send_pkts - Interrupt handler for sending processing
d2796743
ME
3085 *
3086 * Re-claim the send resources, complete sends and get more to send from
3087 * the send wait queue.
3088 *
3089 * Assumption - Send spinlock has been acquired
3090 */
c2ebf58b 3091static void et131x_handle_send_pkts(struct et131x_adapter *adapter)
d2796743
ME
3092{
3093 unsigned long flags;
3094 u32 serviced;
3095 struct tcb *tcb;
3096 u32 index;
76981cf1 3097 struct tx_ring *tx_ring = &adapter->tx_ring;
d2796743
ME
3098
3099 serviced = readl(&adapter->regs->txdma.new_service_complete);
3100 index = INDEX10(serviced);
3101
3102 /* Has the ring wrapped? Process any descriptors that do not have
3103 * the same "wrap" indicator as the current completion indicator
3104 */
3105 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3106
76981cf1 3107 tcb = tx_ring->send_head;
d2796743
ME
3108
3109 while (tcb &&
3110 ((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
3111 index < INDEX10(tcb->index)) {
76981cf1
ZG
3112 tx_ring->used--;
3113 tx_ring->send_head = tcb->next;
d2796743 3114 if (tcb->next == NULL)
76981cf1 3115 tx_ring->send_tail = NULL;
d2796743
ME
3116
3117 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3118 free_send_packet(adapter, tcb);
3119 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3120
3121 /* Goto the next packet */
76981cf1 3122 tcb = tx_ring->send_head;
d2796743
ME
3123 }
3124 while (tcb &&
3125 !((serviced ^ tcb->index) & ET_DMA10_WRAP)
3126 && index > (tcb->index & ET_DMA10_MASK)) {
76981cf1
ZG
3127 tx_ring->used--;
3128 tx_ring->send_head = tcb->next;
d2796743 3129 if (tcb->next == NULL)
76981cf1 3130 tx_ring->send_tail = NULL;
d2796743
ME
3131
3132 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3133 free_send_packet(adapter, tcb);
3134 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3135
3136 /* Goto the next packet */
76981cf1 3137 tcb = tx_ring->send_head;
d2796743
ME
3138 }
3139
3140 /* Wake up the queue when we hit a low-water mark */
76981cf1 3141 if (tx_ring->used <= NUM_TCB / 3)
d2796743
ME
3142 netif_wake_queue(adapter->netdev);
3143
3144 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3145}
3146
d2796743
ME
3147static int et131x_get_settings(struct net_device *netdev,
3148 struct ethtool_cmd *cmd)
3149{
3150 struct et131x_adapter *adapter = netdev_priv(netdev);
3151
3152 return phy_ethtool_gset(adapter->phydev, cmd);
3153}
3154
3155static int et131x_set_settings(struct net_device *netdev,
3156 struct ethtool_cmd *cmd)
3157{
3158 struct et131x_adapter *adapter = netdev_priv(netdev);
3159
3160 return phy_ethtool_sset(adapter->phydev, cmd);
3161}
3162
3163static int et131x_get_regs_len(struct net_device *netdev)
3164{
3165#define ET131X_REGS_LEN 256
3166 return ET131X_REGS_LEN * sizeof(u32);
3167}
3168
3169static void et131x_get_regs(struct net_device *netdev,
3170 struct ethtool_regs *regs, void *regs_data)
3171{
3172 struct et131x_adapter *adapter = netdev_priv(netdev);
3173 struct address_map __iomem *aregs = adapter->regs;
3174 u32 *regs_buff = regs_data;
3175 u32 num = 0;
c8b0a484 3176 u16 tmp;
d2796743
ME
3177
3178 memset(regs_data, 0, et131x_get_regs_len(netdev));
3179
3180 regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
3181 adapter->pdev->device;
3182
3183 /* PHY regs */
c8b0a484
ME
3184 et131x_mii_read(adapter, MII_BMCR, &tmp);
3185 regs_buff[num++] = tmp;
3186 et131x_mii_read(adapter, MII_BMSR, &tmp);
3187 regs_buff[num++] = tmp;
3188 et131x_mii_read(adapter, MII_PHYSID1, &tmp);
3189 regs_buff[num++] = tmp;
3190 et131x_mii_read(adapter, MII_PHYSID2, &tmp);
3191 regs_buff[num++] = tmp;
3192 et131x_mii_read(adapter, MII_ADVERTISE, &tmp);
3193 regs_buff[num++] = tmp;
3194 et131x_mii_read(adapter, MII_LPA, &tmp);
3195 regs_buff[num++] = tmp;
3196 et131x_mii_read(adapter, MII_EXPANSION, &tmp);
3197 regs_buff[num++] = tmp;
d2796743 3198 /* Autoneg next page transmit reg */
c8b0a484
ME
3199 et131x_mii_read(adapter, 0x07, &tmp);
3200 regs_buff[num++] = tmp;
d2796743 3201 /* Link partner next page reg */
c8b0a484
ME
3202 et131x_mii_read(adapter, 0x08, &tmp);
3203 regs_buff[num++] = tmp;
3204 et131x_mii_read(adapter, MII_CTRL1000, &tmp);
3205 regs_buff[num++] = tmp;
3206 et131x_mii_read(adapter, MII_STAT1000, &tmp);
3207 regs_buff[num++] = tmp;
3208 et131x_mii_read(adapter, 0x0b, &tmp);
3209 regs_buff[num++] = tmp;
3210 et131x_mii_read(adapter, 0x0c, &tmp);
3211 regs_buff[num++] = tmp;
3212 et131x_mii_read(adapter, MII_MMD_CTRL, &tmp);
3213 regs_buff[num++] = tmp;
3214 et131x_mii_read(adapter, MII_MMD_DATA, &tmp);
3215 regs_buff[num++] = tmp;
3216 et131x_mii_read(adapter, MII_ESTATUS, &tmp);
3217 regs_buff[num++] = tmp;
3218
3219 et131x_mii_read(adapter, PHY_INDEX_REG, &tmp);
3220 regs_buff[num++] = tmp;
3221 et131x_mii_read(adapter, PHY_DATA_REG, &tmp);
3222 regs_buff[num++] = tmp;
3223 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG, &tmp);
3224 regs_buff[num++] = tmp;
3225 et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL, &tmp);
3226 regs_buff[num++] = tmp;
3227 et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL + 1, &tmp);
3228 regs_buff[num++] = tmp;
3229
3230 et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL, &tmp);
3231 regs_buff[num++] = tmp;
3232 et131x_mii_read(adapter, PHY_CONFIG, &tmp);
3233 regs_buff[num++] = tmp;
3234 et131x_mii_read(adapter, PHY_PHY_CONTROL, &tmp);
3235 regs_buff[num++] = tmp;
3236 et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &tmp);
3237 regs_buff[num++] = tmp;
3238 et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &tmp);
3239 regs_buff[num++] = tmp;
3240 et131x_mii_read(adapter, PHY_PHY_STATUS, &tmp);
3241 regs_buff[num++] = tmp;
3242 et131x_mii_read(adapter, PHY_LED_1, &tmp);
3243 regs_buff[num++] = tmp;
3244 et131x_mii_read(adapter, PHY_LED_2, &tmp);
3245 regs_buff[num++] = tmp;
d2796743
ME
3246
3247 /* Global regs */
3248 regs_buff[num++] = readl(&aregs->global.txq_start_addr);
3249 regs_buff[num++] = readl(&aregs->global.txq_end_addr);
3250 regs_buff[num++] = readl(&aregs->global.rxq_start_addr);
3251 regs_buff[num++] = readl(&aregs->global.rxq_end_addr);
3252 regs_buff[num++] = readl(&aregs->global.pm_csr);
3253 regs_buff[num++] = adapter->stats.interrupt_status;
3254 regs_buff[num++] = readl(&aregs->global.int_mask);
3255 regs_buff[num++] = readl(&aregs->global.int_alias_clr_en);
3256 regs_buff[num++] = readl(&aregs->global.int_status_alias);
3257 regs_buff[num++] = readl(&aregs->global.sw_reset);
3258 regs_buff[num++] = readl(&aregs->global.slv_timer);
3259 regs_buff[num++] = readl(&aregs->global.msi_config);
3260 regs_buff[num++] = readl(&aregs->global.loopback);
3261 regs_buff[num++] = readl(&aregs->global.watchdog_timer);
3262
3263 /* TXDMA regs */
3264 regs_buff[num++] = readl(&aregs->txdma.csr);
3265 regs_buff[num++] = readl(&aregs->txdma.pr_base_hi);
3266 regs_buff[num++] = readl(&aregs->txdma.pr_base_lo);
3267 regs_buff[num++] = readl(&aregs->txdma.pr_num_des);
3268 regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr);
3269 regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext);
3270 regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr);
3271 regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi);
3272 regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo);
3273 regs_buff[num++] = readl(&aregs->txdma.service_request);
3274 regs_buff[num++] = readl(&aregs->txdma.service_complete);
3275 regs_buff[num++] = readl(&aregs->txdma.cache_rd_index);
3276 regs_buff[num++] = readl(&aregs->txdma.cache_wr_index);
