staging/lustre: get rid of seqno_t and mdsno_t typedefs
[deliverable/linux.git] / drivers / staging / lustre / lustre / include / lustre / lustre_idl.h
CommitLineData
d7e09d03
PT
1/*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19 *
20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21 * CA 95054 USA or visit www.sun.com if you need additional information or
22 * have any questions.
23 *
24 * GPL HEADER END
25 */
26/*
27 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
28 * Use is subject to license terms.
29 *
30 * Copyright (c) 2011, 2012, Intel Corporation.
31 */
32/*
33 * This file is part of Lustre, http://www.lustre.org/
34 * Lustre is a trademark of Sun Microsystems, Inc.
35 *
36 * lustre/include/lustre/lustre_idl.h
37 *
38 * Lustre wire protocol definitions.
39 */
40
41/** \defgroup lustreidl lustreidl
42 *
43 * Lustre wire protocol definitions.
44 *
45 * ALL structs passing over the wire should be declared here. Structs
46 * that are used in interfaces with userspace should go in lustre_user.h.
47 *
48 * All structs being declared here should be built from simple fixed-size
49 * types (__u8, __u16, __u32, __u64) or be built from other types or
50 * structs also declared in this file. Similarly, all flags and magic
51 * values in those structs should also be declared here. This ensures
52 * that the Lustre wire protocol is not influenced by external dependencies.
53 *
54 * The only other acceptable items in this file are VERY SIMPLE accessor
55 * functions to avoid callers grubbing inside the structures, and the
56 * prototypes of the swabber functions for each struct. Nothing that
57 * depends on external functions or definitions should be in here.
58 *
59 * Structs must be properly aligned to put 64-bit values on an 8-byte
60 * boundary. Any structs being added here must also be added to
61 * utils/wirecheck.c and "make newwiretest" run to regenerate the
62 * utils/wiretest.c sources. This allows us to verify that wire structs
63 * have the proper alignment/size on all architectures.
64 *
65 * DO NOT CHANGE any of the structs, flags, values declared here and used
66 * in released Lustre versions. Some structs may have padding fields that
67 * can be used. Some structs might allow addition at the end (verify this
68 * in the code to ensure that new/old clients that see this larger struct
69 * do not fail, otherwise you need to implement protocol compatibility).
70 *
71 * We assume all nodes are either little-endian or big-endian, and we
72 * always send messages in the sender's native format. The receiver
73 * detects the message format by checking the 'magic' field of the message
74 * (see lustre_msg_swabbed() below).
75 *
76 * Each wire type has corresponding 'lustre_swab_xxxtypexxx()' routines,
77 * implemented either here, inline (trivial implementations) or in
78 * ptlrpc/pack_generic.c. These 'swabbers' convert the type from "other"
79 * endian, in-place in the message buffer.
80 *
81 * A swabber takes a single pointer argument. The caller must already have
82 * verified that the length of the message buffer >= sizeof (type).
83 *
84 * For variable length types, a second 'lustre_swab_v_xxxtypexxx()' routine
85 * may be defined that swabs just the variable part, after the caller has
86 * verified that the message buffer is large enough.
87 *
88 * @{
89 */
90
91#ifndef _LUSTRE_IDL_H_
92#define _LUSTRE_IDL_H_
93
55f5a824 94#include "../../../include/linux/libcfs/libcfs.h"
d7e09d03
PT
95
96/* Defn's shared with user-space. */
1accaadf
GKH
97#include "lustre_user.h"
98#include "lustre_errno.h"
2d58de78 99
d7e09d03
PT
100/*
101 * GENERAL STUFF
102 */
103/* FOO_REQUEST_PORTAL is for incoming requests on the FOO
104 * FOO_REPLY_PORTAL is for incoming replies on the FOO
105 * FOO_BULK_PORTAL is for incoming bulk on the FOO
106 */
107
108#define CONNMGR_REQUEST_PORTAL 1
109#define CONNMGR_REPLY_PORTAL 2
110//#define OSC_REQUEST_PORTAL 3
111#define OSC_REPLY_PORTAL 4
112//#define OSC_BULK_PORTAL 5
113#define OST_IO_PORTAL 6
114#define OST_CREATE_PORTAL 7
115#define OST_BULK_PORTAL 8
116//#define MDC_REQUEST_PORTAL 9
117#define MDC_REPLY_PORTAL 10
118//#define MDC_BULK_PORTAL 11
119#define MDS_REQUEST_PORTAL 12
120//#define MDS_REPLY_PORTAL 13
121#define MDS_BULK_PORTAL 14
122#define LDLM_CB_REQUEST_PORTAL 15
123#define LDLM_CB_REPLY_PORTAL 16
124#define LDLM_CANCEL_REQUEST_PORTAL 17
125#define LDLM_CANCEL_REPLY_PORTAL 18
126//#define PTLBD_REQUEST_PORTAL 19
127//#define PTLBD_REPLY_PORTAL 20
128//#define PTLBD_BULK_PORTAL 21
129#define MDS_SETATTR_PORTAL 22
130#define MDS_READPAGE_PORTAL 23
131#define MDS_MDS_PORTAL 24
132
133#define MGC_REPLY_PORTAL 25
134#define MGS_REQUEST_PORTAL 26
135#define MGS_REPLY_PORTAL 27
136#define OST_REQUEST_PORTAL 28
137#define FLD_REQUEST_PORTAL 29
138#define SEQ_METADATA_PORTAL 30
139#define SEQ_DATA_PORTAL 31
140#define SEQ_CONTROLLER_PORTAL 32
141#define MGS_BULK_PORTAL 33
142
143/* Portal 63 is reserved for the Cray Inc DVS - nic@cray.com, roe@cray.com, n8851@cray.com */
144
145/* packet types */
146#define PTL_RPC_MSG_REQUEST 4711
147#define PTL_RPC_MSG_ERR 4712
148#define PTL_RPC_MSG_REPLY 4713
149
150/* DON'T use swabbed values of MAGIC as magic! */
151#define LUSTRE_MSG_MAGIC_V1 0x0BD00BD0
152#define LUSTRE_MSG_MAGIC_V2 0x0BD00BD3
153
154#define LUSTRE_MSG_MAGIC_V1_SWABBED 0xD00BD00B
155#define LUSTRE_MSG_MAGIC_V2_SWABBED 0xD30BD00B
156
157#define LUSTRE_MSG_MAGIC LUSTRE_MSG_MAGIC_V2
158
159#define PTLRPC_MSG_VERSION 0x00000003
160#define LUSTRE_VERSION_MASK 0xffff0000
161#define LUSTRE_OBD_VERSION 0x00010000
162#define LUSTRE_MDS_VERSION 0x00020000
163#define LUSTRE_OST_VERSION 0x00030000
164#define LUSTRE_DLM_VERSION 0x00040000
165#define LUSTRE_LOG_VERSION 0x00050000
166#define LUSTRE_MGS_VERSION 0x00060000
167
d7e09d03
PT
168typedef __u64 obd_id;
169typedef __u64 obd_seq;
170typedef __s64 obd_time;
171typedef __u64 obd_size;
172typedef __u64 obd_off;
173typedef __u64 obd_blocks;
174typedef __u64 obd_valid;
175typedef __u32 obd_blksize;
176typedef __u32 obd_mode;
177typedef __u32 obd_uid;
178typedef __u32 obd_gid;
179typedef __u32 obd_flag;
180typedef __u32 obd_count;
181
182/**
183 * Describes a range of sequence, lsr_start is included but lsr_end is
184 * not in the range.
185 * Same structure is used in fld module where lsr_index field holds mdt id
186 * of the home mdt.
187 */
188struct lu_seq_range {
189 __u64 lsr_start;
190 __u64 lsr_end;
191 __u32 lsr_index;
192 __u32 lsr_flags;
193};
194
195#define LU_SEQ_RANGE_MDT 0x0
196#define LU_SEQ_RANGE_OST 0x1
197#define LU_SEQ_RANGE_ANY 0x3
198
199#define LU_SEQ_RANGE_MASK 0x3
200
201static inline unsigned fld_range_type(const struct lu_seq_range *range)
202{
203 return range->lsr_flags & LU_SEQ_RANGE_MASK;
204}
205
206static inline int fld_range_is_ost(const struct lu_seq_range *range)
207{
208 return fld_range_type(range) == LU_SEQ_RANGE_OST;
209}
210
211static inline int fld_range_is_mdt(const struct lu_seq_range *range)
212{
213 return fld_range_type(range) == LU_SEQ_RANGE_MDT;
214}
215
216/**
217 * This all range is only being used when fld client sends fld query request,
218 * but it does not know whether the seq is MDT or OST, so it will send req
219 * with ALL type, which means either seq type gotten from lookup can be
220 * expected.
221 */
222static inline unsigned fld_range_is_any(const struct lu_seq_range *range)
223{
224 return fld_range_type(range) == LU_SEQ_RANGE_ANY;
225}
226
227static inline void fld_range_set_type(struct lu_seq_range *range,
228 unsigned flags)
229{
d7e09d03
PT
230 range->lsr_flags |= flags;
231}
232
233static inline void fld_range_set_mdt(struct lu_seq_range *range)
234{
235 fld_range_set_type(range, LU_SEQ_RANGE_MDT);
236}
237
238static inline void fld_range_set_ost(struct lu_seq_range *range)
239{
240 fld_range_set_type(range, LU_SEQ_RANGE_OST);
241}
242
243static inline void fld_range_set_any(struct lu_seq_range *range)
244{
245 fld_range_set_type(range, LU_SEQ_RANGE_ANY);
246}
247
248/**
249 * returns width of given range \a r
250 */
251
252static inline __u64 range_space(const struct lu_seq_range *range)
253{
254 return range->lsr_end - range->lsr_start;
255}
256
257/**
258 * initialize range to zero
259 */
260
261static inline void range_init(struct lu_seq_range *range)
262{
a1e7e2d4 263 memset(range, 0, sizeof(*range));
d7e09d03
PT
264}
265
266/**
267 * check if given seq id \a s is within given range \a r
268 */
269
270static inline int range_within(const struct lu_seq_range *range,
271 __u64 s)
272{
273 return s >= range->lsr_start && s < range->lsr_end;
274}
275
276static inline int range_is_sane(const struct lu_seq_range *range)
277{
278 return (range->lsr_end >= range->lsr_start);
279}
280
281static inline int range_is_zero(const struct lu_seq_range *range)
282{
283 return (range->lsr_start == 0 && range->lsr_end == 0);
284}
285
286static inline int range_is_exhausted(const struct lu_seq_range *range)
287
288{
289 return range_space(range) == 0;
290}
291
292/* return 0 if two range have the same location */
293static inline int range_compare_loc(const struct lu_seq_range *r1,
294 const struct lu_seq_range *r2)
295{
296 return r1->lsr_index != r2->lsr_index ||
297 r1->lsr_flags != r2->lsr_flags;
298}
299
143f378c 300#define DRANGE "[%#16.16Lx-%#16.16Lx):%x:%s"
d7e09d03
PT
301
302#define PRANGE(range) \
303 (range)->lsr_start, \
304 (range)->lsr_end, \
305 (range)->lsr_index, \
306 fld_range_is_mdt(range) ? "mdt" : "ost"
307
308
309/** \defgroup lu_fid lu_fid
310 * @{ */
311
312/**
313 * Flags for lustre_mdt_attrs::lma_compat and lustre_mdt_attrs::lma_incompat.
314 * Deprecated since HSM and SOM attributes are now stored in separate on-disk
315 * xattr.
316 */
317enum lma_compat {
c0ac76d9
FY
318 LMAC_HSM = 0x00000001,
319 LMAC_SOM = 0x00000002,
320 LMAC_NOT_IN_OI = 0x00000004, /* the object does NOT need OI mapping */
321 LMAC_FID_ON_OST = 0x00000008, /* For OST-object, its OI mapping is
322 * under /O/<seq>/d<x>. */
d7e09d03
PT
323};
324
325/**
326 * Masks for all features that should be supported by a Lustre version to
327 * access a specific file.
328 * This information is stored in lustre_mdt_attrs::lma_incompat.
329 */
330enum lma_incompat {
c03a98b4
FY
331 LMAI_RELEASED = 0x00000001, /* file is released */
332 LMAI_AGENT = 0x00000002, /* agent inode */
333 LMAI_REMOTE_PARENT = 0x00000004, /* the parent of the object
334 is on the remote MDT */
d7e09d03
PT
335};
336#define LMA_INCOMPAT_SUPP (LMAI_AGENT | LMAI_REMOTE_PARENT)
337
338extern void lustre_lma_swab(struct lustre_mdt_attrs *lma);
339extern void lustre_lma_init(struct lustre_mdt_attrs *lma,
340 const struct lu_fid *fid, __u32 incompat);
341/**
342 * SOM on-disk attributes stored in a separate xattr.
343 */
344struct som_attrs {
345 /** Bitfield for supported data in this structure. For future use. */
346 __u32 som_compat;
347
f16192ed 348 /** Incompat feature list. The supported feature mask is available in
d7e09d03
PT
349 * SOM_INCOMPAT_SUPP */
350 __u32 som_incompat;
351
352 /** IO Epoch SOM attributes belongs to */
353 __u64 som_ioepoch;
354 /** total file size in objects */
355 __u64 som_size;
356 /** total fs blocks in objects */
357 __u64 som_blocks;
358 /** mds mount id the size is valid for */
359 __u64 som_mountid;
360};
361extern void lustre_som_swab(struct som_attrs *attrs);
362
363#define SOM_INCOMPAT_SUPP 0x0
364
365/**
366 * HSM on-disk attributes stored in a separate xattr.
367 */
368struct hsm_attrs {
369 /** Bitfield for supported data in this structure. For future use. */
370 __u32 hsm_compat;
371
372 /** HSM flags, see hsm_flags enum below */
373 __u32 hsm_flags;
374 /** backend archive id associated with the file */
375 __u64 hsm_arch_id;
376 /** version associated with the last archiving, if any */
377 __u64 hsm_arch_ver;
378};
379extern void lustre_hsm_swab(struct hsm_attrs *attrs);
380
381/**
382 * fid constants
383 */
384enum {
66cc83e9
MP
385 /** LASTID file has zero OID */
386 LUSTRE_FID_LASTID_OID = 0UL,
d7e09d03
PT
387 /** initial fid id value */
388 LUSTRE_FID_INIT_OID = 1UL
389};
390
391/** returns fid object sequence */
392static inline __u64 fid_seq(const struct lu_fid *fid)
393{
394 return fid->f_seq;
395}
396
397/** returns fid object id */
398static inline __u32 fid_oid(const struct lu_fid *fid)
399{
400 return fid->f_oid;
401}
402
403/** returns fid object version */
404static inline __u32 fid_ver(const struct lu_fid *fid)
405{
406 return fid->f_ver;
407}
408
409static inline void fid_zero(struct lu_fid *fid)
410{
411 memset(fid, 0, sizeof(*fid));
412}
413
414static inline obd_id fid_ver_oid(const struct lu_fid *fid)
415{
416 return ((__u64)fid_ver(fid) << 32 | fid_oid(fid));
417}
418
419/**
420 * Note that reserved SEQ numbers below 12 will conflict with ldiskfs
421 * inodes in the IGIF namespace, so these reserved SEQ numbers can be
422 * used for other purposes and not risk collisions with existing inodes.
423 *
424 * Different FID Format
425 * http://arch.lustre.org/index.php?title=Interoperability_fids_zfs#NEW.0
426 */
427enum fid_seq {
428 FID_SEQ_OST_MDT0 = 0,
429 FID_SEQ_LLOG = 1, /* unnamed llogs */
430 FID_SEQ_ECHO = 2,
431 FID_SEQ_OST_MDT1 = 3,
432 FID_SEQ_OST_MAX = 9, /* Max MDT count before OST_on_FID */
433 FID_SEQ_LLOG_NAME = 10, /* named llogs */
434 FID_SEQ_RSVD = 11,
435 FID_SEQ_IGIF = 12,
436 FID_SEQ_IGIF_MAX = 0x0ffffffffULL,
437 FID_SEQ_IDIF = 0x100000000ULL,
438 FID_SEQ_IDIF_MAX = 0x1ffffffffULL,
439 /* Normal FID sequence starts from this value, i.e. 1<<33 */
440 FID_SEQ_START = 0x200000000ULL,
441 /* sequence for local pre-defined FIDs listed in local_oid */
442 FID_SEQ_LOCAL_FILE = 0x200000001ULL,
443 FID_SEQ_DOT_LUSTRE = 0x200000002ULL,
444 /* sequence is used for local named objects FIDs generated
445 * by local_object_storage library */
446 FID_SEQ_LOCAL_NAME = 0x200000003ULL,
447 /* Because current FLD will only cache the fid sequence, instead
448 * of oid on the client side, if the FID needs to be exposed to
449 * clients sides, it needs to make sure all of fids under one
450 * sequence will be located in one MDT. */
451 FID_SEQ_SPECIAL = 0x200000004ULL,
452 FID_SEQ_QUOTA = 0x200000005ULL,
453 FID_SEQ_QUOTA_GLB = 0x200000006ULL,
454 FID_SEQ_ROOT = 0x200000007ULL, /* Located on MDT0 */
455 FID_SEQ_NORMAL = 0x200000400ULL,
456 FID_SEQ_LOV_DEFAULT = 0xffffffffffffffffULL
457};
458
459#define OBIF_OID_MAX_BITS 32
460#define OBIF_MAX_OID (1ULL << OBIF_OID_MAX_BITS)
461#define OBIF_OID_MASK ((1ULL << OBIF_OID_MAX_BITS) - 1)
462#define IDIF_OID_MAX_BITS 48
463#define IDIF_MAX_OID (1ULL << IDIF_OID_MAX_BITS)
464#define IDIF_OID_MASK ((1ULL << IDIF_OID_MAX_BITS) - 1)
465
466/** OID for FID_SEQ_SPECIAL */
467enum special_oid {
468 /* Big Filesystem Lock to serialize rename operations */
469 FID_OID_SPECIAL_BFL = 1UL,
470};
471
472/** OID for FID_SEQ_DOT_LUSTRE */
473enum dot_lustre_oid {
474 FID_OID_DOT_LUSTRE = 1UL,
475 FID_OID_DOT_LUSTRE_OBF = 2UL,
476};
477
478static inline int fid_seq_is_mdt0(obd_seq seq)
479{
480 return (seq == FID_SEQ_OST_MDT0);
481}
482
483static inline int fid_seq_is_mdt(const __u64 seq)
484{
485 return seq == FID_SEQ_OST_MDT0 || seq >= FID_SEQ_NORMAL;
486};
487
488static inline int fid_seq_is_echo(obd_seq seq)
489{
490 return (seq == FID_SEQ_ECHO);
491}
492
493static inline int fid_is_echo(const struct lu_fid *fid)
494{
495 return fid_seq_is_echo(fid_seq(fid));
496}
497
498static inline int fid_seq_is_llog(obd_seq seq)
499{
500 return (seq == FID_SEQ_LLOG);
501}
502
503static inline int fid_is_llog(const struct lu_fid *fid)
504{
66cc83e9
MP
505 /* file with OID == 0 is not llog but contains last oid */
506 return fid_seq_is_llog(fid_seq(fid)) && fid_oid(fid) > 0;
d7e09d03
PT
507}
508
509static inline int fid_seq_is_rsvd(const __u64 seq)
510{
511 return (seq > FID_SEQ_OST_MDT0 && seq <= FID_SEQ_RSVD);
512};
513
514static inline int fid_seq_is_special(const __u64 seq)
515{
516 return seq == FID_SEQ_SPECIAL;
517};
518
519static inline int fid_seq_is_local_file(const __u64 seq)
520{
521 return seq == FID_SEQ_LOCAL_FILE ||
522 seq == FID_SEQ_LOCAL_NAME;
523};
524
525static inline int fid_seq_is_root(const __u64 seq)
526{
527 return seq == FID_SEQ_ROOT;
528}
529
530static inline int fid_seq_is_dot(const __u64 seq)
531{
532 return seq == FID_SEQ_DOT_LUSTRE;
533}
534
535static inline int fid_seq_is_default(const __u64 seq)
536{
537 return seq == FID_SEQ_LOV_DEFAULT;
538}
539
540static inline int fid_is_mdt0(const struct lu_fid *fid)
541{
542 return fid_seq_is_mdt0(fid_seq(fid));
543}
544
545static inline void lu_root_fid(struct lu_fid *fid)
546{
547 fid->f_seq = FID_SEQ_ROOT;
548 fid->f_oid = 1;
549 fid->f_ver = 0;
550}
551
552/**
553 * Check if a fid is igif or not.
554 * \param fid the fid to be tested.
555 * \return true if the fid is a igif; otherwise false.
556 */
557static inline int fid_seq_is_igif(const __u64 seq)
558{
559 return seq >= FID_SEQ_IGIF && seq <= FID_SEQ_IGIF_MAX;
560}
561
562static inline int fid_is_igif(const struct lu_fid *fid)
563{
564 return fid_seq_is_igif(fid_seq(fid));
565}
566
567/**
568 * Check if a fid is idif or not.
569 * \param fid the fid to be tested.
570 * \return true if the fid is a idif; otherwise false.
