staging: et131x: Rename NUM_PACKETS_HANDLED to MAX_PACKETS_HANDLED
[deliverable/linux.git] / drivers / staging / et131x / et131x.c
CommitLineData
26ef1021 1/* Agere Systems Inc.
d2796743
ME
2 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
3 *
4 * Copyright © 2005 Agere Systems Inc.
5 * All rights reserved.
6 * http://www.agere.com
7 *
8 * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
9 *
10 *------------------------------------------------------------------------------
11 *
12 * SOFTWARE LICENSE
13 *
14 * This software is provided subject to the following terms and conditions,
15 * which you should read carefully before using the software. Using this
16 * software indicates your acceptance of these terms and conditions. If you do
17 * not agree with these terms and conditions, do not use the software.
18 *
19 * Copyright © 2005 Agere Systems Inc.
20 * All rights reserved.
21 *
22 * Redistribution and use in source or binary forms, with or without
23 * modifications, are permitted provided that the following conditions are met:
24 *
25 * . Redistributions of source code must retain the above copyright notice, this
26 * list of conditions and the following Disclaimer as comments in the code as
27 * well as in the documentation and/or other materials provided with the
28 * distribution.
29 *
30 * . Redistributions in binary form must reproduce the above copyright notice,
31 * this list of conditions and the following Disclaimer in the documentation
32 * and/or other materials provided with the distribution.
33 *
34 * . Neither the name of Agere Systems Inc. nor the names of the contributors
35 * may be used to endorse or promote products derived from this software
36 * without specific prior written permission.
37 *
38 * Disclaimer
39 *
40 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
41 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
42 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
43 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
44 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
45 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
46 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
48 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
50 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
51 * DAMAGE.
d2796743
ME
52 */
53
e58b89da
TY
54#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
55
d2796743 56#include <linux/pci.h>
d2796743
ME
57#include <linux/module.h>
58#include <linux/types.h>
59#include <linux/kernel.h>
60
61#include <linux/sched.h>
62#include <linux/ptrace.h>
63#include <linux/slab.h>
64#include <linux/ctype.h>
65#include <linux/string.h>
66#include <linux/timer.h>
67#include <linux/interrupt.h>
68#include <linux/in.h>
69#include <linux/delay.h>
70#include <linux/bitops.h>
71#include <linux/io.h>
d2796743
ME
72
73#include <linux/netdevice.h>
74#include <linux/etherdevice.h>
75#include <linux/skbuff.h>
76#include <linux/if_arp.h>
77#include <linux/ioport.h>
78#include <linux/crc32.h>
79#include <linux/random.h>
80#include <linux/phy.h>
81
d2796743
ME
82#include "et131x.h"
83
84MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
85MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
86MODULE_LICENSE("Dual BSD/GPL");
397d3e60 87MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver for the ET1310 by Agere Systems");
d2796743 88
bd156af6
ME
89/* EEPROM defines */
90#define MAX_NUM_REGISTER_POLLS 1000
91#define MAX_NUM_WRITE_RETRIES 2
92
93/* MAC defines */
94#define COUNTER_WRAP_16_BIT 0x10000
95#define COUNTER_WRAP_12_BIT 0x1000
96
97/* PCI defines */
98#define INTERNAL_MEM_SIZE 0x400 /* 1024 of internal memory */
99#define INTERNAL_MEM_RX_OFFSET 0x1FF /* 50% Tx, 50% Rx */
100
101/* ISR defines */
26ef1021 102/* For interrupts, normal running is:
bd156af6
ME
103 * rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
104 * watchdog_interrupt & txdma_xfer_done
105 *
106 * In both cases, when flow control is enabled for either Tx or bi-direction,
107 * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
108 * buffer rings are running low.
109 */
110#define INT_MASK_DISABLE 0xffffffff
111
112/* NOTE: Masking out MAC_STAT Interrupt for now...
113 * #define INT_MASK_ENABLE 0xfff6bf17
114 * #define INT_MASK_ENABLE_NO_FLOW 0xfff6bfd7
115 */
116#define INT_MASK_ENABLE 0xfffebf17
117#define INT_MASK_ENABLE_NO_FLOW 0xfffebfd7
118
1c1c1b5f
ME
119/* General defines */
120/* Packet and header sizes */
121#define NIC_MIN_PACKET_SIZE 60
122
123/* Multicast list size */
124#define NIC_MAX_MCAST_LIST 128
125
126/* Supported Filters */
127#define ET131X_PACKET_TYPE_DIRECTED 0x0001
128#define ET131X_PACKET_TYPE_MULTICAST 0x0002
129#define ET131X_PACKET_TYPE_BROADCAST 0x0004
130#define ET131X_PACKET_TYPE_PROMISCUOUS 0x0008
131#define ET131X_PACKET_TYPE_ALL_MULTICAST 0x0010
132
133/* Tx Timeout */
134#define ET131X_TX_TIMEOUT (1 * HZ)
135#define NIC_SEND_HANG_THRESHOLD 0
136
137/* MP_TCB flags */
c655dee9
ME
138#define FMP_DEST_MULTI 0x00000001
139#define FMP_DEST_BROAD 0x00000002
1c1c1b5f
ME
140
141/* MP_ADAPTER flags */
c655dee9 142#define FMP_ADAPTER_INTERRUPT_IN_USE 0x00000008
1c1c1b5f
ME
143
144/* MP_SHARED flags */
c655dee9 145#define FMP_ADAPTER_LOWER_POWER 0x00200000
1c1c1b5f 146
c655dee9
ME
147#define FMP_ADAPTER_NON_RECOVER_ERROR 0x00800000
148#define FMP_ADAPTER_HARDWARE_ERROR 0x04000000
1c1c1b5f 149
c655dee9 150#define FMP_ADAPTER_FAIL_SEND_MASK 0x3ff00000
1c1c1b5f
ME
151
152/* Some offsets in PCI config space that are actually used. */
1c1c1b5f
ME
153#define ET1310_PCI_MAC_ADDRESS 0xA4
154#define ET1310_PCI_EEPROM_STATUS 0xB2
155#define ET1310_PCI_ACK_NACK 0xC0
156#define ET1310_PCI_REPLAY 0xC2
157#define ET1310_PCI_L0L1LATENCY 0xCF
158
26d19bf6 159/* PCI Product IDs */
1c1c1b5f
ME
160#define ET131X_PCI_DEVICE_ID_GIG 0xED00 /* ET1310 1000 Base-T 8 */
161#define ET131X_PCI_DEVICE_ID_FAST 0xED01 /* ET1310 100 Base-T */
162
163/* Define order of magnitude converter */
164#define NANO_IN_A_MICRO 1000
165
166#define PARM_RX_NUM_BUFS_DEF 4
167#define PARM_RX_TIME_INT_DEF 10
168#define PARM_RX_MEM_END_DEF 0x2bc
169#define PARM_TX_TIME_INT_DEF 40
170#define PARM_TX_NUM_BUFS_DEF 4
171#define PARM_DMA_CACHE_DEF 0
172
562550b0 173/* RX defines */
788ca84a
ME
174#define FBR_CHUNKS 32
175#define MAX_DESC_PER_RING_RX 1024
562550b0
ME
176
177/* number of RFDs - default and min */
562550b0 178#define RFD_LOW_WATER_MARK 40
562550b0 179#define NIC_DEFAULT_NUM_RFD 1024
6abafc16 180#define NUM_FBRS 2
562550b0 181
b60e6d0a 182#define MAX_PACKETS_HANDLED 256
562550b0 183
562550b0
ME
184#define ALCATEL_MULTICAST_PKT 0x01000000
185#define ALCATEL_BROADCAST_PKT 0x02000000
186
187/* typedefs for Free Buffer Descriptors */
188struct fbr_desc {
189 u32 addr_lo;
190 u32 addr_hi;
191 u32 word2; /* Bits 10-31 reserved, 0-9 descriptor */
192};
193
194/* Packet Status Ring Descriptors
195 *
196 * Word 0:
197 *
198 * top 16 bits are from the Alcatel Status Word as enumerated in
199 * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
200 *
201 * 0: hp hash pass
202 * 1: ipa IP checksum assist
203 * 2: ipp IP checksum pass
204 * 3: tcpa TCP checksum assist
205 * 4: tcpp TCP checksum pass
206 * 5: wol WOL Event
207 * 6: rxmac_error RXMAC Error Indicator
208 * 7: drop Drop packet
209 * 8: ft Frame Truncated
210 * 9: jp Jumbo Packet
211 * 10: vp VLAN Packet
212 * 11-15: unused
213 * 16: asw_prev_pkt_dropped e.g. IFG too small on previous
214 * 17: asw_RX_DV_event short receive event detected
215 * 18: asw_false_carrier_event bad carrier since last good packet
216 * 19: asw_code_err one or more nibbles signalled as errors
217 * 20: asw_CRC_err CRC error
218 * 21: asw_len_chk_err frame length field incorrect
219 * 22: asw_too_long frame length > 1518 bytes
220 * 23: asw_OK valid CRC + no code error
221 * 24: asw_multicast has a multicast address
222 * 25: asw_broadcast has a broadcast address
223 * 26: asw_dribble_nibble spurious bits after EOP
224 * 27: asw_control_frame is a control frame
225 * 28: asw_pause_frame is a pause frame
226 * 29: asw_unsupported_op unsupported OP code
227 * 30: asw_VLAN_tag VLAN tag detected
228 * 31: asw_long_evt Rx long event
229 *
230 * Word 1:
231 * 0-15: length length in bytes
232 * 16-25: bi Buffer Index
233 * 26-27: ri Ring Index
234 * 28-31: reserved
235 */
236
237struct pkt_stat_desc {
238 u32 word0;
239 u32 word1;
240};
241
242/* Typedefs for the RX DMA status word */
243
26ef1021 244/* rx status word 0 holds part of the status bits of the Rx DMA engine
562550b0
ME
245 * that get copied out to memory by the ET-1310. Word 0 is a 32 bit word
246 * which contains the Free Buffer ring 0 and 1 available offset.
247 *
248 * bit 0-9 FBR1 offset
249 * bit 10 Wrap flag for FBR1
250 * bit 16-25 FBR0 offset
251 * bit 26 Wrap flag for FBR0
252 */
253
26ef1021 254/* RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
562550b0
ME
255 * that get copied out to memory by the ET-1310. Word 3 is a 32 bit word
256 * which contains the Packet Status Ring available offset.
257 *
258 * bit 0-15 reserved
259 * bit 16-27 PSRoffset
260 * bit 28 PSRwrap
261 * bit 29-31 unused
262 */
263
26ef1021 264/* struct rx_status_block is a structure representing the status of the Rx
562550b0
ME
265 * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
266 */
267struct rx_status_block {
268 u32 word0;
269 u32 word1;
270};
271
26ef1021 272/* Structure for look-up table holding free buffer ring pointers, addresses
6abafc16 273 * and state.
562550b0
ME
274 */
275struct fbr_lookup {
6abafc16 276 void *virt[MAX_DESC_PER_RING_RX];
6abafc16
ME
277 u32 bus_high[MAX_DESC_PER_RING_RX];
278 u32 bus_low[MAX_DESC_PER_RING_RX];
279 void *ring_virtaddr;
280 dma_addr_t ring_physaddr;
281 void *mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
282 dma_addr_t mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
6abafc16
ME
283 u32 local_full;
284 u32 num_entries;
983e4b35 285 dma_addr_t buffsize;
562550b0
ME
286};
287
868bf442 288/* struct rx_ring is the structure representing the adaptor's local
562550b0
ME
289 * reference(s) to the rings
290 */
291struct rx_ring {
6abafc16 292 struct fbr_lookup *fbr[NUM_FBRS];
562550b0
ME
293 void *ps_ring_virtaddr;
294 dma_addr_t ps_ring_physaddr;
295 u32 local_psr_full;
296 u32 psr_num_entries;
297
298 struct rx_status_block *rx_status_block;
299 dma_addr_t rx_status_bus;
300
562550b0
ME
301 /* RECV */
302 struct list_head recv_list;
303 u32 num_ready_recv;
304
305 u32 num_rfd;
306
307 bool unfinished_receives;
562550b0
ME
308};
309
17ec9ff3 310/* TX defines */
26ef1021 311/* word 2 of the control bits in the Tx Descriptor ring for the ET-1310
17ec9ff3
ME
312 *
313 * 0-15: length of packet
314 * 16-27: VLAN tag
315 * 28: VLAN CFI
316 * 29-31: VLAN priority
317 *
318 * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
319 *
320 * 0: last packet in the sequence
321 * 1: first packet in the sequence
322 * 2: interrupt the processor when this pkt sent
323 * 3: Control word - no packet data
324 * 4: Issue half-duplex backpressure : XON/XOFF
325 * 5: send pause frame
326 * 6: Tx frame has error
327 * 7: append CRC
328 * 8: MAC override
329 * 9: pad packet
330 * 10: Packet is a Huge packet
331 * 11: append VLAN tag
332 * 12: IP checksum assist
333 * 13: TCP checksum assist
334 * 14: UDP checksum assist
335 */
336
a129be84
ME
337#define TXDESC_FLAG_LASTPKT 0x0001
338#define TXDESC_FLAG_FIRSTPKT 0x0002
339#define TXDESC_FLAG_INTPROC 0x0004
340
17ec9ff3
ME
341/* struct tx_desc represents each descriptor on the ring */
342struct tx_desc {
343 u32 addr_hi;
344 u32 addr_lo;
345 u32 len_vlan; /* control words how to xmit the */
346 u32 flags; /* data (detailed above) */
347};
348
26ef1021 349/* The status of the Tx DMA engine it sits in free memory, and is pointed to
17ec9ff3
ME
350 * by 0x101c / 0x1020. This is a DMA10 type
351 */
352
353/* TCB (Transmit Control Block: Host Side) */
354struct tcb {
355 struct tcb *next; /* Next entry in ring */
356 u32 flags; /* Our flags for the packet */
357 u32 count; /* Used to spot stuck/lost packets */
358 u32 stale; /* Used to spot stuck/lost packets */
359 struct sk_buff *skb; /* Network skb we are tied to */
360 u32 index; /* Ring indexes */
361 u32 index_start;
362};
363
364/* Structure representing our local reference(s) to the ring */
365struct tx_ring {
366 /* TCB (Transmit Control Block) memory and lists */
367 struct tcb *tcb_ring;
368
369 /* List of TCBs that are ready to be used */
370 struct tcb *tcb_qhead;
371 struct tcb *tcb_qtail;
372
373 /* list of TCBs that are currently being sent. NOTE that access to all
374 * three of these (including used) are controlled via the
375 * TCBSendQLock. This lock should be secured prior to incementing /
376 * decrementing used, or any queue manipulation on send_head /
377 * tail
378 */
379 struct tcb *send_head;
380 struct tcb *send_tail;
381 int used;
382
383 /* The actual descriptor ring */
384 struct tx_desc *tx_desc_ring;
385 dma_addr_t tx_desc_ring_pa;
386
387 /* send_idx indicates where we last wrote to in the descriptor ring. */
388 u32 send_idx;
389
390 /* The location of the write-back status block */
391 u32 *tx_status;
392 dma_addr_t tx_status_pa;
393
394 /* Packets since the last IRQ: used for interrupt coalescing */
395 int since_irq;
396};
397
26ef1021 398/* Do not change these values: if changed, then change also in respective
fd0651a6
ME
399 * TXdma and Rxdma engines
400 */
401#define NUM_DESC_PER_RING_TX 512 /* TX Do not change these values */
402#define NUM_TCB 64
403
26ef1021 404/* These values are all superseded by registry entries to facilitate tuning.
fd0651a6
ME
405 * Once the desired performance has been achieved, the optimal registry values
406 * should be re-populated to these #defines:
407 */
fd0651a6
ME
408#define TX_ERROR_PERIOD 1000
409
410#define LO_MARK_PERCENT_FOR_PSR 15
411#define LO_MARK_PERCENT_FOR_RX 15
412
413/* RFD (Receive Frame Descriptor) */
414struct rfd {
415 struct list_head list_node;
416 struct sk_buff *skb;
417 u32 len; /* total size of receive frame */
418 u16 bufferindex;
419 u8 ringindex;
420};
421
422/* Flow Control */
423#define FLOW_BOTH 0
424#define FLOW_TXONLY 1
425#define FLOW_RXONLY 2
426#define FLOW_NONE 3
427
428/* Struct to define some device statistics */
429struct ce_stats {
430 /* MIB II variables
431 *
432 * NOTE: atomic_t types are only guaranteed to store 24-bits; if we
433 * MUST have 32, then we'll need another way to perform atomic
434 * operations
435 */
436 u32 unicast_pkts_rcvd;
437 atomic_t unicast_pkts_xmtd;
438 u32 multicast_pkts_rcvd;
439 atomic_t multicast_pkts_xmtd;
440 u32 broadcast_pkts_rcvd;
441 atomic_t broadcast_pkts_xmtd;
442 u32 rcvd_pkts_dropped;
443
444 /* Tx Statistics. */
445 u32 tx_underflows;
446
447 u32 tx_collisions;
448 u32 tx_excessive_collisions;
449 u32 tx_first_collisions;
450 u32 tx_late_collisions;
451 u32 tx_max_pkt_errs;
452 u32 tx_deferred;
453
454 /* Rx Statistics. */
455 u32 rx_overflows;
456
457 u32 rx_length_errs;
458 u32 rx_align_errs;
459 u32 rx_crc_errs;
460 u32 rx_code_violations;
461 u32 rx_other_errs;
462
463 u32 synchronous_iterations;
464 u32 interrupt_status;
465};
466
467/* The private adapter structure */
468struct et131x_adapter {
469 struct net_device *netdev;
470 struct pci_dev *pdev;
471 struct mii_bus *mii_bus;
472 struct phy_device *phydev;
473 struct work_struct task;
474
475 /* Flags that indicate current state of the adapter */
476 u32 flags;
477
478 /* local link state, to determine if a state change has occurred */
479 int link;
480
481 /* Configuration */
482 u8 rom_addr[ETH_ALEN];
483 u8 addr[ETH_ALEN];
484 bool has_eeprom;
485 u8 eeprom_data[2];
486
487 /* Spinlocks */
fd0651a6
ME
488 spinlock_t tcb_send_qlock;
489 spinlock_t tcb_ready_qlock;
490 spinlock_t send_hw_lock;
491
492 spinlock_t rcv_lock;
fd0651a6
ME
493 spinlock_t fbr_lock;
494
fd0651a6
ME
495 /* Packet Filter and look ahead size */
496 u32 packet_filter;
497
498 /* multicast list */
499 u32 multicast_addr_count;
500 u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN];
501
502 /* Pointer to the device's PCI register space */
503 struct address_map __iomem *regs;
504
505 /* Registry parameters */
506 u8 wanted_flow; /* Flow we want for 802.3x flow control */
507 u32 registry_jumbo_packet; /* Max supported ethernet packet size */
508
509 /* Derived from the registry: */
510 u8 flowcontrol; /* flow control validated by the far-end */
511
512 /* Minimize init-time */
513 struct timer_list error_timer;
514
515 /* variable putting the phy into coma mode when boot up with no cable
516 * plugged in after 5 seconds
517 */
518 u8 boot_coma;
519
520 /* Next two used to save power information at power down. This
521 * information will be used during power up to set up parts of Power
522 * Management in JAGCore
523 */
524 u16 pdown_speed;
525 u8 pdown_duplex;
526
527 /* Tx Memory Variables */
528 struct tx_ring tx_ring;
529
530 /* Rx Memory Variables */
531 struct rx_ring rx_ring;
532
533 /* Stats */
534 struct ce_stats stats;
fd0651a6
ME
535};
536
d2796743
ME
537static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status)
538{
539 u32 reg;
540 int i;
541
26ef1021 542 /* 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
d2796743
ME
543 * bits 7,1:0 both equal to 1, at least once after reset.
544 * Subsequent operations need only to check that bits 1:0 are equal
545 * to 1 prior to starting a single byte read/write
546 */
547
548 for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) {
549 /* Read registers grouped in DWORD1 */
550 if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, &reg))
551 return -EIO;
552
553 /* I2C idle and Phy Queue Avail both true */
554 if ((reg & 0x3000) == 0x3000) {
555 if (status)
556 *status = reg;
557 return reg & 0xFF;
558 }
559 }
560 return -ETIMEDOUT;
561}
562
26ef1021 563/* eeprom_write - Write a byte to the ET1310's EEPROM
d2796743
ME
564 * @adapter: pointer to our private adapter structure
565 * @addr: the address to write
566 * @data: the value to write
567 *
568 * Returns 1 for a successful write.
569 */
570static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data)
571{
572 struct pci_dev *pdev = adapter->pdev;
573 int index = 0;
574 int retries;
575 int err = 0;
d2796743
ME
576 int writeok = 0;
577 u32 status;
578 u32 val = 0;
579
26ef1021 580 /* For an EEPROM, an I2C single byte write is defined as a START
d2796743
ME
581 * condition followed by the device address, EEPROM address, one byte
582 * of data and a STOP condition. The STOP condition will trigger the
583 * EEPROM's internally timed write cycle to the nonvolatile memory.
584 * All inputs are disabled during this write cycle and the EEPROM will
585 * not respond to any access until the internal write is complete.
586 */
587
588 err = eeprom_wait_ready(pdev, NULL);
8dd4a966 589 if (err < 0)
d2796743
ME
590 return err;
591
26ef1021
ME
592 /* 2. Write to the LBCIF Control Register: bit 7=1, bit 6=1, bit 3=0,
593 * and bits 1:0 both =0. Bit 5 should be set according to the
594 * type of EEPROM being accessed (1=two byte addressing, 0=one
595 * byte addressing).
596 */
d2796743
ME
597 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
598 LBCIF_CONTROL_LBCIF_ENABLE | LBCIF_CONTROL_I2C_WRITE))
599 return -EIO;
600
d2796743
ME
601 /* Prepare EEPROM address for Step 3 */
602
603 for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
604 /* Write the address to the LBCIF Address Register */
605 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
606 break;
26ef1021 607 /* Write the data to the LBCIF Data Register (the I2C write
d2796743
ME
608 * will begin).
609 */
610 if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data))
611 break;
26ef1021 612 /* Monitor bit 1:0 of the LBCIF Status Register. When bits
d2796743
ME
613 * 1:0 are both equal to 1, the I2C write has completed and the
614 * internal write cycle of the EEPROM is about to start.
615 * (bits 1:0 = 01 is a legal state while waiting from both
616 * equal to 1, but bits 1:0 = 10 is invalid and implies that
617 * something is broken).
618 */
619 err = eeprom_wait_ready(pdev, &status);
620 if (err < 0)
621 return 0;
622
26ef1021 623 /* Check bit 3 of the LBCIF Status Register. If equal to 1,
d2796743
ME
624 * an error has occurred.Don't break here if we are revision
625 * 1, this is so we do a blind write for load bug.
626 */
627 if ((status & LBCIF_STATUS_GENERAL_ERROR)
628 && adapter->pdev->revision == 0)
629 break;
630
26ef1021 631 /* Check bit 2 of the LBCIF Status Register. If equal to 1 an
d2796743
ME
632 * ACK error has occurred on the address phase of the write.
633 * This could be due to an actual hardware failure or the
634 * EEPROM may still be in its internal write cycle from a
635 * previous write. This write operation was ignored and must be
636 *repeated later.
637 */
638 if (status & LBCIF_STATUS_ACK_ERROR) {
26ef1021 639 /* This could be due to an actual hardware failure
d2796743
ME
640 * or the EEPROM may still be in its internal write
641 * cycle from a previous write. This write operation
642 * was ignored and must be repeated later.