3277 regs_buff[num++] = readl(&aregs->txdma.tx_dma_error);
3278 regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt);
3279 regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt);
3280 regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt);
3281 regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt);
3282 regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt);
3283 regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt);
3284 regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt);
3285 regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt);
3286 regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt);
3287 regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt);
3288 regs_buff[num++] = readl(&aregs->txdma.new_service_complete);
3289 regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt);
3290
3291 /* RXDMA regs */
3292 regs_buff[num++] = readl(&aregs->rxdma.csr);
3293 regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi);
3294 regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo);
3295 regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done);
3296 regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time);
3297 regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr);
3298 regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext);
3299 regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr);
3300 regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi);
3301 regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo);
3302 regs_buff[num++] = readl(&aregs->rxdma.psr_num_des);
3303 regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset);
3304 regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset);
3305 regs_buff[num++] = readl(&aregs->rxdma.psr_access_index);
3306 regs_buff[num++] = readl(&aregs->rxdma.psr_min_des);
3307 regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo);
3308 regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi);
3309 regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des);
3310 regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset);
3311 regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset);
3312 regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index);
3313 regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des);
3314 regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo);
3315 regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi);
3316 regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des);
3317 regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset);
3318 regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset);
3319 regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index);
3320 regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des);
3321}
3322
d2796743
ME
3323static void et131x_get_drvinfo(struct net_device *netdev,
3324 struct ethtool_drvinfo *info)
3325{
3326 struct et131x_adapter *adapter = netdev_priv(netdev);
3327
7826d43f
JP
3328 strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
3329 strlcpy(info->version, DRIVER_VERSION, sizeof(info->version));
3330 strlcpy(info->bus_info, pci_name(adapter->pdev),
3331 sizeof(info->bus_info));
d2796743
ME
3332}
3333
3334static struct ethtool_ops et131x_ethtool_ops = {
3335 .get_settings = et131x_get_settings,
3336 .set_settings = et131x_set_settings,
3337 .get_drvinfo = et131x_get_drvinfo,
3338 .get_regs_len = et131x_get_regs_len,
3339 .get_regs = et131x_get_regs,
242187aa 3340 .get_link = ethtool_op_get_link,
d2796743 3341};
26ef1021 3342
15ae239d 3343/* et131x_hwaddr_init - set up the MAC Address on the ET1310 */
eb7a6ca6 3344static void et131x_hwaddr_init(struct et131x_adapter *adapter)
d2796743
ME
3345{
3346 /* If have our default mac from init and no mac address from
3347 * EEPROM then we need to generate the last octet and set it on the
3348 * device
3349 */
c14d01b8 3350 if (is_zero_ether_addr(adapter->rom_addr)) {
26ef1021 3351 /* We need to randomly generate the last octet so we
d2796743
ME
3352 * decrease our chances of setting the mac address to
3353 * same as another one of our cards in the system
3354 */
3355 get_random_bytes(&adapter->addr[5], 1);
26ef1021 3356 /* We have the default value in the register we are
d2796743
ME
3357 * working with so we need to copy the current
3358 * address into the permanent address
3359 */
3360 memcpy(adapter->rom_addr,
3361 adapter->addr, ETH_ALEN);
3362 } else {
3363 /* We do not have an override address, so set the
3364 * current address to the permanent address and add
3365 * it to the device
3366 */
3367 memcpy(adapter->addr,
3368 adapter->rom_addr, ETH_ALEN);
3369 }
3370}
3371
26ef1021 3372/* et131x_pci_init - initial PCI setup
d2796743
ME
3373 *
3374 * Perform the initial setup of PCI registers and if possible initialise
3375 * the MAC address. At this point the I/O registers have yet to be mapped
3376 */
3377static int et131x_pci_init(struct et131x_adapter *adapter,
12a2f3f3 3378 struct pci_dev *pdev)
d2796743 3379{
d14e3d05 3380 u16 max_payload;
d14e3d05
FR
3381 int i, rc;
3382
3383 rc = et131x_init_eeprom(adapter);
3384 if (rc < 0)
3385 goto out;
3386
532c5f69 3387 if (!pci_is_pcie(pdev)) {
d14e3d05
FR
3388 dev_err(&pdev->dev, "Missing PCIe capabilities\n");
3389 goto err_out;
3390 }
bf3313a1 3391
9db008d0 3392 /* Let's set up the PORT LOGIC Register. */
d2796743
ME
3393
3394 /* Program the Ack/Nak latency and replay timers */
9db008d0 3395 max_payload = pdev->pcie_mpss;
d2796743
ME
3396
3397 if (max_payload < 2) {
3398 static const u16 acknak[2] = { 0x76, 0xD0 };
3399 static const u16 replay[2] = { 0x1E0, 0x2ED };
3400
3401 if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK,
3402 acknak[max_payload])) {
3403 dev_err(&pdev->dev,
3404 "Could not write PCI config space for ACK/NAK\n");
d14e3d05 3405 goto err_out;
d2796743
ME
3406 }
3407 if (pci_write_config_word(pdev, ET1310_PCI_REPLAY,
3408 replay[max_payload])) {
3409 dev_err(&pdev->dev,
3410 "Could not write PCI config space for Replay Timer\n");
d14e3d05 3411 goto err_out;
d2796743
ME
3412 }
3413 }
3414
3415 /* l0s and l1 latency timers. We are using default values.
3416 * Representing 001 for L0s and 010 for L1
3417 */
3418 if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) {
3419 dev_err(&pdev->dev,
3420 "Could not write PCI config space for Latency Timers\n");
d14e3d05 3421 goto err_out;
d2796743
ME
3422 }
3423
3424 /* Change the max read size to 2k */
9db008d0 3425 if (pcie_set_readrq(pdev, 2048)) {
d2796743 3426 dev_err(&pdev->dev,
532c5f69 3427 "Couldn't change PCI config space for Max read size\n");
d14e3d05 3428 goto err_out;
d2796743
ME
3429 }
3430
3431 /* Get MAC address from config space if an eeprom exists, otherwise
3432 * the MAC address there will not be valid
3433 */
3434 if (!adapter->has_eeprom) {
3435 et131x_hwaddr_init(adapter);
3436 return 0;
3437 }
3438
3439 for (i = 0; i < ETH_ALEN; i++) {
3440 if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i,
3441 adapter->rom_addr + i)) {
3442 dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n");
d14e3d05 3443 goto err_out;
d2796743
ME
3444 }
3445 }
015851c3 3446 ether_addr_copy(adapter->addr, adapter->rom_addr);
d14e3d05
FR
3447out:
3448 return rc;
3449err_out:
3450 rc = -EIO;
3451 goto out;
d2796743
ME
3452}
3453
26ef1021 3454/* et131x_error_timer_handler
d2796743
ME
3455 * @data: timer-specific variable; here a pointer to our adapter structure
3456 *
3457 * The routine called when the error timer expires, to track the number of
3458 * recurring errors.
