lustre/llite: Do not send parent dir fid in getattr by fid
[deliverable/linux.git] / drivers / staging / lustre / lustre / include / lustre / lustre_idl.h
CommitLineData
d7e09d03
PT
1/*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19 *
20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21 * CA 95054 USA or visit www.sun.com if you need additional information or
22 * have any questions.
23 *
24 * GPL HEADER END
25 */
26/*
27 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
28 * Use is subject to license terms.
29 *
30 * Copyright (c) 2011, 2012, Intel Corporation.
31 */
32/*
33 * This file is part of Lustre, http://www.lustre.org/
34 * Lustre is a trademark of Sun Microsystems, Inc.
35 *
36 * lustre/include/lustre/lustre_idl.h
37 *
38 * Lustre wire protocol definitions.
39 */
40
41/** \defgroup lustreidl lustreidl
42 *
43 * Lustre wire protocol definitions.
44 *
45 * ALL structs passing over the wire should be declared here. Structs
46 * that are used in interfaces with userspace should go in lustre_user.h.
47 *
48 * All structs being declared here should be built from simple fixed-size
49 * types (__u8, __u16, __u32, __u64) or be built from other types or
50 * structs also declared in this file. Similarly, all flags and magic
51 * values in those structs should also be declared here. This ensures
52 * that the Lustre wire protocol is not influenced by external dependencies.
53 *
54 * The only other acceptable items in this file are VERY SIMPLE accessor
55 * functions to avoid callers grubbing inside the structures, and the
56 * prototypes of the swabber functions for each struct. Nothing that
57 * depends on external functions or definitions should be in here.
58 *
59 * Structs must be properly aligned to put 64-bit values on an 8-byte
60 * boundary. Any structs being added here must also be added to
61 * utils/wirecheck.c and "make newwiretest" run to regenerate the
62 * utils/wiretest.c sources. This allows us to verify that wire structs
63 * have the proper alignment/size on all architectures.
64 *
65 * DO NOT CHANGE any of the structs, flags, values declared here and used
66 * in released Lustre versions. Some structs may have padding fields that
67 * can be used. Some structs might allow addition at the end (verify this
68 * in the code to ensure that new/old clients that see this larger struct
69 * do not fail, otherwise you need to implement protocol compatibility).
70 *
71 * We assume all nodes are either little-endian or big-endian, and we
72 * always send messages in the sender's native format. The receiver
73 * detects the message format by checking the 'magic' field of the message
74 * (see lustre_msg_swabbed() below).
75 *
76 * Each wire type has corresponding 'lustre_swab_xxxtypexxx()' routines,
77 * implemented either here, inline (trivial implementations) or in
78 * ptlrpc/pack_generic.c. These 'swabbers' convert the type from "other"
79 * endian, in-place in the message buffer.
80 *
81 * A swabber takes a single pointer argument. The caller must already have
82 * verified that the length of the message buffer >= sizeof (type).
83 *
84 * For variable length types, a second 'lustre_swab_v_xxxtypexxx()' routine
85 * may be defined that swabs just the variable part, after the caller has
86 * verified that the message buffer is large enough.
87 *
88 * @{
89 */
90
91#ifndef _LUSTRE_IDL_H_
92#define _LUSTRE_IDL_H_
93
f3418ce8
AD
94#if !defined(LPU64)
95#include <linux/libcfs/libcfs.h> /* for LPUX64, etc */
d7e09d03
PT
96#endif
97
98/* Defn's shared with user-space. */
99#include <lustre/lustre_user.h>
100
2d58de78
LW
101#include <lustre/lustre_errno.h>
102
d7e09d03
PT
103/*
104 * GENERAL STUFF
105 */
106/* FOO_REQUEST_PORTAL is for incoming requests on the FOO
107 * FOO_REPLY_PORTAL is for incoming replies on the FOO
108 * FOO_BULK_PORTAL is for incoming bulk on the FOO
109 */
110
111#define CONNMGR_REQUEST_PORTAL 1
112#define CONNMGR_REPLY_PORTAL 2
113//#define OSC_REQUEST_PORTAL 3
114#define OSC_REPLY_PORTAL 4
115//#define OSC_BULK_PORTAL 5
116#define OST_IO_PORTAL 6
117#define OST_CREATE_PORTAL 7
118#define OST_BULK_PORTAL 8
119//#define MDC_REQUEST_PORTAL 9
120#define MDC_REPLY_PORTAL 10
121//#define MDC_BULK_PORTAL 11
122#define MDS_REQUEST_PORTAL 12
123//#define MDS_REPLY_PORTAL 13
124#define MDS_BULK_PORTAL 14
125#define LDLM_CB_REQUEST_PORTAL 15
126#define LDLM_CB_REPLY_PORTAL 16
127#define LDLM_CANCEL_REQUEST_PORTAL 17
128#define LDLM_CANCEL_REPLY_PORTAL 18
129//#define PTLBD_REQUEST_PORTAL 19
130//#define PTLBD_REPLY_PORTAL 20
131//#define PTLBD_BULK_PORTAL 21
132#define MDS_SETATTR_PORTAL 22
133#define MDS_READPAGE_PORTAL 23
134#define MDS_MDS_PORTAL 24
135
136#define MGC_REPLY_PORTAL 25
137#define MGS_REQUEST_PORTAL 26
138#define MGS_REPLY_PORTAL 27
139#define OST_REQUEST_PORTAL 28
140#define FLD_REQUEST_PORTAL 29
141#define SEQ_METADATA_PORTAL 30
142#define SEQ_DATA_PORTAL 31
143#define SEQ_CONTROLLER_PORTAL 32
144#define MGS_BULK_PORTAL 33
145
146/* Portal 63 is reserved for the Cray Inc DVS - nic@cray.com, roe@cray.com, n8851@cray.com */
147
148/* packet types */
149#define PTL_RPC_MSG_REQUEST 4711
150#define PTL_RPC_MSG_ERR 4712
151#define PTL_RPC_MSG_REPLY 4713
152
153/* DON'T use swabbed values of MAGIC as magic! */
154#define LUSTRE_MSG_MAGIC_V1 0x0BD00BD0
155#define LUSTRE_MSG_MAGIC_V2 0x0BD00BD3
156
157#define LUSTRE_MSG_MAGIC_V1_SWABBED 0xD00BD00B
158#define LUSTRE_MSG_MAGIC_V2_SWABBED 0xD30BD00B
159
160#define LUSTRE_MSG_MAGIC LUSTRE_MSG_MAGIC_V2
161
162#define PTLRPC_MSG_VERSION 0x00000003
163#define LUSTRE_VERSION_MASK 0xffff0000
164#define LUSTRE_OBD_VERSION 0x00010000
165#define LUSTRE_MDS_VERSION 0x00020000
166#define LUSTRE_OST_VERSION 0x00030000
167#define LUSTRE_DLM_VERSION 0x00040000
168#define LUSTRE_LOG_VERSION 0x00050000
169#define LUSTRE_MGS_VERSION 0x00060000
170
171typedef __u32 mdsno_t;
172typedef __u64 seqno_t;
173typedef __u64 obd_id;
174typedef __u64 obd_seq;
175typedef __s64 obd_time;
176typedef __u64 obd_size;
177typedef __u64 obd_off;
178typedef __u64 obd_blocks;
179typedef __u64 obd_valid;
180typedef __u32 obd_blksize;
181typedef __u32 obd_mode;
182typedef __u32 obd_uid;
183typedef __u32 obd_gid;
184typedef __u32 obd_flag;
185typedef __u32 obd_count;
186
187/**
188 * Describes a range of sequence, lsr_start is included but lsr_end is
189 * not in the range.
190 * Same structure is used in fld module where lsr_index field holds mdt id
191 * of the home mdt.
192 */
193struct lu_seq_range {
194 __u64 lsr_start;
195 __u64 lsr_end;
196 __u32 lsr_index;
197 __u32 lsr_flags;
198};
199
200#define LU_SEQ_RANGE_MDT 0x0
201#define LU_SEQ_RANGE_OST 0x1
202#define LU_SEQ_RANGE_ANY 0x3
203
204#define LU_SEQ_RANGE_MASK 0x3
205
206static inline unsigned fld_range_type(const struct lu_seq_range *range)
207{
208 return range->lsr_flags & LU_SEQ_RANGE_MASK;
209}
210
211static inline int fld_range_is_ost(const struct lu_seq_range *range)
212{
213 return fld_range_type(range) == LU_SEQ_RANGE_OST;
214}
215
216static inline int fld_range_is_mdt(const struct lu_seq_range *range)
217{
218 return fld_range_type(range) == LU_SEQ_RANGE_MDT;
219}
220
221/**
222 * This all range is only being used when fld client sends fld query request,
223 * but it does not know whether the seq is MDT or OST, so it will send req
224 * with ALL type, which means either seq type gotten from lookup can be
225 * expected.
226 */
227static inline unsigned fld_range_is_any(const struct lu_seq_range *range)
228{
229 return fld_range_type(range) == LU_SEQ_RANGE_ANY;
230}
231
232static inline void fld_range_set_type(struct lu_seq_range *range,
233 unsigned flags)
234{
d7e09d03
PT
235 range->lsr_flags |= flags;
236}
237
238static inline void fld_range_set_mdt(struct lu_seq_range *range)
239{
240 fld_range_set_type(range, LU_SEQ_RANGE_MDT);
241}
242
243static inline void fld_range_set_ost(struct lu_seq_range *range)
244{
245 fld_range_set_type(range, LU_SEQ_RANGE_OST);
246}
247
248static inline void fld_range_set_any(struct lu_seq_range *range)
249{
250 fld_range_set_type(range, LU_SEQ_RANGE_ANY);
251}
252
253/**
254 * returns width of given range \a r
255 */
256
257static inline __u64 range_space(const struct lu_seq_range *range)
258{
259 return range->lsr_end - range->lsr_start;
260}
261
262/**
263 * initialize range to zero
264 */
265
266static inline void range_init(struct lu_seq_range *range)
267{
268 range->lsr_start = range->lsr_end = range->lsr_index = 0;
269}
270
271/**
272 * check if given seq id \a s is within given range \a r
273 */
274
275static inline int range_within(const struct lu_seq_range *range,
276 __u64 s)
277{
278 return s >= range->lsr_start && s < range->lsr_end;
279}
280
281static inline int range_is_sane(const struct lu_seq_range *range)
282{
283 return (range->lsr_end >= range->lsr_start);
284}
285
286static inline int range_is_zero(const struct lu_seq_range *range)
287{
288 return (range->lsr_start == 0 && range->lsr_end == 0);
289}
290
291static inline int range_is_exhausted(const struct lu_seq_range *range)
292
293{
294 return range_space(range) == 0;
295}
296
297/* return 0 if two range have the same location */
298static inline int range_compare_loc(const struct lu_seq_range *r1,
299 const struct lu_seq_range *r2)
300{
301 return r1->lsr_index != r2->lsr_index ||
302 r1->lsr_flags != r2->lsr_flags;
303}
304
305#define DRANGE "[%#16.16"LPF64"x-%#16.16"LPF64"x):%x:%s"
306
307#define PRANGE(range) \
308 (range)->lsr_start, \
309 (range)->lsr_end, \
310 (range)->lsr_index, \
311 fld_range_is_mdt(range) ? "mdt" : "ost"
312
313
314/** \defgroup lu_fid lu_fid
315 * @{ */
316
317/**
318 * Flags for lustre_mdt_attrs::lma_compat and lustre_mdt_attrs::lma_incompat.
319 * Deprecated since HSM and SOM attributes are now stored in separate on-disk
320 * xattr.
321 */
322enum lma_compat {
c0ac76d9
FY
323 LMAC_HSM = 0x00000001,
324 LMAC_SOM = 0x00000002,
325 LMAC_NOT_IN_OI = 0x00000004, /* the object does NOT need OI mapping */
326 LMAC_FID_ON_OST = 0x00000008, /* For OST-object, its OI mapping is
327 * under /O/<seq>/d<x>. */
d7e09d03
PT
328};
329
330/**
331 * Masks for all features that should be supported by a Lustre version to
332 * access a specific file.
333 * This information is stored in lustre_mdt_attrs::lma_incompat.
334 */
335enum lma_incompat {
c03a98b4
FY
336 LMAI_RELEASED = 0x00000001, /* file is released */
337 LMAI_AGENT = 0x00000002, /* agent inode */
338 LMAI_REMOTE_PARENT = 0x00000004, /* the parent of the object
339 is on the remote MDT */
d7e09d03
PT
340};
341#define LMA_INCOMPAT_SUPP (LMAI_AGENT | LMAI_REMOTE_PARENT)
342
343extern void lustre_lma_swab(struct lustre_mdt_attrs *lma);
344extern void lustre_lma_init(struct lustre_mdt_attrs *lma,
345 const struct lu_fid *fid, __u32 incompat);
346/**
347 * SOM on-disk attributes stored in a separate xattr.
348 */
349struct som_attrs {
350 /** Bitfield for supported data in this structure. For future use. */
351 __u32 som_compat;
352
353 /** Incompat feature list. The supported feature mask is availabe in
354 * SOM_INCOMPAT_SUPP */
355 __u32 som_incompat;
356
357 /** IO Epoch SOM attributes belongs to */
358 __u64 som_ioepoch;
359 /** total file size in objects */
360 __u64 som_size;
361 /** total fs blocks in objects */
362 __u64 som_blocks;
363 /** mds mount id the size is valid for */
364 __u64 som_mountid;
365};
366extern void lustre_som_swab(struct som_attrs *attrs);
367
368#define SOM_INCOMPAT_SUPP 0x0
369
370/**
371 * HSM on-disk attributes stored in a separate xattr.
372 */
373struct hsm_attrs {
374 /** Bitfield for supported data in this structure. For future use. */
375 __u32 hsm_compat;
376
377 /** HSM flags, see hsm_flags enum below */
378 __u32 hsm_flags;
379 /** backend archive id associated with the file */
380 __u64 hsm_arch_id;
381 /** version associated with the last archiving, if any */
382 __u64 hsm_arch_ver;
383};
384extern void lustre_hsm_swab(struct hsm_attrs *attrs);
385
386/**
387 * fid constants
388 */
389enum {
66cc83e9
MP
390 /** LASTID file has zero OID */
391 LUSTRE_FID_LASTID_OID = 0UL,
d7e09d03
PT
392 /** initial fid id value */
393 LUSTRE_FID_INIT_OID = 1UL
394};
395
396/** returns fid object sequence */
397static inline __u64 fid_seq(const struct lu_fid *fid)
398{
399 return fid->f_seq;
400}
401
402/** returns fid object id */
403static inline __u32 fid_oid(const struct lu_fid *fid)
404{
405 return fid->f_oid;
406}
407
408/** returns fid object version */
409static inline __u32 fid_ver(const struct lu_fid *fid)
410{
411 return fid->f_ver;
412}
413
414static inline void fid_zero(struct lu_fid *fid)
415{
416 memset(fid, 0, sizeof(*fid));
417}
418
419static inline obd_id fid_ver_oid(const struct lu_fid *fid)
420{
421 return ((__u64)fid_ver(fid) << 32 | fid_oid(fid));
422}
423
424/**
425 * Note that reserved SEQ numbers below 12 will conflict with ldiskfs
426 * inodes in the IGIF namespace, so these reserved SEQ numbers can be
427 * used for other purposes and not risk collisions with existing inodes.
428 *
429 * Different FID Format
430 * http://arch.lustre.org/index.php?title=Interoperability_fids_zfs#NEW.0
431 */
432enum fid_seq {
433 FID_SEQ_OST_MDT0 = 0,
434 FID_SEQ_LLOG = 1, /* unnamed llogs */
435 FID_SEQ_ECHO = 2,
436 FID_SEQ_OST_MDT1 = 3,
437 FID_SEQ_OST_MAX = 9, /* Max MDT count before OST_on_FID */
438 FID_SEQ_LLOG_NAME = 10, /* named llogs */
439 FID_SEQ_RSVD = 11,
440 FID_SEQ_IGIF = 12,
441 FID_SEQ_IGIF_MAX = 0x0ffffffffULL,
442 FID_SEQ_IDIF = 0x100000000ULL,
443 FID_SEQ_IDIF_MAX = 0x1ffffffffULL,
444 /* Normal FID sequence starts from this value, i.e. 1<<33 */
445 FID_SEQ_START = 0x200000000ULL,
446 /* sequence for local pre-defined FIDs listed in local_oid */
447 FID_SEQ_LOCAL_FILE = 0x200000001ULL,
448 FID_SEQ_DOT_LUSTRE = 0x200000002ULL,
449 /* sequence is used for local named objects FIDs generated
450 * by local_object_storage library */
451 FID_SEQ_LOCAL_NAME = 0x200000003ULL,
452 /* Because current FLD will only cache the fid sequence, instead
453 * of oid on the client side, if the FID needs to be exposed to
454 * clients sides, it needs to make sure all of fids under one
455 * sequence will be located in one MDT. */
456 FID_SEQ_SPECIAL = 0x200000004ULL,
457 FID_SEQ_QUOTA = 0x200000005ULL,
458 FID_SEQ_QUOTA_GLB = 0x200000006ULL,
459 FID_SEQ_ROOT = 0x200000007ULL, /* Located on MDT0 */
460 FID_SEQ_NORMAL = 0x200000400ULL,
461 FID_SEQ_LOV_DEFAULT = 0xffffffffffffffffULL
462};
463
464#define OBIF_OID_MAX_BITS 32
465#define OBIF_MAX_OID (1ULL << OBIF_OID_MAX_BITS)
466#define OBIF_OID_MASK ((1ULL << OBIF_OID_MAX_BITS) - 1)
467#define IDIF_OID_MAX_BITS 48
468#define IDIF_MAX_OID (1ULL << IDIF_OID_MAX_BITS)
469#define IDIF_OID_MASK ((1ULL << IDIF_OID_MAX_BITS) - 1)
470
471/** OID for FID_SEQ_SPECIAL */
472enum special_oid {
473 /* Big Filesystem Lock to serialize rename operations */
474 FID_OID_SPECIAL_BFL = 1UL,
475};
476
477/** OID for FID_SEQ_DOT_LUSTRE */
478enum dot_lustre_oid {
479 FID_OID_DOT_LUSTRE = 1UL,
480 FID_OID_DOT_LUSTRE_OBF = 2UL,
481};
482
483static inline int fid_seq_is_mdt0(obd_seq seq)
484{
485 return (seq == FID_SEQ_OST_MDT0);
486}
487
488static inline int fid_seq_is_mdt(const __u64 seq)
489{
490 return seq == FID_SEQ_OST_MDT0 || seq >= FID_SEQ_NORMAL;
491};
492
493static inline int fid_seq_is_echo(obd_seq seq)
494{
495 return (seq == FID_SEQ_ECHO);
496}
497
498static inline int fid_is_echo(const struct lu_fid *fid)
499{
500 return fid_seq_is_echo(fid_seq(fid));
501}
502
503static inline int fid_seq_is_llog(obd_seq seq)
504{
505 return (seq == FID_SEQ_LLOG);
506}
507
508static inline int fid_is_llog(const struct lu_fid *fid)
509{
66cc83e9
MP
510 /* file with OID == 0 is not llog but contains last oid */
511 return fid_seq_is_llog(fid_seq(fid)) && fid_oid(fid) > 0;
d7e09d03
PT
512}
513
514static inline int fid_seq_is_rsvd(const __u64 seq)
515{
516 return (seq > FID_SEQ_OST_MDT0 && seq <= FID_SEQ_RSVD);
517};
518
519static inline int fid_seq_is_special(const __u64 seq)
520{
521 return seq == FID_SEQ_SPECIAL;
522};
523
524static inline int fid_seq_is_local_file(const __u64 seq)
525{
526 return seq == FID_SEQ_LOCAL_FILE ||
527 seq == FID_SEQ_LOCAL_NAME;
528};
529
530static inline int fid_seq_is_root(const __u64 seq)
531{
532 return seq == FID_SEQ_ROOT;
533}
534
535static inline int fid_seq_is_dot(const __u64 seq)
536{
537 return seq == FID_SEQ_DOT_LUSTRE;
538}
539
540static inline int fid_seq_is_default(const __u64 seq)
541{
542 return seq == FID_SEQ_LOV_DEFAULT;
543}
544
545static inline int fid_is_mdt0(const struct lu_fid *fid)
546{
547 return fid_seq_is_mdt0(fid_seq(fid));
548}
549
550static inline void lu_root_fid(struct lu_fid *fid)
551{
552 fid->f_seq = FID_SEQ_ROOT;
553 fid->f_oid = 1;
554 fid->f_ver = 0;
555}
556
557/**
558 * Check if a fid is igif or not.
559 * \param fid the fid to be tested.
560 * \return true if the fid is a igif; otherwise false.
561 */
562static inline int fid_seq_is_igif(const __u64 seq)
563{
564 return seq >= FID_SEQ_IGIF && seq <= FID_SEQ_IGIF_MAX;
565}
566
567static inline int fid_is_igif(const struct lu_fid *fid)
568{
569 return fid_seq_is_igif(fid_seq(fid));
570}
571
572/**
573 * Check if a fid is idif or not.
574 * \param fid the fid to be tested.
575 * \return true if the fid is a idif; otherwise false.