571 */
572static inline int fid_seq_is_idif(const __u64 seq)
573{
574 return seq >= FID_SEQ_IDIF && seq <= FID_SEQ_IDIF_MAX;
575}
576
577static inline int fid_is_idif(const struct lu_fid *fid)
578{
579 return fid_seq_is_idif(fid_seq(fid));
580}
581
582static inline int fid_is_local_file(const struct lu_fid *fid)
583{
584 return fid_seq_is_local_file(fid_seq(fid));
585}
586
587static inline int fid_seq_is_norm(const __u64 seq)
588{
589 return (seq >= FID_SEQ_NORMAL);
590}
591
592static inline int fid_is_norm(const struct lu_fid *fid)
593{
594 return fid_seq_is_norm(fid_seq(fid));
595}
596
597/* convert an OST objid into an IDIF FID SEQ number */
598static inline obd_seq fid_idif_seq(obd_id id, __u32 ost_idx)
599{
600 return FID_SEQ_IDIF | (ost_idx << 16) | ((id >> 32) & 0xffff);
601}
602
603/* convert a packed IDIF FID into an OST objid */
604static inline obd_id fid_idif_id(obd_seq seq, __u32 oid, __u32 ver)
605{
606 return ((__u64)ver << 48) | ((seq & 0xffff) << 32) | oid;
607}
608
609/* extract ost index from IDIF FID */
610static inline __u32 fid_idif_ost_idx(const struct lu_fid *fid)
611{
d7e09d03
PT
612 return (fid_seq(fid) >> 16) & 0xffff;
613}
614
615/* extract OST sequence (group) from a wire ost_id (id/seq) pair */
616static inline obd_seq ostid_seq(const struct ost_id *ostid)
617{
618 if (fid_seq_is_mdt0(ostid->oi.oi_seq))
619 return FID_SEQ_OST_MDT0;
620
621 if (fid_seq_is_default(ostid->oi.oi_seq))
622 return FID_SEQ_LOV_DEFAULT;
623
624 if (fid_is_idif(&ostid->oi_fid))
625 return FID_SEQ_OST_MDT0;
626
627 return fid_seq(&ostid->oi_fid);
628}
629
630/* extract OST objid from a wire ost_id (id/seq) pair */
631static inline obd_id ostid_id(const struct ost_id *ostid)
632{
633 if (fid_seq_is_mdt0(ostid_seq(ostid)))
634 return ostid->oi.oi_id & IDIF_OID_MASK;
635
636 if (fid_is_idif(&ostid->oi_fid))
637 return fid_idif_id(fid_seq(&ostid->oi_fid),
638 fid_oid(&ostid->oi_fid), 0);
639
640 return fid_oid(&ostid->oi_fid);
641}
642
643static inline void ostid_set_seq(struct ost_id *oi, __u64 seq)
644{
645 if (fid_seq_is_mdt0(seq) || fid_seq_is_default(seq)) {
646 oi->oi.oi_seq = seq;
647 } else {
648 oi->oi_fid.f_seq = seq;
649 /* Note: if f_oid + f_ver is zero, we need init it
650 * to be 1, otherwise, ostid_seq will treat this
651 * as old ostid (oi_seq == 0) */
652 if (oi->oi_fid.f_oid == 0 && oi->oi_fid.f_ver == 0)
653 oi->oi_fid.f_oid = LUSTRE_FID_INIT_OID;
654 }
655}
656
657static inline void ostid_set_seq_mdt0(struct ost_id *oi)
658{
659 ostid_set_seq(oi, FID_SEQ_OST_MDT0);
660}
661
662static inline void ostid_set_seq_echo(struct ost_id *oi)
663{
664 ostid_set_seq(oi, FID_SEQ_ECHO);
665}
666
667static inline void ostid_set_seq_llog(struct ost_id *oi)
668{
669 ostid_set_seq(oi, FID_SEQ_LLOG);
670}
671
672/**
673 * Note: we need check oi_seq to decide where to set oi_id,
674 * so oi_seq should always be set ahead of oi_id.
675 */
676static inline void ostid_set_id(struct ost_id *oi, __u64 oid)
677{
678 if (fid_seq_is_mdt0(ostid_seq(oi))) {
679 if (oid >= IDIF_MAX_OID) {
b0f5aad5 680 CERROR("Bad %llu to set "DOSTID"\n",
d7e09d03
PT
681 oid, POSTID(oi));
682 return;
683 }
684 oi->oi.oi_id = oid;
685 } else {
686 if (oid > OBIF_MAX_OID) {
b0f5aad5 687 CERROR("Bad %llu to set "DOSTID"\n",
d7e09d03
PT
688 oid, POSTID(oi));
689 return;
690 }
691 oi->oi_fid.f_oid = oid;
692 }
693}
694
695static inline void ostid_inc_id(struct ost_id *oi)
696{
697 if (fid_seq_is_mdt0(ostid_seq(oi))) {
698 if (unlikely(ostid_id(oi) + 1 > IDIF_MAX_OID)) {
699 CERROR("Bad inc "DOSTID"\n", POSTID(oi));
700 return;
701 }
702 oi->oi.oi_id++;
703 } else {
704 oi->oi_fid.f_oid++;
705 }
706}
707
708static inline void ostid_dec_id(struct ost_id *oi)
709{
710 if (fid_seq_is_mdt0(ostid_seq(oi)))
711 oi->oi.oi_id--;
712 else
713 oi->oi_fid.f_oid--;
714}
715
716/**
717 * Unpack an OST object id/seq (group) into a FID. This is needed for
718 * converting all obdo, lmm, lsm, etc. 64-bit id/seq pairs into proper
719 * FIDs. Note that if an id/seq is already in FID/IDIF format it will
720 * be passed through unchanged. Only legacy OST objects in "group 0"
721 * will be mapped into the IDIF namespace so that they can fit into the
722 * struct lu_fid fields without loss. For reference see:
723 * http://arch.lustre.org/index.php?title=Interoperability_fids_zfs
724 */
725static inline int ostid_to_fid(struct lu_fid *fid, struct ost_id *ostid,
726 __u32 ost_idx)
727{
728 if (ost_idx > 0xffff) {
729 CERROR("bad ost_idx, "DOSTID" ost_idx:%u\n", POSTID(ostid),
730 ost_idx);
731 return -EBADF;
732 }
733
734 if (fid_seq_is_mdt0(ostid_seq(ostid))) {
735 /* This is a "legacy" (old 1.x/2.early) OST object in "group 0"
736 * that we map into the IDIF namespace. It allows up to 2^48
737 * objects per OST, as this is the object namespace that has
738 * been in production for years. This can handle create rates
739 * of 1M objects/s/OST for 9 years, or combinations thereof. */
740 if (ostid_id(ostid) >= IDIF_MAX_OID) {
741 CERROR("bad MDT0 id, "DOSTID" ost_idx:%u\n",
742 POSTID(ostid), ost_idx);
743 return -EBADF;
744 }
745 fid->f_seq = fid_idif_seq(ostid_id(ostid), ost_idx);
746 /* truncate to 32 bits by assignment */
747 fid->f_oid = ostid_id(ostid);
748 /* in theory, not currently used */
749 fid->f_ver = ostid_id(ostid) >> 48;
750 } else /* if (fid_seq_is_idif(seq) || fid_seq_is_norm(seq)) */ {
751 /* This is either an IDIF object, which identifies objects across
752 * all OSTs, or a regular FID. The IDIF namespace maps legacy
753 * OST objects into the FID namespace. In both cases, we just
754 * pass the FID through, no conversion needed. */
755 if (ostid->oi_fid.f_ver != 0) {
756 CERROR("bad MDT0 id, "DOSTID" ost_idx:%u\n",
757 POSTID(ostid), ost_idx);
758 return -EBADF;
759 }
760 *fid = ostid->oi_fid;
761 }
762
763 return 0;
764}
765
766/* pack any OST FID into an ostid (id/seq) for the wire/disk */
767static inline int fid_to_ostid(const struct lu_fid *fid, struct ost_id *ostid)
768{
769 if (unlikely(fid_seq_is_igif(fid->f_seq))) {
770 CERROR("bad IGIF, "DFID"\n", PFID(fid));
771 return -EBADF;
772 }
773
774 if (fid_is_idif(fid)) {
775 ostid_set_seq_mdt0(ostid);
776 ostid_set_id(ostid, fid_idif_id(fid_seq(fid), fid_oid(fid),
777 fid_ver(fid)));
778 } else {
779 ostid->oi_fid = *fid;
780 }
781
782 return 0;
783}
784
785/* Check whether the fid is for LAST_ID */
786static inline int fid_is_last_id(const struct lu_fid *fid)
787{
66cc83e9 788 return (fid_oid(fid) == 0);
d7e09d03
PT
789}
790
791/**
792 * Get inode number from a igif.
793 * \param fid a igif to get inode number from.
794 * \return inode number for the igif.
795 */
796static inline ino_t lu_igif_ino(const struct lu_fid *fid)
797{
798 return fid_seq(fid);
799}
800
801extern void lustre_swab_ost_id(struct ost_id *oid);
802
803/**
804 * Get inode generation from a igif.
805 * \param fid a igif to get inode generation from.
806 * \return inode generation for the igif.
807 */
808static inline __u32 lu_igif_gen(const struct lu_fid *fid)
809{
810 return fid_oid(fid);
811}
812
813/**
814 * Build igif from the inode number/generation.
815 */
816static inline void lu_igif_build(struct lu_fid *fid, __u32 ino, __u32 gen)
817{
818 fid->f_seq = ino;
819 fid->f_oid = gen;
820 fid->f_ver = 0;
821}
822
823/*
824 * Fids are transmitted across network (in the sender byte-ordering),
825 * and stored on disk in big-endian order.
826 */
827static inline void fid_cpu_to_le(struct lu_fid *dst, const struct lu_fid *src)
828{
d7e09d03
PT
829 dst->f_seq = cpu_to_le64(fid_seq(src));
830 dst->f_oid = cpu_to_le32(fid_oid(src));
831 dst->f_ver = cpu_to_le32(fid_ver(src));
832}
833
834static inline void fid_le_to_cpu(struct lu_fid *dst, const struct lu_fid *src)
835{
d7e09d03
PT
836 dst->f_seq = le64_to_cpu(fid_seq(src));
837 dst->f_oid = le32_to_cpu(fid_oid(src));
838 dst->f_ver = le32_to_cpu(fid_ver(src));
839}
840
841static inline void fid_cpu_to_be(struct lu_fid *dst, const struct lu_fid *src)
842{
d7e09d03
PT
843 dst->f_seq = cpu_to_be64(fid_seq(src));
844 dst->f_oid = cpu_to_be32(fid_oid(src));
845 dst->f_ver = cpu_to_be32(fid_ver(src));
846}
847
848static inline void fid_be_to_cpu(struct lu_fid *dst, const struct lu_fid *src)
849{
d7e09d03
PT
850 dst->f_seq = be64_to_cpu(fid_seq(src));
851 dst->f_oid = be32_to_cpu(fid_oid(src));
852 dst->f_ver = be32_to_cpu(fid_ver(src));
853}
854
855static inline int fid_is_sane(const struct lu_fid *fid)
856{
857 return fid != NULL &&
858 ((fid_seq(fid) >= FID_SEQ_START && fid_ver(fid) == 0) ||
859 fid_is_igif(fid) || fid_is_idif(fid) ||
860 fid_seq_is_rsvd(fid_seq(fid)));
861}
862
863static inline int fid_is_zero(const struct lu_fid *fid)
864{
865 return fid_seq(fid) == 0 && fid_oid(fid) == 0;
866}
867
868extern void lustre_swab_lu_fid(struct lu_fid *fid);
869extern void lustre_swab_lu_seq_range(struct lu_seq_range *range);
870
871static inline int lu_fid_eq(const struct lu_fid *f0, const struct lu_fid *f1)
872{
ec83e611 873 return memcmp(f0, f1, sizeof(*f0)) == 0;
d7e09d03
PT
874}
875
876#define __diff_normalize(val0, val1) \
877({ \
878 typeof(val0) __val0 = (val0); \
879 typeof(val1) __val1 = (val1); \
880 \
881 (__val0 == __val1 ? 0 : __val0 > __val1 ? +1 : -1); \
882})
883
884static inline int lu_fid_cmp(const struct lu_fid *f0,
885 const struct lu_fid *f1)
886{
887 return
888 __diff_normalize(fid_seq(f0), fid_seq(f1)) ?:
889 __diff_normalize(fid_oid(f0), fid_oid(f1)) ?:
890 __diff_normalize(fid_ver(f0), fid_ver(f1));
891}
892
c5b60ba7 893static inline void ostid_cpu_to_le(const struct ost_id *src_oi,
d7e09d03
PT
894 struct ost_id *dst_oi)
895{
896 if (fid_seq_is_mdt0(ostid_seq(src_oi))) {
897 dst_oi->oi.oi_id = cpu_to_le64(src_oi->oi.oi_id);
898 dst_oi->oi.oi_seq = cpu_to_le64(src_oi->oi.oi_seq);
899 } else {
900 fid_cpu_to_le(&dst_oi->oi_fid, &src_oi->oi_fid);
901 }
902}
903
c5b60ba7 904static inline void ostid_le_to_cpu(const struct ost_id *src_oi,
d7e09d03
PT
905 struct ost_id *dst_oi)
906{
907 if (fid_seq_is_mdt0(ostid_seq(src_oi))) {
908 dst_oi->oi.oi_id = le64_to_cpu(src_oi->oi.oi_id);
909 dst_oi->oi.oi_seq = le64_to_cpu(src_oi->oi.oi_seq);
910 } else {
911 fid_le_to_cpu(&dst_oi->oi_fid, &src_oi->oi_fid);
912 }
913}
914
915/** @} lu_fid */
916
917/** \defgroup lu_dir lu_dir
918 * @{ */
919
920/**
921 * Enumeration of possible directory entry attributes.
922 *
923 * Attributes follow directory entry header in the order they appear in this
924 * enumeration.
925 */
926enum lu_dirent_attrs {
927 LUDA_FID = 0x0001,
928 LUDA_TYPE = 0x0002,
929 LUDA_64BITHASH = 0x0004,
930
f16192ed 931 /* The following attrs are used for MDT internal only,
d7e09d03
PT
932 * not visible to client */
933
934 /* Verify the dirent consistency */
935 LUDA_VERIFY = 0x8000,
936 /* Only check but not repair the dirent inconsistency */
937 LUDA_VERIFY_DRYRUN = 0x4000,
938 /* The dirent has been repaired, or to be repaired (dryrun). */
939 LUDA_REPAIR = 0x2000,
940 /* The system is upgraded, has beed or to be repaired (dryrun). */
941 LUDA_UPGRADE = 0x1000,
942 /* Ignore this record, go to next directly. */
943 LUDA_IGNORE = 0x0800,
944};
945
946#define LU_DIRENT_ATTRS_MASK 0xf800
947
948/**
949 * Layout of readdir pages, as transmitted on wire.
950 */
951struct lu_dirent {
952 /** valid if LUDA_FID is set. */
953 struct lu_fid lde_fid;
954 /** a unique entry identifier: a hash or an offset. */
955 __u64 lde_hash;
956 /** total record length, including all attributes. */
957 __u16 lde_reclen;
958 /** name length */
959 __u16 lde_namelen;
960 /** optional variable size attributes following this entry.
961 * taken from enum lu_dirent_attrs.
962 */
963 __u32 lde_attrs;
964 /** name is followed by the attributes indicated in ->ldp_attrs, in
965 * their natural order. After the last attribute, padding bytes are
966 * added to make ->lde_reclen a multiple of 8.
967 */
968 char lde_name[0];
969};
970
971/*
972 * Definitions of optional directory entry attributes formats.
973 *
974 * Individual attributes do not have their length encoded in a generic way. It
975 * is assumed that consumer of an attribute knows its format. This means that
976 * it is impossible to skip over an unknown attribute, except by skipping over all
977 * remaining attributes (by using ->lde_reclen), which is not too
978 * constraining, because new server versions will append new attributes at
979 * the end of an entry.
980 */
981
982/**
983 * Fid directory attribute: a fid of an object referenced by the entry. This
984 * will be almost always requested by the client and supplied by the server.
985 *
986 * Aligned to 8 bytes.
987 */
988/* To have compatibility with 1.8, lets have fid in lu_dirent struct. */
989
990/**
991 * File type.
992 *
993 * Aligned to 2 bytes.
994 */
995struct luda_type {
996 __u16 lt_type;
997};
998
79783924
PT
999#ifndef IFSHIFT
1000#define IFSHIFT 12
1001#endif
1002
1003#ifndef IFTODT
1004#define IFTODT(type) (((type) & S_IFMT) >> IFSHIFT)
1005#endif
1006#ifndef DTTOIF
1007#define DTTOIF(dirtype) ((dirtype) << IFSHIFT)
1008#endif
1009
1010
d7e09d03
PT
1011struct lu_dirpage {
1012 __u64 ldp_hash_start;
1013 __u64 ldp_hash_end;
1014 __u32 ldp_flags;
1015 __u32 ldp_pad0;
1016 struct lu_dirent ldp_entries[0];
1017};
1018
1019enum lu_dirpage_flags {
1020 /**
1021 * dirpage contains no entry.
1022 */
1023 LDF_EMPTY = 1 << 0,
1024 /**
1025 * last entry's lde_hash equals ldp_hash_end.
1026 */
1027 LDF_COLLIDE = 1 << 1
1028};
1029
1030static inline struct lu_dirent *lu_dirent_start(struct lu_dirpage *dp)
1031{
1032 if (le32_to_cpu(dp->ldp_flags) & LDF_EMPTY)
1033 return NULL;
1034 else
1035 return dp->ldp_entries;
1036}
1037
1038static inline struct lu_dirent *lu_dirent_next(struct lu_dirent *ent)
1039{
1040 struct lu_dirent *next;
1041
1042 if (le16_to_cpu(ent->lde_reclen) != 0)
1043 next = ((void *)ent) + le16_to_cpu(ent->lde_reclen);
1044 else
1045 next = NULL;
1046
1047 return next;
1048}
1049
1050static inline int lu_dirent_calc_size(int namelen, __u16 attr)
1051{
1052 int size;
1053
1054 if (attr & LUDA_TYPE) {
1055 const unsigned align = sizeof(struct luda_type) - 1;
1056 size = (sizeof(struct lu_dirent) + namelen + align) & ~align;
1057 size += sizeof(struct luda_type);
1058 } else
1059 size = sizeof(struct lu_dirent) + namelen;
1060
1061 return (size + 7) & ~7;
1062}
1063
1064static inline int lu_dirent_size(struct lu_dirent *ent)
1065{
1066 if (le16_to_cpu(ent->lde_reclen) == 0) {
1067 return lu_dirent_calc_size(le16_to_cpu(ent->lde_namelen),
1068 le32_to_cpu(ent->lde_attrs));
1069 }
1070 return le16_to_cpu(ent->lde_reclen);
1071}
1072
1073#define MDS_DIR_END_OFF 0xfffffffffffffffeULL
1074
1075/**
1076 * MDS_READPAGE page size
1077 *
1078 * This is the directory page size packed in MDS_READPAGE RPC.
1079 * It's different than PAGE_CACHE_SIZE because the client needs to
1080 * access the struct lu_dirpage header packed at the beginning of
1081 * the "page" and without this there isn't any way to know find the
1082 * lu_dirpage header is if client and server PAGE_CACHE_SIZE differ.