3459 */
eb7a6ca6 3460static void et131x_error_timer_handler(unsigned long data)
d2796743
ME
3461{
3462 struct et131x_adapter *adapter = (struct et131x_adapter *) data;
3463 struct phy_device *phydev = adapter->phydev;
3464
3465 if (et1310_in_phy_coma(adapter)) {
3466 /* Bring the device immediately out of coma, to
3467 * prevent it from sleeping indefinitely, this
26ef1021
ME
3468 * mechanism could be improved!
3469 */
d2796743
ME
3470 et1310_disable_phy_coma(adapter);
3471 adapter->boot_coma = 20;
3472 } else {
3473 et1310_update_macstat_host_counters(adapter);
3474 }
3475
3476 if (!phydev->link && adapter->boot_coma < 11)
3477 adapter->boot_coma++;
3478
3479 if (adapter->boot_coma == 10) {
3480 if (!phydev->link) {
3481 if (!et1310_in_phy_coma(adapter)) {
3482 /* NOTE - This was originally a 'sync with
3483 * interrupt'. How to do that under Linux?
3484 */
3485 et131x_enable_interrupts(adapter);
3486 et1310_enable_phy_coma(adapter);
3487 }
3488 }
3489 }
3490
3491 /* This is a periodic timer, so reschedule */
242187aa 3492 mod_timer(&adapter->error_timer, jiffies + TX_ERROR_PERIOD * HZ / 1000);
d2796743
ME
3493}
3494
15ae239d 3495/* et131x_adapter_memory_free - Free all memory allocated for use by Tx & Rx */
d959df0a
ME
3496static void et131x_adapter_memory_free(struct et131x_adapter *adapter)
3497{
d959df0a
ME
3498 et131x_tx_dma_memory_free(adapter);
3499 et131x_rx_dma_memory_free(adapter);
3500}
3501
26ef1021 3502/* et131x_adapter_memory_alloc
d2796743
ME
3503 * Allocate all the memory blocks for send, receive and others.
3504 */
eb7a6ca6 3505static int et131x_adapter_memory_alloc(struct et131x_adapter *adapter)
d2796743
ME
3506{
3507 int status;
3508
3509 /* Allocate memory for the Tx Ring */
3510 status = et131x_tx_dma_memory_alloc(adapter);
12a2f3f3 3511 if (status) {
d2796743
ME
3512 dev_err(&adapter->pdev->dev,
3513 "et131x_tx_dma_memory_alloc FAILED\n");
a9f48883 3514 et131x_tx_dma_memory_free(adapter);
d2796743
ME
3515 return status;
3516 }
3517 /* Receive buffer memory allocation */
3518 status = et131x_rx_dma_memory_alloc(adapter);
12a2f3f3 3519 if (status) {
d2796743
ME
3520 dev_err(&adapter->pdev->dev,
3521 "et131x_rx_dma_memory_alloc FAILED\n");
a9f48883 3522 et131x_adapter_memory_free(adapter);
d2796743
ME
3523 return status;
3524 }
3525
3526 /* Init receive data structures */
3527 status = et131x_init_recv(adapter);
d959df0a 3528 if (status) {
12a2f3f3 3529 dev_err(&adapter->pdev->dev, "et131x_init_recv FAILED\n");
d959df0a 3530 et131x_adapter_memory_free(adapter);
d2796743
ME
3531 }
3532 return status;
3533}
3534
d2796743
ME
3535static void et131x_adjust_link(struct net_device *netdev)
3536{
3537 struct et131x_adapter *adapter = netdev_priv(netdev);
3538 struct phy_device *phydev = adapter->phydev;
3539
b96ab7cc
ME
3540 if (!phydev)
3541 return;
3542 if (phydev->link == adapter->link)
3543 return;
6903098c 3544
b96ab7cc
ME
3545 /* Check to see if we are in coma mode and if
3546 * so, disable it because we will not be able
3547 * to read PHY values until we are out.
3548 */
3549 if (et1310_in_phy_coma(adapter))
3550 et1310_disable_phy_coma(adapter);
6903098c 3551
b96ab7cc
ME
3552 adapter->link = phydev->link;
3553 phy_print_status(phydev);
6903098c 3554
b96ab7cc
ME
3555 if (phydev->link) {
3556 adapter->boot_coma = 20;
76af0140 3557 if (phydev->speed == SPEED_10) {
b96ab7cc
ME
3558 u16 register18;
3559
3560 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3561 &register18);
ec0a38bf
ME
3562 et131x_mii_write(adapter, phydev->addr,
3563 PHY_MPHY_CONTROL_REG, register18 | 0x4);
3564 et131x_mii_write(adapter, phydev->addr, PHY_INDEX_REG,
b96ab7cc 3565 register18 | 0x8402);
ec0a38bf 3566 et131x_mii_write(adapter, phydev->addr, PHY_DATA_REG,
b96ab7cc 3567 register18 | 511);
ec0a38bf
ME
3568 et131x_mii_write(adapter, phydev->addr,
3569 PHY_MPHY_CONTROL_REG, register18);
b96ab7cc 3570 }
6903098c 3571
b96ab7cc 3572 et1310_config_flow_control(adapter);
d2796743 3573
76af0140 3574 if (phydev->speed == SPEED_1000 &&
b96ab7cc
ME
3575 adapter->registry_jumbo_packet > 2048) {
3576 u16 reg;
d2796743 3577
b96ab7cc
ME
3578 et131x_mii_read(adapter, PHY_CONFIG, &reg);
3579 reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH;
3580 reg |= ET_PHY_CONFIG_FIFO_DEPTH_32;
ec0a38bf
ME
3581 et131x_mii_write(adapter, phydev->addr, PHY_CONFIG,
3582 reg);
b96ab7cc 3583 }
d2796743 3584
b96ab7cc
ME
3585 et131x_set_rx_dma_timer(adapter);
3586 et1310_config_mac_regs2(adapter);
3587 } else {
3588 adapter->boot_coma = 0;
d2796743 3589
b96ab7cc 3590 if (phydev->speed == SPEED_10) {
b96ab7cc
ME
3591 u16 register18;
3592
3593 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3594 &register18);
ec0a38bf
ME
3595 et131x_mii_write(adapter, phydev->addr,
3596 PHY_MPHY_CONTROL_REG, register18 | 0x4);
3597 et131x_mii_write(adapter, phydev->addr,
3598 PHY_INDEX_REG, register18 | 0x8402);
3599 et131x_mii_write(adapter, phydev->addr,
3600 PHY_DATA_REG, register18 | 511);
3601 et131x_mii_write(adapter, phydev->addr,
3602 PHY_MPHY_CONTROL_REG, register18);
b96ab7cc 3603 }
d2796743 3604
b96ab7cc
ME
3605 /* Free the packets being actively sent & stopped */
3606 et131x_free_busy_send_packets(adapter);
d2796743 3607
b96ab7cc
ME
3608 /* Re-initialize the send structures */
3609 et131x_init_send(adapter);
3610
3611 /* Bring the device back to the state it was during
3612 * init prior to autonegotiation being complete. This
3613 * way, when we get the auto-neg complete interrupt,
3614 * we can complete init by calling config_mac_regs2.
3615 */
3616 et131x_soft_reset(adapter);
3617
3618 /* Setup ET1310 as per the documentation */
3619 et131x_adapter_setup(adapter);
d2796743 3620
b96ab7cc
ME
3621 /* perform reset of tx/rx */
3622 et131x_disable_txrx(netdev);
3623 et131x_enable_txrx(netdev);
d2796743
ME
3624 }
3625}
3626
3627static int et131x_mii_probe(struct net_device *netdev)
3628{
3629 struct et131x_adapter *adapter = netdev_priv(netdev);
3630 struct phy_device *phydev = NULL;
3631
3632 phydev = phy_find_first(adapter->mii_bus);
3633 if (!phydev) {
3634 dev_err(&adapter->pdev->dev, "no PHY found\n");
3635 return -ENODEV;
3636 }
3637
3638 phydev = phy_connect(netdev, dev_name(&phydev->dev),
f9a8f83b 3639 &et131x_adjust_link, PHY_INTERFACE_MODE_MII);
d2796743
ME
3640
3641 if (IS_ERR(phydev)) {
3642 dev_err(&adapter->pdev->dev, "Could not attach to PHY\n");
3643 return PTR_ERR(phydev);
3644 }
3645
3646 phydev->supported &= (SUPPORTED_10baseT_Half
3647 | SUPPORTED_10baseT_Full
3648 | SUPPORTED_100baseT_Half
3649 | SUPPORTED_100baseT_Full
3650 | SUPPORTED_Autoneg
3651 | SUPPORTED_MII
3652 | SUPPORTED_TP);
3653
3654 if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST)
3655 phydev->supported |= SUPPORTED_1000baseT_Full;
3656
3657 phydev->advertising = phydev->supported;
3658 adapter->phydev = phydev;
3659
12a2f3f3
ME
3660 dev_info(&adapter->pdev->dev,
3661 "attached PHY driver [%s] (mii_bus:phy_addr=%s)\n",
d2796743
ME
3662 phydev->drv->name, dev_name(&phydev->dev));
3663
3664 return 0;
3665}
3666
26ef1021 3667/* et131x_adapter_init
d2796743
ME
3668 *
3669 * Initialize the data structures for the et131x_adapter object and link
3670 * them together with the platform provided device structures.