643 */
644 udelay(10);
645 continue;
646 }
647
648 writeok = 1;
649 break;
650 }
651
26ef1021 652 /* Set bit 6 of the LBCIF Control Register = 0.
d2796743
ME
653 */
654 udelay(10);
655
5a5835ea 656 while (1) {
d2796743
ME
657 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
658 LBCIF_CONTROL_LBCIF_ENABLE))
659 writeok = 0;
660
661 /* Do read until internal ACK_ERROR goes away meaning write
662 * completed
663 */
664 do {
665 pci_write_config_dword(pdev,
666 LBCIF_ADDRESS_REGISTER,
667 addr);
668 do {
669 pci_read_config_dword(pdev,
670 LBCIF_DATA_REGISTER, &val);
671 } while ((val & 0x00010000) == 0);
672 } while (val & 0x00040000);
673
674 if ((val & 0xFF00) != 0xC000 || index == 10000)
675 break;
676 index++;
677 }
678 return writeok ? 0 : -EIO;
679}
680
26ef1021 681/* eeprom_read - Read a byte from the ET1310's EEPROM
d2796743
ME
682 * @adapter: pointer to our private adapter structure
683 * @addr: the address from which to read
684 * @pdata: a pointer to a byte in which to store the value of the read
685 * @eeprom_id: the ID of the EEPROM
686 * @addrmode: how the EEPROM is to be accessed
687 *
688 * Returns 1 for a successful read
689 */
690static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata)
691{
692 struct pci_dev *pdev = adapter->pdev;
693 int err;
694 u32 status;
695
26ef1021 696 /* A single byte read is similar to the single byte write, with the
d2796743
ME
697 * exception of the data flow:
698 */
699
700 err = eeprom_wait_ready(pdev, NULL);
8dd4a966 701 if (err < 0)
d2796743 702 return err;
26ef1021 703 /* Write to the LBCIF Control Register: bit 7=1, bit 6=0, bit 3=0,
d2796743
ME
704 * and bits 1:0 both =0. Bit 5 should be set according to the type
705 * of EEPROM being accessed (1=two byte addressing, 0=one byte
706 * addressing).
707 */
708 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
709 LBCIF_CONTROL_LBCIF_ENABLE))
710 return -EIO;
26ef1021 711 /* Write the address to the LBCIF Address Register (I2C read will
d2796743
ME
712 * begin).
713 */
714 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
715 return -EIO;
26ef1021 716 /* Monitor bit 0 of the LBCIF Status Register. When = 1, I2C read
d2796743
ME
717 * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
718 * has occurred).
719 */
720 err = eeprom_wait_ready(pdev, &status);
721 if (err < 0)
722 return err;
26ef1021 723 /* Regardless of error status, read data byte from LBCIF Data
d2796743
ME
724 * Register.
725 */
726 *pdata = err;
26ef1021 727 /* Check bit 2 of the LBCIF Status Register. If = 1,
d2796743
ME
728 * then an error has occurred.
729 */
730 return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0;
731}
732
eb7a6ca6 733static int et131x_init_eeprom(struct et131x_adapter *adapter)
d2796743
ME
734{
735 struct pci_dev *pdev = adapter->pdev;
736 u8 eestatus;
737
738 /* We first need to check the EEPROM Status code located at offset
739 * 0xB2 of config space
740 */
a129be84 741 pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus);
d2796743
ME
742
743 /* THIS IS A WORKAROUND:
744 * I need to call this function twice to get my card in a
745 * LG M1 Express Dual running. I tried also a msleep before this
a129be84 746 * function, because I thought there could be some time conditions
d2796743
ME
747 * but it didn't work. Call the whole function twice also work.
748 */
749 if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) {
750 dev_err(&pdev->dev,
751 "Could not read PCI config space for EEPROM Status\n");
752 return -EIO;
753 }
754
755 /* Determine if the error(s) we care about are present. If they are
756 * present we need to fail.
757 */
758 if (eestatus & 0x4C) {
759 int write_failed = 0;
f03fcca0 760
d2796743
ME
761 if (pdev->revision == 0x01) {
762 int i;
763 static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF };
764
765 /* Re-write the first 4 bytes if we have an eeprom
766 * present and the revision id is 1, this fixes the
767 * corruption seen with 1310 B Silicon
768 */
769 for (i = 0; i < 3; i++)
770 if (eeprom_write(adapter, i, eedata[i]) < 0)
771 write_failed = 1;
772 }
773 if (pdev->revision != 0x01 || write_failed) {
774 dev_err(&pdev->dev,
775 "Fatal EEPROM Status Error - 0x%04x\n", eestatus);
776
777 /* This error could mean that there was an error
778 * reading the eeprom or that the eeprom doesn't exist.
779 * We will treat each case the same and not try to
780 * gather additional information that normally would
781 * come from the eeprom, like MAC Address
782 */
783 adapter->has_eeprom = 0;
784 return -EIO;
785 }
786 }
787 adapter->has_eeprom = 1;
788
789 /* Read the EEPROM for information regarding LED behavior. Refer to
790 * ET1310_phy.c, et131x_xcvr_init(), for its use.
791 */
792 eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]);
793 eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]);
794
795 if (adapter->eeprom_data[0] != 0xcd)
796 /* Disable all optional features */
797 adapter->eeprom_data[1] = 0x00;
798
799 return 0;
800}
801
26ef1021 802/* et131x_rx_dma_enable - re-start of Rx_DMA on the ET1310.
8310c602
ME
803 * @adapter: pointer to our adapter structure
804 */
eb7a6ca6 805static void et131x_rx_dma_enable(struct et131x_adapter *adapter)
8310c602
ME
806{
807 /* Setup the receive dma configuration register for normal operation */
3040d056 808 u32 csr = ET_RXDMA_CSR_FBR1_ENABLE;
8f7fa96a 809 struct rx_ring *rx_ring = &adapter->rx_ring;
8310c602 810
8f7fa96a 811 if (rx_ring->fbr[1]->buffsize == 4096)
3040d056 812 csr |= ET_RXDMA_CSR_FBR1_SIZE_LO;
8f7fa96a 813 else if (rx_ring->fbr[1]->buffsize == 8192)
3040d056 814 csr |= ET_RXDMA_CSR_FBR1_SIZE_HI;
8f7fa96a 815 else if (rx_ring->fbr[1]->buffsize == 16384)
3040d056 816 csr |= ET_RXDMA_CSR_FBR1_SIZE_LO | ET_RXDMA_CSR_FBR1_SIZE_HI;
b5254867 817
3040d056 818 csr |= ET_RXDMA_CSR_FBR0_ENABLE;
8f7fa96a 819 if (rx_ring->fbr[0]->buffsize == 256)
3040d056 820 csr |= ET_RXDMA_CSR_FBR0_SIZE_LO;
8f7fa96a 821 else if (rx_ring->fbr[0]->buffsize == 512)
3040d056 822 csr |= ET_RXDMA_CSR_FBR0_SIZE_HI;
8f7fa96a 823 else if (rx_ring->fbr[0]->buffsize == 1024)
3040d056 824 csr |= ET_RXDMA_CSR_FBR0_SIZE_LO | ET_RXDMA_CSR_FBR0_SIZE_HI;
8310c602
ME
825 writel(csr, &adapter->regs->rxdma.csr);
826
827 csr = readl(&adapter->regs->rxdma.csr);
3040d056 828 if (csr & ET_RXDMA_CSR_HALT_STATUS) {
8310c602
ME
829 udelay(5);
830 csr = readl(&adapter->regs->rxdma.csr);
3040d056 831 if (csr & ET_RXDMA_CSR_HALT_STATUS) {
8310c602
ME
832 dev_err(&adapter->pdev->dev,
833 "RX Dma failed to exit halt state. CSR 0x%08x\n",
834 csr);
835 }
836 }
837}
838
26ef1021 839/* et131x_rx_dma_disable - Stop of Rx_DMA on the ET1310
8310c602
ME
840 * @adapter: pointer to our adapter structure
841 */
eb7a6ca6 842static void et131x_rx_dma_disable(struct et131x_adapter *adapter)
8310c602
ME
843{
844 u32 csr;
845 /* Setup the receive dma configuration register */
3040d056
ME
846 writel(ET_RXDMA_CSR_HALT | ET_RXDMA_CSR_FBR1_ENABLE,
847 &adapter->regs->rxdma.csr);
8310c602 848 csr = readl(&adapter->regs->rxdma.csr);
3040d056 849 if (!(csr & ET_RXDMA_CSR_HALT_STATUS)) {
8310c602
ME
850 udelay(5);
851 csr = readl(&adapter->regs->rxdma.csr);
3040d056 852 if (!(csr & ET_RXDMA_CSR_HALT_STATUS))
8310c602 853 dev_err(&adapter->pdev->dev,
3040d056
ME
854 "RX Dma failed to enter halt state. CSR 0x%08x\n",
855 csr);
8310c602
ME
856 }
857}
858
26ef1021 859/* et131x_tx_dma_enable - re-start of Tx_DMA on the ET1310.
8310c602
ME
860 * @adapter: pointer to our adapter structure
861 *
862 * Mainly used after a return to the D0 (full-power) state from a lower state.
863 */
eb7a6ca6 864static void et131x_tx_dma_enable(struct et131x_adapter *adapter)
8310c602
ME
865{
866 /* Setup the transmit dma configuration register for normal
867 * operation
868 */
869 writel(ET_TXDMA_SNGL_EPKT|(PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
870 &adapter->regs->txdma.csr);
871}
872
873static inline void add_10bit(u32 *v, int n)
874{
875 *v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP);
876}
877
878static inline void add_12bit(u32 *v, int n)
879{
880 *v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP);
881}
882
26ef1021 883/* et1310_config_mac_regs1 - Initialize the first part of MAC regs
d2796743
ME
884 * @adapter: pointer to our adapter structure
885 */
eb7a6ca6 886static void et1310_config_mac_regs1(struct et131x_adapter *adapter)
d2796743
ME
887{
888 struct mac_regs __iomem *macregs = &adapter->regs->mac;
889 u32 station1;
890 u32 station2;
891 u32 ipg;
892
893 /* First we need to reset everything. Write to MAC configuration
894 * register 1 to perform reset.
895 */
a129be84
ME
896 writel(ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
897 ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
898 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC,
899 &macregs->cfg1);
d2796743
ME
900
901 /* Next lets configure the MAC Inter-packet gap register */
902 ipg = 0x38005860; /* IPG1 0x38 IPG2 0x58 B2B 0x60 */
903 ipg |= 0x50 << 8; /* ifg enforce 0x50 */
904 writel(ipg, &macregs->ipg);
905
906 /* Next lets configure the MAC Half Duplex register */
907 /* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
908 writel(0x00A1F037, &macregs->hfdp);
909
910 /* Next lets configure the MAC Interface Control register */
911 writel(0, &macregs->if_ctrl);
912
913 /* Let's move on to setting up the mii management configuration */
a129be84 914 writel(ET_MAC_MIIMGMT_CLK_RST, &macregs->mii_mgmt_cfg);
d2796743
ME
915
916 /* Next lets configure the MAC Station Address register. These
917 * values are read from the EEPROM during initialization and stored
918 * in the adapter structure. We write what is stored in the adapter
919 * structure to the MAC Station Address registers high and low. This
920 * station address is used for generating and checking pause control
921 * packets.
922 */
923 station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) |
924 (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT);
925 station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) |
926 (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) |
927 (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) |
928 adapter->addr[2];
929 writel(station1, &macregs->station_addr_1);
930 writel(station2, &macregs->station_addr_2);
931
ac399bc0 932 /* Max ethernet packet in bytes that will be passed by the mac without
d2796743
ME
933 * being truncated. Allow the MAC to pass 4 more than our max packet
934 * size. This is 4 for the Ethernet CRC.
935 *
936 * Packets larger than (registry_jumbo_packet) that do not contain a
937 * VLAN ID will be dropped by the Rx function.
938 */
939 writel(adapter->registry_jumbo_packet + 4, &macregs->max_fm_len);
940
941 /* clear out MAC config reset */
942 writel(0, &macregs->cfg1);
943}
944
26ef1021 945/* et1310_config_mac_regs2 - Initialize the second part of MAC regs
d2796743
ME
946 * @adapter: pointer to our adapter structure
947 */
eb7a6ca6 948static void et1310_config_mac_regs2(struct et131x_adapter *adapter)
d2796743
ME
949{
950 int32_t delay = 0;
951 struct mac_regs __iomem *mac = &adapter->regs->mac;
952 struct phy_device *phydev = adapter->phydev;
953 u32 cfg1;
954 u32 cfg2;
955 u32 ifctrl;
956 u32 ctl;
957
958 ctl = readl(&adapter->regs->txmac.ctl);
959 cfg1 = readl(&mac->cfg1);
960 cfg2 = readl(&mac->cfg2);
961 ifctrl = readl(&mac->if_ctrl);
962
963 /* Set up the if mode bits */
a129be84 964 cfg2 &= ~ET_MAC_CFG2_IFMODE_MASK;
76af0140 965 if (phydev->speed == SPEED_1000) {
a129be84 966 cfg2 |= ET_MAC_CFG2_IFMODE_1000;
d2796743 967 /* Phy mode bit */
a129be84 968 ifctrl &= ~ET_MAC_IFCTRL_PHYMODE;
d2796743 969 } else {
a129be84
ME
970 cfg2 |= ET_MAC_CFG2_IFMODE_100;
971 ifctrl |= ET_MAC_IFCTRL_PHYMODE;
d2796743
ME
972 }
973
974 /* We need to enable Rx/Tx */
a129be84
ME
975 cfg1 |= ET_MAC_CFG1_RX_ENABLE | ET_MAC_CFG1_TX_ENABLE |
976 ET_MAC_CFG1_TX_FLOW;
d2796743 977 /* Initialize loop back to off */
a129be84 978 cfg1 &= ~(ET_MAC_CFG1_LOOPBACK | ET_MAC_CFG1_RX_FLOW);
d2796743
ME
979 if (adapter->flowcontrol == FLOW_RXONLY ||
980 adapter->flowcontrol == FLOW_BOTH)
a129be84 981 cfg1 |= ET_MAC_CFG1_RX_FLOW;
d2796743
ME
982 writel(cfg1, &mac->cfg1);
983
984 /* Now we need to initialize the MAC Configuration 2 register */
985 /* preamble 7, check length, huge frame off, pad crc, crc enable
26ef1021
ME
986 * full duplex off
987 */
a129be84
ME
988 cfg2 |= 0x7 << ET_MAC_CFG2_PREAMBLE_SHIFT;
989 cfg2 |= ET_MAC_CFG2_IFMODE_LEN_CHECK;
990 cfg2 |= ET_MAC_CFG2_IFMODE_PAD_CRC;
991 cfg2 |= ET_MAC_CFG2_IFMODE_CRC_ENABLE;
992 cfg2 &= ~ET_MAC_CFG2_IFMODE_HUGE_FRAME;
993 cfg2 &= ~ET_MAC_CFG2_IFMODE_FULL_DPLX;
d2796743
ME
994
995 /* Turn on duplex if needed */
76af0140 996 if (phydev->duplex == DUPLEX_FULL)
a129be84 997 cfg2 |= ET_MAC_CFG2_IFMODE_FULL_DPLX;
d2796743 998
a129be84 999 ifctrl &= ~ET_MAC_IFCTRL_GHDMODE;
76af0140 1000 if (phydev->duplex == DUPLEX_HALF)
a129be84 1001 ifctrl |= ET_MAC_IFCTRL_GHDMODE;
d2796743
ME
1002
1003 writel(ifctrl, &mac->if_ctrl);
1004 writel(cfg2, &mac->cfg2);
1005
1006 do {
1007 udelay(10);
1008 delay++;
1009 cfg1 = readl(&mac->cfg1);
a129be84 1010 } while ((cfg1 & ET_MAC_CFG1_WAIT) != ET_MAC_CFG1_WAIT && delay < 100);
d2796743
ME
1011
1012 if (delay == 100) {
1013 dev_warn(&adapter->pdev->dev,
1014 "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
1015 cfg1);
1016 }
1017
1018 /* Enable txmac */
a129be84 1019 ctl |= ET_TX_CTRL_TXMAC_ENABLE | ET_TX_CTRL_FC_DISABLE;
d2796743
ME
1020 writel(ctl, &adapter->regs->txmac.ctl);
1021
1022 /* Ready to start the RXDMA/TXDMA engine */
c655dee9 1023 if (adapter->flags & FMP_ADAPTER_LOWER_POWER) {
d2796743
ME
1024 et131x_rx_dma_enable(adapter);
1025 et131x_tx_dma_enable(adapter);
1026 }
1027}
1028
26ef1021 1029/* et1310_in_phy_coma - check if the device is in phy coma
2288760e
ME
1030 * @adapter: pointer to our adapter structure
1031 *
1032 * Returns 0 if the device is not in phy coma, 1 if it is in phy coma
1033 */
eb7a6ca6 1034static int et1310_in_phy_coma(struct et131x_adapter *adapter)
2288760e 1035{
12a2f3f3 1036 u32 pmcsr = readl(&adapter->regs->global.pm_csr);
2288760e
ME
1037
1038 return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0;
1039}
1040
eb7a6ca6 1041static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter)
a4d444bd
ME
1042{
1043 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
834d0ee3
FR
1044 u32 hash1 = 0;
1045 u32 hash2 = 0;
1046 u32 hash3 = 0;
1047 u32 hash4 = 0;
a4d444bd
ME
1048 u32 pm_csr;
1049
1050 /* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
1051 * the multi-cast LIST. If it is NOT specified, (and "ALL" is not
1052 * specified) then we should pass NO multi-cast addresses to the
1053 * driver.
1054 */
1055 if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) {
834d0ee3
FR
1056 int i;
1057
a4d444bd 1058 /* Loop through our multicast array and set up the device */
834d0ee3
FR
1059 for (i = 0; i < adapter->multicast_addr_count; i++) {
1060 u32 result;
1061
1062 result = ether_crc(6, adapter->multicast_list[i]);
a4d444bd
ME
1063
1064 result = (result & 0x3F800000) >> 23;
1065
1066 if (result < 32) {
1067 hash1 |= (1 << result);
1068 } else if ((31 < result) && (result < 64)) {
1069 result -= 32;
1070 hash2 |= (1 << result);
1071 } else if ((63 < result) && (result < 96)) {
1072 result -= 64;
1073 hash3 |= (1 << result);
1074 } else {
1075 result -= 96;
1076 hash4 |= (1 << result);
1077 }
1078 }
1079 }
1080
1081 /* Write out the new hash to the device */
1082 pm_csr = readl(&adapter->regs->global.pm_csr);
1083 if (!et1310_in_phy_coma(adapter)) {
1084 writel(hash1, &rxmac->multi_hash1);
1085 writel(hash2, &rxmac->multi_hash2);
1086 writel(hash3, &rxmac->multi_hash3);
1087 writel(hash4, &rxmac->multi_hash4);
1088 }
1089}
1090
eb7a6ca6 1091static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter)
a4d444bd
ME
1092{
1093 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1094 u32 uni_pf1;
1095 u32 uni_pf2;
1096 u32 uni_pf3;
1097 u32 pm_csr;
1098
1099 /* Set up unicast packet filter reg 3 to be the first two octets of
1100 * the MAC address for both address
1101 *
1102 * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
1103 * MAC address for second address
1104 *
1105 * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
1106 * MAC address for first address
1107 */
a129be84
ME
1108 uni_pf3 = (adapter->addr[0] << ET_RX_UNI_PF_ADDR2_1_SHIFT) |
1109 (adapter->addr[1] << ET_RX_UNI_PF_ADDR2_2_SHIFT) |
1110 (adapter->addr[0] << ET_RX_UNI_PF_ADDR1_1_SHIFT) |
a4d444bd
ME
1111 adapter->addr[1];
1112
a129be84
ME
1113 uni_pf2 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR2_3_SHIFT) |
1114 (adapter->addr[3] << ET_RX_UNI_PF_ADDR2_4_SHIFT) |
1115 (adapter->addr[4] << ET_RX_UNI_PF_ADDR2_5_SHIFT) |
a4d444bd
ME
1116 adapter->addr[5];
1117
a129be84
ME
1118 uni_pf1 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR1_3_SHIFT) |
1119 (adapter->addr[3] << ET_RX_UNI_PF_ADDR1_4_SHIFT) |
1120 (adapter->addr[4] << ET_RX_UNI_PF_ADDR1_5_SHIFT) |
a4d444bd
ME
1121 adapter->addr[5];
1122
1123 pm_csr = readl(&adapter->regs->global.pm_csr);
1124 if (!et1310_in_phy_coma(adapter)) {
1125 writel(uni_pf1, &rxmac->uni_pf_addr1);
1126 writel(uni_pf2, &rxmac->uni_pf_addr2);
1127 writel(uni_pf3, &rxmac->uni_pf_addr3);
1128 }
1129}
1130
eb7a6ca6 1131static void et1310_config_rxmac_regs(struct et131x_adapter *adapter)
d2796743
ME
1132{
1133 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1134 struct phy_device *phydev = adapter->phydev;
1135 u32 sa_lo;
1136 u32 sa_hi = 0;
1137 u32 pf_ctrl = 0;
6697b870 1138 u32 *wolw;
d2796743
ME
1139
1140 /* Disable the MAC while it is being configured (also disable WOL) */
1141 writel(0x8, &rxmac->ctrl);
1142
1143 /* Initialize WOL to disabled. */
1144 writel(0, &rxmac->crc0);
1145 writel(0, &rxmac->crc12);
1146 writel(0, &rxmac->crc34);
1147
1148 /* We need to set the WOL mask0 - mask4 next. We initialize it to
1149 * its default Values of 0x00000000 because there are not WOL masks
1150 * as of this time.
1151 */
6697b870
ME
1152 for (wolw = &rxmac->mask0_word0; wolw <= &rxmac->mask4_word3; wolw++)
1153 writel(0, wolw);
d2796743
ME
1154
1155 /* Lets setup the WOL Source Address */
a129be84
ME
1156 sa_lo = (adapter->addr[2] << ET_RX_WOL_LO_SA3_SHIFT) |
1157 (adapter->addr[3] << ET_RX_WOL_LO_SA4_SHIFT) |
1158 (adapter->addr[4] << ET_RX_WOL_LO_SA5_SHIFT) |
d2796743
ME
1159 adapter->addr[5];
1160 writel(sa_lo, &rxmac->sa_lo);
1161
a129be84 1162 sa_hi = (u32) (adapter->addr[0] << ET_RX_WOL_HI_SA1_SHIFT) |
d2796743
ME
1163 adapter->addr[1];
1164 writel(sa_hi, &rxmac->sa_hi);
1165
1166 /* Disable all Packet Filtering */
1167 writel(0, &rxmac->pf_ctrl);
1168
1169 /* Let's initialize the Unicast Packet filtering address */
1170 if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) {
1171 et1310_setup_device_for_unicast(adapter);
a129be84 1172 pf_ctrl |= ET_RX_PFCTRL_UNICST_FILTER_ENABLE;
d2796743
ME
1173 } else {
1174 writel(0, &rxmac->uni_pf_addr1);
1175 writel(0, &rxmac->uni_pf_addr2);
1176 writel(0, &rxmac->uni_pf_addr3);
1177 }
1178
1179 /* Let's initialize the Multicast hash */
1180 if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
a129be84 1181 pf_ctrl |= ET_RX_PFCTRL_MLTCST_FILTER_ENABLE;
d2796743
ME
1182 et1310_setup_device_for_multicast(adapter);
1183 }
1184
1185 /* Runt packet filtering. Didn't work in version A silicon. */
a129be84
ME
1186 pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << ET_RX_PFCTRL_MIN_PKT_SZ_SHIFT;
1187 pf_ctrl |= ET_RX_PFCTRL_FRAG_FILTER_ENABLE;
d2796743
ME
1188
1189 if (adapter->registry_jumbo_packet > 8192)
1190 /* In order to transmit jumbo packets greater than 8k, the
1191 * FIFO between RxMAC and RxDMA needs to be reduced in size
1192 * to (16k - Jumbo packet size). In order to implement this,
1193 * we must use "cut through" mode in the RxMAC, which chops
1194 * packets down into segments which are (max_size * 16). In
1195 * this case we selected 256 bytes, since this is the size of
1196 * the PCI-Express TLP's that the 1310 uses.
1197 *
1198 * seg_en on, fc_en off, size 0x10
1199 */
1200 writel(0x41, &rxmac->mcif_ctrl_max_seg);
1201 else
1202 writel(0, &rxmac->mcif_ctrl_max_seg);
1203
1204 /* Initialize the MCIF water marks */
1205 writel(0, &rxmac->mcif_water_mark);
1206
1207 /* Initialize the MIF control */
1208 writel(0, &rxmac->mif_ctrl);
1209
1210 /* Initialize the Space Available Register */
1211 writel(0, &rxmac->space_avail);
1212
1213 /* Initialize the the mif_ctrl register
1214 * bit 3: Receive code error. One or more nibbles were signaled as
1215 * errors during the reception of the packet. Clear this
1216 * bit in Gigabit, set it in 100Mbit. This was derived
1217 * experimentally at UNH.