576 */
577static inline int fid_seq_is_idif(const __u64 seq)
578{
579 return seq >= FID_SEQ_IDIF && seq <= FID_SEQ_IDIF_MAX;
580}
581
582static inline int fid_is_idif(const struct lu_fid *fid)
583{
584 return fid_seq_is_idif(fid_seq(fid));
585}
586
587static inline int fid_is_local_file(const struct lu_fid *fid)
588{
589 return fid_seq_is_local_file(fid_seq(fid));
590}
591
592static inline int fid_seq_is_norm(const __u64 seq)
593{
594 return (seq >= FID_SEQ_NORMAL);
595}
596
597static inline int fid_is_norm(const struct lu_fid *fid)
598{
599 return fid_seq_is_norm(fid_seq(fid));
600}
601
602/* convert an OST objid into an IDIF FID SEQ number */
603static inline obd_seq fid_idif_seq(obd_id id, __u32 ost_idx)
604{
605 return FID_SEQ_IDIF | (ost_idx << 16) | ((id >> 32) & 0xffff);
606}
607
608/* convert a packed IDIF FID into an OST objid */
609static inline obd_id fid_idif_id(obd_seq seq, __u32 oid, __u32 ver)
610{
611 return ((__u64)ver << 48) | ((seq & 0xffff) << 32) | oid;
612}
613
614/* extract ost index from IDIF FID */
615static inline __u32 fid_idif_ost_idx(const struct lu_fid *fid)
616{
d7e09d03
PT
617 return (fid_seq(fid) >> 16) & 0xffff;
618}
619
620/* extract OST sequence (group) from a wire ost_id (id/seq) pair */
621static inline obd_seq ostid_seq(const struct ost_id *ostid)
622{
623 if (fid_seq_is_mdt0(ostid->oi.oi_seq))
624 return FID_SEQ_OST_MDT0;
625
626 if (fid_seq_is_default(ostid->oi.oi_seq))
627 return FID_SEQ_LOV_DEFAULT;
628
629 if (fid_is_idif(&ostid->oi_fid))
630 return FID_SEQ_OST_MDT0;
631
632 return fid_seq(&ostid->oi_fid);
633}
634
635/* extract OST objid from a wire ost_id (id/seq) pair */
636static inline obd_id ostid_id(const struct ost_id *ostid)
637{
638 if (fid_seq_is_mdt0(ostid_seq(ostid)))
639 return ostid->oi.oi_id & IDIF_OID_MASK;
640
641 if (fid_is_idif(&ostid->oi_fid))
642 return fid_idif_id(fid_seq(&ostid->oi_fid),
643 fid_oid(&ostid->oi_fid), 0);
644
645 return fid_oid(&ostid->oi_fid);
646}
647
648static inline void ostid_set_seq(struct ost_id *oi, __u64 seq)
649{
650 if (fid_seq_is_mdt0(seq) || fid_seq_is_default(seq)) {
651 oi->oi.oi_seq = seq;
652 } else {
653 oi->oi_fid.f_seq = seq;
654 /* Note: if f_oid + f_ver is zero, we need init it
655 * to be 1, otherwise, ostid_seq will treat this
656 * as old ostid (oi_seq == 0) */
657 if (oi->oi_fid.f_oid == 0 && oi->oi_fid.f_ver == 0)
658 oi->oi_fid.f_oid = LUSTRE_FID_INIT_OID;
659 }
660}
661
662static inline void ostid_set_seq_mdt0(struct ost_id *oi)
663{
664 ostid_set_seq(oi, FID_SEQ_OST_MDT0);
665}
666
667static inline void ostid_set_seq_echo(struct ost_id *oi)
668{
669 ostid_set_seq(oi, FID_SEQ_ECHO);
670}
671
672static inline void ostid_set_seq_llog(struct ost_id *oi)
673{
674 ostid_set_seq(oi, FID_SEQ_LLOG);
675}
676
677/**
678 * Note: we need check oi_seq to decide where to set oi_id,
679 * so oi_seq should always be set ahead of oi_id.
680 */
681static inline void ostid_set_id(struct ost_id *oi, __u64 oid)
682{
683 if (fid_seq_is_mdt0(ostid_seq(oi))) {
684 if (oid >= IDIF_MAX_OID) {
685 CERROR("Bad "LPU64" to set "DOSTID"\n",
686 oid, POSTID(oi));
687 return;
688 }
689 oi->oi.oi_id = oid;
690 } else {
691 if (oid > OBIF_MAX_OID) {
692 CERROR("Bad "LPU64" to set "DOSTID"\n",
693 oid, POSTID(oi));
694 return;
695 }
696 oi->oi_fid.f_oid = oid;
697 }
698}
699
700static inline void ostid_inc_id(struct ost_id *oi)
701{
702 if (fid_seq_is_mdt0(ostid_seq(oi))) {
703 if (unlikely(ostid_id(oi) + 1 > IDIF_MAX_OID)) {
704 CERROR("Bad inc "DOSTID"\n", POSTID(oi));
705 return;
706 }
707 oi->oi.oi_id++;
708 } else {
709 oi->oi_fid.f_oid++;
710 }
711}
712
713static inline void ostid_dec_id(struct ost_id *oi)
714{
715 if (fid_seq_is_mdt0(ostid_seq(oi)))
716 oi->oi.oi_id--;
717 else
718 oi->oi_fid.f_oid--;
719}
720
721/**
722 * Unpack an OST object id/seq (group) into a FID. This is needed for
723 * converting all obdo, lmm, lsm, etc. 64-bit id/seq pairs into proper
724 * FIDs. Note that if an id/seq is already in FID/IDIF format it will
725 * be passed through unchanged. Only legacy OST objects in "group 0"
726 * will be mapped into the IDIF namespace so that they can fit into the
727 * struct lu_fid fields without loss. For reference see:
728 * http://arch.lustre.org/index.php?title=Interoperability_fids_zfs
729 */
730static inline int ostid_to_fid(struct lu_fid *fid, struct ost_id *ostid,
731 __u32 ost_idx)
732{
733 if (ost_idx > 0xffff) {
734 CERROR("bad ost_idx, "DOSTID" ost_idx:%u\n", POSTID(ostid),
735 ost_idx);
736 return -EBADF;
737 }
738
739 if (fid_seq_is_mdt0(ostid_seq(ostid))) {
740 /* This is a "legacy" (old 1.x/2.early) OST object in "group 0"
741 * that we map into the IDIF namespace. It allows up to 2^48
742 * objects per OST, as this is the object namespace that has
743 * been in production for years. This can handle create rates
744 * of 1M objects/s/OST for 9 years, or combinations thereof. */
745 if (ostid_id(ostid) >= IDIF_MAX_OID) {
746 CERROR("bad MDT0 id, "DOSTID" ost_idx:%u\n",
747 POSTID(ostid), ost_idx);
748 return -EBADF;
749 }
750 fid->f_seq = fid_idif_seq(ostid_id(ostid), ost_idx);
751 /* truncate to 32 bits by assignment */
752 fid->f_oid = ostid_id(ostid);
753 /* in theory, not currently used */
754 fid->f_ver = ostid_id(ostid) >> 48;
755 } else /* if (fid_seq_is_idif(seq) || fid_seq_is_norm(seq)) */ {
756 /* This is either an IDIF object, which identifies objects across
757 * all OSTs, or a regular FID. The IDIF namespace maps legacy
758 * OST objects into the FID namespace. In both cases, we just
759 * pass the FID through, no conversion needed. */
760 if (ostid->oi_fid.f_ver != 0) {
761 CERROR("bad MDT0 id, "DOSTID" ost_idx:%u\n",
762 POSTID(ostid), ost_idx);
763 return -EBADF;
764 }
765 *fid = ostid->oi_fid;
766 }
767
768 return 0;
769}
770
771/* pack any OST FID into an ostid (id/seq) for the wire/disk */
772static inline int fid_to_ostid(const struct lu_fid *fid, struct ost_id *ostid)
773{
774 if (unlikely(fid_seq_is_igif(fid->f_seq))) {
775 CERROR("bad IGIF, "DFID"\n", PFID(fid));
776 return -EBADF;
777 }
778
779 if (fid_is_idif(fid)) {
780 ostid_set_seq_mdt0(ostid);
781 ostid_set_id(ostid, fid_idif_id(fid_seq(fid), fid_oid(fid),
782 fid_ver(fid)));
783 } else {
784 ostid->oi_fid = *fid;
785 }
786
787 return 0;
788}
789
790/* Check whether the fid is for LAST_ID */
791static inline int fid_is_last_id(const struct lu_fid *fid)
792{
66cc83e9 793 return (fid_oid(fid) == 0);
d7e09d03
PT
794}
795
796/**
797 * Get inode number from a igif.
798 * \param fid a igif to get inode number from.
799 * \return inode number for the igif.
800 */
801static inline ino_t lu_igif_ino(const struct lu_fid *fid)
802{
803 return fid_seq(fid);
804}
805
806extern void lustre_swab_ost_id(struct ost_id *oid);
807
808/**
809 * Get inode generation from a igif.
810 * \param fid a igif to get inode generation from.
811 * \return inode generation for the igif.
812 */
813static inline __u32 lu_igif_gen(const struct lu_fid *fid)
814{
815 return fid_oid(fid);
816}
817
818/**
819 * Build igif from the inode number/generation.
820 */
821static inline void lu_igif_build(struct lu_fid *fid, __u32 ino, __u32 gen)
822{
823 fid->f_seq = ino;
824 fid->f_oid = gen;
825 fid->f_ver = 0;
826}
827
828/*
829 * Fids are transmitted across network (in the sender byte-ordering),
830 * and stored on disk in big-endian order.
831 */
832static inline void fid_cpu_to_le(struct lu_fid *dst, const struct lu_fid *src)
833{
d7e09d03
PT
834 dst->f_seq = cpu_to_le64(fid_seq(src));
835 dst->f_oid = cpu_to_le32(fid_oid(src));
836 dst->f_ver = cpu_to_le32(fid_ver(src));
837}
838
839static inline void fid_le_to_cpu(struct lu_fid *dst, const struct lu_fid *src)
840{
d7e09d03
PT
841 dst->f_seq = le64_to_cpu(fid_seq(src));
842 dst->f_oid = le32_to_cpu(fid_oid(src));
843 dst->f_ver = le32_to_cpu(fid_ver(src));
844}
845
846static inline void fid_cpu_to_be(struct lu_fid *dst, const struct lu_fid *src)
847{
d7e09d03
PT
848 dst->f_seq = cpu_to_be64(fid_seq(src));
849 dst->f_oid = cpu_to_be32(fid_oid(src));
850 dst->f_ver = cpu_to_be32(fid_ver(src));
851}
852
853static inline void fid_be_to_cpu(struct lu_fid *dst, const struct lu_fid *src)
854{
d7e09d03
PT
855 dst->f_seq = be64_to_cpu(fid_seq(src));
856 dst->f_oid = be32_to_cpu(fid_oid(src));
857 dst->f_ver = be32_to_cpu(fid_ver(src));
858}
859
860static inline int fid_is_sane(const struct lu_fid *fid)
861{
862 return fid != NULL &&
863 ((fid_seq(fid) >= FID_SEQ_START && fid_ver(fid) == 0) ||
864 fid_is_igif(fid) || fid_is_idif(fid) ||
865 fid_seq_is_rsvd(fid_seq(fid)));
866}
867
868static inline int fid_is_zero(const struct lu_fid *fid)
869{
870 return fid_seq(fid) == 0 && fid_oid(fid) == 0;
871}
872
873extern void lustre_swab_lu_fid(struct lu_fid *fid);
874extern void lustre_swab_lu_seq_range(struct lu_seq_range *range);
875
876static inline int lu_fid_eq(const struct lu_fid *f0, const struct lu_fid *f1)
877{
ec83e611 878 return memcmp(f0, f1, sizeof(*f0)) == 0;
d7e09d03
PT
879}
880
881#define __diff_normalize(val0, val1) \
882({ \
883 typeof(val0) __val0 = (val0); \
884 typeof(val1) __val1 = (val1); \
885 \
886 (__val0 == __val1 ? 0 : __val0 > __val1 ? +1 : -1); \
887})
888
889static inline int lu_fid_cmp(const struct lu_fid *f0,
890 const struct lu_fid *f1)
891{
892 return
893 __diff_normalize(fid_seq(f0), fid_seq(f1)) ?:
894 __diff_normalize(fid_oid(f0), fid_oid(f1)) ?:
895 __diff_normalize(fid_ver(f0), fid_ver(f1));
896}
897
c5b60ba7 898static inline void ostid_cpu_to_le(const struct ost_id *src_oi,
d7e09d03
PT
899 struct ost_id *dst_oi)
900{
901 if (fid_seq_is_mdt0(ostid_seq(src_oi))) {
902 dst_oi->oi.oi_id = cpu_to_le64(src_oi->oi.oi_id);
903 dst_oi->oi.oi_seq = cpu_to_le64(src_oi->oi.oi_seq);
904 } else {
905 fid_cpu_to_le(&dst_oi->oi_fid, &src_oi->oi_fid);
906 }
907}
908
c5b60ba7 909static inline void ostid_le_to_cpu(const struct ost_id *src_oi,
d7e09d03
PT
910 struct ost_id *dst_oi)
911{
912 if (fid_seq_is_mdt0(ostid_seq(src_oi))) {
913 dst_oi->oi.oi_id = le64_to_cpu(src_oi->oi.oi_id);
914 dst_oi->oi.oi_seq = le64_to_cpu(src_oi->oi.oi_seq);
915 } else {
916 fid_le_to_cpu(&dst_oi->oi_fid, &src_oi->oi_fid);
917 }
918}
919
920/** @} lu_fid */
921
922/** \defgroup lu_dir lu_dir
923 * @{ */
924
925/**
926 * Enumeration of possible directory entry attributes.
927 *
928 * Attributes follow directory entry header in the order they appear in this
929 * enumeration.
930 */
931enum lu_dirent_attrs {
932 LUDA_FID = 0x0001,
933 LUDA_TYPE = 0x0002,
934 LUDA_64BITHASH = 0x0004,
935
936 /* The following attrs are used for MDT interanl only,
937 * not visible to client */
938
939 /* Verify the dirent consistency */
940 LUDA_VERIFY = 0x8000,
941 /* Only check but not repair the dirent inconsistency */
942 LUDA_VERIFY_DRYRUN = 0x4000,
943 /* The dirent has been repaired, or to be repaired (dryrun). */
944 LUDA_REPAIR = 0x2000,
945 /* The system is upgraded, has beed or to be repaired (dryrun). */
946 LUDA_UPGRADE = 0x1000,
947 /* Ignore this record, go to next directly. */
948 LUDA_IGNORE = 0x0800,
949};
950
951#define LU_DIRENT_ATTRS_MASK 0xf800
952
953/**
954 * Layout of readdir pages, as transmitted on wire.
955 */
956struct lu_dirent {
957 /** valid if LUDA_FID is set. */
958 struct lu_fid lde_fid;
959 /** a unique entry identifier: a hash or an offset. */
960 __u64 lde_hash;
961 /** total record length, including all attributes. */
962 __u16 lde_reclen;
963 /** name length */
964 __u16 lde_namelen;
965 /** optional variable size attributes following this entry.
966 * taken from enum lu_dirent_attrs.
967 */
968 __u32 lde_attrs;
969 /** name is followed by the attributes indicated in ->ldp_attrs, in
970 * their natural order. After the last attribute, padding bytes are
971 * added to make ->lde_reclen a multiple of 8.
972 */
973 char lde_name[0];
974};
975
976/*
977 * Definitions of optional directory entry attributes formats.
978 *
979 * Individual attributes do not have their length encoded in a generic way. It
980 * is assumed that consumer of an attribute knows its format. This means that
981 * it is impossible to skip over an unknown attribute, except by skipping over all
982 * remaining attributes (by using ->lde_reclen), which is not too
983 * constraining, because new server versions will append new attributes at
984 * the end of an entry.
985 */
986
987/**
988 * Fid directory attribute: a fid of an object referenced by the entry. This
989 * will be almost always requested by the client and supplied by the server.
990 *
991 * Aligned to 8 bytes.
992 */
993/* To have compatibility with 1.8, lets have fid in lu_dirent struct. */
994
995/**
996 * File type.
997 *
998 * Aligned to 2 bytes.
999 */
1000struct luda_type {
1001 __u16 lt_type;
1002};
1003
79783924
PT
1004#ifndef IFSHIFT
1005#define IFSHIFT 12
1006#endif
1007
1008#ifndef IFTODT
1009#define IFTODT(type) (((type) & S_IFMT) >> IFSHIFT)
1010#endif
1011#ifndef DTTOIF
1012#define DTTOIF(dirtype) ((dirtype) << IFSHIFT)
1013#endif
1014
1015
d7e09d03
PT
1016struct lu_dirpage {
1017 __u64 ldp_hash_start;
1018 __u64 ldp_hash_end;
1019 __u32 ldp_flags;
1020 __u32 ldp_pad0;
1021 struct lu_dirent ldp_entries[0];
1022};
1023
1024enum lu_dirpage_flags {
1025 /**
1026 * dirpage contains no entry.
1027 */
1028 LDF_EMPTY = 1 << 0,
1029 /**
1030 * last entry's lde_hash equals ldp_hash_end.
1031 */
1032 LDF_COLLIDE = 1 << 1
1033};
1034
1035static inline struct lu_dirent *lu_dirent_start(struct lu_dirpage *dp)
1036{
1037 if (le32_to_cpu(dp->ldp_flags) & LDF_EMPTY)
1038 return NULL;
1039 else
1040 return dp->ldp_entries;
1041}
1042
1043static inline struct lu_dirent *lu_dirent_next(struct lu_dirent *ent)
1044{
1045 struct lu_dirent *next;
1046
1047 if (le16_to_cpu(ent->lde_reclen) != 0)
1048 next = ((void *)ent) + le16_to_cpu(ent->lde_reclen);
1049 else
1050 next = NULL;
1051
1052 return next;
1053}
1054
1055static inline int lu_dirent_calc_size(int namelen, __u16 attr)
1056{
1057 int size;
1058
1059 if (attr & LUDA_TYPE) {
1060 const unsigned align = sizeof(struct luda_type) - 1;
1061 size = (sizeof(struct lu_dirent) + namelen + align) & ~align;
1062 size += sizeof(struct luda_type);
1063 } else
1064 size = sizeof(struct lu_dirent) + namelen;
1065
1066 return (size + 7) & ~7;
1067}
1068
1069static inline int lu_dirent_size(struct lu_dirent *ent)
1070{
1071 if (le16_to_cpu(ent->lde_reclen) == 0) {
1072 return lu_dirent_calc_size(le16_to_cpu(ent->lde_namelen),
1073 le32_to_cpu(ent->lde_attrs));
1074 }
1075 return le16_to_cpu(ent->lde_reclen);
1076}
1077
1078#define MDS_DIR_END_OFF 0xfffffffffffffffeULL
1079
1080/**
1081 * MDS_READPAGE page size
1082 *
1083 * This is the directory page size packed in MDS_READPAGE RPC.
1084 * It's different than PAGE_CACHE_SIZE because the client needs to
1085 * access the struct lu_dirpage header packed at the beginning of
1086 * the "page" and without this there isn't any way to know find the
1087 * lu_dirpage header is if client and server PAGE_CACHE_SIZE differ.