3671 */
3672static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev,
12a2f3f3 3673 struct pci_dev *pdev)
d2796743
ME
3674{
3675 static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
3676
3677 struct et131x_adapter *adapter;
3678
3679 /* Allocate private adapter struct and copy in relevant information */
3680 adapter = netdev_priv(netdev);
3681 adapter->pdev = pci_dev_get(pdev);
3682 adapter->netdev = netdev;
3683
d2796743 3684 /* Initialize spinlocks here */
d2796743
ME
3685 spin_lock_init(&adapter->tcb_send_qlock);
3686 spin_lock_init(&adapter->tcb_ready_qlock);
3687 spin_lock_init(&adapter->send_hw_lock);
3688 spin_lock_init(&adapter->rcv_lock);
d2796743
ME
3689
3690 adapter->registry_jumbo_packet = 1514; /* 1514-9216 */
3691
3692 /* Set the MAC address to a default */
015851c3 3693 ether_addr_copy(adapter->addr, default_mac);
d2796743
ME
3694
3695 return adapter;
3696}
3697
26ef1021 3698/* et131x_pci_remove
d2796743
ME
3699 *
3700 * Registered in the pci_driver structure, this function is called when the
3701 * PCI subsystem detects that a PCI device which matches the information
3702 * contained in the pci_device_id table has been removed.
3703 */
596c5dd3 3704static void et131x_pci_remove(struct pci_dev *pdev)
d2796743
ME
3705{
3706 struct net_device *netdev = pci_get_drvdata(pdev);
3707 struct et131x_adapter *adapter = netdev_priv(netdev);
3708
3709 unregister_netdev(netdev);
c2ebf58b 3710 netif_napi_del(&adapter->napi);
fa9f0a65 3711 phy_disconnect(adapter->phydev);
d2796743
ME
3712 mdiobus_unregister(adapter->mii_bus);
3713 kfree(adapter->mii_bus->irq);
3714 mdiobus_free(adapter->mii_bus);
3715
3716 et131x_adapter_memory_free(adapter);
3717 iounmap(adapter->regs);
3718 pci_dev_put(pdev);
3719
3720 free_netdev(netdev);
3721 pci_release_regions(pdev);
3722 pci_disable_device(pdev);
3723}
3724
15ae239d 3725/* et131x_up - Bring up a device for use. */
eb7a6ca6 3726static void et131x_up(struct net_device *netdev)
a4d444bd
ME
3727{
3728 struct et131x_adapter *adapter = netdev_priv(netdev);
3729
3730 et131x_enable_txrx(netdev);
3731 phy_start(adapter->phydev);
3732}
3733
15ae239d 3734/* et131x_down - Bring down the device */
eb7a6ca6 3735static void et131x_down(struct net_device *netdev)
a4d444bd
ME
3736{
3737 struct et131x_adapter *adapter = netdev_priv(netdev);
3738
3739 /* Save the timestamp for the TX watchdog, prevent a timeout */
3740 netdev->trans_start = jiffies;
3741
3742 phy_stop(adapter->phydev);
3743 et131x_disable_txrx(netdev);
3744}
3745
d2796743
ME
3746#ifdef CONFIG_PM_SLEEP
3747static int et131x_suspend(struct device *dev)
3748{
3749 struct pci_dev *pdev = to_pci_dev(dev);
3750 struct net_device *netdev = pci_get_drvdata(pdev);
3751
3752 if (netif_running(netdev)) {
3753 netif_device_detach(netdev);
3754 et131x_down(netdev);
3755 pci_save_state(pdev);
3756 }
3757
3758 return 0;
3759}
3760
3761static int et131x_resume(struct device *dev)
3762{
3763 struct pci_dev *pdev = to_pci_dev(dev);
3764 struct net_device *netdev = pci_get_drvdata(pdev);
3765
3766 if (netif_running(netdev)) {
3767 pci_restore_state(pdev);
3768 et131x_up(netdev);
3769 netif_device_attach(netdev);
3770 }
3771
3772 return 0;
3773}
3774
2e9ff8d9
ME
3775static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume);
3776#define ET131X_PM_OPS (&et131x_pm_ops)
3777#else
3778#define ET131X_PM_OPS NULL
3779#endif
3780
26ef1021 3781/* et131x_isr - The Interrupt Service Routine for the driver.
d2796743
ME
3782 * @irq: the IRQ on which the interrupt was received.
3783 * @dev_id: device-specific info (here a pointer to a net_device struct)
3784 *
3785 * Returns a value indicating if the interrupt was handled.
3786 */
c0594ee9 3787static irqreturn_t et131x_isr(int irq, void *dev_id)
d2796743
ME
3788{
3789 bool handled = true;
be40a261 3790 bool enable_interrupts = true;
d2796743 3791 struct net_device *netdev = (struct net_device *)dev_id;
8f7fa96a 3792 struct et131x_adapter *adapter = netdev_priv(netdev);
c2ebf58b 3793 struct address_map __iomem *iomem = adapter->regs;
8f7fa96a 3794 struct rx_ring *rx_ring = &adapter->rx_ring;
76981cf1 3795 struct tx_ring *tx_ring = &adapter->tx_ring;
d2796743
ME
3796 u32 status;
3797
3798 if (!netif_device_present(netdev)) {
3799 handled = false;
be40a261 3800 enable_interrupts = false;
d2796743
ME
3801 goto out;
3802 }
3803
d2796743
ME
3804 /* If the adapter is in low power state, then it should not
3805 * recognize any interrupt
3806 */
3807
3808 /* Disable Device Interrupts */
3809 et131x_disable_interrupts(adapter);
3810
3811 /* Get a copy of the value in the interrupt status register
3812 * so we can process the interrupting section
3813 */
3814 status = readl(&adapter->regs->global.int_status);
3815
3816 if (adapter->flowcontrol == FLOW_TXONLY ||
3817 adapter->flowcontrol == FLOW_BOTH) {
3818 status &= ~INT_MASK_ENABLE;
3819 } else {
3820 status &= ~INT_MASK_ENABLE_NO_FLOW;
3821 }
3822
3823 /* Make sure this is our interrupt */
3824 if (!status) {
3825 handled = false;
3826 et131x_enable_interrupts(adapter);
3827 goto out;
3828 }
3829
3830 /* This is our interrupt, so process accordingly */
d2796743 3831 if (status & ET_INTR_WATCHDOG) {
76981cf1 3832 struct tcb *tcb = tx_ring->send_head;
d2796743
ME
3833
3834 if (tcb)
3835 if (++tcb->stale > 1)
3836 status |= ET_INTR_TXDMA_ISR;
3837
8f7fa96a 3838 if (rx_ring->unfinished_receives)
d2796743
ME
3839 status |= ET_INTR_RXDMA_XFR_DONE;
3840 else if (tcb == NULL)
3841 writel(0, &adapter->regs->global.watchdog_timer);
3842
3843 status &= ~ET_INTR_WATCHDOG;
3844 }
3845
be40a261
ME
3846 if (status & (ET_INTR_RXDMA_XFR_DONE | ET_INTR_TXDMA_ISR)) {
3847 enable_interrupts = false;
c2ebf58b 3848 napi_schedule(&adapter->napi);
be40a261 3849 }
d2796743 3850
df7b3b8a 3851 status &= ~(ET_INTR_TXDMA_ISR | ET_INTR_RXDMA_XFR_DONE);
d2796743 3852
15ffde4d
ME
3853 if (!status)
3854 goto out;
d2796743 3855
15ffde4d
ME
3856 /* Handle the TXDMA Error interrupt */
3857 if (status & ET_INTR_TXDMA_ERR) {
15ffde4d 3858 /* Following read also clears the register (COR) */
12a2f3f3 3859 u32 txdma_err = readl(&iomem->txdma.tx_dma_error);
d2796743 3860
15ffde4d
ME
3861 dev_warn(&adapter->pdev->dev,
3862 "TXDMA_ERR interrupt, error = %d\n",
3863 txdma_err);
3864 }
d2796743 3865
15ffde4d
ME
3866 /* Handle Free Buffer Ring 0 and 1 Low interrupt */
3867 if (status & (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) {
26ef1021 3868 /* This indicates the number of unused buffers in RXDMA free
15ffde4d
ME
3869 * buffer ring 0 is <= the limit you programmed. Free buffer
3870 * resources need to be returned. Free buffers are consumed as
3871 * packets are passed from the network to the host. The host
3872 * becomes aware of the packets from the contents of the packet
3873 * status ring. This ring is queried when the packet done
3874 * interrupt occurs. Packets are then passed to the OS. When
3875 * the OS is done with the packets the resources can be
3876 * returned to the ET1310 for re-use. This interrupt is one
3877 * method of returning resources.
