staging/lustre/scrub: OI scrub on OST
[deliverable/linux.git] / drivers / staging / lustre / lustre / include / lustre / lustre_idl.h
CommitLineData
d7e09d03
PT
1/*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19 *
20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21 * CA 95054 USA or visit www.sun.com if you need additional information or
22 * have any questions.
23 *
24 * GPL HEADER END
25 */
26/*
27 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
28 * Use is subject to license terms.
29 *
30 * Copyright (c) 2011, 2012, Intel Corporation.
31 */
32/*
33 * This file is part of Lustre, http://www.lustre.org/
34 * Lustre is a trademark of Sun Microsystems, Inc.
35 *
36 * lustre/include/lustre/lustre_idl.h
37 *
38 * Lustre wire protocol definitions.
39 */
40
41/** \defgroup lustreidl lustreidl
42 *
43 * Lustre wire protocol definitions.
44 *
45 * ALL structs passing over the wire should be declared here. Structs
46 * that are used in interfaces with userspace should go in lustre_user.h.
47 *
48 * All structs being declared here should be built from simple fixed-size
49 * types (__u8, __u16, __u32, __u64) or be built from other types or
50 * structs also declared in this file. Similarly, all flags and magic
51 * values in those structs should also be declared here. This ensures
52 * that the Lustre wire protocol is not influenced by external dependencies.
53 *
54 * The only other acceptable items in this file are VERY SIMPLE accessor
55 * functions to avoid callers grubbing inside the structures, and the
56 * prototypes of the swabber functions for each struct. Nothing that
57 * depends on external functions or definitions should be in here.
58 *
59 * Structs must be properly aligned to put 64-bit values on an 8-byte
60 * boundary. Any structs being added here must also be added to
61 * utils/wirecheck.c and "make newwiretest" run to regenerate the
62 * utils/wiretest.c sources. This allows us to verify that wire structs
63 * have the proper alignment/size on all architectures.
64 *
65 * DO NOT CHANGE any of the structs, flags, values declared here and used
66 * in released Lustre versions. Some structs may have padding fields that
67 * can be used. Some structs might allow addition at the end (verify this
68 * in the code to ensure that new/old clients that see this larger struct
69 * do not fail, otherwise you need to implement protocol compatibility).
70 *
71 * We assume all nodes are either little-endian or big-endian, and we
72 * always send messages in the sender's native format. The receiver
73 * detects the message format by checking the 'magic' field of the message
74 * (see lustre_msg_swabbed() below).
75 *
76 * Each wire type has corresponding 'lustre_swab_xxxtypexxx()' routines,
77 * implemented either here, inline (trivial implementations) or in
78 * ptlrpc/pack_generic.c. These 'swabbers' convert the type from "other"
79 * endian, in-place in the message buffer.
80 *
81 * A swabber takes a single pointer argument. The caller must already have
82 * verified that the length of the message buffer >= sizeof (type).
83 *
84 * For variable length types, a second 'lustre_swab_v_xxxtypexxx()' routine
85 * may be defined that swabs just the variable part, after the caller has
86 * verified that the message buffer is large enough.
87 *
88 * @{
89 */
90
91#ifndef _LUSTRE_IDL_H_
92#define _LUSTRE_IDL_H_
93
94#if !defined(LASSERT) && !defined(LPU64)
95#include <linux/libcfs/libcfs.h> /* for LASSERT, LPUX64, etc */
96#endif
97
98/* Defn's shared with user-space. */
99#include <lustre/lustre_user.h>
100
2d58de78
LW
101#include <lustre/lustre_errno.h>
102
d7e09d03
PT
103/*
104 * GENERAL STUFF
105 */
106/* FOO_REQUEST_PORTAL is for incoming requests on the FOO
107 * FOO_REPLY_PORTAL is for incoming replies on the FOO
108 * FOO_BULK_PORTAL is for incoming bulk on the FOO
109 */
110
111#define CONNMGR_REQUEST_PORTAL 1
112#define CONNMGR_REPLY_PORTAL 2
113//#define OSC_REQUEST_PORTAL 3
114#define OSC_REPLY_PORTAL 4
115//#define OSC_BULK_PORTAL 5
116#define OST_IO_PORTAL 6
117#define OST_CREATE_PORTAL 7
118#define OST_BULK_PORTAL 8
119//#define MDC_REQUEST_PORTAL 9
120#define MDC_REPLY_PORTAL 10
121//#define MDC_BULK_PORTAL 11
122#define MDS_REQUEST_PORTAL 12
123//#define MDS_REPLY_PORTAL 13
124#define MDS_BULK_PORTAL 14
125#define LDLM_CB_REQUEST_PORTAL 15
126#define LDLM_CB_REPLY_PORTAL 16
127#define LDLM_CANCEL_REQUEST_PORTAL 17
128#define LDLM_CANCEL_REPLY_PORTAL 18
129//#define PTLBD_REQUEST_PORTAL 19
130//#define PTLBD_REPLY_PORTAL 20
131//#define PTLBD_BULK_PORTAL 21
132#define MDS_SETATTR_PORTAL 22
133#define MDS_READPAGE_PORTAL 23
134#define MDS_MDS_PORTAL 24
135
136#define MGC_REPLY_PORTAL 25
137#define MGS_REQUEST_PORTAL 26
138#define MGS_REPLY_PORTAL 27
139#define OST_REQUEST_PORTAL 28
140#define FLD_REQUEST_PORTAL 29
141#define SEQ_METADATA_PORTAL 30
142#define SEQ_DATA_PORTAL 31
143#define SEQ_CONTROLLER_PORTAL 32
144#define MGS_BULK_PORTAL 33
145
146/* Portal 63 is reserved for the Cray Inc DVS - nic@cray.com, roe@cray.com, n8851@cray.com */
147
148/* packet types */
149#define PTL_RPC_MSG_REQUEST 4711
150#define PTL_RPC_MSG_ERR 4712
151#define PTL_RPC_MSG_REPLY 4713
152
153/* DON'T use swabbed values of MAGIC as magic! */
154#define LUSTRE_MSG_MAGIC_V1 0x0BD00BD0
155#define LUSTRE_MSG_MAGIC_V2 0x0BD00BD3
156
157#define LUSTRE_MSG_MAGIC_V1_SWABBED 0xD00BD00B
158#define LUSTRE_MSG_MAGIC_V2_SWABBED 0xD30BD00B
159
160#define LUSTRE_MSG_MAGIC LUSTRE_MSG_MAGIC_V2
161
162#define PTLRPC_MSG_VERSION 0x00000003
163#define LUSTRE_VERSION_MASK 0xffff0000
164#define LUSTRE_OBD_VERSION 0x00010000
165#define LUSTRE_MDS_VERSION 0x00020000
166#define LUSTRE_OST_VERSION 0x00030000
167#define LUSTRE_DLM_VERSION 0x00040000
168#define LUSTRE_LOG_VERSION 0x00050000
169#define LUSTRE_MGS_VERSION 0x00060000
170
171typedef __u32 mdsno_t;
172typedef __u64 seqno_t;
173typedef __u64 obd_id;
174typedef __u64 obd_seq;
175typedef __s64 obd_time;
176typedef __u64 obd_size;
177typedef __u64 obd_off;
178typedef __u64 obd_blocks;
179typedef __u64 obd_valid;
180typedef __u32 obd_blksize;
181typedef __u32 obd_mode;
182typedef __u32 obd_uid;
183typedef __u32 obd_gid;
184typedef __u32 obd_flag;
185typedef __u32 obd_count;
186
187/**
188 * Describes a range of sequence, lsr_start is included but lsr_end is
189 * not in the range.
190 * Same structure is used in fld module where lsr_index field holds mdt id
191 * of the home mdt.
192 */
193struct lu_seq_range {
194 __u64 lsr_start;
195 __u64 lsr_end;
196 __u32 lsr_index;
197 __u32 lsr_flags;
198};
199
200#define LU_SEQ_RANGE_MDT 0x0
201#define LU_SEQ_RANGE_OST 0x1
202#define LU_SEQ_RANGE_ANY 0x3
203
204#define LU_SEQ_RANGE_MASK 0x3
205
206static inline unsigned fld_range_type(const struct lu_seq_range *range)
207{
208 return range->lsr_flags & LU_SEQ_RANGE_MASK;
209}
210
211static inline int fld_range_is_ost(const struct lu_seq_range *range)
212{
213 return fld_range_type(range) == LU_SEQ_RANGE_OST;
214}
215
216static inline int fld_range_is_mdt(const struct lu_seq_range *range)
217{
218 return fld_range_type(range) == LU_SEQ_RANGE_MDT;
219}
220
221/**
222 * This all range is only being used when fld client sends fld query request,
223 * but it does not know whether the seq is MDT or OST, so it will send req
224 * with ALL type, which means either seq type gotten from lookup can be
225 * expected.
226 */
227static inline unsigned fld_range_is_any(const struct lu_seq_range *range)
228{
229 return fld_range_type(range) == LU_SEQ_RANGE_ANY;
230}
231
232static inline void fld_range_set_type(struct lu_seq_range *range,
233 unsigned flags)
234{
235 LASSERT(!(flags & ~LU_SEQ_RANGE_MASK));
236 range->lsr_flags |= flags;
237}
238
239static inline void fld_range_set_mdt(struct lu_seq_range *range)
240{
241 fld_range_set_type(range, LU_SEQ_RANGE_MDT);
242}
243
244static inline void fld_range_set_ost(struct lu_seq_range *range)
245{
246 fld_range_set_type(range, LU_SEQ_RANGE_OST);
247}
248
249static inline void fld_range_set_any(struct lu_seq_range *range)
250{
251 fld_range_set_type(range, LU_SEQ_RANGE_ANY);
252}
253
254/**
255 * returns width of given range \a r
256 */
257
258static inline __u64 range_space(const struct lu_seq_range *range)
259{
260 return range->lsr_end - range->lsr_start;
261}
262
263/**
264 * initialize range to zero
265 */
266
267static inline void range_init(struct lu_seq_range *range)
268{
269 range->lsr_start = range->lsr_end = range->lsr_index = 0;
270}
271
272/**
273 * check if given seq id \a s is within given range \a r
274 */
275
276static inline int range_within(const struct lu_seq_range *range,
277 __u64 s)
278{
279 return s >= range->lsr_start && s < range->lsr_end;
280}
281
282static inline int range_is_sane(const struct lu_seq_range *range)
283{
284 return (range->lsr_end >= range->lsr_start);
285}
286
287static inline int range_is_zero(const struct lu_seq_range *range)
288{
289 return (range->lsr_start == 0 && range->lsr_end == 0);
290}
291
292static inline int range_is_exhausted(const struct lu_seq_range *range)
293
294{
295 return range_space(range) == 0;
296}
297
298/* return 0 if two range have the same location */
299static inline int range_compare_loc(const struct lu_seq_range *r1,
300 const struct lu_seq_range *r2)
301{
302 return r1->lsr_index != r2->lsr_index ||
303 r1->lsr_flags != r2->lsr_flags;
304}
305
306#define DRANGE "[%#16.16"LPF64"x-%#16.16"LPF64"x):%x:%s"
307
308#define PRANGE(range) \
309 (range)->lsr_start, \
310 (range)->lsr_end, \
311 (range)->lsr_index, \
312 fld_range_is_mdt(range) ? "mdt" : "ost"
313
314
315/** \defgroup lu_fid lu_fid
316 * @{ */
317
318/**
319 * Flags for lustre_mdt_attrs::lma_compat and lustre_mdt_attrs::lma_incompat.
320 * Deprecated since HSM and SOM attributes are now stored in separate on-disk
321 * xattr.
322 */
323enum lma_compat {
c0ac76d9
FY
324 LMAC_HSM = 0x00000001,
325 LMAC_SOM = 0x00000002,
326 LMAC_NOT_IN_OI = 0x00000004, /* the object does NOT need OI mapping */
327 LMAC_FID_ON_OST = 0x00000008, /* For OST-object, its OI mapping is
328 * under /O/<seq>/d<x>. */
d7e09d03
PT
329};
330
331/**
332 * Masks for all features that should be supported by a Lustre version to
333 * access a specific file.
334 * This information is stored in lustre_mdt_attrs::lma_incompat.