1088 */
1089#define LU_PAGE_SHIFT 12
1090#define LU_PAGE_SIZE (1UL << LU_PAGE_SHIFT)
1091#define LU_PAGE_MASK (~(LU_PAGE_SIZE - 1))
1092
1093#define LU_PAGE_COUNT (1 << (PAGE_CACHE_SHIFT - LU_PAGE_SHIFT))
1094
1095/** @} lu_dir */
1096
1097struct lustre_handle {
1098 __u64 cookie;
1099};
1100#define DEAD_HANDLE_MAGIC 0xdeadbeefcafebabeULL
1101
1102static inline int lustre_handle_is_used(struct lustre_handle *lh)
1103{
1104 return lh->cookie != 0ull;
1105}
1106
1107static inline int lustre_handle_equal(const struct lustre_handle *lh1,
1108 const struct lustre_handle *lh2)
1109{
1110 return lh1->cookie == lh2->cookie;
1111}
1112
1113static inline void lustre_handle_copy(struct lustre_handle *tgt,
1114 struct lustre_handle *src)
1115{
1116 tgt->cookie = src->cookie;
1117}
1118
1119/* flags for lm_flags */
1120#define MSGHDR_AT_SUPPORT 0x1
1121#define MSGHDR_CKSUM_INCOMPAT18 0x2
1122
1123#define lustre_msg lustre_msg_v2
1124/* we depend on this structure to be 8-byte aligned */
1125/* this type is only endian-adjusted in lustre_unpack_msg() */
1126struct lustre_msg_v2 {
1127 __u32 lm_bufcount;
1128 __u32 lm_secflvr;
1129 __u32 lm_magic;
1130 __u32 lm_repsize;
1131 __u32 lm_cksum;
1132 __u32 lm_flags;
1133 __u32 lm_padding_2;
1134 __u32 lm_padding_3;
1135 __u32 lm_buflens[0];
1136};
1137
1138/* without gss, ptlrpc_body is put at the first buffer. */
1139#define PTLRPC_NUM_VERSIONS 4
1140#define JOBSTATS_JOBID_SIZE 32 /* 32 bytes string */
1141struct ptlrpc_body_v3 {
1142 struct lustre_handle pb_handle;
1143 __u32 pb_type;
1144 __u32 pb_version;
1145 __u32 pb_opc;
1146 __u32 pb_status;
1147 __u64 pb_last_xid;
1148 __u64 pb_last_seen;
1149 __u64 pb_last_committed;
1150 __u64 pb_transno;
1151 __u32 pb_flags;
1152 __u32 pb_op_flags;
1153 __u32 pb_conn_cnt;
1154 __u32 pb_timeout; /* for req, the deadline, for rep, the service est */
1155 __u32 pb_service_time; /* for rep, actual service time */
1156 __u32 pb_limit;
1157 __u64 pb_slv;
1158 /* VBR: pre-versions */
1159 __u64 pb_pre_versions[PTLRPC_NUM_VERSIONS];
1160 /* padding for future needs */
1161 __u64 pb_padding[4];
1162 char pb_jobid[JOBSTATS_JOBID_SIZE];
1163};
1164#define ptlrpc_body ptlrpc_body_v3
1165
1166struct ptlrpc_body_v2 {
1167 struct lustre_handle pb_handle;
1168 __u32 pb_type;
1169 __u32 pb_version;
1170 __u32 pb_opc;
1171 __u32 pb_status;
1172 __u64 pb_last_xid;
1173 __u64 pb_last_seen;
1174 __u64 pb_last_committed;
1175 __u64 pb_transno;
1176 __u32 pb_flags;
1177 __u32 pb_op_flags;
1178 __u32 pb_conn_cnt;
1179 __u32 pb_timeout; /* for req, the deadline, for rep, the service est */
1180 __u32 pb_service_time; /* for rep, actual service time, also used for
1181 net_latency of req */
1182 __u32 pb_limit;
1183 __u64 pb_slv;
1184 /* VBR: pre-versions */
1185 __u64 pb_pre_versions[PTLRPC_NUM_VERSIONS];
1186 /* padding for future needs */
1187 __u64 pb_padding[4];
1188};
1189
1190extern void lustre_swab_ptlrpc_body(struct ptlrpc_body *pb);
1191
1192/* message body offset for lustre_msg_v2 */
1193/* ptlrpc body offset in all request/reply messages */
1194#define MSG_PTLRPC_BODY_OFF 0
1195
1196/* normal request/reply message record offset */
1197#define REQ_REC_OFF 1
1198#define REPLY_REC_OFF 1
1199
1200/* ldlm request message body offset */
1201#define DLM_LOCKREQ_OFF 1 /* lockreq offset */
1202#define DLM_REQ_REC_OFF 2 /* normal dlm request record offset */
1203
1204/* ldlm intent lock message body offset */
1205#define DLM_INTENT_IT_OFF 2 /* intent lock it offset */
1206#define DLM_INTENT_REC_OFF 3 /* intent lock record offset */
1207
1208/* ldlm reply message body offset */
1209#define DLM_LOCKREPLY_OFF 1 /* lockrep offset */
1210#define DLM_REPLY_REC_OFF 2 /* reply record offset */
1211
1212/** only use in req->rq_{req,rep}_swab_mask */
1213#define MSG_PTLRPC_HEADER_OFF 31
1214
1215/* Flags that are operation-specific go in the top 16 bits. */
1216#define MSG_OP_FLAG_MASK 0xffff0000
1217#define MSG_OP_FLAG_SHIFT 16
1218
1219/* Flags that apply to all requests are in the bottom 16 bits */
1220#define MSG_GEN_FLAG_MASK 0x0000ffff
1221#define MSG_LAST_REPLAY 0x0001
1222#define MSG_RESENT 0x0002
1223#define MSG_REPLAY 0x0004
1224/* #define MSG_AT_SUPPORT 0x0008
1225 * This was used in early prototypes of adaptive timeouts, and while there
1226 * shouldn't be any users of that code there also isn't a need for using this
1227 * bits. Defer usage until at least 1.10 to avoid potential conflict. */
1228#define MSG_DELAY_REPLAY 0x0010
1229#define MSG_VERSION_REPLAY 0x0020
1230#define MSG_REQ_REPLAY_DONE 0x0040
1231#define MSG_LOCK_REPLAY_DONE 0x0080
1232
1233/*
1234 * Flags for all connect opcodes (MDS_CONNECT, OST_CONNECT)
1235 */
1236
1237#define MSG_CONNECT_RECOVERING 0x00000001
1238#define MSG_CONNECT_RECONNECT 0x00000002
1239#define MSG_CONNECT_REPLAYABLE 0x00000004
1240//#define MSG_CONNECT_PEER 0x8
1241#define MSG_CONNECT_LIBCLIENT 0x00000010
1242#define MSG_CONNECT_INITIAL 0x00000020
1243#define MSG_CONNECT_ASYNC 0x00000040
1244#define MSG_CONNECT_NEXT_VER 0x00000080 /* use next version of lustre_msg */
1245#define MSG_CONNECT_TRANSNO 0x00000100 /* report transno */
1246
1247/* Connect flags */
1248#define OBD_CONNECT_RDONLY 0x1ULL /*client has read-only access*/
1249#define OBD_CONNECT_INDEX 0x2ULL /*connect specific LOV idx */
1250#define OBD_CONNECT_MDS 0x4ULL /*connect from MDT to OST */
1251#define OBD_CONNECT_GRANT 0x8ULL /*OSC gets grant at connect */
1252#define OBD_CONNECT_SRVLOCK 0x10ULL /*server takes locks for cli */
1253#define OBD_CONNECT_VERSION 0x20ULL /*Lustre versions in ocd */
1254#define OBD_CONNECT_REQPORTAL 0x40ULL /*Separate non-IO req portal */
1255#define OBD_CONNECT_ACL 0x80ULL /*access control lists */
1256#define OBD_CONNECT_XATTR 0x100ULL /*client use extended attr */
1257#define OBD_CONNECT_CROW 0x200ULL /*MDS+OST create obj on write*/
1258#define OBD_CONNECT_TRUNCLOCK 0x400ULL /*locks on server for punch */
1259#define OBD_CONNECT_TRANSNO 0x800ULL /*replay sends init transno */
1260#define OBD_CONNECT_IBITS 0x1000ULL /*support for inodebits locks*/
1261#define OBD_CONNECT_JOIN 0x2000ULL /*files can be concatenated.
1262 *We do not support JOIN FILE
1263 *anymore, reserve this flags
1264 *just for preventing such bit
1265 *to be reused.*/
1266#define OBD_CONNECT_ATTRFID 0x4000ULL /*Server can GetAttr By Fid*/
1267#define OBD_CONNECT_NODEVOH 0x8000ULL /*No open hndl on specl nodes*/
1268#define OBD_CONNECT_RMT_CLIENT 0x10000ULL /*Remote client */
1269#define OBD_CONNECT_RMT_CLIENT_FORCE 0x20000ULL /*Remote client by force */
1270#define OBD_CONNECT_BRW_SIZE 0x40000ULL /*Max bytes per rpc */
1271#define OBD_CONNECT_QUOTA64 0x80000ULL /*Not used since 2.4 */
1272#define OBD_CONNECT_MDS_CAPA 0x100000ULL /*MDS capability */
1273#define OBD_CONNECT_OSS_CAPA 0x200000ULL /*OSS capability */
1274#define OBD_CONNECT_CANCELSET 0x400000ULL /*Early batched cancels. */
1275#define OBD_CONNECT_SOM 0x800000ULL /*Size on MDS */
1276#define OBD_CONNECT_AT 0x1000000ULL /*client uses AT */
1277#define OBD_CONNECT_LRU_RESIZE 0x2000000ULL /*LRU resize feature. */
1278#define OBD_CONNECT_MDS_MDS 0x4000000ULL /*MDS-MDS connection */
1279#define OBD_CONNECT_REAL 0x8000000ULL /*real connection */
1280#define OBD_CONNECT_CHANGE_QS 0x10000000ULL /*Not used since 2.4 */
1281#define OBD_CONNECT_CKSUM 0x20000000ULL /*support several cksum algos*/
1282#define OBD_CONNECT_FID 0x40000000ULL /*FID is supported by server */
1283#define OBD_CONNECT_VBR 0x80000000ULL /*version based recovery */
1284#define OBD_CONNECT_LOV_V3 0x100000000ULL /*client supports LOV v3 EA */
1285#define OBD_CONNECT_GRANT_SHRINK 0x200000000ULL /* support grant shrink */
1286#define OBD_CONNECT_SKIP_ORPHAN 0x400000000ULL /* don't reuse orphan objids */
1287#define OBD_CONNECT_MAX_EASIZE 0x800000000ULL /* preserved for large EA */
1288#define OBD_CONNECT_FULL20 0x1000000000ULL /* it is 2.0 client */
1289#define OBD_CONNECT_LAYOUTLOCK 0x2000000000ULL /* client uses layout lock */
1290#define OBD_CONNECT_64BITHASH 0x4000000000ULL /* client supports 64-bits
1291 * directory hash */
1292#define OBD_CONNECT_MAXBYTES 0x8000000000ULL /* max stripe size */
1293#define OBD_CONNECT_IMP_RECOV 0x10000000000ULL /* imp recovery support */
1294#define OBD_CONNECT_JOBSTATS 0x20000000000ULL /* jobid in ptlrpc_body */
1295#define OBD_CONNECT_UMASK 0x40000000000ULL /* create uses client umask */
1296#define OBD_CONNECT_EINPROGRESS 0x80000000000ULL /* client handles -EINPROGRESS
1297 * RPC error properly */
1298#define OBD_CONNECT_GRANT_PARAM 0x100000000000ULL/* extra grant params used for
1299 * finer space reservation */
1300#define OBD_CONNECT_FLOCK_OWNER 0x200000000000ULL /* for the fixed 1.8
1301 * policy and 2.x server */
1302#define OBD_CONNECT_LVB_TYPE 0x400000000000ULL /* variable type of LVB */
1303#define OBD_CONNECT_NANOSEC_TIME 0x800000000000ULL /* nanosecond timestamps */
1304#define OBD_CONNECT_LIGHTWEIGHT 0x1000000000000ULL/* lightweight connection */
1305#define OBD_CONNECT_SHORTIO 0x2000000000000ULL/* short io */
1306#define OBD_CONNECT_PINGLESS 0x4000000000000ULL/* pings not required */
69342b78
AS
1307#define OBD_CONNECT_FLOCK_DEAD 0x8000000000000ULL/* flock deadlock detection */
1308
d7e09d03
PT
1309/* XXX README XXX:
1310 * Please DO NOT add flag values here before first ensuring that this same
1311 * flag value is not in use on some other branch. Please clear any such
1312 * changes with senior engineers before starting to use a new flag. Then,
1313 * submit a small patch against EVERY branch that ONLY adds the new flag,
1314 * updates obd_connect_names[] for lprocfs_rd_connect_flags(), adds the
1315 * flag to check_obd_connect_data(), and updates wiretests accordingly, so it
1316 * can be approved and landed easily to reserve the flag for future use. */
1317
1318/* The MNE_SWAB flag is overloading the MDS_MDS bit only for the MGS
1319 * connection. It is a temporary bug fix for Imperative Recovery interop
1320 * between 2.2 and 2.3 x86/ppc nodes, and can be removed when interop for
1321 * 2.2 clients/servers is no longer needed. LU-1252/LU-1644. */
1322#define OBD_CONNECT_MNE_SWAB OBD_CONNECT_MDS_MDS
1323
1324#define OCD_HAS_FLAG(ocd, flg) \
1325 (!!((ocd)->ocd_connect_flags & OBD_CONNECT_##flg))
1326
1327
1328#define LRU_RESIZE_CONNECT_FLAG OBD_CONNECT_LRU_RESIZE
1329
1330#define MDT_CONNECT_SUPPORTED (OBD_CONNECT_RDONLY | OBD_CONNECT_VERSION | \
1331 OBD_CONNECT_ACL | OBD_CONNECT_XATTR | \
1332 OBD_CONNECT_IBITS | \
1333 OBD_CONNECT_NODEVOH | OBD_CONNECT_ATTRFID | \
1334 OBD_CONNECT_CANCELSET | OBD_CONNECT_AT | \
1335 OBD_CONNECT_RMT_CLIENT | \
1336 OBD_CONNECT_RMT_CLIENT_FORCE | \
1337 OBD_CONNECT_BRW_SIZE | OBD_CONNECT_MDS_CAPA | \
1338 OBD_CONNECT_OSS_CAPA | OBD_CONNECT_MDS_MDS | \
1339 OBD_CONNECT_FID | LRU_RESIZE_CONNECT_FLAG | \
1340 OBD_CONNECT_VBR | OBD_CONNECT_LOV_V3 | \
1341 OBD_CONNECT_SOM | OBD_CONNECT_FULL20 | \
1342 OBD_CONNECT_64BITHASH | OBD_CONNECT_JOBSTATS | \
1343 OBD_CONNECT_EINPROGRESS | \
1344 OBD_CONNECT_LIGHTWEIGHT | OBD_CONNECT_UMASK | \
1345 OBD_CONNECT_LVB_TYPE | OBD_CONNECT_LAYOUTLOCK |\
69342b78
AS
1346 OBD_CONNECT_PINGLESS | OBD_CONNECT_MAX_EASIZE |\
1347 OBD_CONNECT_FLOCK_DEAD)
d7e09d03
PT
1348#define OST_CONNECT_SUPPORTED (OBD_CONNECT_SRVLOCK | OBD_CONNECT_GRANT | \
1349 OBD_CONNECT_REQPORTAL | OBD_CONNECT_VERSION | \
1350 OBD_CONNECT_TRUNCLOCK | OBD_CONNECT_INDEX | \
1351 OBD_CONNECT_BRW_SIZE | OBD_CONNECT_OSS_CAPA | \
1352 OBD_CONNECT_CANCELSET | OBD_CONNECT_AT | \
1353 LRU_RESIZE_CONNECT_FLAG | OBD_CONNECT_CKSUM | \
1354 OBD_CONNECT_RMT_CLIENT | \
1355 OBD_CONNECT_RMT_CLIENT_FORCE | OBD_CONNECT_VBR | \
1356 OBD_CONNECT_MDS | OBD_CONNECT_SKIP_ORPHAN | \
1357 OBD_CONNECT_GRANT_SHRINK | OBD_CONNECT_FULL20 | \
1358 OBD_CONNECT_64BITHASH | OBD_CONNECT_MAXBYTES | \
1359 OBD_CONNECT_MAX_EASIZE | \
1360 OBD_CONNECT_EINPROGRESS | \
1361 OBD_CONNECT_JOBSTATS | \
1362 OBD_CONNECT_LIGHTWEIGHT | OBD_CONNECT_LVB_TYPE|\
1363 OBD_CONNECT_LAYOUTLOCK | OBD_CONNECT_FID | \
1364 OBD_CONNECT_PINGLESS)
1365#define ECHO_CONNECT_SUPPORTED (0)
1366#define MGS_CONNECT_SUPPORTED (OBD_CONNECT_VERSION | OBD_CONNECT_AT | \
1367 OBD_CONNECT_FULL20 | OBD_CONNECT_IMP_RECOV | \
1368 OBD_CONNECT_MNE_SWAB | OBD_CONNECT_PINGLESS)
1369
1370/* Features required for this version of the client to work with server */
1371#define CLIENT_CONNECT_MDT_REQD (OBD_CONNECT_IBITS | OBD_CONNECT_FID | \
1372 OBD_CONNECT_FULL20)
1373
1374#define OBD_OCD_VERSION(major,minor,patch,fix) (((major)<<24) + ((minor)<<16) +\
1375 ((patch)<<8) + (fix))
1376#define OBD_OCD_VERSION_MAJOR(version) ((int)((version)>>24)&255)
1377#define OBD_OCD_VERSION_MINOR(version) ((int)((version)>>16)&255)
1378#define OBD_OCD_VERSION_PATCH(version) ((int)((version)>>8)&255)
1379#define OBD_OCD_VERSION_FIX(version) ((int)(version)&255)
1380
1381/* This structure is used for both request and reply.
1382 *
1383 * If we eventually have separate connect data for different types, which we
1384 * almost certainly will, then perhaps we stick a union in here. */
1385struct obd_connect_data_v1 {
1386 __u64 ocd_connect_flags; /* OBD_CONNECT_* per above */
1387 __u32 ocd_version; /* lustre release version number */
1388 __u32 ocd_grant; /* initial cache grant amount (bytes) */
1389 __u32 ocd_index; /* LOV index to connect to */
1390 __u32 ocd_brw_size; /* Maximum BRW size in bytes, must be 2^n */
1391 __u64 ocd_ibits_known; /* inode bits this client understands */
1392 __u8 ocd_blocksize; /* log2 of the backend filesystem blocksize */
1393 __u8 ocd_inodespace; /* log2 of the per-inode space consumption */
1394 __u16 ocd_grant_extent; /* per-extent grant overhead, in 1K blocks */
1395 __u32 ocd_unused; /* also fix lustre_swab_connect */
1396 __u64 ocd_transno; /* first transno from client to be replayed */
1397 __u32 ocd_group; /* MDS group on OST */
1398 __u32 ocd_cksum_types; /* supported checksum algorithms */
1399 __u32 ocd_max_easize; /* How big LOV EA can be on MDS */
1400 __u32 ocd_instance; /* also fix lustre_swab_connect */
1401 __u64 ocd_maxbytes; /* Maximum stripe size in bytes */
1402};
1403
1404struct obd_connect_data {
1405 __u64 ocd_connect_flags; /* OBD_CONNECT_* per above */
1406 __u32 ocd_version; /* lustre release version number */
1407 __u32 ocd_grant; /* initial cache grant amount (bytes) */
1408 __u32 ocd_index; /* LOV index to connect to */
1409 __u32 ocd_brw_size; /* Maximum BRW size in bytes */
1410 __u64 ocd_ibits_known; /* inode bits this client understands */
1411 __u8 ocd_blocksize; /* log2 of the backend filesystem blocksize */
1412 __u8 ocd_inodespace; /* log2 of the per-inode space consumption */
1413 __u16 ocd_grant_extent; /* per-extent grant overhead, in 1K blocks */
1414 __u32 ocd_unused; /* also fix lustre_swab_connect */
1415 __u64 ocd_transno; /* first transno from client to be replayed */
1416 __u32 ocd_group; /* MDS group on OST */
1417 __u32 ocd_cksum_types; /* supported checksum algorithms */
1418 __u32 ocd_max_easize; /* How big LOV EA can be on MDS */
1419 __u32 ocd_instance; /* instance # of this target */
1420 __u64 ocd_maxbytes; /* Maximum stripe size in bytes */
1421 /* Fields after ocd_maxbytes are only accessible by the receiver
1422 * if the corresponding flag in ocd_connect_flags is set. Accessing
1423 * any field after ocd_maxbytes on the receiver without a valid flag
1424 * may result in out-of-bound memory access and kernel oops. */
1425 __u64 padding1; /* added 2.1.0. also fix lustre_swab_connect */
1426 __u64 padding2; /* added 2.1.0. also fix lustre_swab_connect */
1427 __u64 padding3; /* added 2.1.0. also fix lustre_swab_connect */
1428 __u64 padding4; /* added 2.1.0. also fix lustre_swab_connect */
1429 __u64 padding5; /* added 2.1.0. also fix lustre_swab_connect */
1430 __u64 padding6; /* added 2.1.0. also fix lustre_swab_connect */
1431 __u64 padding7; /* added 2.1.0. also fix lustre_swab_connect */
1432 __u64 padding8; /* added 2.1.0. also fix lustre_swab_connect */
1433 __u64 padding9; /* added 2.1.0. also fix lustre_swab_connect */
1434 __u64 paddingA; /* added 2.1.0. also fix lustre_swab_connect */
1435 __u64 paddingB; /* added 2.1.0. also fix lustre_swab_connect */
1436 __u64 paddingC; /* added 2.1.0. also fix lustre_swab_connect */
1437 __u64 paddingD; /* added 2.1.0. also fix lustre_swab_connect */
1438 __u64 paddingE; /* added 2.1.0. also fix lustre_swab_connect */
1439 __u64 paddingF; /* added 2.1.0. also fix lustre_swab_connect */
1440};
1441/* XXX README XXX:
1442 * Please DO NOT use any fields here before first ensuring that this same
1443 * field is not in use on some other branch. Please clear any such changes
1444 * with senior engineers before starting to use a new field. Then, submit
1445 * a small patch against EVERY branch that ONLY adds the new field along with
1446 * the matching OBD_CONNECT flag, so that can be approved and landed easily to
1447 * reserve the flag for future use. */
1448
1449
1450extern void lustre_swab_connect(struct obd_connect_data *ocd);
1451
1452/*
1453 * Supported checksum algorithms. Up to 32 checksum types are supported.
1454 * (32-bit mask stored in obd_connect_data::ocd_cksum_types)
1455 * Please update DECLARE_CKSUM_NAME/OBD_CKSUM_ALL in obd.h when adding a new
1456 * algorithm and also the OBD_FL_CKSUM* flags.