1218 * bit 4: Receive CRC error. The packet's CRC did not match the
1219 * internally generated CRC.
1220 * bit 5: Receive length check error. Indicates that frame length
1221 * field value in the packet does not match the actual data
1222 * byte length and is not a type field.
1223 * bit 16: Receive frame truncated.
1224 * bit 17: Drop packet enable
1225 */
1226 if (phydev && phydev->speed == SPEED_100)
1227 writel(0x30038, &rxmac->mif_ctrl);
1228 else
1229 writel(0x30030, &rxmac->mif_ctrl);
1230
1231 /* Finally we initialize RxMac to be enabled & WOL disabled. Packet
1232 * filter is always enabled since it is where the runt packets are
1233 * supposed to be dropped. For version A silicon, runt packet
1234 * dropping doesn't work, so it is disabled in the pf_ctrl register,
1235 * but we still leave the packet filter on.
1236 */
1237 writel(pf_ctrl, &rxmac->pf_ctrl);
a129be84 1238 writel(ET_RX_CTRL_RXMAC_ENABLE | ET_RX_CTRL_WOL_DISABLE, &rxmac->ctrl);
d2796743
ME
1239}
1240
eb7a6ca6 1241static void et1310_config_txmac_regs(struct et131x_adapter *adapter)
d2796743
ME
1242{
1243 struct txmac_regs __iomem *txmac = &adapter->regs->txmac;
1244
1245 /* We need to update the Control Frame Parameters
1246 * cfpt - control frame pause timer set to 64 (0x40)
1247 * cfep - control frame extended pause timer set to 0x0
1248 */
1249 if (adapter->flowcontrol == FLOW_NONE)
1250 writel(0, &txmac->cf_param);
1251 else
1252 writel(0x40, &txmac->cf_param);
1253}
1254
eb7a6ca6 1255static void et1310_config_macstat_regs(struct et131x_adapter *adapter)
d2796743 1256{
becce4a4
ME
1257 struct macstat_regs __iomem *macstat = &adapter->regs->macstat;
1258 u32 *reg;
d2796743 1259
becce4a4
ME
1260 /* initialize all the macstat registers to zero on the device */
1261 for (reg = &macstat->txrx_0_64_byte_frames;
1262 reg <= &macstat->carry_reg2; reg++)
1263 writel(0, reg);
d2796743
ME
1264
1265 /* Unmask any counters that we want to track the overflow of.
1266 * Initially this will be all counters. It may become clear later
1267 * that we do not need to track all counters.
1268 */
1269 writel(0xFFFFBE32, &macstat->carry_reg1_mask);
1270 writel(0xFFFE7E8B, &macstat->carry_reg2_mask);
1271}
1272
26ef1021 1273/* et131x_phy_mii_read - Read from the PHY through the MII Interface on the MAC
2288760e
ME
1274 * @adapter: pointer to our private adapter structure
1275 * @addr: the address of the transceiver
1276 * @reg: the register to read
1277 * @value: pointer to a 16-bit value in which the value will be stored
2288760e 1278 */
eb7a6ca6 1279static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr,
2288760e
ME
1280 u8 reg, u16 *value)
1281{
1282 struct mac_regs __iomem *mac = &adapter->regs->mac;
1283 int status = 0;
1284 u32 delay = 0;
1285 u32 mii_addr;
1286 u32 mii_cmd;
1287 u32 mii_indicator;
1288
1289 /* Save a local copy of the registers we are dealing with so we can
1290 * set them back
1291 */
1292 mii_addr = readl(&mac->mii_mgmt_addr);
1293 mii_cmd = readl(&mac->mii_mgmt_cmd);
1294
1295 /* Stop the current operation */
1296 writel(0, &mac->mii_mgmt_cmd);
1297
1298 /* Set up the register we need to read from on the correct PHY */
a129be84 1299 writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
2288760e
ME
1300
1301 writel(0x1, &mac->mii_mgmt_cmd);
1302
1303 do {
1304 udelay(50);
1305 delay++;
1306 mii_indicator = readl(&mac->mii_mgmt_indicator);
a129be84 1307 } while ((mii_indicator & ET_MAC_MGMT_WAIT) && delay < 50);
2288760e
ME
1308
1309 /* If we hit the max delay, we could not read the register */
1310 if (delay == 50) {
1311 dev_warn(&adapter->pdev->dev,
1312 "reg 0x%08x could not be read\n", reg);
1313 dev_warn(&adapter->pdev->dev, "status is 0x%08x\n",
1314 mii_indicator);
1315
1316 status = -EIO;
a863a15b 1317 goto out;
2288760e
ME
1318 }
1319
1320 /* If we hit here we were able to read the register and we need to
26ef1021
ME
1321 * return the value to the caller
1322 */
a129be84 1323 *value = readl(&mac->mii_mgmt_stat) & ET_MAC_MIIMGMT_STAT_PHYCRTL_MASK;
2288760e 1324
a863a15b 1325out:
2288760e
ME
1326 /* Stop the read operation */
1327 writel(0, &mac->mii_mgmt_cmd);
1328
1329 /* set the registers we touched back to the state at which we entered
1330 * this function
1331 */
1332 writel(mii_addr, &mac->mii_mgmt_addr);
1333 writel(mii_cmd, &mac->mii_mgmt_cmd);
1334
1335 return status;
1336}
1337
eb7a6ca6 1338static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value)
2288760e
ME
1339{
1340 struct phy_device *phydev = adapter->phydev;
1341
1342 if (!phydev)
1343 return -EIO;
1344
1345 return et131x_phy_mii_read(adapter, phydev->addr, reg, value);
1346}
1347
26ef1021 1348/* et131x_mii_write - Write to a PHY reg through the MII interface of the MAC
2288760e
ME
1349 * @adapter: pointer to our private adapter structure
1350 * @reg: the register to read
1351 * @value: 16-bit value to write
2288760e 1352 */
eb7a6ca6 1353static int et131x_mii_write(struct et131x_adapter *adapter, u8 reg, u16 value)
2288760e
ME
1354{
1355 struct mac_regs __iomem *mac = &adapter->regs->mac;
1356 struct phy_device *phydev = adapter->phydev;
1357 int status = 0;
1358 u8 addr;
1359 u32 delay = 0;
1360 u32 mii_addr;
1361 u32 mii_cmd;
1362 u32 mii_indicator;
1363
1364 if (!phydev)
1365 return -EIO;
1366
1367 addr = phydev->addr;
1368
1369 /* Save a local copy of the registers we are dealing with so we can
1370 * set them back
1371 */
1372 mii_addr = readl(&mac->mii_mgmt_addr);
1373 mii_cmd = readl(&mac->mii_mgmt_cmd);
1374
1375 /* Stop the current operation */
1376 writel(0, &mac->mii_mgmt_cmd);
1377
1378 /* Set up the register we need to write to on the correct PHY */
a129be84 1379 writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
2288760e
ME
1380
1381 /* Add the value to write to the registers to the mac */
1382 writel(value, &mac->mii_mgmt_ctrl);
1383
1384 do {
1385 udelay(50);
1386 delay++;
1387 mii_indicator = readl(&mac->mii_mgmt_indicator);
a129be84 1388 } while ((mii_indicator & ET_MAC_MGMT_BUSY) && delay < 100);
2288760e
ME
1389
1390 /* If we hit the max delay, we could not write the register */
1391 if (delay == 100) {
1392 u16 tmp;
1393
1394 dev_warn(&adapter->pdev->dev,
1395 "reg 0x%08x could not be written", reg);
1396 dev_warn(&adapter->pdev->dev, "status is 0x%08x\n",
1397 mii_indicator);
1398 dev_warn(&adapter->pdev->dev, "command is 0x%08x\n",
1399 readl(&mac->mii_mgmt_cmd));
1400
1401 et131x_mii_read(adapter, reg, &tmp);
1402
1403 status = -EIO;
1404 }
1405 /* Stop the write operation */
1406 writel(0, &mac->mii_mgmt_cmd);
1407
26ef1021 1408 /* set the registers we touched back to the state at which we entered
2288760e
ME
1409 * this function
1410 */
1411 writel(mii_addr, &mac->mii_mgmt_addr);
1412 writel(mii_cmd, &mac->mii_mgmt_cmd);
1413
1414 return status;
1415}
1416
19d857de
ME
1417static void et1310_phy_read_mii_bit(struct et131x_adapter *adapter,
1418 u16 regnum,
1419 u16 bitnum,
1420 u8 *value)
2288760e
ME
1421{
1422 u16 reg;
a129be84 1423 u16 mask = 1 << bitnum;
2288760e
ME
1424
1425 /* Read the requested register */
1426 et131x_mii_read(adapter, regnum, &reg);
1427
19d857de 1428 *value = (reg & mask) >> bitnum;
2288760e
ME
1429}
1430
eb7a6ca6 1431static void et1310_config_flow_control(struct et131x_adapter *adapter)
d2796743
ME
1432{
1433 struct phy_device *phydev = adapter->phydev;
1434
1435 if (phydev->duplex == DUPLEX_HALF) {
1436 adapter->flowcontrol = FLOW_NONE;
1437 } else {
1438 char remote_pause, remote_async_pause;
1439
19d857de
ME
1440 et1310_phy_read_mii_bit(adapter, 5, 10, &remote_pause);
1441 et1310_phy_read_mii_bit(adapter, 5, 11, &remote_async_pause);
d2796743 1442
19d857de 1443 if (remote_pause && remote_async_pause) {
d2796743 1444 adapter->flowcontrol = adapter->wanted_flow;
19d857de 1445 } else if (remote_pause && !remote_async_pause) {
d2796743
ME
1446 if (adapter->wanted_flow == FLOW_BOTH)
1447 adapter->flowcontrol = FLOW_BOTH;
1448 else
1449 adapter->flowcontrol = FLOW_NONE;
19d857de 1450 } else if (!remote_pause && !remote_async_pause) {
d2796743 1451 adapter->flowcontrol = FLOW_NONE;
19d857de 1452 } else {
d2796743
ME
1453 if (adapter->wanted_flow == FLOW_BOTH)
1454 adapter->flowcontrol = FLOW_RXONLY;
1455 else
1456 adapter->flowcontrol = FLOW_NONE;
1457 }
1458 }
1459}
1460
15ae239d 1461/* et1310_update_macstat_host_counters - Update local copy of the statistics */
eb7a6ca6 1462static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter)
d2796743
ME
1463{
1464 struct ce_stats *stats = &adapter->stats;
1465 struct macstat_regs __iomem *macstat =
1466 &adapter->regs->macstat;
1467
1468 stats->tx_collisions += readl(&macstat->tx_total_collisions);
1469 stats->tx_first_collisions += readl(&macstat->tx_single_collisions);
1470 stats->tx_deferred += readl(&macstat->tx_deferred);
1471 stats->tx_excessive_collisions +=
1472 readl(&macstat->tx_multiple_collisions);
1473 stats->tx_late_collisions += readl(&macstat->tx_late_collisions);
1474 stats->tx_underflows += readl(&macstat->tx_undersize_frames);
1475 stats->tx_max_pkt_errs += readl(&macstat->tx_oversize_frames);
1476
1477 stats->rx_align_errs += readl(&macstat->rx_align_errs);
1478 stats->rx_crc_errs += readl(&macstat->rx_code_errs);
1479 stats->rcvd_pkts_dropped += readl(&macstat->rx_drops);
1480 stats->rx_overflows += readl(&macstat->rx_oversize_packets);
1481 stats->rx_code_violations += readl(&macstat->rx_fcs_errs);
1482 stats->rx_length_errs += readl(&macstat->rx_frame_len_errs);
1483 stats->rx_other_errs += readl(&macstat->rx_fragment_packets);
1484}
1485
26ef1021 1486/* et1310_handle_macstat_interrupt
d2796743
ME
1487 *
1488 * One of the MACSTAT counters has wrapped. Update the local copy of
1489 * the statistics held in the adapter structure, checking the "wrap"
1490 * bit for each counter.
1491 */
eb7a6ca6 1492static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter)
d2796743
ME
1493{
1494 u32 carry_reg1;
1495 u32 carry_reg2;
1496
1497 /* Read the interrupt bits from the register(s). These are Clear On
1498 * Write.
1499 */
1500 carry_reg1 = readl(&adapter->regs->macstat.carry_reg1);
1501 carry_reg2 = readl(&adapter->regs->macstat.carry_reg2);
1502
1503 writel(carry_reg1, &adapter->regs->macstat.carry_reg1);
1504 writel(carry_reg2, &adapter->regs->macstat.carry_reg2);
1505
1506 /* We need to do update the host copy of all the MAC_STAT counters.
1507 * For each counter, check it's overflow bit. If the overflow bit is
1508 * set, then increment the host version of the count by one complete
1509 * revolution of the counter. This routine is called when the counter
1510 * block indicates that one of the counters has wrapped.
1511 */
1512 if (carry_reg1 & (1 << 14))
1513 adapter->stats.rx_code_violations += COUNTER_WRAP_16_BIT;
1514 if (carry_reg1 & (1 << 8))
1515 adapter->stats.rx_align_errs += COUNTER_WRAP_12_BIT;
1516 if (carry_reg1 & (1 << 7))
1517 adapter->stats.rx_length_errs += COUNTER_WRAP_16_BIT;
1518 if (carry_reg1 & (1 << 2))
1519 adapter->stats.rx_other_errs += COUNTER_WRAP_16_BIT;
1520 if (carry_reg1 & (1 << 6))
1521 adapter->stats.rx_crc_errs += COUNTER_WRAP_16_BIT;
1522 if (carry_reg1 & (1 << 3))
1523 adapter->stats.rx_overflows += COUNTER_WRAP_16_BIT;
1524 if (carry_reg1 & (1 << 0))
1525 adapter->stats.rcvd_pkts_dropped += COUNTER_WRAP_16_BIT;
1526 if (carry_reg2 & (1 << 16))
1527 adapter->stats.tx_max_pkt_errs += COUNTER_WRAP_12_BIT;
1528 if (carry_reg2 & (1 << 15))
1529 adapter->stats.tx_underflows += COUNTER_WRAP_12_BIT;
1530 if (carry_reg2 & (1 << 6))
1531 adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT;
1532 if (carry_reg2 & (1 << 8))
1533 adapter->stats.tx_deferred += COUNTER_WRAP_12_BIT;
1534 if (carry_reg2 & (1 << 5))
1535 adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT;
1536 if (carry_reg2 & (1 << 4))
1537 adapter->stats.tx_late_collisions += COUNTER_WRAP_12_BIT;
1538 if (carry_reg2 & (1 << 2))
1539 adapter->stats.tx_collisions += COUNTER_WRAP_12_BIT;
1540}
1541
eb7a6ca6 1542static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg)
d2796743
ME
1543{
1544 struct net_device *netdev = bus->priv;
1545 struct et131x_adapter *adapter = netdev_priv(netdev);
1546 u16 value;
1547 int ret;
1548
1549 ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value);
1550
1551 if (ret < 0)
1552 return ret;
1553 else
1554 return value;
1555}
1556
bf3313a1 1557static int et131x_mdio_write(struct mii_bus *bus, int phy_addr,
1558 int reg, u16 value)
d2796743
ME
1559{
1560 struct net_device *netdev = bus->priv;
1561 struct et131x_adapter *adapter = netdev_priv(netdev);
1562
1563 return et131x_mii_write(adapter, reg, value);
1564}
1565
eb7a6ca6 1566static int et131x_mdio_reset(struct mii_bus *bus)
d2796743
ME
1567{
1568 struct net_device *netdev = bus->priv;
1569 struct et131x_adapter *adapter = netdev_priv(netdev);
1570
1571 et131x_mii_write(adapter, MII_BMCR, BMCR_RESET);
1572
1573 return 0;
1574}
1575
1ff70a7c 1576/* et1310_phy_power_switch - PHY power control
d2796743
ME
1577 * @adapter: device to control
1578 * @down: true for off/false for back on
1579 *
1580 * one hundred, ten, one thousand megs
1581 * How would you like to have your LAN accessed
1582 * Can't you see that this code processed
1583 * Phy power, phy power..
1584 */
1ff70a7c 1585static void et1310_phy_power_switch(struct et131x_adapter *adapter, bool down)
d2796743
ME
1586{
1587 u16 data;
1588
1589 et131x_mii_read(adapter, MII_BMCR, &data);
1590 data &= ~BMCR_PDOWN;
1591 if (down)
1592 data |= BMCR_PDOWN;
1593 et131x_mii_write(adapter, MII_BMCR, data);
1594}
1595
15ae239d 1596/* et131x_xcvr_init - Init the phy if we are setting it into force mode */
eb7a6ca6 1597static void et131x_xcvr_init(struct et131x_adapter *adapter)
d2796743 1598{
d2796743
ME
1599 u16 lcr2;
1600
d2796743
ME
1601 /* Set the LED behavior such that LED 1 indicates speed (off =
1602 * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
1603 * link and activity (on for link, blink off for activity).
1604 *
1605 * NOTE: Some customizations have been added here for specific
1606 * vendors; The LED behavior is now determined by vendor data in the
1607 * EEPROM. However, the above description is the default.
1608 */
1609 if ((adapter->eeprom_data[1] & 0x4) == 0) {
1610 et131x_mii_read(adapter, PHY_LED_2, &lcr2);
1611
b5b86a4d 1612 lcr2 &= (ET_LED2_LED_100TX | ET_LED2_LED_1000T);
d2796743
ME
1613 lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT);
1614
1615 if ((adapter->eeprom_data[1] & 0x8) == 0)
1616 lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT);
1617 else
1618 lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT);
1619
1620 et131x_mii_write(adapter, PHY_LED_2, lcr2);
1621 }
1622}
1623
26ef1021 1624/* et131x_configure_global_regs - configure JAGCore global regs
36f2771a
ME
1625 *
1626 * Used to configure the global registers on the JAGCore
1627 */
eb7a6ca6 1628static void et131x_configure_global_regs(struct et131x_adapter *adapter)
36f2771a
ME
1629{
1630 struct global_regs __iomem *regs = &adapter->regs->global;
1631
1632 writel(0, &regs->rxq_start_addr);
1633 writel(INTERNAL_MEM_SIZE - 1, &regs->txq_end_addr);
1634
1635 if (adapter->registry_jumbo_packet < 2048) {
1636 /* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
1637 * block of RAM that the driver can split between Tx
1638 * and Rx as it desires. Our default is to split it
1639 * 50/50:
1640 */
1641 writel(PARM_RX_MEM_END_DEF, &regs->rxq_end_addr);
1642 writel(PARM_RX_MEM_END_DEF + 1, &regs->txq_start_addr);
1643 } else if (adapter->registry_jumbo_packet < 8192) {
1644 /* For jumbo packets > 2k but < 8k, split 50-50. */
1645 writel(INTERNAL_MEM_RX_OFFSET, &regs->rxq_end_addr);
1646 writel(INTERNAL_MEM_RX_OFFSET + 1, &regs->txq_start_addr);
1647 } else {
1648 /* 9216 is the only packet size greater than 8k that
1649 * is available. The Tx buffer has to be big enough
1650 * for one whole packet on the Tx side. We'll make
1651 * the Tx 9408, and give the rest to Rx
1652 */
1653 writel(0x01b3, &regs->rxq_end_addr);
1654 writel(0x01b4, &regs->txq_start_addr);
1655 }
1656
1657 /* Initialize the loopback register. Disable all loopbacks. */
1658 writel(0, &regs->loopback);
1659
1660 /* MSI Register */
1661 writel(0, &regs->msi_config);
1662
1663 /* By default, disable the watchdog timer. It will be enabled when
1664 * a packet is queued.
1665 */
1666 writel(0, &regs->watchdog_timer);
1667}
1668
15ae239d 1669/* et131x_config_rx_dma_regs - Start of Rx_DMA init sequence */
eb7a6ca6 1670static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
36f2771a
ME
1671{
1672 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
1673 struct rx_ring *rx_local = &adapter->rx_ring;
1674 struct fbr_desc *fbr_entry;
1675 u32 entry;
1676 u32 psr_num_des;
1677 unsigned long flags;
788ca84a 1678 u8 id;
36f2771a
ME
1679
1680 /* Halt RXDMA to perform the reconfigure. */
1681 et131x_rx_dma_disable(adapter);
1682
25e8e8ab
ME
1683 /* Load the completion writeback physical address */
1684 writel(upper_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_hi);
1685 writel(lower_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_lo);
36f2771a
ME
1686
1687 memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
1688
1689 /* Set the address and parameters of the packet status ring into the
1690 * 1310's registers
1691 */
25e8e8ab
ME
1692 writel(upper_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_hi);
1693 writel(lower_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_lo);
36f2771a
ME
1694 writel(rx_local->psr_num_entries - 1, &rx_dma->psr_num_des);
1695 writel(0, &rx_dma->psr_full_offset);
1696
a129be84 1697 psr_num_des = readl(&rx_dma->psr_num_des) & ET_RXDMA_PSR_NUM_DES_MASK;
36f2771a
ME
1698 writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
1699 &rx_dma->psr_min_des);
1700
1701 spin_lock_irqsave(&adapter->rcv_lock, flags);
1702
1703 /* These local variables track the PSR in the adapter structure */
1704 rx_local->local_psr_full = 0;
1705
788ca84a 1706 for (id = 0; id < NUM_FBRS; id++) {
c0594ee9
ME
1707 u32 __iomem *num_des;
1708 u32 __iomem *full_offset;
1709 u32 __iomem *min_des;
1710 u32 __iomem *base_hi;
1711 u32 __iomem *base_lo;
efc56817 1712 struct fbr_lookup *fbr = rx_local->fbr[id];
788ca84a
ME
1713
1714 if (id == 0) {
788ca84a
ME
1715 num_des = &rx_dma->fbr0_num_des;
1716 full_offset = &rx_dma->fbr0_full_offset;
1717 min_des = &rx_dma->fbr0_min_des;
1718 base_hi = &rx_dma->fbr0_base_hi;
1719 base_lo = &rx_dma->fbr0_base_lo;
f0ada678
ME
1720 } else {
1721 num_des = &rx_dma->fbr1_num_des;
1722 full_offset = &rx_dma->fbr1_full_offset;
1723 min_des = &rx_dma->fbr1_min_des;
1724 base_hi = &rx_dma->fbr1_base_hi;
1725 base_lo = &rx_dma->fbr1_base_lo;
788ca84a 1726 }
36f2771a 1727
788ca84a 1728 /* Now's the best time to initialize FBR contents */
57cc0279 1729 fbr_entry = fbr->ring_virtaddr;
efc56817
ZG
1730 for (entry = 0; entry < fbr->num_entries; entry++) {
1731 fbr_entry->addr_hi = fbr->bus_high[entry];
1732 fbr_entry->addr_lo = fbr->bus_low[entry];
788ca84a
ME
1733 fbr_entry->word2 = entry;
1734 fbr_entry++;
1735 }
36f2771a 1736
788ca84a
ME
1737 /* Set the address and parameters of Free buffer ring 1 and 0
1738 * into the 1310's registers
1739 */
efc56817
ZG
1740 writel(upper_32_bits(fbr->ring_physaddr), base_hi);
1741 writel(lower_32_bits(fbr->ring_physaddr), base_lo);
1742 writel(fbr->num_entries - 1, num_des);
788ca84a 1743 writel(ET_DMA10_WRAP, full_offset);
36f2771a 1744
788ca84a
ME
1745 /* This variable tracks the free buffer ring 1 full position,
1746 * so it has to match the above.
1747 */
efc56817
ZG
1748 fbr->local_full = ET_DMA10_WRAP;
1749 writel(((fbr->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
788ca84a
ME
1750 min_des);
1751 }
36f2771a
ME
1752
1753 /* Program the number of packets we will receive before generating an
1754 * interrupt.
1755 * For version B silicon, this value gets updated once autoneg is
1756 *complete.
1757 */
1758 writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
1759
1760 /* The "time_done" is not working correctly to coalesce interrupts
1761 * after a given time period, but rather is giving us an interrupt
1762 * regardless of whether we have received packets.
1763 * This value gets updated once autoneg is complete.
1764 */
1765 writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
1766
1767 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
1768}
1769
26ef1021 1770/* et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
36f2771a
ME
1771 *
1772 * Configure the transmit engine with the ring buffers we have created
1773 * and prepare it for use.