3878 */
d2796743 3879
26ef1021 3880 /* If the user has flow control on, then we will
15ffde4d
ME
3881 * send a pause packet, otherwise just exit
3882 */
3883 if (adapter->flowcontrol == FLOW_TXONLY ||
3884 adapter->flowcontrol == FLOW_BOTH) {
3885 u32 pm_csr;
d2796743 3886
26ef1021 3887 /* Tell the device to send a pause packet via the back
15ffde4d 3888 * pressure register (bp req and bp xon/xoff)
d2796743 3889 */
15ffde4d
ME
3890 pm_csr = readl(&iomem->global.pm_csr);
3891 if (!et1310_in_phy_coma(adapter))
3892 writel(3, &iomem->txmac.bp_ctrl);
d2796743 3893 }
15ffde4d 3894 }
d2796743 3895
15ffde4d
ME
3896 /* Handle Packet Status Ring Low Interrupt */
3897 if (status & ET_INTR_RXDMA_STAT_LOW) {
26ef1021 3898 /* Same idea as with the two Free Buffer Rings. Packets going
15ffde4d 3899 * from the network to the host each consume a free buffer
868bf442 3900 * resource and a packet status resource. These resources are
15ffde4d
ME
3901 * passed to the OS. When the OS is done with the resources,
3902 * they need to be returned to the ET1310. This is one method
3903 * of returning the resources.
3904 */
3905 }
d2796743 3906
15ffde4d
ME
3907 /* Handle RXDMA Error Interrupt */
3908 if (status & ET_INTR_RXDMA_ERR) {
26ef1021 3909 /* The rxdma_error interrupt is sent when a time-out on a
15ffde4d
ME
3910 * request issued by the JAGCore has occurred or a completion is
3911 * returned with an un-successful status. In both cases the
3912 * request is considered complete. The JAGCore will
3913 * automatically re-try the request in question. Normally
3914 * information on events like these are sent to the host using
3915 * the "Advanced Error Reporting" capability. This interrupt is
3916 * another way of getting similar information. The only thing
3917 * required is to clear the interrupt by reading the ISR in the
3918 * global resources. The JAGCore will do a re-try on the
3919 * request. Normally you should never see this interrupt. If
3920 * you start to see this interrupt occurring frequently then
3921 * something bad has occurred. A reset might be the thing to do.
3922 */
3923 /* TRAP();*/
d2796743 3924
15ffde4d
ME
3925 dev_warn(&adapter->pdev->dev,
3926 "RxDMA_ERR interrupt, error %x\n",
3927 readl(&iomem->txmac.tx_test));
3928 }
d2796743 3929
15ffde4d
ME
3930 /* Handle the Wake on LAN Event */
3931 if (status & ET_INTR_WOL) {
26ef1021 3932 /* This is a secondary interrupt for wake on LAN. The driver
15ffde4d
ME
3933 * should never see this, if it does, something serious is
3934 * wrong. We will TRAP the message when we are in DBG mode,
3935 * otherwise we will ignore it.
3936 */
3937 dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n");
3938 }
d2796743 3939
15ffde4d
ME
3940 /* Let's move on to the TxMac */
3941 if (status & ET_INTR_TXMAC) {
3942 u32 err = readl(&iomem->txmac.err);
d2796743 3943
26ef1021 3944 /* When any of the errors occur and TXMAC generates an
15ffde4d
ME
3945 * interrupt to report these errors, it usually means that
3946 * TXMAC has detected an error in the data stream retrieved
3947 * from the on-chip Tx Q. All of these errors are catastrophic
3948 * and TXMAC won't be able to recover data when these errors
3949 * occur. In a nutshell, the whole Tx path will have to be reset
3950 * and re-configured afterwards.
3951 */
3952 dev_warn(&adapter->pdev->dev,
3953 "TXMAC interrupt, error 0x%08x\n",
3954 err);
d2796743 3955
26ef1021 3956 /* If we are debugging, we want to see this error, otherwise we
15ffde4d
ME
3957 * just want the device to be reset and continue
3958 */
3959 }
d2796743 3960
15ffde4d
ME
3961 /* Handle RXMAC Interrupt */
3962 if (status & ET_INTR_RXMAC) {
26ef1021 3963 /* These interrupts are catastrophic to the device, what we need
15ffde4d
ME
3964 * to do is disable the interrupts and set the flag to cause us
3965 * to reset so we can solve this issue.
3966 */
c655dee9 3967 /* MP_SET_FLAG( adapter, FMP_ADAPTER_HARDWARE_ERROR); */
d2796743 3968
15ffde4d
ME
3969 dev_warn(&adapter->pdev->dev,
3970 "RXMAC interrupt, error 0x%08x. Requesting reset\n",
3971 readl(&iomem->rxmac.err_reg));
d2796743 3972
15ffde4d
ME
3973 dev_warn(&adapter->pdev->dev,
3974 "Enable 0x%08x, Diag 0x%08x\n",
3975 readl(&iomem->rxmac.ctrl),
3976 readl(&iomem->rxmac.rxq_diag));
d2796743 3977
26ef1021 3978 /* If we are debugging, we want to see this error, otherwise we
15ffde4d
ME
3979 * just want the device to be reset and continue
3980 */
3981 }
d2796743 3982
15ffde4d
ME
3983 /* Handle MAC_STAT Interrupt */
3984 if (status & ET_INTR_MAC_STAT) {
26ef1021 3985 /* This means at least one of the un-masked counters in the
15ffde4d
ME
3986 * MAC_STAT block has rolled over. Use this to maintain the top,
3987 * software managed bits of the counter(s).
3988 */
3989 et1310_handle_macstat_interrupt(adapter);
d2796743 3990 }
15ffde4d
ME
3991
3992 /* Handle SLV Timeout Interrupt */
3993 if (status & ET_INTR_SLV_TIMEOUT) {
26ef1021 3994 /* This means a timeout has occurred on a read or write request
15ffde4d
ME
3995 * to one of the JAGCore registers. The Global Resources block
3996 * has terminated the request and on a read request, returned a
3997 * "fake" value. The most likely reasons are: Bad Address or the
3998 * addressed module is in a power-down state and can't respond.