1457 */
1458typedef enum {
1459 OBD_CKSUM_CRC32 = 0x00000001,
1460 OBD_CKSUM_ADLER = 0x00000002,
1461 OBD_CKSUM_CRC32C= 0x00000004,
1462} cksum_type_t;
1463
1464/*
1465 * OST requests: OBDO & OBD request records
1466 */
1467
1468/* opcodes */
1469typedef enum {
1470 OST_REPLY = 0, /* reply ? */
1471 OST_GETATTR = 1,
1472 OST_SETATTR = 2,
1473 OST_READ = 3,
1474 OST_WRITE = 4,
1475 OST_CREATE = 5,
1476 OST_DESTROY = 6,
1477 OST_GET_INFO = 7,
1478 OST_CONNECT = 8,
1479 OST_DISCONNECT = 9,
1480 OST_PUNCH = 10,
1481 OST_OPEN = 11,
1482 OST_CLOSE = 12,
1483 OST_STATFS = 13,
1484 OST_SYNC = 16,
1485 OST_SET_INFO = 17,
1486 OST_QUOTACHECK = 18,
1487 OST_QUOTACTL = 19,
1488 OST_QUOTA_ADJUST_QUNIT = 20, /* not used since 2.4 */
1489 OST_LAST_OPC
1490} ost_cmd_t;
1491#define OST_FIRST_OPC OST_REPLY
1492
1493enum obdo_flags {
1494 OBD_FL_INLINEDATA = 0x00000001,
1495 OBD_FL_OBDMDEXISTS = 0x00000002,
1496 OBD_FL_DELORPHAN = 0x00000004, /* if set in o_flags delete orphans */
1497 OBD_FL_NORPC = 0x00000008, /* set in o_flags do in OSC not OST */
1498 OBD_FL_IDONLY = 0x00000010, /* set in o_flags only adjust obj id*/
1499 OBD_FL_RECREATE_OBJS= 0x00000020, /* recreate missing obj */
1500 OBD_FL_DEBUG_CHECK = 0x00000040, /* echo client/server debug check */
1501 OBD_FL_NO_USRQUOTA = 0x00000100, /* the object's owner is over quota */
1502 OBD_FL_NO_GRPQUOTA = 0x00000200, /* the object's group is over quota */
1503 OBD_FL_CREATE_CROW = 0x00000400, /* object should be create on write */
1504 OBD_FL_SRVLOCK = 0x00000800, /* delegate DLM locking to server */
1505 OBD_FL_CKSUM_CRC32 = 0x00001000, /* CRC32 checksum type */
1506 OBD_FL_CKSUM_ADLER = 0x00002000, /* ADLER checksum type */
1507 OBD_FL_CKSUM_CRC32C = 0x00004000, /* CRC32C checksum type */
1508 OBD_FL_CKSUM_RSVD2 = 0x00008000, /* for future cksum types */
1509 OBD_FL_CKSUM_RSVD3 = 0x00010000, /* for future cksum types */
1510 OBD_FL_SHRINK_GRANT = 0x00020000, /* object shrink the grant */
1511 OBD_FL_MMAP = 0x00040000, /* object is mmapped on the client.
1512 * XXX: obsoleted - reserved for old
1513 * clients prior than 2.2 */
1514 OBD_FL_RECOV_RESEND = 0x00080000, /* recoverable resent */
1515 OBD_FL_NOSPC_BLK = 0x00100000, /* no more block space on OST */
1516
1517 /* Note that while these checksum values are currently separate bits,
1518 * in 2.x we can actually allow all values from 1-31 if we wanted. */
1519 OBD_FL_CKSUM_ALL = OBD_FL_CKSUM_CRC32 | OBD_FL_CKSUM_ADLER |
1520 OBD_FL_CKSUM_CRC32C,
1521
1522 /* mask for local-only flag, which won't be sent over network */
1523 OBD_FL_LOCAL_MASK = 0xF0000000,
1524};
1525
1526#define LOV_MAGIC_V1 0x0BD10BD0
1527#define LOV_MAGIC LOV_MAGIC_V1
1528#define LOV_MAGIC_JOIN_V1 0x0BD20BD0
1529#define LOV_MAGIC_V3 0x0BD30BD0
1530
1531/*
1532 * magic for fully defined striping
1533 * the idea is that we should have different magics for striping "hints"
1534 * (struct lov_user_md_v[13]) and defined ready-to-use striping (struct
1535 * lov_mds_md_v[13]). at the moment the magics are used in wire protocol,
1536 * we can't just change it w/o long way preparation, but we still need a
1537 * mechanism to allow LOD to differentiate hint versus ready striping.
1538 * so, at the moment we do a trick: MDT knows what to expect from request
1539 * depending on the case (replay uses ready striping, non-replay req uses
1540 * hints), so MDT replaces magic with appropriate one and now LOD can
1541 * easily understand what's inside -bzzz
1542 */
1543#define LOV_MAGIC_V1_DEF 0x0CD10BD0
1544#define LOV_MAGIC_V3_DEF 0x0CD30BD0
1545
5dd16419
JX
1546#define LOV_PATTERN_RAID0 0x001 /* stripes are used round-robin */
1547#define LOV_PATTERN_RAID1 0x002 /* stripes are mirrors of each other */
1548#define LOV_PATTERN_FIRST 0x100 /* first stripe is not in round-robin */
1549#define LOV_PATTERN_CMOBD 0x200
1550
1551#define LOV_PATTERN_F_MASK 0xffff0000
1552#define LOV_PATTERN_F_RELEASED 0x80000000 /* HSM released file */
1553
1554#define lov_pattern(pattern) (pattern & ~LOV_PATTERN_F_MASK)
1555#define lov_pattern_flags(pattern) (pattern & LOV_PATTERN_F_MASK)
d7e09d03
PT
1556
1557#define lov_ost_data lov_ost_data_v1
1558struct lov_ost_data_v1 { /* per-stripe data structure (little-endian)*/
1559 struct ost_id l_ost_oi; /* OST object ID */
1560 __u32 l_ost_gen; /* generation of this l_ost_idx */
1561 __u32 l_ost_idx; /* OST index in LOV (lov_tgt_desc->tgts) */
1562};
1563
1564#define lov_mds_md lov_mds_md_v1
1565struct lov_mds_md_v1 { /* LOV EA mds/wire data (little-endian) */
1566 __u32 lmm_magic; /* magic number = LOV_MAGIC_V1 */
1567 __u32 lmm_pattern; /* LOV_PATTERN_RAID0, LOV_PATTERN_RAID1 */
1568 struct ost_id lmm_oi; /* LOV object ID */
1569 __u32 lmm_stripe_size; /* size of stripe in bytes */
1570 /* lmm_stripe_count used to be __u32 */
1571 __u16 lmm_stripe_count; /* num stripes in use for this object */
1572 __u16 lmm_layout_gen; /* layout generation number */
1573 struct lov_ost_data_v1 lmm_objects[0]; /* per-stripe data */
1574};
1575
1576/**
1577 * Sigh, because pre-2.4 uses
1578 * struct lov_mds_md_v1 {
1579 * ........
1580 * __u64 lmm_object_id;
1581 * __u64 lmm_object_seq;
1582 * ......
1583 * }
1584 * to identify the LOV(MDT) object, and lmm_object_seq will
1585 * be normal_fid, which make it hard to combine these conversion
1586 * to ostid_to FID. so we will do lmm_oi/fid conversion separately
1587 *
1588 * We can tell the lmm_oi by this way,
1589 * 1.8: lmm_object_id = {inode}, lmm_object_gr = 0
1590 * 2.1: lmm_object_id = {oid < 128k}, lmm_object_seq = FID_SEQ_NORMAL
1591 * 2.4: lmm_oi.f_seq = FID_SEQ_NORMAL, lmm_oi.f_oid = {oid < 128k},
1592 * lmm_oi.f_ver = 0
1593 *
1594 * But currently lmm_oi/lsm_oi does not have any "real" usages,
1595 * except for printing some information, and the user can always
1596 * get the real FID from LMA, besides this multiple case check might
1597 * make swab more complicate. So we will keep using id/seq for lmm_oi.
1598 */
1599
1600static inline void fid_to_lmm_oi(const struct lu_fid *fid,
1601 struct ost_id *oi)
1602{
1603 oi->oi.oi_id = fid_oid(fid);
1604 oi->oi.oi_seq = fid_seq(fid);
1605}
1606
1607static inline void lmm_oi_set_seq(struct ost_id *oi, __u64 seq)
1608{
1609 oi->oi.oi_seq = seq;
1610}
1611
1612static inline __u64 lmm_oi_id(struct ost_id *oi)
1613{
1614 return oi->oi.oi_id;
1615}
1616
1617static inline __u64 lmm_oi_seq(struct ost_id *oi)
1618{
1619 return oi->oi.oi_seq;
1620}
1621
1622static inline void lmm_oi_le_to_cpu(struct ost_id *dst_oi,
1623 struct ost_id *src_oi)
1624{
1625 dst_oi->oi.oi_id = le64_to_cpu(src_oi->oi.oi_id);
1626 dst_oi->oi.oi_seq = le64_to_cpu(src_oi->oi.oi_seq);
1627}
1628
1629static inline void lmm_oi_cpu_to_le(struct ost_id *dst_oi,
1630 struct ost_id *src_oi)
1631{
1632 dst_oi->oi.oi_id = cpu_to_le64(src_oi->oi.oi_id);
1633 dst_oi->oi.oi_seq = cpu_to_le64(src_oi->oi.oi_seq);
1634}
1635
1636/* extern void lustre_swab_lov_mds_md(struct lov_mds_md *llm); */
1637
ec83e611
JP
1638#define MAX_MD_SIZE \
1639 (sizeof(struct lov_mds_md) + 4 * sizeof(struct lov_ost_data))
1640#define MIN_MD_SIZE \
1641 (sizeof(struct lov_mds_md) + 1 * sizeof(struct lov_ost_data))
d7e09d03
PT
1642
1643#define XATTR_NAME_ACL_ACCESS "system.posix_acl_access"
1644#define XATTR_NAME_ACL_DEFAULT "system.posix_acl_default"
1645#define XATTR_USER_PREFIX "user."
1646#define XATTR_TRUSTED_PREFIX "trusted."
1647#define XATTR_SECURITY_PREFIX "security."
1648#define XATTR_LUSTRE_PREFIX "lustre."
1649
1650#define XATTR_NAME_LOV "trusted.lov"
1651#define XATTR_NAME_LMA "trusted.lma"
1652#define XATTR_NAME_LMV "trusted.lmv"
1653#define XATTR_NAME_LINK "trusted.link"
1654#define XATTR_NAME_FID "trusted.fid"
1655#define XATTR_NAME_VERSION "trusted.version"
1656#define XATTR_NAME_SOM "trusted.som"
1657#define XATTR_NAME_HSM "trusted.hsm"
1658#define XATTR_NAME_LFSCK_NAMESPACE "trusted.lfsck_namespace"
1659
1660struct lov_mds_md_v3 { /* LOV EA mds/wire data (little-endian) */
1661 __u32 lmm_magic; /* magic number = LOV_MAGIC_V3 */
1662 __u32 lmm_pattern; /* LOV_PATTERN_RAID0, LOV_PATTERN_RAID1 */
1663 struct ost_id lmm_oi; /* LOV object ID */
1664 __u32 lmm_stripe_size; /* size of stripe in bytes */
1665 /* lmm_stripe_count used to be __u32 */
1666 __u16 lmm_stripe_count; /* num stripes in use for this object */
1667 __u16 lmm_layout_gen; /* layout generation number */
1668 char lmm_pool_name[LOV_MAXPOOLNAME]; /* must be 32bit aligned */
1669 struct lov_ost_data_v1 lmm_objects[0]; /* per-stripe data */
1670};
1671
bc06a678 1672static inline __u32 lov_mds_md_size(__u16 stripes, __u32 lmm_magic)
1673{
1674 if (lmm_magic == LOV_MAGIC_V3)
1675 return sizeof(struct lov_mds_md_v3) +
1676 stripes * sizeof(struct lov_ost_data_v1);
1677 else
1678 return sizeof(struct lov_mds_md_v1) +
1679 stripes * sizeof(struct lov_ost_data_v1);
1680}
1681
1682
d7e09d03
PT
1683#define OBD_MD_FLID (0x00000001ULL) /* object ID */
1684#define OBD_MD_FLATIME (0x00000002ULL) /* access time */
1685#define OBD_MD_FLMTIME (0x00000004ULL) /* data modification time */
1686#define OBD_MD_FLCTIME (0x00000008ULL) /* change time */
1687#define OBD_MD_FLSIZE (0x00000010ULL) /* size */
1688#define OBD_MD_FLBLOCKS (0x00000020ULL) /* allocated blocks count */
1689#define OBD_MD_FLBLKSZ (0x00000040ULL) /* block size */
1690#define OBD_MD_FLMODE (0x00000080ULL) /* access bits (mode & ~S_IFMT) */
1691#define OBD_MD_FLTYPE (0x00000100ULL) /* object type (mode & S_IFMT) */
1692#define OBD_MD_FLUID (0x00000200ULL) /* user ID */
1693#define OBD_MD_FLGID (0x00000400ULL) /* group ID */
1694#define OBD_MD_FLFLAGS (0x00000800ULL) /* flags word */
1695#define OBD_MD_FLNLINK (0x00002000ULL) /* link count */
1696#define OBD_MD_FLGENER (0x00004000ULL) /* generation number */
1697/*#define OBD_MD_FLINLINE (0x00008000ULL) inline data. used until 1.6.5 */
1698#define OBD_MD_FLRDEV (0x00010000ULL) /* device number */
1699#define OBD_MD_FLEASIZE (0x00020000ULL) /* extended attribute data */
1700#define OBD_MD_LINKNAME (0x00040000ULL) /* symbolic link target */
1701#define OBD_MD_FLHANDLE (0x00080000ULL) /* file/lock handle */
1702#define OBD_MD_FLCKSUM (0x00100000ULL) /* bulk data checksum */
1703#define OBD_MD_FLQOS (0x00200000ULL) /* quality of service stats */
1704/*#define OBD_MD_FLOSCOPQ (0x00400000ULL) osc opaque data, never used */
1705#define OBD_MD_FLCOOKIE (0x00800000ULL) /* log cancellation cookie */
1706#define OBD_MD_FLGROUP (0x01000000ULL) /* group */
1707#define OBD_MD_FLFID (0x02000000ULL) /* ->ost write inline fid */
1708#define OBD_MD_FLEPOCH (0x04000000ULL) /* ->ost write with ioepoch */
1709 /* ->mds if epoch opens or closes */
1710#define OBD_MD_FLGRANT (0x08000000ULL) /* ost preallocation space grant */
1711#define OBD_MD_FLDIREA (0x10000000ULL) /* dir's extended attribute data */
1712#define OBD_MD_FLUSRQUOTA (0x20000000ULL) /* over quota flags sent from ost */
1713#define OBD_MD_FLGRPQUOTA (0x40000000ULL) /* over quota flags sent from ost */
1714#define OBD_MD_FLMODEASIZE (0x80000000ULL) /* EA size will be changed */
1715
1716#define OBD_MD_MDS (0x0000000100000000ULL) /* where an inode lives on */
1717#define OBD_MD_REINT (0x0000000200000000ULL) /* reintegrate oa */
1718#define OBD_MD_MEA (0x0000000400000000ULL) /* CMD split EA */
5ea17d6c 1719#define OBD_MD_TSTATE (0x0000000800000000ULL) /* transient state field */
d7e09d03
PT
1720
1721#define OBD_MD_FLXATTR (0x0000001000000000ULL) /* xattr */
1722#define OBD_MD_FLXATTRLS (0x0000002000000000ULL) /* xattr list */
1723#define OBD_MD_FLXATTRRM (0x0000004000000000ULL) /* xattr remove */
1724#define OBD_MD_FLACL (0x0000008000000000ULL) /* ACL */
1725#define OBD_MD_FLRMTPERM (0x0000010000000000ULL) /* remote permission */
1726#define OBD_MD_FLMDSCAPA (0x0000020000000000ULL) /* MDS capability */
1727#define OBD_MD_FLOSSCAPA (0x0000040000000000ULL) /* OSS capability */
1728#define OBD_MD_FLCKSPLIT (0x0000080000000000ULL) /* Check split on server */
1729#define OBD_MD_FLCROSSREF (0x0000100000000000ULL) /* Cross-ref case */
1730#define OBD_MD_FLGETATTRLOCK (0x0000200000000000ULL) /* Get IOEpoch attributes
7fc1f831
AP
1731 * under lock; for xattr
1732 * requests means the
1733 * client holds the lock */
d7e09d03
PT
1734#define OBD_MD_FLOBJCOUNT (0x0000400000000000ULL) /* for multiple destroy */
1735
1736#define OBD_MD_FLRMTLSETFACL (0x0001000000000000ULL) /* lfs lsetfacl case */
1737#define OBD_MD_FLRMTLGETFACL (0x0002000000000000ULL) /* lfs lgetfacl case */
1738#define OBD_MD_FLRMTRSETFACL (0x0004000000000000ULL) /* lfs rsetfacl case */
1739#define OBD_MD_FLRMTRGETFACL (0x0008000000000000ULL) /* lfs rgetfacl case */
1740
1741#define OBD_MD_FLDATAVERSION (0x0010000000000000ULL) /* iversion sum */
48d23e61 1742#define OBD_MD_FLRELEASED (0x0020000000000000ULL) /* file released */
d7e09d03
PT
1743
1744#define OBD_MD_FLGETATTR (OBD_MD_FLID | OBD_MD_FLATIME | OBD_MD_FLMTIME | \
1745 OBD_MD_FLCTIME | OBD_MD_FLSIZE | OBD_MD_FLBLKSZ | \
1746 OBD_MD_FLMODE | OBD_MD_FLTYPE | OBD_MD_FLUID | \
1747 OBD_MD_FLGID | OBD_MD_FLFLAGS | OBD_MD_FLNLINK | \
1748 OBD_MD_FLGENER | OBD_MD_FLRDEV | OBD_MD_FLGROUP)
1749
7fc1f831
AP
1750#define OBD_MD_FLXATTRALL (OBD_MD_FLXATTR | OBD_MD_FLXATTRLS)
1751
d7e09d03
PT
1752/* don't forget obdo_fid which is way down at the bottom so it can
1753 * come after the definition of llog_cookie */
1754
1755enum hss_valid {
1756 HSS_SETMASK = 0x01,
1757 HSS_CLEARMASK = 0x02,
1758 HSS_ARCHIVE_ID = 0x04,
1759};
1760
1761struct hsm_state_set {
1762 __u32 hss_valid;
1763 __u32 hss_archive_id;
1764 __u64 hss_setmask;
1765 __u64 hss_clearmask;
1766};
1767
1768extern void lustre_swab_hsm_user_state(struct hsm_user_state *hus);
1769extern void lustre_swab_hsm_state_set(struct hsm_state_set *hss);
1770
1771extern void lustre_swab_obd_statfs (struct obd_statfs *os);
1772
1773/* ost_body.data values for OST_BRW */
1774
1775#define OBD_BRW_READ 0x01
1776#define OBD_BRW_WRITE 0x02
1777#define OBD_BRW_RWMASK (OBD_BRW_READ | OBD_BRW_WRITE)
1778#define OBD_BRW_SYNC 0x08 /* this page is a part of synchronous
1779 * transfer and is not accounted in
1780 * the grant. */
1781#define OBD_BRW_CHECK 0x10
1782#define OBD_BRW_FROM_GRANT 0x20 /* the osc manages this under llite */
1783#define OBD_BRW_GRANTED 0x40 /* the ost manages this */
1784#define OBD_BRW_NOCACHE 0x80 /* this page is a part of non-cached IO */
1785#define OBD_BRW_NOQUOTA 0x100
1786#define OBD_BRW_SRVLOCK 0x200 /* Client holds no lock over this page */
1787#define OBD_BRW_ASYNC 0x400 /* Server may delay commit to disk */
1788#define OBD_BRW_MEMALLOC 0x800 /* Client runs in the "kswapd" context */
1789#define OBD_BRW_OVER_USRQUOTA 0x1000 /* Running out of user quota */
1790#define OBD_BRW_OVER_GRPQUOTA 0x2000 /* Running out of group quota */
1791
1792#define OBD_OBJECT_EOF 0xffffffffffffffffULL
1793
1794#define OST_MIN_PRECREATE 32
1795#define OST_MAX_PRECREATE 20000
1796
1797struct obd_ioobj {
1798 struct ost_id ioo_oid; /* object ID, if multi-obj BRW */
1799 __u32 ioo_max_brw; /* low 16 bits were o_mode before 2.4,
1800 * now (PTLRPC_BULK_OPS_COUNT - 1) in
1801 * high 16 bits in 2.4 and later */
1802 __u32 ioo_bufcnt; /* number of niobufs for this object */
1803};
1804
1805#define IOOBJ_MAX_BRW_BITS 16
1806#define IOOBJ_TYPE_MASK ((1U << IOOBJ_MAX_BRW_BITS) - 1)
1807#define ioobj_max_brw_get(ioo) (((ioo)->ioo_max_brw >> IOOBJ_MAX_BRW_BITS) + 1)
1808#define ioobj_max_brw_set(ioo, num) \
1809do { (ioo)->ioo_max_brw = ((num) - 1) << IOOBJ_MAX_BRW_BITS; } while (0)
1810
1811extern void lustre_swab_obd_ioobj (struct obd_ioobj *ioo);
1812
1813/* multiple of 8 bytes => can array */
1814struct niobuf_remote {
1815 __u64 offset;
1816 __u32 len;
1817 __u32 flags;
1818};
1819
1820extern void lustre_swab_niobuf_remote (struct niobuf_remote *nbr);
1821
1822/* lock value block communicated between the filter and llite */
1823
1824/* OST_LVB_ERR_INIT is needed because the return code in rc is