335 */
336enum lma_incompat {
337 LMAI_RELEASED = 0x0000001, /* file is released */
338 LMAI_AGENT = 0x00000002, /* agent inode */
339 LMAI_REMOTE_PARENT = 0x00000004, /* the parent of the object
340 is on the remote MDT */
341};
342#define LMA_INCOMPAT_SUPP (LMAI_AGENT | LMAI_REMOTE_PARENT)
343
344extern void lustre_lma_swab(struct lustre_mdt_attrs *lma);
345extern void lustre_lma_init(struct lustre_mdt_attrs *lma,
346 const struct lu_fid *fid, __u32 incompat);
347/**
348 * SOM on-disk attributes stored in a separate xattr.
349 */
350struct som_attrs {
351 /** Bitfield for supported data in this structure. For future use. */
352 __u32 som_compat;
353
354 /** Incompat feature list. The supported feature mask is availabe in
355 * SOM_INCOMPAT_SUPP */
356 __u32 som_incompat;
357
358 /** IO Epoch SOM attributes belongs to */
359 __u64 som_ioepoch;
360 /** total file size in objects */
361 __u64 som_size;
362 /** total fs blocks in objects */
363 __u64 som_blocks;
364 /** mds mount id the size is valid for */
365 __u64 som_mountid;
366};
367extern void lustre_som_swab(struct som_attrs *attrs);
368
369#define SOM_INCOMPAT_SUPP 0x0
370
371/**
372 * HSM on-disk attributes stored in a separate xattr.
373 */
374struct hsm_attrs {
375 /** Bitfield for supported data in this structure. For future use. */
376 __u32 hsm_compat;
377
378 /** HSM flags, see hsm_flags enum below */
379 __u32 hsm_flags;
380 /** backend archive id associated with the file */
381 __u64 hsm_arch_id;
382 /** version associated with the last archiving, if any */
383 __u64 hsm_arch_ver;
384};
385extern void lustre_hsm_swab(struct hsm_attrs *attrs);
386
387/**
388 * fid constants
389 */
390enum {
66cc83e9
MP
391 /** LASTID file has zero OID */
392 LUSTRE_FID_LASTID_OID = 0UL,
d7e09d03
PT
393 /** initial fid id value */
394 LUSTRE_FID_INIT_OID = 1UL
395};
396
397/** returns fid object sequence */
398static inline __u64 fid_seq(const struct lu_fid *fid)
399{
400 return fid->f_seq;
401}
402
403/** returns fid object id */
404static inline __u32 fid_oid(const struct lu_fid *fid)
405{
406 return fid->f_oid;
407}
408
409/** returns fid object version */
410static inline __u32 fid_ver(const struct lu_fid *fid)
411{
412 return fid->f_ver;
413}
414
415static inline void fid_zero(struct lu_fid *fid)
416{
417 memset(fid, 0, sizeof(*fid));
418}
419
420static inline obd_id fid_ver_oid(const struct lu_fid *fid)
421{
422 return ((__u64)fid_ver(fid) << 32 | fid_oid(fid));
423}
424
425/**
426 * Note that reserved SEQ numbers below 12 will conflict with ldiskfs
427 * inodes in the IGIF namespace, so these reserved SEQ numbers can be
428 * used for other purposes and not risk collisions with existing inodes.
429 *
430 * Different FID Format
431 * http://arch.lustre.org/index.php?title=Interoperability_fids_zfs#NEW.0
432 */
433enum fid_seq {
434 FID_SEQ_OST_MDT0 = 0,
435 FID_SEQ_LLOG = 1, /* unnamed llogs */
436 FID_SEQ_ECHO = 2,
437 FID_SEQ_OST_MDT1 = 3,
438 FID_SEQ_OST_MAX = 9, /* Max MDT count before OST_on_FID */
439 FID_SEQ_LLOG_NAME = 10, /* named llogs */
440 FID_SEQ_RSVD = 11,
441 FID_SEQ_IGIF = 12,
442 FID_SEQ_IGIF_MAX = 0x0ffffffffULL,
443 FID_SEQ_IDIF = 0x100000000ULL,
444 FID_SEQ_IDIF_MAX = 0x1ffffffffULL,
445 /* Normal FID sequence starts from this value, i.e. 1<<33 */
446 FID_SEQ_START = 0x200000000ULL,
447 /* sequence for local pre-defined FIDs listed in local_oid */
448 FID_SEQ_LOCAL_FILE = 0x200000001ULL,
449 FID_SEQ_DOT_LUSTRE = 0x200000002ULL,
450 /* sequence is used for local named objects FIDs generated
451 * by local_object_storage library */
452 FID_SEQ_LOCAL_NAME = 0x200000003ULL,
453 /* Because current FLD will only cache the fid sequence, instead
454 * of oid on the client side, if the FID needs to be exposed to
455 * clients sides, it needs to make sure all of fids under one
456 * sequence will be located in one MDT. */
457 FID_SEQ_SPECIAL = 0x200000004ULL,
458 FID_SEQ_QUOTA = 0x200000005ULL,
459 FID_SEQ_QUOTA_GLB = 0x200000006ULL,
460 FID_SEQ_ROOT = 0x200000007ULL, /* Located on MDT0 */
461 FID_SEQ_NORMAL = 0x200000400ULL,
462 FID_SEQ_LOV_DEFAULT = 0xffffffffffffffffULL
463};
464
465#define OBIF_OID_MAX_BITS 32
466#define OBIF_MAX_OID (1ULL << OBIF_OID_MAX_BITS)
467#define OBIF_OID_MASK ((1ULL << OBIF_OID_MAX_BITS) - 1)
468#define IDIF_OID_MAX_BITS 48
469#define IDIF_MAX_OID (1ULL << IDIF_OID_MAX_BITS)
470#define IDIF_OID_MASK ((1ULL << IDIF_OID_MAX_BITS) - 1)
471
472/** OID for FID_SEQ_SPECIAL */
473enum special_oid {
474 /* Big Filesystem Lock to serialize rename operations */
475 FID_OID_SPECIAL_BFL = 1UL,
476};
477
478/** OID for FID_SEQ_DOT_LUSTRE */
479enum dot_lustre_oid {
480 FID_OID_DOT_LUSTRE = 1UL,
481 FID_OID_DOT_LUSTRE_OBF = 2UL,
482};
483
484static inline int fid_seq_is_mdt0(obd_seq seq)
485{
486 return (seq == FID_SEQ_OST_MDT0);
487}
488
489static inline int fid_seq_is_mdt(const __u64 seq)
490{
491 return seq == FID_SEQ_OST_MDT0 || seq >= FID_SEQ_NORMAL;
492};
493
494static inline int fid_seq_is_echo(obd_seq seq)
495{
496 return (seq == FID_SEQ_ECHO);
497}
498
499static inline int fid_is_echo(const struct lu_fid *fid)
500{
501 return fid_seq_is_echo(fid_seq(fid));
502}
503
504static inline int fid_seq_is_llog(obd_seq seq)
505{
506 return (seq == FID_SEQ_LLOG);
507}
508
509static inline int fid_is_llog(const struct lu_fid *fid)
510{
66cc83e9
MP
511 /* file with OID == 0 is not llog but contains last oid */
512 return fid_seq_is_llog(fid_seq(fid)) && fid_oid(fid) > 0;
d7e09d03
PT
513}
514
515static inline int fid_seq_is_rsvd(const __u64 seq)
516{
517 return (seq > FID_SEQ_OST_MDT0 && seq <= FID_SEQ_RSVD);
518};
519
520static inline int fid_seq_is_special(const __u64 seq)
521{
522 return seq == FID_SEQ_SPECIAL;
523};
524
525static inline int fid_seq_is_local_file(const __u64 seq)
526{
527 return seq == FID_SEQ_LOCAL_FILE ||
528 seq == FID_SEQ_LOCAL_NAME;
529};
530
531static inline int fid_seq_is_root(const __u64 seq)
532{
533 return seq == FID_SEQ_ROOT;
534}
535
536static inline int fid_seq_is_dot(const __u64 seq)
537{
538 return seq == FID_SEQ_DOT_LUSTRE;
539}
540
541static inline int fid_seq_is_default(const __u64 seq)
542{
543 return seq == FID_SEQ_LOV_DEFAULT;
544}
545
546static inline int fid_is_mdt0(const struct lu_fid *fid)
547{
548 return fid_seq_is_mdt0(fid_seq(fid));
549}
550
551static inline void lu_root_fid(struct lu_fid *fid)
552{
553 fid->f_seq = FID_SEQ_ROOT;
554 fid->f_oid = 1;
555 fid->f_ver = 0;
556}
557
558/**
559 * Check if a fid is igif or not.
560 * \param fid the fid to be tested.
561 * \return true if the fid is a igif; otherwise false.
562 */
563static inline int fid_seq_is_igif(const __u64 seq)
564{
565 return seq >= FID_SEQ_IGIF && seq <= FID_SEQ_IGIF_MAX;
566}
567
568static inline int fid_is_igif(const struct lu_fid *fid)
569{
570 return fid_seq_is_igif(fid_seq(fid));
571}
572
573/**
574 * Check if a fid is idif or not.
575 * \param fid the fid to be tested.
576 * \return true if the fid is a idif; otherwise false.
577 */
578static inline int fid_seq_is_idif(const __u64 seq)
579{
580 return seq >= FID_SEQ_IDIF && seq <= FID_SEQ_IDIF_MAX;
581}
582
583static inline int fid_is_idif(const struct lu_fid *fid)
584{
585 return fid_seq_is_idif(fid_seq(fid));
586}
587
588static inline int fid_is_local_file(const struct lu_fid *fid)
589{
590 return fid_seq_is_local_file(fid_seq(fid));
591}
592
593static inline int fid_seq_is_norm(const __u64 seq)
594{
595 return (seq >= FID_SEQ_NORMAL);
596}
597
598static inline int fid_is_norm(const struct lu_fid *fid)
599{
600 return fid_seq_is_norm(fid_seq(fid));
601}
602
603/* convert an OST objid into an IDIF FID SEQ number */
604static inline obd_seq fid_idif_seq(obd_id id, __u32 ost_idx)
605{
606 return FID_SEQ_IDIF | (ost_idx << 16) | ((id >> 32) & 0xffff);
607}
608
609/* convert a packed IDIF FID into an OST objid */
610static inline obd_id fid_idif_id(obd_seq seq, __u32 oid, __u32 ver)
611{
612 return ((__u64)ver << 48) | ((seq & 0xffff) << 32) | oid;
613}
614
615/* extract ost index from IDIF FID */
616static inline __u32 fid_idif_ost_idx(const struct lu_fid *fid)
617{
618 LASSERT(fid_is_idif(fid));
619 return (fid_seq(fid) >> 16) & 0xffff;
620}
621
622/* extract OST sequence (group) from a wire ost_id (id/seq) pair */
623static inline obd_seq ostid_seq(const struct ost_id *ostid)
624{
625 if (fid_seq_is_mdt0(ostid->oi.oi_seq))
626 return FID_SEQ_OST_MDT0;
627
628 if (fid_seq_is_default(ostid->oi.oi_seq))
629 return FID_SEQ_LOV_DEFAULT;
630
631 if (fid_is_idif(&ostid->oi_fid))
632 return FID_SEQ_OST_MDT0;
633
634 return fid_seq(&ostid->oi_fid);
635}
636
637/* extract OST objid from a wire ost_id (id/seq) pair */
638static inline obd_id ostid_id(const struct ost_id *ostid)
639{
640 if (fid_seq_is_mdt0(ostid_seq(ostid)))
641 return ostid->oi.oi_id & IDIF_OID_MASK;
642
643 if (fid_is_idif(&ostid->oi_fid))
644 return fid_idif_id(fid_seq(&ostid->oi_fid),
645 fid_oid(&ostid->oi_fid), 0);
646
647 return fid_oid(&ostid->oi_fid);
648}
649
650static inline void ostid_set_seq(struct ost_id *oi, __u64 seq)
651{
652 if (fid_seq_is_mdt0(seq) || fid_seq_is_default(seq)) {
653 oi->oi.oi_seq = seq;
654 } else {
655 oi->oi_fid.f_seq = seq;
656 /* Note: if f_oid + f_ver is zero, we need init it
657 * to be 1, otherwise, ostid_seq will treat this
658 * as old ostid (oi_seq == 0) */
659 if (oi->oi_fid.f_oid == 0 && oi->oi_fid.f_ver == 0)
660 oi->oi_fid.f_oid = LUSTRE_FID_INIT_OID;
661 }
662}
663
664static inline void ostid_set_seq_mdt0(struct ost_id *oi)
665{
666 ostid_set_seq(oi, FID_SEQ_OST_MDT0);
667}
668
669static inline void ostid_set_seq_echo(struct ost_id *oi)
670{
671 ostid_set_seq(oi, FID_SEQ_ECHO);
672}
673
674static inline void ostid_set_seq_llog(struct ost_id *oi)
675{
676 ostid_set_seq(oi, FID_SEQ_LLOG);
677}
678
679/**
680 * Note: we need check oi_seq to decide where to set oi_id,
681 * so oi_seq should always be set ahead of oi_id.