1083 */
1084#define LU_PAGE_SHIFT 12
1085#define LU_PAGE_SIZE (1UL << LU_PAGE_SHIFT)
1086#define LU_PAGE_MASK (~(LU_PAGE_SIZE - 1))
1087
1088#define LU_PAGE_COUNT (1 << (PAGE_CACHE_SHIFT - LU_PAGE_SHIFT))
1089
1090/** @} lu_dir */
1091
1092struct lustre_handle {
1093 __u64 cookie;
1094};
1095#define DEAD_HANDLE_MAGIC 0xdeadbeefcafebabeULL
1096
1097static inline int lustre_handle_is_used(struct lustre_handle *lh)
1098{
1099 return lh->cookie != 0ull;
1100}
1101
1102static inline int lustre_handle_equal(const struct lustre_handle *lh1,
1103 const struct lustre_handle *lh2)
1104{
1105 return lh1->cookie == lh2->cookie;
1106}
1107
1108static inline void lustre_handle_copy(struct lustre_handle *tgt,
1109 struct lustre_handle *src)
1110{
1111 tgt->cookie = src->cookie;
1112}
1113
1114/* flags for lm_flags */
1115#define MSGHDR_AT_SUPPORT 0x1
1116#define MSGHDR_CKSUM_INCOMPAT18 0x2
1117
1118#define lustre_msg lustre_msg_v2
1119/* we depend on this structure to be 8-byte aligned */
1120/* this type is only endian-adjusted in lustre_unpack_msg() */
1121struct lustre_msg_v2 {
1122 __u32 lm_bufcount;
1123 __u32 lm_secflvr;
1124 __u32 lm_magic;
1125 __u32 lm_repsize;
1126 __u32 lm_cksum;
1127 __u32 lm_flags;
1128 __u32 lm_padding_2;
1129 __u32 lm_padding_3;
1130 __u32 lm_buflens[0];
1131};
1132
1133/* without gss, ptlrpc_body is put at the first buffer. */
1134#define PTLRPC_NUM_VERSIONS 4
1135#define JOBSTATS_JOBID_SIZE 32 /* 32 bytes string */
1136struct ptlrpc_body_v3 {
1137 struct lustre_handle pb_handle;
1138 __u32 pb_type;
1139 __u32 pb_version;
1140 __u32 pb_opc;
1141 __u32 pb_status;
1142 __u64 pb_last_xid;
1143 __u64 pb_last_seen;
1144 __u64 pb_last_committed;
1145 __u64 pb_transno;
1146 __u32 pb_flags;
1147 __u32 pb_op_flags;
1148 __u32 pb_conn_cnt;
1149 __u32 pb_timeout; /* for req, the deadline, for rep, the service est */
1150 __u32 pb_service_time; /* for rep, actual service time */
1151 __u32 pb_limit;
1152 __u64 pb_slv;
1153 /* VBR: pre-versions */
1154 __u64 pb_pre_versions[PTLRPC_NUM_VERSIONS];
1155 /* padding for future needs */
1156 __u64 pb_padding[4];
1157 char pb_jobid[JOBSTATS_JOBID_SIZE];
1158};
1159#define ptlrpc_body ptlrpc_body_v3
1160
1161struct ptlrpc_body_v2 {
1162 struct lustre_handle pb_handle;
1163 __u32 pb_type;
1164 __u32 pb_version;
1165 __u32 pb_opc;
1166 __u32 pb_status;
1167 __u64 pb_last_xid;
1168 __u64 pb_last_seen;
1169 __u64 pb_last_committed;
1170 __u64 pb_transno;
1171 __u32 pb_flags;
1172 __u32 pb_op_flags;
1173 __u32 pb_conn_cnt;
1174 __u32 pb_timeout; /* for req, the deadline, for rep, the service est */
1175 __u32 pb_service_time; /* for rep, actual service time, also used for
1176 net_latency of req */
1177 __u32 pb_limit;
1178 __u64 pb_slv;
1179 /* VBR: pre-versions */
1180 __u64 pb_pre_versions[PTLRPC_NUM_VERSIONS];
1181 /* padding for future needs */
1182 __u64 pb_padding[4];
1183};
1184
1185extern void lustre_swab_ptlrpc_body(struct ptlrpc_body *pb);
1186
1187/* message body offset for lustre_msg_v2 */
1188/* ptlrpc body offset in all request/reply messages */
1189#define MSG_PTLRPC_BODY_OFF 0
1190
1191/* normal request/reply message record offset */
1192#define REQ_REC_OFF 1
1193#define REPLY_REC_OFF 1
1194
1195/* ldlm request message body offset */
1196#define DLM_LOCKREQ_OFF 1 /* lockreq offset */
1197#define DLM_REQ_REC_OFF 2 /* normal dlm request record offset */
1198
1199/* ldlm intent lock message body offset */
1200#define DLM_INTENT_IT_OFF 2 /* intent lock it offset */
1201#define DLM_INTENT_REC_OFF 3 /* intent lock record offset */
1202
1203/* ldlm reply message body offset */
1204#define DLM_LOCKREPLY_OFF 1 /* lockrep offset */
1205#define DLM_REPLY_REC_OFF 2 /* reply record offset */
1206
1207/** only use in req->rq_{req,rep}_swab_mask */
1208#define MSG_PTLRPC_HEADER_OFF 31
1209
1210/* Flags that are operation-specific go in the top 16 bits. */
1211#define MSG_OP_FLAG_MASK 0xffff0000
1212#define MSG_OP_FLAG_SHIFT 16
1213
1214/* Flags that apply to all requests are in the bottom 16 bits */
1215#define MSG_GEN_FLAG_MASK 0x0000ffff
1216#define MSG_LAST_REPLAY 0x0001
1217#define MSG_RESENT 0x0002
1218#define MSG_REPLAY 0x0004
1219/* #define MSG_AT_SUPPORT 0x0008
1220 * This was used in early prototypes of adaptive timeouts, and while there
1221 * shouldn't be any users of that code there also isn't a need for using this
1222 * bits. Defer usage until at least 1.10 to avoid potential conflict. */
1223#define MSG_DELAY_REPLAY 0x0010
1224#define MSG_VERSION_REPLAY 0x0020
1225#define MSG_REQ_REPLAY_DONE 0x0040
1226#define MSG_LOCK_REPLAY_DONE 0x0080
1227
1228/*
1229 * Flags for all connect opcodes (MDS_CONNECT, OST_CONNECT)
1230 */
1231
1232#define MSG_CONNECT_RECOVERING 0x00000001
1233#define MSG_CONNECT_RECONNECT 0x00000002
1234#define MSG_CONNECT_REPLAYABLE 0x00000004
1235//#define MSG_CONNECT_PEER 0x8
1236#define MSG_CONNECT_LIBCLIENT 0x00000010
1237#define MSG_CONNECT_INITIAL 0x00000020
1238#define MSG_CONNECT_ASYNC 0x00000040
1239#define MSG_CONNECT_NEXT_VER 0x00000080 /* use next version of lustre_msg */
1240#define MSG_CONNECT_TRANSNO 0x00000100 /* report transno */
1241
1242/* Connect flags */
1243#define OBD_CONNECT_RDONLY 0x1ULL /*client has read-only access*/
1244#define OBD_CONNECT_INDEX 0x2ULL /*connect specific LOV idx */
1245#define OBD_CONNECT_MDS 0x4ULL /*connect from MDT to OST */
1246#define OBD_CONNECT_GRANT 0x8ULL /*OSC gets grant at connect */
1247#define OBD_CONNECT_SRVLOCK 0x10ULL /*server takes locks for cli */
1248#define OBD_CONNECT_VERSION 0x20ULL /*Lustre versions in ocd */
1249#define OBD_CONNECT_REQPORTAL 0x40ULL /*Separate non-IO req portal */
1250#define OBD_CONNECT_ACL 0x80ULL /*access control lists */
1251#define OBD_CONNECT_XATTR 0x100ULL /*client use extended attr */
1252#define OBD_CONNECT_CROW 0x200ULL /*MDS+OST create obj on write*/
1253#define OBD_CONNECT_TRUNCLOCK 0x400ULL /*locks on server for punch */
1254#define OBD_CONNECT_TRANSNO 0x800ULL /*replay sends init transno */
1255#define OBD_CONNECT_IBITS 0x1000ULL /*support for inodebits locks*/
1256#define OBD_CONNECT_JOIN 0x2000ULL /*files can be concatenated.
1257 *We do not support JOIN FILE
1258 *anymore, reserve this flags
1259 *just for preventing such bit
1260 *to be reused.*/
1261#define OBD_CONNECT_ATTRFID 0x4000ULL /*Server can GetAttr By Fid*/
1262#define OBD_CONNECT_NODEVOH 0x8000ULL /*No open hndl on specl nodes*/
1263#define OBD_CONNECT_RMT_CLIENT 0x10000ULL /*Remote client */
1264#define OBD_CONNECT_RMT_CLIENT_FORCE 0x20000ULL /*Remote client by force */
1265#define OBD_CONNECT_BRW_SIZE 0x40000ULL /*Max bytes per rpc */
1266#define OBD_CONNECT_QUOTA64 0x80000ULL /*Not used since 2.4 */
1267#define OBD_CONNECT_MDS_CAPA 0x100000ULL /*MDS capability */
1268#define OBD_CONNECT_OSS_CAPA 0x200000ULL /*OSS capability */
1269#define OBD_CONNECT_CANCELSET 0x400000ULL /*Early batched cancels. */
1270#define OBD_CONNECT_SOM 0x800000ULL /*Size on MDS */
1271#define OBD_CONNECT_AT 0x1000000ULL /*client uses AT */
1272#define OBD_CONNECT_LRU_RESIZE 0x2000000ULL /*LRU resize feature. */
1273#define OBD_CONNECT_MDS_MDS 0x4000000ULL /*MDS-MDS connection */
1274#define OBD_CONNECT_REAL 0x8000000ULL /*real connection */
1275#define OBD_CONNECT_CHANGE_QS 0x10000000ULL /*Not used since 2.4 */
1276#define OBD_CONNECT_CKSUM 0x20000000ULL /*support several cksum algos*/
1277#define OBD_CONNECT_FID 0x40000000ULL /*FID is supported by server */
1278#define OBD_CONNECT_VBR 0x80000000ULL /*version based recovery */
1279#define OBD_CONNECT_LOV_V3 0x100000000ULL /*client supports LOV v3 EA */
1280#define OBD_CONNECT_GRANT_SHRINK 0x200000000ULL /* support grant shrink */
1281#define OBD_CONNECT_SKIP_ORPHAN 0x400000000ULL /* don't reuse orphan objids */
1282#define OBD_CONNECT_MAX_EASIZE 0x800000000ULL /* preserved for large EA */
1283#define OBD_CONNECT_FULL20 0x1000000000ULL /* it is 2.0 client */
1284#define OBD_CONNECT_LAYOUTLOCK 0x2000000000ULL /* client uses layout lock */
1285#define OBD_CONNECT_64BITHASH 0x4000000000ULL /* client supports 64-bits
1286 * directory hash */
1287#define OBD_CONNECT_MAXBYTES 0x8000000000ULL /* max stripe size */
1288#define OBD_CONNECT_IMP_RECOV 0x10000000000ULL /* imp recovery support */
1289#define OBD_CONNECT_JOBSTATS 0x20000000000ULL /* jobid in ptlrpc_body */
1290#define OBD_CONNECT_UMASK 0x40000000000ULL /* create uses client umask */
1291#define OBD_CONNECT_EINPROGRESS 0x80000000000ULL /* client handles -EINPROGRESS
1292 * RPC error properly */
1293#define OBD_CONNECT_GRANT_PARAM 0x100000000000ULL/* extra grant params used for
1294 * finer space reservation */
1295#define OBD_CONNECT_FLOCK_OWNER 0x200000000000ULL /* for the fixed 1.8
1296 * policy and 2.x server */
1297#define OBD_CONNECT_LVB_TYPE 0x400000000000ULL /* variable type of LVB */
1298#define OBD_CONNECT_NANOSEC_TIME 0x800000000000ULL /* nanosecond timestamps */
1299#define OBD_CONNECT_LIGHTWEIGHT 0x1000000000000ULL/* lightweight connection */
1300#define OBD_CONNECT_SHORTIO 0x2000000000000ULL/* short io */
1301#define OBD_CONNECT_PINGLESS 0x4000000000000ULL/* pings not required */
69342b78 1302#define OBD_CONNECT_FLOCK_DEAD 0x8000000000000ULL/* flock deadlock detection */
63d42578 1303#define OBD_CONNECT_DISP_STRIPE 0x10000000000000ULL/*create stripe disposition*/
69342b78 1304
d7e09d03
PT
1305/* XXX README XXX:
1306 * Please DO NOT add flag values here before first ensuring that this same
1307 * flag value is not in use on some other branch. Please clear any such
1308 * changes with senior engineers before starting to use a new flag. Then,
1309 * submit a small patch against EVERY branch that ONLY adds the new flag,
1310 * updates obd_connect_names[] for lprocfs_rd_connect_flags(), adds the
1311 * flag to check_obd_connect_data(), and updates wiretests accordingly, so it
1312 * can be approved and landed easily to reserve the flag for future use. */
1313
1314/* The MNE_SWAB flag is overloading the MDS_MDS bit only for the MGS
1315 * connection. It is a temporary bug fix for Imperative Recovery interop
1316 * between 2.2 and 2.3 x86/ppc nodes, and can be removed when interop for
1317 * 2.2 clients/servers is no longer needed. LU-1252/LU-1644. */
1318#define OBD_CONNECT_MNE_SWAB OBD_CONNECT_MDS_MDS
1319
1320#define OCD_HAS_FLAG(ocd, flg) \
1321 (!!((ocd)->ocd_connect_flags & OBD_CONNECT_##flg))
1322
1323
1324#define LRU_RESIZE_CONNECT_FLAG OBD_CONNECT_LRU_RESIZE
1325
1326#define MDT_CONNECT_SUPPORTED (OBD_CONNECT_RDONLY | OBD_CONNECT_VERSION | \
1327 OBD_CONNECT_ACL | OBD_CONNECT_XATTR | \
1328 OBD_CONNECT_IBITS | \
1329 OBD_CONNECT_NODEVOH | OBD_CONNECT_ATTRFID | \
1330 OBD_CONNECT_CANCELSET | OBD_CONNECT_AT | \
1331 OBD_CONNECT_RMT_CLIENT | \
1332 OBD_CONNECT_RMT_CLIENT_FORCE | \
1333 OBD_CONNECT_BRW_SIZE | OBD_CONNECT_MDS_CAPA | \
1334 OBD_CONNECT_OSS_CAPA | OBD_CONNECT_MDS_MDS | \
1335 OBD_CONNECT_FID | LRU_RESIZE_CONNECT_FLAG | \
1336 OBD_CONNECT_VBR | OBD_CONNECT_LOV_V3 | \
1337 OBD_CONNECT_SOM | OBD_CONNECT_FULL20 | \
1338 OBD_CONNECT_64BITHASH | OBD_CONNECT_JOBSTATS | \
1339 OBD_CONNECT_EINPROGRESS | \
1340 OBD_CONNECT_LIGHTWEIGHT | OBD_CONNECT_UMASK | \
1341 OBD_CONNECT_LVB_TYPE | OBD_CONNECT_LAYOUTLOCK |\
69342b78 1342 OBD_CONNECT_PINGLESS | OBD_CONNECT_MAX_EASIZE |\
63d42578
HZ
1343 OBD_CONNECT_FLOCK_DEAD | \
1344 OBD_CONNECT_DISP_STRIPE)
1345
d7e09d03
PT
1346#define OST_CONNECT_SUPPORTED (OBD_CONNECT_SRVLOCK | OBD_CONNECT_GRANT | \
1347 OBD_CONNECT_REQPORTAL | OBD_CONNECT_VERSION | \
1348 OBD_CONNECT_TRUNCLOCK | OBD_CONNECT_INDEX | \
1349 OBD_CONNECT_BRW_SIZE | OBD_CONNECT_OSS_CAPA | \
1350 OBD_CONNECT_CANCELSET | OBD_CONNECT_AT | \
1351 LRU_RESIZE_CONNECT_FLAG | OBD_CONNECT_CKSUM | \
1352 OBD_CONNECT_RMT_CLIENT | \
1353 OBD_CONNECT_RMT_CLIENT_FORCE | OBD_CONNECT_VBR | \
1354 OBD_CONNECT_MDS | OBD_CONNECT_SKIP_ORPHAN | \
1355 OBD_CONNECT_GRANT_SHRINK | OBD_CONNECT_FULL20 | \
1356 OBD_CONNECT_64BITHASH | OBD_CONNECT_MAXBYTES | \
1357 OBD_CONNECT_MAX_EASIZE | \
1358 OBD_CONNECT_EINPROGRESS | \
1359 OBD_CONNECT_JOBSTATS | \
1360 OBD_CONNECT_LIGHTWEIGHT | OBD_CONNECT_LVB_TYPE|\
1361 OBD_CONNECT_LAYOUTLOCK | OBD_CONNECT_FID | \
1362 OBD_CONNECT_PINGLESS)
1363#define ECHO_CONNECT_SUPPORTED (0)
1364#define MGS_CONNECT_SUPPORTED (OBD_CONNECT_VERSION | OBD_CONNECT_AT | \
1365 OBD_CONNECT_FULL20 | OBD_CONNECT_IMP_RECOV | \
1366 OBD_CONNECT_MNE_SWAB | OBD_CONNECT_PINGLESS)
1367
1368/* Features required for this version of the client to work with server */
1369#define CLIENT_CONNECT_MDT_REQD (OBD_CONNECT_IBITS | OBD_CONNECT_FID | \
1370 OBD_CONNECT_FULL20)
1371
1372#define OBD_OCD_VERSION(major,minor,patch,fix) (((major)<<24) + ((minor)<<16) +\
1373 ((patch)<<8) + (fix))
1374#define OBD_OCD_VERSION_MAJOR(version) ((int)((version)>>24)&255)
1375#define OBD_OCD_VERSION_MINOR(version) ((int)((version)>>16)&255)
1376#define OBD_OCD_VERSION_PATCH(version) ((int)((version)>>8)&255)
1377#define OBD_OCD_VERSION_FIX(version) ((int)(version)&255)
1378
1379/* This structure is used for both request and reply.
1380 *
1381 * If we eventually have separate connect data for different types, which we
1382 * almost certainly will, then perhaps we stick a union in here. */
1383struct obd_connect_data_v1 {
1384 __u64 ocd_connect_flags; /* OBD_CONNECT_* per above */
1385 __u32 ocd_version; /* lustre release version number */
1386 __u32 ocd_grant; /* initial cache grant amount (bytes) */
1387 __u32 ocd_index; /* LOV index to connect to */
1388 __u32 ocd_brw_size; /* Maximum BRW size in bytes, must be 2^n */
1389 __u64 ocd_ibits_known; /* inode bits this client understands */
1390 __u8 ocd_blocksize; /* log2 of the backend filesystem blocksize */
1391 __u8 ocd_inodespace; /* log2 of the per-inode space consumption */
1392 __u16 ocd_grant_extent; /* per-extent grant overhead, in 1K blocks */
1393 __u32 ocd_unused; /* also fix lustre_swab_connect */
1394 __u64 ocd_transno; /* first transno from client to be replayed */
1395 __u32 ocd_group; /* MDS group on OST */
1396 __u32 ocd_cksum_types; /* supported checksum algorithms */
1397 __u32 ocd_max_easize; /* How big LOV EA can be on MDS */
1398 __u32 ocd_instance; /* also fix lustre_swab_connect */
1399 __u64 ocd_maxbytes; /* Maximum stripe size in bytes */
1400};
1401
1402struct obd_connect_data {
1403 __u64 ocd_connect_flags; /* OBD_CONNECT_* per above */
1404 __u32 ocd_version; /* lustre release version number */
1405 __u32 ocd_grant; /* initial cache grant amount (bytes) */
1406 __u32 ocd_index; /* LOV index to connect to */
1407 __u32 ocd_brw_size; /* Maximum BRW size in bytes */
1408 __u64 ocd_ibits_known; /* inode bits this client understands */
1409 __u8 ocd_blocksize; /* log2 of the backend filesystem blocksize */
1410 __u8 ocd_inodespace; /* log2 of the per-inode space consumption */
1411 __u16 ocd_grant_extent; /* per-extent grant overhead, in 1K blocks */
1412 __u32 ocd_unused; /* also fix lustre_swab_connect */
1413 __u64 ocd_transno; /* first transno from client to be replayed */
1414 __u32 ocd_group; /* MDS group on OST */
1415 __u32 ocd_cksum_types; /* supported checksum algorithms */
1416 __u32 ocd_max_easize; /* How big LOV EA can be on MDS */
1417 __u32 ocd_instance; /* instance # of this target */
1418 __u64 ocd_maxbytes; /* Maximum stripe size in bytes */
1419 /* Fields after ocd_maxbytes are only accessible by the receiver
1420 * if the corresponding flag in ocd_connect_flags is set. Accessing
1421 * any field after ocd_maxbytes on the receiver without a valid flag
1422 * may result in out-of-bound memory access and kernel oops. */
1423 __u64 padding1; /* added 2.1.0. also fix lustre_swab_connect */
1424 __u64 padding2; /* added 2.1.0. also fix lustre_swab_connect */
1425 __u64 padding3; /* added 2.1.0. also fix lustre_swab_connect */
1426 __u64 padding4; /* added 2.1.0. also fix lustre_swab_connect */
1427 __u64 padding5; /* added 2.1.0. also fix lustre_swab_connect */
1428 __u64 padding6; /* added 2.1.0. also fix lustre_swab_connect */
1429 __u64 padding7; /* added 2.1.0. also fix lustre_swab_connect */
1430 __u64 padding8; /* added 2.1.0. also fix lustre_swab_connect */
1431 __u64 padding9; /* added 2.1.0. also fix lustre_swab_connect */
1432 __u64 paddingA; /* added 2.1.0. also fix lustre_swab_connect */
1433 __u64 paddingB; /* added 2.1.0. also fix lustre_swab_connect */
1434 __u64 paddingC; /* added 2.1.0. also fix lustre_swab_connect */
1435 __u64 paddingD; /* added 2.1.0. also fix lustre_swab_connect */
1436 __u64 paddingE; /* added 2.1.0. also fix lustre_swab_connect */
1437 __u64 paddingF; /* added 2.1.0. also fix lustre_swab_connect */
1438};
1439/* XXX README XXX:
1440 * Please DO NOT use any fields here before first ensuring that this same
1441 * field is not in use on some other branch. Please clear any such changes
1442 * with senior engineers before starting to use a new field. Then, submit
1443 * a small patch against EVERY branch that ONLY adds the new field along with
1444 * the matching OBD_CONNECT flag, so that can be approved and landed easily to
1445 * reserve the flag for future use. */
1446
1447
1448extern void lustre_swab_connect(struct obd_connect_data *ocd);
1449
1450/*
1451 * Supported checksum algorithms. Up to 32 checksum types are supported.
1452 * (32-bit mask stored in obd_connect_data::ocd_cksum_types)
1453 * Please update DECLARE_CKSUM_NAME/OBD_CKSUM_ALL in obd.h when adding a new
1454 * algorithm and also the OBD_FL_CKSUM* flags.