1825 * negative, i.e. because ((MASK + rc) & MASK) != MASK. */
1826#define OST_LVB_ERR_INIT 0xffbadbad80000000ULL
1827#define OST_LVB_ERR_MASK 0xffbadbad00000000ULL
1828#define OST_LVB_IS_ERR(blocks) \
1829 ((blocks & OST_LVB_ERR_MASK) == OST_LVB_ERR_MASK)
1830#define OST_LVB_SET_ERR(blocks, rc) \
1831 do { blocks = OST_LVB_ERR_INIT + rc; } while (0)
1832#define OST_LVB_GET_ERR(blocks) (int)(blocks - OST_LVB_ERR_INIT)
1833
1834struct ost_lvb_v1 {
1835 __u64 lvb_size;
1836 obd_time lvb_mtime;
1837 obd_time lvb_atime;
1838 obd_time lvb_ctime;
1839 __u64 lvb_blocks;
1840};
1841
1842extern void lustre_swab_ost_lvb_v1(struct ost_lvb_v1 *lvb);
1843
1844struct ost_lvb {
1845 __u64 lvb_size;
1846 obd_time lvb_mtime;
1847 obd_time lvb_atime;
1848 obd_time lvb_ctime;
1849 __u64 lvb_blocks;
1850 __u32 lvb_mtime_ns;
1851 __u32 lvb_atime_ns;
1852 __u32 lvb_ctime_ns;
1853 __u32 lvb_padding;
1854};
1855
1856extern void lustre_swab_ost_lvb(struct ost_lvb *lvb);
1857
1858/*
1859 * lquota data structures
1860 */
1861
1862#ifndef QUOTABLOCK_BITS
1863#define QUOTABLOCK_BITS 10
1864#endif
1865
1866#ifndef QUOTABLOCK_SIZE
1867#define QUOTABLOCK_SIZE (1 << QUOTABLOCK_BITS)
1868#endif
1869
1870#ifndef toqb
1871#define toqb(x) (((x) + QUOTABLOCK_SIZE - 1) >> QUOTABLOCK_BITS)
1872#endif
1873
1874/* The lquota_id structure is an union of all the possible identifier types that
1875 * can be used with quota, this includes:
1876 * - 64-bit user ID
1877 * - 64-bit group ID
1878 * - a FID which can be used for per-directory quota in the future */
1879union lquota_id {
1880 struct lu_fid qid_fid; /* FID for per-directory quota */
1881 __u64 qid_uid; /* user identifier */
1882 __u64 qid_gid; /* group identifier */
1883};
1884
1885/* quotactl management */
1886struct obd_quotactl {
1887 __u32 qc_cmd;
1888 __u32 qc_type; /* see Q_* flag below */
1889 __u32 qc_id;
1890 __u32 qc_stat;
1891 struct obd_dqinfo qc_dqinfo;
1892 struct obd_dqblk qc_dqblk;
1893};
1894
1895extern void lustre_swab_obd_quotactl(struct obd_quotactl *q);
1896
1897#define Q_QUOTACHECK 0x800100 /* deprecated as of 2.4 */
1898#define Q_INITQUOTA 0x800101 /* deprecated as of 2.4 */
1899#define Q_GETOINFO 0x800102 /* get obd quota info */
1900#define Q_GETOQUOTA 0x800103 /* get obd quotas */
1901#define Q_FINVALIDATE 0x800104 /* deprecated as of 2.4 */
1902
1903#define Q_COPY(out, in, member) (out)->member = (in)->member
1904
1905#define QCTL_COPY(out, in) \
1906do { \
1907 Q_COPY(out, in, qc_cmd); \
1908 Q_COPY(out, in, qc_type); \
1909 Q_COPY(out, in, qc_id); \
1910 Q_COPY(out, in, qc_stat); \
1911 Q_COPY(out, in, qc_dqinfo); \
1912 Q_COPY(out, in, qc_dqblk); \
1913} while (0)
1914
1915/* Body of quota request used for quota acquire/release RPCs between quota
1916 * master (aka QMT) and slaves (ak QSD). */
1917struct quota_body {
1918 struct lu_fid qb_fid; /* FID of global index packing the pool ID
1919 * and type (data or metadata) as well as
1920 * the quota type (user or group). */
1921 union lquota_id qb_id; /* uid or gid or directory FID */
1922 __u32 qb_flags; /* see below */
1923 __u32 qb_padding;
1924 __u64 qb_count; /* acquire/release count (kbytes/inodes) */
1925 __u64 qb_usage; /* current slave usage (kbytes/inodes) */
1926 __u64 qb_slv_ver; /* slave index file version */
1927 struct lustre_handle qb_lockh; /* per-ID lock handle */
1928 struct lustre_handle qb_glb_lockh; /* global lock handle */
1929 __u64 qb_padding1[4];
1930};
1931
1932/* When the quota_body is used in the reply of quota global intent
1933 * lock (IT_QUOTA_CONN) reply, qb_fid contains slave index file FID. */
1934#define qb_slv_fid qb_fid
1935/* qb_usage is the current qunit (in kbytes/inodes) when quota_body is used in
1936 * quota reply */
1937#define qb_qunit qb_usage
1938
1939#define QUOTA_DQACQ_FL_ACQ 0x1 /* acquire quota */
1940#define QUOTA_DQACQ_FL_PREACQ 0x2 /* pre-acquire */
1941#define QUOTA_DQACQ_FL_REL 0x4 /* release quota */
1942#define QUOTA_DQACQ_FL_REPORT 0x8 /* report usage */
1943
1944extern void lustre_swab_quota_body(struct quota_body *b);
1945
1946/* Quota types currently supported */
1947enum {
1948 LQUOTA_TYPE_USR = 0x00, /* maps to USRQUOTA */
1949 LQUOTA_TYPE_GRP = 0x01, /* maps to GRPQUOTA */
1950 LQUOTA_TYPE_MAX
1951};
1952
1953/* There are 2 different resource types on which a quota limit can be enforced:
1954 * - inodes on the MDTs
1955 * - blocks on the OSTs */
1956enum {
1957 LQUOTA_RES_MD = 0x01, /* skip 0 to avoid null oid in FID */
1958 LQUOTA_RES_DT = 0x02,
1959 LQUOTA_LAST_RES,
1960 LQUOTA_FIRST_RES = LQUOTA_RES_MD
1961};
1962#define LQUOTA_NR_RES (LQUOTA_LAST_RES - LQUOTA_FIRST_RES + 1)
1963
1964/*
1965 * Space accounting support
1966 * Format of an accounting record, providing disk usage information for a given
1967 * user or group
1968 */
1969struct lquota_acct_rec { /* 16 bytes */
1970 __u64 bspace; /* current space in use */
1971 __u64 ispace; /* current # inodes in use */
1972};
1973
1974/*
1975 * Global quota index support
1976 * Format of a global record, providing global quota settings for a given quota
1977 * identifier
1978 */
1979struct lquota_glb_rec { /* 32 bytes */
1980 __u64 qbr_hardlimit; /* quota hard limit, in #inodes or kbytes */
1981 __u64 qbr_softlimit; /* quota soft limit, in #inodes or kbytes */
1982 __u64 qbr_time; /* grace time, in seconds */
1983 __u64 qbr_granted; /* how much is granted to slaves, in #inodes or
1984 * kbytes */
1985};
1986
1987/*
1988 * Slave index support
1989 * Format of a slave record, recording how much space is granted to a given
1990 * slave
1991 */
1992struct lquota_slv_rec { /* 8 bytes */
1993 __u64 qsr_granted; /* space granted to the slave for the key=ID,
1994 * in #inodes or kbytes */
1995};
1996
1997/* Data structures associated with the quota locks */
1998
1999/* Glimpse descriptor used for the index & per-ID quota locks */
2000struct ldlm_gl_lquota_desc {
2001 union lquota_id gl_id; /* quota ID subject to the glimpse */
2002 __u64 gl_flags; /* see LQUOTA_FL* below */
2003 __u64 gl_ver; /* new index version */
2004 __u64 gl_hardlimit; /* new hardlimit or qunit value */
2005 __u64 gl_softlimit; /* new softlimit */
2006 __u64 gl_time;
2007 __u64 gl_pad2;
2008};
2009#define gl_qunit gl_hardlimit /* current qunit value used when
2010 * glimpsing per-ID quota locks */
2011
2012/* quota glimpse flags */
2013#define LQUOTA_FL_EDQUOT 0x1 /* user/group out of quota space on QMT */
2014
2015/* LVB used with quota (global and per-ID) locks */
2016struct lquota_lvb {
2017 __u64 lvb_flags; /* see LQUOTA_FL* above */
2018 __u64 lvb_id_may_rel; /* space that might be released later */
2019 __u64 lvb_id_rel; /* space released by the slave for this ID */
2020 __u64 lvb_id_qunit; /* current qunit value */
2021 __u64 lvb_pad1;
2022};
2023
2024extern void lustre_swab_lquota_lvb(struct lquota_lvb *lvb);
2025
2026/* LVB used with global quota lock */
2027#define lvb_glb_ver lvb_id_may_rel /* current version of the global index */
2028
2029/* op codes */
2030typedef enum {
2031 QUOTA_DQACQ = 601,
2032 QUOTA_DQREL = 602,
2033 QUOTA_LAST_OPC
2034} quota_cmd_t;
2035#define QUOTA_FIRST_OPC QUOTA_DQACQ
2036
2037/*
2038 * MDS REQ RECORDS
2039 */
2040
2041/* opcodes */
2042typedef enum {
2043 MDS_GETATTR = 33,
2044 MDS_GETATTR_NAME = 34,
2045 MDS_CLOSE = 35,
2046 MDS_REINT = 36,
2047 MDS_READPAGE = 37,
2048 MDS_CONNECT = 38,
2049 MDS_DISCONNECT = 39,
2050 MDS_GETSTATUS = 40,
2051 MDS_STATFS = 41,
2052 MDS_PIN = 42,
2053 MDS_UNPIN = 43,
2054 MDS_SYNC = 44,
2055 MDS_DONE_WRITING = 45,
2056 MDS_SET_INFO = 46,
2057 MDS_QUOTACHECK = 47,
2058 MDS_QUOTACTL = 48,
2059 MDS_GETXATTR = 49,
2060 MDS_SETXATTR = 50, /* obsolete, now it's MDS_REINT op */
2061 MDS_WRITEPAGE = 51,
2062 MDS_IS_SUBDIR = 52,
2063 MDS_GET_INFO = 53,
2064 MDS_HSM_STATE_GET = 54,
2065 MDS_HSM_STATE_SET = 55,
2066 MDS_HSM_ACTION = 56,
2067 MDS_HSM_PROGRESS = 57,
2068 MDS_HSM_REQUEST = 58,
2069 MDS_HSM_CT_REGISTER = 59,
2070 MDS_HSM_CT_UNREGISTER = 60,
2071 MDS_SWAP_LAYOUTS = 61,
2072 MDS_LAST_OPC
2073} mds_cmd_t;
2074
2075#define MDS_FIRST_OPC MDS_GETATTR
2076
2077
2078/* opcodes for object update */
2079typedef enum {
2080 UPDATE_OBJ = 1000,
2081 UPDATE_LAST_OPC
2082} update_cmd_t;
2083
2084#define UPDATE_FIRST_OPC UPDATE_OBJ
2085
2086/*
2087 * Do not exceed 63
2088 */
2089
2090typedef enum {
2091 REINT_SETATTR = 1,
2092 REINT_CREATE = 2,
2093 REINT_LINK = 3,
2094 REINT_UNLINK = 4,
2095 REINT_RENAME = 5,
2096 REINT_OPEN = 6,
2097 REINT_SETXATTR = 7,
2098 REINT_RMENTRY = 8,
2099// REINT_WRITE = 9,
2100 REINT_MAX
2101} mds_reint_t, mdt_reint_t;
2102
2103extern void lustre_swab_generic_32s (__u32 *val);
2104
2105/* the disposition of the intent outlines what was executed */
2106#define DISP_IT_EXECD 0x00000001
2107#define DISP_LOOKUP_EXECD 0x00000002
2108#define DISP_LOOKUP_NEG 0x00000004
2109#define DISP_LOOKUP_POS 0x00000008
2110#define DISP_OPEN_CREATE 0x00000010
2111#define DISP_OPEN_OPEN 0x00000020
2112#define DISP_ENQ_COMPLETE 0x00400000
2113#define DISP_ENQ_OPEN_REF 0x00800000
2114#define DISP_ENQ_CREATE_REF 0x01000000
2115#define DISP_OPEN_LOCK 0x02000000
d3a8a4e2 2116#define DISP_OPEN_LEASE 0x04000000
d7e09d03
PT
2117
2118/* INODE LOCK PARTS */
2119#define MDS_INODELOCK_LOOKUP 0x000001 /* dentry, mode, owner, group */
2120#define MDS_INODELOCK_UPDATE 0x000002 /* size, links, timestamps */
2121#define MDS_INODELOCK_OPEN 0x000004 /* For opened files */
2122#define MDS_INODELOCK_LAYOUT 0x000008 /* for layout */
2123#define MDS_INODELOCK_PERM 0x000010 /* for permission */
7fc1f831 2124#define MDS_INODELOCK_XATTR 0x000020 /* extended attributes */
d7e09d03 2125
7fc1f831 2126#define MDS_INODELOCK_MAXSHIFT 5
d7e09d03
PT
2127/* This FULL lock is useful to take on unlink sort of operations */
2128#define MDS_INODELOCK_FULL ((1<<(MDS_INODELOCK_MAXSHIFT+1))-1)
2129
2130extern void lustre_swab_ll_fid (struct ll_fid *fid);
2131
2132/* NOTE: until Lustre 1.8.7/2.1.1 the fid_ver() was packed into name[2],
2133 * but was moved into name[1] along with the OID to avoid consuming the
2134 * name[2,3] fields that need to be used for the quota id (also a FID). */
2135enum {
2136 LUSTRE_RES_ID_SEQ_OFF = 0,
2137 LUSTRE_RES_ID_VER_OID_OFF = 1,
2138 LUSTRE_RES_ID_WAS_VER_OFF = 2, /* see note above */
2139 LUSTRE_RES_ID_QUOTA_SEQ_OFF = 2,
2140 LUSTRE_RES_ID_QUOTA_VER_OID_OFF = 3,
2141 LUSTRE_RES_ID_HSH_OFF = 3
2142};
2143
2144#define MDS_STATUS_CONN 1
2145#define MDS_STATUS_LOV 2
2146
2147/* mdt_thread_info.mti_flags. */
2148enum md_op_flags {
2149 /* The flag indicates Size-on-MDS attributes are changed. */
2150 MF_SOM_CHANGE = (1 << 0),
2151 /* Flags indicates an epoch opens or closes. */
2152 MF_EPOCH_OPEN = (1 << 1),
2153 MF_EPOCH_CLOSE = (1 << 2),
2154 MF_MDC_CANCEL_FID1 = (1 << 3),
2155 MF_MDC_CANCEL_FID2 = (1 << 4),
2156 MF_MDC_CANCEL_FID3 = (1 << 5),
2157 MF_MDC_CANCEL_FID4 = (1 << 6),
2158 /* There is a pending attribute update. */
2159 MF_SOM_AU = (1 << 7),
2160 /* Cancel OST locks while getattr OST attributes. */
2161 MF_GETATTR_LOCK = (1 << 8),
2162 MF_GET_MDT_IDX = (1 << 9),
2163};
2164
2165#define MF_SOM_LOCAL_FLAGS (MF_SOM_CHANGE | MF_EPOCH_OPEN | MF_EPOCH_CLOSE)
2166
2167#define LUSTRE_BFLAG_UNCOMMITTED_WRITES 0x1
2168
2169/* these should be identical to their EXT4_*_FL counterparts, they are
2170 * redefined here only to avoid dragging in fs/ext4/ext4.h */
2171#define LUSTRE_SYNC_FL 0x00000008 /* Synchronous updates */
2172#define LUSTRE_IMMUTABLE_FL 0x00000010 /* Immutable file */
2173#define LUSTRE_APPEND_FL 0x00000020 /* writes to file may only append */
2174#define LUSTRE_NOATIME_FL 0x00000080 /* do not update atime */
2175#define LUSTRE_DIRSYNC_FL 0x00010000 /* dirsync behaviour (dir only) */
2176
2177/* Convert wire LUSTRE_*_FL to corresponding client local VFS S_* values
2178 * for the client inode i_flags. The LUSTRE_*_FL are the Lustre wire
2179 * protocol equivalents of LDISKFS_*_FL values stored on disk, while
2180 * the S_* flags are kernel-internal values that change between kernel
2181 * versions. These flags are set/cleared via FSFILT_IOC_{GET,SET}_FLAGS.
2182 * See b=16526 for a full history. */
2183static inline int ll_ext_to_inode_flags(int flags)
2184{
2185 return (((flags & LUSTRE_SYNC_FL) ? S_SYNC : 0) |
2186 ((flags & LUSTRE_NOATIME_FL) ? S_NOATIME : 0) |
2187 ((flags & LUSTRE_APPEND_FL) ? S_APPEND : 0) |
2188#if defined(S_DIRSYNC)
2189 ((flags & LUSTRE_DIRSYNC_FL) ? S_DIRSYNC : 0) |
2190#endif
2191 ((flags & LUSTRE_IMMUTABLE_FL) ? S_IMMUTABLE : 0));
2192}
2193
2194static inline int ll_inode_to_ext_flags(int iflags)
2195{
2196 return (((iflags & S_SYNC) ? LUSTRE_SYNC_FL : 0) |
2197 ((iflags & S_NOATIME) ? LUSTRE_NOATIME_FL : 0) |
2198 ((iflags & S_APPEND) ? LUSTRE_APPEND_FL : 0) |
2199#if defined(S_DIRSYNC)
2200 ((iflags & S_DIRSYNC) ? LUSTRE_DIRSYNC_FL : 0) |
2201#endif
2202 ((iflags & S_IMMUTABLE) ? LUSTRE_IMMUTABLE_FL : 0));
2203}
2204
5ea17d6c
JL
2205/* 64 possible states */
2206enum md_transient_state {
2207 MS_RESTORE = (1 << 0), /* restore is running */
2208};
2209
d7e09d03
PT
2210struct mdt_body {
2211 struct lu_fid fid1;
2212 struct lu_fid fid2;
2213 struct lustre_handle handle;
2214 __u64 valid;
2215 __u64 size; /* Offset, in the case of MDS_READPAGE */
2216 obd_time mtime;
2217 obd_time atime;
2218 obd_time ctime;
2219 __u64 blocks; /* XID, in the case of MDS_READPAGE */
2220 __u64 ioepoch;
5ea17d6c
JL
2221 __u64 t_state; /* transient file state defined in
2222 * enum md_transient_state
2223 * was "ino" until 2.4.0 */
d7e09d03
PT
2224 __u32 fsuid;
2225 __u32 fsgid;
2226 __u32 capability;
2227 __u32 mode;
2228 __u32 uid;
2229 __u32 gid;
2230 __u32 flags; /* from vfs for pin/unpin, LUSTRE_BFLAG close */
2231 __u32 rdev;
2232 __u32 nlink; /* #bytes to read in the case of MDS_READPAGE */
2233 __u32 unused2; /* was "generation" until 2.4.0 */
2234 __u32 suppgid;
2235 __u32 eadatasize;
2236 __u32 aclsize;
2237 __u32 max_mdsize;
2238 __u32 max_cookiesize;
2239 __u32 uid_h; /* high 32-bits of uid, for FUID */
2240 __u32 gid_h; /* high 32-bits of gid, for FUID */
2241 __u32 padding_5; /* also fix lustre_swab_mdt_body */
2242 __u64 padding_6;
2243 __u64 padding_7;
2244 __u64 padding_8;
2245 __u64 padding_9;
2246 __u64 padding_10;
2247}; /* 216 */
2248
2249extern void lustre_swab_mdt_body (struct mdt_body *b);
2250
2251struct mdt_ioepoch {
2252 struct lustre_handle handle;
2253 __u64 ioepoch;
2254 __u32 flags;
2255 __u32 padding;
2256};
2257
2258extern void lustre_swab_mdt_ioepoch (struct mdt_ioepoch *b);
2259
2260/* permissions for md_perm.mp_perm */
2261enum {
2262 CFS_SETUID_PERM = 0x01,
2263 CFS_SETGID_PERM = 0x02,
2264 CFS_SETGRP_PERM = 0x04,
2265 CFS_RMTACL_PERM = 0x08,
2266 CFS_RMTOWN_PERM = 0x10
2267};
2268
2269/* inode access permission for remote user, the inode info are omitted,
2270 * for client knows them. */
2271struct mdt_remote_perm {
2272 __u32 rp_uid;
2273 __u32 rp_gid;
2274 __u32 rp_fsuid;
2275 __u32 rp_fsuid_h;
2276 __u32 rp_fsgid;
2277 __u32 rp_fsgid_h;
2278 __u32 rp_access_perm; /* MAY_READ/WRITE/EXEC */
2279 __u32 rp_padding;
2280};
2281
2282extern void lustre_swab_mdt_remote_perm(struct mdt_remote_perm *p);
2283
2284struct mdt_rec_setattr {
2285 __u32 sa_opcode;
2286 __u32 sa_cap;
2287 __u32 sa_fsuid;
2288 __u32 sa_fsuid_h;
2289 __u32 sa_fsgid;
2290 __u32 sa_fsgid_h;
2291 __u32 sa_suppgid;
2292 __u32 sa_suppgid_h;
2293 __u32 sa_padding_1;
2294 __u32 sa_padding_1_h;
2295 struct lu_fid sa_fid;
2296 __u64 sa_valid;
2297 __u32 sa_uid;
2298 __u32 sa_gid;
2299 __u64 sa_size;
2300 __u64 sa_blocks;
2301 obd_time sa_mtime;
2302 obd_time sa_atime;
2303 obd_time sa_ctime;
2304 __u32 sa_attr_flags;
2305 __u32 sa_mode;
2306 __u32 sa_bias; /* some operation flags */
2307 __u32 sa_padding_3;
2308 __u32 sa_padding_4;
2309 __u32 sa_padding_5;
2310};
2311
2312extern void lustre_swab_mdt_rec_setattr (struct mdt_rec_setattr *sa);
2313
2314/*
2315 * Attribute flags used in mdt_rec_setattr::sa_valid.