682 */
683static inline void ostid_set_id(struct ost_id *oi, __u64 oid)
684{
685 if (fid_seq_is_mdt0(ostid_seq(oi))) {
686 if (oid >= IDIF_MAX_OID) {
687 CERROR("Bad "LPU64" to set "DOSTID"\n",
688 oid, POSTID(oi));
689 return;
690 }
691 oi->oi.oi_id = oid;
692 } else {
693 if (oid > OBIF_MAX_OID) {
694 CERROR("Bad "LPU64" to set "DOSTID"\n",
695 oid, POSTID(oi));
696 return;
697 }
698 oi->oi_fid.f_oid = oid;
699 }
700}
701
702static inline void ostid_inc_id(struct ost_id *oi)
703{
704 if (fid_seq_is_mdt0(ostid_seq(oi))) {
705 if (unlikely(ostid_id(oi) + 1 > IDIF_MAX_OID)) {
706 CERROR("Bad inc "DOSTID"\n", POSTID(oi));
707 return;
708 }
709 oi->oi.oi_id++;
710 } else {
711 oi->oi_fid.f_oid++;
712 }
713}
714
715static inline void ostid_dec_id(struct ost_id *oi)
716{
717 if (fid_seq_is_mdt0(ostid_seq(oi)))
718 oi->oi.oi_id--;
719 else
720 oi->oi_fid.f_oid--;
721}
722
723/**
724 * Unpack an OST object id/seq (group) into a FID. This is needed for
725 * converting all obdo, lmm, lsm, etc. 64-bit id/seq pairs into proper
726 * FIDs. Note that if an id/seq is already in FID/IDIF format it will
727 * be passed through unchanged. Only legacy OST objects in "group 0"
728 * will be mapped into the IDIF namespace so that they can fit into the
729 * struct lu_fid fields without loss. For reference see:
730 * http://arch.lustre.org/index.php?title=Interoperability_fids_zfs
731 */
732static inline int ostid_to_fid(struct lu_fid *fid, struct ost_id *ostid,
733 __u32 ost_idx)
734{
735 if (ost_idx > 0xffff) {
736 CERROR("bad ost_idx, "DOSTID" ost_idx:%u\n", POSTID(ostid),
737 ost_idx);
738 return -EBADF;
739 }
740
741 if (fid_seq_is_mdt0(ostid_seq(ostid))) {
742 /* This is a "legacy" (old 1.x/2.early) OST object in "group 0"
743 * that we map into the IDIF namespace. It allows up to 2^48
744 * objects per OST, as this is the object namespace that has
745 * been in production for years. This can handle create rates
746 * of 1M objects/s/OST for 9 years, or combinations thereof. */
747 if (ostid_id(ostid) >= IDIF_MAX_OID) {
748 CERROR("bad MDT0 id, "DOSTID" ost_idx:%u\n",
749 POSTID(ostid), ost_idx);
750 return -EBADF;
751 }
752 fid->f_seq = fid_idif_seq(ostid_id(ostid), ost_idx);
753 /* truncate to 32 bits by assignment */
754 fid->f_oid = ostid_id(ostid);
755 /* in theory, not currently used */
756 fid->f_ver = ostid_id(ostid) >> 48;
757 } else /* if (fid_seq_is_idif(seq) || fid_seq_is_norm(seq)) */ {
758 /* This is either an IDIF object, which identifies objects across
759 * all OSTs, or a regular FID. The IDIF namespace maps legacy
760 * OST objects into the FID namespace. In both cases, we just
761 * pass the FID through, no conversion needed. */
762 if (ostid->oi_fid.f_ver != 0) {
763 CERROR("bad MDT0 id, "DOSTID" ost_idx:%u\n",
764 POSTID(ostid), ost_idx);
765 return -EBADF;
766 }
767 *fid = ostid->oi_fid;
768 }
769
770 return 0;
771}
772
773/* pack any OST FID into an ostid (id/seq) for the wire/disk */
774static inline int fid_to_ostid(const struct lu_fid *fid, struct ost_id *ostid)
775{
776 if (unlikely(fid_seq_is_igif(fid->f_seq))) {
777 CERROR("bad IGIF, "DFID"\n", PFID(fid));
778 return -EBADF;
779 }
780
781 if (fid_is_idif(fid)) {
782 ostid_set_seq_mdt0(ostid);
783 ostid_set_id(ostid, fid_idif_id(fid_seq(fid), fid_oid(fid),
784 fid_ver(fid)));
785 } else {
786 ostid->oi_fid = *fid;
787 }
788
789 return 0;
790}
791
792/* Check whether the fid is for LAST_ID */
793static inline int fid_is_last_id(const struct lu_fid *fid)
794{
66cc83e9 795 return (fid_oid(fid) == 0);
d7e09d03
PT
796}
797
798/**
799 * Get inode number from a igif.
800 * \param fid a igif to get inode number from.
801 * \return inode number for the igif.
802 */
803static inline ino_t lu_igif_ino(const struct lu_fid *fid)
804{
805 return fid_seq(fid);
806}
807
808extern void lustre_swab_ost_id(struct ost_id *oid);
809
810/**
811 * Get inode generation from a igif.
812 * \param fid a igif to get inode generation from.
813 * \return inode generation for the igif.
814 */
815static inline __u32 lu_igif_gen(const struct lu_fid *fid)
816{
817 return fid_oid(fid);
818}
819
820/**
821 * Build igif from the inode number/generation.
822 */
823static inline void lu_igif_build(struct lu_fid *fid, __u32 ino, __u32 gen)
824{
825 fid->f_seq = ino;
826 fid->f_oid = gen;
827 fid->f_ver = 0;
828}
829
830/*
831 * Fids are transmitted across network (in the sender byte-ordering),
832 * and stored on disk in big-endian order.
833 */
834static inline void fid_cpu_to_le(struct lu_fid *dst, const struct lu_fid *src)
835{
836 /* check that all fields are converted */
ec83e611
JP
837 CLASSERT(sizeof(*src) ==
838 sizeof(fid_seq(src)) +
839 sizeof(fid_oid(src)) +
840 sizeof(fid_ver(src)));
d7e09d03
PT
841 dst->f_seq = cpu_to_le64(fid_seq(src));
842 dst->f_oid = cpu_to_le32(fid_oid(src));
843 dst->f_ver = cpu_to_le32(fid_ver(src));
844}
845
846static inline void fid_le_to_cpu(struct lu_fid *dst, const struct lu_fid *src)
847{
848 /* check that all fields are converted */
ec83e611
JP
849 CLASSERT(sizeof(*src) ==
850 sizeof(fid_seq(src)) +
851 sizeof(fid_oid(src)) +
852 sizeof(fid_ver(src)));
d7e09d03
PT
853 dst->f_seq = le64_to_cpu(fid_seq(src));
854 dst->f_oid = le32_to_cpu(fid_oid(src));
855 dst->f_ver = le32_to_cpu(fid_ver(src));
856}
857
858static inline void fid_cpu_to_be(struct lu_fid *dst, const struct lu_fid *src)
859{
860 /* check that all fields are converted */
ec83e611
JP
861 CLASSERT(sizeof(*src) ==
862 sizeof(fid_seq(src)) +
863 sizeof(fid_oid(src)) +
864 sizeof(fid_ver(src)));
d7e09d03
PT
865 dst->f_seq = cpu_to_be64(fid_seq(src));
866 dst->f_oid = cpu_to_be32(fid_oid(src));
867 dst->f_ver = cpu_to_be32(fid_ver(src));
868}
869
870static inline void fid_be_to_cpu(struct lu_fid *dst, const struct lu_fid *src)
871{
872 /* check that all fields are converted */
ec83e611
JP
873 CLASSERT(sizeof(*src) ==
874 sizeof(fid_seq(src)) +
875 sizeof(fid_oid(src)) +
876 sizeof(fid_ver(src)));
d7e09d03
PT
877 dst->f_seq = be64_to_cpu(fid_seq(src));
878 dst->f_oid = be32_to_cpu(fid_oid(src));
879 dst->f_ver = be32_to_cpu(fid_ver(src));
880}
881
882static inline int fid_is_sane(const struct lu_fid *fid)
883{
884 return fid != NULL &&
885 ((fid_seq(fid) >= FID_SEQ_START && fid_ver(fid) == 0) ||
886 fid_is_igif(fid) || fid_is_idif(fid) ||
887 fid_seq_is_rsvd(fid_seq(fid)));
888}
889
890static inline int fid_is_zero(const struct lu_fid *fid)
891{
892 return fid_seq(fid) == 0 && fid_oid(fid) == 0;
893}
894
895extern void lustre_swab_lu_fid(struct lu_fid *fid);
896extern void lustre_swab_lu_seq_range(struct lu_seq_range *range);
897
898static inline int lu_fid_eq(const struct lu_fid *f0, const struct lu_fid *f1)
899{
900 /* Check that there is no alignment padding. */
ec83e611
JP
901 CLASSERT(sizeof(*f0) ==
902 sizeof(f0->f_seq) +
903 sizeof(f0->f_oid) +
904 sizeof(f0->f_ver));
905 return memcmp(f0, f1, sizeof(*f0)) == 0;
d7e09d03
PT
906}
907
908#define __diff_normalize(val0, val1) \
909({ \
910 typeof(val0) __val0 = (val0); \
911 typeof(val1) __val1 = (val1); \
912 \
913 (__val0 == __val1 ? 0 : __val0 > __val1 ? +1 : -1); \
914})
915
916static inline int lu_fid_cmp(const struct lu_fid *f0,
917 const struct lu_fid *f1)
918{
919 return
920 __diff_normalize(fid_seq(f0), fid_seq(f1)) ?:
921 __diff_normalize(fid_oid(f0), fid_oid(f1)) ?:
922 __diff_normalize(fid_ver(f0), fid_ver(f1));
923}
924
c5b60ba7 925static inline void ostid_cpu_to_le(const struct ost_id *src_oi,
d7e09d03
PT
926 struct ost_id *dst_oi)
927{
928 if (fid_seq_is_mdt0(ostid_seq(src_oi))) {
929 dst_oi->oi.oi_id = cpu_to_le64(src_oi->oi.oi_id);
930 dst_oi->oi.oi_seq = cpu_to_le64(src_oi->oi.oi_seq);
931 } else {
932 fid_cpu_to_le(&dst_oi->oi_fid, &src_oi->oi_fid);
933 }
934}
935
c5b60ba7 936static inline void ostid_le_to_cpu(const struct ost_id *src_oi,
d7e09d03
PT
937 struct ost_id *dst_oi)
938{
939 if (fid_seq_is_mdt0(ostid_seq(src_oi))) {
940 dst_oi->oi.oi_id = le64_to_cpu(src_oi->oi.oi_id);
941 dst_oi->oi.oi_seq = le64_to_cpu(src_oi->oi.oi_seq);
942 } else {
943 fid_le_to_cpu(&dst_oi->oi_fid, &src_oi->oi_fid);
944 }
945}
946
947/** @} lu_fid */
948
949/** \defgroup lu_dir lu_dir
950 * @{ */
951
952/**
953 * Enumeration of possible directory entry attributes.
954 *
955 * Attributes follow directory entry header in the order they appear in this
956 * enumeration.