1455 */
1456typedef enum {
1457 OBD_CKSUM_CRC32 = 0x00000001,
1458 OBD_CKSUM_ADLER = 0x00000002,
1459 OBD_CKSUM_CRC32C= 0x00000004,
1460} cksum_type_t;
1461
1462/*
1463 * OST requests: OBDO & OBD request records
1464 */
1465
1466/* opcodes */
1467typedef enum {
1468 OST_REPLY = 0, /* reply ? */
1469 OST_GETATTR = 1,
1470 OST_SETATTR = 2,
1471 OST_READ = 3,
1472 OST_WRITE = 4,
1473 OST_CREATE = 5,
1474 OST_DESTROY = 6,
1475 OST_GET_INFO = 7,
1476 OST_CONNECT = 8,
1477 OST_DISCONNECT = 9,
1478 OST_PUNCH = 10,
1479 OST_OPEN = 11,
1480 OST_CLOSE = 12,
1481 OST_STATFS = 13,
1482 OST_SYNC = 16,
1483 OST_SET_INFO = 17,
1484 OST_QUOTACHECK = 18,
1485 OST_QUOTACTL = 19,
1486 OST_QUOTA_ADJUST_QUNIT = 20, /* not used since 2.4 */
1487 OST_LAST_OPC
1488} ost_cmd_t;
1489#define OST_FIRST_OPC OST_REPLY
1490
1491enum obdo_flags {
1492 OBD_FL_INLINEDATA = 0x00000001,
1493 OBD_FL_OBDMDEXISTS = 0x00000002,
1494 OBD_FL_DELORPHAN = 0x00000004, /* if set in o_flags delete orphans */
1495 OBD_FL_NORPC = 0x00000008, /* set in o_flags do in OSC not OST */
1496 OBD_FL_IDONLY = 0x00000010, /* set in o_flags only adjust obj id*/
1497 OBD_FL_RECREATE_OBJS= 0x00000020, /* recreate missing obj */
1498 OBD_FL_DEBUG_CHECK = 0x00000040, /* echo client/server debug check */
1499 OBD_FL_NO_USRQUOTA = 0x00000100, /* the object's owner is over quota */
1500 OBD_FL_NO_GRPQUOTA = 0x00000200, /* the object's group is over quota */
1501 OBD_FL_CREATE_CROW = 0x00000400, /* object should be create on write */
1502 OBD_FL_SRVLOCK = 0x00000800, /* delegate DLM locking to server */
1503 OBD_FL_CKSUM_CRC32 = 0x00001000, /* CRC32 checksum type */
1504 OBD_FL_CKSUM_ADLER = 0x00002000, /* ADLER checksum type */
1505 OBD_FL_CKSUM_CRC32C = 0x00004000, /* CRC32C checksum type */
1506 OBD_FL_CKSUM_RSVD2 = 0x00008000, /* for future cksum types */
1507 OBD_FL_CKSUM_RSVD3 = 0x00010000, /* for future cksum types */
1508 OBD_FL_SHRINK_GRANT = 0x00020000, /* object shrink the grant */
1509 OBD_FL_MMAP = 0x00040000, /* object is mmapped on the client.
1510 * XXX: obsoleted - reserved for old
1511 * clients prior than 2.2 */
1512 OBD_FL_RECOV_RESEND = 0x00080000, /* recoverable resent */
1513 OBD_FL_NOSPC_BLK = 0x00100000, /* no more block space on OST */
1514
1515 /* Note that while these checksum values are currently separate bits,
1516 * in 2.x we can actually allow all values from 1-31 if we wanted. */
1517 OBD_FL_CKSUM_ALL = OBD_FL_CKSUM_CRC32 | OBD_FL_CKSUM_ADLER |
1518 OBD_FL_CKSUM_CRC32C,
1519
1520 /* mask for local-only flag, which won't be sent over network */
1521 OBD_FL_LOCAL_MASK = 0xF0000000,
1522};
1523
1524#define LOV_MAGIC_V1 0x0BD10BD0
1525#define LOV_MAGIC LOV_MAGIC_V1
1526#define LOV_MAGIC_JOIN_V1 0x0BD20BD0
1527#define LOV_MAGIC_V3 0x0BD30BD0
1528
1529/*
1530 * magic for fully defined striping
1531 * the idea is that we should have different magics for striping "hints"
1532 * (struct lov_user_md_v[13]) and defined ready-to-use striping (struct
1533 * lov_mds_md_v[13]). at the moment the magics are used in wire protocol,
1534 * we can't just change it w/o long way preparation, but we still need a
1535 * mechanism to allow LOD to differentiate hint versus ready striping.
1536 * so, at the moment we do a trick: MDT knows what to expect from request
1537 * depending on the case (replay uses ready striping, non-replay req uses
1538 * hints), so MDT replaces magic with appropriate one and now LOD can
1539 * easily understand what's inside -bzzz
1540 */
1541#define LOV_MAGIC_V1_DEF 0x0CD10BD0
1542#define LOV_MAGIC_V3_DEF 0x0CD30BD0
1543
5dd16419
JX
1544#define LOV_PATTERN_RAID0 0x001 /* stripes are used round-robin */
1545#define LOV_PATTERN_RAID1 0x002 /* stripes are mirrors of each other */
1546#define LOV_PATTERN_FIRST 0x100 /* first stripe is not in round-robin */
1547#define LOV_PATTERN_CMOBD 0x200
1548
1549#define LOV_PATTERN_F_MASK 0xffff0000
1550#define LOV_PATTERN_F_RELEASED 0x80000000 /* HSM released file */
1551
1552#define lov_pattern(pattern) (pattern & ~LOV_PATTERN_F_MASK)
1553#define lov_pattern_flags(pattern) (pattern & LOV_PATTERN_F_MASK)
d7e09d03
PT
1554
1555#define lov_ost_data lov_ost_data_v1
1556struct lov_ost_data_v1 { /* per-stripe data structure (little-endian)*/
1557 struct ost_id l_ost_oi; /* OST object ID */
1558 __u32 l_ost_gen; /* generation of this l_ost_idx */
1559 __u32 l_ost_idx; /* OST index in LOV (lov_tgt_desc->tgts) */
1560};
1561
1562#define lov_mds_md lov_mds_md_v1
1563struct lov_mds_md_v1 { /* LOV EA mds/wire data (little-endian) */
1564 __u32 lmm_magic; /* magic number = LOV_MAGIC_V1 */
1565 __u32 lmm_pattern; /* LOV_PATTERN_RAID0, LOV_PATTERN_RAID1 */
1566 struct ost_id lmm_oi; /* LOV object ID */
1567 __u32 lmm_stripe_size; /* size of stripe in bytes */
1568 /* lmm_stripe_count used to be __u32 */
1569 __u16 lmm_stripe_count; /* num stripes in use for this object */
1570 __u16 lmm_layout_gen; /* layout generation number */
1571 struct lov_ost_data_v1 lmm_objects[0]; /* per-stripe data */
1572};
1573
1574/**
1575 * Sigh, because pre-2.4 uses
1576 * struct lov_mds_md_v1 {
1577 * ........
1578 * __u64 lmm_object_id;
1579 * __u64 lmm_object_seq;
1580 * ......
1581 * }
1582 * to identify the LOV(MDT) object, and lmm_object_seq will
1583 * be normal_fid, which make it hard to combine these conversion
1584 * to ostid_to FID. so we will do lmm_oi/fid conversion separately
1585 *
1586 * We can tell the lmm_oi by this way,
1587 * 1.8: lmm_object_id = {inode}, lmm_object_gr = 0
1588 * 2.1: lmm_object_id = {oid < 128k}, lmm_object_seq = FID_SEQ_NORMAL
1589 * 2.4: lmm_oi.f_seq = FID_SEQ_NORMAL, lmm_oi.f_oid = {oid < 128k},
1590 * lmm_oi.f_ver = 0
1591 *
1592 * But currently lmm_oi/lsm_oi does not have any "real" usages,
1593 * except for printing some information, and the user can always
1594 * get the real FID from LMA, besides this multiple case check might
1595 * make swab more complicate. So we will keep using id/seq for lmm_oi.
1596 */
1597
1598static inline void fid_to_lmm_oi(const struct lu_fid *fid,
1599 struct ost_id *oi)
1600{
1601 oi->oi.oi_id = fid_oid(fid);
1602 oi->oi.oi_seq = fid_seq(fid);
1603}
1604
1605static inline void lmm_oi_set_seq(struct ost_id *oi, __u64 seq)
1606{
1607 oi->oi.oi_seq = seq;
1608}
1609
1610static inline __u64 lmm_oi_id(struct ost_id *oi)
1611{
1612 return oi->oi.oi_id;
1613}
1614
1615static inline __u64 lmm_oi_seq(struct ost_id *oi)
1616{
1617 return oi->oi.oi_seq;
1618}
1619
1620static inline void lmm_oi_le_to_cpu(struct ost_id *dst_oi,
1621 struct ost_id *src_oi)
1622{
1623 dst_oi->oi.oi_id = le64_to_cpu(src_oi->oi.oi_id);
1624 dst_oi->oi.oi_seq = le64_to_cpu(src_oi->oi.oi_seq);
1625}
1626
1627static inline void lmm_oi_cpu_to_le(struct ost_id *dst_oi,
1628 struct ost_id *src_oi)
1629{
1630 dst_oi->oi.oi_id = cpu_to_le64(src_oi->oi.oi_id);
1631 dst_oi->oi.oi_seq = cpu_to_le64(src_oi->oi.oi_seq);
1632}
1633
1634/* extern void lustre_swab_lov_mds_md(struct lov_mds_md *llm); */
1635
ec83e611
JP
1636#define MAX_MD_SIZE \
1637 (sizeof(struct lov_mds_md) + 4 * sizeof(struct lov_ost_data))
1638#define MIN_MD_SIZE \
1639 (sizeof(struct lov_mds_md) + 1 * sizeof(struct lov_ost_data))
d7e09d03
PT
1640
1641#define XATTR_NAME_ACL_ACCESS "system.posix_acl_access"
1642#define XATTR_NAME_ACL_DEFAULT "system.posix_acl_default"
1643#define XATTR_USER_PREFIX "user."
1644#define XATTR_TRUSTED_PREFIX "trusted."
1645#define XATTR_SECURITY_PREFIX "security."
1646#define XATTR_LUSTRE_PREFIX "lustre."
1647
1648#define XATTR_NAME_LOV "trusted.lov"
1649#define XATTR_NAME_LMA "trusted.lma"
1650#define XATTR_NAME_LMV "trusted.lmv"
1651#define XATTR_NAME_LINK "trusted.link"
1652#define XATTR_NAME_FID "trusted.fid"
1653#define XATTR_NAME_VERSION "trusted.version"
1654#define XATTR_NAME_SOM "trusted.som"
1655#define XATTR_NAME_HSM "trusted.hsm"
1656#define XATTR_NAME_LFSCK_NAMESPACE "trusted.lfsck_namespace"
1657
1658struct lov_mds_md_v3 { /* LOV EA mds/wire data (little-endian) */
1659 __u32 lmm_magic; /* magic number = LOV_MAGIC_V3 */
1660 __u32 lmm_pattern; /* LOV_PATTERN_RAID0, LOV_PATTERN_RAID1 */
1661 struct ost_id lmm_oi; /* LOV object ID */
1662 __u32 lmm_stripe_size; /* size of stripe in bytes */
1663 /* lmm_stripe_count used to be __u32 */
1664 __u16 lmm_stripe_count; /* num stripes in use for this object */
1665 __u16 lmm_layout_gen; /* layout generation number */
1666 char lmm_pool_name[LOV_MAXPOOLNAME]; /* must be 32bit aligned */
1667 struct lov_ost_data_v1 lmm_objects[0]; /* per-stripe data */
1668};
1669
bc06a678 1670static inline __u32 lov_mds_md_size(__u16 stripes, __u32 lmm_magic)
1671{
1672 if (lmm_magic == LOV_MAGIC_V3)
1673 return sizeof(struct lov_mds_md_v3) +
1674 stripes * sizeof(struct lov_ost_data_v1);
1675 else
1676 return sizeof(struct lov_mds_md_v1) +
1677 stripes * sizeof(struct lov_ost_data_v1);
1678}
1679
081b7265
JH
1680static inline __u32
1681lov_mds_md_max_stripe_count(size_t buf_size, __u32 lmm_magic)
1682{
1683 switch (lmm_magic) {
1684 case LOV_MAGIC_V1: {
1685 struct lov_mds_md_v1 lmm;
1686
1687 if (buf_size < sizeof(lmm))
1688 return 0;
1689
1690 return (buf_size - sizeof(lmm)) / sizeof(lmm.lmm_objects[0]);
1691 }
1692 case LOV_MAGIC_V3: {
1693 struct lov_mds_md_v3 lmm;
1694
1695 if (buf_size < sizeof(lmm))
1696 return 0;
1697
1698 return (buf_size - sizeof(lmm)) / sizeof(lmm.lmm_objects[0]);
1699 }
1700 default:
1701 return 0;
1702 }
1703}
bc06a678 1704
d7e09d03
PT
1705#define OBD_MD_FLID (0x00000001ULL) /* object ID */
1706#define OBD_MD_FLATIME (0x00000002ULL) /* access time */
1707#define OBD_MD_FLMTIME (0x00000004ULL) /* data modification time */
1708#define OBD_MD_FLCTIME (0x00000008ULL) /* change time */
1709#define OBD_MD_FLSIZE (0x00000010ULL) /* size */
1710#define OBD_MD_FLBLOCKS (0x00000020ULL) /* allocated blocks count */
1711#define OBD_MD_FLBLKSZ (0x00000040ULL) /* block size */
1712#define OBD_MD_FLMODE (0x00000080ULL) /* access bits (mode & ~S_IFMT) */
1713#define OBD_MD_FLTYPE (0x00000100ULL) /* object type (mode & S_IFMT) */
1714#define OBD_MD_FLUID (0x00000200ULL) /* user ID */
1715#define OBD_MD_FLGID (0x00000400ULL) /* group ID */
1716#define OBD_MD_FLFLAGS (0x00000800ULL) /* flags word */
1717#define OBD_MD_FLNLINK (0x00002000ULL) /* link count */
1718#define OBD_MD_FLGENER (0x00004000ULL) /* generation number */
1719/*#define OBD_MD_FLINLINE (0x00008000ULL) inline data. used until 1.6.5 */
1720#define OBD_MD_FLRDEV (0x00010000ULL) /* device number */
1721#define OBD_MD_FLEASIZE (0x00020000ULL) /* extended attribute data */
1722#define OBD_MD_LINKNAME (0x00040000ULL) /* symbolic link target */
1723#define OBD_MD_FLHANDLE (0x00080000ULL) /* file/lock handle */
1724#define OBD_MD_FLCKSUM (0x00100000ULL) /* bulk data checksum */
1725#define OBD_MD_FLQOS (0x00200000ULL) /* quality of service stats */
1726/*#define OBD_MD_FLOSCOPQ (0x00400000ULL) osc opaque data, never used */
1727#define OBD_MD_FLCOOKIE (0x00800000ULL) /* log cancellation cookie */
1728#define OBD_MD_FLGROUP (0x01000000ULL) /* group */
1729#define OBD_MD_FLFID (0x02000000ULL) /* ->ost write inline fid */
1730#define OBD_MD_FLEPOCH (0x04000000ULL) /* ->ost write with ioepoch */
1731 /* ->mds if epoch opens or closes */
1732#define OBD_MD_FLGRANT (0x08000000ULL) /* ost preallocation space grant */
1733#define OBD_MD_FLDIREA (0x10000000ULL) /* dir's extended attribute data */
1734#define OBD_MD_FLUSRQUOTA (0x20000000ULL) /* over quota flags sent from ost */
1735#define OBD_MD_FLGRPQUOTA (0x40000000ULL) /* over quota flags sent from ost */
1736#define OBD_MD_FLMODEASIZE (0x80000000ULL) /* EA size will be changed */
1737
1738#define OBD_MD_MDS (0x0000000100000000ULL) /* where an inode lives on */
1739#define OBD_MD_REINT (0x0000000200000000ULL) /* reintegrate oa */
1740#define OBD_MD_MEA (0x0000000400000000ULL) /* CMD split EA */
5ea17d6c 1741#define OBD_MD_TSTATE (0x0000000800000000ULL) /* transient state field */
d7e09d03
PT
1742
1743#define OBD_MD_FLXATTR (0x0000001000000000ULL) /* xattr */
1744#define OBD_MD_FLXATTRLS (0x0000002000000000ULL) /* xattr list */
1745#define OBD_MD_FLXATTRRM (0x0000004000000000ULL) /* xattr remove */
1746#define OBD_MD_FLACL (0x0000008000000000ULL) /* ACL */
1747#define OBD_MD_FLRMTPERM (0x0000010000000000ULL) /* remote permission */
1748#define OBD_MD_FLMDSCAPA (0x0000020000000000ULL) /* MDS capability */
1749#define OBD_MD_FLOSSCAPA (0x0000040000000000ULL) /* OSS capability */
1750#define OBD_MD_FLCKSPLIT (0x0000080000000000ULL) /* Check split on server */
1751#define OBD_MD_FLCROSSREF (0x0000100000000000ULL) /* Cross-ref case */
1752#define OBD_MD_FLGETATTRLOCK (0x0000200000000000ULL) /* Get IOEpoch attributes
7fc1f831
AP
1753 * under lock; for xattr
1754 * requests means the
1755 * client holds the lock */
d7e09d03
PT
1756#define OBD_MD_FLOBJCOUNT (0x0000400000000000ULL) /* for multiple destroy */
1757
1758#define OBD_MD_FLRMTLSETFACL (0x0001000000000000ULL) /* lfs lsetfacl case */
1759#define OBD_MD_FLRMTLGETFACL (0x0002000000000000ULL) /* lfs lgetfacl case */
1760#define OBD_MD_FLRMTRSETFACL (0x0004000000000000ULL) /* lfs rsetfacl case */
1761#define OBD_MD_FLRMTRGETFACL (0x0008000000000000ULL) /* lfs rgetfacl case */
1762
1763#define OBD_MD_FLDATAVERSION (0x0010000000000000ULL) /* iversion sum */
48d23e61 1764#define OBD_MD_FLRELEASED (0x0020000000000000ULL) /* file released */
d7e09d03
PT
1765
1766#define OBD_MD_FLGETATTR (OBD_MD_FLID | OBD_MD_FLATIME | OBD_MD_FLMTIME | \
1767 OBD_MD_FLCTIME | OBD_MD_FLSIZE | OBD_MD_FLBLKSZ | \
1768 OBD_MD_FLMODE | OBD_MD_FLTYPE | OBD_MD_FLUID | \
1769 OBD_MD_FLGID | OBD_MD_FLFLAGS | OBD_MD_FLNLINK | \
1770 OBD_MD_FLGENER | OBD_MD_FLRDEV | OBD_MD_FLGROUP)
1771
7fc1f831
AP
1772#define OBD_MD_FLXATTRALL (OBD_MD_FLXATTR | OBD_MD_FLXATTRLS)
1773
d7e09d03
PT
1774/* don't forget obdo_fid which is way down at the bottom so it can
1775 * come after the definition of llog_cookie */
1776
1777enum hss_valid {
1778 HSS_SETMASK = 0x01,
1779 HSS_CLEARMASK = 0x02,
1780 HSS_ARCHIVE_ID = 0x04,
1781};
1782
1783struct hsm_state_set {
1784 __u32 hss_valid;
1785 __u32 hss_archive_id;
1786 __u64 hss_setmask;
1787 __u64 hss_clearmask;
1788};
1789
1790extern void lustre_swab_hsm_user_state(struct hsm_user_state *hus);
1791extern void lustre_swab_hsm_state_set(struct hsm_state_set *hss);
1792
1793extern void lustre_swab_obd_statfs (struct obd_statfs *os);
1794
1795/* ost_body.data values for OST_BRW */
1796
1797#define OBD_BRW_READ 0x01
1798#define OBD_BRW_WRITE 0x02
1799#define OBD_BRW_RWMASK (OBD_BRW_READ | OBD_BRW_WRITE)
1800#define OBD_BRW_SYNC 0x08 /* this page is a part of synchronous
1801 * transfer and is not accounted in
1802 * the grant. */
1803#define OBD_BRW_CHECK 0x10
1804#define OBD_BRW_FROM_GRANT 0x20 /* the osc manages this under llite */
1805#define OBD_BRW_GRANTED 0x40 /* the ost manages this */
1806#define OBD_BRW_NOCACHE 0x80 /* this page is a part of non-cached IO */
1807#define OBD_BRW_NOQUOTA 0x100
1808#define OBD_BRW_SRVLOCK 0x200 /* Client holds no lock over this page */
1809#define OBD_BRW_ASYNC 0x400 /* Server may delay commit to disk */
1810#define OBD_BRW_MEMALLOC 0x800 /* Client runs in the "kswapd" context */
1811#define OBD_BRW_OVER_USRQUOTA 0x1000 /* Running out of user quota */
1812#define OBD_BRW_OVER_GRPQUOTA 0x2000 /* Running out of group quota */
1813
1814#define OBD_OBJECT_EOF 0xffffffffffffffffULL
1815
1816#define OST_MIN_PRECREATE 32
1817#define OST_MAX_PRECREATE 20000
1818
1819struct obd_ioobj {
1820 struct ost_id ioo_oid; /* object ID, if multi-obj BRW */
1821 __u32 ioo_max_brw; /* low 16 bits were o_mode before 2.4,
1822 * now (PTLRPC_BULK_OPS_COUNT - 1) in
1823 * high 16 bits in 2.4 and later */
1824 __u32 ioo_bufcnt; /* number of niobufs for this object */
1825};
1826
1827#define IOOBJ_MAX_BRW_BITS 16
1828#define IOOBJ_TYPE_MASK ((1U << IOOBJ_MAX_BRW_BITS) - 1)
1829#define ioobj_max_brw_get(ioo) (((ioo)->ioo_max_brw >> IOOBJ_MAX_BRW_BITS) + 1)
1830#define ioobj_max_brw_set(ioo, num) \
1831do { (ioo)->ioo_max_brw = ((num) - 1) << IOOBJ_MAX_BRW_BITS; } while (0)
1832
1833extern void lustre_swab_obd_ioobj (struct obd_ioobj *ioo);
1834
1835/* multiple of 8 bytes => can array */
1836struct niobuf_remote {
1837 __u64 offset;
1838 __u32 len;
1839 __u32 flags;
1840};
1841
1842extern void lustre_swab_niobuf_remote (struct niobuf_remote *nbr);
1843
1844/* lock value block communicated between the filter and llite */
1845
1846/* OST_LVB_ERR_INIT is needed because the return code in rc is
1847 * negative, i.e. because ((MASK + rc) & MASK) != MASK. */
1848#define OST_LVB_ERR_INIT 0xffbadbad80000000ULL