2316 * The kernel's #defines for ATTR_* should not be used over the network
2317 * since the client and MDS may run different kernels (see bug 13828)
2318 * Therefore, we should only use MDS_ATTR_* attributes for sa_valid.
2319 */
2320#define MDS_ATTR_MODE 0x1ULL /* = 1 */
2321#define MDS_ATTR_UID 0x2ULL /* = 2 */
2322#define MDS_ATTR_GID 0x4ULL /* = 4 */
2323#define MDS_ATTR_SIZE 0x8ULL /* = 8 */
2324#define MDS_ATTR_ATIME 0x10ULL /* = 16 */
2325#define MDS_ATTR_MTIME 0x20ULL /* = 32 */
2326#define MDS_ATTR_CTIME 0x40ULL /* = 64 */
2327#define MDS_ATTR_ATIME_SET 0x80ULL /* = 128 */
2328#define MDS_ATTR_MTIME_SET 0x100ULL /* = 256 */
2329#define MDS_ATTR_FORCE 0x200ULL /* = 512, Not a change, but a change it */
2330#define MDS_ATTR_ATTR_FLAG 0x400ULL /* = 1024 */
2331#define MDS_ATTR_KILL_SUID 0x800ULL /* = 2048 */
2332#define MDS_ATTR_KILL_SGID 0x1000ULL /* = 4096 */
2333#define MDS_ATTR_CTIME_SET 0x2000ULL /* = 8192 */
2334#define MDS_ATTR_FROM_OPEN 0x4000ULL /* = 16384, called from open path, ie O_TRUNC */
2335#define MDS_ATTR_BLOCKS 0x8000ULL /* = 32768 */
2336
2337#ifndef FMODE_READ
2338#define FMODE_READ 00000001
2339#define FMODE_WRITE 00000002
2340#endif
2341
2342#define MDS_FMODE_CLOSED 00000000
2343#define MDS_FMODE_EXEC 00000004
2344/* IO Epoch is opened on a closed file. */
2345#define MDS_FMODE_EPOCH 01000000
2346/* IO Epoch is opened on a file truncate. */
2347#define MDS_FMODE_TRUNC 02000000
2348/* Size-on-MDS Attribute Update is pending. */
2349#define MDS_FMODE_SOM 04000000
2350
2351#define MDS_OPEN_CREATED 00000010
2352#define MDS_OPEN_CROSS 00000020
2353
2354#define MDS_OPEN_CREAT 00000100
2355#define MDS_OPEN_EXCL 00000200
2356#define MDS_OPEN_TRUNC 00001000
2357#define MDS_OPEN_APPEND 00002000
2358#define MDS_OPEN_SYNC 00010000
2359#define MDS_OPEN_DIRECTORY 00200000
2360
2361#define MDS_OPEN_BY_FID 040000000 /* open_by_fid for known object */
2362#define MDS_OPEN_DELAY_CREATE 0100000000 /* delay initial object create */
2363#define MDS_OPEN_OWNEROVERRIDE 0200000000 /* NFSD rw-reopen ro file for owner */
2364#define MDS_OPEN_JOIN_FILE 0400000000 /* open for join file.
2365 * We do not support JOIN FILE
2366 * anymore, reserve this flags
2367 * just for preventing such bit
2368 * to be reused. */
2369
2370#define MDS_OPEN_LOCK 04000000000 /* This open requires open lock */
2371#define MDS_OPEN_HAS_EA 010000000000 /* specify object create pattern */
2372#define MDS_OPEN_HAS_OBJS 020000000000 /* Just set the EA the obj exist */
2373#define MDS_OPEN_NORESTORE 0100000000000ULL /* Do not restore file at open */
2374#define MDS_OPEN_NEWSTRIPE 0200000000000ULL /* New stripe needed (restripe or
2375 * hsm restore) */
2376#define MDS_OPEN_VOLATILE 0400000000000ULL /* File is volatile = created
2377 unlinked */
d3a8a4e2
JX
2378#define MDS_OPEN_LEASE 01000000000000ULL /* Open the file and grant lease
2379 * delegation, succeed if it's not
2380 * being opened with conflict mode.
2381 */
48d23e61 2382#define MDS_OPEN_RELEASE 02000000000000ULL /* Open the file for HSM release */
d7e09d03
PT
2383
2384/* permission for create non-directory file */
2385#define MAY_CREATE (1 << 7)
2386/* permission for create directory file */
2387#define MAY_LINK (1 << 8)
2388/* permission for delete from the directory */
2389#define MAY_UNLINK (1 << 9)
2390/* source's permission for rename */
2391#define MAY_RENAME_SRC (1 << 10)
2392/* target's permission for rename */
2393#define MAY_RENAME_TAR (1 << 11)
2394/* part (parent's) VTX permission check */
2395#define MAY_VTX_PART (1 << 12)
2396/* full VTX permission check */
2397#define MAY_VTX_FULL (1 << 13)
2398/* lfs rgetfacl permission check */
2399#define MAY_RGETFACL (1 << 14)
2400
48d23e61 2401enum mds_op_bias {
d7e09d03
PT
2402 MDS_CHECK_SPLIT = 1 << 0,
2403 MDS_CROSS_REF = 1 << 1,
2404 MDS_VTX_BYPASS = 1 << 2,
2405 MDS_PERM_BYPASS = 1 << 3,
2406 MDS_SOM = 1 << 4,
2407 MDS_QUOTA_IGNORE = 1 << 5,
2408 MDS_CLOSE_CLEANUP = 1 << 6,
2409 MDS_KEEP_ORPHAN = 1 << 7,
2410 MDS_RECOV_OPEN = 1 << 8,
2411 MDS_DATA_MODIFIED = 1 << 9,
2412 MDS_CREATE_VOLATILE = 1 << 10,
2413 MDS_OWNEROVERRIDE = 1 << 11,
48d23e61 2414 MDS_HSM_RELEASE = 1 << 12,
d7e09d03
PT
2415};
2416
2417/* instance of mdt_reint_rec */
2418struct mdt_rec_create {
2419 __u32 cr_opcode;
2420 __u32 cr_cap;
2421 __u32 cr_fsuid;
2422 __u32 cr_fsuid_h;
2423 __u32 cr_fsgid;
2424 __u32 cr_fsgid_h;
2425 __u32 cr_suppgid1;
2426 __u32 cr_suppgid1_h;
2427 __u32 cr_suppgid2;
2428 __u32 cr_suppgid2_h;
2429 struct lu_fid cr_fid1;
2430 struct lu_fid cr_fid2;
2431 struct lustre_handle cr_old_handle; /* handle in case of open replay */
2432 obd_time cr_time;
2433 __u64 cr_rdev;
2434 __u64 cr_ioepoch;
2435 __u64 cr_padding_1; /* rr_blocks */
2436 __u32 cr_mode;
2437 __u32 cr_bias;
2438 /* use of helpers set/get_mrc_cr_flags() is needed to access
2439 * 64 bits cr_flags [cr_flags_l, cr_flags_h], this is done to
2440 * extend cr_flags size without breaking 1.8 compat */
2441 __u32 cr_flags_l; /* for use with open, low 32 bits */
2442 __u32 cr_flags_h; /* for use with open, high 32 bits */
2443 __u32 cr_umask; /* umask for create */
2444 __u32 cr_padding_4; /* rr_padding_4 */
2445};
2446
2447static inline void set_mrc_cr_flags(struct mdt_rec_create *mrc, __u64 flags)
2448{
2449 mrc->cr_flags_l = (__u32)(flags & 0xFFFFFFFFUll);
2450 mrc->cr_flags_h = (__u32)(flags >> 32);
2451}
2452
2453static inline __u64 get_mrc_cr_flags(struct mdt_rec_create *mrc)
2454{
2455 return ((__u64)(mrc->cr_flags_l) | ((__u64)mrc->cr_flags_h << 32));
2456}
2457
2458/* instance of mdt_reint_rec */
2459struct mdt_rec_link {
2460 __u32 lk_opcode;
2461 __u32 lk_cap;
2462 __u32 lk_fsuid;
2463 __u32 lk_fsuid_h;
2464 __u32 lk_fsgid;
2465 __u32 lk_fsgid_h;
2466 __u32 lk_suppgid1;
2467 __u32 lk_suppgid1_h;
2468 __u32 lk_suppgid2;
2469 __u32 lk_suppgid2_h;
2470 struct lu_fid lk_fid1;
2471 struct lu_fid lk_fid2;
2472 obd_time lk_time;
2473 __u64 lk_padding_1; /* rr_atime */
2474 __u64 lk_padding_2; /* rr_ctime */
2475 __u64 lk_padding_3; /* rr_size */
2476 __u64 lk_padding_4; /* rr_blocks */
2477 __u32 lk_bias;
2478 __u32 lk_padding_5; /* rr_mode */
2479 __u32 lk_padding_6; /* rr_flags */
2480 __u32 lk_padding_7; /* rr_padding_2 */
2481 __u32 lk_padding_8; /* rr_padding_3 */
2482 __u32 lk_padding_9; /* rr_padding_4 */
2483};
2484
2485/* instance of mdt_reint_rec */
2486struct mdt_rec_unlink {
2487 __u32 ul_opcode;
2488 __u32 ul_cap;
2489 __u32 ul_fsuid;
2490 __u32 ul_fsuid_h;
2491 __u32 ul_fsgid;
2492 __u32 ul_fsgid_h;
2493 __u32 ul_suppgid1;
2494 __u32 ul_suppgid1_h;
2495 __u32 ul_suppgid2;
2496 __u32 ul_suppgid2_h;
2497 struct lu_fid ul_fid1;
2498 struct lu_fid ul_fid2;
2499 obd_time ul_time;
2500 __u64 ul_padding_2; /* rr_atime */
2501 __u64 ul_padding_3; /* rr_ctime */
2502 __u64 ul_padding_4; /* rr_size */
2503 __u64 ul_padding_5; /* rr_blocks */
2504 __u32 ul_bias;
2505 __u32 ul_mode;
2506 __u32 ul_padding_6; /* rr_flags */
2507 __u32 ul_padding_7; /* rr_padding_2 */
2508 __u32 ul_padding_8; /* rr_padding_3 */
2509 __u32 ul_padding_9; /* rr_padding_4 */
2510};
2511
2512/* instance of mdt_reint_rec */
2513struct mdt_rec_rename {
2514 __u32 rn_opcode;
2515 __u32 rn_cap;
2516 __u32 rn_fsuid;
2517 __u32 rn_fsuid_h;
2518 __u32 rn_fsgid;
2519 __u32 rn_fsgid_h;
2520 __u32 rn_suppgid1;
2521 __u32 rn_suppgid1_h;
2522 __u32 rn_suppgid2;
2523 __u32 rn_suppgid2_h;
2524 struct lu_fid rn_fid1;
2525 struct lu_fid rn_fid2;
2526 obd_time rn_time;
2527 __u64 rn_padding_1; /* rr_atime */
2528 __u64 rn_padding_2; /* rr_ctime */
2529 __u64 rn_padding_3; /* rr_size */
2530 __u64 rn_padding_4; /* rr_blocks */
2531 __u32 rn_bias; /* some operation flags */
2532 __u32 rn_mode; /* cross-ref rename has mode */
2533 __u32 rn_padding_5; /* rr_flags */
2534 __u32 rn_padding_6; /* rr_padding_2 */
2535 __u32 rn_padding_7; /* rr_padding_3 */
2536 __u32 rn_padding_8; /* rr_padding_4 */
2537};
2538
2539/* instance of mdt_reint_rec */
2540struct mdt_rec_setxattr {
2541 __u32 sx_opcode;
2542 __u32 sx_cap;
2543 __u32 sx_fsuid;
2544 __u32 sx_fsuid_h;
2545 __u32 sx_fsgid;
2546 __u32 sx_fsgid_h;
2547 __u32 sx_suppgid1;
2548 __u32 sx_suppgid1_h;
2549 __u32 sx_suppgid2;
2550 __u32 sx_suppgid2_h;
2551 struct lu_fid sx_fid;
2552 __u64 sx_padding_1; /* These three are rr_fid2 */
2553 __u32 sx_padding_2;
2554 __u32 sx_padding_3;
2555 __u64 sx_valid;
2556 obd_time sx_time;
2557 __u64 sx_padding_5; /* rr_ctime */
2558 __u64 sx_padding_6; /* rr_size */
2559 __u64 sx_padding_7; /* rr_blocks */
2560 __u32 sx_size;
2561 __u32 sx_flags;
2562 __u32 sx_padding_8; /* rr_flags */
2563 __u32 sx_padding_9; /* rr_padding_2 */
2564 __u32 sx_padding_10; /* rr_padding_3 */
2565 __u32 sx_padding_11; /* rr_padding_4 */
2566};
2567
2568/*
2569 * mdt_rec_reint is the template for all mdt_reint_xxx structures.
2570 * Do NOT change the size of various members, otherwise the value
2571 * will be broken in lustre_swab_mdt_rec_reint().
2572 *
2573 * If you add new members in other mdt_reint_xxx structres and need to use the
2574 * rr_padding_x fields, then update lustre_swab_mdt_rec_reint() also.
2575 */
2576struct mdt_rec_reint {
2577 __u32 rr_opcode;
2578 __u32 rr_cap;
2579 __u32 rr_fsuid;
2580 __u32 rr_fsuid_h;
2581 __u32 rr_fsgid;
2582 __u32 rr_fsgid_h;
2583 __u32 rr_suppgid1;
2584 __u32 rr_suppgid1_h;
2585 __u32 rr_suppgid2;
2586 __u32 rr_suppgid2_h;
2587 struct lu_fid rr_fid1;
2588 struct lu_fid rr_fid2;
2589 obd_time rr_mtime;
2590 obd_time rr_atime;
2591 obd_time rr_ctime;
2592 __u64 rr_size;
2593 __u64 rr_blocks;
2594 __u32 rr_bias;
2595 __u32 rr_mode;
2596 __u32 rr_flags;
2597 __u32 rr_flags_h;
2598 __u32 rr_umask;
2599 __u32 rr_padding_4; /* also fix lustre_swab_mdt_rec_reint */
2600};
2601
2602extern void lustre_swab_mdt_rec_reint(struct mdt_rec_reint *rr);
2603
2604struct lmv_desc {
2605 __u32 ld_tgt_count; /* how many MDS's */
2606 __u32 ld_active_tgt_count; /* how many active */
2607 __u32 ld_default_stripe_count; /* how many objects are used */
2608 __u32 ld_pattern; /* default MEA_MAGIC_* */
2609 __u64 ld_default_hash_size;
2610 __u64 ld_padding_1; /* also fix lustre_swab_lmv_desc */
2611 __u32 ld_padding_2; /* also fix lustre_swab_lmv_desc */
2612 __u32 ld_qos_maxage; /* in second */
2613 __u32 ld_padding_3; /* also fix lustre_swab_lmv_desc */
2614 __u32 ld_padding_4; /* also fix lustre_swab_lmv_desc */
2615 struct obd_uuid ld_uuid;
2616};
2617
2618extern void lustre_swab_lmv_desc (struct lmv_desc *ld);
2619
2620/* TODO: lmv_stripe_md should contain mds capabilities for all slave fids */
2621struct lmv_stripe_md {
2622 __u32 mea_magic;
2623 __u32 mea_count;
2624 __u32 mea_master;
2625 __u32 mea_padding;
2626 char mea_pool_name[LOV_MAXPOOLNAME];
2627 struct lu_fid mea_ids[0];
2628};
2629
2630extern void lustre_swab_lmv_stripe_md(struct lmv_stripe_md *mea);
2631
2632/* lmv structures */
2633#define MEA_MAGIC_LAST_CHAR 0xb2221ca1
2634#define MEA_MAGIC_ALL_CHARS 0xb222a11c
2635#define MEA_MAGIC_HASH_SEGMENT 0xb222a11b
2636
2637#define MAX_HASH_SIZE_32 0x7fffffffUL
2638#define MAX_HASH_SIZE 0x7fffffffffffffffULL
2639#define MAX_HASH_HIGHEST_BIT 0x1000000000000000ULL
2640
2641enum fld_rpc_opc {
2642 FLD_QUERY = 900,
2643 FLD_LAST_OPC,
2644 FLD_FIRST_OPC = FLD_QUERY
2645};
2646
2647enum seq_rpc_opc {
2648 SEQ_QUERY = 700,
2649 SEQ_LAST_OPC,
2650 SEQ_FIRST_OPC = SEQ_QUERY
2651};
2652
2653enum seq_op {
2654 SEQ_ALLOC_SUPER = 0,
2655 SEQ_ALLOC_META = 1
2656};
2657
2658/*
2659 * LOV data structures
2660 */
2661
2662#define LOV_MAX_UUID_BUFFER_SIZE 8192
2663/* The size of the buffer the lov/mdc reserves for the
2664 * array of UUIDs returned by the MDS. With the current
2665 * protocol, this will limit the max number of OSTs per LOV */
2666
2667#define LOV_DESC_MAGIC 0xB0CCDE5C
2668
2669/* LOV settings descriptor (should only contain static info) */
2670struct lov_desc {
2671 __u32 ld_tgt_count; /* how many OBD's */
2672 __u32 ld_active_tgt_count; /* how many active */
2673 __u32 ld_default_stripe_count; /* how many objects are used */
2674 __u32 ld_pattern; /* default PATTERN_RAID0 */
2675 __u64 ld_default_stripe_size; /* in bytes */
2676 __u64 ld_default_stripe_offset; /* in bytes */
2677 __u32 ld_padding_0; /* unused */
2678 __u32 ld_qos_maxage; /* in second */
2679 __u32 ld_padding_1; /* also fix lustre_swab_lov_desc */
2680 __u32 ld_padding_2; /* also fix lustre_swab_lov_desc */
2681 struct obd_uuid ld_uuid;
2682};
2683
2684#define ld_magic ld_active_tgt_count /* for swabbing from llogs */
2685
2686extern void lustre_swab_lov_desc (struct lov_desc *ld);
2687
2688/*
2689 * LDLM requests:
2690 */
2691/* opcodes -- MUST be distinct from OST/MDS opcodes */
2692typedef enum {
2693 LDLM_ENQUEUE = 101,
2694 LDLM_CONVERT = 102,
2695 LDLM_CANCEL = 103,
2696 LDLM_BL_CALLBACK = 104,
2697 LDLM_CP_CALLBACK = 105,
2698 LDLM_GL_CALLBACK = 106,
2699 LDLM_SET_INFO = 107,
2700 LDLM_LAST_OPC
2701} ldlm_cmd_t;
2702#define LDLM_FIRST_OPC LDLM_ENQUEUE
2703
2704#define RES_NAME_SIZE 4
2705struct ldlm_res_id {
2706 __u64 name[RES_NAME_SIZE];
2707};
2708
ce74f92d
AD
2709#define DLDLMRES "["LPX64":"LPX64":"LPX64"]."LPX64i
2710#define PLDLMRES(res) (res)->lr_name.name[0], (res)->lr_name.name[1], \
2711 (res)->lr_name.name[2], (res)->lr_name.name[3]
2712
d7e09d03
PT
2713extern void lustre_swab_ldlm_res_id (struct ldlm_res_id *id);
2714
2715static inline int ldlm_res_eq(const struct ldlm_res_id *res0,
2716 const struct ldlm_res_id *res1)
2717{
2718 return !memcmp(res0, res1, sizeof(*res0));
2719}
2720
2721/* lock types */
2722typedef enum {
2723 LCK_MINMODE = 0,
2724 LCK_EX = 1,
2725 LCK_PW = 2,
2726 LCK_PR = 4,
2727 LCK_CW = 8,
2728 LCK_CR = 16,
2729 LCK_NL = 32,
2730 LCK_GROUP = 64,
2731 LCK_COS = 128,
2732 LCK_MAXMODE
2733} ldlm_mode_t;
2734
2735#define LCK_MODE_NUM 8
2736
2737typedef enum {
2738 LDLM_PLAIN = 10,
2739 LDLM_EXTENT = 11,
2740 LDLM_FLOCK = 12,
2741 LDLM_IBITS = 13,
2742 LDLM_MAX_TYPE
2743} ldlm_type_t;
2744
2745#define LDLM_MIN_TYPE LDLM_PLAIN
2746
2747struct ldlm_extent {
2748 __u64 start;
2749 __u64 end;
2750 __u64 gid;
2751};
2752
2753static inline int ldlm_extent_overlap(struct ldlm_extent *ex1,
2754 struct ldlm_extent *ex2)
2755{
2756 return (ex1->start <= ex2->end) && (ex2->start <= ex1->end);
2757}
2758
2759/* check if @ex1 contains @ex2 */
2760static inline int ldlm_extent_contain(struct ldlm_extent *ex1,
2761 struct ldlm_extent *ex2)
2762{
2763 return (ex1->start <= ex2->start) && (ex1->end >= ex2->end);
2764}
2765
2766struct ldlm_inodebits {
2767 __u64 bits;
2768};
2769
2770struct ldlm_flock_wire {
2771 __u64 lfw_start;
2772 __u64 lfw_end;
2773 __u64 lfw_owner;
2774 __u32 lfw_padding;
2775 __u32 lfw_pid;
2776};
2777
2778/* it's important that the fields of the ldlm_extent structure match
2779 * the first fields of the ldlm_flock structure because there is only
2780 * one ldlm_swab routine to process the ldlm_policy_data_t union. if
2781 * this ever changes we will need to swab the union differently based
2782 * on the resource type. */
2783
2784typedef union {
2785 struct ldlm_extent l_extent;
2786 struct ldlm_flock_wire l_flock;
2787 struct ldlm_inodebits l_inodebits;
2788} ldlm_wire_policy_data_t;
2789
2790extern void lustre_swab_ldlm_policy_data (ldlm_wire_policy_data_t *d);
2791
2792union ldlm_gl_desc {
2793 struct ldlm_gl_lquota_desc lquota_desc;
2794};
2795
2796extern void lustre_swab_gl_desc(union ldlm_gl_desc *);
2797
2798struct ldlm_intent {
2799 __u64 opc;
2800};
2801
2802extern void lustre_swab_ldlm_intent (struct ldlm_intent *i);
2803
2804struct ldlm_resource_desc {
2805 ldlm_type_t lr_type;
2806 __u32 lr_padding; /* also fix lustre_swab_ldlm_resource_desc */
2807 struct ldlm_res_id lr_name;
2808};
2809
2810extern void lustre_swab_ldlm_resource_desc (struct ldlm_resource_desc *r);
2811
2812struct ldlm_lock_desc {
2813 struct ldlm_resource_desc l_resource;
2814 ldlm_mode_t l_req_mode;
2815 ldlm_mode_t l_granted_mode;
2816 ldlm_wire_policy_data_t l_policy_data;
2817};
2818
2819extern void lustre_swab_ldlm_lock_desc (struct ldlm_lock_desc *l);
2820
2821#define LDLM_LOCKREQ_HANDLES 2
2822#define LDLM_ENQUEUE_CANCEL_OFF 1
2823
2824struct ldlm_request {
2825 __u32 lock_flags;
2826 __u32 lock_count;
2827 struct ldlm_lock_desc lock_desc;
2828 struct lustre_handle lock_handle[LDLM_LOCKREQ_HANDLES];
2829};
2830
2831extern void lustre_swab_ldlm_request (struct ldlm_request *rq);
2832
2833/* If LDLM_ENQUEUE, 1 slot is already occupied, 1 is available.