1774 */
eb7a6ca6 1775static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter)
36f2771a
ME
1776{
1777 struct txdma_regs __iomem *txdma = &adapter->regs->txdma;
76981cf1 1778 struct tx_ring *tx_ring = &adapter->tx_ring;
36f2771a
ME
1779
1780 /* Load the hardware with the start of the transmit descriptor ring. */
76981cf1
ZG
1781 writel(upper_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_hi);
1782 writel(lower_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_lo);
36f2771a
ME
1783
1784 /* Initialise the transmit DMA engine */
1785 writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des);
1786
1787 /* Load the completion writeback physical address */
76981cf1
ZG
1788 writel(upper_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_hi);
1789 writel(lower_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_lo);
36f2771a 1790
76981cf1 1791 *tx_ring->tx_status = 0;
36f2771a
ME
1792
1793 writel(0, &txdma->service_request);
76981cf1 1794 tx_ring->send_idx = 0;
36f2771a
ME
1795}
1796
15ae239d 1797/* et131x_adapter_setup - Set the adapter up as per cassini+ documentation */
eb7a6ca6 1798static void et131x_adapter_setup(struct et131x_adapter *adapter)
36f2771a
ME
1799{
1800 /* Configure the JAGCore */
1801 et131x_configure_global_regs(adapter);
1802
1803 et1310_config_mac_regs1(adapter);
1804
1805 /* Configure the MMC registers */
1806 /* All we need to do is initialize the Memory Control Register */
1807 writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl);
1808
1809 et1310_config_rxmac_regs(adapter);
1810 et1310_config_txmac_regs(adapter);
1811
1812 et131x_config_rx_dma_regs(adapter);
1813 et131x_config_tx_dma_regs(adapter);
1814
1815 et1310_config_macstat_regs(adapter);
1816
1ff70a7c 1817 et1310_phy_power_switch(adapter, 0);
36f2771a
ME
1818 et131x_xcvr_init(adapter);
1819}
1820
15ae239d 1821/* et131x_soft_reset - Issue soft reset to the hardware, complete for ET1310 */
eb7a6ca6 1822static void et131x_soft_reset(struct et131x_adapter *adapter)
5da2b158 1823{
a129be84 1824 u32 reg;
5da2b158 1825
a129be84
ME
1826 /* Disable MAC Core */
1827 reg = ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
1828 ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1829 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1830 writel(reg, &adapter->regs->mac.cfg1);
1831
1832 reg = ET_RESET_ALL;
1833 writel(reg, &adapter->regs->global.sw_reset);
1834
1835 reg = ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1836 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1837 writel(reg, &adapter->regs->mac.cfg1);
1838 writel(0, &adapter->regs->mac.cfg1);
5da2b158
ME
1839}
1840
26ef1021 1841/* et131x_enable_interrupts - enable interrupt
a4d444bd
ME
1842 *
1843 * Enable the appropriate interrupts on the ET131x according to our
1844 * configuration
1845 */
eb7a6ca6 1846static void et131x_enable_interrupts(struct et131x_adapter *adapter)
a4d444bd
ME
1847{
1848 u32 mask;
1849
1850 /* Enable all global interrupts */
1851 if (adapter->flowcontrol == FLOW_TXONLY ||
12a2f3f3 1852 adapter->flowcontrol == FLOW_BOTH)
a4d444bd
ME
1853 mask = INT_MASK_ENABLE;
1854 else
1855 mask = INT_MASK_ENABLE_NO_FLOW;
1856
1857 writel(mask, &adapter->regs->global.int_mask);
1858}
1859
26ef1021 1860/* et131x_disable_interrupts - interrupt disable
a4d444bd
ME
1861 *
1862 * Block all interrupts from the et131x device at the device itself
1863 */
eb7a6ca6 1864static void et131x_disable_interrupts(struct et131x_adapter *adapter)
a4d444bd
ME
1865{
1866 /* Disable all global interrupts */
1867 writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask);
1868}
1869
15ae239d 1870/* et131x_tx_dma_disable - Stop of Tx_DMA on the ET1310 */
eb7a6ca6 1871static void et131x_tx_dma_disable(struct et131x_adapter *adapter)
a4d444bd 1872{
868bf442 1873 /* Setup the transmit dma configuration register */
3040d056 1874 writel(ET_TXDMA_CSR_HALT | ET_TXDMA_SNGL_EPKT,
a4d444bd
ME
1875 &adapter->regs->txdma.csr);
1876}
1877
15ae239d 1878/* et131x_enable_txrx - Enable tx/rx queues */
eb7a6ca6 1879static void et131x_enable_txrx(struct net_device *netdev)
a4d444bd
ME
1880{
1881 struct et131x_adapter *adapter = netdev_priv(netdev);
1882
1883 /* Enable the Tx and Rx DMA engines (if not already enabled) */
1884 et131x_rx_dma_enable(adapter);
1885 et131x_tx_dma_enable(adapter);
1886
1887 /* Enable device interrupts */
c655dee9 1888 if (adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE)
a4d444bd
ME
1889 et131x_enable_interrupts(adapter);
1890
1891 /* We're ready to move some data, so start the queue */
1892 netif_start_queue(netdev);
1893}
1894
15ae239d 1895/* et131x_disable_txrx - Disable tx/rx queues */
eb7a6ca6 1896static void et131x_disable_txrx(struct net_device *netdev)
a4d444bd
ME
1897{
1898 struct et131x_adapter *adapter = netdev_priv(netdev);
1899
1900 /* First thing is to stop the queue */
1901 netif_stop_queue(netdev);
1902
1903 /* Stop the Tx and Rx DMA engines */
1904 et131x_rx_dma_disable(adapter);
1905 et131x_tx_dma_disable(adapter);
1906
1907 /* Disable device interrupts */
1908 et131x_disable_interrupts(adapter);
1909}
1910
15ae239d 1911/* et131x_init_send - Initialize send data structures */
eb7a6ca6 1912static void et131x_init_send(struct et131x_adapter *adapter)
8310c602 1913{
8310c602 1914 u32 ct;
76981cf1
ZG
1915 struct tx_ring *tx_ring = &adapter->tx_ring;
1916 struct tcb *tcb = tx_ring->tcb_ring;
8310c602
ME
1917
1918 tx_ring->tcb_qhead = tcb;
1919
1920 memset(tcb, 0, sizeof(struct tcb) * NUM_TCB);
1921
1922 /* Go through and set up each TCB */
1923 for (ct = 0; ct++ < NUM_TCB; tcb++)
1924 /* Set the link pointer in HW TCB to the next TCB in the
1925 * chain
1926 */
1927 tcb->next = tcb + 1;
1928
1929 /* Set the tail pointer */
1930 tcb--;
1931 tx_ring->tcb_qtail = tcb;
1932 tcb->next = NULL;
1933 /* Curr send queue should now be empty */
1934 tx_ring->send_head = NULL;
1935 tx_ring->send_tail = NULL;
1936}
1937
26ef1021 1938/* et1310_enable_phy_coma - called when network cable is unplugged
d2796743
ME
1939 *
1940 * driver receive an phy status change interrupt while in D0 and check that
1941 * phy_status is down.
1942 *
1943 * -- gate off JAGCore;
1944 * -- set gigE PHY in Coma mode
1945 * -- wake on phy_interrupt; Perform software reset JAGCore,
1946 * re-initialize jagcore and gigE PHY
1947 *
1948 * Add D0-ASPM-PhyLinkDown Support:
1949 * -- while in D0, when there is a phy_interrupt indicating phy link
1950 * down status, call the MPSetPhyComa routine to enter this active
1951 * state power saving mode
1952 * -- while in D0-ASPM-PhyLinkDown mode, when there is a phy_interrupt
1953 * indicating linkup status, call the MPDisablePhyComa routine to
1954 * restore JAGCore and gigE PHY
1955 */
eb7a6ca6 1956static void et1310_enable_phy_coma(struct et131x_adapter *adapter)
d2796743
ME
1957{
1958 unsigned long flags;
1959 u32 pmcsr;
1960
1961 pmcsr = readl(&adapter->regs->global.pm_csr);
1962
1963 /* Save the GbE PHY speed and duplex modes. Need to restore this
1964 * when cable is plugged back in
1965 */
d2796743
ME
1966
1967 /* Stop sending packets. */
1968 spin_lock_irqsave(&adapter->send_hw_lock, flags);
c655dee9 1969 adapter->flags |= FMP_ADAPTER_LOWER_POWER;
d2796743
ME
1970 spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
1971
1972 /* Wait for outstanding Receive packets */
1973
1974 et131x_disable_txrx(adapter->netdev);
1975
1976 /* Gate off JAGCore 3 clock domains */
1977 pmcsr &= ~ET_PMCSR_INIT;
1978 writel(pmcsr, &adapter->regs->global.pm_csr);
1979
1980 /* Program gigE PHY in to Coma mode */
1981 pmcsr |= ET_PM_PHY_SW_COMA;
1982 writel(pmcsr, &adapter->regs->global.pm_csr);
1983}
1984
15ae239d 1985/* et1310_disable_phy_coma - Disable the Phy Coma Mode */
eb7a6ca6 1986static void et1310_disable_phy_coma(struct et131x_adapter *adapter)
d2796743
ME
1987{
1988 u32 pmcsr;
1989
1990 pmcsr = readl(&adapter->regs->global.pm_csr);
1991
1992 /* Disable phy_sw_coma register and re-enable JAGCore clocks */
1993 pmcsr |= ET_PMCSR_INIT;
1994 pmcsr &= ~ET_PM_PHY_SW_COMA;
1995 writel(pmcsr, &adapter->regs->global.pm_csr);
1996
1997 /* Restore the GbE PHY speed and duplex modes;
1998 * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
1999 */
d2796743
ME
2000
2001 /* Re-initialize the send structures */
2002 et131x_init_send(adapter);
2003
d2796743
ME
2004 /* Bring the device back to the state it was during init prior to
2005 * autonegotiation being complete. This way, when we get the auto-neg
2006 * complete interrupt, we can complete init by calling ConfigMacREGS2.
2007 */
2008 et131x_soft_reset(adapter);
2009
2010 /* setup et1310 as per the documentation ?? */
2011 et131x_adapter_setup(adapter);
2012
2013 /* Allow Tx to restart */
c655dee9 2014 adapter->flags &= ~FMP_ADAPTER_LOWER_POWER;
d2796743
ME
2015
2016 et131x_enable_txrx(adapter->netdev);
2017}
2018
d2796743
ME
2019static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
2020{
2021 u32 tmp_free_buff_ring = *free_buff_ring;
f03fcca0 2022
d2796743
ME
2023 tmp_free_buff_ring++;
2024 /* This works for all cases where limit < 1024. The 1023 case
26ef1021
ME
2025 * works because 1023++ is 1024 which means the if condition is not
2026 * taken but the carry of the bit into the wrap bit toggles the wrap
2027 * value correctly
2028 */
d2796743
ME
2029 if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
2030 tmp_free_buff_ring &= ~ET_DMA10_MASK;
2031 tmp_free_buff_ring ^= ET_DMA10_WRAP;
2032 }
2033 /* For the 1023 case */
12a2f3f3 2034 tmp_free_buff_ring &= (ET_DMA10_MASK | ET_DMA10_WRAP);
d2796743
ME
2035 *free_buff_ring = tmp_free_buff_ring;
2036 return tmp_free_buff_ring;
2037}
2038
26ef1021 2039/* et131x_rx_dma_memory_alloc
d2796743
ME
2040 *
2041 * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
2042 * and the Packet Status Ring.
2043 */
eb7a6ca6 2044static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
d2796743 2045{
788ca84a 2046 u8 id;
d2796743
ME
2047 u32 i, j;
2048 u32 bufsize;
87648933
ME
2049 u32 pktstat_ringsize;
2050 u32 fbr_chunksize;
8f7fa96a 2051 struct rx_ring *rx_ring = &adapter->rx_ring;
bad5d26f 2052 struct fbr_lookup *fbr;
d2796743 2053
d2796743 2054 /* Alloc memory for the lookup table */
e592a9b0 2055 rx_ring->fbr[0] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
a9f48883
A
2056 if (rx_ring->fbr[0] == NULL)
2057 return -ENOMEM;
f0ada678 2058 rx_ring->fbr[1] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
a9f48883
A
2059 if (rx_ring->fbr[1] == NULL)
2060 return -ENOMEM;
d2796743
ME
2061
2062 /* The first thing we will do is configure the sizes of the buffer
2063 * rings. These will change based on jumbo packet support. Larger
2064 * jumbo packets increases the size of each entry in FBR0, and the
2065 * number of entries in FBR0, while at the same time decreasing the
2066 * number of entries in FBR1.
2067 *
2068 * FBR1 holds "large" frames, FBR0 holds "small" frames. If FBR1
2069 * entries are huge in order to accommodate a "jumbo" frame, then it
2070 * will have less entries. Conversely, FBR1 will now be relied upon
2071 * to carry more "normal" frames, thus it's entry size also increases
2072 * and the number of entries goes up too (since it now carries
2073 * "small" + "regular" packets.
2074 *
2075 * In this scheme, we try to maintain 512 entries between the two
2076 * rings. Also, FBR1 remains a constant size - when it's size doubles
2077 * the number of entries halves. FBR0 increases in size, however.
2078 */
2079
2080 if (adapter->registry_jumbo_packet < 2048) {
f0ada678 2081 rx_ring->fbr[0]->buffsize = 256;
e592a9b0 2082 rx_ring->fbr[0]->num_entries = 512;
f0ada678
ME
2083 rx_ring->fbr[1]->buffsize = 2048;
2084 rx_ring->fbr[1]->num_entries = 512;
d2796743 2085 } else if (adapter->registry_jumbo_packet < 4096) {
f0ada678
ME
2086 rx_ring->fbr[0]->buffsize = 512;
2087 rx_ring->fbr[0]->num_entries = 1024;
2088 rx_ring->fbr[1]->buffsize = 4096;
2089 rx_ring->fbr[1]->num_entries = 512;
d2796743 2090 } else {
f0ada678
ME
2091 rx_ring->fbr[0]->buffsize = 1024;
2092 rx_ring->fbr[0]->num_entries = 768;
2093 rx_ring->fbr[1]->buffsize = 16384;
2094 rx_ring->fbr[1]->num_entries = 128;
d2796743
ME
2095 }
2096
bad5d26f
ZG
2097 rx_ring->psr_num_entries = rx_ring->fbr[0]->num_entries +
2098 rx_ring->fbr[1]->num_entries;
d2796743 2099
788ca84a 2100 for (id = 0; id < NUM_FBRS; id++) {
bad5d26f 2101 fbr = rx_ring->fbr[id];
788ca84a 2102 /* Allocate an area of memory for Free Buffer Ring */
bad5d26f
ZG
2103 bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
2104 fbr->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2105 bufsize,
2106 &fbr->ring_physaddr,
2107 GFP_KERNEL);
2108 if (!fbr->ring_virtaddr) {
d2796743 2109 dev_err(&adapter->pdev->dev,
788ca84a 2110 "Cannot alloc memory for Free Buffer Ring %d\n", id);
d2796743
ME
2111 return -ENOMEM;
2112 }
d2796743
ME
2113 }
2114
788ca84a 2115 for (id = 0; id < NUM_FBRS; id++) {
bad5d26f
ZG
2116 fbr = rx_ring->fbr[id];
2117 fbr_chunksize = (FBR_CHUNKS * fbr->buffsize);
87648933 2118
bad5d26f 2119 for (i = 0; i < fbr->num_entries / FBR_CHUNKS; i++) {
788ca84a 2120 dma_addr_t fbr_tmp_physaddr;
788ca84a 2121
bad5d26f 2122 fbr->mem_virtaddrs[i] = dma_alloc_coherent(
788ca84a 2123 &adapter->pdev->dev, fbr_chunksize,
bad5d26f 2124 &fbr->mem_physaddrs[i],
788ca84a 2125 GFP_KERNEL);
d2796743 2126
bad5d26f 2127 if (!fbr->mem_virtaddrs[i]) {
788ca84a
ME
2128 dev_err(&adapter->pdev->dev,
2129 "Could not alloc memory\n");
2130 return -ENOMEM;
2131 }
d2796743 2132
788ca84a 2133 /* See NOTE in "Save Physical Address" comment above */
bad5d26f 2134 fbr_tmp_physaddr = fbr->mem_physaddrs[i];
788ca84a 2135
788ca84a
ME
2136 for (j = 0; j < FBR_CHUNKS; j++) {
2137 u32 index = (i * FBR_CHUNKS) + j;
2138
2139 /* Save the Virtual address of this index for
2140 * quick access later
2141 */
bad5d26f
ZG
2142 fbr->virt[index] = (u8 *)fbr->mem_virtaddrs[i] +
2143 (j * fbr->buffsize);
788ca84a
ME
2144
2145 /* now store the physical address in the
2146 * descriptor so the device can access it
2147 */
bad5d26f 2148 fbr->bus_high[index] =
788ca84a 2149 upper_32_bits(fbr_tmp_physaddr);
bad5d26f 2150 fbr->bus_low[index] =
788ca84a
ME
2151 lower_32_bits(fbr_tmp_physaddr);
2152
bad5d26f 2153 fbr_tmp_physaddr += fbr->buffsize;
788ca84a 2154 }
d2796743
ME
2155 }
2156 }
d2796743
ME
2157
2158 /* Allocate an area of memory for FIFO of Packet Status ring entries */
2159 pktstat_ringsize =
bad5d26f 2160 sizeof(struct pkt_stat_desc) * rx_ring->psr_num_entries;
d2796743 2161
0d1b7a84 2162 rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
d2796743 2163 pktstat_ringsize,
0d1b7a84
ME
2164 &rx_ring->ps_ring_physaddr,
2165 GFP_KERNEL);
d2796743
ME
2166
2167 if (!rx_ring->ps_ring_virtaddr) {
2168 dev_err(&adapter->pdev->dev,
2169 "Cannot alloc memory for Packet Status Ring\n");
2170 return -ENOMEM;
2171 }
d2796743 2172
26ef1021 2173 /* NOTE : dma_alloc_coherent(), used above to alloc DMA regions,
d2796743
ME
2174 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2175 * are ever returned, make sure the high part is retrieved here before
2176 * storing the adjusted address.
2177 */
2178
2179 /* Allocate an area of memory for writeback of status information */
0d1b7a84 2180 rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev,
d2796743 2181 sizeof(struct rx_status_block),
0d1b7a84
ME
2182 &rx_ring->rx_status_bus,
2183 GFP_KERNEL);
d2796743
ME
2184 if (!rx_ring->rx_status_block) {
2185 dev_err(&adapter->pdev->dev,
2186 "Cannot alloc memory for Status Block\n");
2187 return -ENOMEM;
2188 }
2189 rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
d2796743 2190
d2796743
ME
2191 /* The RFDs are going to be put on lists later on, so initialize the
2192 * lists now.
2193 */
2194 INIT_LIST_HEAD(&rx_ring->recv_list);
2195 return 0;
2196}
2197
15ae239d 2198/* et131x_rx_dma_memory_free - Free all memory allocated within this module */
eb7a6ca6 2199static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
d2796743 2200{
788ca84a 2201 u8 id;
d2796743
ME
2202 u32 index;
2203 u32 bufsize;
2204 u32 pktstat_ringsize;
2205 struct rfd *rfd;
8f7fa96a 2206 struct rx_ring *rx_ring = &adapter->rx_ring;
f876f59e 2207 struct fbr_lookup *fbr;
d2796743 2208
d2796743
ME
2209 /* Free RFDs and associated packet descriptors */
2210 WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
2211
2212 while (!list_empty(&rx_ring->recv_list)) {
57cc0279
ZG
2213 rfd = list_entry(rx_ring->recv_list.next,
2214 struct rfd, list_node);
d2796743
ME
2215
2216 list_del(&rfd->list_node);
2217 rfd->skb = NULL;
d959df0a 2218 kfree(rfd);
d2796743
ME
2219 }
2220
788ca84a
ME
2221 /* Free Free Buffer Rings */
2222 for (id = 0; id < NUM_FBRS; id++) {
f876f59e
ZG
2223 fbr = rx_ring->fbr[id];
2224
a9f48883 2225 if (!fbr || !fbr->ring_virtaddr)
823bb2e8 2226 continue;
d2796743 2227
823bb2e8
ME
2228 /* First the packet memory */
2229 for (index = 0;
f876f59e 2230 index < fbr->num_entries / FBR_CHUNKS;
823bb2e8 2231 index++) {
f876f59e
ZG
2232 if (fbr->mem_virtaddrs[index]) {
2233 bufsize = fbr->buffsize * FBR_CHUNKS;
d2796743 2234
823bb2e8 2235 dma_free_coherent(&adapter->pdev->dev,
f876f59e
ZG
2236 bufsize,
2237 fbr->mem_virtaddrs[index],
2238 fbr->mem_physaddrs[index]);
d2796743 2239
f876f59e 2240 fbr->mem_virtaddrs[index] = NULL;
823bb2e8 2241 }
d2796743 2242 }
823bb2e8 2243
f876f59e 2244 bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
823bb2e8 2245
f876f59e
ZG
2246 dma_free_coherent(&adapter->pdev->dev,
2247 bufsize,
2248 fbr->ring_virtaddr,
2249 fbr->ring_physaddr);
823bb2e8 2250
f876f59e 2251 fbr->ring_virtaddr = NULL;
d2796743 2252 }
d2796743
ME
2253
2254 /* Free Packet Status Ring */
2255 if (rx_ring->ps_ring_virtaddr) {
242187aa 2256 pktstat_ringsize = sizeof(struct pkt_stat_desc) *
8f7fa96a 2257 rx_ring->psr_num_entries;
d2796743 2258
675c8f68 2259 dma_free_coherent(&adapter->pdev->dev, pktstat_ringsize,
d2796743
ME
2260 rx_ring->ps_ring_virtaddr,
2261 rx_ring->ps_ring_physaddr);
2262
2263 rx_ring->ps_ring_virtaddr = NULL;
2264 }
2265
2266 /* Free area of memory for the writeback of status information */
2267 if (rx_ring->rx_status_block) {
675c8f68 2268 dma_free_coherent(&adapter->pdev->dev,
d2796743
ME
2269 sizeof(struct rx_status_block),
2270 rx_ring->rx_status_block, rx_ring->rx_status_bus);
2271 rx_ring->rx_status_block = NULL;
2272 }
2273
d2796743 2274 /* Free the FBR Lookup Table */
e592a9b0 2275 kfree(rx_ring->fbr[0]);
f0ada678 2276 kfree(rx_ring->fbr[1]);
d2796743
ME
2277
2278 /* Reset Counters */
2279 rx_ring->num_ready_recv = 0;
2280}
2281
15ae239d 2282/* et131x_init_recv - Initialize receive data structures */
eb7a6ca6 2283static int et131x_init_recv(struct et131x_adapter *adapter)
d2796743 2284{
d959df0a 2285 struct rfd *rfd;
d2796743 2286 u32 rfdct;
8f7fa96a 2287 struct rx_ring *rx_ring = &adapter->rx_ring;
d2796743
ME
2288
2289 /* Setup each RFD */
2290 for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
d959df0a 2291 rfd = kzalloc(sizeof(struct rfd), GFP_ATOMIC | GFP_DMA);
78110bb8 2292 if (!rfd)
d959df0a 2293 return -ENOMEM;
d2796743
ME
2294
2295 rfd->skb = NULL;
2296
2297 /* Add this RFD to the recv_list */
2298 list_add_tail(&rfd->list_node, &rx_ring->recv_list);
2299
4eb94628 2300 /* Increment the available RFD's */
d2796743 2301 rx_ring->num_ready_recv++;
d2796743
ME
2302 }
2303
d959df0a 2304 return 0;
d2796743
ME
2305}
2306
15ae239d 2307/* et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate */
eb7a6ca6 2308static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
d2796743
ME
2309{
2310 struct phy_device *phydev = adapter->phydev;
2311
d2796743
ME
2312 /* For version B silicon, we do not use the RxDMA timer for 10 and 100
2313 * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
2314 */
2315 if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
2316 writel(0, &adapter->regs->rxdma.max_pkt_time);
2317 writel(1, &adapter->regs->rxdma.num_pkt_done);
2318 }
2319}
2320
26ef1021 2321/* NICReturnRFD - Recycle a RFD and put it back onto the receive list
d2796743
ME
2322 * @adapter: pointer to our adapter
2323 * @rfd: pointer to the RFD
2324 */
2325static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
2326{
2327 struct rx_ring *rx_local = &adapter->rx_ring;
2328 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
2329 u16 buff_index = rfd->bufferindex;
2330 u8 ring_index = rfd->ringindex;
2331 unsigned long flags;
39bdb4a0 2332 struct fbr_lookup *fbr = rx_local->fbr[ring_index];
d2796743
ME
2333
2334 /* We don't use any of the OOB data besides status. Otherwise, we
2335 * need to clean up OOB data
2336 */
39bdb4a0
ZG
2337 if (buff_index < fbr->num_entries) {
2338 u32 free_buff_ring;
c0594ee9 2339 u32 __iomem *offset;
788ca84a
ME
2340 struct fbr_desc *next;
2341
d2796743
ME
2342 spin_lock_irqsave(&adapter->fbr_lock, flags);
2343
f0ada678 2344 if (ring_index == 0)
788ca84a 2345 offset = &rx_dma->fbr0_full_offset;
f0ada678
ME
2346 else
2347 offset = &rx_dma->fbr1_full_offset;
788ca84a 2348
39bdb4a0
ZG
2349 next = (struct fbr_desc *)(fbr->ring_virtaddr) +
2350 INDEX10(fbr->local_full);
788ca84a
ME
2351
2352 /* Handle the Free Buffer Ring advancement here. Write
2353 * the PA / Buffer Index for the returned buffer into
2354 * the oldest (next to be freed)FBR entry
2355 */
39bdb4a0
ZG
2356 next->addr_hi = fbr->bus_high[buff_index];
2357 next->addr_lo = fbr->bus_low[buff_index];
788ca84a
ME
2358 next->word2 = buff_index;
2359
39bdb4a0
ZG
2360 free_buff_ring = bump_free_buff_ring(&fbr->local_full,
2361 fbr->num_entries - 1);
2362 writel(free_buff_ring, offset);
788ca84a 2363
d2796743
ME
2364 spin_unlock_irqrestore(&adapter->fbr_lock, flags);
2365 } else {
2366 dev_err(&adapter->pdev->dev,
2367 "%s illegal Buffer Index returned\n", __func__);
2368 }
2369
2370 /* The processing on this RFD is done, so put it back on the tail of
2371 * our list
2372 */
2373 spin_lock_irqsave(&adapter->rcv_lock, flags);
2374 list_add_tail(&rfd->list_node, &rx_local->recv_list);
2375 rx_local->num_ready_recv++;
2376 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2377
2378 WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
2379}
2380
26ef1021 2381/* nic_rx_pkts - Checks the hardware for available packets
54dbf04f
ME
2382 *
2383 * Returns rfd, a pointer to our MPRFD.