1849#define OST_LVB_ERR_MASK 0xffbadbad00000000ULL
1850#define OST_LVB_IS_ERR(blocks) \
1851 ((blocks & OST_LVB_ERR_MASK) == OST_LVB_ERR_MASK)
1852#define OST_LVB_SET_ERR(blocks, rc) \
1853 do { blocks = OST_LVB_ERR_INIT + rc; } while (0)
1854#define OST_LVB_GET_ERR(blocks) (int)(blocks - OST_LVB_ERR_INIT)
1855
1856struct ost_lvb_v1 {
1857 __u64 lvb_size;
1858 obd_time lvb_mtime;
1859 obd_time lvb_atime;
1860 obd_time lvb_ctime;
1861 __u64 lvb_blocks;
1862};
1863
1864extern void lustre_swab_ost_lvb_v1(struct ost_lvb_v1 *lvb);
1865
1866struct ost_lvb {
1867 __u64 lvb_size;
1868 obd_time lvb_mtime;
1869 obd_time lvb_atime;
1870 obd_time lvb_ctime;
1871 __u64 lvb_blocks;
1872 __u32 lvb_mtime_ns;
1873 __u32 lvb_atime_ns;
1874 __u32 lvb_ctime_ns;
1875 __u32 lvb_padding;
1876};
1877
1878extern void lustre_swab_ost_lvb(struct ost_lvb *lvb);
1879
1880/*
1881 * lquota data structures
1882 */
1883
1884#ifndef QUOTABLOCK_BITS
1885#define QUOTABLOCK_BITS 10
1886#endif
1887
1888#ifndef QUOTABLOCK_SIZE
1889#define QUOTABLOCK_SIZE (1 << QUOTABLOCK_BITS)
1890#endif
1891
1892#ifndef toqb
1893#define toqb(x) (((x) + QUOTABLOCK_SIZE - 1) >> QUOTABLOCK_BITS)
1894#endif
1895
1896/* The lquota_id structure is an union of all the possible identifier types that
1897 * can be used with quota, this includes:
1898 * - 64-bit user ID
1899 * - 64-bit group ID
1900 * - a FID which can be used for per-directory quota in the future */
1901union lquota_id {
1902 struct lu_fid qid_fid; /* FID for per-directory quota */
1903 __u64 qid_uid; /* user identifier */
1904 __u64 qid_gid; /* group identifier */
1905};
1906
1907/* quotactl management */
1908struct obd_quotactl {
1909 __u32 qc_cmd;
1910 __u32 qc_type; /* see Q_* flag below */
1911 __u32 qc_id;
1912 __u32 qc_stat;
1913 struct obd_dqinfo qc_dqinfo;
1914 struct obd_dqblk qc_dqblk;
1915};
1916
1917extern void lustre_swab_obd_quotactl(struct obd_quotactl *q);
1918
1919#define Q_QUOTACHECK 0x800100 /* deprecated as of 2.4 */
1920#define Q_INITQUOTA 0x800101 /* deprecated as of 2.4 */
1921#define Q_GETOINFO 0x800102 /* get obd quota info */
1922#define Q_GETOQUOTA 0x800103 /* get obd quotas */
1923#define Q_FINVALIDATE 0x800104 /* deprecated as of 2.4 */
1924
1925#define Q_COPY(out, in, member) (out)->member = (in)->member
1926
1927#define QCTL_COPY(out, in) \
1928do { \
1929 Q_COPY(out, in, qc_cmd); \
1930 Q_COPY(out, in, qc_type); \
1931 Q_COPY(out, in, qc_id); \
1932 Q_COPY(out, in, qc_stat); \
1933 Q_COPY(out, in, qc_dqinfo); \
1934 Q_COPY(out, in, qc_dqblk); \
1935} while (0)
1936
1937/* Body of quota request used for quota acquire/release RPCs between quota
1938 * master (aka QMT) and slaves (ak QSD). */
1939struct quota_body {
1940 struct lu_fid qb_fid; /* FID of global index packing the pool ID
1941 * and type (data or metadata) as well as
1942 * the quota type (user or group). */
1943 union lquota_id qb_id; /* uid or gid or directory FID */
1944 __u32 qb_flags; /* see below */
1945 __u32 qb_padding;
1946 __u64 qb_count; /* acquire/release count (kbytes/inodes) */
1947 __u64 qb_usage; /* current slave usage (kbytes/inodes) */
1948 __u64 qb_slv_ver; /* slave index file version */
1949 struct lustre_handle qb_lockh; /* per-ID lock handle */
1950 struct lustre_handle qb_glb_lockh; /* global lock handle */
1951 __u64 qb_padding1[4];
1952};
1953
1954/* When the quota_body is used in the reply of quota global intent
1955 * lock (IT_QUOTA_CONN) reply, qb_fid contains slave index file FID. */
1956#define qb_slv_fid qb_fid
1957/* qb_usage is the current qunit (in kbytes/inodes) when quota_body is used in
1958 * quota reply */
1959#define qb_qunit qb_usage
1960
1961#define QUOTA_DQACQ_FL_ACQ 0x1 /* acquire quota */
1962#define QUOTA_DQACQ_FL_PREACQ 0x2 /* pre-acquire */
1963#define QUOTA_DQACQ_FL_REL 0x4 /* release quota */
1964#define QUOTA_DQACQ_FL_REPORT 0x8 /* report usage */
1965
1966extern void lustre_swab_quota_body(struct quota_body *b);
1967
1968/* Quota types currently supported */
1969enum {
1970 LQUOTA_TYPE_USR = 0x00, /* maps to USRQUOTA */
1971 LQUOTA_TYPE_GRP = 0x01, /* maps to GRPQUOTA */
1972 LQUOTA_TYPE_MAX
1973};
1974
1975/* There are 2 different resource types on which a quota limit can be enforced:
1976 * - inodes on the MDTs
1977 * - blocks on the OSTs */
1978enum {
1979 LQUOTA_RES_MD = 0x01, /* skip 0 to avoid null oid in FID */
1980 LQUOTA_RES_DT = 0x02,
1981 LQUOTA_LAST_RES,
1982 LQUOTA_FIRST_RES = LQUOTA_RES_MD
1983};
1984#define LQUOTA_NR_RES (LQUOTA_LAST_RES - LQUOTA_FIRST_RES + 1)
1985
1986/*
1987 * Space accounting support
1988 * Format of an accounting record, providing disk usage information for a given
1989 * user or group
1990 */
1991struct lquota_acct_rec { /* 16 bytes */
1992 __u64 bspace; /* current space in use */
1993 __u64 ispace; /* current # inodes in use */
1994};
1995
1996/*
1997 * Global quota index support
1998 * Format of a global record, providing global quota settings for a given quota
1999 * identifier
2000 */
2001struct lquota_glb_rec { /* 32 bytes */
2002 __u64 qbr_hardlimit; /* quota hard limit, in #inodes or kbytes */
2003 __u64 qbr_softlimit; /* quota soft limit, in #inodes or kbytes */
2004 __u64 qbr_time; /* grace time, in seconds */
2005 __u64 qbr_granted; /* how much is granted to slaves, in #inodes or
2006 * kbytes */
2007};
2008
2009/*
2010 * Slave index support
2011 * Format of a slave record, recording how much space is granted to a given
2012 * slave
2013 */
2014struct lquota_slv_rec { /* 8 bytes */
2015 __u64 qsr_granted; /* space granted to the slave for the key=ID,
2016 * in #inodes or kbytes */
2017};
2018
2019/* Data structures associated with the quota locks */
2020
2021/* Glimpse descriptor used for the index & per-ID quota locks */
2022struct ldlm_gl_lquota_desc {
2023 union lquota_id gl_id; /* quota ID subject to the glimpse */
2024 __u64 gl_flags; /* see LQUOTA_FL* below */
2025 __u64 gl_ver; /* new index version */
2026 __u64 gl_hardlimit; /* new hardlimit or qunit value */
2027 __u64 gl_softlimit; /* new softlimit */
2028 __u64 gl_time;
2029 __u64 gl_pad2;
2030};
2031#define gl_qunit gl_hardlimit /* current qunit value used when
2032 * glimpsing per-ID quota locks */
2033
2034/* quota glimpse flags */
2035#define LQUOTA_FL_EDQUOT 0x1 /* user/group out of quota space on QMT */
2036
2037/* LVB used with quota (global and per-ID) locks */
2038struct lquota_lvb {
2039 __u64 lvb_flags; /* see LQUOTA_FL* above */
2040 __u64 lvb_id_may_rel; /* space that might be released later */
2041 __u64 lvb_id_rel; /* space released by the slave for this ID */
2042 __u64 lvb_id_qunit; /* current qunit value */
2043 __u64 lvb_pad1;
2044};
2045
2046extern void lustre_swab_lquota_lvb(struct lquota_lvb *lvb);
2047
2048/* LVB used with global quota lock */
2049#define lvb_glb_ver lvb_id_may_rel /* current version of the global index */
2050
2051/* op codes */
2052typedef enum {
2053 QUOTA_DQACQ = 601,
2054 QUOTA_DQREL = 602,
2055 QUOTA_LAST_OPC
2056} quota_cmd_t;
2057#define QUOTA_FIRST_OPC QUOTA_DQACQ
2058
2059/*
2060 * MDS REQ RECORDS
2061 */
2062
2063/* opcodes */
2064typedef enum {
2065 MDS_GETATTR = 33,
2066 MDS_GETATTR_NAME = 34,
2067 MDS_CLOSE = 35,
2068 MDS_REINT = 36,
2069 MDS_READPAGE = 37,
2070 MDS_CONNECT = 38,
2071 MDS_DISCONNECT = 39,
2072 MDS_GETSTATUS = 40,
2073 MDS_STATFS = 41,
2074 MDS_PIN = 42,
2075 MDS_UNPIN = 43,
2076 MDS_SYNC = 44,
2077 MDS_DONE_WRITING = 45,
2078 MDS_SET_INFO = 46,
2079 MDS_QUOTACHECK = 47,
2080 MDS_QUOTACTL = 48,
2081 MDS_GETXATTR = 49,
2082 MDS_SETXATTR = 50, /* obsolete, now it's MDS_REINT op */
2083 MDS_WRITEPAGE = 51,
2084 MDS_IS_SUBDIR = 52,
2085 MDS_GET_INFO = 53,
2086 MDS_HSM_STATE_GET = 54,
2087 MDS_HSM_STATE_SET = 55,
2088 MDS_HSM_ACTION = 56,
2089 MDS_HSM_PROGRESS = 57,
2090 MDS_HSM_REQUEST = 58,
2091 MDS_HSM_CT_REGISTER = 59,
2092 MDS_HSM_CT_UNREGISTER = 60,
2093 MDS_SWAP_LAYOUTS = 61,
2094 MDS_LAST_OPC
2095} mds_cmd_t;
2096
2097#define MDS_FIRST_OPC MDS_GETATTR
2098
2099
2100/* opcodes for object update */
2101typedef enum {
2102 UPDATE_OBJ = 1000,
2103 UPDATE_LAST_OPC
2104} update_cmd_t;
2105
2106#define UPDATE_FIRST_OPC UPDATE_OBJ
2107
2108/*
2109 * Do not exceed 63
2110 */
2111
2112typedef enum {
2113 REINT_SETATTR = 1,
2114 REINT_CREATE = 2,
2115 REINT_LINK = 3,
2116 REINT_UNLINK = 4,
2117 REINT_RENAME = 5,
2118 REINT_OPEN = 6,
2119 REINT_SETXATTR = 7,
2120 REINT_RMENTRY = 8,
2121// REINT_WRITE = 9,
2122 REINT_MAX
2123} mds_reint_t, mdt_reint_t;
2124
2125extern void lustre_swab_generic_32s (__u32 *val);
2126
2127/* the disposition of the intent outlines what was executed */
2128#define DISP_IT_EXECD 0x00000001
2129#define DISP_LOOKUP_EXECD 0x00000002
2130#define DISP_LOOKUP_NEG 0x00000004
2131#define DISP_LOOKUP_POS 0x00000008
2132#define DISP_OPEN_CREATE 0x00000010
2133#define DISP_OPEN_OPEN 0x00000020
f236f69b 2134#define DISP_ENQ_COMPLETE 0x00400000 /* obsolete and unused */
d7e09d03
PT
2135#define DISP_ENQ_OPEN_REF 0x00800000
2136#define DISP_ENQ_CREATE_REF 0x01000000
2137#define DISP_OPEN_LOCK 0x02000000
d3a8a4e2 2138#define DISP_OPEN_LEASE 0x04000000
63d42578 2139#define DISP_OPEN_STRIPE 0x08000000
d7e09d03
PT
2140
2141/* INODE LOCK PARTS */
fe4c58af 2142#define MDS_INODELOCK_LOOKUP 0x000001 /* For namespace, dentry etc, and also
2143 * was used to protect permission (mode,
2144 * owner, group etc) before 2.4. */
2145#define MDS_INODELOCK_UPDATE 0x000002 /* size, links, timestamps */
2146#define MDS_INODELOCK_OPEN 0x000004 /* For opened files */
2147#define MDS_INODELOCK_LAYOUT 0x000008 /* for layout */
2148
2149/* The PERM bit is added int 2.4, and it is used to protect permission(mode,
2150 * owner, group, acl etc), so to separate the permission from LOOKUP lock.
2151 * Because for remote directories(in DNE), these locks will be granted by
2152 * different MDTs(different ldlm namespace).
2153 *
2154 * For local directory, MDT will always grant UPDATE_LOCK|PERM_LOCK together.
2155 * For Remote directory, the master MDT, where the remote directory is, will
2156 * grant UPDATE_LOCK|PERM_LOCK, and the remote MDT, where the name entry is,
2157 * will grant LOOKUP_LOCK. */
2158#define MDS_INODELOCK_PERM 0x000010
2159#define MDS_INODELOCK_XATTR 0x000020 /* extended attributes */
d7e09d03 2160
7fc1f831 2161#define MDS_INODELOCK_MAXSHIFT 5
d7e09d03
PT
2162/* This FULL lock is useful to take on unlink sort of operations */
2163#define MDS_INODELOCK_FULL ((1<<(MDS_INODELOCK_MAXSHIFT+1))-1)
2164
2165extern void lustre_swab_ll_fid (struct ll_fid *fid);
2166
2167/* NOTE: until Lustre 1.8.7/2.1.1 the fid_ver() was packed into name[2],
2168 * but was moved into name[1] along with the OID to avoid consuming the
2169 * name[2,3] fields that need to be used for the quota id (also a FID). */
2170enum {
2171 LUSTRE_RES_ID_SEQ_OFF = 0,
2172 LUSTRE_RES_ID_VER_OID_OFF = 1,
2173 LUSTRE_RES_ID_WAS_VER_OFF = 2, /* see note above */
2174 LUSTRE_RES_ID_QUOTA_SEQ_OFF = 2,
2175 LUSTRE_RES_ID_QUOTA_VER_OID_OFF = 3,
2176 LUSTRE_RES_ID_HSH_OFF = 3
2177};
2178
2179#define MDS_STATUS_CONN 1
2180#define MDS_STATUS_LOV 2
2181
2182/* mdt_thread_info.mti_flags. */
2183enum md_op_flags {
2184 /* The flag indicates Size-on-MDS attributes are changed. */
2185 MF_SOM_CHANGE = (1 << 0),
2186 /* Flags indicates an epoch opens or closes. */
2187 MF_EPOCH_OPEN = (1 << 1),
2188 MF_EPOCH_CLOSE = (1 << 2),
2189 MF_MDC_CANCEL_FID1 = (1 << 3),
2190 MF_MDC_CANCEL_FID2 = (1 << 4),
2191 MF_MDC_CANCEL_FID3 = (1 << 5),
2192 MF_MDC_CANCEL_FID4 = (1 << 6),
2193 /* There is a pending attribute update. */
2194 MF_SOM_AU = (1 << 7),
2195 /* Cancel OST locks while getattr OST attributes. */
2196 MF_GETATTR_LOCK = (1 << 8),
2197 MF_GET_MDT_IDX = (1 << 9),
2198};
2199
2200#define MF_SOM_LOCAL_FLAGS (MF_SOM_CHANGE | MF_EPOCH_OPEN | MF_EPOCH_CLOSE)
2201
2202#define LUSTRE_BFLAG_UNCOMMITTED_WRITES 0x1
2203
2204/* these should be identical to their EXT4_*_FL counterparts, they are
2205 * redefined here only to avoid dragging in fs/ext4/ext4.h */
2206#define LUSTRE_SYNC_FL 0x00000008 /* Synchronous updates */
2207#define LUSTRE_IMMUTABLE_FL 0x00000010 /* Immutable file */
2208#define LUSTRE_APPEND_FL 0x00000020 /* writes to file may only append */
2209#define LUSTRE_NOATIME_FL 0x00000080 /* do not update atime */
2210#define LUSTRE_DIRSYNC_FL 0x00010000 /* dirsync behaviour (dir only) */
2211
2212/* Convert wire LUSTRE_*_FL to corresponding client local VFS S_* values
2213 * for the client inode i_flags. The LUSTRE_*_FL are the Lustre wire
2214 * protocol equivalents of LDISKFS_*_FL values stored on disk, while
2215 * the S_* flags are kernel-internal values that change between kernel
2216 * versions. These flags are set/cleared via FSFILT_IOC_{GET,SET}_FLAGS.
2217 * See b=16526 for a full history. */
2218static inline int ll_ext_to_inode_flags(int flags)
2219{
2220 return (((flags & LUSTRE_SYNC_FL) ? S_SYNC : 0) |
2221 ((flags & LUSTRE_NOATIME_FL) ? S_NOATIME : 0) |
2222 ((flags & LUSTRE_APPEND_FL) ? S_APPEND : 0) |
2223#if defined(S_DIRSYNC)
2224 ((flags & LUSTRE_DIRSYNC_FL) ? S_DIRSYNC : 0) |
2225#endif
2226 ((flags & LUSTRE_IMMUTABLE_FL) ? S_IMMUTABLE : 0));
2227}
2228
2229static inline int ll_inode_to_ext_flags(int iflags)
2230{
2231 return (((iflags & S_SYNC) ? LUSTRE_SYNC_FL : 0) |
2232 ((iflags & S_NOATIME) ? LUSTRE_NOATIME_FL : 0) |
2233 ((iflags & S_APPEND) ? LUSTRE_APPEND_FL : 0) |
2234#if defined(S_DIRSYNC)
2235 ((iflags & S_DIRSYNC) ? LUSTRE_DIRSYNC_FL : 0) |
2236#endif
2237 ((iflags & S_IMMUTABLE) ? LUSTRE_IMMUTABLE_FL : 0));
2238}
2239
5ea17d6c
JL
2240/* 64 possible states */
2241enum md_transient_state {
2242 MS_RESTORE = (1 << 0), /* restore is running */
2243};
2244
d7e09d03
PT
2245struct mdt_body {
2246 struct lu_fid fid1;
2247 struct lu_fid fid2;
2248 struct lustre_handle handle;
2249 __u64 valid;
2250 __u64 size; /* Offset, in the case of MDS_READPAGE */
2251 obd_time mtime;
2252 obd_time atime;
2253 obd_time ctime;
2254 __u64 blocks; /* XID, in the case of MDS_READPAGE */
2255 __u64 ioepoch;
5ea17d6c
JL
2256 __u64 t_state; /* transient file state defined in
2257 * enum md_transient_state
2258 * was "ino" until 2.4.0 */
d7e09d03
PT
2259 __u32 fsuid;
2260 __u32 fsgid;
2261 __u32 capability;
2262 __u32 mode;
2263 __u32 uid;
2264 __u32 gid;
2265 __u32 flags; /* from vfs for pin/unpin, LUSTRE_BFLAG close */
2266 __u32 rdev;
2267 __u32 nlink; /* #bytes to read in the case of MDS_READPAGE */
2268 __u32 unused2; /* was "generation" until 2.4.0 */
2269 __u32 suppgid;
2270 __u32 eadatasize;
2271 __u32 aclsize;
2272 __u32 max_mdsize;
2273 __u32 max_cookiesize;
2274 __u32 uid_h; /* high 32-bits of uid, for FUID */
2275 __u32 gid_h; /* high 32-bits of gid, for FUID */
2276 __u32 padding_5; /* also fix lustre_swab_mdt_body */
2277 __u64 padding_6;
2278 __u64 padding_7;
2279 __u64 padding_8;
2280 __u64 padding_9;
2281 __u64 padding_10;
2282}; /* 216 */
2283
2284extern void lustre_swab_mdt_body (struct mdt_body *b);
2285
2286struct mdt_ioepoch {
2287 struct lustre_handle handle;
2288 __u64 ioepoch;
2289 __u32 flags;
2290 __u32 padding;
2291};
2292
2293extern void lustre_swab_mdt_ioepoch (struct mdt_ioepoch *b);
2294
2295/* permissions for md_perm.mp_perm */
2296enum {
2297 CFS_SETUID_PERM = 0x01,
2298 CFS_SETGID_PERM = 0x02,
2299 CFS_SETGRP_PERM = 0x04,
2300 CFS_RMTACL_PERM = 0x08,
2301 CFS_RMTOWN_PERM = 0x10
2302};
2303
2304/* inode access permission for remote user, the inode info are omitted,
2305 * for client knows them. */
2306struct mdt_remote_perm {
2307 __u32 rp_uid;
2308 __u32 rp_gid;
2309 __u32 rp_fsuid;
2310 __u32 rp_fsuid_h;
2311 __u32 rp_fsgid;
2312 __u32 rp_fsgid_h;
2313 __u32 rp_access_perm; /* MAY_READ/WRITE/EXEC */
2314 __u32 rp_padding;
2315};
2316
2317extern void lustre_swab_mdt_remote_perm(struct mdt_remote_perm *p);
2318
2319struct mdt_rec_setattr {
2320 __u32 sa_opcode;
2321 __u32 sa_cap;
2322 __u32 sa_fsuid;
2323 __u32 sa_fsuid_h;
2324 __u32 sa_fsgid;
2325 __u32 sa_fsgid_h;
2326 __u32 sa_suppgid;
2327 __u32 sa_suppgid_h;
2328 __u32 sa_padding_1;
2329 __u32 sa_padding_1_h;
2330 struct lu_fid sa_fid;
2331 __u64 sa_valid;
2332 __u32 sa_uid;
2333 __u32 sa_gid;
2334 __u64 sa_size;
2335 __u64 sa_blocks;
2336 obd_time sa_mtime;
2337 obd_time sa_atime;
2338 obd_time sa_ctime;
2339 __u32 sa_attr_flags;
2340 __u32 sa_mode;
2341 __u32 sa_bias; /* some operation flags */
2342 __u32 sa_padding_3;
2343 __u32 sa_padding_4;
2344 __u32 sa_padding_5;
2345};
2346
2347extern void lustre_swab_mdt_rec_setattr (struct mdt_rec_setattr *sa);
2348
2349/*
2350 * Attribute flags used in mdt_rec_setattr::sa_valid.