2834 * Otherwise, 2 are available. */
2835#define ldlm_request_bufsize(count,type) \
2836({ \
2837 int _avail = LDLM_LOCKREQ_HANDLES; \
2838 _avail -= (type == LDLM_ENQUEUE ? LDLM_ENQUEUE_CANCEL_OFF : 0); \
2839 sizeof(struct ldlm_request) + \
2840 (count > _avail ? count - _avail : 0) * \
2841 sizeof(struct lustre_handle); \
2842})
2843
2844struct ldlm_reply {
2845 __u32 lock_flags;
2846 __u32 lock_padding; /* also fix lustre_swab_ldlm_reply */
2847 struct ldlm_lock_desc lock_desc;
2848 struct lustre_handle lock_handle;
2849 __u64 lock_policy_res1;
2850 __u64 lock_policy_res2;
2851};
2852
2853extern void lustre_swab_ldlm_reply (struct ldlm_reply *r);
2854
2855#define ldlm_flags_to_wire(flags) ((__u32)(flags))
2856#define ldlm_flags_from_wire(flags) ((__u64)(flags))
2857
2858/*
2859 * Opcodes for mountconf (mgs and mgc)
2860 */
2861typedef enum {
2862 MGS_CONNECT = 250,
2863 MGS_DISCONNECT,
2864 MGS_EXCEPTION, /* node died, etc. */
2865 MGS_TARGET_REG, /* whenever target starts up */
2866 MGS_TARGET_DEL,
2867 MGS_SET_INFO,
2868 MGS_CONFIG_READ,
2869 MGS_LAST_OPC
2870} mgs_cmd_t;
2871#define MGS_FIRST_OPC MGS_CONNECT
2872
2873#define MGS_PARAM_MAXLEN 1024
2874#define KEY_SET_INFO "set_info"
2875
2876struct mgs_send_param {
2877 char mgs_param[MGS_PARAM_MAXLEN];
2878};
2879
2880/* We pass this info to the MGS so it can write config logs */
2881#define MTI_NAME_MAXLEN 64
2882#define MTI_PARAM_MAXLEN 4096
2883#define MTI_NIDS_MAX 32
2884struct mgs_target_info {
2885 __u32 mti_lustre_ver;
2886 __u32 mti_stripe_index;
2887 __u32 mti_config_ver;
2888 __u32 mti_flags;
2889 __u32 mti_nid_count;
2890 __u32 mti_instance; /* Running instance of target */
2891 char mti_fsname[MTI_NAME_MAXLEN];
2892 char mti_svname[MTI_NAME_MAXLEN];
2893 char mti_uuid[sizeof(struct obd_uuid)];
2894 __u64 mti_nids[MTI_NIDS_MAX]; /* host nids (lnet_nid_t)*/
2895 char mti_params[MTI_PARAM_MAXLEN];
2896};
2897extern void lustre_swab_mgs_target_info(struct mgs_target_info *oinfo);
2898
2899struct mgs_nidtbl_entry {
2900 __u64 mne_version; /* table version of this entry */
2901 __u32 mne_instance; /* target instance # */
2902 __u32 mne_index; /* target index */
2903 __u32 mne_length; /* length of this entry - by bytes */
2904 __u8 mne_type; /* target type LDD_F_SV_TYPE_OST/MDT */
2905 __u8 mne_nid_type; /* type of nid(mbz). for ipv6. */
2906 __u8 mne_nid_size; /* size of each NID, by bytes */
2907 __u8 mne_nid_count; /* # of NIDs in buffer */
2908 union {
2909 lnet_nid_t nids[0]; /* variable size buffer for NIDs. */
2910 } u;
2911};
2912extern void lustre_swab_mgs_nidtbl_entry(struct mgs_nidtbl_entry *oinfo);
2913
2914struct mgs_config_body {
2915 char mcb_name[MTI_NAME_MAXLEN]; /* logname */
2916 __u64 mcb_offset; /* next index of config log to request */
2917 __u16 mcb_type; /* type of log: CONFIG_T_[CONFIG|RECOVER] */
2918 __u8 mcb_reserved;
2919 __u8 mcb_bits; /* bits unit size of config log */
2920 __u32 mcb_units; /* # of units for bulk transfer */
2921};
2922extern void lustre_swab_mgs_config_body(struct mgs_config_body *body);
2923
2924struct mgs_config_res {
2925 __u64 mcr_offset; /* index of last config log */
2926 __u64 mcr_size; /* size of the log */
2927};
2928extern void lustre_swab_mgs_config_res(struct mgs_config_res *body);
2929
2930/* Config marker flags (in config log) */
2931#define CM_START 0x01
2932#define CM_END 0x02
2933#define CM_SKIP 0x04
2934#define CM_UPGRADE146 0x08
2935#define CM_EXCLUDE 0x10
2936#define CM_START_SKIP (CM_START | CM_SKIP)
2937
2938struct cfg_marker {
2939 __u32 cm_step; /* aka config version */
2940 __u32 cm_flags;
2941 __u32 cm_vers; /* lustre release version number */
2942 __u32 cm_padding; /* 64 bit align */
2943 obd_time cm_createtime; /*when this record was first created */
2944 obd_time cm_canceltime; /*when this record is no longer valid*/
2945 char cm_tgtname[MTI_NAME_MAXLEN];
2946 char cm_comment[MTI_NAME_MAXLEN];
2947};
2948
2949extern void lustre_swab_cfg_marker(struct cfg_marker *marker,
2950 int swab, int size);
2951
2952/*
2953 * Opcodes for multiple servers.
2954 */
2955
2956typedef enum {
2957 OBD_PING = 400,
2958 OBD_LOG_CANCEL,
2959 OBD_QC_CALLBACK,
2960 OBD_IDX_READ,
2961 OBD_LAST_OPC
2962} obd_cmd_t;
2963#define OBD_FIRST_OPC OBD_PING
2964
2965/* catalog of log objects */
2966
2967/** Identifier for a single log object */
2968struct llog_logid {
2969 struct ost_id lgl_oi;
2970 __u32 lgl_ogen;
2971} __attribute__((packed));
2972
2973/** Records written to the CATALOGS list */
2974#define CATLIST "CATALOGS"
2975struct llog_catid {
2976 struct llog_logid lci_logid;
2977 __u32 lci_padding1;
2978 __u32 lci_padding2;
2979 __u32 lci_padding3;
2980} __attribute__((packed));
2981
2982/* Log data record types - there is no specific reason that these need to
2983 * be related to the RPC opcodes, but no reason not to (may be handy later?)
2984 */
2985#define LLOG_OP_MAGIC 0x10600000
2986#define LLOG_OP_MASK 0xfff00000
2987
2988typedef enum {
2989 LLOG_PAD_MAGIC = LLOG_OP_MAGIC | 0x00000,
2990 OST_SZ_REC = LLOG_OP_MAGIC | 0x00f00,
2991 /* OST_RAID1_REC = LLOG_OP_MAGIC | 0x01000, never used */
2992 MDS_UNLINK_REC = LLOG_OP_MAGIC | 0x10000 | (MDS_REINT << 8) |
2993 REINT_UNLINK, /* obsolete after 2.5.0 */
2994 MDS_UNLINK64_REC = LLOG_OP_MAGIC | 0x90000 | (MDS_REINT << 8) |
2995 REINT_UNLINK,
2996 /* MDS_SETATTR_REC = LLOG_OP_MAGIC | 0x12401, obsolete 1.8.0 */
2997 MDS_SETATTR64_REC = LLOG_OP_MAGIC | 0x90000 | (MDS_REINT << 8) |
2998 REINT_SETATTR,
2999 OBD_CFG_REC = LLOG_OP_MAGIC | 0x20000,
3000 /* PTL_CFG_REC = LLOG_OP_MAGIC | 0x30000, obsolete 1.4.0 */
3001 LLOG_GEN_REC = LLOG_OP_MAGIC | 0x40000,
3002 /* LLOG_JOIN_REC = LLOG_OP_MAGIC | 0x50000, obsolete 1.8.0 */
3003 CHANGELOG_REC = LLOG_OP_MAGIC | 0x60000,
3004 CHANGELOG_USER_REC = LLOG_OP_MAGIC | 0x70000,
99a92265 3005 HSM_AGENT_REC = LLOG_OP_MAGIC | 0x80000,
d7e09d03
PT
3006 LLOG_HDR_MAGIC = LLOG_OP_MAGIC | 0x45539,
3007 LLOG_LOGID_MAGIC = LLOG_OP_MAGIC | 0x4553b,
3008} llog_op_type;
3009
3010#define LLOG_REC_HDR_NEEDS_SWABBING(r) \
3011 (((r)->lrh_type & __swab32(LLOG_OP_MASK)) == __swab32(LLOG_OP_MAGIC))
3012
3013/** Log record header - stored in little endian order.
3014 * Each record must start with this struct, end with a llog_rec_tail,
3015 * and be a multiple of 256 bits in size.
3016 */
3017struct llog_rec_hdr {
3018 __u32 lrh_len;
3019 __u32 lrh_index;
3020 __u32 lrh_type;
3021 __u32 lrh_id;
3022};
3023
3024struct llog_rec_tail {
3025 __u32 lrt_len;
3026 __u32 lrt_index;
3027};
3028
3029/* Where data follow just after header */
3030#define REC_DATA(ptr) \
3031 ((void *)((char *)ptr + sizeof(struct llog_rec_hdr)))
3032
3033#define REC_DATA_LEN(rec) \
3034 (rec->lrh_len - sizeof(struct llog_rec_hdr) - \
3035 sizeof(struct llog_rec_tail))
3036
3037struct llog_logid_rec {
3038 struct llog_rec_hdr lid_hdr;
3039 struct llog_logid lid_id;
3040 __u32 lid_padding1;
3041 __u64 lid_padding2;
3042 __u64 lid_padding3;
3043 struct llog_rec_tail lid_tail;
3044} __attribute__((packed));
3045
3046struct llog_unlink_rec {
3047 struct llog_rec_hdr lur_hdr;
3048 obd_id lur_oid;
3049 obd_count lur_oseq;
3050 obd_count lur_count;
3051 struct llog_rec_tail lur_tail;
3052} __attribute__((packed));
3053
3054struct llog_unlink64_rec {
3055 struct llog_rec_hdr lur_hdr;
3056 struct lu_fid lur_fid;
3057 obd_count lur_count; /* to destroy the lost precreated */
3058 __u32 lur_padding1;
3059 __u64 lur_padding2;
3060 __u64 lur_padding3;
3061 struct llog_rec_tail lur_tail;
3062} __attribute__((packed));
3063
3064struct llog_setattr64_rec {
3065 struct llog_rec_hdr lsr_hdr;
3066 struct ost_id lsr_oi;
3067 __u32 lsr_uid;
3068 __u32 lsr_uid_h;
3069 __u32 lsr_gid;
3070 __u32 lsr_gid_h;
3071 __u64 lsr_padding;
3072 struct llog_rec_tail lsr_tail;
3073} __attribute__((packed));
3074
3075struct llog_size_change_rec {
3076 struct llog_rec_hdr lsc_hdr;
3077 struct ll_fid lsc_fid;
3078 __u32 lsc_ioepoch;
3079 __u32 lsc_padding1;
3080 __u64 lsc_padding2;
3081 __u64 lsc_padding3;
3082 struct llog_rec_tail lsc_tail;
3083} __attribute__((packed));
3084
3085#define CHANGELOG_MAGIC 0xca103000
3086
3087/** \a changelog_rec_type's that can't be masked */
3088#define CHANGELOG_MINMASK (1 << CL_MARK)
3089/** bits covering all \a changelog_rec_type's */
3090#define CHANGELOG_ALLMASK 0XFFFFFFFF
3091/** default \a changelog_rec_type mask */
3092#define CHANGELOG_DEFMASK CHANGELOG_ALLMASK & ~(1 << CL_ATIME | 1 << CL_CLOSE)
3093
3094/* changelog llog name, needed by client replicators */
3095#define CHANGELOG_CATALOG "changelog_catalog"
3096
3097struct changelog_setinfo {
3098 __u64 cs_recno;
3099 __u32 cs_id;
3100} __attribute__((packed));
3101
3102/** changelog record */
3103struct llog_changelog_rec {
3104 struct llog_rec_hdr cr_hdr;
3105 struct changelog_rec cr;
3106 struct llog_rec_tail cr_tail; /**< for_sizezof_only */
3107} __attribute__((packed));
3108
3109struct llog_changelog_ext_rec {
3110 struct llog_rec_hdr cr_hdr;
3111 struct changelog_ext_rec cr;
3112 struct llog_rec_tail cr_tail; /**< for_sizezof_only */
3113} __attribute__((packed));
3114
3115#define CHANGELOG_USER_PREFIX "cl"
3116
3117struct llog_changelog_user_rec {
3118 struct llog_rec_hdr cur_hdr;
3119 __u32 cur_id;
3120 __u32 cur_padding;
3121 __u64 cur_endrec;
3122 struct llog_rec_tail cur_tail;
3123} __attribute__((packed));
3124
99a92265 3125enum agent_req_status {
3126 ARS_WAITING,
3127 ARS_STARTED,
3128 ARS_FAILED,
3129 ARS_CANCELED,
3130 ARS_SUCCEED,
3131};
3132
3133static inline char *agent_req_status2name(enum agent_req_status ars)
3134{
3135 switch (ars) {
3136 case ARS_WAITING:
3137 return "WAITING";
3138 case ARS_STARTED:
3139 return "STARTED";
3140 case ARS_FAILED:
3141 return "FAILED";
3142 case ARS_CANCELED:
3143 return "CANCELED";
3144 case ARS_SUCCEED:
3145 return "SUCCEED";
3146 default:
3147 return "UNKNOWN";
3148 }
3149}
3150
3151static inline bool agent_req_in_final_state(enum agent_req_status ars)
3152{
3153 return ((ars == ARS_SUCCEED) || (ars == ARS_FAILED) ||
3154 (ars == ARS_CANCELED));
3155}
3156
3157struct llog_agent_req_rec {
3158 struct llog_rec_hdr arr_hdr; /**< record header */
3159 __u32 arr_status; /**< status of the request */
3160 /* must match enum
3161 * agent_req_status */
3162 __u32 arr_archive_id; /**< backend archive number */
3163 __u64 arr_flags; /**< req flags */
3164 __u64 arr_compound_id; /**< compound cookie */
3165 __u64 arr_req_create; /**< req. creation time */
3166 __u64 arr_req_change; /**< req. status change time */
3167 struct hsm_action_item arr_hai; /**< req. to the agent */
3168 struct llog_rec_tail arr_tail; /**< record tail for_sizezof_only */
3169} __attribute__((packed));
3170
d7e09d03
PT
3171/* Old llog gen for compatibility */
3172struct llog_gen {
3173 __u64 mnt_cnt;
3174 __u64 conn_cnt;
3175} __attribute__((packed));
3176
3177struct llog_gen_rec {
3178 struct llog_rec_hdr lgr_hdr;
3179 struct llog_gen lgr_gen;
3180 __u64 padding1;
3181 __u64 padding2;
3182 __u64 padding3;
3183 struct llog_rec_tail lgr_tail;
3184};
3185
3186/* On-disk header structure of each log object, stored in little endian order */
3187#define LLOG_CHUNK_SIZE 8192
3188#define LLOG_HEADER_SIZE (96)
3189#define LLOG_BITMAP_BYTES (LLOG_CHUNK_SIZE - LLOG_HEADER_SIZE)
3190
3191#define LLOG_MIN_REC_SIZE (24) /* round(llog_rec_hdr + llog_rec_tail) */
3192
3193/* flags for the logs */
3194enum llog_flag {
3195 LLOG_F_ZAP_WHEN_EMPTY = 0x1,
3196 LLOG_F_IS_CAT = 0x2,
3197 LLOG_F_IS_PLAIN = 0x4,
3198};
3199
3200struct llog_log_hdr {
3201 struct llog_rec_hdr llh_hdr;
3202 obd_time llh_timestamp;
3203 __u32 llh_count;
3204 __u32 llh_bitmap_offset;
3205 __u32 llh_size;
3206 __u32 llh_flags;
3207 __u32 llh_cat_idx;
3208 /* for a catalog the first plain slot is next to it */
3209 struct obd_uuid llh_tgtuuid;
3210 __u32 llh_reserved[LLOG_HEADER_SIZE/sizeof(__u32) - 23];
3211 __u32 llh_bitmap[LLOG_BITMAP_BYTES/sizeof(__u32)];
3212 struct llog_rec_tail llh_tail;
3213} __attribute__((packed));
3214
3215#define LLOG_BITMAP_SIZE(llh) (__u32)((llh->llh_hdr.lrh_len - \
3216 llh->llh_bitmap_offset - \
3217 sizeof(llh->llh_tail)) * 8)
3218
3219/** log cookies are used to reference a specific log file and a record therein */
3220struct llog_cookie {
3221 struct llog_logid lgc_lgl;
3222 __u32 lgc_subsys;
3223 __u32 lgc_index;
3224 __u32 lgc_padding;
3225} __attribute__((packed));
3226
3227/** llog protocol */
3228enum llogd_rpc_ops {
3229 LLOG_ORIGIN_HANDLE_CREATE = 501,
3230 LLOG_ORIGIN_HANDLE_NEXT_BLOCK = 502,
3231 LLOG_ORIGIN_HANDLE_READ_HEADER = 503,
3232 LLOG_ORIGIN_HANDLE_WRITE_REC = 504,
3233 LLOG_ORIGIN_HANDLE_CLOSE = 505,
3234 LLOG_ORIGIN_CONNECT = 506,
3235 LLOG_CATINFO = 507, /* deprecated */
3236 LLOG_ORIGIN_HANDLE_PREV_BLOCK = 508,
3237 LLOG_ORIGIN_HANDLE_DESTROY = 509, /* for destroy llog object*/
3238 LLOG_LAST_OPC,
3239 LLOG_FIRST_OPC = LLOG_ORIGIN_HANDLE_CREATE
3240};
3241
3242struct llogd_body {
3243 struct llog_logid lgd_logid;
3244 __u32 lgd_ctxt_idx;
3245 __u32 lgd_llh_flags;
3246 __u32 lgd_index;
3247 __u32 lgd_saved_index;
3248 __u32 lgd_len;
3249 __u64 lgd_cur_offset;
3250} __attribute__((packed));
3251
3252struct llogd_conn_body {
3253 struct llog_gen lgdc_gen;
3254 struct llog_logid lgdc_logid;
3255 __u32 lgdc_ctxt_idx;
3256} __attribute__((packed));
3257
3258/* Note: 64-bit types are 64-bit aligned in structure */
3259struct obdo {
3260 obd_valid o_valid; /* hot fields in this obdo */
3261 struct ost_id o_oi;
3262 obd_id o_parent_seq;
3263 obd_size o_size; /* o_size-o_blocks == ost_lvb */
3264 obd_time o_mtime;
3265 obd_time o_atime;
3266 obd_time o_ctime;
3267 obd_blocks o_blocks; /* brw: cli sent cached bytes */
3268 obd_size o_grant;
3269
3270 /* 32-bit fields start here: keep an even number of them via padding */
3271 obd_blksize o_blksize; /* optimal IO blocksize */
3272 obd_mode o_mode; /* brw: cli sent cache remain */
3273 obd_uid o_uid;
3274 obd_gid o_gid;
3275 obd_flag o_flags;
3276 obd_count o_nlink; /* brw: checksum */
3277 obd_count o_parent_oid;
3278 obd_count o_misc; /* brw: o_dropped */
3279
3280 __u64 o_ioepoch; /* epoch in ost writes */
3281 __u32 o_stripe_idx; /* holds stripe idx */
3282 __u32 o_parent_ver;
3283 struct lustre_handle o_handle; /* brw: lock handle to prolong
3284 * locks */
3285 struct llog_cookie o_lcookie; /* destroy: unlink cookie from
3286 * MDS */
3287 __u32 o_uid_h;
3288 __u32 o_gid_h;
3289
3290 __u64 o_data_version; /* getattr: sum of iversion for
3291 * each stripe.