957 */
958enum lu_dirent_attrs {
959 LUDA_FID = 0x0001,
960 LUDA_TYPE = 0x0002,
961 LUDA_64BITHASH = 0x0004,
962
963 /* The following attrs are used for MDT interanl only,
964 * not visible to client */
965
966 /* Verify the dirent consistency */
967 LUDA_VERIFY = 0x8000,
968 /* Only check but not repair the dirent inconsistency */
969 LUDA_VERIFY_DRYRUN = 0x4000,
970 /* The dirent has been repaired, or to be repaired (dryrun). */
971 LUDA_REPAIR = 0x2000,
972 /* The system is upgraded, has beed or to be repaired (dryrun). */
973 LUDA_UPGRADE = 0x1000,
974 /* Ignore this record, go to next directly. */
975 LUDA_IGNORE = 0x0800,
976};
977
978#define LU_DIRENT_ATTRS_MASK 0xf800
979
980/**
981 * Layout of readdir pages, as transmitted on wire.
982 */
983struct lu_dirent {
984 /** valid if LUDA_FID is set. */
985 struct lu_fid lde_fid;
986 /** a unique entry identifier: a hash or an offset. */
987 __u64 lde_hash;
988 /** total record length, including all attributes. */
989 __u16 lde_reclen;
990 /** name length */
991 __u16 lde_namelen;
992 /** optional variable size attributes following this entry.
993 * taken from enum lu_dirent_attrs.
994 */
995 __u32 lde_attrs;
996 /** name is followed by the attributes indicated in ->ldp_attrs, in
997 * their natural order. After the last attribute, padding bytes are
998 * added to make ->lde_reclen a multiple of 8.
999 */
1000 char lde_name[0];
1001};
1002
1003/*
1004 * Definitions of optional directory entry attributes formats.
1005 *
1006 * Individual attributes do not have their length encoded in a generic way. It
1007 * is assumed that consumer of an attribute knows its format. This means that
1008 * it is impossible to skip over an unknown attribute, except by skipping over all
1009 * remaining attributes (by using ->lde_reclen), which is not too
1010 * constraining, because new server versions will append new attributes at
1011 * the end of an entry.
1012 */
1013
1014/**
1015 * Fid directory attribute: a fid of an object referenced by the entry. This
1016 * will be almost always requested by the client and supplied by the server.
1017 *
1018 * Aligned to 8 bytes.
1019 */
1020/* To have compatibility with 1.8, lets have fid in lu_dirent struct. */
1021
1022/**
1023 * File type.
1024 *
1025 * Aligned to 2 bytes.
1026 */
1027struct luda_type {
1028 __u16 lt_type;
1029};
1030
79783924
PT
1031#ifndef IFSHIFT
1032#define IFSHIFT 12
1033#endif
1034
1035#ifndef IFTODT
1036#define IFTODT(type) (((type) & S_IFMT) >> IFSHIFT)
1037#endif
1038#ifndef DTTOIF
1039#define DTTOIF(dirtype) ((dirtype) << IFSHIFT)
1040#endif
1041
1042
d7e09d03
PT
1043struct lu_dirpage {
1044 __u64 ldp_hash_start;
1045 __u64 ldp_hash_end;
1046 __u32 ldp_flags;
1047 __u32 ldp_pad0;
1048 struct lu_dirent ldp_entries[0];
1049};
1050
1051enum lu_dirpage_flags {
1052 /**
1053 * dirpage contains no entry.
1054 */
1055 LDF_EMPTY = 1 << 0,
1056 /**
1057 * last entry's lde_hash equals ldp_hash_end.
1058 */
1059 LDF_COLLIDE = 1 << 1
1060};
1061
1062static inline struct lu_dirent *lu_dirent_start(struct lu_dirpage *dp)
1063{
1064 if (le32_to_cpu(dp->ldp_flags) & LDF_EMPTY)
1065 return NULL;
1066 else
1067 return dp->ldp_entries;
1068}
1069
1070static inline struct lu_dirent *lu_dirent_next(struct lu_dirent *ent)
1071{
1072 struct lu_dirent *next;
1073
1074 if (le16_to_cpu(ent->lde_reclen) != 0)
1075 next = ((void *)ent) + le16_to_cpu(ent->lde_reclen);
1076 else
1077 next = NULL;
1078
1079 return next;
1080}
1081
1082static inline int lu_dirent_calc_size(int namelen, __u16 attr)
1083{
1084 int size;
1085
1086 if (attr & LUDA_TYPE) {
1087 const unsigned align = sizeof(struct luda_type) - 1;
1088 size = (sizeof(struct lu_dirent) + namelen + align) & ~align;
1089 size += sizeof(struct luda_type);
1090 } else
1091 size = sizeof(struct lu_dirent) + namelen;
1092
1093 return (size + 7) & ~7;
1094}
1095
1096static inline int lu_dirent_size(struct lu_dirent *ent)
1097{
1098 if (le16_to_cpu(ent->lde_reclen) == 0) {
1099 return lu_dirent_calc_size(le16_to_cpu(ent->lde_namelen),
1100 le32_to_cpu(ent->lde_attrs));
1101 }
1102 return le16_to_cpu(ent->lde_reclen);
1103}
1104
1105#define MDS_DIR_END_OFF 0xfffffffffffffffeULL
1106
1107/**
1108 * MDS_READPAGE page size
1109 *
1110 * This is the directory page size packed in MDS_READPAGE RPC.
1111 * It's different than PAGE_CACHE_SIZE because the client needs to
1112 * access the struct lu_dirpage header packed at the beginning of
1113 * the "page" and without this there isn't any way to know find the
1114 * lu_dirpage header is if client and server PAGE_CACHE_SIZE differ.
1115 */
1116#define LU_PAGE_SHIFT 12
1117#define LU_PAGE_SIZE (1UL << LU_PAGE_SHIFT)
1118#define LU_PAGE_MASK (~(LU_PAGE_SIZE - 1))
1119
1120#define LU_PAGE_COUNT (1 << (PAGE_CACHE_SHIFT - LU_PAGE_SHIFT))
1121
1122/** @} lu_dir */
1123
1124struct lustre_handle {
1125 __u64 cookie;
1126};
1127#define DEAD_HANDLE_MAGIC 0xdeadbeefcafebabeULL
1128
1129static inline int lustre_handle_is_used(struct lustre_handle *lh)
1130{
1131 return lh->cookie != 0ull;
1132}
1133
1134static inline int lustre_handle_equal(const struct lustre_handle *lh1,
1135 const struct lustre_handle *lh2)
1136{
1137 return lh1->cookie == lh2->cookie;
1138}
1139
1140static inline void lustre_handle_copy(struct lustre_handle *tgt,
1141 struct lustre_handle *src)
1142{
1143 tgt->cookie = src->cookie;
1144}
1145
1146/* flags for lm_flags */
1147#define MSGHDR_AT_SUPPORT 0x1
1148#define MSGHDR_CKSUM_INCOMPAT18 0x2
1149
1150#define lustre_msg lustre_msg_v2
1151/* we depend on this structure to be 8-byte aligned */
1152/* this type is only endian-adjusted in lustre_unpack_msg() */
1153struct lustre_msg_v2 {
1154 __u32 lm_bufcount;
1155 __u32 lm_secflvr;
1156 __u32 lm_magic;
1157 __u32 lm_repsize;
1158 __u32 lm_cksum;
1159 __u32 lm_flags;
1160 __u32 lm_padding_2;
1161 __u32 lm_padding_3;
1162 __u32 lm_buflens[0];
1163};
1164
1165/* without gss, ptlrpc_body is put at the first buffer. */
1166#define PTLRPC_NUM_VERSIONS 4
1167#define JOBSTATS_JOBID_SIZE 32 /* 32 bytes string */
1168struct ptlrpc_body_v3 {
1169 struct lustre_handle pb_handle;
1170 __u32 pb_type;
1171 __u32 pb_version;
1172 __u32 pb_opc;
1173 __u32 pb_status;
1174 __u64 pb_last_xid;
1175 __u64 pb_last_seen;
1176 __u64 pb_last_committed;
1177 __u64 pb_transno;
1178 __u32 pb_flags;
1179 __u32 pb_op_flags;
1180 __u32 pb_conn_cnt;
1181 __u32 pb_timeout; /* for req, the deadline, for rep, the service est */
1182 __u32 pb_service_time; /* for rep, actual service time */
1183 __u32 pb_limit;
1184 __u64 pb_slv;
1185 /* VBR: pre-versions */
1186 __u64 pb_pre_versions[PTLRPC_NUM_VERSIONS];
1187 /* padding for future needs */
1188 __u64 pb_padding[4];
1189 char pb_jobid[JOBSTATS_JOBID_SIZE];
1190};
1191#define ptlrpc_body ptlrpc_body_v3
1192
1193struct ptlrpc_body_v2 {
1194 struct lustre_handle pb_handle;
1195 __u32 pb_type;
1196 __u32 pb_version;
1197 __u32 pb_opc;
1198 __u32 pb_status;
1199 __u64 pb_last_xid;
1200 __u64 pb_last_seen;
1201 __u64 pb_last_committed;
1202 __u64 pb_transno;
1203 __u32 pb_flags;
1204 __u32 pb_op_flags;
1205 __u32 pb_conn_cnt;
1206 __u32 pb_timeout; /* for req, the deadline, for rep, the service est */
1207 __u32 pb_service_time; /* for rep, actual service time, also used for
1208 net_latency of req */
1209 __u32 pb_limit;
1210 __u64 pb_slv;
1211 /* VBR: pre-versions */
1212 __u64 pb_pre_versions[PTLRPC_NUM_VERSIONS];
1213 /* padding for future needs */
1214 __u64 pb_padding[4];
1215};
1216
1217extern void lustre_swab_ptlrpc_body(struct ptlrpc_body *pb);
1218
1219/* message body offset for lustre_msg_v2 */
1220/* ptlrpc body offset in all request/reply messages */
1221#define MSG_PTLRPC_BODY_OFF 0
1222
1223/* normal request/reply message record offset */
1224#define REQ_REC_OFF 1
1225#define REPLY_REC_OFF 1
1226
1227/* ldlm request message body offset */
1228#define DLM_LOCKREQ_OFF 1 /* lockreq offset */
1229#define DLM_REQ_REC_OFF 2 /* normal dlm request record offset */
1230
1231/* ldlm intent lock message body offset */
1232#define DLM_INTENT_IT_OFF 2 /* intent lock it offset */
1233#define DLM_INTENT_REC_OFF 3 /* intent lock record offset */
1234
1235/* ldlm reply message body offset */
1236#define DLM_LOCKREPLY_OFF 1 /* lockrep offset */
1237#define DLM_REPLY_REC_OFF 2 /* reply record offset */
1238
1239/** only use in req->rq_{req,rep}_swab_mask */
1240#define MSG_PTLRPC_HEADER_OFF 31
1241
1242/* Flags that are operation-specific go in the top 16 bits. */
1243#define MSG_OP_FLAG_MASK 0xffff0000
1244#define MSG_OP_FLAG_SHIFT 16
1245
1246/* Flags that apply to all requests are in the bottom 16 bits */
1247#define MSG_GEN_FLAG_MASK 0x0000ffff
1248#define MSG_LAST_REPLAY 0x0001
1249#define MSG_RESENT 0x0002
1250#define MSG_REPLAY 0x0004
1251/* #define MSG_AT_SUPPORT 0x0008
1252 * This was used in early prototypes of adaptive timeouts, and while there
1253 * shouldn't be any users of that code there also isn't a need for using this
1254 * bits. Defer usage until at least 1.10 to avoid potential conflict. */
1255#define MSG_DELAY_REPLAY 0x0010
1256#define MSG_VERSION_REPLAY 0x0020
1257#define MSG_REQ_REPLAY_DONE 0x0040
1258#define MSG_LOCK_REPLAY_DONE 0x0080
1259
1260/*
1261 * Flags for all connect opcodes (MDS_CONNECT, OST_CONNECT)
1262 */
1263
1264#define MSG_CONNECT_RECOVERING 0x00000001
1265#define MSG_CONNECT_RECONNECT 0x00000002
1266#define MSG_CONNECT_REPLAYABLE 0x00000004
1267//#define MSG_CONNECT_PEER 0x8
1268#define MSG_CONNECT_LIBCLIENT 0x00000010
1269#define MSG_CONNECT_INITIAL 0x00000020
1270#define MSG_CONNECT_ASYNC 0x00000040
1271#define MSG_CONNECT_NEXT_VER 0x00000080 /* use next version of lustre_msg */
1272#define MSG_CONNECT_TRANSNO 0x00000100 /* report transno */
1273
1274/* Connect flags */
1275#define OBD_CONNECT_RDONLY 0x1ULL /*client has read-only access*/
1276#define OBD_CONNECT_INDEX 0x2ULL /*connect specific LOV idx */
1277#define OBD_CONNECT_MDS 0x4ULL /*connect from MDT to OST */
1278#define OBD_CONNECT_GRANT 0x8ULL /*OSC gets grant at connect */
1279#define OBD_CONNECT_SRVLOCK 0x10ULL /*server takes locks for cli */
1280#define OBD_CONNECT_VERSION 0x20ULL /*Lustre versions in ocd */
1281#define OBD_CONNECT_REQPORTAL 0x40ULL /*Separate non-IO req portal */
1282#define OBD_CONNECT_ACL 0x80ULL /*access control lists */
1283#define OBD_CONNECT_XATTR 0x100ULL /*client use extended attr */
1284#define OBD_CONNECT_CROW 0x200ULL /*MDS+OST create obj on write*/
1285#define OBD_CONNECT_TRUNCLOCK 0x400ULL /*locks on server for punch */
1286#define OBD_CONNECT_TRANSNO 0x800ULL /*replay sends init transno */
1287#define OBD_CONNECT_IBITS 0x1000ULL /*support for inodebits locks*/
1288#define OBD_CONNECT_JOIN 0x2000ULL /*files can be concatenated.