2351 * The kernel's #defines for ATTR_* should not be used over the network
2352 * since the client and MDS may run different kernels (see bug 13828)
2353 * Therefore, we should only use MDS_ATTR_* attributes for sa_valid.
2354 */
2355#define MDS_ATTR_MODE 0x1ULL /* = 1 */
2356#define MDS_ATTR_UID 0x2ULL /* = 2 */
2357#define MDS_ATTR_GID 0x4ULL /* = 4 */
2358#define MDS_ATTR_SIZE 0x8ULL /* = 8 */
2359#define MDS_ATTR_ATIME 0x10ULL /* = 16 */
2360#define MDS_ATTR_MTIME 0x20ULL /* = 32 */
2361#define MDS_ATTR_CTIME 0x40ULL /* = 64 */
2362#define MDS_ATTR_ATIME_SET 0x80ULL /* = 128 */
2363#define MDS_ATTR_MTIME_SET 0x100ULL /* = 256 */
2364#define MDS_ATTR_FORCE 0x200ULL /* = 512, Not a change, but a change it */
2365#define MDS_ATTR_ATTR_FLAG 0x400ULL /* = 1024 */
2366#define MDS_ATTR_KILL_SUID 0x800ULL /* = 2048 */
2367#define MDS_ATTR_KILL_SGID 0x1000ULL /* = 4096 */
2368#define MDS_ATTR_CTIME_SET 0x2000ULL /* = 8192 */
2369#define MDS_ATTR_FROM_OPEN 0x4000ULL /* = 16384, called from open path, ie O_TRUNC */
2370#define MDS_ATTR_BLOCKS 0x8000ULL /* = 32768 */
2371
2372#ifndef FMODE_READ
2373#define FMODE_READ 00000001
2374#define FMODE_WRITE 00000002
2375#endif
2376
2377#define MDS_FMODE_CLOSED 00000000
2378#define MDS_FMODE_EXEC 00000004
2379/* IO Epoch is opened on a closed file. */
2380#define MDS_FMODE_EPOCH 01000000
2381/* IO Epoch is opened on a file truncate. */
2382#define MDS_FMODE_TRUNC 02000000
2383/* Size-on-MDS Attribute Update is pending. */
2384#define MDS_FMODE_SOM 04000000
2385
2386#define MDS_OPEN_CREATED 00000010
2387#define MDS_OPEN_CROSS 00000020
2388
2389#define MDS_OPEN_CREAT 00000100
2390#define MDS_OPEN_EXCL 00000200
2391#define MDS_OPEN_TRUNC 00001000
2392#define MDS_OPEN_APPEND 00002000
2393#define MDS_OPEN_SYNC 00010000
2394#define MDS_OPEN_DIRECTORY 00200000
2395
2396#define MDS_OPEN_BY_FID 040000000 /* open_by_fid for known object */
2397#define MDS_OPEN_DELAY_CREATE 0100000000 /* delay initial object create */
2398#define MDS_OPEN_OWNEROVERRIDE 0200000000 /* NFSD rw-reopen ro file for owner */
2399#define MDS_OPEN_JOIN_FILE 0400000000 /* open for join file.
2400 * We do not support JOIN FILE
2401 * anymore, reserve this flags
2402 * just for preventing such bit
2403 * to be reused. */
2404
2405#define MDS_OPEN_LOCK 04000000000 /* This open requires open lock */
2406#define MDS_OPEN_HAS_EA 010000000000 /* specify object create pattern */
2407#define MDS_OPEN_HAS_OBJS 020000000000 /* Just set the EA the obj exist */
2408#define MDS_OPEN_NORESTORE 0100000000000ULL /* Do not restore file at open */
2409#define MDS_OPEN_NEWSTRIPE 0200000000000ULL /* New stripe needed (restripe or
2410 * hsm restore) */
2411#define MDS_OPEN_VOLATILE 0400000000000ULL /* File is volatile = created
2412 unlinked */
d3a8a4e2
JX
2413#define MDS_OPEN_LEASE 01000000000000ULL /* Open the file and grant lease
2414 * delegation, succeed if it's not
2415 * being opened with conflict mode.
2416 */
48d23e61 2417#define MDS_OPEN_RELEASE 02000000000000ULL /* Open the file for HSM release */
d7e09d03
PT
2418
2419/* permission for create non-directory file */
2420#define MAY_CREATE (1 << 7)
2421/* permission for create directory file */
2422#define MAY_LINK (1 << 8)
2423/* permission for delete from the directory */
2424#define MAY_UNLINK (1 << 9)
2425/* source's permission for rename */
2426#define MAY_RENAME_SRC (1 << 10)
2427/* target's permission for rename */
2428#define MAY_RENAME_TAR (1 << 11)
2429/* part (parent's) VTX permission check */
2430#define MAY_VTX_PART (1 << 12)
2431/* full VTX permission check */
2432#define MAY_VTX_FULL (1 << 13)
2433/* lfs rgetfacl permission check */
2434#define MAY_RGETFACL (1 << 14)
2435
48d23e61 2436enum mds_op_bias {
d7e09d03
PT
2437 MDS_CHECK_SPLIT = 1 << 0,
2438 MDS_CROSS_REF = 1 << 1,
2439 MDS_VTX_BYPASS = 1 << 2,
2440 MDS_PERM_BYPASS = 1 << 3,
2441 MDS_SOM = 1 << 4,
2442 MDS_QUOTA_IGNORE = 1 << 5,
2443 MDS_CLOSE_CLEANUP = 1 << 6,
2444 MDS_KEEP_ORPHAN = 1 << 7,
2445 MDS_RECOV_OPEN = 1 << 8,
2446 MDS_DATA_MODIFIED = 1 << 9,
2447 MDS_CREATE_VOLATILE = 1 << 10,
2448 MDS_OWNEROVERRIDE = 1 << 11,
48d23e61 2449 MDS_HSM_RELEASE = 1 << 12,
d7e09d03
PT
2450};
2451
2452/* instance of mdt_reint_rec */
2453struct mdt_rec_create {
2454 __u32 cr_opcode;
2455 __u32 cr_cap;
2456 __u32 cr_fsuid;
2457 __u32 cr_fsuid_h;
2458 __u32 cr_fsgid;
2459 __u32 cr_fsgid_h;
2460 __u32 cr_suppgid1;
2461 __u32 cr_suppgid1_h;
2462 __u32 cr_suppgid2;
2463 __u32 cr_suppgid2_h;
2464 struct lu_fid cr_fid1;
2465 struct lu_fid cr_fid2;
2466 struct lustre_handle cr_old_handle; /* handle in case of open replay */
2467 obd_time cr_time;
2468 __u64 cr_rdev;
2469 __u64 cr_ioepoch;
2470 __u64 cr_padding_1; /* rr_blocks */
2471 __u32 cr_mode;
2472 __u32 cr_bias;
2473 /* use of helpers set/get_mrc_cr_flags() is needed to access
2474 * 64 bits cr_flags [cr_flags_l, cr_flags_h], this is done to
2475 * extend cr_flags size without breaking 1.8 compat */
2476 __u32 cr_flags_l; /* for use with open, low 32 bits */
2477 __u32 cr_flags_h; /* for use with open, high 32 bits */
2478 __u32 cr_umask; /* umask for create */
2479 __u32 cr_padding_4; /* rr_padding_4 */
2480};
2481
2482static inline void set_mrc_cr_flags(struct mdt_rec_create *mrc, __u64 flags)
2483{
2484 mrc->cr_flags_l = (__u32)(flags & 0xFFFFFFFFUll);
2485 mrc->cr_flags_h = (__u32)(flags >> 32);
2486}
2487
2488static inline __u64 get_mrc_cr_flags(struct mdt_rec_create *mrc)
2489{
2490 return ((__u64)(mrc->cr_flags_l) | ((__u64)mrc->cr_flags_h << 32));
2491}
2492
2493/* instance of mdt_reint_rec */
2494struct mdt_rec_link {
2495 __u32 lk_opcode;
2496 __u32 lk_cap;
2497 __u32 lk_fsuid;
2498 __u32 lk_fsuid_h;
2499 __u32 lk_fsgid;
2500 __u32 lk_fsgid_h;
2501 __u32 lk_suppgid1;
2502 __u32 lk_suppgid1_h;
2503 __u32 lk_suppgid2;
2504 __u32 lk_suppgid2_h;
2505 struct lu_fid lk_fid1;
2506 struct lu_fid lk_fid2;
2507 obd_time lk_time;
2508 __u64 lk_padding_1; /* rr_atime */
2509 __u64 lk_padding_2; /* rr_ctime */
2510 __u64 lk_padding_3; /* rr_size */
2511 __u64 lk_padding_4; /* rr_blocks */
2512 __u32 lk_bias;
2513 __u32 lk_padding_5; /* rr_mode */
2514 __u32 lk_padding_6; /* rr_flags */
2515 __u32 lk_padding_7; /* rr_padding_2 */
2516 __u32 lk_padding_8; /* rr_padding_3 */
2517 __u32 lk_padding_9; /* rr_padding_4 */
2518};
2519
2520/* instance of mdt_reint_rec */
2521struct mdt_rec_unlink {
2522 __u32 ul_opcode;
2523 __u32 ul_cap;
2524 __u32 ul_fsuid;
2525 __u32 ul_fsuid_h;
2526 __u32 ul_fsgid;
2527 __u32 ul_fsgid_h;
2528 __u32 ul_suppgid1;
2529 __u32 ul_suppgid1_h;
2530 __u32 ul_suppgid2;
2531 __u32 ul_suppgid2_h;
2532 struct lu_fid ul_fid1;
2533 struct lu_fid ul_fid2;
2534 obd_time ul_time;
2535 __u64 ul_padding_2; /* rr_atime */
2536 __u64 ul_padding_3; /* rr_ctime */
2537 __u64 ul_padding_4; /* rr_size */
2538 __u64 ul_padding_5; /* rr_blocks */
2539 __u32 ul_bias;
2540 __u32 ul_mode;
2541 __u32 ul_padding_6; /* rr_flags */
2542 __u32 ul_padding_7; /* rr_padding_2 */
2543 __u32 ul_padding_8; /* rr_padding_3 */
2544 __u32 ul_padding_9; /* rr_padding_4 */
2545};
2546
2547/* instance of mdt_reint_rec */
2548struct mdt_rec_rename {
2549 __u32 rn_opcode;
2550 __u32 rn_cap;
2551 __u32 rn_fsuid;
2552 __u32 rn_fsuid_h;
2553 __u32 rn_fsgid;
2554 __u32 rn_fsgid_h;
2555 __u32 rn_suppgid1;
2556 __u32 rn_suppgid1_h;
2557 __u32 rn_suppgid2;
2558 __u32 rn_suppgid2_h;
2559 struct lu_fid rn_fid1;
2560 struct lu_fid rn_fid2;
2561 obd_time rn_time;
2562 __u64 rn_padding_1; /* rr_atime */
2563 __u64 rn_padding_2; /* rr_ctime */
2564 __u64 rn_padding_3; /* rr_size */
2565 __u64 rn_padding_4; /* rr_blocks */
2566 __u32 rn_bias; /* some operation flags */
2567 __u32 rn_mode; /* cross-ref rename has mode */
2568 __u32 rn_padding_5; /* rr_flags */
2569 __u32 rn_padding_6; /* rr_padding_2 */
2570 __u32 rn_padding_7; /* rr_padding_3 */
2571 __u32 rn_padding_8; /* rr_padding_4 */
2572};
2573
2574/* instance of mdt_reint_rec */
2575struct mdt_rec_setxattr {
2576 __u32 sx_opcode;
2577 __u32 sx_cap;
2578 __u32 sx_fsuid;
2579 __u32 sx_fsuid_h;
2580 __u32 sx_fsgid;
2581 __u32 sx_fsgid_h;
2582 __u32 sx_suppgid1;
2583 __u32 sx_suppgid1_h;
2584 __u32 sx_suppgid2;
2585 __u32 sx_suppgid2_h;
2586 struct lu_fid sx_fid;
2587 __u64 sx_padding_1; /* These three are rr_fid2 */
2588 __u32 sx_padding_2;
2589 __u32 sx_padding_3;
2590 __u64 sx_valid;
2591 obd_time sx_time;
2592 __u64 sx_padding_5; /* rr_ctime */
2593 __u64 sx_padding_6; /* rr_size */
2594 __u64 sx_padding_7; /* rr_blocks */
2595 __u32 sx_size;
2596 __u32 sx_flags;
2597 __u32 sx_padding_8; /* rr_flags */
2598 __u32 sx_padding_9; /* rr_padding_2 */
2599 __u32 sx_padding_10; /* rr_padding_3 */
2600 __u32 sx_padding_11; /* rr_padding_4 */
2601};
2602
2603/*
2604 * mdt_rec_reint is the template for all mdt_reint_xxx structures.
2605 * Do NOT change the size of various members, otherwise the value
2606 * will be broken in lustre_swab_mdt_rec_reint().
2607 *
f16192ed 2608 * If you add new members in other mdt_reint_xxx structures and need to use the
d7e09d03
PT
2609 * rr_padding_x fields, then update lustre_swab_mdt_rec_reint() also.
2610 */
2611struct mdt_rec_reint {
2612 __u32 rr_opcode;
2613 __u32 rr_cap;
2614 __u32 rr_fsuid;
2615 __u32 rr_fsuid_h;
2616 __u32 rr_fsgid;
2617 __u32 rr_fsgid_h;
2618 __u32 rr_suppgid1;
2619 __u32 rr_suppgid1_h;
2620 __u32 rr_suppgid2;
2621 __u32 rr_suppgid2_h;
2622 struct lu_fid rr_fid1;
2623 struct lu_fid rr_fid2;
2624 obd_time rr_mtime;
2625 obd_time rr_atime;
2626 obd_time rr_ctime;
2627 __u64 rr_size;
2628 __u64 rr_blocks;
2629 __u32 rr_bias;
2630 __u32 rr_mode;
2631 __u32 rr_flags;
2632 __u32 rr_flags_h;
2633 __u32 rr_umask;
2634 __u32 rr_padding_4; /* also fix lustre_swab_mdt_rec_reint */
2635};
2636
2637extern void lustre_swab_mdt_rec_reint(struct mdt_rec_reint *rr);
2638
2639struct lmv_desc {
2640 __u32 ld_tgt_count; /* how many MDS's */
2641 __u32 ld_active_tgt_count; /* how many active */
2642 __u32 ld_default_stripe_count; /* how many objects are used */
2643 __u32 ld_pattern; /* default MEA_MAGIC_* */
2644 __u64 ld_default_hash_size;
2645 __u64 ld_padding_1; /* also fix lustre_swab_lmv_desc */
2646 __u32 ld_padding_2; /* also fix lustre_swab_lmv_desc */
2647 __u32 ld_qos_maxage; /* in second */
2648 __u32 ld_padding_3; /* also fix lustre_swab_lmv_desc */
2649 __u32 ld_padding_4; /* also fix lustre_swab_lmv_desc */
2650 struct obd_uuid ld_uuid;
2651};
2652
2653extern void lustre_swab_lmv_desc (struct lmv_desc *ld);
2654
2655/* TODO: lmv_stripe_md should contain mds capabilities for all slave fids */
2656struct lmv_stripe_md {
2657 __u32 mea_magic;
2658 __u32 mea_count;
2659 __u32 mea_master;
2660 __u32 mea_padding;
2661 char mea_pool_name[LOV_MAXPOOLNAME];
2662 struct lu_fid mea_ids[0];
2663};
2664
2665extern void lustre_swab_lmv_stripe_md(struct lmv_stripe_md *mea);
2666
2667/* lmv structures */
2668#define MEA_MAGIC_LAST_CHAR 0xb2221ca1
2669#define MEA_MAGIC_ALL_CHARS 0xb222a11c
2670#define MEA_MAGIC_HASH_SEGMENT 0xb222a11b
2671
2672#define MAX_HASH_SIZE_32 0x7fffffffUL
2673#define MAX_HASH_SIZE 0x7fffffffffffffffULL
2674#define MAX_HASH_HIGHEST_BIT 0x1000000000000000ULL
2675
2676enum fld_rpc_opc {
2677 FLD_QUERY = 900,
2678 FLD_LAST_OPC,
2679 FLD_FIRST_OPC = FLD_QUERY
2680};
2681
2682enum seq_rpc_opc {
2683 SEQ_QUERY = 700,
2684 SEQ_LAST_OPC,
2685 SEQ_FIRST_OPC = SEQ_QUERY
2686};
2687
2688enum seq_op {
2689 SEQ_ALLOC_SUPER = 0,
2690 SEQ_ALLOC_META = 1
2691};
2692
2693/*
2694 * LOV data structures
2695 */
2696
2697#define LOV_MAX_UUID_BUFFER_SIZE 8192
2698/* The size of the buffer the lov/mdc reserves for the
2699 * array of UUIDs returned by the MDS. With the current
2700 * protocol, this will limit the max number of OSTs per LOV */
2701
2702#define LOV_DESC_MAGIC 0xB0CCDE5C
081b7265
JH
2703#define LOV_DESC_QOS_MAXAGE_DEFAULT 5 /* Seconds */
2704#define LOV_DESC_STRIPE_SIZE_DEFAULT (1 << LNET_MTU_BITS)
d7e09d03
PT
2705
2706/* LOV settings descriptor (should only contain static info) */
2707struct lov_desc {
2708 __u32 ld_tgt_count; /* how many OBD's */
2709 __u32 ld_active_tgt_count; /* how many active */
2710 __u32 ld_default_stripe_count; /* how many objects are used */
2711 __u32 ld_pattern; /* default PATTERN_RAID0 */
2712 __u64 ld_default_stripe_size; /* in bytes */
2713 __u64 ld_default_stripe_offset; /* in bytes */
2714 __u32 ld_padding_0; /* unused */
2715 __u32 ld_qos_maxage; /* in second */
2716 __u32 ld_padding_1; /* also fix lustre_swab_lov_desc */
2717 __u32 ld_padding_2; /* also fix lustre_swab_lov_desc */
2718 struct obd_uuid ld_uuid;
2719};
2720
2721#define ld_magic ld_active_tgt_count /* for swabbing from llogs */
2722
2723extern void lustre_swab_lov_desc (struct lov_desc *ld);
2724
2725/*
2726 * LDLM requests:
2727 */
2728/* opcodes -- MUST be distinct from OST/MDS opcodes */
2729typedef enum {
2730 LDLM_ENQUEUE = 101,
2731 LDLM_CONVERT = 102,
2732 LDLM_CANCEL = 103,
2733 LDLM_BL_CALLBACK = 104,
2734 LDLM_CP_CALLBACK = 105,
2735 LDLM_GL_CALLBACK = 106,
2736 LDLM_SET_INFO = 107,
2737 LDLM_LAST_OPC
2738} ldlm_cmd_t;
2739#define LDLM_FIRST_OPC LDLM_ENQUEUE
2740
2741#define RES_NAME_SIZE 4
2742struct ldlm_res_id {
2743 __u64 name[RES_NAME_SIZE];
2744};
2745
55f5a824 2746#define DLDLMRES "[%#llx:%#llx:%#llx].%llx"
ce74f92d
AD
2747#define PLDLMRES(res) (res)->lr_name.name[0], (res)->lr_name.name[1], \
2748 (res)->lr_name.name[2], (res)->lr_name.name[3]
2749
d7e09d03
PT
2750extern void lustre_swab_ldlm_res_id (struct ldlm_res_id *id);
2751
2752static inline int ldlm_res_eq(const struct ldlm_res_id *res0,
2753 const struct ldlm_res_id *res1)
2754{
2755 return !memcmp(res0, res1, sizeof(*res0));
2756}
2757
2758/* lock types */
2759typedef enum {
2760 LCK_MINMODE = 0,
2761 LCK_EX = 1,
2762 LCK_PW = 2,
2763 LCK_PR = 4,
2764 LCK_CW = 8,
2765 LCK_CR = 16,
2766 LCK_NL = 32,
2767 LCK_GROUP = 64,
2768 LCK_COS = 128,
2769 LCK_MAXMODE
2770} ldlm_mode_t;
2771
2772#define LCK_MODE_NUM 8
2773
2774typedef enum {
2775 LDLM_PLAIN = 10,
2776 LDLM_EXTENT = 11,
2777 LDLM_FLOCK = 12,
2778 LDLM_IBITS = 13,
2779 LDLM_MAX_TYPE
2780} ldlm_type_t;
2781
2782#define LDLM_MIN_TYPE LDLM_PLAIN
2783
2784struct ldlm_extent {
2785 __u64 start;
2786 __u64 end;
2787 __u64 gid;
2788};
2789
2790static inline int ldlm_extent_overlap(struct ldlm_extent *ex1,
2791 struct ldlm_extent *ex2)
2792{
2793 return (ex1->start <= ex2->end) && (ex2->start <= ex1->end);
2794}
2795
2796/* check if @ex1 contains @ex2 */
2797static inline int ldlm_extent_contain(struct ldlm_extent *ex1,
2798 struct ldlm_extent *ex2)
2799{
2800 return (ex1->start <= ex2->start) && (ex1->end >= ex2->end);
2801}
2802
2803struct ldlm_inodebits {
2804 __u64 bits;
2805};
2806
2807struct ldlm_flock_wire {
2808 __u64 lfw_start;
2809 __u64 lfw_end;
2810 __u64 lfw_owner;
2811 __u32 lfw_padding;
2812 __u32 lfw_pid;
2813};
2814
2815/* it's important that the fields of the ldlm_extent structure match
2816 * the first fields of the ldlm_flock structure because there is only
2817 * one ldlm_swab routine to process the ldlm_policy_data_t union. if
2818 * this ever changes we will need to swab the union differently based
2819 * on the resource type. */
2820
2821typedef union {
2822 struct ldlm_extent l_extent;
2823 struct ldlm_flock_wire l_flock;
2824 struct ldlm_inodebits l_inodebits;
2825} ldlm_wire_policy_data_t;
2826
2827extern void lustre_swab_ldlm_policy_data (ldlm_wire_policy_data_t *d);
2828
2829union ldlm_gl_desc {
2830 struct ldlm_gl_lquota_desc lquota_desc;
2831};
2832
2833extern void lustre_swab_gl_desc(union ldlm_gl_desc *);
2834
2835struct ldlm_intent {
2836 __u64 opc;
2837};
2838
2839extern void lustre_swab_ldlm_intent (struct ldlm_intent *i);
2840
2841struct ldlm_resource_desc {
2842 ldlm_type_t lr_type;
2843 __u32 lr_padding; /* also fix lustre_swab_ldlm_resource_desc */
2844 struct ldlm_res_id lr_name;
2845};
2846
2847extern void lustre_swab_ldlm_resource_desc (struct ldlm_resource_desc *r);
2848
2849struct ldlm_lock_desc {
2850 struct ldlm_resource_desc l_resource;
2851 ldlm_mode_t l_req_mode;
2852 ldlm_mode_t l_granted_mode;
2853 ldlm_wire_policy_data_t l_policy_data;
2854};
2855
2856extern void lustre_swab_ldlm_lock_desc (struct ldlm_lock_desc *l);
2857
2858#define LDLM_LOCKREQ_HANDLES 2
2859#define LDLM_ENQUEUE_CANCEL_OFF 1
2860
2861struct ldlm_request {
2862 __u32 lock_flags;
2863 __u32 lock_count;
2864 struct ldlm_lock_desc lock_desc;
2865 struct lustre_handle lock_handle[LDLM_LOCKREQ_HANDLES];
2866};
2867
2868extern void lustre_swab_ldlm_request (struct ldlm_request *rq);
2869
2870/* If LDLM_ENQUEUE, 1 slot is already occupied, 1 is available.