2384 *
2385 * Checks the hardware for available packets, using completion ring
2386 * If packets are available, it gets an RFD from the recv_list, attaches
2387 * the packet to it, puts the RFD in the RecvPendList, and also returns
2388 * the pointer to the RFD.
2389 */
d2796743
ME
2390static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
2391{
2392 struct rx_ring *rx_local = &adapter->rx_ring;
2393 struct rx_status_block *status;
2394 struct pkt_stat_desc *psr;
186c426d 2395 struct rfd *rfd;
d2796743
ME
2396 u32 i;
2397 u8 *buf;
2398 unsigned long flags;
2399 struct list_head *element;
2400 u8 ring_index;
2401 u16 buff_index;
2402 u32 len;
2403 u32 word0;
2404 u32 word1;
186c426d 2405 struct sk_buff *skb;
297bb9db 2406 struct fbr_lookup *fbr;
d2796743
ME
2407
2408 /* RX Status block is written by the DMA engine prior to every
2409 * interrupt. It contains the next to be used entry in the Packet
2410 * Status Ring, and also the two Free Buffer rings.
2411 */
2412 status = rx_local->rx_status_block;
2413 word1 = status->word1 >> 16; /* Get the useful bits */
2414
2415 /* Check the PSR and wrap bits do not match */
2416 if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
242187aa 2417 return NULL; /* Looks like this ring is not updated yet */
d2796743
ME
2418
2419 /* The packet status ring indicates that data is available. */
2420 psr = (struct pkt_stat_desc *) (rx_local->ps_ring_virtaddr) +
2421 (rx_local->local_psr_full & 0xFFF);
2422
242187aa
ME
2423 /* Grab any information that is required once the PSR is advanced,
2424 * since we can no longer rely on the memory being accurate
d2796743
ME
2425 */
2426 len = psr->word1 & 0xFFFF;
2427 ring_index = (psr->word1 >> 26) & 0x03;
297bb9db 2428 fbr = rx_local->fbr[ring_index];
d2796743
ME
2429 buff_index = (psr->word1 >> 16) & 0x3FF;
2430 word0 = psr->word0;
2431
2432 /* Indicate that we have used this PSR entry. */
2433 /* FIXME wrap 12 */
2434 add_12bit(&rx_local->local_psr_full, 1);
2435 if (
2436 (rx_local->local_psr_full & 0xFFF) > rx_local->psr_num_entries - 1) {
2437 /* Clear psr full and toggle the wrap bit */
2438 rx_local->local_psr_full &= ~0xFFF;
2439 rx_local->local_psr_full ^= 0x1000;
2440 }
2441
242187aa 2442 writel(rx_local->local_psr_full, &adapter->regs->rxdma.psr_full_offset);
d2796743 2443
297bb9db 2444 if (ring_index > 1 || buff_index > fbr->num_entries - 1) {
d2796743
ME
2445 /* Illegal buffer or ring index cannot be used by S/W*/
2446 dev_err(&adapter->pdev->dev,
242187aa
ME
2447 "NICRxPkts PSR Entry %d indicates length of %d and/or bad bi(%d)\n",
2448 rx_local->local_psr_full & 0xFFF, len, buff_index);
d2796743
ME
2449 return NULL;
2450 }
2451
2452 /* Get and fill the RFD. */
2453 spin_lock_irqsave(&adapter->rcv_lock, flags);
2454
d2796743 2455 element = rx_local->recv_list.next;
57cc0279 2456 rfd = list_entry(element, struct rfd, list_node);
d2796743 2457
242187aa 2458 if (!rfd) {
d2796743
ME
2459 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2460 return NULL;
2461 }
2462
2463 list_del(&rfd->list_node);
2464 rx_local->num_ready_recv--;
2465
2466 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2467
2468 rfd->bufferindex = buff_index;
2469 rfd->ringindex = ring_index;
2470
242187aa
ME
2471 /* In V1 silicon, there is a bug which screws up filtering of runt
2472 * packets. Therefore runt packet filtering is disabled in the MAC and
2473 * the packets are dropped here. They are also counted here.
d2796743
ME
2474 */
2475 if (len < (NIC_MIN_PACKET_SIZE + 4)) {
2476 adapter->stats.rx_other_errs++;
2477 len = 0;
2478 }
2479
242187aa
ME
2480 if (len == 0) {
2481 rfd->len = 0;
2482 goto out;
2483 }
2484
2485 /* Determine if this is a multicast packet coming in */
2486 if ((word0 & ALCATEL_MULTICAST_PKT) &&
2487 !(word0 & ALCATEL_BROADCAST_PKT)) {
2488 /* Promiscuous mode and Multicast mode are not mutually
2489 * exclusive as was first thought. I guess Promiscuous is just
2490 * considered a super-set of the other filters. Generally filter
2491 * is 0x2b when in promiscuous mode.
2492 */
2493 if ((adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST)
2494 && !(adapter->packet_filter & ET131X_PACKET_TYPE_PROMISCUOUS)
2495 && !(adapter->packet_filter &
d2796743 2496 ET131X_PACKET_TYPE_ALL_MULTICAST)) {
297bb9db 2497 buf = fbr->virt[buff_index];
d2796743 2498
242187aa
ME
2499 /* Loop through our list to see if the destination
2500 * address of this packet matches one in our list.
2501 */
2502 for (i = 0; i < adapter->multicast_addr_count; i++) {
2503 if (buf[0] == adapter->multicast_list[i][0]
2504 && buf[1] == adapter->multicast_list[i][1]
2505 && buf[2] == adapter->multicast_list[i][2]
2506 && buf[3] == adapter->multicast_list[i][3]
2507 && buf[4] == adapter->multicast_list[i][4]
2508 && buf[5] == adapter->multicast_list[i][5]) {
2509 break;
d2796743 2510 }
d2796743
ME
2511 }
2512
242187aa
ME
2513 /* If our index is equal to the number of Multicast
2514 * address we have, then this means we did not find this
2515 * packet's matching address in our list. Set the len to
2516 * zero, so we free our RFD when we return from this
2517 * function.
d2796743 2518 */
242187aa
ME
2519 if (i == adapter->multicast_addr_count)
2520 len = 0;
2521 }
d2796743 2522
242187aa
ME
2523 if (len > 0)
2524 adapter->stats.multicast_pkts_rcvd++;
2525 } else if (word0 & ALCATEL_BROADCAST_PKT) {
2526 adapter->stats.broadcast_pkts_rcvd++;
2527 } else {
2528 /* Not sure what this counter measures in promiscuous mode.
2529 * Perhaps we should check the MAC address to see if it is
2530 * directed to us in promiscuous mode.
2531 */
2532 adapter->stats.unicast_pkts_rcvd++;
2533 }
d2796743 2534
12a2f3f3 2535 if (!len) {
242187aa
ME
2536 rfd->len = 0;
2537 goto out;
2538 }
d2796743 2539
242187aa 2540 rfd->len = len;
d2796743 2541
242187aa
ME
2542 skb = dev_alloc_skb(rfd->len + 2);
2543 if (!skb) {
2544 dev_err(&adapter->pdev->dev, "Couldn't alloc an SKB for Rx\n");
2545 return NULL;
2546 }
d2796743 2547
1f765d9f 2548 adapter->netdev->stats.rx_bytes += rfd->len;
d2796743 2549
297bb9db 2550 memcpy(skb_put(skb, rfd->len), fbr->virt[buff_index], rfd->len);
d2796743 2551
242187aa
ME
2552 skb->protocol = eth_type_trans(skb, adapter->netdev);
2553 skb->ip_summed = CHECKSUM_NONE;
2554 netif_rx_ni(skb);
d2796743 2555
242187aa 2556out:
d2796743
ME
2557 nic_return_rfd(adapter, rfd);
2558 return rfd;
2559}
2560
26ef1021 2561/* et131x_handle_recv_interrupt - Interrupt handler for receive processing
d2796743
ME
2562 *
2563 * Assumption, Rcv spinlock has been acquired.
2564 */
eb7a6ca6 2565static void et131x_handle_recv_interrupt(struct et131x_adapter *adapter)
d2796743
ME
2566{
2567 struct rfd *rfd = NULL;
2568 u32 count = 0;
2569 bool done = true;
8f7fa96a 2570 struct rx_ring *rx_ring = &adapter->rx_ring;
d2796743
ME
2571
2572 /* Process up to available RFD's */
b60e6d0a 2573 while (count < MAX_PACKETS_HANDLED) {
8f7fa96a
ZG
2574 if (list_empty(&rx_ring->recv_list)) {
2575 WARN_ON(rx_ring->num_ready_recv != 0);
d2796743
ME
2576 done = false;
2577 break;
2578 }
2579
2580 rfd = nic_rx_pkts(adapter);
2581
2582 if (rfd == NULL)
2583 break;
2584
2585 /* Do not receive any packets until a filter has been set.
2586 * Do not receive any packets until we have link.
2587 * If length is zero, return the RFD in order to advance the
2588 * Free buffer ring.
2589 */
2590 if (!adapter->packet_filter ||
2591 !netif_carrier_ok(adapter->netdev) ||
2592 rfd->len == 0)
2593 continue;
2594
2595 /* Increment the number of packets we received */
1f765d9f 2596 adapter->netdev->stats.rx_packets++;
d2796743
ME
2597
2598 /* Set the status on the packet, either resources or success */
8f7fa96a 2599 if (rx_ring->num_ready_recv < RFD_LOW_WATER_MARK)
0cdc6ee8
ME
2600 dev_warn(&adapter->pdev->dev, "RFD's are running out\n");
2601
d2796743
ME
2602 count++;
2603 }
2604
b60e6d0a 2605 if (count == MAX_PACKETS_HANDLED || !done) {
8f7fa96a 2606 rx_ring->unfinished_receives = true;
d2796743
ME
2607 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2608 &adapter->regs->global.watchdog_timer);
2609 } else
2610 /* Watchdog timer will disable itself if appropriate. */
8f7fa96a 2611 rx_ring->unfinished_receives = false;
d2796743
ME
2612}
2613
26ef1021 2614/* et131x_tx_dma_memory_alloc
d2796743
ME
2615 *
2616 * Allocates memory that will be visible both to the device and to the CPU.
2617 * The OS will pass us packets, pointers to which we will insert in the Tx
2618 * Descriptor queue. The device will read this queue to find the packets in
2619 * memory. The device will update the "status" in memory each time it xmits a
2620 * packet.
2621 */
eb7a6ca6 2622static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
d2796743
ME
2623{
2624 int desc_size = 0;
2625 struct tx_ring *tx_ring = &adapter->tx_ring;
2626
2627 /* Allocate memory for the TCB's (Transmit Control Block) */
76981cf1
ZG
2628 tx_ring->tcb_ring = kcalloc(NUM_TCB, sizeof(struct tcb),
2629 GFP_ATOMIC | GFP_DMA);
2630 if (!tx_ring->tcb_ring)
d2796743 2631 return -ENOMEM;
d2796743 2632
d3c75e8d 2633 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
57cc0279
ZG
2634 tx_ring->tx_desc_ring = dma_alloc_coherent(&adapter->pdev->dev,
2635 desc_size,
2636 &tx_ring->tx_desc_ring_pa,
2637 GFP_KERNEL);
76981cf1 2638 if (!tx_ring->tx_desc_ring) {
d2796743 2639 dev_err(&adapter->pdev->dev,
09a3fc2b 2640 "Cannot alloc memory for Tx Ring\n");
d2796743
ME
2641 return -ENOMEM;
2642 }
2643
2644 /* Save physical address
2645 *
26dc751e 2646 * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
d2796743
ME
2647 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2648 * are ever returned, make sure the high part is retrieved here before
2649 * storing the adjusted address.
2650 */
2651 /* Allocate memory for the Tx status block */
0d1b7a84 2652 tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev,
d2796743 2653 sizeof(u32),
0d1b7a84
ME
2654 &tx_ring->tx_status_pa,
2655 GFP_KERNEL);
76981cf1 2656 if (!tx_ring->tx_status_pa) {
d2796743 2657 dev_err(&adapter->pdev->dev,
76981cf1 2658 "Cannot alloc memory for Tx status block\n");
d2796743
ME
2659 return -ENOMEM;
2660 }
2661 return 0;
2662}
2663
15ae239d 2664/* et131x_tx_dma_memory_free - Free all memory allocated within this module */
eb7a6ca6 2665static void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
d2796743
ME
2666{
2667 int desc_size = 0;
76981cf1 2668 struct tx_ring *tx_ring = &adapter->tx_ring;
d2796743 2669
76981cf1 2670 if (tx_ring->tx_desc_ring) {
d2796743 2671 /* Free memory relating to Tx rings here */
d3c75e8d 2672 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
675c8f68 2673 dma_free_coherent(&adapter->pdev->dev,
76981cf1
ZG
2674 desc_size,
2675 tx_ring->tx_desc_ring,
2676 tx_ring->tx_desc_ring_pa);
2677 tx_ring->tx_desc_ring = NULL;
d2796743
ME
2678 }
2679
2680 /* Free memory for the Tx status block */
76981cf1 2681 if (tx_ring->tx_status) {
675c8f68 2682 dma_free_coherent(&adapter->pdev->dev,
76981cf1
ZG
2683 sizeof(u32),
2684 tx_ring->tx_status,
2685 tx_ring->tx_status_pa);
d2796743 2686
76981cf1 2687 tx_ring->tx_status = NULL;
d2796743
ME
2688 }
2689 /* Free the memory for the tcb structures */
76981cf1 2690 kfree(tx_ring->tcb_ring);
d2796743
ME
2691}
2692
26ef1021 2693/* nic_send_packet - NIC specific send handler for version B silicon.
d2796743
ME
2694 * @adapter: pointer to our adapter
2695 * @tcb: pointer to struct tcb
d2796743
ME
2696 */
2697static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb)
2698{
2699 u32 i;
2700 struct tx_desc desc[24]; /* 24 x 16 byte */
2701 u32 frag = 0;
2702 u32 thiscopy, remainder;
2703 struct sk_buff *skb = tcb->skb;
2704 u32 nr_frags = skb_shinfo(skb)->nr_frags + 1;
2705 struct skb_frag_struct *frags = &skb_shinfo(skb)->frags[0];
2706 unsigned long flags;
2707 struct phy_device *phydev = adapter->phydev;
998f6dfb 2708 dma_addr_t dma_addr;
76981cf1 2709 struct tx_ring *tx_ring = &adapter->tx_ring;
d2796743
ME
2710
2711 /* Part of the optimizations of this send routine restrict us to
2712 * sending 24 fragments at a pass. In practice we should never see
2713 * more than 5 fragments.
2714 *
2715 * NOTE: The older version of this function (below) can handle any
2716 * number of fragments. If needed, we can call this function,
2717 * although it is less efficient.
2718 */
9c7bc376
RK
2719
2720 /* nr_frags should be no more than 18. */
2721 BUILD_BUG_ON(MAX_SKB_FRAGS + 1 > 23);
d2796743
ME
2722
2723 memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1));
2724
2725 for (i = 0; i < nr_frags; i++) {
2726 /* If there is something in this element, lets get a
2727 * descriptor from the ring and get the necessary data
2728 */
2729 if (i == 0) {
2730 /* If the fragments are smaller than a standard MTU,
2731 * then map them to a single descriptor in the Tx
2732 * Desc ring. However, if they're larger, as is
2733 * possible with support for jumbo packets, then
2734 * split them each across 2 descriptors.
2735 *
2736 * This will work until we determine why the hardware
2737 * doesn't seem to like large fragments.
2738 */
f1b540b9 2739 if (skb_headlen(skb) <= 1514) {
d2796743 2740 /* Low 16bits are length, high is vlan and
26ef1021
ME
2741 * unused currently so zero
2742 */
f1b540b9 2743 desc[frag].len_vlan = skb_headlen(skb);
998f6dfb
ME
2744 dma_addr = dma_map_single(&adapter->pdev->dev,
2745 skb->data,
2746 skb_headlen(skb),
2747 DMA_TO_DEVICE);
2748 desc[frag].addr_lo = lower_32_bits(dma_addr);
2749 desc[frag].addr_hi = upper_32_bits(dma_addr);
2750 frag++;
d2796743 2751 } else {
f1b540b9 2752 desc[frag].len_vlan = skb_headlen(skb) / 2;
998f6dfb 2753 dma_addr = dma_map_single(&adapter->pdev->dev,
3781683e
ME
2754 skb->data,
2755 (skb_headlen(skb) / 2),
2756 DMA_TO_DEVICE);
998f6dfb
ME
2757 desc[frag].addr_lo = lower_32_bits(dma_addr);
2758 desc[frag].addr_hi = upper_32_bits(dma_addr);
2759 frag++;
d2796743 2760
f1b540b9 2761 desc[frag].len_vlan = skb_headlen(skb) / 2;
998f6dfb 2762 dma_addr = dma_map_single(&adapter->pdev->dev,
3781683e
ME
2763 skb->data +
2764 (skb_headlen(skb) / 2),
2765 (skb_headlen(skb) / 2),
2766 DMA_TO_DEVICE);
998f6dfb
ME
2767 desc[frag].addr_lo = lower_32_bits(dma_addr);
2768 desc[frag].addr_hi = upper_32_bits(dma_addr);
2769 frag++;
d2796743
ME
2770 }
2771 } else {
998f6dfb
ME
2772 desc[frag].len_vlan = frags[i - 1].size;
2773 dma_addr = skb_frag_dma_map(&adapter->pdev->dev,
2774 &frags[i - 1],
2775 0,
2776 frags[i - 1].size,
2777 DMA_TO_DEVICE);
2778 desc[frag].addr_lo = lower_32_bits(dma_addr);
2779 desc[frag].addr_hi = upper_32_bits(dma_addr);
2780 frag++;
d2796743
ME
2781 }
2782 }
2783
d2796743 2784 if (phydev && phydev->speed == SPEED_1000) {
76981cf1 2785 if (++tx_ring->since_irq == PARM_TX_NUM_BUFS_DEF) {
d2796743 2786 /* Last element & Interrupt flag */
c655dee9
ME
2787 desc[frag - 1].flags =
2788 TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
76981cf1 2789 tx_ring->since_irq = 0;
d2796743 2790 } else { /* Last element */
a129be84 2791 desc[frag - 1].flags = TXDESC_FLAG_LASTPKT;
d2796743
ME
2792 }
2793 } else
c655dee9
ME
2794 desc[frag - 1].flags =
2795 TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
d2796743 2796
a129be84 2797 desc[0].flags |= TXDESC_FLAG_FIRSTPKT;
d2796743 2798
76981cf1 2799 tcb->index_start = tx_ring->send_idx;
d2796743
ME
2800 tcb->stale = 0;
2801
2802 spin_lock_irqsave(&adapter->send_hw_lock, flags);
2803
76981cf1 2804 thiscopy = NUM_DESC_PER_RING_TX - INDEX10(tx_ring->send_idx);
d2796743
ME
2805
2806 if (thiscopy >= frag) {
2807 remainder = 0;
2808 thiscopy = frag;
2809 } else {
2810 remainder = frag - thiscopy;
2811 }
2812
76981cf1
ZG
2813 memcpy(tx_ring->tx_desc_ring + INDEX10(tx_ring->send_idx),
2814 desc,
d2796743
ME
2815 sizeof(struct tx_desc) * thiscopy);
2816
76981cf1 2817 add_10bit(&tx_ring->send_idx, thiscopy);
d2796743 2818
76981cf1
ZG
2819 if (INDEX10(tx_ring->send_idx) == 0 ||
2820 INDEX10(tx_ring->send_idx) == NUM_DESC_PER_RING_TX) {
2821 tx_ring->send_idx &= ~ET_DMA10_MASK;
2822 tx_ring->send_idx ^= ET_DMA10_WRAP;
d2796743
ME
2823 }
2824
2825 if (remainder) {
76981cf1 2826 memcpy(tx_ring->tx_desc_ring,
d2796743
ME
2827 desc + thiscopy,
2828 sizeof(struct tx_desc) * remainder);
2829
76981cf1 2830 add_10bit(&tx_ring->send_idx, remainder);
d2796743
ME
2831 }
2832
76981cf1
ZG
2833 if (INDEX10(tx_ring->send_idx) == 0) {
2834 if (tx_ring->send_idx)
d2796743
ME
2835 tcb->index = NUM_DESC_PER_RING_TX - 1;
2836 else
2837 tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1);
2838 } else
76981cf1 2839 tcb->index = tx_ring->send_idx - 1;
d2796743
ME
2840
2841 spin_lock(&adapter->tcb_send_qlock);
2842
76981cf1
ZG
2843 if (tx_ring->send_tail)
2844 tx_ring->send_tail->next = tcb;
d2796743 2845 else
76981cf1 2846 tx_ring->send_head = tcb;
d2796743 2847
76981cf1 2848 tx_ring->send_tail = tcb;
d2796743
ME
2849
2850 WARN_ON(tcb->next != NULL);
2851
76981cf1 2852 tx_ring->used++;
d2796743
ME
2853
2854 spin_unlock(&adapter->tcb_send_qlock);
2855
2856 /* Write the new write pointer back to the device. */
76981cf1 2857 writel(tx_ring->send_idx, &adapter->regs->txdma.service_request);
d2796743
ME
2858
2859 /* For Gig only, we use Tx Interrupt coalescing. Enable the software
2860 * timer to wake us up if this packet isn't followed by N more.