1289 *We do not support JOIN FILE
1290 *anymore, reserve this flags
1291 *just for preventing such bit
1292 *to be reused.*/
1293#define OBD_CONNECT_ATTRFID 0x4000ULL /*Server can GetAttr By Fid*/
1294#define OBD_CONNECT_NODEVOH 0x8000ULL /*No open hndl on specl nodes*/
1295#define OBD_CONNECT_RMT_CLIENT 0x10000ULL /*Remote client */
1296#define OBD_CONNECT_RMT_CLIENT_FORCE 0x20000ULL /*Remote client by force */
1297#define OBD_CONNECT_BRW_SIZE 0x40000ULL /*Max bytes per rpc */
1298#define OBD_CONNECT_QUOTA64 0x80000ULL /*Not used since 2.4 */
1299#define OBD_CONNECT_MDS_CAPA 0x100000ULL /*MDS capability */
1300#define OBD_CONNECT_OSS_CAPA 0x200000ULL /*OSS capability */
1301#define OBD_CONNECT_CANCELSET 0x400000ULL /*Early batched cancels. */
1302#define OBD_CONNECT_SOM 0x800000ULL /*Size on MDS */
1303#define OBD_CONNECT_AT 0x1000000ULL /*client uses AT */
1304#define OBD_CONNECT_LRU_RESIZE 0x2000000ULL /*LRU resize feature. */
1305#define OBD_CONNECT_MDS_MDS 0x4000000ULL /*MDS-MDS connection */
1306#define OBD_CONNECT_REAL 0x8000000ULL /*real connection */
1307#define OBD_CONNECT_CHANGE_QS 0x10000000ULL /*Not used since 2.4 */
1308#define OBD_CONNECT_CKSUM 0x20000000ULL /*support several cksum algos*/
1309#define OBD_CONNECT_FID 0x40000000ULL /*FID is supported by server */
1310#define OBD_CONNECT_VBR 0x80000000ULL /*version based recovery */
1311#define OBD_CONNECT_LOV_V3 0x100000000ULL /*client supports LOV v3 EA */
1312#define OBD_CONNECT_GRANT_SHRINK 0x200000000ULL /* support grant shrink */
1313#define OBD_CONNECT_SKIP_ORPHAN 0x400000000ULL /* don't reuse orphan objids */
1314#define OBD_CONNECT_MAX_EASIZE 0x800000000ULL /* preserved for large EA */
1315#define OBD_CONNECT_FULL20 0x1000000000ULL /* it is 2.0 client */
1316#define OBD_CONNECT_LAYOUTLOCK 0x2000000000ULL /* client uses layout lock */
1317#define OBD_CONNECT_64BITHASH 0x4000000000ULL /* client supports 64-bits
1318 * directory hash */
1319#define OBD_CONNECT_MAXBYTES 0x8000000000ULL /* max stripe size */
1320#define OBD_CONNECT_IMP_RECOV 0x10000000000ULL /* imp recovery support */
1321#define OBD_CONNECT_JOBSTATS 0x20000000000ULL /* jobid in ptlrpc_body */
1322#define OBD_CONNECT_UMASK 0x40000000000ULL /* create uses client umask */
1323#define OBD_CONNECT_EINPROGRESS 0x80000000000ULL /* client handles -EINPROGRESS
1324 * RPC error properly */
1325#define OBD_CONNECT_GRANT_PARAM 0x100000000000ULL/* extra grant params used for
1326 * finer space reservation */
1327#define OBD_CONNECT_FLOCK_OWNER 0x200000000000ULL /* for the fixed 1.8
1328 * policy and 2.x server */
1329#define OBD_CONNECT_LVB_TYPE 0x400000000000ULL /* variable type of LVB */
1330#define OBD_CONNECT_NANOSEC_TIME 0x800000000000ULL /* nanosecond timestamps */
1331#define OBD_CONNECT_LIGHTWEIGHT 0x1000000000000ULL/* lightweight connection */
1332#define OBD_CONNECT_SHORTIO 0x2000000000000ULL/* short io */
1333#define OBD_CONNECT_PINGLESS 0x4000000000000ULL/* pings not required */
1334/* XXX README XXX:
1335 * Please DO NOT add flag values here before first ensuring that this same
1336 * flag value is not in use on some other branch. Please clear any such
1337 * changes with senior engineers before starting to use a new flag. Then,
1338 * submit a small patch against EVERY branch that ONLY adds the new flag,
1339 * updates obd_connect_names[] for lprocfs_rd_connect_flags(), adds the
1340 * flag to check_obd_connect_data(), and updates wiretests accordingly, so it
1341 * can be approved and landed easily to reserve the flag for future use. */
1342
1343/* The MNE_SWAB flag is overloading the MDS_MDS bit only for the MGS
1344 * connection. It is a temporary bug fix for Imperative Recovery interop
1345 * between 2.2 and 2.3 x86/ppc nodes, and can be removed when interop for
1346 * 2.2 clients/servers is no longer needed. LU-1252/LU-1644. */
1347#define OBD_CONNECT_MNE_SWAB OBD_CONNECT_MDS_MDS
1348
1349#define OCD_HAS_FLAG(ocd, flg) \
1350 (!!((ocd)->ocd_connect_flags & OBD_CONNECT_##flg))
1351
1352
1353#define LRU_RESIZE_CONNECT_FLAG OBD_CONNECT_LRU_RESIZE
1354
1355#define MDT_CONNECT_SUPPORTED (OBD_CONNECT_RDONLY | OBD_CONNECT_VERSION | \
1356 OBD_CONNECT_ACL | OBD_CONNECT_XATTR | \
1357 OBD_CONNECT_IBITS | \
1358 OBD_CONNECT_NODEVOH | OBD_CONNECT_ATTRFID | \
1359 OBD_CONNECT_CANCELSET | OBD_CONNECT_AT | \
1360 OBD_CONNECT_RMT_CLIENT | \
1361 OBD_CONNECT_RMT_CLIENT_FORCE | \
1362 OBD_CONNECT_BRW_SIZE | OBD_CONNECT_MDS_CAPA | \
1363 OBD_CONNECT_OSS_CAPA | OBD_CONNECT_MDS_MDS | \
1364 OBD_CONNECT_FID | LRU_RESIZE_CONNECT_FLAG | \
1365 OBD_CONNECT_VBR | OBD_CONNECT_LOV_V3 | \
1366 OBD_CONNECT_SOM | OBD_CONNECT_FULL20 | \
1367 OBD_CONNECT_64BITHASH | OBD_CONNECT_JOBSTATS | \
1368 OBD_CONNECT_EINPROGRESS | \
1369 OBD_CONNECT_LIGHTWEIGHT | OBD_CONNECT_UMASK | \
1370 OBD_CONNECT_LVB_TYPE | OBD_CONNECT_LAYOUTLOCK |\
1371 OBD_CONNECT_PINGLESS)
1372#define OST_CONNECT_SUPPORTED (OBD_CONNECT_SRVLOCK | OBD_CONNECT_GRANT | \
1373 OBD_CONNECT_REQPORTAL | OBD_CONNECT_VERSION | \
1374 OBD_CONNECT_TRUNCLOCK | OBD_CONNECT_INDEX | \
1375 OBD_CONNECT_BRW_SIZE | OBD_CONNECT_OSS_CAPA | \
1376 OBD_CONNECT_CANCELSET | OBD_CONNECT_AT | \
1377 LRU_RESIZE_CONNECT_FLAG | OBD_CONNECT_CKSUM | \
1378 OBD_CONNECT_RMT_CLIENT | \
1379 OBD_CONNECT_RMT_CLIENT_FORCE | OBD_CONNECT_VBR | \
1380 OBD_CONNECT_MDS | OBD_CONNECT_SKIP_ORPHAN | \
1381 OBD_CONNECT_GRANT_SHRINK | OBD_CONNECT_FULL20 | \
1382 OBD_CONNECT_64BITHASH | OBD_CONNECT_MAXBYTES | \
1383 OBD_CONNECT_MAX_EASIZE | \
1384 OBD_CONNECT_EINPROGRESS | \
1385 OBD_CONNECT_JOBSTATS | \
1386 OBD_CONNECT_LIGHTWEIGHT | OBD_CONNECT_LVB_TYPE|\
1387 OBD_CONNECT_LAYOUTLOCK | OBD_CONNECT_FID | \
1388 OBD_CONNECT_PINGLESS)
1389#define ECHO_CONNECT_SUPPORTED (0)
1390#define MGS_CONNECT_SUPPORTED (OBD_CONNECT_VERSION | OBD_CONNECT_AT | \
1391 OBD_CONNECT_FULL20 | OBD_CONNECT_IMP_RECOV | \
1392 OBD_CONNECT_MNE_SWAB | OBD_CONNECT_PINGLESS)
1393
1394/* Features required for this version of the client to work with server */
1395#define CLIENT_CONNECT_MDT_REQD (OBD_CONNECT_IBITS | OBD_CONNECT_FID | \
1396 OBD_CONNECT_FULL20)
1397
1398#define OBD_OCD_VERSION(major,minor,patch,fix) (((major)<<24) + ((minor)<<16) +\
1399 ((patch)<<8) + (fix))
1400#define OBD_OCD_VERSION_MAJOR(version) ((int)((version)>>24)&255)
1401#define OBD_OCD_VERSION_MINOR(version) ((int)((version)>>16)&255)
1402#define OBD_OCD_VERSION_PATCH(version) ((int)((version)>>8)&255)
1403#define OBD_OCD_VERSION_FIX(version) ((int)(version)&255)
1404
1405/* This structure is used for both request and reply.