3999 */
4000 }
c2ebf58b 4001
be40a261
ME
4002out:
4003 if (enable_interrupts)
c2ebf58b 4004 et131x_enable_interrupts(adapter);
c2ebf58b 4005
c2ebf58b
ME
4006 return IRQ_RETVAL(handled);
4007}
4008
4009static int et131x_poll(struct napi_struct *napi, int budget)
4010{
4011 struct et131x_adapter *adapter =
4012 container_of(napi, struct et131x_adapter, napi);
4013 int work_done = et131x_handle_recv_pkts(adapter, budget);
4014
4015 et131x_handle_send_pkts(adapter);
4016
4017 if (work_done < budget) {
4018 napi_complete(&adapter->napi);
4019 et131x_enable_interrupts(adapter);
4020 }
4021
4022 return work_done;
d2796743
ME
4023}
4024
15ae239d 4025/* et131x_stats - Return the current device statistics */
d2796743
ME
4026static struct net_device_stats *et131x_stats(struct net_device *netdev)
4027{
4028 struct et131x_adapter *adapter = netdev_priv(netdev);
1f765d9f 4029 struct net_device_stats *stats = &adapter->netdev->stats;
d2796743
ME
4030 struct ce_stats *devstat = &adapter->stats;
4031
4032 stats->rx_errors = devstat->rx_length_errs +
4033 devstat->rx_align_errs +
4034 devstat->rx_crc_errs +
4035 devstat->rx_code_violations +
4036 devstat->rx_other_errs;
4037 stats->tx_errors = devstat->tx_max_pkt_errs;
4038 stats->multicast = devstat->multicast_pkts_rcvd;
4039 stats->collisions = devstat->tx_collisions;
4040
4041 stats->rx_length_errors = devstat->rx_length_errs;
4042 stats->rx_over_errors = devstat->rx_overflows;
4043 stats->rx_crc_errors = devstat->rx_crc_errs;
4044
4045 /* NOTE: These stats don't have corresponding values in CE_STATS,
4046 * so we're going to have to update these directly from within the
4047 * TX/RX code
4048 */
4049 /* stats->rx_bytes = 20; devstat->; */
4050 /* stats->tx_bytes = 20; devstat->; */
4051 /* stats->rx_dropped = devstat->; */
4052 /* stats->tx_dropped = devstat->; */
4053
4054 /* NOTE: Not used, can't find analogous statistics */
4055 /* stats->rx_frame_errors = devstat->; */
4056 /* stats->rx_fifo_errors = devstat->; */
4057 /* stats->rx_missed_errors = devstat->; */
4058
4059 /* stats->tx_aborted_errors = devstat->; */
4060 /* stats->tx_carrier_errors = devstat->; */
4061 /* stats->tx_fifo_errors = devstat->; */
4062 /* stats->tx_heartbeat_errors = devstat->; */
4063 /* stats->tx_window_errors = devstat->; */
4064 return stats;
4065}
4066
15ae239d 4067/* et131x_open - Open the device for use. */
eb7a6ca6 4068static int et131x_open(struct net_device *netdev)
d2796743 4069{
d2796743 4070 struct et131x_adapter *adapter = netdev_priv(netdev);
5f3eb881
FR
4071 struct pci_dev *pdev = adapter->pdev;
4072 unsigned int irq = pdev->irq;
4073 int result;
d2796743
ME
4074
4075 /* Start the timer to track NIC errors */
4076 init_timer(&adapter->error_timer);
4077 adapter->error_timer.expires = jiffies + TX_ERROR_PERIOD * HZ / 1000;
4078 adapter->error_timer.function = et131x_error_timer_handler;
4079 adapter->error_timer.data = (unsigned long)adapter;
4080 add_timer(&adapter->error_timer);
4081
bf3313a1 4082 result = request_irq(irq, et131x_isr,
4083 IRQF_SHARED, netdev->name, netdev);
d2796743 4084 if (result) {
5f3eb881 4085 dev_err(&pdev->dev, "could not register IRQ %d\n", irq);
d2796743
ME
4086 return result;
4087 }
4088
c655dee9 4089 adapter->flags |= FMP_ADAPTER_INTERRUPT_IN_USE;
d2796743 4090
c2ebf58b
ME
4091 napi_enable(&adapter->napi);
4092
d2796743
ME
4093 et131x_up(netdev);
4094
4095 return result;
4096}
4097
15ae239d 4098/* et131x_close - Close the device */
eb7a6ca6 4099static int et131x_close(struct net_device *netdev)
d2796743
ME
4100{
4101 struct et131x_adapter *adapter = netdev_priv(netdev);
4102
4103 et131x_down(netdev);
c2ebf58b 4104 napi_disable(&adapter->napi);
d2796743 4105
c655dee9 4106 adapter->flags &= ~FMP_ADAPTER_INTERRUPT_IN_USE;
5f3eb881 4107 free_irq(adapter->pdev->irq, netdev);
d2796743
ME
4108
4109 /* Stop the error timer */
4110 return del_timer_sync(&adapter->error_timer);
4111}
4112
26ef1021 4113/* et131x_ioctl - The I/O Control handler for the driver
d2796743
ME
4114 * @netdev: device on which the control request is being made
4115 * @reqbuf: a pointer to the IOCTL request buffer
4116 * @cmd: the IOCTL command code
d2796743 4117 */
09a3fc2b
ME
4118static int et131x_ioctl(struct net_device *netdev, struct ifreq *reqbuf,
4119 int cmd)
d2796743
ME
4120{
4121 struct et131x_adapter *adapter = netdev_priv(netdev);
4122
4123 if (!adapter->phydev)
4124 return -EINVAL;
4125
4126 return phy_mii_ioctl(adapter->phydev, reqbuf, cmd);
4127}
4128
26ef1021 4129/* et131x_set_packet_filter - Configures the Rx Packet filtering on the device
d2796743
ME
4130 * @adapter: pointer to our private adapter structure
4131 *
4132 * FIXME: lot of dups with MAC code
d2796743
ME
4133 */
4134static int et131x_set_packet_filter(struct et131x_adapter *adapter)
4135{
834d0ee3 4136 int filter = adapter->packet_filter;
d2796743
ME
4137 u32 ctrl;
4138 u32 pf_ctrl;
4139
4140 ctrl = readl(&adapter->regs->rxmac.ctrl);
4141 pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl);
4142
4143 /* Default to disabled packet filtering. Enable it in the individual
4144 * case statements that require the device to filter something
4145 */
4146 ctrl |= 0x04;
4147
4148 /* Set us to be in promiscuous mode so we receive everything, this
4149 * is also true when we get a packet filter of 0
4150 */
4151 if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0)
4152 pf_ctrl &= ~7; /* Clear filter bits */
4153 else {
26ef1021 4154 /* Set us up with Multicast packet filtering. Three cases are
d2796743
ME
4155 * possible - (1) we have a multi-cast list, (2) we receive ALL
4156 * multicast entries or (3) we receive none.
4157 */
4158 if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST)
4159 pf_ctrl &= ~2; /* Multicast filter bit */
4160 else {
4161 et1310_setup_device_for_multicast(adapter);
4162 pf_ctrl |= 2;
4163 ctrl &= ~0x04;
4164 }
4165
4166 /* Set us up with Unicast packet filtering */
4167 if (filter & ET131X_PACKET_TYPE_DIRECTED) {
4168 et1310_setup_device_for_unicast(adapter);
4169 pf_ctrl |= 4;
4170 ctrl &= ~0x04;
4171 }
4172
4173 /* Set us up with Broadcast packet filtering */
4174 if (filter & ET131X_PACKET_TYPE_BROADCAST) {
4175 pf_ctrl |= 1; /* Broadcast filter bit */
4176 ctrl &= ~0x04;
4177 } else
4178 pf_ctrl &= ~1;
4179
4180 /* Setup the receive mac configuration registers - Packet
4181 * Filter control + the enable / disable for packet filter
4182 * in the control reg.
4183 */
4184 writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl);
4185 writel(ctrl, &adapter->regs->rxmac.ctrl);
4186 }
8ea6cdf5 4187 return 0;
d2796743
ME
4188}
4189
15ae239d 4190/* et131x_multicast - The handler to configure multicasting on the interface */
d2796743
ME
4191static void et131x_multicast(struct net_device *netdev)
4192{
4193 struct et131x_adapter *adapter = netdev_priv(netdev);
834d0ee3 4194 int packet_filter;
d2796743
ME
4195 struct netdev_hw_addr *ha;
4196 int i;
4197
d2796743
ME
4198 /* Before we modify the platform-independent filter flags, store them
4199 * locally. This allows us to determine if anything's changed and if
4200 * we even need to bother the hardware
4201 */
4202 packet_filter = adapter->packet_filter;
4203
4204 /* Clear the 'multicast' flag locally; because we only have a single
4205 * flag to check multicast, and multiple multicast addresses can be
4206 * set, this is the easiest way to determine if more than one
4207 * multicast address is being set.