2861 */
2862 if (phydev && phydev->speed == SPEED_1000) {
2863 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2864 &adapter->regs->global.watchdog_timer);
2865 }
2866 spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
2867
2868 return 0;
2869}
2870
26ef1021 2871/* send_packet - Do the work to send a packet
d2796743
ME
2872 *
2873 * Assumption: Send spinlock has been acquired
2874 */
2875static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter)
2876{
2877 int status;
76981cf1 2878 struct tcb *tcb;
d2796743
ME
2879 u16 *shbufva;
2880 unsigned long flags;
76981cf1 2881 struct tx_ring *tx_ring = &adapter->tx_ring;
d2796743
ME
2882
2883 /* All packets must have at least a MAC address and a protocol type */
2884 if (skb->len < ETH_HLEN)
2885 return -EIO;
2886
2887 /* Get a TCB for this packet */
2888 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2889
76981cf1 2890 tcb = tx_ring->tcb_qhead;
d2796743
ME
2891
2892 if (tcb == NULL) {
2893 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2894 return -ENOMEM;
2895 }
2896
76981cf1 2897 tx_ring->tcb_qhead = tcb->next;
d2796743 2898
76981cf1
ZG
2899 if (tx_ring->tcb_qhead == NULL)
2900 tx_ring->tcb_qtail = NULL;
d2796743
ME
2901
2902 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2903
2904 tcb->skb = skb;
2905
f1b540b9 2906 if (skb->data != NULL && skb_headlen(skb) >= 6) {
d2796743
ME
2907 shbufva = (u16 *) skb->data;
2908
2909 if ((shbufva[0] == 0xffff) &&
0cdc6ee8 2910 (shbufva[1] == 0xffff) && (shbufva[2] == 0xffff))
c655dee9 2911 tcb->flags |= FMP_DEST_BROAD;
0cdc6ee8 2912 else if ((shbufva[0] & 0x3) == 0x0001)
c655dee9 2913 tcb->flags |= FMP_DEST_MULTI;
d2796743
ME
2914 }
2915
2916 tcb->next = NULL;
2917
2918 /* Call the NIC specific send handler. */
2919 status = nic_send_packet(adapter, tcb);
2920
2921 if (status != 0) {
2922 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2923
76981cf1
ZG
2924 if (tx_ring->tcb_qtail)
2925 tx_ring->tcb_qtail->next = tcb;
d2796743
ME
2926 else
2927 /* Apparently ready Q is empty. */
76981cf1 2928 tx_ring->tcb_qhead = tcb;
d2796743 2929
76981cf1 2930 tx_ring->tcb_qtail = tcb;
d2796743
ME
2931 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2932 return status;
2933 }
76981cf1 2934 WARN_ON(tx_ring->used > NUM_TCB);
d2796743
ME
2935 return 0;
2936}
2937
15ae239d 2938/* et131x_send_packets - This function is called by the OS to send packets */
eb7a6ca6 2939static int et131x_send_packets(struct sk_buff *skb, struct net_device *netdev)
d2796743
ME
2940{
2941 int status = 0;
06709e96 2942 struct et131x_adapter *adapter = netdev_priv(netdev);
76981cf1 2943 struct tx_ring *tx_ring = &adapter->tx_ring;
d2796743
ME
2944
2945 /* Send these packets
2946 *
2947 * NOTE: The Linux Tx entry point is only given one packet at a time
2948 * to Tx, so the PacketCount and it's array used makes no sense here
2949 */
2950
2951 /* TCB is not available */
76981cf1 2952 if (tx_ring->used >= NUM_TCB) {
d2796743
ME
2953 /* NOTE: If there's an error on send, no need to queue the
2954 * packet under Linux; if we just send an error up to the
2955 * netif layer, it will resend the skb to us.
2956 */
2957 status = -ENOMEM;
2958 } else {
2959 /* We need to see if the link is up; if it's not, make the
2960 * netif layer think we're good and drop the packet
2961 */
c655dee9 2962 if ((adapter->flags & FMP_ADAPTER_FAIL_SEND_MASK) ||
d2796743
ME
2963 !netif_carrier_ok(netdev)) {
2964 dev_kfree_skb_any(skb);
2965 skb = NULL;
2966
1f765d9f 2967 adapter->netdev->stats.tx_dropped++;
d2796743
ME
2968 } else {
2969 status = send_packet(skb, adapter);
2970 if (status != 0 && status != -ENOMEM) {
2971 /* On any other error, make netif think we're
2972 * OK and drop the packet
2973 */
2974 dev_kfree_skb_any(skb);
2975 skb = NULL;
1f765d9f 2976 adapter->netdev->stats.tx_dropped++;
d2796743
ME
2977 }
2978 }
2979 }
2980 return status;
2981}
2982
26ef1021 2983/* free_send_packet - Recycle a struct tcb
d2796743
ME
2984 * @adapter: pointer to our adapter
2985 * @tcb: pointer to struct tcb
2986 *
2987 * Complete the packet if necessary
2988 * Assumption - Send spinlock has been acquired
2989 */
2990static inline void free_send_packet(struct et131x_adapter *adapter,
2991 struct tcb *tcb)
2992{
2993 unsigned long flags;
2994 struct tx_desc *desc = NULL;
1f765d9f 2995 struct net_device_stats *stats = &adapter->netdev->stats;
76981cf1 2996 struct tx_ring *tx_ring = &adapter->tx_ring;
983e4b35 2997 u64 dma_addr;
d2796743 2998
c655dee9 2999 if (tcb->flags & FMP_DEST_BROAD)
d2796743 3000 atomic_inc(&adapter->stats.broadcast_pkts_xmtd);
c655dee9 3001 else if (tcb->flags & FMP_DEST_MULTI)
d2796743
ME
3002 atomic_inc(&adapter->stats.multicast_pkts_xmtd);
3003 else
3004 atomic_inc(&adapter->stats.unicast_pkts_xmtd);
3005
3006 if (tcb->skb) {
3007 stats->tx_bytes += tcb->skb->len;
3008
3009 /* Iterate through the TX descriptors on the ring
3010 * corresponding to this packet and umap the fragments
3011 * they point to
3012 */
3013 do {
76981cf1 3014 desc = tx_ring->tx_desc_ring +
57cc0279 3015 INDEX10(tcb->index_start);
d2796743 3016
998f6dfb 3017 dma_addr = desc->addr_lo;
983e4b35 3018 dma_addr |= (u64)desc->addr_hi << 32;
998f6dfb 3019
26dc751e 3020 dma_unmap_single(&adapter->pdev->dev,
998f6dfb 3021 dma_addr,
26dc751e 3022 desc->len_vlan, DMA_TO_DEVICE);
d2796743
ME
3023
3024 add_10bit(&tcb->index_start, 1);
3025 if (INDEX10(tcb->index_start) >=
3026 NUM_DESC_PER_RING_TX) {
3027 tcb->index_start &= ~ET_DMA10_MASK;
3028 tcb->index_start ^= ET_DMA10_WRAP;
3029 }
76981cf1 3030 } while (desc != tx_ring->tx_desc_ring + INDEX10(tcb->index));
d2796743
ME
3031
3032 dev_kfree_skb_any(tcb->skb);
3033 }
3034
3035 memset(tcb, 0, sizeof(struct tcb));
3036
3037 /* Add the TCB to the Ready Q */
3038 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3039
1f765d9f 3040 stats->tx_packets++;
d2796743 3041
76981cf1
ZG
3042 if (tx_ring->tcb_qtail)
3043 tx_ring->tcb_qtail->next = tcb;
d2796743
ME
3044 else
3045 /* Apparently ready Q is empty. */
76981cf1 3046 tx_ring->tcb_qhead = tcb;
d2796743 3047
76981cf1 3048 tx_ring->tcb_qtail = tcb;
d2796743
ME
3049
3050 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
76981cf1 3051 WARN_ON(tx_ring->used < 0);
d2796743
ME
3052}
3053
26ef1021 3054/* et131x_free_busy_send_packets - Free and complete the stopped active sends
d2796743
ME
3055 *
3056 * Assumption - Send spinlock has been acquired
3057 */
eb7a6ca6 3058static void et131x_free_busy_send_packets(struct et131x_adapter *adapter)
d2796743
ME
3059{
3060 struct tcb *tcb;
3061 unsigned long flags;
3062 u32 freed = 0;
76981cf1 3063 struct tx_ring *tx_ring = &adapter->tx_ring;
d2796743
ME
3064
3065 /* Any packets being sent? Check the first TCB on the send list */
3066 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3067
76981cf1 3068 tcb = tx_ring->send_head;
d2796743
ME
3069
3070 while (tcb != NULL && freed < NUM_TCB) {
3071 struct tcb *next = tcb->next;
3072
76981cf1 3073 tx_ring->send_head = next;
d2796743
ME
3074
3075 if (next == NULL)
76981cf1 3076 tx_ring->send_tail = NULL;
d2796743 3077
76981cf1 3078 tx_ring->used--;
d2796743
ME
3079
3080 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3081
3082 freed++;
3083 free_send_packet(adapter, tcb);
3084
3085 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3086
76981cf1 3087 tcb = tx_ring->send_head;
d2796743
ME
3088 }
3089
3090 WARN_ON(freed == NUM_TCB);
3091
3092 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3093
76981cf1 3094 tx_ring->used = 0;
d2796743
ME
3095}
3096
26ef1021 3097/* et131x_handle_send_interrupt - Interrupt handler for sending processing
d2796743
ME
3098 *
3099 * Re-claim the send resources, complete sends and get more to send from
3100 * the send wait queue.
3101 *
3102 * Assumption - Send spinlock has been acquired
3103 */
eb7a6ca6 3104static void et131x_handle_send_interrupt(struct et131x_adapter *adapter)
d2796743
ME
3105{
3106 unsigned long flags;
3107 u32 serviced;
3108 struct tcb *tcb;
3109 u32 index;
76981cf1 3110 struct tx_ring *tx_ring = &adapter->tx_ring;
d2796743
ME
3111
3112 serviced = readl(&adapter->regs->txdma.new_service_complete);
3113 index = INDEX10(serviced);
3114
3115 /* Has the ring wrapped? Process any descriptors that do not have
3116 * the same "wrap" indicator as the current completion indicator
3117 */
3118 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3119
76981cf1 3120 tcb = tx_ring->send_head;
d2796743
ME
3121
3122 while (tcb &&
3123 ((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
3124 index < INDEX10(tcb->index)) {
76981cf1
ZG
3125 tx_ring->used--;
3126 tx_ring->send_head = tcb->next;
d2796743 3127 if (tcb->next == NULL)
76981cf1 3128 tx_ring->send_tail = NULL;
d2796743
ME
3129
3130 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3131 free_send_packet(adapter, tcb);
3132 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3133
3134 /* Goto the next packet */
76981cf1 3135 tcb = tx_ring->send_head;
d2796743
ME
3136 }
3137 while (tcb &&
3138 !((serviced ^ tcb->index) & ET_DMA10_WRAP)
3139 && index > (tcb->index & ET_DMA10_MASK)) {
76981cf1
ZG
3140 tx_ring->used--;
3141 tx_ring->send_head = tcb->next;
d2796743 3142 if (tcb->next == NULL)
76981cf1 3143 tx_ring->send_tail = NULL;
d2796743
ME
3144
3145 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3146 free_send_packet(adapter, tcb);
3147 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3148
3149 /* Goto the next packet */
76981cf1 3150 tcb = tx_ring->send_head;
d2796743
ME
3151 }
3152
3153 /* Wake up the queue when we hit a low-water mark */
76981cf1 3154 if (tx_ring->used <= NUM_TCB / 3)
d2796743
ME
3155 netif_wake_queue(adapter->netdev);
3156
3157 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3158}
3159
d2796743
ME
3160static int et131x_get_settings(struct net_device *netdev,
3161 struct ethtool_cmd *cmd)
3162{
3163 struct et131x_adapter *adapter = netdev_priv(netdev);
3164
3165 return phy_ethtool_gset(adapter->phydev, cmd);
3166}
3167
3168static int et131x_set_settings(struct net_device *netdev,
3169 struct ethtool_cmd *cmd)
3170{
3171 struct et131x_adapter *adapter = netdev_priv(netdev);
3172
3173 return phy_ethtool_sset(adapter->phydev, cmd);
3174}
3175
3176static int et131x_get_regs_len(struct net_device *netdev)
3177{
3178#define ET131X_REGS_LEN 256
3179 return ET131X_REGS_LEN * sizeof(u32);
3180}
3181
3182static void et131x_get_regs(struct net_device *netdev,
3183 struct ethtool_regs *regs, void *regs_data)
3184{
3185 struct et131x_adapter *adapter = netdev_priv(netdev);
3186 struct address_map __iomem *aregs = adapter->regs;
3187 u32 *regs_buff = regs_data;
3188 u32 num = 0;
c8b0a484 3189 u16 tmp;
d2796743
ME
3190
3191 memset(regs_data, 0, et131x_get_regs_len(netdev));
3192
3193 regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
3194 adapter->pdev->device;
3195
3196 /* PHY regs */
c8b0a484
ME
3197 et131x_mii_read(adapter, MII_BMCR, &tmp);
3198 regs_buff[num++] = tmp;
3199 et131x_mii_read(adapter, MII_BMSR, &tmp);
3200 regs_buff[num++] = tmp;
3201 et131x_mii_read(adapter, MII_PHYSID1, &tmp);
3202 regs_buff[num++] = tmp;
3203 et131x_mii_read(adapter, MII_PHYSID2, &tmp);
3204 regs_buff[num++] = tmp;
3205 et131x_mii_read(adapter, MII_ADVERTISE, &tmp);
3206 regs_buff[num++] = tmp;
3207 et131x_mii_read(adapter, MII_LPA, &tmp);
3208 regs_buff[num++] = tmp;
3209 et131x_mii_read(adapter, MII_EXPANSION, &tmp);
3210 regs_buff[num++] = tmp;
d2796743 3211 /* Autoneg next page transmit reg */
c8b0a484
ME
3212 et131x_mii_read(adapter, 0x07, &tmp);
3213 regs_buff[num++] = tmp;
d2796743 3214 /* Link partner next page reg */
c8b0a484
ME
3215 et131x_mii_read(adapter, 0x08, &tmp);
3216 regs_buff[num++] = tmp;
3217 et131x_mii_read(adapter, MII_CTRL1000, &tmp);
3218 regs_buff[num++] = tmp;
3219 et131x_mii_read(adapter, MII_STAT1000, &tmp);
3220 regs_buff[num++] = tmp;
3221 et131x_mii_read(adapter, 0x0b, &tmp);
3222 regs_buff[num++] = tmp;
3223 et131x_mii_read(adapter, 0x0c, &tmp);
3224 regs_buff[num++] = tmp;
3225 et131x_mii_read(adapter, MII_MMD_CTRL, &tmp);
3226 regs_buff[num++] = tmp;
3227 et131x_mii_read(adapter, MII_MMD_DATA, &tmp);
3228 regs_buff[num++] = tmp;
3229 et131x_mii_read(adapter, MII_ESTATUS, &tmp);
3230 regs_buff[num++] = tmp;
3231
3232 et131x_mii_read(adapter, PHY_INDEX_REG, &tmp);
3233 regs_buff[num++] = tmp;
3234 et131x_mii_read(adapter, PHY_DATA_REG, &tmp);
3235 regs_buff[num++] = tmp;
3236 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG, &tmp);
3237 regs_buff[num++] = tmp;
3238 et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL, &tmp);
3239 regs_buff[num++] = tmp;
3240 et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL + 1, &tmp);
3241 regs_buff[num++] = tmp;
3242
3243 et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL, &tmp);
3244 regs_buff[num++] = tmp;
3245 et131x_mii_read(adapter, PHY_CONFIG, &tmp);
3246 regs_buff[num++] = tmp;
3247 et131x_mii_read(adapter, PHY_PHY_CONTROL, &tmp);
3248 regs_buff[num++] = tmp;
3249 et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &tmp);
3250 regs_buff[num++] = tmp;
3251 et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &tmp);
3252 regs_buff[num++] = tmp;
3253 et131x_mii_read(adapter, PHY_PHY_STATUS, &tmp);
3254 regs_buff[num++] = tmp;
3255 et131x_mii_read(adapter, PHY_LED_1, &tmp);
3256 regs_buff[num++] = tmp;
3257 et131x_mii_read(adapter, PHY_LED_2, &tmp);
3258 regs_buff[num++] = tmp;
d2796743
ME
3259
3260 /* Global regs */
3261 regs_buff[num++] = readl(&aregs->global.txq_start_addr);
3262 regs_buff[num++] = readl(&aregs->global.txq_end_addr);
3263 regs_buff[num++] = readl(&aregs->global.rxq_start_addr);
3264 regs_buff[num++] = readl(&aregs->global.rxq_end_addr);
3265 regs_buff[num++] = readl(&aregs->global.pm_csr);
3266 regs_buff[num++] = adapter->stats.interrupt_status;
3267 regs_buff[num++] = readl(&aregs->global.int_mask);
3268 regs_buff[num++] = readl(&aregs->global.int_alias_clr_en);
3269 regs_buff[num++] = readl(&aregs->global.int_status_alias);
3270 regs_buff[num++] = readl(&aregs->global.sw_reset);
3271 regs_buff[num++] = readl(&aregs->global.slv_timer);
3272 regs_buff[num++] = readl(&aregs->global.msi_config);
3273 regs_buff[num++] = readl(&aregs->global.loopback);
3274 regs_buff[num++] = readl(&aregs->global.watchdog_timer);
3275
3276 /* TXDMA regs */
3277 regs_buff[num++] = readl(&aregs->txdma.csr);
3278 regs_buff[num++] = readl(&aregs->txdma.pr_base_hi);
3279 regs_buff[num++] = readl(&aregs->txdma.pr_base_lo);
3280 regs_buff[num++] = readl(&aregs->txdma.pr_num_des);
3281 regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr);
3282 regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext);
3283 regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr);
3284 regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi);
3285 regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo);
3286 regs_buff[num++] = readl(&aregs->txdma.service_request);
3287 regs_buff[num++] = readl(&aregs->txdma.service_complete);
3288 regs_buff[num++] = readl(&aregs->txdma.cache_rd_index);
3289 regs_buff[num++] = readl(&aregs->txdma.cache_wr_index);
3290 regs_buff[num++] = readl(&aregs->txdma.tx_dma_error);
3291 regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt);
3292 regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt);
3293 regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt);
3294 regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt);
3295 regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt);
3296 regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt);
3297 regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt);
3298 regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt);
3299 regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt);
3300 regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt);
3301 regs_buff[num++] = readl(&aregs->txdma.new_service_complete);
3302 regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt);
3303
3304 /* RXDMA regs */
3305 regs_buff[num++] = readl(&aregs->rxdma.csr);
3306 regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi);
3307 regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo);
3308 regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done);
3309 regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time);
3310 regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr);
3311 regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext);
3312 regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr);
3313 regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi);
3314 regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo);
3315 regs_buff[num++] = readl(&aregs->rxdma.psr_num_des);
3316 regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset);
3317 regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset);
3318 regs_buff[num++] = readl(&aregs->rxdma.psr_access_index);
3319 regs_buff[num++] = readl(&aregs->rxdma.psr_min_des);
3320 regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo);
3321 regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi);
3322 regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des);
3323 regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset);
3324 regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset);
3325 regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index);
3326 regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des);
3327 regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo);
3328 regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi);
3329 regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des);
3330 regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset);
3331 regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset);
3332 regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index);
3333 regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des);
3334}
3335
d2796743
ME
3336static void et131x_get_drvinfo(struct net_device *netdev,
3337 struct ethtool_drvinfo *info)
3338{
3339 struct et131x_adapter *adapter = netdev_priv(netdev);
3340
7826d43f
JP
3341 strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
3342 strlcpy(info->version, DRIVER_VERSION, sizeof(info->version));
3343 strlcpy(info->bus_info, pci_name(adapter->pdev),
3344 sizeof(info->bus_info));
d2796743
ME
3345}
3346
3347static struct ethtool_ops et131x_ethtool_ops = {
3348 .get_settings = et131x_get_settings,
3349 .set_settings = et131x_set_settings,
3350 .get_drvinfo = et131x_get_drvinfo,
3351 .get_regs_len = et131x_get_regs_len,
3352 .get_regs = et131x_get_regs,
242187aa 3353 .get_link = ethtool_op_get_link,
d2796743 3354};
26ef1021 3355
15ae239d 3356/* et131x_hwaddr_init - set up the MAC Address on the ET1310 */
eb7a6ca6 3357static void et131x_hwaddr_init(struct et131x_adapter *adapter)
d2796743
ME
3358{
3359 /* If have our default mac from init and no mac address from
3360 * EEPROM then we need to generate the last octet and set it on the
3361 * device
3362 */
c14d01b8 3363 if (is_zero_ether_addr(adapter->rom_addr)) {
26ef1021 3364 /* We need to randomly generate the last octet so we
d2796743
ME
3365 * decrease our chances of setting the mac address to
3366 * same as another one of our cards in the system
3367 */
3368 get_random_bytes(&adapter->addr[5], 1);
26ef1021 3369 /* We have the default value in the register we are
d2796743
ME
3370 * working with so we need to copy the current
3371 * address into the permanent address
3372 */
3373 memcpy(adapter->rom_addr,
3374 adapter->addr, ETH_ALEN);
3375 } else {
3376 /* We do not have an override address, so set the
3377 * current address to the permanent address and add
3378 * it to the device
3379 */
3380 memcpy(adapter->addr,
3381 adapter->rom_addr, ETH_ALEN);
3382 }
3383}
3384
26ef1021 3385/* et131x_pci_init - initial PCI setup
d2796743
ME
3386 *
3387 * Perform the initial setup of PCI registers and if possible initialise
3388 * the MAC address. At this point the I/O registers have yet to be mapped
3389 */
3390static int et131x_pci_init(struct et131x_adapter *adapter,
12a2f3f3 3391 struct pci_dev *pdev)
d2796743 3392{
d14e3d05 3393 u16 max_payload;
d14e3d05
FR
3394 int i, rc;
3395
3396 rc = et131x_init_eeprom(adapter);
3397 if (rc < 0)
3398 goto out;
3399
532c5f69 3400 if (!pci_is_pcie(pdev)) {
d14e3d05
FR
3401 dev_err(&pdev->dev, "Missing PCIe capabilities\n");
3402 goto err_out;
3403 }
bf3313a1 3404
9db008d0 3405 /* Let's set up the PORT LOGIC Register. */
d2796743
ME
3406
3407 /* Program the Ack/Nak latency and replay timers */
9db008d0 3408 max_payload = pdev->pcie_mpss;
d2796743
ME
3409
3410 if (max_payload < 2) {
3411 static const u16 acknak[2] = { 0x76, 0xD0 };
3412 static const u16 replay[2] = { 0x1E0, 0x2ED };
3413
3414 if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK,
3415 acknak[max_payload])) {
3416 dev_err(&pdev->dev,
3417 "Could not write PCI config space for ACK/NAK\n");
d14e3d05 3418 goto err_out;
d2796743
ME
3419 }
3420 if (pci_write_config_word(pdev, ET1310_PCI_REPLAY,
3421 replay[max_payload])) {
3422 dev_err(&pdev->dev,
3423 "Could not write PCI config space for Replay Timer\n");
d14e3d05 3424 goto err_out;
d2796743
ME
3425 }
3426 }
3427
3428 /* l0s and l1 latency timers. We are using default values.
3429 * Representing 001 for L0s and 010 for L1
3430 */
3431 if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) {
3432 dev_err(&pdev->dev,
3433 "Could not write PCI config space for Latency Timers\n");
d14e3d05 3434 goto err_out;
d2796743
ME
3435 }
3436
3437 /* Change the max read size to 2k */
9db008d0 3438 if (pcie_set_readrq(pdev, 2048)) {
d2796743 3439 dev_err(&pdev->dev,
532c5f69 3440 "Couldn't change PCI config space for Max read size\n");
d14e3d05 3441 goto err_out;
d2796743
ME
3442 }
3443
3444 /* Get MAC address from config space if an eeprom exists, otherwise
3445 * the MAC address there will not be valid
3446 */
3447 if (!adapter->has_eeprom) {
3448 et131x_hwaddr_init(adapter);
3449 return 0;
3450 }
3451
3452 for (i = 0; i < ETH_ALEN; i++) {
3453 if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i,
3454 adapter->rom_addr + i)) {
3455 dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n");
d14e3d05 3456 goto err_out;
d2796743
ME
3457 }
3458 }
015851c3 3459 ether_addr_copy(adapter->addr, adapter->rom_addr);
d14e3d05
FR
3460out:
3461 return rc;
3462err_out:
3463 rc = -EIO;
3464 goto out;
d2796743
ME
3465}
3466
26ef1021 3467/* et131x_error_timer_handler
d2796743
ME
3468 * @data: timer-specific variable; here a pointer to our adapter structure
3469 *
3470 * The routine called when the error timer expires, to track the number of
3471 * recurring errors.