1406 *
1407 * If we eventually have separate connect data for different types, which we
1408 * almost certainly will, then perhaps we stick a union in here. */
1409struct obd_connect_data_v1 {
1410 __u64 ocd_connect_flags; /* OBD_CONNECT_* per above */
1411 __u32 ocd_version; /* lustre release version number */
1412 __u32 ocd_grant; /* initial cache grant amount (bytes) */
1413 __u32 ocd_index; /* LOV index to connect to */
1414 __u32 ocd_brw_size; /* Maximum BRW size in bytes, must be 2^n */
1415 __u64 ocd_ibits_known; /* inode bits this client understands */
1416 __u8 ocd_blocksize; /* log2 of the backend filesystem blocksize */
1417 __u8 ocd_inodespace; /* log2 of the per-inode space consumption */
1418 __u16 ocd_grant_extent; /* per-extent grant overhead, in 1K blocks */
1419 __u32 ocd_unused; /* also fix lustre_swab_connect */
1420 __u64 ocd_transno; /* first transno from client to be replayed */
1421 __u32 ocd_group; /* MDS group on OST */
1422 __u32 ocd_cksum_types; /* supported checksum algorithms */
1423 __u32 ocd_max_easize; /* How big LOV EA can be on MDS */
1424 __u32 ocd_instance; /* also fix lustre_swab_connect */
1425 __u64 ocd_maxbytes; /* Maximum stripe size in bytes */
1426};
1427
1428struct obd_connect_data {
1429 __u64 ocd_connect_flags; /* OBD_CONNECT_* per above */
1430 __u32 ocd_version; /* lustre release version number */
1431 __u32 ocd_grant; /* initial cache grant amount (bytes) */
1432 __u32 ocd_index; /* LOV index to connect to */
1433 __u32 ocd_brw_size; /* Maximum BRW size in bytes */
1434 __u64 ocd_ibits_known; /* inode bits this client understands */
1435 __u8 ocd_blocksize; /* log2 of the backend filesystem blocksize */
1436 __u8 ocd_inodespace; /* log2 of the per-inode space consumption */
1437 __u16 ocd_grant_extent; /* per-extent grant overhead, in 1K blocks */
1438 __u32 ocd_unused; /* also fix lustre_swab_connect */
1439 __u64 ocd_transno; /* first transno from client to be replayed */
1440 __u32 ocd_group; /* MDS group on OST */
1441 __u32 ocd_cksum_types; /* supported checksum algorithms */
1442 __u32 ocd_max_easize; /* How big LOV EA can be on MDS */
1443 __u32 ocd_instance; /* instance # of this target */
1444 __u64 ocd_maxbytes; /* Maximum stripe size in bytes */
1445 /* Fields after ocd_maxbytes are only accessible by the receiver
1446 * if the corresponding flag in ocd_connect_flags is set. Accessing
1447 * any field after ocd_maxbytes on the receiver without a valid flag
1448 * may result in out-of-bound memory access and kernel oops. */
1449 __u64 padding1; /* added 2.1.0. also fix lustre_swab_connect */
1450 __u64 padding2; /* added 2.1.0. also fix lustre_swab_connect */
1451 __u64 padding3; /* added 2.1.0. also fix lustre_swab_connect */
1452 __u64 padding4; /* added 2.1.0. also fix lustre_swab_connect */
1453 __u64 padding5; /* added 2.1.0. also fix lustre_swab_connect */
1454 __u64 padding6; /* added 2.1.0. also fix lustre_swab_connect */
1455 __u64 padding7; /* added 2.1.0. also fix lustre_swab_connect */
1456 __u64 padding8; /* added 2.1.0. also fix lustre_swab_connect */
1457 __u64 padding9; /* added 2.1.0. also fix lustre_swab_connect */
1458 __u64 paddingA; /* added 2.1.0. also fix lustre_swab_connect */
1459 __u64 paddingB; /* added 2.1.0. also fix lustre_swab_connect */
1460 __u64 paddingC; /* added 2.1.0. also fix lustre_swab_connect */
1461 __u64 paddingD; /* added 2.1.0. also fix lustre_swab_connect */
1462 __u64 paddingE; /* added 2.1.0. also fix lustre_swab_connect */
1463 __u64 paddingF; /* added 2.1.0. also fix lustre_swab_connect */
1464};
1465/* XXX README XXX:
1466 * Please DO NOT use any fields here before first ensuring that this same
1467 * field is not in use on some other branch. Please clear any such changes
1468 * with senior engineers before starting to use a new field. Then, submit
1469 * a small patch against EVERY branch that ONLY adds the new field along with
1470 * the matching OBD_CONNECT flag, so that can be approved and landed easily to
1471 * reserve the flag for future use. */
1472
1473
1474extern void lustre_swab_connect(struct obd_connect_data *ocd);
1475
1476/*
1477 * Supported checksum algorithms. Up to 32 checksum types are supported.
1478 * (32-bit mask stored in obd_connect_data::ocd_cksum_types)
1479 * Please update DECLARE_CKSUM_NAME/OBD_CKSUM_ALL in obd.h when adding a new
1480 * algorithm and also the OBD_FL_CKSUM* flags.
1481 */
1482typedef enum {
1483 OBD_CKSUM_CRC32 = 0x00000001,
1484 OBD_CKSUM_ADLER = 0x00000002,
1485 OBD_CKSUM_CRC32C= 0x00000004,
1486} cksum_type_t;
1487
1488/*
1489 * OST requests: OBDO & OBD request records
1490 */
1491
1492/* opcodes */
1493typedef enum {
1494 OST_REPLY = 0, /* reply ? */
1495 OST_GETATTR = 1,
1496 OST_SETATTR = 2,
1497 OST_READ = 3,
1498 OST_WRITE = 4,
1499 OST_CREATE = 5,
1500 OST_DESTROY = 6,
1501 OST_GET_INFO = 7,
1502 OST_CONNECT = 8,
1503 OST_DISCONNECT = 9,
1504 OST_PUNCH = 10,
1505 OST_OPEN = 11,
1506 OST_CLOSE = 12,
1507 OST_STATFS = 13,
1508 OST_SYNC = 16,
1509 OST_SET_INFO = 17,
1510 OST_QUOTACHECK = 18,
1511 OST_QUOTACTL = 19,
1512 OST_QUOTA_ADJUST_QUNIT = 20, /* not used since 2.4 */
1513 OST_LAST_OPC
1514} ost_cmd_t;
1515#define OST_FIRST_OPC OST_REPLY
1516
1517enum obdo_flags {
1518 OBD_FL_INLINEDATA = 0x00000001,
1519 OBD_FL_OBDMDEXISTS = 0x00000002,
1520 OBD_FL_DELORPHAN = 0x00000004, /* if set in o_flags delete orphans */
1521 OBD_FL_NORPC = 0x00000008, /* set in o_flags do in OSC not OST */
1522 OBD_FL_IDONLY = 0x00000010, /* set in o_flags only adjust obj id*/
1523 OBD_FL_RECREATE_OBJS= 0x00000020, /* recreate missing obj */
1524 OBD_FL_DEBUG_CHECK = 0x00000040, /* echo client/server debug check */
1525 OBD_FL_NO_USRQUOTA = 0x00000100, /* the object's owner is over quota */
1526 OBD_FL_NO_GRPQUOTA = 0x00000200, /* the object's group is over quota */
1527 OBD_FL_CREATE_CROW = 0x00000400, /* object should be create on write */
1528 OBD_FL_SRVLOCK = 0x00000800, /* delegate DLM locking to server */
1529 OBD_FL_CKSUM_CRC32 = 0x00001000, /* CRC32 checksum type */
1530 OBD_FL_CKSUM_ADLER = 0x00002000, /* ADLER checksum type */
1531 OBD_FL_CKSUM_CRC32C = 0x00004000, /* CRC32C checksum type */
1532 OBD_FL_CKSUM_RSVD2 = 0x00008000, /* for future cksum types */
1533 OBD_FL_CKSUM_RSVD3 = 0x00010000, /* for future cksum types */
1534 OBD_FL_SHRINK_GRANT = 0x00020000, /* object shrink the grant */
1535 OBD_FL_MMAP = 0x00040000, /* object is mmapped on the client.
1536 * XXX: obsoleted - reserved for old
1537 * clients prior than 2.2 */
1538 OBD_FL_RECOV_RESEND = 0x00080000, /* recoverable resent */
1539 OBD_FL_NOSPC_BLK = 0x00100000, /* no more block space on OST */
1540
1541 /* Note that while these checksum values are currently separate bits,
1542 * in 2.x we can actually allow all values from 1-31 if we wanted. */
1543 OBD_FL_CKSUM_ALL = OBD_FL_CKSUM_CRC32 | OBD_FL_CKSUM_ADLER |
1544 OBD_FL_CKSUM_CRC32C,
1545
1546 /* mask for local-only flag, which won't be sent over network */
1547 OBD_FL_LOCAL_MASK = 0xF0000000,
1548};
1549
1550#define LOV_MAGIC_V1 0x0BD10BD0
1551#define LOV_MAGIC LOV_MAGIC_V1
1552#define LOV_MAGIC_JOIN_V1 0x0BD20BD0
1553#define LOV_MAGIC_V3 0x0BD30BD0
1554
1555/*
1556 * magic for fully defined striping
1557 * the idea is that we should have different magics for striping "hints"
1558 * (struct lov_user_md_v[13]) and defined ready-to-use striping (struct
1559 * lov_mds_md_v[13]). at the moment the magics are used in wire protocol,
1560 * we can't just change it w/o long way preparation, but we still need a
1561 * mechanism to allow LOD to differentiate hint versus ready striping.
1562 * so, at the moment we do a trick: MDT knows what to expect from request
1563 * depending on the case (replay uses ready striping, non-replay req uses
1564 * hints), so MDT replaces magic with appropriate one and now LOD can
1565 * easily understand what's inside -bzzz
1566 */
1567#define LOV_MAGIC_V1_DEF 0x0CD10BD0
1568#define LOV_MAGIC_V3_DEF 0x0CD30BD0
1569
5dd16419
JX
1570#define LOV_PATTERN_RAID0 0x001 /* stripes are used round-robin */
1571#define LOV_PATTERN_RAID1 0x002 /* stripes are mirrors of each other */
1572#define LOV_PATTERN_FIRST 0x100 /* first stripe is not in round-robin */
1573#define LOV_PATTERN_CMOBD 0x200
1574
1575#define LOV_PATTERN_F_MASK 0xffff0000
1576#define LOV_PATTERN_F_RELEASED 0x80000000 /* HSM released file */
1577
1578#define lov_pattern(pattern) (pattern & ~LOV_PATTERN_F_MASK)
1579#define lov_pattern_flags(pattern) (pattern & LOV_PATTERN_F_MASK)
d7e09d03
PT
1580
1581#define lov_ost_data lov_ost_data_v1
1582struct lov_ost_data_v1 { /* per-stripe data structure (little-endian)*/
1583 struct ost_id l_ost_oi; /* OST object ID */
1584 __u32 l_ost_gen; /* generation of this l_ost_idx */
1585 __u32 l_ost_idx; /* OST index in LOV (lov_tgt_desc->tgts) */
1586};
1587
1588#define lov_mds_md lov_mds_md_v1
1589struct lov_mds_md_v1 { /* LOV EA mds/wire data (little-endian) */
1590 __u32 lmm_magic; /* magic number = LOV_MAGIC_V1 */
1591 __u32 lmm_pattern; /* LOV_PATTERN_RAID0, LOV_PATTERN_RAID1 */
1592 struct ost_id lmm_oi; /* LOV object ID */
1593 __u32 lmm_stripe_size; /* size of stripe in bytes */
1594 /* lmm_stripe_count used to be __u32 */
1595 __u16 lmm_stripe_count; /* num stripes in use for this object */
1596 __u16 lmm_layout_gen; /* layout generation number */
1597 struct lov_ost_data_v1 lmm_objects[0]; /* per-stripe data */
1598};
1599
1600/**
1601 * Sigh, because pre-2.4 uses
1602 * struct lov_mds_md_v1 {
1603 * ........
1604 * __u64 lmm_object_id;
1605 * __u64 lmm_object_seq;
1606 * ......
1607 * }
1608 * to identify the LOV(MDT) object, and lmm_object_seq will
1609 * be normal_fid, which make it hard to combine these conversion
1610 * to ostid_to FID. so we will do lmm_oi/fid conversion separately
1611 *
1612 * We can tell the lmm_oi by this way,
1613 * 1.8: lmm_object_id = {inode}, lmm_object_gr = 0
1614 * 2.1: lmm_object_id = {oid < 128k}, lmm_object_seq = FID_SEQ_NORMAL
1615 * 2.4: lmm_oi.f_seq = FID_SEQ_NORMAL, lmm_oi.f_oid = {oid < 128k},
1616 * lmm_oi.f_ver = 0
1617 *
1618 * But currently lmm_oi/lsm_oi does not have any "real" usages,
1619 * except for printing some information, and the user can always
1620 * get the real FID from LMA, besides this multiple case check might
1621 * make swab more complicate. So we will keep using id/seq for lmm_oi.