4208 */
4209 packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
4210
4211 /* Check the net_device flags and set the device independent flags
4212 * accordingly
4213 */
4214
4215 if (netdev->flags & IFF_PROMISC)
4216 adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS;
4217 else
4218 adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS;
4219
4220 if (netdev->flags & IFF_ALLMULTI)
4221 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
4222
4223 if (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST)
4224 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
4225
4226 if (netdev_mc_count(netdev) < 1) {
4227 adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST;
4228 adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
4229 } else
4230 adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST;
4231
4232 /* Set values in the private adapter struct */
4233 i = 0;
4234 netdev_for_each_mc_addr(ha, netdev) {
4235 if (i == NIC_MAX_MCAST_LIST)
4236 break;
4237 memcpy(adapter->multicast_list[i++], ha->addr, ETH_ALEN);
4238 }
4239 adapter->multicast_addr_count = i;
4240
4241 /* Are the new flags different from the previous ones? If not, then no
4242 * action is required
4243 *
4244 * NOTE - This block will always update the multicast_list with the
4245 * hardware, even if the addresses aren't the same.
4246 */
15ae239d 4247 if (packet_filter != adapter->packet_filter)
d2796743 4248 et131x_set_packet_filter(adapter);
d2796743
ME
4249}
4250
15ae239d 4251/* et131x_tx - The handler to tx a packet on the device */
be40a261 4252static netdev_tx_t et131x_tx(struct sk_buff *skb, struct net_device *netdev)
d2796743
ME
4253{
4254 int status = 0;
06709e96 4255 struct et131x_adapter *adapter = netdev_priv(netdev);
76981cf1 4256 struct tx_ring *tx_ring = &adapter->tx_ring;
06709e96
ME
4257
4258 /* stop the queue if it's getting full */
76981cf1 4259 if (tx_ring->used >= NUM_TCB - 1 && !netif_queue_stopped(netdev))
06709e96 4260 netif_stop_queue(netdev);
d2796743
ME
4261
4262 /* Save the timestamp for the TX timeout watchdog */
4263 netdev->trans_start = jiffies;
4264
4265 /* Call the device-specific data Tx routine */
4266 status = et131x_send_packets(skb, netdev);
4267
4268 /* Check status and manage the netif queue if necessary */
4269 if (status != 0) {
09a3fc2b 4270 if (status == -ENOMEM)
d2796743 4271 status = NETDEV_TX_BUSY;
09a3fc2b 4272 else
d2796743 4273 status = NETDEV_TX_OK;
d2796743
ME
4274 }
4275 return status;
4276}
4277
26ef1021 4278/* et131x_tx_timeout - Timeout handler
d2796743
ME
4279 *
4280 * The handler called when a Tx request times out. The timeout period is
4281 * specified by the 'tx_timeo" element in the net_device structure (see
4282 * et131x_alloc_device() to see how this value is set).
4283 */
4284static void et131x_tx_timeout(struct net_device *netdev)
4285{
4286 struct et131x_adapter *adapter = netdev_priv(netdev);
76981cf1 4287 struct tx_ring *tx_ring = &adapter->tx_ring;
d2796743
ME
4288 struct tcb *tcb;
4289 unsigned long flags;
4290
4291 /* If the device is closed, ignore the timeout */
c655dee9 4292 if (~(adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE))
d2796743
ME
4293 return;
4294
4295 /* Any nonrecoverable hardware error?
4296 * Checks adapter->flags for any failure in phy reading
4297 */
c655dee9 4298 if (adapter->flags & FMP_ADAPTER_NON_RECOVER_ERROR)
d2796743
ME
4299 return;
4300
4301 /* Hardware failure? */
c655dee9 4302 if (adapter->flags & FMP_ADAPTER_HARDWARE_ERROR) {
d2796743
ME
4303 dev_err(&adapter->pdev->dev, "hardware error - reset\n");
4304 return;
4305 }
4306
4307 /* Is send stuck? */
4308 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
4309
76981cf1 4310 tcb = tx_ring->send_head;
d2796743
ME
4311
4312 if (tcb != NULL) {
4313 tcb->count++;
4314
4315 if (tcb->count > NIC_SEND_HANG_THRESHOLD) {
4316 spin_unlock_irqrestore(&adapter->tcb_send_qlock,
4317 flags);
4318
4319 dev_warn(&adapter->pdev->dev,
4320 "Send stuck - reset. tcb->WrIndex %x, flags 0x%08x\n",
4321 tcb->index,
4322 tcb->flags);
4323
1f765d9f 4324 adapter->netdev->stats.tx_errors++;
d2796743
ME
4325
4326 /* perform reset of tx/rx */
4327 et131x_disable_txrx(netdev);
4328 et131x_enable_txrx(netdev);
4329 return;
4330 }
4331 }
4332
4333 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
4334}
4335
15ae239d 4336/* et131x_change_mtu - The handler called to change the MTU for the device */
d2796743
ME
4337static int et131x_change_mtu(struct net_device *netdev, int new_mtu)
4338{
4339 int result = 0;
4340 struct et131x_adapter *adapter = netdev_priv(netdev);
4341
4342 /* Make sure the requested MTU is valid */
4343 if (new_mtu < 64 || new_mtu > 9216)
4344 return -EINVAL;
4345
4346 et131x_disable_txrx(netdev);
d2796743
ME
4347
4348 /* Set the new MTU */
4349 netdev->mtu = new_mtu;
4350
4351 /* Free Rx DMA memory */
4352 et131x_adapter_memory_free(adapter);
4353
4354 /* Set the config parameter for Jumbo Packet support */
4355 adapter->registry_jumbo_packet = new_mtu + 14;
4356 et131x_soft_reset(adapter);
4357
4358 /* Alloc and init Rx DMA memory */
4359 result = et131x_adapter_memory_alloc(adapter);
4360 if (result != 0) {
4361 dev_warn(&adapter->pdev->dev,
4362 "Change MTU failed; couldn't re-alloc DMA memory\n");
4363 return result;
4364 }
4365
4366 et131x_init_send(adapter);
4367
4368 et131x_hwaddr_init(adapter);
4369 memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
4370
4371 /* Init the device with the new settings */
4372 et131x_adapter_setup(adapter);
4373
4374 et131x_enable_txrx(netdev);
4375
4376 return result;
4377}
4378
d2796743
ME
4379static const struct net_device_ops et131x_netdev_ops = {
4380 .ndo_open = et131x_open,
4381 .ndo_stop = et131x_close,
4382 .ndo_start_xmit = et131x_tx,
aa77677e 4383 .ndo_set_rx_mode = et131x_multicast,
d2796743
ME
4384 .ndo_tx_timeout = et131x_tx_timeout,
4385 .ndo_change_mtu = et131x_change_mtu,
36087dc1 4386 .ndo_set_mac_address = eth_mac_addr,
d2796743
ME
4387 .ndo_validate_addr = eth_validate_addr,
4388 .ndo_get_stats = et131x_stats,
4389 .ndo_do_ioctl = et131x_ioctl,
4390};
4391
26ef1021 4392/* et131x_pci_setup - Perform device initialization
5da2b158
ME
4393 * @pdev: a pointer to the device's pci_dev structure
4394 * @ent: this device's entry in the pci_device_id table
4395 *
5da2b158
ME
4396 * Registered in the pci_driver structure, this function is called when the
4397 * PCI subsystem finds a new PCI device which matches the information
4398 * contained in the pci_device_id table. This routine is the equivalent to
4399 * a device insertion routine.