2871 * Otherwise, 2 are available. */
2872#define ldlm_request_bufsize(count,type) \
2873({ \
2874 int _avail = LDLM_LOCKREQ_HANDLES; \
2875 _avail -= (type == LDLM_ENQUEUE ? LDLM_ENQUEUE_CANCEL_OFF : 0); \
2876 sizeof(struct ldlm_request) + \
2877 (count > _avail ? count - _avail : 0) * \
2878 sizeof(struct lustre_handle); \
2879})
2880
2881struct ldlm_reply {
2882 __u32 lock_flags;
2883 __u32 lock_padding; /* also fix lustre_swab_ldlm_reply */
2884 struct ldlm_lock_desc lock_desc;
2885 struct lustre_handle lock_handle;
2886 __u64 lock_policy_res1;
2887 __u64 lock_policy_res2;
2888};
2889
2890extern void lustre_swab_ldlm_reply (struct ldlm_reply *r);
2891
2892#define ldlm_flags_to_wire(flags) ((__u32)(flags))
2893#define ldlm_flags_from_wire(flags) ((__u64)(flags))
2894
2895/*
2896 * Opcodes for mountconf (mgs and mgc)
2897 */
2898typedef enum {
2899 MGS_CONNECT = 250,
2900 MGS_DISCONNECT,
2901 MGS_EXCEPTION, /* node died, etc. */
2902 MGS_TARGET_REG, /* whenever target starts up */
2903 MGS_TARGET_DEL,
2904 MGS_SET_INFO,
2905 MGS_CONFIG_READ,
2906 MGS_LAST_OPC
2907} mgs_cmd_t;
2908#define MGS_FIRST_OPC MGS_CONNECT
2909
2910#define MGS_PARAM_MAXLEN 1024
2911#define KEY_SET_INFO "set_info"
2912
2913struct mgs_send_param {
2914 char mgs_param[MGS_PARAM_MAXLEN];
2915};
2916
2917/* We pass this info to the MGS so it can write config logs */
2918#define MTI_NAME_MAXLEN 64
2919#define MTI_PARAM_MAXLEN 4096
2920#define MTI_NIDS_MAX 32
2921struct mgs_target_info {
2922 __u32 mti_lustre_ver;
2923 __u32 mti_stripe_index;
2924 __u32 mti_config_ver;
2925 __u32 mti_flags;
2926 __u32 mti_nid_count;
2927 __u32 mti_instance; /* Running instance of target */
2928 char mti_fsname[MTI_NAME_MAXLEN];
2929 char mti_svname[MTI_NAME_MAXLEN];
2930 char mti_uuid[sizeof(struct obd_uuid)];
2931 __u64 mti_nids[MTI_NIDS_MAX]; /* host nids (lnet_nid_t)*/
2932 char mti_params[MTI_PARAM_MAXLEN];
2933};
2934extern void lustre_swab_mgs_target_info(struct mgs_target_info *oinfo);
2935
2936struct mgs_nidtbl_entry {
2937 __u64 mne_version; /* table version of this entry */
2938 __u32 mne_instance; /* target instance # */
2939 __u32 mne_index; /* target index */
2940 __u32 mne_length; /* length of this entry - by bytes */
2941 __u8 mne_type; /* target type LDD_F_SV_TYPE_OST/MDT */
2942 __u8 mne_nid_type; /* type of nid(mbz). for ipv6. */
2943 __u8 mne_nid_size; /* size of each NID, by bytes */
2944 __u8 mne_nid_count; /* # of NIDs in buffer */
2945 union {
2946 lnet_nid_t nids[0]; /* variable size buffer for NIDs. */
2947 } u;
2948};
2949extern void lustre_swab_mgs_nidtbl_entry(struct mgs_nidtbl_entry *oinfo);
2950
2951struct mgs_config_body {
2952 char mcb_name[MTI_NAME_MAXLEN]; /* logname */
2953 __u64 mcb_offset; /* next index of config log to request */
2954 __u16 mcb_type; /* type of log: CONFIG_T_[CONFIG|RECOVER] */
2955 __u8 mcb_reserved;
2956 __u8 mcb_bits; /* bits unit size of config log */
2957 __u32 mcb_units; /* # of units for bulk transfer */
2958};
2959extern void lustre_swab_mgs_config_body(struct mgs_config_body *body);
2960
2961struct mgs_config_res {
2962 __u64 mcr_offset; /* index of last config log */
2963 __u64 mcr_size; /* size of the log */
2964};
2965extern void lustre_swab_mgs_config_res(struct mgs_config_res *body);
2966
2967/* Config marker flags (in config log) */
2968#define CM_START 0x01
2969#define CM_END 0x02
2970#define CM_SKIP 0x04
2971#define CM_UPGRADE146 0x08
2972#define CM_EXCLUDE 0x10
2973#define CM_START_SKIP (CM_START | CM_SKIP)
2974
2975struct cfg_marker {
2976 __u32 cm_step; /* aka config version */
2977 __u32 cm_flags;
2978 __u32 cm_vers; /* lustre release version number */
2979 __u32 cm_padding; /* 64 bit align */
2980 obd_time cm_createtime; /*when this record was first created */
2981 obd_time cm_canceltime; /*when this record is no longer valid*/
2982 char cm_tgtname[MTI_NAME_MAXLEN];
2983 char cm_comment[MTI_NAME_MAXLEN];
2984};
2985
2986extern void lustre_swab_cfg_marker(struct cfg_marker *marker,
2987 int swab, int size);
2988
2989/*
2990 * Opcodes for multiple servers.
2991 */
2992
2993typedef enum {
2994 OBD_PING = 400,
2995 OBD_LOG_CANCEL,
2996 OBD_QC_CALLBACK,
2997 OBD_IDX_READ,
2998 OBD_LAST_OPC
2999} obd_cmd_t;
3000#define OBD_FIRST_OPC OBD_PING
3001
3002/* catalog of log objects */
3003
3004/** Identifier for a single log object */
3005struct llog_logid {
3006 struct ost_id lgl_oi;
3007 __u32 lgl_ogen;
3008} __attribute__((packed));
3009
3010/** Records written to the CATALOGS list */
3011#define CATLIST "CATALOGS"
3012struct llog_catid {
3013 struct llog_logid lci_logid;
3014 __u32 lci_padding1;
3015 __u32 lci_padding2;
3016 __u32 lci_padding3;
3017} __attribute__((packed));
3018
3019/* Log data record types - there is no specific reason that these need to
3020 * be related to the RPC opcodes, but no reason not to (may be handy later?)
3021 */
3022#define LLOG_OP_MAGIC 0x10600000
3023#define LLOG_OP_MASK 0xfff00000
3024
3025typedef enum {
3026 LLOG_PAD_MAGIC = LLOG_OP_MAGIC | 0x00000,
3027 OST_SZ_REC = LLOG_OP_MAGIC | 0x00f00,
3028 /* OST_RAID1_REC = LLOG_OP_MAGIC | 0x01000, never used */
3029 MDS_UNLINK_REC = LLOG_OP_MAGIC | 0x10000 | (MDS_REINT << 8) |
3030 REINT_UNLINK, /* obsolete after 2.5.0 */
3031 MDS_UNLINK64_REC = LLOG_OP_MAGIC | 0x90000 | (MDS_REINT << 8) |
3032 REINT_UNLINK,
3033 /* MDS_SETATTR_REC = LLOG_OP_MAGIC | 0x12401, obsolete 1.8.0 */
3034 MDS_SETATTR64_REC = LLOG_OP_MAGIC | 0x90000 | (MDS_REINT << 8) |
3035 REINT_SETATTR,
3036 OBD_CFG_REC = LLOG_OP_MAGIC | 0x20000,
3037 /* PTL_CFG_REC = LLOG_OP_MAGIC | 0x30000, obsolete 1.4.0 */
3038 LLOG_GEN_REC = LLOG_OP_MAGIC | 0x40000,
3039 /* LLOG_JOIN_REC = LLOG_OP_MAGIC | 0x50000, obsolete 1.8.0 */
3040 CHANGELOG_REC = LLOG_OP_MAGIC | 0x60000,
3041 CHANGELOG_USER_REC = LLOG_OP_MAGIC | 0x70000,
99a92265 3042 HSM_AGENT_REC = LLOG_OP_MAGIC | 0x80000,
d7e09d03
PT
3043 LLOG_HDR_MAGIC = LLOG_OP_MAGIC | 0x45539,
3044 LLOG_LOGID_MAGIC = LLOG_OP_MAGIC | 0x4553b,
3045} llog_op_type;
3046
3047#define LLOG_REC_HDR_NEEDS_SWABBING(r) \
3048 (((r)->lrh_type & __swab32(LLOG_OP_MASK)) == __swab32(LLOG_OP_MAGIC))
3049
3050/** Log record header - stored in little endian order.
3051 * Each record must start with this struct, end with a llog_rec_tail,
3052 * and be a multiple of 256 bits in size.
3053 */
3054struct llog_rec_hdr {
3055 __u32 lrh_len;
3056 __u32 lrh_index;
3057 __u32 lrh_type;
3058 __u32 lrh_id;
3059};
3060
3061struct llog_rec_tail {
3062 __u32 lrt_len;
3063 __u32 lrt_index;
3064};
3065
3066/* Where data follow just after header */
3067#define REC_DATA(ptr) \
3068 ((void *)((char *)ptr + sizeof(struct llog_rec_hdr)))
3069
3070#define REC_DATA_LEN(rec) \
3071 (rec->lrh_len - sizeof(struct llog_rec_hdr) - \
3072 sizeof(struct llog_rec_tail))
3073
3074struct llog_logid_rec {
3075 struct llog_rec_hdr lid_hdr;
3076 struct llog_logid lid_id;
3077 __u32 lid_padding1;
3078 __u64 lid_padding2;
3079 __u64 lid_padding3;
3080 struct llog_rec_tail lid_tail;
3081} __attribute__((packed));
3082
3083struct llog_unlink_rec {
3084 struct llog_rec_hdr lur_hdr;
3085 obd_id lur_oid;
3086 obd_count lur_oseq;
3087 obd_count lur_count;
3088 struct llog_rec_tail lur_tail;
3089} __attribute__((packed));
3090
3091struct llog_unlink64_rec {
3092 struct llog_rec_hdr lur_hdr;
3093 struct lu_fid lur_fid;
3094 obd_count lur_count; /* to destroy the lost precreated */
3095 __u32 lur_padding1;
3096 __u64 lur_padding2;
3097 __u64 lur_padding3;
3098 struct llog_rec_tail lur_tail;
3099} __attribute__((packed));
3100
3101struct llog_setattr64_rec {
3102 struct llog_rec_hdr lsr_hdr;
3103 struct ost_id lsr_oi;
3104 __u32 lsr_uid;
3105 __u32 lsr_uid_h;
3106 __u32 lsr_gid;
3107 __u32 lsr_gid_h;
3108 __u64 lsr_padding;
3109 struct llog_rec_tail lsr_tail;
3110} __attribute__((packed));
3111
3112struct llog_size_change_rec {
3113 struct llog_rec_hdr lsc_hdr;
3114 struct ll_fid lsc_fid;
3115 __u32 lsc_ioepoch;
3116 __u32 lsc_padding1;
3117 __u64 lsc_padding2;
3118 __u64 lsc_padding3;
3119 struct llog_rec_tail lsc_tail;
3120} __attribute__((packed));
3121
3122#define CHANGELOG_MAGIC 0xca103000
3123
3124/** \a changelog_rec_type's that can't be masked */
3125#define CHANGELOG_MINMASK (1 << CL_MARK)
3126/** bits covering all \a changelog_rec_type's */
3127#define CHANGELOG_ALLMASK 0XFFFFFFFF
3128/** default \a changelog_rec_type mask */
3129#define CHANGELOG_DEFMASK CHANGELOG_ALLMASK & ~(1 << CL_ATIME | 1 << CL_CLOSE)
3130
3131/* changelog llog name, needed by client replicators */
3132#define CHANGELOG_CATALOG "changelog_catalog"
3133
3134struct changelog_setinfo {
3135 __u64 cs_recno;
3136 __u32 cs_id;
3137} __attribute__((packed));
3138
3139/** changelog record */
3140struct llog_changelog_rec {
3141 struct llog_rec_hdr cr_hdr;
3142 struct changelog_rec cr;
3143 struct llog_rec_tail cr_tail; /**< for_sizezof_only */
3144} __attribute__((packed));
3145
3146struct llog_changelog_ext_rec {
3147 struct llog_rec_hdr cr_hdr;
3148 struct changelog_ext_rec cr;
3149 struct llog_rec_tail cr_tail; /**< for_sizezof_only */
3150} __attribute__((packed));
3151
3152#define CHANGELOG_USER_PREFIX "cl"
3153
3154struct llog_changelog_user_rec {
3155 struct llog_rec_hdr cur_hdr;
3156 __u32 cur_id;
3157 __u32 cur_padding;
3158 __u64 cur_endrec;
3159 struct llog_rec_tail cur_tail;
3160} __attribute__((packed));
3161
99a92265 3162enum agent_req_status {
3163 ARS_WAITING,
3164 ARS_STARTED,
3165 ARS_FAILED,
3166 ARS_CANCELED,
3167 ARS_SUCCEED,
3168};
3169
3170static inline char *agent_req_status2name(enum agent_req_status ars)
3171{
3172 switch (ars) {
3173 case ARS_WAITING:
3174 return "WAITING";
3175 case ARS_STARTED:
3176 return "STARTED";
3177 case ARS_FAILED:
3178 return "FAILED";
3179 case ARS_CANCELED:
3180 return "CANCELED";
3181 case ARS_SUCCEED:
3182 return "SUCCEED";
3183 default:
3184 return "UNKNOWN";
3185 }
3186}
3187
3188static inline bool agent_req_in_final_state(enum agent_req_status ars)
3189{
3190 return ((ars == ARS_SUCCEED) || (ars == ARS_FAILED) ||
3191 (ars == ARS_CANCELED));
3192}
3193
3194struct llog_agent_req_rec {
3195 struct llog_rec_hdr arr_hdr; /**< record header */
3196 __u32 arr_status; /**< status of the request */
3197 /* must match enum
3198 * agent_req_status */
3199 __u32 arr_archive_id; /**< backend archive number */
3200 __u64 arr_flags; /**< req flags */
3201 __u64 arr_compound_id; /**< compound cookie */
3202 __u64 arr_req_create; /**< req. creation time */
3203 __u64 arr_req_change; /**< req. status change time */
3204 struct hsm_action_item arr_hai; /**< req. to the agent */
3205 struct llog_rec_tail arr_tail; /**< record tail for_sizezof_only */
3206} __attribute__((packed));
3207
d7e09d03
PT
3208/* Old llog gen for compatibility */
3209struct llog_gen {
3210 __u64 mnt_cnt;
3211 __u64 conn_cnt;
3212} __attribute__((packed));
3213
3214struct llog_gen_rec {
3215 struct llog_rec_hdr lgr_hdr;
3216 struct llog_gen lgr_gen;
3217 __u64 padding1;
3218 __u64 padding2;
3219 __u64 padding3;
3220 struct llog_rec_tail lgr_tail;
3221};
3222
3223/* On-disk header structure of each log object, stored in little endian order */
3224#define LLOG_CHUNK_SIZE 8192
3225#define LLOG_HEADER_SIZE (96)
3226#define LLOG_BITMAP_BYTES (LLOG_CHUNK_SIZE - LLOG_HEADER_SIZE)
3227
3228#define LLOG_MIN_REC_SIZE (24) /* round(llog_rec_hdr + llog_rec_tail) */
3229
3230/* flags for the logs */
3231enum llog_flag {
3232 LLOG_F_ZAP_WHEN_EMPTY = 0x1,
3233 LLOG_F_IS_CAT = 0x2,
3234 LLOG_F_IS_PLAIN = 0x4,
3235};
3236
3237struct llog_log_hdr {
3238 struct llog_rec_hdr llh_hdr;
3239 obd_time llh_timestamp;
3240 __u32 llh_count;
3241 __u32 llh_bitmap_offset;
3242 __u32 llh_size;
3243 __u32 llh_flags;
3244 __u32 llh_cat_idx;
3245 /* for a catalog the first plain slot is next to it */
3246 struct obd_uuid llh_tgtuuid;
3247 __u32 llh_reserved[LLOG_HEADER_SIZE/sizeof(__u32) - 23];
3248 __u32 llh_bitmap[LLOG_BITMAP_BYTES/sizeof(__u32)];
3249 struct llog_rec_tail llh_tail;
3250} __attribute__((packed));
3251
3252#define LLOG_BITMAP_SIZE(llh) (__u32)((llh->llh_hdr.lrh_len - \
3253 llh->llh_bitmap_offset - \
3254 sizeof(llh->llh_tail)) * 8)
3255
3256/** log cookies are used to reference a specific log file and a record therein */
3257struct llog_cookie {
3258 struct llog_logid lgc_lgl;
3259 __u32 lgc_subsys;
3260 __u32 lgc_index;
3261 __u32 lgc_padding;
3262} __attribute__((packed));
3263
3264/** llog protocol */
3265enum llogd_rpc_ops {
3266 LLOG_ORIGIN_HANDLE_CREATE = 501,
3267 LLOG_ORIGIN_HANDLE_NEXT_BLOCK = 502,
3268 LLOG_ORIGIN_HANDLE_READ_HEADER = 503,
3269 LLOG_ORIGIN_HANDLE_WRITE_REC = 504,
3270 LLOG_ORIGIN_HANDLE_CLOSE = 505,
3271 LLOG_ORIGIN_CONNECT = 506,
3272 LLOG_CATINFO = 507, /* deprecated */
3273 LLOG_ORIGIN_HANDLE_PREV_BLOCK = 508,
3274 LLOG_ORIGIN_HANDLE_DESTROY = 509, /* for destroy llog object*/
3275 LLOG_LAST_OPC,
3276 LLOG_FIRST_OPC = LLOG_ORIGIN_HANDLE_CREATE
3277};
3278
3279struct llogd_body {
3280 struct llog_logid lgd_logid;
3281 __u32 lgd_ctxt_idx;
3282 __u32 lgd_llh_flags;
3283 __u32 lgd_index;
3284 __u32 lgd_saved_index;
3285 __u32 lgd_len;
3286 __u64 lgd_cur_offset;
3287} __attribute__((packed));
3288
3289struct llogd_conn_body {
3290 struct llog_gen lgdc_gen;
3291 struct llog_logid lgdc_logid;
3292 __u32 lgdc_ctxt_idx;
3293} __attribute__((packed));
3294
3295/* Note: 64-bit types are 64-bit aligned in structure */
3296struct obdo {
3297 obd_valid o_valid; /* hot fields in this obdo */
3298 struct ost_id o_oi;
3299 obd_id o_parent_seq;
3300 obd_size o_size; /* o_size-o_blocks == ost_lvb */
3301 obd_time o_mtime;
3302 obd_time o_atime;
3303 obd_time o_ctime;
3304 obd_blocks o_blocks; /* brw: cli sent cached bytes */
3305 obd_size o_grant;
3306
3307 /* 32-bit fields start here: keep an even number of them via padding */
3308 obd_blksize o_blksize; /* optimal IO blocksize */
3309 obd_mode o_mode; /* brw: cli sent cache remain */
3310 obd_uid o_uid;
3311 obd_gid o_gid;
3312 obd_flag o_flags;
3313 obd_count o_nlink; /* brw: checksum */
3314 obd_count o_parent_oid;
3315 obd_count o_misc; /* brw: o_dropped */
3316
3317 __u64 o_ioepoch; /* epoch in ost writes */
3318 __u32 o_stripe_idx; /* holds stripe idx */
3319 __u32 o_parent_ver;
3320 struct lustre_handle o_handle; /* brw: lock handle to prolong
3321 * locks */
3322 struct llog_cookie o_lcookie; /* destroy: unlink cookie from
3323 * MDS */
3324 __u32 o_uid_h;
3325 __u32 o_gid_h;
3326
3327 __u64 o_data_version; /* getattr: sum of iversion for
3328 * each stripe.