1622 */
1623
1624static inline void fid_to_lmm_oi(const struct lu_fid *fid,
1625 struct ost_id *oi)
1626{
1627 oi->oi.oi_id = fid_oid(fid);
1628 oi->oi.oi_seq = fid_seq(fid);
1629}
1630
1631static inline void lmm_oi_set_seq(struct ost_id *oi, __u64 seq)
1632{
1633 oi->oi.oi_seq = seq;
1634}
1635
1636static inline __u64 lmm_oi_id(struct ost_id *oi)
1637{
1638 return oi->oi.oi_id;
1639}
1640
1641static inline __u64 lmm_oi_seq(struct ost_id *oi)
1642{
1643 return oi->oi.oi_seq;
1644}
1645
1646static inline void lmm_oi_le_to_cpu(struct ost_id *dst_oi,
1647 struct ost_id *src_oi)
1648{
1649 dst_oi->oi.oi_id = le64_to_cpu(src_oi->oi.oi_id);
1650 dst_oi->oi.oi_seq = le64_to_cpu(src_oi->oi.oi_seq);
1651}
1652
1653static inline void lmm_oi_cpu_to_le(struct ost_id *dst_oi,
1654 struct ost_id *src_oi)
1655{
1656 dst_oi->oi.oi_id = cpu_to_le64(src_oi->oi.oi_id);
1657 dst_oi->oi.oi_seq = cpu_to_le64(src_oi->oi.oi_seq);
1658}
1659
1660/* extern void lustre_swab_lov_mds_md(struct lov_mds_md *llm); */
1661
ec83e611
JP
1662#define MAX_MD_SIZE \
1663 (sizeof(struct lov_mds_md) + 4 * sizeof(struct lov_ost_data))
1664#define MIN_MD_SIZE \
1665 (sizeof(struct lov_mds_md) + 1 * sizeof(struct lov_ost_data))
d7e09d03
PT
1666
1667#define XATTR_NAME_ACL_ACCESS "system.posix_acl_access"
1668#define XATTR_NAME_ACL_DEFAULT "system.posix_acl_default"
1669#define XATTR_USER_PREFIX "user."
1670#define XATTR_TRUSTED_PREFIX "trusted."
1671#define XATTR_SECURITY_PREFIX "security."
1672#define XATTR_LUSTRE_PREFIX "lustre."
1673
1674#define XATTR_NAME_LOV "trusted.lov"
1675#define XATTR_NAME_LMA "trusted.lma"
1676#define XATTR_NAME_LMV "trusted.lmv"
1677#define XATTR_NAME_LINK "trusted.link"
1678#define XATTR_NAME_FID "trusted.fid"
1679#define XATTR_NAME_VERSION "trusted.version"
1680#define XATTR_NAME_SOM "trusted.som"
1681#define XATTR_NAME_HSM "trusted.hsm"
1682#define XATTR_NAME_LFSCK_NAMESPACE "trusted.lfsck_namespace"
1683
1684struct lov_mds_md_v3 { /* LOV EA mds/wire data (little-endian) */
1685 __u32 lmm_magic; /* magic number = LOV_MAGIC_V3 */
1686 __u32 lmm_pattern; /* LOV_PATTERN_RAID0, LOV_PATTERN_RAID1 */
1687 struct ost_id lmm_oi; /* LOV object ID */
1688 __u32 lmm_stripe_size; /* size of stripe in bytes */
1689 /* lmm_stripe_count used to be __u32 */
1690 __u16 lmm_stripe_count; /* num stripes in use for this object */
1691 __u16 lmm_layout_gen; /* layout generation number */
1692 char lmm_pool_name[LOV_MAXPOOLNAME]; /* must be 32bit aligned */
1693 struct lov_ost_data_v1 lmm_objects[0]; /* per-stripe data */
1694};
1695
bc06a678 1696static inline __u32 lov_mds_md_size(__u16 stripes, __u32 lmm_magic)
1697{
1698 if (lmm_magic == LOV_MAGIC_V3)
1699 return sizeof(struct lov_mds_md_v3) +
1700 stripes * sizeof(struct lov_ost_data_v1);
1701 else
1702 return sizeof(struct lov_mds_md_v1) +
1703 stripes * sizeof(struct lov_ost_data_v1);
1704}
1705
1706
d7e09d03
PT
1707#define OBD_MD_FLID (0x00000001ULL) /* object ID */
1708#define OBD_MD_FLATIME (0x00000002ULL) /* access time */
1709#define OBD_MD_FLMTIME (0x00000004ULL) /* data modification time */
1710#define OBD_MD_FLCTIME (0x00000008ULL) /* change time */
1711#define OBD_MD_FLSIZE (0x00000010ULL) /* size */
1712#define OBD_MD_FLBLOCKS (0x00000020ULL) /* allocated blocks count */
1713#define OBD_MD_FLBLKSZ (0x00000040ULL) /* block size */
1714#define OBD_MD_FLMODE (0x00000080ULL) /* access bits (mode & ~S_IFMT) */
1715#define OBD_MD_FLTYPE (0x00000100ULL) /* object type (mode & S_IFMT) */
1716#define OBD_MD_FLUID (0x00000200ULL) /* user ID */
1717#define OBD_MD_FLGID (0x00000400ULL) /* group ID */
1718#define OBD_MD_FLFLAGS (0x00000800ULL) /* flags word */
1719#define OBD_MD_FLNLINK (0x00002000ULL) /* link count */
1720#define OBD_MD_FLGENER (0x00004000ULL) /* generation number */
1721/*#define OBD_MD_FLINLINE (0x00008000ULL) inline data. used until 1.6.5 */
1722#define OBD_MD_FLRDEV (0x00010000ULL) /* device number */
1723#define OBD_MD_FLEASIZE (0x00020000ULL) /* extended attribute data */
1724#define OBD_MD_LINKNAME (0x00040000ULL) /* symbolic link target */
1725#define OBD_MD_FLHANDLE (0x00080000ULL) /* file/lock handle */
1726#define OBD_MD_FLCKSUM (0x00100000ULL) /* bulk data checksum */
1727#define OBD_MD_FLQOS (0x00200000ULL) /* quality of service stats */
1728/*#define OBD_MD_FLOSCOPQ (0x00400000ULL) osc opaque data, never used */
1729#define OBD_MD_FLCOOKIE (0x00800000ULL) /* log cancellation cookie */
1730#define OBD_MD_FLGROUP (0x01000000ULL) /* group */
1731#define OBD_MD_FLFID (0x02000000ULL) /* ->ost write inline fid */
1732#define OBD_MD_FLEPOCH (0x04000000ULL) /* ->ost write with ioepoch */
1733 /* ->mds if epoch opens or closes */
1734#define OBD_MD_FLGRANT (0x08000000ULL) /* ost preallocation space grant */
1735#define OBD_MD_FLDIREA (0x10000000ULL) /* dir's extended attribute data */
1736#define OBD_MD_FLUSRQUOTA (0x20000000ULL) /* over quota flags sent from ost */
1737#define OBD_MD_FLGRPQUOTA (0x40000000ULL) /* over quota flags sent from ost */
1738#define OBD_MD_FLMODEASIZE (0x80000000ULL) /* EA size will be changed */
1739
1740#define OBD_MD_MDS (0x0000000100000000ULL) /* where an inode lives on */
1741#define OBD_MD_REINT (0x0000000200000000ULL) /* reintegrate oa */
1742#define OBD_MD_MEA (0x0000000400000000ULL) /* CMD split EA */
5ea17d6c 1743#define OBD_MD_TSTATE (0x0000000800000000ULL) /* transient state field */
d7e09d03
PT
1744
1745#define OBD_MD_FLXATTR (0x0000001000000000ULL) /* xattr */
1746#define OBD_MD_FLXATTRLS (0x0000002000000000ULL) /* xattr list */
1747#define OBD_MD_FLXATTRRM (0x0000004000000000ULL) /* xattr remove */
1748#define OBD_MD_FLACL (0x0000008000000000ULL) /* ACL */
1749#define OBD_MD_FLRMTPERM (0x0000010000000000ULL) /* remote permission */
1750#define OBD_MD_FLMDSCAPA (0x0000020000000000ULL) /* MDS capability */
1751#define OBD_MD_FLOSSCAPA (0x0000040000000000ULL) /* OSS capability */
1752#define OBD_MD_FLCKSPLIT (0x0000080000000000ULL) /* Check split on server */
1753#define OBD_MD_FLCROSSREF (0x0000100000000000ULL) /* Cross-ref case */
1754#define OBD_MD_FLGETATTRLOCK (0x0000200000000000ULL) /* Get IOEpoch attributes
1755 * under lock */
1756#define OBD_MD_FLOBJCOUNT (0x0000400000000000ULL) /* for multiple destroy */
1757
1758#define OBD_MD_FLRMTLSETFACL (0x0001000000000000ULL) /* lfs lsetfacl case */
1759#define OBD_MD_FLRMTLGETFACL (0x0002000000000000ULL) /* lfs lgetfacl case */
1760#define OBD_MD_FLRMTRSETFACL (0x0004000000000000ULL) /* lfs rsetfacl case */
1761#define OBD_MD_FLRMTRGETFACL (0x0008000000000000ULL) /* lfs rgetfacl case */
1762
1763#define OBD_MD_FLDATAVERSION (0x0010000000000000ULL) /* iversion sum */
1764
1765#define OBD_MD_FLGETATTR (OBD_MD_FLID | OBD_MD_FLATIME | OBD_MD_FLMTIME | \
1766 OBD_MD_FLCTIME | OBD_MD_FLSIZE | OBD_MD_FLBLKSZ | \
1767 OBD_MD_FLMODE | OBD_MD_FLTYPE | OBD_MD_FLUID | \
1768 OBD_MD_FLGID | OBD_MD_FLFLAGS | OBD_MD_FLNLINK | \
1769 OBD_MD_FLGENER | OBD_MD_FLRDEV | OBD_MD_FLGROUP)
1770
1771/* don't forget obdo_fid which is way down at the bottom so it can
1772 * come after the definition of llog_cookie */
1773
1774enum hss_valid {
1775 HSS_SETMASK = 0x01,
1776 HSS_CLEARMASK = 0x02,
1777 HSS_ARCHIVE_ID = 0x04,
1778};
1779
1780struct hsm_state_set {
1781 __u32 hss_valid;
1782 __u32 hss_archive_id;
1783 __u64 hss_setmask;
1784 __u64 hss_clearmask;
1785};
1786
1787extern void lustre_swab_hsm_user_state(struct hsm_user_state *hus);
1788extern void lustre_swab_hsm_state_set(struct hsm_state_set *hss);
1789
1790extern void lustre_swab_obd_statfs (struct obd_statfs *os);
1791
1792/* ost_body.data values for OST_BRW */
1793
1794#define OBD_BRW_READ 0x01
1795#define OBD_BRW_WRITE 0x02
1796#define OBD_BRW_RWMASK (OBD_BRW_READ | OBD_BRW_WRITE)
1797#define OBD_BRW_SYNC 0x08 /* this page is a part of synchronous
1798 * transfer and is not accounted in
1799 * the grant. */
1800#define OBD_BRW_CHECK 0x10
1801#define OBD_BRW_FROM_GRANT 0x20 /* the osc manages this under llite */
1802#define OBD_BRW_GRANTED 0x40 /* the ost manages this */
1803#define OBD_BRW_NOCACHE 0x80 /* this page is a part of non-cached IO */
1804#define OBD_BRW_NOQUOTA 0x100
1805#define OBD_BRW_SRVLOCK 0x200 /* Client holds no lock over this page */
1806#define OBD_BRW_ASYNC 0x400 /* Server may delay commit to disk */
1807#define OBD_BRW_MEMALLOC 0x800 /* Client runs in the "kswapd" context */
1808#define OBD_BRW_OVER_USRQUOTA 0x1000 /* Running out of user quota */
1809#define OBD_BRW_OVER_GRPQUOTA 0x2000 /* Running out of group quota */
1810
1811#define OBD_OBJECT_EOF 0xffffffffffffffffULL
1812
1813#define OST_MIN_PRECREATE 32
1814#define OST_MAX_PRECREATE 20000
1815
1816struct obd_ioobj {
1817 struct ost_id ioo_oid; /* object ID, if multi-obj BRW */
1818 __u32 ioo_max_brw; /* low 16 bits were o_mode before 2.4,
1819 * now (PTLRPC_BULK_OPS_COUNT - 1) in