3472 */
eb7a6ca6 3473static void et131x_error_timer_handler(unsigned long data)
d2796743
ME
3474{
3475 struct et131x_adapter *adapter = (struct et131x_adapter *) data;
3476 struct phy_device *phydev = adapter->phydev;
3477
3478 if (et1310_in_phy_coma(adapter)) {
3479 /* Bring the device immediately out of coma, to
3480 * prevent it from sleeping indefinitely, this
26ef1021
ME
3481 * mechanism could be improved!
3482 */
d2796743
ME
3483 et1310_disable_phy_coma(adapter);
3484 adapter->boot_coma = 20;
3485 } else {
3486 et1310_update_macstat_host_counters(adapter);
3487 }
3488
3489 if (!phydev->link && adapter->boot_coma < 11)
3490 adapter->boot_coma++;
3491
3492 if (adapter->boot_coma == 10) {
3493 if (!phydev->link) {
3494 if (!et1310_in_phy_coma(adapter)) {
3495 /* NOTE - This was originally a 'sync with
3496 * interrupt'. How to do that under Linux?
3497 */
3498 et131x_enable_interrupts(adapter);
3499 et1310_enable_phy_coma(adapter);
3500 }
3501 }
3502 }
3503
3504 /* This is a periodic timer, so reschedule */
242187aa 3505 mod_timer(&adapter->error_timer, jiffies + TX_ERROR_PERIOD * HZ / 1000);
d2796743
ME
3506}
3507
15ae239d 3508/* et131x_adapter_memory_free - Free all memory allocated for use by Tx & Rx */
d959df0a
ME
3509static void et131x_adapter_memory_free(struct et131x_adapter *adapter)
3510{
d959df0a
ME
3511 et131x_tx_dma_memory_free(adapter);
3512 et131x_rx_dma_memory_free(adapter);
3513}
3514
26ef1021 3515/* et131x_adapter_memory_alloc
d2796743
ME
3516 * Allocate all the memory blocks for send, receive and others.
3517 */
eb7a6ca6 3518static int et131x_adapter_memory_alloc(struct et131x_adapter *adapter)
d2796743
ME
3519{
3520 int status;
3521
3522 /* Allocate memory for the Tx Ring */
3523 status = et131x_tx_dma_memory_alloc(adapter);
12a2f3f3 3524 if (status) {
d2796743
ME
3525 dev_err(&adapter->pdev->dev,
3526 "et131x_tx_dma_memory_alloc FAILED\n");
a9f48883 3527 et131x_tx_dma_memory_free(adapter);
d2796743
ME
3528 return status;
3529 }
3530 /* Receive buffer memory allocation */
3531 status = et131x_rx_dma_memory_alloc(adapter);
12a2f3f3 3532 if (status) {
d2796743
ME
3533 dev_err(&adapter->pdev->dev,
3534 "et131x_rx_dma_memory_alloc FAILED\n");
a9f48883 3535 et131x_adapter_memory_free(adapter);
d2796743
ME
3536 return status;
3537 }
3538
3539 /* Init receive data structures */
3540 status = et131x_init_recv(adapter);
d959df0a 3541 if (status) {
12a2f3f3 3542 dev_err(&adapter->pdev->dev, "et131x_init_recv FAILED\n");
d959df0a 3543 et131x_adapter_memory_free(adapter);
d2796743
ME
3544 }
3545 return status;
3546}
3547
d2796743
ME
3548static void et131x_adjust_link(struct net_device *netdev)
3549{
3550 struct et131x_adapter *adapter = netdev_priv(netdev);
3551 struct phy_device *phydev = adapter->phydev;
3552
b96ab7cc
ME
3553 if (!phydev)
3554 return;
3555 if (phydev->link == adapter->link)
3556 return;
6903098c 3557
b96ab7cc
ME
3558 /* Check to see if we are in coma mode and if
3559 * so, disable it because we will not be able
3560 * to read PHY values until we are out.
3561 */
3562 if (et1310_in_phy_coma(adapter))
3563 et1310_disable_phy_coma(adapter);
6903098c 3564
b96ab7cc
ME
3565 adapter->link = phydev->link;
3566 phy_print_status(phydev);
6903098c 3567
b96ab7cc
ME
3568 if (phydev->link) {
3569 adapter->boot_coma = 20;
76af0140 3570 if (phydev->speed == SPEED_10) {
b96ab7cc
ME
3571 u16 register18;
3572
3573 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3574 &register18);
3575 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
3576 register18 | 0x4);
3577 et131x_mii_write(adapter, PHY_INDEX_REG,
3578 register18 | 0x8402);
3579 et131x_mii_write(adapter, PHY_DATA_REG,
3580 register18 | 511);
3581 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
3582 register18);
3583 }
6903098c 3584
b96ab7cc 3585 et1310_config_flow_control(adapter);
d2796743 3586
76af0140 3587 if (phydev->speed == SPEED_1000 &&
b96ab7cc
ME
3588 adapter->registry_jumbo_packet > 2048) {
3589 u16 reg;
d2796743 3590
b96ab7cc
ME
3591 et131x_mii_read(adapter, PHY_CONFIG, &reg);
3592 reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH;
3593 reg |= ET_PHY_CONFIG_FIFO_DEPTH_32;
3594 et131x_mii_write(adapter, PHY_CONFIG, reg);
3595 }
d2796743 3596
b96ab7cc
ME
3597 et131x_set_rx_dma_timer(adapter);
3598 et1310_config_mac_regs2(adapter);
3599 } else {
3600 adapter->boot_coma = 0;
d2796743 3601
b96ab7cc 3602 if (phydev->speed == SPEED_10) {
b96ab7cc
ME
3603 u16 register18;
3604
3605 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3606 &register18);
3607 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
3608 register18 | 0x4);
3609 et131x_mii_write(adapter, PHY_INDEX_REG,
3610 register18 | 0x8402);
3611 et131x_mii_write(adapter, PHY_DATA_REG,
3612 register18 | 511);
3613 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
3614 register18);
3615 }
d2796743 3616
b96ab7cc
ME
3617 /* Free the packets being actively sent & stopped */
3618 et131x_free_busy_send_packets(adapter);
d2796743 3619
b96ab7cc
ME
3620 /* Re-initialize the send structures */
3621 et131x_init_send(adapter);
3622
3623 /* Bring the device back to the state it was during
3624 * init prior to autonegotiation being complete. This
3625 * way, when we get the auto-neg complete interrupt,
3626 * we can complete init by calling config_mac_regs2.
3627 */
3628 et131x_soft_reset(adapter);
3629
3630 /* Setup ET1310 as per the documentation */
3631 et131x_adapter_setup(adapter);
d2796743 3632
b96ab7cc
ME
3633 /* perform reset of tx/rx */
3634 et131x_disable_txrx(netdev);
3635 et131x_enable_txrx(netdev);
d2796743
ME
3636 }
3637}
3638
3639static int et131x_mii_probe(struct net_device *netdev)
3640{
3641 struct et131x_adapter *adapter = netdev_priv(netdev);
3642 struct phy_device *phydev = NULL;
3643
3644 phydev = phy_find_first(adapter->mii_bus);
3645 if (!phydev) {
3646 dev_err(&adapter->pdev->dev, "no PHY found\n");
3647 return -ENODEV;
3648 }
3649
3650 phydev = phy_connect(netdev, dev_name(&phydev->dev),
f9a8f83b 3651 &et131x_adjust_link, PHY_INTERFACE_MODE_MII);
d2796743
ME
3652
3653 if (IS_ERR(phydev)) {
3654 dev_err(&adapter->pdev->dev, "Could not attach to PHY\n");
3655 return PTR_ERR(phydev);
3656 }
3657
3658 phydev->supported &= (SUPPORTED_10baseT_Half
3659 | SUPPORTED_10baseT_Full
3660 | SUPPORTED_100baseT_Half
3661 | SUPPORTED_100baseT_Full
3662 | SUPPORTED_Autoneg
3663 | SUPPORTED_MII
3664 | SUPPORTED_TP);
3665
3666 if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST)
3667 phydev->supported |= SUPPORTED_1000baseT_Full;
3668
3669 phydev->advertising = phydev->supported;
3670 adapter->phydev = phydev;
3671
12a2f3f3
ME
3672 dev_info(&adapter->pdev->dev,
3673 "attached PHY driver [%s] (mii_bus:phy_addr=%s)\n",
d2796743
ME
3674 phydev->drv->name, dev_name(&phydev->dev));
3675
3676 return 0;
3677}
3678
26ef1021 3679/* et131x_adapter_init
d2796743
ME
3680 *
3681 * Initialize the data structures for the et131x_adapter object and link
3682 * them together with the platform provided device structures.
3683 */
3684static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev,
12a2f3f3 3685 struct pci_dev *pdev)
d2796743
ME
3686{
3687 static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
3688
3689 struct et131x_adapter *adapter;
3690
3691 /* Allocate private adapter struct and copy in relevant information */
3692 adapter = netdev_priv(netdev);
3693 adapter->pdev = pci_dev_get(pdev);
3694 adapter->netdev = netdev;
3695
d2796743 3696 /* Initialize spinlocks here */
d2796743
ME
3697 spin_lock_init(&adapter->tcb_send_qlock);
3698 spin_lock_init(&adapter->tcb_ready_qlock);
3699 spin_lock_init(&adapter->send_hw_lock);
3700 spin_lock_init(&adapter->rcv_lock);
d2796743 3701 spin_lock_init(&adapter->fbr_lock);
d2796743
ME
3702
3703 adapter->registry_jumbo_packet = 1514; /* 1514-9216 */
3704
3705 /* Set the MAC address to a default */
015851c3 3706 ether_addr_copy(adapter->addr, default_mac);
d2796743
ME
3707
3708 return adapter;
3709}
3710
26ef1021 3711/* et131x_pci_remove
d2796743
ME
3712 *
3713 * Registered in the pci_driver structure, this function is called when the
3714 * PCI subsystem detects that a PCI device which matches the information
3715 * contained in the pci_device_id table has been removed.
3716 */
596c5dd3 3717static void et131x_pci_remove(struct pci_dev *pdev)
d2796743
ME
3718{
3719 struct net_device *netdev = pci_get_drvdata(pdev);
3720 struct et131x_adapter *adapter = netdev_priv(netdev);
3721
3722 unregister_netdev(netdev);
fa9f0a65 3723 phy_disconnect(adapter->phydev);
d2796743 3724 mdiobus_unregister(adapter->mii_bus);
ddd4bd3e 3725 cancel_work_sync(&adapter->task);
d2796743
ME
3726 kfree(adapter->mii_bus->irq);
3727 mdiobus_free(adapter->mii_bus);
3728
3729 et131x_adapter_memory_free(adapter);
3730 iounmap(adapter->regs);
3731 pci_dev_put(pdev);
3732
3733 free_netdev(netdev);
3734 pci_release_regions(pdev);
3735 pci_disable_device(pdev);
3736}
3737
15ae239d 3738/* et131x_up - Bring up a device for use. */
eb7a6ca6 3739static void et131x_up(struct net_device *netdev)
a4d444bd
ME
3740{
3741 struct et131x_adapter *adapter = netdev_priv(netdev);
3742
3743 et131x_enable_txrx(netdev);
3744 phy_start(adapter->phydev);
3745}
3746
15ae239d 3747/* et131x_down - Bring down the device */
eb7a6ca6 3748static void et131x_down(struct net_device *netdev)
a4d444bd
ME
3749{
3750 struct et131x_adapter *adapter = netdev_priv(netdev);
3751
3752 /* Save the timestamp for the TX watchdog, prevent a timeout */
3753 netdev->trans_start = jiffies;
3754
3755 phy_stop(adapter->phydev);
3756 et131x_disable_txrx(netdev);
3757}
3758
d2796743
ME
3759#ifdef CONFIG_PM_SLEEP
3760static int et131x_suspend(struct device *dev)
3761{
3762 struct pci_dev *pdev = to_pci_dev(dev);
3763 struct net_device *netdev = pci_get_drvdata(pdev);
3764
3765 if (netif_running(netdev)) {
3766 netif_device_detach(netdev);
3767 et131x_down(netdev);
3768 pci_save_state(pdev);
3769 }
3770
3771 return 0;
3772}
3773
3774static int et131x_resume(struct device *dev)
3775{
3776 struct pci_dev *pdev = to_pci_dev(dev);
3777 struct net_device *netdev = pci_get_drvdata(pdev);
3778
3779 if (netif_running(netdev)) {
3780 pci_restore_state(pdev);
3781 et131x_up(netdev);
3782 netif_device_attach(netdev);
3783 }
3784
3785 return 0;
3786}
3787
2e9ff8d9
ME
3788static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume);
3789#define ET131X_PM_OPS (&et131x_pm_ops)
3790#else
3791#define ET131X_PM_OPS NULL
3792#endif
3793
26ef1021 3794/* et131x_isr - The Interrupt Service Routine for the driver.
d2796743
ME
3795 * @irq: the IRQ on which the interrupt was received.
3796 * @dev_id: device-specific info (here a pointer to a net_device struct)
3797 *
3798 * Returns a value indicating if the interrupt was handled.
3799 */
c0594ee9 3800static irqreturn_t et131x_isr(int irq, void *dev_id)
d2796743
ME
3801{
3802 bool handled = true;
3803 struct net_device *netdev = (struct net_device *)dev_id;
8f7fa96a
ZG
3804 struct et131x_adapter *adapter = netdev_priv(netdev);
3805 struct rx_ring *rx_ring = &adapter->rx_ring;
76981cf1 3806 struct tx_ring *tx_ring = &adapter->tx_ring;
d2796743
ME
3807 u32 status;
3808
3809 if (!netif_device_present(netdev)) {
3810 handled = false;
3811 goto out;
3812 }
3813
d2796743
ME
3814 /* If the adapter is in low power state, then it should not
3815 * recognize any interrupt
3816 */
3817
3818 /* Disable Device Interrupts */
3819 et131x_disable_interrupts(adapter);
3820
3821 /* Get a copy of the value in the interrupt status register
3822 * so we can process the interrupting section
3823 */
3824 status = readl(&adapter->regs->global.int_status);
3825
3826 if (adapter->flowcontrol == FLOW_TXONLY ||
3827 adapter->flowcontrol == FLOW_BOTH) {
3828 status &= ~INT_MASK_ENABLE;
3829 } else {
3830 status &= ~INT_MASK_ENABLE_NO_FLOW;
3831 }
3832
3833 /* Make sure this is our interrupt */
3834 if (!status) {
3835 handled = false;
3836 et131x_enable_interrupts(adapter);
3837 goto out;
3838 }
3839
3840 /* This is our interrupt, so process accordingly */
3841
3842 if (status & ET_INTR_WATCHDOG) {
76981cf1 3843 struct tcb *tcb = tx_ring->send_head;
d2796743
ME
3844
3845 if (tcb)
3846 if (++tcb->stale > 1)
3847 status |= ET_INTR_TXDMA_ISR;
3848
8f7fa96a 3849 if (rx_ring->unfinished_receives)
d2796743
ME
3850 status |= ET_INTR_RXDMA_XFR_DONE;
3851 else if (tcb == NULL)
3852 writel(0, &adapter->regs->global.watchdog_timer);
3853
3854 status &= ~ET_INTR_WATCHDOG;
3855 }
3856
12a2f3f3 3857 if (!status) {
d2796743
ME
3858 /* This interrupt has in some way been "handled" by
3859 * the ISR. Either it was a spurious Rx interrupt, or
3860 * it was a Tx interrupt that has been filtered by
3861 * the ISR.
3862 */
3863 et131x_enable_interrupts(adapter);
3864 goto out;
3865 }
3866
3867 /* We need to save the interrupt status value for use in our
3868 * DPC. We will clear the software copy of that in that
3869 * routine.
3870 */
3871 adapter->stats.interrupt_status = status;
3872
3873 /* Schedule the ISR handler as a bottom-half task in the
3874 * kernel's tq_immediate queue, and mark the queue for
3875 * execution
3876 */
3877 schedule_work(&adapter->task);
3878out:
3879 return IRQ_RETVAL(handled);
3880}
3881
26ef1021 3882/* et131x_isr_handler - The ISR handler
d2796743
ME
3883 *
3884 * scheduled to run in a deferred context by the ISR. This is where the ISR's
3885 * work actually gets done.
3886 */
eb7a6ca6 3887static void et131x_isr_handler(struct work_struct *work)
d2796743
ME
3888{
3889 struct et131x_adapter *adapter =
3890 container_of(work, struct et131x_adapter, task);
3891 u32 status = adapter->stats.interrupt_status;
3892 struct address_map __iomem *iomem = adapter->regs;
3893
26ef1021 3894 /* These first two are by far the most common. Once handled, we clear
d2796743
ME
3895 * their two bits in the status word. If the word is now zero, we
3896 * exit.
3897 */
3898 /* Handle all the completed Transmit interrupts */
3899 if (status & ET_INTR_TXDMA_ISR)
3900 et131x_handle_send_interrupt(adapter);
3901
3902 /* Handle all the completed Receives interrupts */
3903 if (status & ET_INTR_RXDMA_XFR_DONE)
3904 et131x_handle_recv_interrupt(adapter);
3905
6ff6280f 3906 status &= ~(ET_INTR_TXDMA_ERR | ET_INTR_RXDMA_XFR_DONE);
d2796743 3907
15ffde4d
ME
3908 if (!status)
3909 goto out;
d2796743 3910
15ffde4d
ME
3911 /* Handle the TXDMA Error interrupt */
3912 if (status & ET_INTR_TXDMA_ERR) {
15ffde4d 3913 /* Following read also clears the register (COR) */
12a2f3f3 3914 u32 txdma_err = readl(&iomem->txdma.tx_dma_error);
d2796743 3915
15ffde4d
ME
3916 dev_warn(&adapter->pdev->dev,
3917 "TXDMA_ERR interrupt, error = %d\n",
3918 txdma_err);
3919 }
d2796743 3920
15ffde4d
ME
3921 /* Handle Free Buffer Ring 0 and 1 Low interrupt */
3922 if (status & (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) {
26ef1021 3923 /* This indicates the number of unused buffers in RXDMA free
15ffde4d
ME
3924 * buffer ring 0 is <= the limit you programmed. Free buffer
3925 * resources need to be returned. Free buffers are consumed as
3926 * packets are passed from the network to the host. The host
3927 * becomes aware of the packets from the contents of the packet
3928 * status ring. This ring is queried when the packet done
3929 * interrupt occurs. Packets are then passed to the OS. When
3930 * the OS is done with the packets the resources can be
3931 * returned to the ET1310 for re-use. This interrupt is one
3932 * method of returning resources.
3933 */
d2796743 3934
26ef1021 3935 /* If the user has flow control on, then we will
15ffde4d
ME
3936 * send a pause packet, otherwise just exit
3937 */
3938 if (adapter->flowcontrol == FLOW_TXONLY ||
3939 adapter->flowcontrol == FLOW_BOTH) {
3940 u32 pm_csr;
d2796743 3941
26ef1021 3942 /* Tell the device to send a pause packet via the back
15ffde4d 3943 * pressure register (bp req and bp xon/xoff)
d2796743 3944 */
15ffde4d
ME
3945 pm_csr = readl(&iomem->global.pm_csr);
3946 if (!et1310_in_phy_coma(adapter))
3947 writel(3, &iomem->txmac.bp_ctrl);
d2796743 3948 }
15ffde4d 3949 }
d2796743 3950
15ffde4d
ME
3951 /* Handle Packet Status Ring Low Interrupt */
3952 if (status & ET_INTR_RXDMA_STAT_LOW) {
26ef1021 3953 /* Same idea as with the two Free Buffer Rings. Packets going
15ffde4d 3954 * from the network to the host each consume a free buffer
868bf442 3955 * resource and a packet status resource. These resources are
15ffde4d
ME
3956 * passed to the OS. When the OS is done with the resources,
3957 * they need to be returned to the ET1310. This is one method
3958 * of returning the resources.
3959 */
3960 }
d2796743 3961
15ffde4d
ME
3962 /* Handle RXDMA Error Interrupt */
3963 if (status & ET_INTR_RXDMA_ERR) {
26ef1021 3964 /* The rxdma_error interrupt is sent when a time-out on a
15ffde4d
ME
3965 * request issued by the JAGCore has occurred or a completion is
3966 * returned with an un-successful status. In both cases the
3967 * request is considered complete. The JAGCore will
3968 * automatically re-try the request in question. Normally
3969 * information on events like these are sent to the host using
3970 * the "Advanced Error Reporting" capability. This interrupt is
3971 * another way of getting similar information. The only thing
3972 * required is to clear the interrupt by reading the ISR in the
3973 * global resources. The JAGCore will do a re-try on the
3974 * request. Normally you should never see this interrupt. If
3975 * you start to see this interrupt occurring frequently then
3976 * something bad has occurred. A reset might be the thing to do.
3977 */
3978 /* TRAP();*/
d2796743 3979
15ffde4d
ME
3980 dev_warn(&adapter->pdev->dev,
3981 "RxDMA_ERR interrupt, error %x\n",
3982 readl(&iomem->txmac.tx_test));
3983 }
d2796743 3984
15ffde4d
ME
3985 /* Handle the Wake on LAN Event */
3986 if (status & ET_INTR_WOL) {
26ef1021 3987 /* This is a secondary interrupt for wake on LAN. The driver
15ffde4d
ME
3988 * should never see this, if it does, something serious is
3989 * wrong. We will TRAP the message when we are in DBG mode,
3990 * otherwise we will ignore it.
3991 */
3992 dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n");
3993 }
d2796743 3994
15ffde4d
ME
3995 /* Let's move on to the TxMac */
3996 if (status & ET_INTR_TXMAC) {
3997 u32 err = readl(&iomem->txmac.err);
d2796743 3998
26ef1021 3999 /* When any of the errors occur and TXMAC generates an
15ffde4d
ME
4000 * interrupt to report these errors, it usually means that
4001 * TXMAC has detected an error in the data stream retrieved
4002 * from the on-chip Tx Q. All of these errors are catastrophic
4003 * and TXMAC won't be able to recover data when these errors
4004 * occur. In a nutshell, the whole Tx path will have to be reset
4005 * and re-configured afterwards.
4006 */
4007 dev_warn(&adapter->pdev->dev,
4008 "TXMAC interrupt, error 0x%08x\n",
4009 err);
d2796743 4010
26ef1021 4011 /* If we are debugging, we want to see this error, otherwise we
15ffde4d
ME
4012 * just want the device to be reset and continue
4013 */
4014 }
d2796743 4015
15ffde4d
ME
4016 /* Handle RXMAC Interrupt */
4017 if (status & ET_INTR_RXMAC) {
26ef1021 4018 /* These interrupts are catastrophic to the device, what we need
15ffde4d
ME
4019 * to do is disable the interrupts and set the flag to cause us
4020 * to reset so we can solve this issue.
4021 */
c655dee9 4022 /* MP_SET_FLAG( adapter, FMP_ADAPTER_HARDWARE_ERROR); */
d2796743 4023
15ffde4d
ME
4024 dev_warn(&adapter->pdev->dev,
4025 "RXMAC interrupt, error 0x%08x. Requesting reset\n",
4026 readl(&iomem->rxmac.err_reg));
d2796743 4027
15ffde4d
ME
4028 dev_warn(&adapter->pdev->dev,
4029 "Enable 0x%08x, Diag 0x%08x\n",
4030 readl(&iomem->rxmac.ctrl),
4031 readl(&iomem->rxmac.rxq_diag));
d2796743 4032
26ef1021 4033 /* If we are debugging, we want to see this error, otherwise we
15ffde4d
ME
4034 * just want the device to be reset and continue
4035 */
4036 }
d2796743 4037
15ffde4d
ME
4038 /* Handle MAC_STAT Interrupt */
4039 if (status & ET_INTR_MAC_STAT) {
26ef1021 4040 /* This means at least one of the un-masked counters in the
15ffde4d
ME
4041 * MAC_STAT block has rolled over. Use this to maintain the top,
4042 * software managed bits of the counter(s).