3329 * brw: grant space consumed on
3330 * the client for the write */
3331 __u64 o_padding_4;
3332 __u64 o_padding_5;
3333 __u64 o_padding_6;
3334};
3335
3336#define o_dirty o_blocks
3337#define o_undirty o_mode
3338#define o_dropped o_misc
3339#define o_cksum o_nlink
3340#define o_grant_used o_data_version
3341
3b2f75fd 3342static inline void lustre_set_wire_obdo(struct obd_connect_data *ocd,
f3418ce8
AD
3343 struct obdo *wobdo,
3344 const struct obdo *lobdo)
d7e09d03 3345{
f3418ce8 3346 *wobdo = *lobdo;
d7e09d03 3347 wobdo->o_flags &= ~OBD_FL_LOCAL_MASK;
3b2f75fd 3348 if (ocd == NULL)
3349 return;
3350
3351 if (unlikely(!(ocd->ocd_connect_flags & OBD_CONNECT_FID)) &&
6752a53e 3352 fid_seq_is_echo(ostid_seq(&lobdo->o_oi))) {
3b2f75fd 3353 /* Currently OBD_FL_OSTID will only be used when 2.4 echo
3354 * client communicate with pre-2.4 server */
3355 wobdo->o_oi.oi.oi_id = fid_oid(&lobdo->o_oi.oi_fid);
3356 wobdo->o_oi.oi.oi_seq = fid_seq(&lobdo->o_oi.oi_fid);
3357 }
d7e09d03
PT
3358}
3359
3b2f75fd 3360static inline void lustre_get_wire_obdo(struct obd_connect_data *ocd,
f3418ce8
AD
3361 struct obdo *lobdo,
3362 const struct obdo *wobdo)
d7e09d03
PT
3363{
3364 obd_flag local_flags = 0;
3365
3366 if (lobdo->o_valid & OBD_MD_FLFLAGS)
3367 local_flags = lobdo->o_flags & OBD_FL_LOCAL_MASK;
3368
f3418ce8 3369 *lobdo = *wobdo;
d7e09d03 3370 if (local_flags != 0) {
3b2f75fd 3371 lobdo->o_valid |= OBD_MD_FLFLAGS;
3372 lobdo->o_flags &= ~OBD_FL_LOCAL_MASK;
3373 lobdo->o_flags |= local_flags;
3374 }
3375 if (ocd == NULL)
3376 return;
3377
3378 if (unlikely(!(ocd->ocd_connect_flags & OBD_CONNECT_FID)) &&
3379 fid_seq_is_echo(wobdo->o_oi.oi.oi_seq)) {
3380 /* see above */
3381 lobdo->o_oi.oi_fid.f_seq = wobdo->o_oi.oi.oi_seq;
3382 lobdo->o_oi.oi_fid.f_oid = wobdo->o_oi.oi.oi_id;
3383 lobdo->o_oi.oi_fid.f_ver = 0;
d7e09d03
PT
3384 }
3385}
3386
3387extern void lustre_swab_obdo (struct obdo *o);
3388
3389/* request structure for OST's */
3390struct ost_body {
3391 struct obdo oa;
3392};
3393
3394/* Key for FIEMAP to be used in get_info calls */
3395struct ll_fiemap_info_key {
3396 char name[8];
3397 struct obdo oa;
3398 struct ll_user_fiemap fiemap;
3399};
3400
3401extern void lustre_swab_ost_body (struct ost_body *b);
3402extern void lustre_swab_ost_last_id(obd_id *id);
3403extern void lustre_swab_fiemap(struct ll_user_fiemap *fiemap);
3404
3405extern void lustre_swab_lov_user_md_v1(struct lov_user_md_v1 *lum);
3406extern void lustre_swab_lov_user_md_v3(struct lov_user_md_v3 *lum);
3407extern void lustre_swab_lov_user_md_objects(struct lov_user_ost_data *lod,
3408 int stripe_count);
3409extern void lustre_swab_lov_mds_md(struct lov_mds_md *lmm);
3410
3411/* llog_swab.c */
3412extern void lustre_swab_llogd_body (struct llogd_body *d);
3413extern void lustre_swab_llog_hdr (struct llog_log_hdr *h);
3414extern void lustre_swab_llogd_conn_body (struct llogd_conn_body *d);
3415extern void lustre_swab_llog_rec(struct llog_rec_hdr *rec);
ff8c39b2 3416extern void lustre_swab_llog_id(struct llog_logid *lid);
d7e09d03
PT
3417
3418struct lustre_cfg;
3419extern void lustre_swab_lustre_cfg(struct lustre_cfg *lcfg);
3420
3421/* Functions for dumping PTLRPC fields */
3422void dump_rniobuf(struct niobuf_remote *rnb);
3423void dump_ioo(struct obd_ioobj *nb);
3424void dump_obdo(struct obdo *oa);
3425void dump_ost_body(struct ost_body *ob);
3426void dump_rcs(__u32 *rc);
3427
3428#define IDX_INFO_MAGIC 0x3D37CC37
3429
3430/* Index file transfer through the network. The server serializes the index into
3431 * a byte stream which is sent to the client via a bulk transfer */
3432struct idx_info {
3433 __u32 ii_magic;
3434
3435 /* reply: see idx_info_flags below */
3436 __u32 ii_flags;
3437
3438 /* request & reply: number of lu_idxpage (to be) transferred */
3439 __u16 ii_count;
3440 __u16 ii_pad0;
3441
3442 /* request: requested attributes passed down to the iterator API */
3443 __u32 ii_attrs;
3444
3445 /* request & reply: index file identifier (FID) */
3446 struct lu_fid ii_fid;
3447
3448 /* reply: version of the index file before starting to walk the index.
3449 * Please note that the version can be modified at any time during the
3450 * transfer */
3451 __u64 ii_version;
3452
3453 /* request: hash to start with:
3454 * reply: hash of the first entry of the first lu_idxpage and hash
3455 * of the entry to read next if any */
3456 __u64 ii_hash_start;
3457 __u64 ii_hash_end;
3458
3459 /* reply: size of keys in lu_idxpages, minimal one if II_FL_VARKEY is
3460 * set */
3461 __u16 ii_keysize;
3462
3463 /* reply: size of records in lu_idxpages, minimal one if II_FL_VARREC
3464 * is set */
3465 __u16 ii_recsize;
3466
3467 __u32 ii_pad1;
3468 __u64 ii_pad2;
3469 __u64 ii_pad3;
3470};
3471extern void lustre_swab_idx_info(struct idx_info *ii);
3472
3473#define II_END_OFF MDS_DIR_END_OFF /* all entries have been read */
3474
3475/* List of flags used in idx_info::ii_flags */
3476enum idx_info_flags {
3477 II_FL_NOHASH = 1 << 0, /* client doesn't care about hash value */
3478 II_FL_VARKEY = 1 << 1, /* keys can be of variable size */
3479 II_FL_VARREC = 1 << 2, /* records can be of variable size */
3480 II_FL_NONUNQ = 1 << 3, /* index supports non-unique keys */
3481};
3482
3483#define LIP_MAGIC 0x8A6D6B6C
3484
3485/* 4KB (= LU_PAGE_SIZE) container gathering key/record pairs */
3486struct lu_idxpage {
3487 /* 16-byte header */
3488 __u32 lip_magic;
3489 __u16 lip_flags;
3490 __u16 lip_nr; /* number of entries in the container */
3491 __u64 lip_pad0; /* additional padding for future use */
3492
3493 /* key/record pairs are stored in the remaining 4080 bytes.
3494 * depending upon the flags in idx_info::ii_flags, each key/record
3495 * pair might be preceded by:
3496 * - a hash value
3497 * - the key size (II_FL_VARKEY is set)
3498 * - the record size (II_FL_VARREC is set)
3499 *
3500 * For the time being, we only support fixed-size key & record. */
3501 char lip_entries[0];
3502};
3503extern void lustre_swab_lip_header(struct lu_idxpage *lip);
3504
3505#define LIP_HDR_SIZE (offsetof(struct lu_idxpage, lip_entries))
3506
3507/* Gather all possible type associated with a 4KB container */
3508union lu_page {
3509 struct lu_dirpage lp_dir; /* for MDS_READPAGE */
3510 struct lu_idxpage lp_idx; /* for OBD_IDX_READ */
3511 char lp_array[LU_PAGE_SIZE];
3512};
3513
3514/* security opcodes */
3515typedef enum {
3516 SEC_CTX_INIT = 801,
3517 SEC_CTX_INIT_CONT = 802,
3518 SEC_CTX_FINI = 803,
3519 SEC_LAST_OPC,
3520 SEC_FIRST_OPC = SEC_CTX_INIT
3521} sec_cmd_t;
3522
3523/*
3524 * capa related definitions
3525 */
3526#define CAPA_HMAC_MAX_LEN 64
3527#define CAPA_HMAC_KEY_MAX_LEN 56
3528
3529/* NB take care when changing the sequence of elements this struct,
3530 * because the offset info is used in find_capa() */
3531struct lustre_capa {
3532 struct lu_fid lc_fid; /** fid */
3533 __u64 lc_opc; /** operations allowed */
3534 __u64 lc_uid; /** file owner */
3535 __u64 lc_gid; /** file group */
3536 __u32 lc_flags; /** HMAC algorithm & flags */
3537 __u32 lc_keyid; /** key# used for the capability */
3538 __u32 lc_timeout; /** capa timeout value (sec) */
3539 __u32 lc_expiry; /** expiry time (sec) */
3540 __u8 lc_hmac[CAPA_HMAC_MAX_LEN]; /** HMAC */
3541} __attribute__((packed));
3542
3543extern void lustre_swab_lustre_capa(struct lustre_capa *c);
3544
3545/** lustre_capa::lc_opc */
3546enum {
3547 CAPA_OPC_BODY_WRITE = 1<<0, /**< write object data */
3548 CAPA_OPC_BODY_READ = 1<<1, /**< read object data */
3549 CAPA_OPC_INDEX_LOOKUP = 1<<2, /**< lookup object fid */
3550 CAPA_OPC_INDEX_INSERT = 1<<3, /**< insert object fid */
3551 CAPA_OPC_INDEX_DELETE = 1<<4, /**< delete object fid */
3552 CAPA_OPC_OSS_WRITE = 1<<5, /**< write oss object data */
3553 CAPA_OPC_OSS_READ = 1<<6, /**< read oss object data */
3554 CAPA_OPC_OSS_TRUNC = 1<<7, /**< truncate oss object */
3555 CAPA_OPC_OSS_DESTROY = 1<<8, /**< destroy oss object */
3556 CAPA_OPC_META_WRITE = 1<<9, /**< write object meta data */
3557 CAPA_OPC_META_READ = 1<<10, /**< read object meta data */
3558};
3559
3560#define CAPA_OPC_OSS_RW (CAPA_OPC_OSS_READ | CAPA_OPC_OSS_WRITE)
3561#define CAPA_OPC_MDS_ONLY \
3562 (CAPA_OPC_BODY_WRITE | CAPA_OPC_BODY_READ | CAPA_OPC_INDEX_LOOKUP | \
3563 CAPA_OPC_INDEX_INSERT | CAPA_OPC_INDEX_DELETE)
3564#define CAPA_OPC_OSS_ONLY \
3565 (CAPA_OPC_OSS_WRITE | CAPA_OPC_OSS_READ | CAPA_OPC_OSS_TRUNC | \
3566 CAPA_OPC_OSS_DESTROY)
3567#define CAPA_OPC_MDS_DEFAULT ~CAPA_OPC_OSS_ONLY
3568#define CAPA_OPC_OSS_DEFAULT ~(CAPA_OPC_MDS_ONLY | CAPA_OPC_OSS_ONLY)
3569
3570/* MDS capability covers object capability for operations of body r/w
3571 * (dir readpage/sendpage), index lookup/insert/delete and meta data r/w,
3572 * while OSS capability only covers object capability for operations of
3573 * oss data(file content) r/w/truncate.
3574 */
3575static inline int capa_for_mds(struct lustre_capa *c)
3576{
3577 return (c->lc_opc & CAPA_OPC_INDEX_LOOKUP) != 0;
3578}
3579
3580static inline int capa_for_oss(struct lustre_capa *c)
3581{
3582 return (c->lc_opc & CAPA_OPC_INDEX_LOOKUP) == 0;
3583}
3584
3585/* lustre_capa::lc_hmac_alg */
3586enum {
3587 CAPA_HMAC_ALG_SHA1 = 1, /**< sha1 algorithm */
3588 CAPA_HMAC_ALG_MAX,
3589};
3590
3591#define CAPA_FL_MASK 0x00ffffff
3592#define CAPA_HMAC_ALG_MASK 0xff000000
3593
3594struct lustre_capa_key {
3595 __u64 lk_seq; /**< mds# */
3596 __u32 lk_keyid; /**< key# */
3597 __u32 lk_padding;
3598 __u8 lk_key[CAPA_HMAC_KEY_MAX_LEN]; /**< key */
3599} __attribute__((packed));
3600
3601extern void lustre_swab_lustre_capa_key(struct lustre_capa_key *k);
3602
3603/** The link ea holds 1 \a link_ea_entry for each hardlink */
3604#define LINK_EA_MAGIC 0x11EAF1DFUL
3605struct link_ea_header {
3606 __u32 leh_magic;
3607 __u32 leh_reccount;
3608 __u64 leh_len; /* total size */
3609 /* future use */
3610 __u32 padding1;
3611 __u32 padding2;
3612};
3613
3614/** Hardlink data is name and parent fid.
3615 * Stored in this crazy struct for maximum packing and endian-neutrality
3616 */
3617struct link_ea_entry {
3618 /** __u16 stored big-endian, unaligned */
3619 unsigned char lee_reclen[2];
3620 unsigned char lee_parent_fid[sizeof(struct lu_fid)];
3621 char lee_name[0];
3622}__attribute__((packed));
3623
3624/** fid2path request/reply structure */
3625struct getinfo_fid2path {
3626 struct lu_fid gf_fid;
3627 __u64 gf_recno;
3628 __u32 gf_linkno;
3629 __u32 gf_pathlen;
3630 char gf_path[0];
3631} __attribute__((packed));
3632
3633void lustre_swab_fid2path (struct getinfo_fid2path *gf);
3634
3635enum {
3636 LAYOUT_INTENT_ACCESS = 0,
3637 LAYOUT_INTENT_READ = 1,
3638 LAYOUT_INTENT_WRITE = 2,
3639 LAYOUT_INTENT_GLIMPSE = 3,
3640 LAYOUT_INTENT_TRUNC = 4,
3641 LAYOUT_INTENT_RELEASE = 5,
3642 LAYOUT_INTENT_RESTORE = 6
3643};
3644
3645/* enqueue layout lock with intent */
3646struct layout_intent {
3647 __u32 li_opc; /* intent operation for enqueue, read, write etc */
3648 __u32 li_flags;
3649 __u64 li_start;
3650 __u64 li_end;
3651};
3652
3653void lustre_swab_layout_intent(struct layout_intent *li);
3654
3655/**
3656 * On the wire version of hsm_progress structure.
3657 *
3658 * Contains the userspace hsm_progress and some internal fields.
3659 */
3660struct hsm_progress_kernel {
3661 /* Field taken from struct hsm_progress */
3662 lustre_fid hpk_fid;
3663 __u64 hpk_cookie;
3664 struct hsm_extent hpk_extent;
3665 __u16 hpk_flags;
3666 __u16 hpk_errval; /* positive val */
3667 __u32 hpk_padding1;
3668 /* Additional fields */
3669 __u64 hpk_data_version;
3670 __u64 hpk_padding2;
3671} __attribute__((packed));
3672
3673extern void lustre_swab_hsm_user_state(struct hsm_user_state *hus);
3674extern void lustre_swab_hsm_current_action(struct hsm_current_action *action);
3675extern void lustre_swab_hsm_progress_kernel(struct hsm_progress_kernel *hpk);
3676extern void lustre_swab_hsm_user_state(struct hsm_user_state *hus);
3677extern void lustre_swab_hsm_user_item(struct hsm_user_item *hui);
3678extern void lustre_swab_hsm_request(struct hsm_request *hr);
3679
3680/**
3681 * These are object update opcode under UPDATE_OBJ, which is currently
3682 * being used by cross-ref operations between MDT.
3683 *
3684 * During the cross-ref operation, the Master MDT, which the client send the
3685 * request to, will disassembly the operation into object updates, then OSP
3686 * will send these updates to the remote MDT to be executed.
3687 *
3688 * Update request format
3689 * magic: UPDATE_BUFFER_MAGIC_V1
3690 * Count: How many updates in the req.
3691 * bufs[0] : following are packets of object.
3692 * update[0]:
3693 * type: object_update_op, the op code of update
3694 * fid: The object fid of the update.
3695 * lens/bufs: other parameters of the update.
3696 * update[1]:
3697 * type: object_update_op, the op code of update
3698 * fid: The object fid of the update.
3699 * lens/bufs: other parameters of the update.
3700 * ..........
3701 * update[7]: type: object_update_op, the op code of update
3702 * fid: The object fid of the update.
3703 * lens/bufs: other parameters of the update.
3704 * Current 8 maxim updates per object update request.
3705 *
3706 *******************************************************************
3707 * update reply format:
3708 *
3709 * ur_version: UPDATE_REPLY_V1
3710 * ur_count: The count of the reply, which is usually equal
3711 * to the number of updates in the request.
3712 * ur_lens: The reply lengths of each object update.
3713 *
3714 * replies: 1st update reply [4bytes_ret: other body]
3715 * 2nd update reply [4bytes_ret: other body]
3716 * .....
3717 * nth update reply [4bytes_ret: other body]
3718 *
3719 * For each reply of the update, the format would be
3720 * result(4 bytes):Other stuff
3721 */
3722
3723#define UPDATE_MAX_OPS 10
3724#define UPDATE_BUFFER_MAGIC_V1 0xBDDE0001
3725#define UPDATE_BUFFER_MAGIC UPDATE_BUFFER_MAGIC_V1
3726#define UPDATE_BUF_COUNT 8
3727enum object_update_op {
3728 OBJ_CREATE = 1,
3729 OBJ_DESTROY = 2,
3730 OBJ_REF_ADD = 3,
3731 OBJ_REF_DEL = 4,
3732 OBJ_ATTR_SET = 5,
3733 OBJ_ATTR_GET = 6,
3734 OBJ_XATTR_SET = 7,
3735 OBJ_XATTR_GET = 8,
3736 OBJ_INDEX_LOOKUP = 9,
3737 OBJ_INDEX_INSERT = 10,
3738 OBJ_INDEX_DELETE = 11,
3739 OBJ_LAST
3740};
3741
3742struct update {
3743 __u32 u_type;
3744 __u32 u_batchid;
3745 struct lu_fid u_fid;
3746 __u32 u_lens[UPDATE_BUF_COUNT];
3747 __u32 u_bufs[0];
3748};
3749
3750struct update_buf {
3751 __u32 ub_magic;
3752 __u32 ub_count;
3753 __u32 ub_bufs[0];
3754};
3755
3756#define UPDATE_REPLY_V1 0x00BD0001
3757struct update_reply {
3758 __u32 ur_version;
3759 __u32 ur_count;
3760 __u32 ur_lens[0];
3761};
3762
3763void lustre_swab_update_buf(struct update_buf *ub);
3764void lustre_swab_update_reply_buf(struct update_reply *ur);
3765
3766/** layout swap request structure
3767 * fid1 and fid2 are in mdt_body
3768 */
3769struct mdc_swap_layouts {
3770 __u64 msl_flags;
3771} __packed;
3772
3773void lustre_swab_swap_layouts(struct mdc_swap_layouts *msl);
3774
48d23e61
JX
3775struct close_data {
3776 struct lustre_handle cd_handle;
3777 struct lu_fid cd_fid;
3778 __u64 cd_data_version;
3779 __u64 cd_reserved[8];
3780};
3781
3782void lustre_swab_close_data(struct close_data *data);
3783
d7e09d03
PT
3784#endif
3785/** @} lustreidl */
This page took 0.42113 seconds and 5 git commands to generate.