4400 */
fe5c49b3 4401static int et131x_pci_setup(struct pci_dev *pdev,
12a2f3f3 4402 const struct pci_device_id *ent)
5da2b158 4403{
5da2b158
ME
4404 struct net_device *netdev;
4405 struct et131x_adapter *adapter;
fa9f0a65 4406 int rc;
5da2b158
ME
4407 int ii;
4408
fa9f0a65
FR
4409 rc = pci_enable_device(pdev);
4410 if (rc < 0) {
5da2b158 4411 dev_err(&pdev->dev, "pci_enable_device() failed\n");
fa9f0a65 4412 goto out;
5da2b158
ME
4413 }
4414
4415 /* Perform some basic PCI checks */
4416 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4417 dev_err(&pdev->dev, "Can't find PCI device's base address\n");
fa9f0a65 4418 rc = -ENODEV;
5da2b158
ME
4419 goto err_disable;
4420 }
4421
fa9f0a65
FR
4422 rc = pci_request_regions(pdev, DRIVER_NAME);
4423 if (rc < 0) {
5da2b158
ME
4424 dev_err(&pdev->dev, "Can't get PCI resources\n");
4425 goto err_disable;
4426 }
4427
4428 pci_set_master(pdev);
4429
4430 /* Check the DMA addressing support of this device */
e22f0e3f
RK
4431 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
4432 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32))) {
5da2b158 4433 dev_err(&pdev->dev, "No usable DMA addressing method\n");
fa9f0a65 4434 rc = -EIO;
5da2b158
ME
4435 goto err_release_res;
4436 }
4437
4438 /* Allocate netdev and private adapter structs */
fa9f0a65 4439 netdev = alloc_etherdev(sizeof(struct et131x_adapter));
5da2b158
ME
4440 if (!netdev) {
4441 dev_err(&pdev->dev, "Couldn't alloc netdev struct\n");
fa9f0a65 4442 rc = -ENOMEM;
5da2b158
ME
4443 goto err_release_res;
4444 }
4445
fa9f0a65
FR
4446 netdev->watchdog_timeo = ET131X_TX_TIMEOUT;
4447 netdev->netdev_ops = &et131x_netdev_ops;
4448
5da2b158 4449 SET_NETDEV_DEV(netdev, &pdev->dev);
7ad24ea4 4450 netdev->ethtool_ops = &et131x_ethtool_ops;
5da2b158
ME
4451
4452 adapter = et131x_adapter_init(netdev, pdev);
4453
fa9f0a65
FR
4454 rc = et131x_pci_init(adapter, pdev);
4455 if (rc < 0)
4456 goto err_free_dev;
5da2b158
ME
4457
4458 /* Map the bus-relative registers to system virtual memory */
4459 adapter->regs = pci_ioremap_bar(pdev, 0);
4460 if (!adapter->regs) {
4461 dev_err(&pdev->dev, "Cannot map device registers\n");
fa9f0a65 4462 rc = -ENOMEM;
5da2b158
ME
4463 goto err_free_dev;
4464 }
4465
4466 /* If Phy COMA mode was enabled when we went down, disable it here. */
4467 writel(ET_PMCSR_INIT, &adapter->regs->global.pm_csr);
4468
4469 /* Issue a global reset to the et1310 */
4470 et131x_soft_reset(adapter);
4471
4472 /* Disable all interrupts (paranoid) */
4473 et131x_disable_interrupts(adapter);
4474
4475 /* Allocate DMA memory */
fa9f0a65
FR
4476 rc = et131x_adapter_memory_alloc(adapter);
4477 if (rc < 0) {
868bf442 4478 dev_err(&pdev->dev, "Could not alloc adapter memory (DMA)\n");
5da2b158
ME
4479 goto err_iounmap;
4480 }
4481
4482 /* Init send data structures */
4483 et131x_init_send(adapter);
4484
c2ebf58b 4485 netif_napi_add(netdev, &adapter->napi, et131x_poll, 64);
5da2b158
ME
4486
4487 /* Copy address into the net_device struct */
4488 memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
4489
fa9f0a65
FR
4490 rc = -ENOMEM;
4491
5da2b158
ME
4492 /* Setup the mii_bus struct */
4493 adapter->mii_bus = mdiobus_alloc();
4494 if (!adapter->mii_bus) {
4495 dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n");
4496 goto err_mem_free;
4497 }
4498
4499 adapter->mii_bus->name = "et131x_eth_mii";
4500 snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x",
4501 (adapter->pdev->bus->number << 8) | adapter->pdev->devfn);
4502 adapter->mii_bus->priv = netdev;
4503 adapter->mii_bus->read = et131x_mdio_read;
4504 adapter->mii_bus->write = et131x_mdio_write;
78110bb8
JP
4505 adapter->mii_bus->irq = kmalloc_array(PHY_MAX_ADDR, sizeof(int),
4506 GFP_KERNEL);
4507 if (!adapter->mii_bus->irq)
5da2b158 4508 goto err_mdio_free;
5da2b158
ME
4509
4510 for (ii = 0; ii < PHY_MAX_ADDR; ii++)
4511 adapter->mii_bus->irq[ii] = PHY_POLL;
4512
fa9f0a65
FR
4513 rc = mdiobus_register(adapter->mii_bus);
4514 if (rc < 0) {
5da2b158 4515 dev_err(&pdev->dev, "failed to register MII bus\n");
5da2b158
ME
4516 goto err_mdio_free_irq;
4517 }
4518
fa9f0a65
FR
4519 rc = et131x_mii_probe(netdev);
4520 if (rc < 0) {
5da2b158
ME
4521 dev_err(&pdev->dev, "failed to probe MII bus\n");
4522 goto err_mdio_unregister;
4523 }
4524
4525 /* Setup et1310 as per the documentation */
4526 et131x_adapter_setup(adapter);
4527
ec0a38bf
ME
4528 /* Init variable for counting how long we do not have link status */
4529 adapter->boot_coma = 0;
4530 et1310_disable_phy_coma(adapter);
4531
5da2b158
ME
4532 /* We can enable interrupts now
4533 *
4534 * NOTE - Because registration of interrupt handler is done in the
4535 * device's open(), defer enabling device interrupts to that
4536 * point
4537 */
4538
4539 /* Register the net_device struct with the Linux network layer */
fa9f0a65
FR
4540 rc = register_netdev(netdev);
4541 if (rc < 0) {
5da2b158 4542 dev_err(&pdev->dev, "register_netdev() failed\n");
fa9f0a65 4543 goto err_phy_disconnect;
5da2b158
ME
4544 }
4545
4546 /* Register the net_device struct with the PCI subsystem. Save a copy
4547 * of the PCI config space for this device now that the device has
4548 * been initialized, just in case it needs to be quickly restored.
4549 */
4550 pci_set_drvdata(pdev, netdev);
fa9f0a65
FR
4551out:
4552 return rc;
5da2b158 4553
fa9f0a65
FR
4554err_phy_disconnect:
4555 phy_disconnect(adapter->phydev);
5da2b158
ME
4556err_mdio_unregister:
4557 mdiobus_unregister(adapter->mii_bus);
4558err_mdio_free_irq:
4559 kfree(adapter->mii_bus->irq);
4560err_mdio_free:
4561 mdiobus_free(adapter->mii_bus);
4562err_mem_free:
4563 et131x_adapter_memory_free(adapter);
4564err_iounmap:
4565 iounmap(adapter->regs);
4566err_free_dev:
4567 pci_dev_put(pdev);
4568 free_netdev(netdev);
4569err_release_res:
4570 pci_release_regions(pdev);
4571err_disable:
4572 pci_disable_device(pdev);
fa9f0a65 4573 goto out;
5da2b158
ME
4574}
4575
41e043fc 4576static const struct pci_device_id et131x_pci_table[] = {
5da2b158
ME
4577 { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL},
4578 { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL},
4579 {0,}
4580};
4581MODULE_DEVICE_TABLE(pci, et131x_pci_table);
4582
4583static struct pci_driver et131x_driver = {
4584 .name = DRIVER_NAME,
4585 .id_table = et131x_pci_table,
4586 .probe = et131x_pci_setup,
0b5e4092 4587 .remove = et131x_pci_remove,
5da2b158
ME
4588 .driver.pm = ET131X_PM_OPS,
4589};
4590
89812b1f 4591module_pci_driver(et131x_driver);
This page took 0.660363 seconds and 5 git commands to generate.