4043 */
4044 et1310_handle_macstat_interrupt(adapter);
d2796743 4045 }
15ffde4d
ME
4046
4047 /* Handle SLV Timeout Interrupt */
4048 if (status & ET_INTR_SLV_TIMEOUT) {
26ef1021 4049 /* This means a timeout has occurred on a read or write request
15ffde4d
ME
4050 * to one of the JAGCore registers. The Global Resources block
4051 * has terminated the request and on a read request, returned a
4052 * "fake" value. The most likely reasons are: Bad Address or the
4053 * addressed module is in a power-down state and can't respond.
4054 */
4055 }
4056out:
d2796743
ME
4057 et131x_enable_interrupts(adapter);
4058}
4059
15ae239d 4060/* et131x_stats - Return the current device statistics */
d2796743
ME
4061static struct net_device_stats *et131x_stats(struct net_device *netdev)
4062{
4063 struct et131x_adapter *adapter = netdev_priv(netdev);
1f765d9f 4064 struct net_device_stats *stats = &adapter->netdev->stats;
d2796743
ME
4065 struct ce_stats *devstat = &adapter->stats;
4066
4067 stats->rx_errors = devstat->rx_length_errs +
4068 devstat->rx_align_errs +
4069 devstat->rx_crc_errs +
4070 devstat->rx_code_violations +
4071 devstat->rx_other_errs;
4072 stats->tx_errors = devstat->tx_max_pkt_errs;
4073 stats->multicast = devstat->multicast_pkts_rcvd;
4074 stats->collisions = devstat->tx_collisions;
4075
4076 stats->rx_length_errors = devstat->rx_length_errs;
4077 stats->rx_over_errors = devstat->rx_overflows;
4078 stats->rx_crc_errors = devstat->rx_crc_errs;
4079
4080 /* NOTE: These stats don't have corresponding values in CE_STATS,
4081 * so we're going to have to update these directly from within the
4082 * TX/RX code
4083 */
4084 /* stats->rx_bytes = 20; devstat->; */
4085 /* stats->tx_bytes = 20; devstat->; */
4086 /* stats->rx_dropped = devstat->; */
4087 /* stats->tx_dropped = devstat->; */
4088
4089 /* NOTE: Not used, can't find analogous statistics */
4090 /* stats->rx_frame_errors = devstat->; */
4091 /* stats->rx_fifo_errors = devstat->; */
4092 /* stats->rx_missed_errors = devstat->; */
4093
4094 /* stats->tx_aborted_errors = devstat->; */
4095 /* stats->tx_carrier_errors = devstat->; */
4096 /* stats->tx_fifo_errors = devstat->; */
4097 /* stats->tx_heartbeat_errors = devstat->; */
4098 /* stats->tx_window_errors = devstat->; */
4099 return stats;
4100}
4101
15ae239d 4102/* et131x_open - Open the device for use. */
eb7a6ca6 4103static int et131x_open(struct net_device *netdev)
d2796743 4104{
d2796743 4105 struct et131x_adapter *adapter = netdev_priv(netdev);
5f3eb881
FR
4106 struct pci_dev *pdev = adapter->pdev;
4107 unsigned int irq = pdev->irq;
4108 int result;
d2796743
ME
4109
4110 /* Start the timer to track NIC errors */
4111 init_timer(&adapter->error_timer);
4112 adapter->error_timer.expires = jiffies + TX_ERROR_PERIOD * HZ / 1000;
4113 adapter->error_timer.function = et131x_error_timer_handler;
4114 adapter->error_timer.data = (unsigned long)adapter;
4115 add_timer(&adapter->error_timer);
4116
bf3313a1 4117 result = request_irq(irq, et131x_isr,
4118 IRQF_SHARED, netdev->name, netdev);
d2796743 4119 if (result) {
5f3eb881 4120 dev_err(&pdev->dev, "could not register IRQ %d\n", irq);
d2796743
ME
4121 return result;
4122 }
4123
c655dee9 4124 adapter->flags |= FMP_ADAPTER_INTERRUPT_IN_USE;
d2796743
ME
4125
4126 et131x_up(netdev);
4127
4128 return result;
4129}
4130
15ae239d 4131/* et131x_close - Close the device */
eb7a6ca6 4132static int et131x_close(struct net_device *netdev)
d2796743
ME
4133{
4134 struct et131x_adapter *adapter = netdev_priv(netdev);
4135
4136 et131x_down(netdev);
4137
c655dee9 4138 adapter->flags &= ~FMP_ADAPTER_INTERRUPT_IN_USE;
5f3eb881 4139 free_irq(adapter->pdev->irq, netdev);
d2796743
ME
4140
4141 /* Stop the error timer */
4142 return del_timer_sync(&adapter->error_timer);
4143}
4144
26ef1021 4145/* et131x_ioctl - The I/O Control handler for the driver
d2796743
ME
4146 * @netdev: device on which the control request is being made
4147 * @reqbuf: a pointer to the IOCTL request buffer
4148 * @cmd: the IOCTL command code
d2796743 4149 */
09a3fc2b
ME
4150static int et131x_ioctl(struct net_device *netdev, struct ifreq *reqbuf,
4151 int cmd)
d2796743
ME
4152{
4153 struct et131x_adapter *adapter = netdev_priv(netdev);
4154
4155 if (!adapter->phydev)
4156 return -EINVAL;
4157
4158 return phy_mii_ioctl(adapter->phydev, reqbuf, cmd);
4159}
4160
26ef1021 4161/* et131x_set_packet_filter - Configures the Rx Packet filtering on the device
d2796743
ME
4162 * @adapter: pointer to our private adapter structure
4163 *
4164 * FIXME: lot of dups with MAC code
d2796743
ME
4165 */
4166static int et131x_set_packet_filter(struct et131x_adapter *adapter)
4167{
834d0ee3 4168 int filter = adapter->packet_filter;
d2796743
ME
4169 u32 ctrl;
4170 u32 pf_ctrl;
4171
4172 ctrl = readl(&adapter->regs->rxmac.ctrl);
4173 pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl);
4174
4175 /* Default to disabled packet filtering. Enable it in the individual
4176 * case statements that require the device to filter something
4177 */
4178 ctrl |= 0x04;
4179
4180 /* Set us to be in promiscuous mode so we receive everything, this
4181 * is also true when we get a packet filter of 0
4182 */
4183 if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0)
4184 pf_ctrl &= ~7; /* Clear filter bits */
4185 else {
26ef1021 4186 /* Set us up with Multicast packet filtering. Three cases are
d2796743
ME
4187 * possible - (1) we have a multi-cast list, (2) we receive ALL
4188 * multicast entries or (3) we receive none.
4189 */
4190 if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST)
4191 pf_ctrl &= ~2; /* Multicast filter bit */
4192 else {
4193 et1310_setup_device_for_multicast(adapter);
4194 pf_ctrl |= 2;
4195 ctrl &= ~0x04;
4196 }
4197
4198 /* Set us up with Unicast packet filtering */
4199 if (filter & ET131X_PACKET_TYPE_DIRECTED) {
4200 et1310_setup_device_for_unicast(adapter);
4201 pf_ctrl |= 4;
4202 ctrl &= ~0x04;
4203 }
4204
4205 /* Set us up with Broadcast packet filtering */
4206 if (filter & ET131X_PACKET_TYPE_BROADCAST) {
4207 pf_ctrl |= 1; /* Broadcast filter bit */
4208 ctrl &= ~0x04;
4209 } else
4210 pf_ctrl &= ~1;
4211
4212 /* Setup the receive mac configuration registers - Packet
4213 * Filter control + the enable / disable for packet filter
4214 * in the control reg.
4215 */
4216 writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl);
4217 writel(ctrl, &adapter->regs->rxmac.ctrl);
4218 }
8ea6cdf5 4219 return 0;
d2796743
ME
4220}
4221
15ae239d 4222/* et131x_multicast - The handler to configure multicasting on the interface */
d2796743
ME
4223static void et131x_multicast(struct net_device *netdev)
4224{
4225 struct et131x_adapter *adapter = netdev_priv(netdev);
834d0ee3 4226 int packet_filter;
d2796743
ME
4227 struct netdev_hw_addr *ha;
4228 int i;
4229
d2796743
ME
4230 /* Before we modify the platform-independent filter flags, store them
4231 * locally. This allows us to determine if anything's changed and if
4232 * we even need to bother the hardware
4233 */
4234 packet_filter = adapter->packet_filter;
4235
4236 /* Clear the 'multicast' flag locally; because we only have a single
4237 * flag to check multicast, and multiple multicast addresses can be
4238 * set, this is the easiest way to determine if more than one
4239 * multicast address is being set.
4240 */
4241 packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
4242
4243 /* Check the net_device flags and set the device independent flags
4244 * accordingly
4245 */
4246
4247 if (netdev->flags & IFF_PROMISC)
4248 adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS;
4249 else
4250 adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS;
4251
4252 if (netdev->flags & IFF_ALLMULTI)
4253 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
4254
4255 if (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST)
4256 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
4257
4258 if (netdev_mc_count(netdev) < 1) {
4259 adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST;
4260 adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
4261 } else
4262 adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST;
4263
4264 /* Set values in the private adapter struct */
4265 i = 0;
4266 netdev_for_each_mc_addr(ha, netdev) {
4267 if (i == NIC_MAX_MCAST_LIST)
4268 break;
4269 memcpy(adapter->multicast_list[i++], ha->addr, ETH_ALEN);
4270 }
4271 adapter->multicast_addr_count = i;
4272
4273 /* Are the new flags different from the previous ones? If not, then no
4274 * action is required
4275 *
4276 * NOTE - This block will always update the multicast_list with the
4277 * hardware, even if the addresses aren't the same.
4278 */
15ae239d 4279 if (packet_filter != adapter->packet_filter)
d2796743 4280 et131x_set_packet_filter(adapter);
d2796743
ME
4281}
4282
15ae239d 4283/* et131x_tx - The handler to tx a packet on the device */
d2796743
ME
4284static int et131x_tx(struct sk_buff *skb, struct net_device *netdev)
4285{
4286 int status = 0;
06709e96 4287 struct et131x_adapter *adapter = netdev_priv(netdev);
76981cf1 4288 struct tx_ring *tx_ring = &adapter->tx_ring;
06709e96
ME
4289
4290 /* stop the queue if it's getting full */
76981cf1 4291 if (tx_ring->used >= NUM_TCB - 1 && !netif_queue_stopped(netdev))
06709e96 4292 netif_stop_queue(netdev);
d2796743
ME
4293
4294 /* Save the timestamp for the TX timeout watchdog */
4295 netdev->trans_start = jiffies;
4296
4297 /* Call the device-specific data Tx routine */
4298 status = et131x_send_packets(skb, netdev);
4299
4300 /* Check status and manage the netif queue if necessary */
4301 if (status != 0) {
09a3fc2b 4302 if (status == -ENOMEM)
d2796743 4303 status = NETDEV_TX_BUSY;
09a3fc2b 4304 else
d2796743 4305 status = NETDEV_TX_OK;
d2796743
ME
4306 }
4307 return status;
4308}
4309
26ef1021 4310/* et131x_tx_timeout - Timeout handler
d2796743
ME
4311 *
4312 * The handler called when a Tx request times out. The timeout period is
4313 * specified by the 'tx_timeo" element in the net_device structure (see
4314 * et131x_alloc_device() to see how this value is set).
4315 */
4316static void et131x_tx_timeout(struct net_device *netdev)
4317{
4318 struct et131x_adapter *adapter = netdev_priv(netdev);
76981cf1 4319 struct tx_ring *tx_ring = &adapter->tx_ring;
d2796743
ME
4320 struct tcb *tcb;
4321 unsigned long flags;
4322
4323 /* If the device is closed, ignore the timeout */
c655dee9 4324 if (~(adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE))
d2796743
ME
4325 return;
4326
4327 /* Any nonrecoverable hardware error?
4328 * Checks adapter->flags for any failure in phy reading
4329 */
c655dee9 4330 if (adapter->flags & FMP_ADAPTER_NON_RECOVER_ERROR)
d2796743
ME
4331 return;
4332
4333 /* Hardware failure? */
c655dee9 4334 if (adapter->flags & FMP_ADAPTER_HARDWARE_ERROR) {
d2796743
ME
4335 dev_err(&adapter->pdev->dev, "hardware error - reset\n");
4336 return;
4337 }
4338
4339 /* Is send stuck? */
4340 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
4341
76981cf1 4342 tcb = tx_ring->send_head;
d2796743
ME
4343
4344 if (tcb != NULL) {
4345 tcb->count++;
4346
4347 if (tcb->count > NIC_SEND_HANG_THRESHOLD) {
4348 spin_unlock_irqrestore(&adapter->tcb_send_qlock,
4349 flags);
4350
4351 dev_warn(&adapter->pdev->dev,
4352 "Send stuck - reset. tcb->WrIndex %x, flags 0x%08x\n",
4353 tcb->index,
4354 tcb->flags);
4355
1f765d9f 4356 adapter->netdev->stats.tx_errors++;
d2796743
ME
4357
4358 /* perform reset of tx/rx */
4359 et131x_disable_txrx(netdev);
4360 et131x_enable_txrx(netdev);
4361 return;
4362 }
4363 }
4364
4365 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
4366}
4367
15ae239d 4368/* et131x_change_mtu - The handler called to change the MTU for the device */
d2796743
ME
4369static int et131x_change_mtu(struct net_device *netdev, int new_mtu)
4370{
4371 int result = 0;
4372 struct et131x_adapter *adapter = netdev_priv(netdev);
4373
4374 /* Make sure the requested MTU is valid */
4375 if (new_mtu < 64 || new_mtu > 9216)
4376 return -EINVAL;
4377
4378 et131x_disable_txrx(netdev);
d2796743
ME
4379
4380 /* Set the new MTU */
4381 netdev->mtu = new_mtu;
4382
4383 /* Free Rx DMA memory */
4384 et131x_adapter_memory_free(adapter);
4385
4386 /* Set the config parameter for Jumbo Packet support */
4387 adapter->registry_jumbo_packet = new_mtu + 14;
4388 et131x_soft_reset(adapter);
4389
4390 /* Alloc and init Rx DMA memory */
4391 result = et131x_adapter_memory_alloc(adapter);
4392 if (result != 0) {
4393 dev_warn(&adapter->pdev->dev,
4394 "Change MTU failed; couldn't re-alloc DMA memory\n");
4395 return result;
4396 }
4397
4398 et131x_init_send(adapter);
4399
4400 et131x_hwaddr_init(adapter);
4401 memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
4402
4403 /* Init the device with the new settings */
4404 et131x_adapter_setup(adapter);
4405
4406 et131x_enable_txrx(netdev);
4407
4408 return result;
4409}
4410
d2796743
ME
4411static const struct net_device_ops et131x_netdev_ops = {
4412 .ndo_open = et131x_open,
4413 .ndo_stop = et131x_close,
4414 .ndo_start_xmit = et131x_tx,
aa77677e 4415 .ndo_set_rx_mode = et131x_multicast,
d2796743
ME
4416 .ndo_tx_timeout = et131x_tx_timeout,
4417 .ndo_change_mtu = et131x_change_mtu,
36087dc1 4418 .ndo_set_mac_address = eth_mac_addr,
d2796743
ME
4419 .ndo_validate_addr = eth_validate_addr,
4420 .ndo_get_stats = et131x_stats,
4421 .ndo_do_ioctl = et131x_ioctl,
4422};
4423
26ef1021 4424/* et131x_pci_setup - Perform device initialization
5da2b158
ME
4425 * @pdev: a pointer to the device's pci_dev structure
4426 * @ent: this device's entry in the pci_device_id table
4427 *
5da2b158
ME
4428 * Registered in the pci_driver structure, this function is called when the
4429 * PCI subsystem finds a new PCI device which matches the information
4430 * contained in the pci_device_id table. This routine is the equivalent to
4431 * a device insertion routine.
4432 */
fe5c49b3 4433static int et131x_pci_setup(struct pci_dev *pdev,
12a2f3f3 4434 const struct pci_device_id *ent)
5da2b158 4435{
5da2b158
ME
4436 struct net_device *netdev;
4437 struct et131x_adapter *adapter;
fa9f0a65 4438 int rc;
5da2b158
ME
4439 int ii;
4440
fa9f0a65
FR
4441 rc = pci_enable_device(pdev);
4442 if (rc < 0) {
5da2b158 4443 dev_err(&pdev->dev, "pci_enable_device() failed\n");
fa9f0a65 4444 goto out;
5da2b158
ME
4445 }
4446
4447 /* Perform some basic PCI checks */
4448 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4449 dev_err(&pdev->dev, "Can't find PCI device's base address\n");
fa9f0a65 4450 rc = -ENODEV;
5da2b158
ME
4451 goto err_disable;
4452 }
4453
fa9f0a65
FR
4454 rc = pci_request_regions(pdev, DRIVER_NAME);
4455 if (rc < 0) {
5da2b158
ME
4456 dev_err(&pdev->dev, "Can't get PCI resources\n");
4457 goto err_disable;
4458 }
4459
4460 pci_set_master(pdev);
4461
4462 /* Check the DMA addressing support of this device */
e22f0e3f
RK
4463 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
4464 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32))) {
5da2b158 4465 dev_err(&pdev->dev, "No usable DMA addressing method\n");
fa9f0a65 4466 rc = -EIO;
5da2b158
ME
4467 goto err_release_res;
4468 }
4469
4470 /* Allocate netdev and private adapter structs */
fa9f0a65 4471 netdev = alloc_etherdev(sizeof(struct et131x_adapter));
5da2b158
ME
4472 if (!netdev) {
4473 dev_err(&pdev->dev, "Couldn't alloc netdev struct\n");
fa9f0a65 4474 rc = -ENOMEM;
5da2b158
ME
4475 goto err_release_res;
4476 }
4477
fa9f0a65
FR
4478 netdev->watchdog_timeo = ET131X_TX_TIMEOUT;
4479 netdev->netdev_ops = &et131x_netdev_ops;
4480
5da2b158 4481 SET_NETDEV_DEV(netdev, &pdev->dev);
7ad24ea4 4482 netdev->ethtool_ops = &et131x_ethtool_ops;
5da2b158
ME
4483
4484 adapter = et131x_adapter_init(netdev, pdev);
4485
fa9f0a65
FR
4486 rc = et131x_pci_init(adapter, pdev);
4487 if (rc < 0)
4488 goto err_free_dev;
5da2b158
ME
4489
4490 /* Map the bus-relative registers to system virtual memory */
4491 adapter->regs = pci_ioremap_bar(pdev, 0);
4492 if (!adapter->regs) {
4493 dev_err(&pdev->dev, "Cannot map device registers\n");
fa9f0a65 4494 rc = -ENOMEM;
5da2b158
ME
4495 goto err_free_dev;
4496 }
4497
4498 /* If Phy COMA mode was enabled when we went down, disable it here. */
4499 writel(ET_PMCSR_INIT, &adapter->regs->global.pm_csr);
4500
4501 /* Issue a global reset to the et1310 */
4502 et131x_soft_reset(adapter);
4503
4504 /* Disable all interrupts (paranoid) */
4505 et131x_disable_interrupts(adapter);
4506
4507 /* Allocate DMA memory */
fa9f0a65
FR
4508 rc = et131x_adapter_memory_alloc(adapter);
4509 if (rc < 0) {
868bf442 4510 dev_err(&pdev->dev, "Could not alloc adapter memory (DMA)\n");
5da2b158
ME
4511 goto err_iounmap;
4512 }
4513
4514 /* Init send data structures */
4515 et131x_init_send(adapter);
4516
4517 /* Set up the task structure for the ISR's deferred handler */
4518 INIT_WORK(&adapter->task, et131x_isr_handler);
4519
4520 /* Copy address into the net_device struct */
4521 memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
4522
4523 /* Init variable for counting how long we do not have link status */
4524 adapter->boot_coma = 0;
4525 et1310_disable_phy_coma(adapter);
4526
fa9f0a65
FR
4527 rc = -ENOMEM;
4528
5da2b158
ME
4529 /* Setup the mii_bus struct */
4530 adapter->mii_bus = mdiobus_alloc();
4531 if (!adapter->mii_bus) {
4532 dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n");
4533 goto err_mem_free;
4534 }
4535
4536 adapter->mii_bus->name = "et131x_eth_mii";
4537 snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x",
4538 (adapter->pdev->bus->number << 8) | adapter->pdev->devfn);
4539 adapter->mii_bus->priv = netdev;
4540 adapter->mii_bus->read = et131x_mdio_read;
4541 adapter->mii_bus->write = et131x_mdio_write;
4542 adapter->mii_bus->reset = et131x_mdio_reset;
78110bb8
JP
4543 adapter->mii_bus->irq = kmalloc_array(PHY_MAX_ADDR, sizeof(int),
4544 GFP_KERNEL);
4545 if (!adapter->mii_bus->irq)
5da2b158 4546 goto err_mdio_free;
5da2b158
ME
4547
4548 for (ii = 0; ii < PHY_MAX_ADDR; ii++)
4549 adapter->mii_bus->irq[ii] = PHY_POLL;
4550
fa9f0a65
FR
4551 rc = mdiobus_register(adapter->mii_bus);
4552 if (rc < 0) {
5da2b158 4553 dev_err(&pdev->dev, "failed to register MII bus\n");
5da2b158
ME
4554 goto err_mdio_free_irq;
4555 }
4556
fa9f0a65
FR
4557 rc = et131x_mii_probe(netdev);
4558 if (rc < 0) {
5da2b158
ME
4559 dev_err(&pdev->dev, "failed to probe MII bus\n");
4560 goto err_mdio_unregister;
4561 }
4562
4563 /* Setup et1310 as per the documentation */
4564 et131x_adapter_setup(adapter);
4565
4566 /* We can enable interrupts now
4567 *
4568 * NOTE - Because registration of interrupt handler is done in the
4569 * device's open(), defer enabling device interrupts to that
4570 * point
4571 */
4572
4573 /* Register the net_device struct with the Linux network layer */
fa9f0a65
FR
4574 rc = register_netdev(netdev);
4575 if (rc < 0) {
5da2b158 4576 dev_err(&pdev->dev, "register_netdev() failed\n");
fa9f0a65 4577 goto err_phy_disconnect;
5da2b158
ME
4578 }
4579
4580 /* Register the net_device struct with the PCI subsystem. Save a copy
4581 * of the PCI config space for this device now that the device has
4582 * been initialized, just in case it needs to be quickly restored.
4583 */
4584 pci_set_drvdata(pdev, netdev);
fa9f0a65
FR
4585out:
4586 return rc;
5da2b158 4587
fa9f0a65
FR
4588err_phy_disconnect:
4589 phy_disconnect(adapter->phydev);
5da2b158
ME
4590err_mdio_unregister:
4591 mdiobus_unregister(adapter->mii_bus);
4592err_mdio_free_irq:
4593 kfree(adapter->mii_bus->irq);
4594err_mdio_free:
4595 mdiobus_free(adapter->mii_bus);
4596err_mem_free:
4597 et131x_adapter_memory_free(adapter);
4598err_iounmap:
4599 iounmap(adapter->regs);
4600err_free_dev:
4601 pci_dev_put(pdev);
4602 free_netdev(netdev);
4603err_release_res:
4604 pci_release_regions(pdev);
4605err_disable:
4606 pci_disable_device(pdev);
fa9f0a65 4607 goto out;
5da2b158
ME
4608}
4609
41e043fc 4610static const struct pci_device_id et131x_pci_table[] = {
5da2b158
ME
4611 { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL},
4612 { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL},
4613 {0,}
4614};
4615MODULE_DEVICE_TABLE(pci, et131x_pci_table);
4616
4617static struct pci_driver et131x_driver = {
4618 .name = DRIVER_NAME,
4619 .id_table = et131x_pci_table,
4620 .probe = et131x_pci_setup,
0b5e4092 4621 .remove = et131x_pci_remove,
5da2b158
ME
4622 .driver.pm = ET131X_PM_OPS,
4623};
4624
89812b1f 4625module_pci_driver(et131x_driver);
This page took 0.678547 seconds and 5 git commands to generate.