3292 * brw: grant space consumed on
3293 * the client for the write */
3294 __u64 o_padding_4;
3295 __u64 o_padding_5;
3296 __u64 o_padding_6;
3297};
3298
3299#define o_dirty o_blocks
3300#define o_undirty o_mode
3301#define o_dropped o_misc
3302#define o_cksum o_nlink
3303#define o_grant_used o_data_version
3304
3b2f75fd 3305static inline void lustre_set_wire_obdo(struct obd_connect_data *ocd,
f3418ce8
AD
3306 struct obdo *wobdo,
3307 const struct obdo *lobdo)
d7e09d03 3308{
f3418ce8 3309 *wobdo = *lobdo;
d7e09d03 3310 wobdo->o_flags &= ~OBD_FL_LOCAL_MASK;
3b2f75fd 3311 if (ocd == NULL)
3312 return;
3313
3314 if (unlikely(!(ocd->ocd_connect_flags & OBD_CONNECT_FID)) &&
6752a53e 3315 fid_seq_is_echo(ostid_seq(&lobdo->o_oi))) {
3b2f75fd 3316 /* Currently OBD_FL_OSTID will only be used when 2.4 echo
3317 * client communicate with pre-2.4 server */
3318 wobdo->o_oi.oi.oi_id = fid_oid(&lobdo->o_oi.oi_fid);
3319 wobdo->o_oi.oi.oi_seq = fid_seq(&lobdo->o_oi.oi_fid);
3320 }
d7e09d03
PT
3321}
3322
3b2f75fd 3323static inline void lustre_get_wire_obdo(struct obd_connect_data *ocd,
f3418ce8
AD
3324 struct obdo *lobdo,
3325 const struct obdo *wobdo)
d7e09d03
PT
3326{
3327 obd_flag local_flags = 0;
3328
3329 if (lobdo->o_valid & OBD_MD_FLFLAGS)
3330 local_flags = lobdo->o_flags & OBD_FL_LOCAL_MASK;
3331
f3418ce8 3332 *lobdo = *wobdo;
d7e09d03 3333 if (local_flags != 0) {
3b2f75fd 3334 lobdo->o_valid |= OBD_MD_FLFLAGS;
3335 lobdo->o_flags &= ~OBD_FL_LOCAL_MASK;
3336 lobdo->o_flags |= local_flags;
3337 }
3338 if (ocd == NULL)
3339 return;
3340
3341 if (unlikely(!(ocd->ocd_connect_flags & OBD_CONNECT_FID)) &&
3342 fid_seq_is_echo(wobdo->o_oi.oi.oi_seq)) {
3343 /* see above */
3344 lobdo->o_oi.oi_fid.f_seq = wobdo->o_oi.oi.oi_seq;
3345 lobdo->o_oi.oi_fid.f_oid = wobdo->o_oi.oi.oi_id;
3346 lobdo->o_oi.oi_fid.f_ver = 0;
d7e09d03
PT
3347 }
3348}
3349
3350extern void lustre_swab_obdo (struct obdo *o);
3351
3352/* request structure for OST's */
3353struct ost_body {
3354 struct obdo oa;
3355};
3356
3357/* Key for FIEMAP to be used in get_info calls */
3358struct ll_fiemap_info_key {
3359 char name[8];
3360 struct obdo oa;
3361 struct ll_user_fiemap fiemap;
3362};
3363
3364extern void lustre_swab_ost_body (struct ost_body *b);
3365extern void lustre_swab_ost_last_id(obd_id *id);
3366extern void lustre_swab_fiemap(struct ll_user_fiemap *fiemap);
3367
3368extern void lustre_swab_lov_user_md_v1(struct lov_user_md_v1 *lum);
3369extern void lustre_swab_lov_user_md_v3(struct lov_user_md_v3 *lum);
3370extern void lustre_swab_lov_user_md_objects(struct lov_user_ost_data *lod,
3371 int stripe_count);
3372extern void lustre_swab_lov_mds_md(struct lov_mds_md *lmm);
3373
3374/* llog_swab.c */
3375extern void lustre_swab_llogd_body (struct llogd_body *d);
3376extern void lustre_swab_llog_hdr (struct llog_log_hdr *h);
3377extern void lustre_swab_llogd_conn_body (struct llogd_conn_body *d);
3378extern void lustre_swab_llog_rec(struct llog_rec_hdr *rec);
ff8c39b2 3379extern void lustre_swab_llog_id(struct llog_logid *lid);
d7e09d03
PT
3380
3381struct lustre_cfg;
3382extern void lustre_swab_lustre_cfg(struct lustre_cfg *lcfg);
3383
3384/* Functions for dumping PTLRPC fields */
3385void dump_rniobuf(struct niobuf_remote *rnb);
3386void dump_ioo(struct obd_ioobj *nb);
3387void dump_obdo(struct obdo *oa);
3388void dump_ost_body(struct ost_body *ob);
3389void dump_rcs(__u32 *rc);
3390
3391#define IDX_INFO_MAGIC 0x3D37CC37
3392
3393/* Index file transfer through the network. The server serializes the index into
3394 * a byte stream which is sent to the client via a bulk transfer */
3395struct idx_info {
3396 __u32 ii_magic;
3397
3398 /* reply: see idx_info_flags below */
3399 __u32 ii_flags;
3400
3401 /* request & reply: number of lu_idxpage (to be) transferred */
3402 __u16 ii_count;
3403 __u16 ii_pad0;
3404
3405 /* request: requested attributes passed down to the iterator API */
3406 __u32 ii_attrs;
3407
3408 /* request & reply: index file identifier (FID) */
3409 struct lu_fid ii_fid;
3410
3411 /* reply: version of the index file before starting to walk the index.
3412 * Please note that the version can be modified at any time during the
3413 * transfer */
3414 __u64 ii_version;
3415
3416 /* request: hash to start with:
3417 * reply: hash of the first entry of the first lu_idxpage and hash
3418 * of the entry to read next if any */
3419 __u64 ii_hash_start;
3420 __u64 ii_hash_end;
3421
3422 /* reply: size of keys in lu_idxpages, minimal one if II_FL_VARKEY is
3423 * set */
3424 __u16 ii_keysize;
3425
3426 /* reply: size of records in lu_idxpages, minimal one if II_FL_VARREC
3427 * is set */
3428 __u16 ii_recsize;
3429
3430 __u32 ii_pad1;
3431 __u64 ii_pad2;
3432 __u64 ii_pad3;
3433};
3434extern void lustre_swab_idx_info(struct idx_info *ii);
3435
3436#define II_END_OFF MDS_DIR_END_OFF /* all entries have been read */
3437
3438/* List of flags used in idx_info::ii_flags */
3439enum idx_info_flags {
3440 II_FL_NOHASH = 1 << 0, /* client doesn't care about hash value */
3441 II_FL_VARKEY = 1 << 1, /* keys can be of variable size */
3442 II_FL_VARREC = 1 << 2, /* records can be of variable size */
3443 II_FL_NONUNQ = 1 << 3, /* index supports non-unique keys */
3444};
3445
3446#define LIP_MAGIC 0x8A6D6B6C
3447
3448/* 4KB (= LU_PAGE_SIZE) container gathering key/record pairs */
3449struct lu_idxpage {
3450 /* 16-byte header */
3451 __u32 lip_magic;
3452 __u16 lip_flags;
3453 __u16 lip_nr; /* number of entries in the container */
3454 __u64 lip_pad0; /* additional padding for future use */
3455
3456 /* key/record pairs are stored in the remaining 4080 bytes.
3457 * depending upon the flags in idx_info::ii_flags, each key/record
3458 * pair might be preceded by:
3459 * - a hash value
3460 * - the key size (II_FL_VARKEY is set)
3461 * - the record size (II_FL_VARREC is set)
3462 *
3463 * For the time being, we only support fixed-size key & record. */
3464 char lip_entries[0];
3465};
3466extern void lustre_swab_lip_header(struct lu_idxpage *lip);
3467
3468#define LIP_HDR_SIZE (offsetof(struct lu_idxpage, lip_entries))
3469
3470/* Gather all possible type associated with a 4KB container */
3471union lu_page {
3472 struct lu_dirpage lp_dir; /* for MDS_READPAGE */
3473 struct lu_idxpage lp_idx; /* for OBD_IDX_READ */
3474 char lp_array[LU_PAGE_SIZE];
3475};
3476
3477/* security opcodes */
3478typedef enum {
3479 SEC_CTX_INIT = 801,
3480 SEC_CTX_INIT_CONT = 802,
3481 SEC_CTX_FINI = 803,
3482 SEC_LAST_OPC,
3483 SEC_FIRST_OPC = SEC_CTX_INIT
3484} sec_cmd_t;
3485
3486/*
3487 * capa related definitions
3488 */
3489#define CAPA_HMAC_MAX_LEN 64
3490#define CAPA_HMAC_KEY_MAX_LEN 56
3491
3492/* NB take care when changing the sequence of elements this struct,
3493 * because the offset info is used in find_capa() */
3494struct lustre_capa {
3495 struct lu_fid lc_fid; /** fid */
3496 __u64 lc_opc; /** operations allowed */
3497 __u64 lc_uid; /** file owner */
3498 __u64 lc_gid; /** file group */
3499 __u32 lc_flags; /** HMAC algorithm & flags */
3500 __u32 lc_keyid; /** key# used for the capability */
3501 __u32 lc_timeout; /** capa timeout value (sec) */
3502 __u32 lc_expiry; /** expiry time (sec) */
3503 __u8 lc_hmac[CAPA_HMAC_MAX_LEN]; /** HMAC */
3504} __attribute__((packed));
3505
3506extern void lustre_swab_lustre_capa(struct lustre_capa *c);
3507
3508/** lustre_capa::lc_opc */
3509enum {
3510 CAPA_OPC_BODY_WRITE = 1<<0, /**< write object data */
3511 CAPA_OPC_BODY_READ = 1<<1, /**< read object data */
3512 CAPA_OPC_INDEX_LOOKUP = 1<<2, /**< lookup object fid */
3513 CAPA_OPC_INDEX_INSERT = 1<<3, /**< insert object fid */
3514 CAPA_OPC_INDEX_DELETE = 1<<4, /**< delete object fid */
3515 CAPA_OPC_OSS_WRITE = 1<<5, /**< write oss object data */
3516 CAPA_OPC_OSS_READ = 1<<6, /**< read oss object data */
3517 CAPA_OPC_OSS_TRUNC = 1<<7, /**< truncate oss object */
3518 CAPA_OPC_OSS_DESTROY = 1<<8, /**< destroy oss object */
3519 CAPA_OPC_META_WRITE = 1<<9, /**< write object meta data */
3520 CAPA_OPC_META_READ = 1<<10, /**< read object meta data */
3521};
3522
3523#define CAPA_OPC_OSS_RW (CAPA_OPC_OSS_READ | CAPA_OPC_OSS_WRITE)
3524#define CAPA_OPC_MDS_ONLY \
3525 (CAPA_OPC_BODY_WRITE | CAPA_OPC_BODY_READ | CAPA_OPC_INDEX_LOOKUP | \
3526 CAPA_OPC_INDEX_INSERT | CAPA_OPC_INDEX_DELETE)
3527#define CAPA_OPC_OSS_ONLY \
3528 (CAPA_OPC_OSS_WRITE | CAPA_OPC_OSS_READ | CAPA_OPC_OSS_TRUNC | \
3529 CAPA_OPC_OSS_DESTROY)
3530#define CAPA_OPC_MDS_DEFAULT ~CAPA_OPC_OSS_ONLY
3531#define CAPA_OPC_OSS_DEFAULT ~(CAPA_OPC_MDS_ONLY | CAPA_OPC_OSS_ONLY)
3532
3533/* MDS capability covers object capability for operations of body r/w
3534 * (dir readpage/sendpage), index lookup/insert/delete and meta data r/w,
3535 * while OSS capability only covers object capability for operations of
3536 * oss data(file content) r/w/truncate.
3537 */
3538static inline int capa_for_mds(struct lustre_capa *c)
3539{
3540 return (c->lc_opc & CAPA_OPC_INDEX_LOOKUP) != 0;
3541}
3542
3543static inline int capa_for_oss(struct lustre_capa *c)
3544{
3545 return (c->lc_opc & CAPA_OPC_INDEX_LOOKUP) == 0;
3546}
3547
3548/* lustre_capa::lc_hmac_alg */
3549enum {
3550 CAPA_HMAC_ALG_SHA1 = 1, /**< sha1 algorithm */
3551 CAPA_HMAC_ALG_MAX,
3552};
3553
3554#define CAPA_FL_MASK 0x00ffffff
3555#define CAPA_HMAC_ALG_MASK 0xff000000
3556
3557struct lustre_capa_key {
3558 __u64 lk_seq; /**< mds# */
3559 __u32 lk_keyid; /**< key# */
3560 __u32 lk_padding;
3561 __u8 lk_key[CAPA_HMAC_KEY_MAX_LEN]; /**< key */
3562} __attribute__((packed));
3563
3564extern void lustre_swab_lustre_capa_key(struct lustre_capa_key *k);
3565
3566/** The link ea holds 1 \a link_ea_entry for each hardlink */
3567#define LINK_EA_MAGIC 0x11EAF1DFUL
3568struct link_ea_header {
3569 __u32 leh_magic;
3570 __u32 leh_reccount;
3571 __u64 leh_len; /* total size */
3572 /* future use */
3573 __u32 padding1;
3574 __u32 padding2;
3575};
3576
3577/** Hardlink data is name and parent fid.
3578 * Stored in this crazy struct for maximum packing and endian-neutrality
3579 */
3580struct link_ea_entry {
3581 /** __u16 stored big-endian, unaligned */
3582 unsigned char lee_reclen[2];
3583 unsigned char lee_parent_fid[sizeof(struct lu_fid)];
3584 char lee_name[0];
3585}__attribute__((packed));
3586
3587/** fid2path request/reply structure */
3588struct getinfo_fid2path {
3589 struct lu_fid gf_fid;
3590 __u64 gf_recno;
3591 __u32 gf_linkno;
3592 __u32 gf_pathlen;
3593 char gf_path[0];
3594} __attribute__((packed));
3595
3596void lustre_swab_fid2path (struct getinfo_fid2path *gf);
3597
3598enum {
3599 LAYOUT_INTENT_ACCESS = 0,
3600 LAYOUT_INTENT_READ = 1,
3601 LAYOUT_INTENT_WRITE = 2,
3602 LAYOUT_INTENT_GLIMPSE = 3,
3603 LAYOUT_INTENT_TRUNC = 4,
3604 LAYOUT_INTENT_RELEASE = 5,
3605 LAYOUT_INTENT_RESTORE = 6
3606};
3607
3608/* enqueue layout lock with intent */
3609struct layout_intent {
3610 __u32 li_opc; /* intent operation for enqueue, read, write etc */
3611 __u32 li_flags;
3612 __u64 li_start;
3613 __u64 li_end;
3614};
3615
3616void lustre_swab_layout_intent(struct layout_intent *li);
3617
3618/**
3619 * On the wire version of hsm_progress structure.
3620 *
3621 * Contains the userspace hsm_progress and some internal fields.
3622 */
3623struct hsm_progress_kernel {
3624 /* Field taken from struct hsm_progress */
3625 lustre_fid hpk_fid;
3626 __u64 hpk_cookie;
3627 struct hsm_extent hpk_extent;
3628 __u16 hpk_flags;
3629 __u16 hpk_errval; /* positive val */
3630 __u32 hpk_padding1;
3631 /* Additional fields */
3632 __u64 hpk_data_version;
3633 __u64 hpk_padding2;
3634} __attribute__((packed));
3635
3636extern void lustre_swab_hsm_user_state(struct hsm_user_state *hus);
3637extern void lustre_swab_hsm_current_action(struct hsm_current_action *action);
3638extern void lustre_swab_hsm_progress_kernel(struct hsm_progress_kernel *hpk);
3639extern void lustre_swab_hsm_user_state(struct hsm_user_state *hus);
3640extern void lustre_swab_hsm_user_item(struct hsm_user_item *hui);
3641extern void lustre_swab_hsm_request(struct hsm_request *hr);
3642
3643/**
3644 * These are object update opcode under UPDATE_OBJ, which is currently
3645 * being used by cross-ref operations between MDT.
3646 *
3647 * During the cross-ref operation, the Master MDT, which the client send the
3648 * request to, will disassembly the operation into object updates, then OSP
3649 * will send these updates to the remote MDT to be executed.
3650 *
3651 * Update request format
3652 * magic: UPDATE_BUFFER_MAGIC_V1
3653 * Count: How many updates in the req.
3654 * bufs[0] : following are packets of object.
3655 * update[0]:
3656 * type: object_update_op, the op code of update
3657 * fid: The object fid of the update.
3658 * lens/bufs: other parameters of the update.
3659 * update[1]:
3660 * type: object_update_op, the op code of update
3661 * fid: The object fid of the update.
3662 * lens/bufs: other parameters of the update.
3663 * ..........
3664 * update[7]: type: object_update_op, the op code of update
3665 * fid: The object fid of the update.
3666 * lens/bufs: other parameters of the update.
3667 * Current 8 maxim updates per object update request.
3668 *
3669 *******************************************************************
3670 * update reply format:
3671 *
3672 * ur_version: UPDATE_REPLY_V1
3673 * ur_count: The count of the reply, which is usually equal
3674 * to the number of updates in the request.
3675 * ur_lens: The reply lengths of each object update.
3676 *
3677 * replies: 1st update reply [4bytes_ret: other body]
3678 * 2nd update reply [4bytes_ret: other body]
3679 * .....
3680 * nth update reply [4bytes_ret: other body]
3681 *
3682 * For each reply of the update, the format would be
3683 * result(4 bytes):Other stuff
3684 */
3685
3686#define UPDATE_MAX_OPS 10
3687#define UPDATE_BUFFER_MAGIC_V1 0xBDDE0001
3688#define UPDATE_BUFFER_MAGIC UPDATE_BUFFER_MAGIC_V1
3689#define UPDATE_BUF_COUNT 8
3690enum object_update_op {
3691 OBJ_CREATE = 1,
3692 OBJ_DESTROY = 2,
3693 OBJ_REF_ADD = 3,
3694 OBJ_REF_DEL = 4,
3695 OBJ_ATTR_SET = 5,
3696 OBJ_ATTR_GET = 6,
3697 OBJ_XATTR_SET = 7,
3698 OBJ_XATTR_GET = 8,
3699 OBJ_INDEX_LOOKUP = 9,
3700 OBJ_INDEX_INSERT = 10,
3701 OBJ_INDEX_DELETE = 11,
3702 OBJ_LAST
3703};
3704
3705struct update {
3706 __u32 u_type;
3707 __u32 u_batchid;
3708 struct lu_fid u_fid;
3709 __u32 u_lens[UPDATE_BUF_COUNT];
3710 __u32 u_bufs[0];
3711};
3712
3713struct update_buf {
3714 __u32 ub_magic;
3715 __u32 ub_count;
3716 __u32 ub_bufs[0];
3717};
3718
3719#define UPDATE_REPLY_V1 0x00BD0001
3720struct update_reply {
3721 __u32 ur_version;
3722 __u32 ur_count;
3723 __u32 ur_lens[0];
3724};
3725
3726void lustre_swab_update_buf(struct update_buf *ub);
3727void lustre_swab_update_reply_buf(struct update_reply *ur);
3728
3729/** layout swap request structure
3730 * fid1 and fid2 are in mdt_body
3731 */
3732struct mdc_swap_layouts {
3733 __u64 msl_flags;
3734} __packed;
3735
3736void lustre_swab_swap_layouts(struct mdc_swap_layouts *msl);
3737
48d23e61
JX
3738struct close_data {
3739 struct lustre_handle cd_handle;
3740 struct lu_fid cd_fid;
3741 __u64 cd_data_version;
3742 __u64 cd_reserved[8];
3743};
3744
3745void lustre_swab_close_data(struct close_data *data);
3746
d7e09d03
PT
3747#endif
3748/** @} lustreidl */
This page took 0.323231 seconds and 5 git commands to generate.