1820 * high 16 bits in 2.4 and later */
1821 __u32 ioo_bufcnt; /* number of niobufs for this object */
1822};
1823
1824#define IOOBJ_MAX_BRW_BITS 16
1825#define IOOBJ_TYPE_MASK ((1U << IOOBJ_MAX_BRW_BITS) - 1)
1826#define ioobj_max_brw_get(ioo) (((ioo)->ioo_max_brw >> IOOBJ_MAX_BRW_BITS) + 1)
1827#define ioobj_max_brw_set(ioo, num) \
1828do { (ioo)->ioo_max_brw = ((num) - 1) << IOOBJ_MAX_BRW_BITS; } while (0)
1829
1830extern void lustre_swab_obd_ioobj (struct obd_ioobj *ioo);
1831
1832/* multiple of 8 bytes => can array */
1833struct niobuf_remote {
1834 __u64 offset;
1835 __u32 len;
1836 __u32 flags;
1837};
1838
1839extern void lustre_swab_niobuf_remote (struct niobuf_remote *nbr);
1840
1841/* lock value block communicated between the filter and llite */
1842
1843/* OST_LVB_ERR_INIT is needed because the return code in rc is
1844 * negative, i.e. because ((MASK + rc) & MASK) != MASK. */
1845#define OST_LVB_ERR_INIT 0xffbadbad80000000ULL
1846#define OST_LVB_ERR_MASK 0xffbadbad00000000ULL
1847#define OST_LVB_IS_ERR(blocks) \
1848 ((blocks & OST_LVB_ERR_MASK) == OST_LVB_ERR_MASK)
1849#define OST_LVB_SET_ERR(blocks, rc) \
1850 do { blocks = OST_LVB_ERR_INIT + rc; } while (0)
1851#define OST_LVB_GET_ERR(blocks) (int)(blocks - OST_LVB_ERR_INIT)
1852
1853struct ost_lvb_v1 {
1854 __u64 lvb_size;
1855 obd_time lvb_mtime;
1856 obd_time lvb_atime;
1857 obd_time lvb_ctime;
1858 __u64 lvb_blocks;
1859};
1860
1861extern void lustre_swab_ost_lvb_v1(struct ost_lvb_v1 *lvb);
1862
1863struct ost_lvb {
1864 __u64 lvb_size;
1865 obd_time lvb_mtime;
1866 obd_time lvb_atime;
1867 obd_time lvb_ctime;
1868 __u64 lvb_blocks;
1869 __u32 lvb_mtime_ns;
1870 __u32 lvb_atime_ns;
1871 __u32 lvb_ctime_ns;
1872 __u32 lvb_padding;
1873};
1874
1875extern void lustre_swab_ost_lvb(struct ost_lvb *lvb);
1876
1877/*
1878 * lquota data structures
1879 */
1880
1881#ifndef QUOTABLOCK_BITS
1882#define QUOTABLOCK_BITS 10
1883#endif
1884
1885#ifndef QUOTABLOCK_SIZE
1886#define QUOTABLOCK_SIZE (1 << QUOTABLOCK_BITS)
1887#endif
1888
1889#ifndef toqb
1890#define toqb(x) (((x) + QUOTABLOCK_SIZE - 1) >> QUOTABLOCK_BITS)
1891#endif
1892
1893/* The lquota_id structure is an union of all the possible identifier types that
1894 * can be used with quota, this includes:
1895 * - 64-bit user ID
1896 * - 64-bit group ID
1897 * - a FID which can be used for per-directory quota in the future */
1898union lquota_id {
1899 struct lu_fid qid_fid; /* FID for per-directory quota */
1900 __u64 qid_uid; /* user identifier */
1901 __u64 qid_gid; /* group identifier */
1902};
1903
1904/* quotactl management */
1905struct obd_quotactl {
1906 __u32 qc_cmd;
1907 __u32 qc_type; /* see Q_* flag below */
1908 __u32 qc_id;
1909 __u32 qc_stat;
1910 struct obd_dqinfo qc_dqinfo;
1911 struct obd_dqblk qc_dqblk;
1912};
1913
1914extern void lustre_swab_obd_quotactl(struct obd_quotactl *q);
1915
1916#define Q_QUOTACHECK 0x800100 /* deprecated as of 2.4 */
1917#define Q_INITQUOTA 0x800101 /* deprecated as of 2.4 */
1918#define Q_GETOINFO 0x800102 /* get obd quota info */
1919#define Q_GETOQUOTA 0x800103 /* get obd quotas */
1920#define Q_FINVALIDATE 0x800104 /* deprecated as of 2.4 */
1921
1922#define Q_COPY(out, in, member) (out)->member = (in)->member
1923
1924#define QCTL_COPY(out, in) \
1925do { \
1926 Q_COPY(out, in, qc_cmd); \
1927 Q_COPY(out, in, qc_type); \
1928 Q_COPY(out, in, qc_id); \
1929 Q_COPY(out, in, qc_stat); \
1930 Q_COPY(out, in, qc_dqinfo); \
1931 Q_COPY(out, in, qc_dqblk); \
1932} while (0)
1933
1934/* Body of quota request used for quota acquire/release RPCs between quota
1935 * master (aka QMT) and slaves (ak QSD). */
1936struct quota_body {
1937 struct lu_fid qb_fid; /* FID of global index packing the pool ID
1938 * and type (data or metadata) as well as
1939 * the quota type (user or group). */
1940 union lquota_id qb_id; /* uid or gid or directory FID */
1941 __u32 qb_flags; /* see below */
1942 __u32 qb_padding;
1943 __u64 qb_count; /* acquire/release count (kbytes/inodes) */
1944 __u64 qb_usage; /* current slave usage (kbytes/inodes) */
1945 __u64 qb_slv_ver; /* slave index file version */
1946 struct lustre_handle qb_lockh; /* per-ID lock handle */
1947 struct lustre_handle qb_glb_lockh; /* global lock handle */
1948 __u64 qb_padding1[4];
1949};
1950
1951/* When the quota_body is used in the reply of quota global intent
1952 * lock (IT_QUOTA_CONN) reply, qb_fid contains slave index file FID. */
1953#define qb_slv_fid qb_fid
1954/* qb_usage is the current qunit (in kbytes/inodes) when quota_body is used in
1955 * quota reply */
1956#define qb_qunit qb_usage
1957
1958#define QUOTA_DQACQ_FL_ACQ 0x1 /* acquire quota */
1959#define QUOTA_DQACQ_FL_PREACQ 0x2 /* pre-acquire */
1960#define QUOTA_DQACQ_FL_REL 0x4 /* release quota */
1961#define QUOTA_DQACQ_FL_REPORT 0x8 /* report usage */
1962
1963extern void lustre_swab_quota_body(struct quota_body *b);
1964
1965/* Quota types currently supported */
1966enum {
1967 LQUOTA_TYPE_USR = 0x00, /* maps to USRQUOTA */
1968 LQUOTA_TYPE_GRP = 0x01, /* maps to GRPQUOTA */
1969 LQUOTA_TYPE_MAX
1970};
1971
1972/* There are 2 different resource types on which a quota limit can be enforced:
1973 * - inodes on the MDTs
1974 * - blocks on the OSTs */
1975enum {
1976 LQUOTA_RES_MD = 0x01, /* skip 0 to avoid null oid in FID */
1977 LQUOTA_RES_DT = 0x02,
1978 LQUOTA_LAST_RES,
1979 LQUOTA_FIRST_RES = LQUOTA_RES_MD
1980};
1981#define LQUOTA_NR_RES (LQUOTA_LAST_RES - LQUOTA_FIRST_RES + 1)
1982
1983/*
1984 * Space accounting support
1985 * Format of an accounting record, providing disk usage information for a given
1986 * user or group
1987 */
1988struct lquota_acct_rec { /* 16 bytes */
1989 __u64 bspace; /* current space in use */
1990 __u64 ispace; /* current # inodes in use */
1991};
1992
1993/*
1994 * Global quota index support
1995 * Format of a global record, providing global quota settings for a given quota
1996 * identifier
1997 */
1998struct lquota_glb_rec { /* 32 bytes */
1999 __u64 qbr_hardlimit; /* quota hard limit, in #inodes or kbytes */
2000 __u64 qbr_softlimit; /* quota soft limit, in #inodes or kbytes */
2001 __u64 qbr_time; /* grace time, in seconds */
2002 __u64 qbr_granted; /* how much is granted to slaves, in #inodes or
2003 * kbytes */
2004};
2005
2006/*
2007 * Slave index support
2008 * Format of a slave record, recording how much space is granted to a given
2009 * slave
2010 */
2011struct lquota_slv_rec { /* 8 bytes */
2012 __u64 qsr_granted; /* space granted to the slave for the key=ID,
2013 * in #inodes or kbytes */
2014};
2015
2016/* Data structures associated with the quota locks */
2017
2018/* Glimpse descriptor used for the index & per-ID quota locks */
2019struct ldlm_gl_lquota_desc {
2020 union lquota_id gl_id; /* quota ID subject to the glimpse */
2021 __u64 gl_flags; /* see LQUOTA_FL* below */
2022 __u64 gl_ver; /* new index version */
2023 __u64 gl_hardlimit; /* new hardlimit or qunit value */
2024 __u64 gl_softlimit; /* new softlimit */
2025 __u64 gl_time;
2026 __u64 gl_pad2;
2027};
2028#define gl_qunit gl_hardlimit /* current qunit value used when
2029 * glimpsing per-ID quota locks */
2030
2031/* quota glimpse flags */
2032#define LQUOTA_FL_EDQUOT 0x1 /* user/group out of quota space on QMT */
2033
2034/* LVB used with quota (global and per-ID) locks */
2035struct lquota_lvb {
2036 __u64 lvb_flags; /* see LQUOTA_FL* above */
2037 __u64 lvb_id_may_rel; /* space that might be released later */
2038 __u64 lvb_id_rel; /* space released by the slave for this ID */
2039 __u64 lvb_id_qunit; /* current qunit value */
2040 __u64 lvb_pad1;
2041};
2042
2043extern void lustre_swab_lquota_lvb(struct lquota_lvb *lvb);
2044
2045/* LVB used with global quota lock */
2046#define lvb_glb_ver lvb_id_may_rel /* current version of the global index */
2047
2048/* op codes */
2049typedef enum {
2050 QUOTA_DQACQ = 601,
2051 QUOTA_DQREL = 602,
2052 QUOTA_LAST_OPC
2053} quota_cmd_t;
2054#define QUOTA_FIRST_OPC QUOTA_DQACQ
2055
2056/*
2057 * MDS REQ RECORDS
2058 */
2059
2060/* opcodes */
2061typedef enum {
2062 MDS_GETATTR = 33,
2063 MDS_GETATTR_NAME = 34,
2064 MDS_CLOSE = 35,
2065 MDS_REINT = 36,
2066 MDS_READPAGE = 37,
2067 MDS_CONNECT = 38,
2068 MDS_DISCONNECT = 39,
2069 MDS_GETSTATUS = 40,
2070 MDS_STATFS = 41,
2071 MDS_PIN = 42,
2072 MDS_UNPIN = 43,
2073 MDS_SYNC = 44,
2074 MDS_DONE_WRITING = 45,
2075 MDS_SET_INFO = 46,
2076 MDS_QUOTACHECK = 47,
2077 MDS_QUOTACTL = 48,
2078 MDS_GETXATTR = 49,
2079 MDS_SETXATTR = 50, /* obsolete, now it's MDS_REINT op */
2080 MDS_WRITEPAGE = 51,
2081 MDS_IS_SUBDIR = 52,
2082 MDS_GET_INFO = 53,
2083 MDS_HSM_STATE_GET = 54,
2084 MDS_HSM_STATE_SET = 55,
2085 MDS_HSM_ACTION = 56,
2086 MDS_HSM_PROGRESS = 57,
2087 MDS_HSM_REQUEST = 58,
2088 MDS_HSM_CT_REGISTER = 59,
2089 MDS_HSM_CT_UNREGISTER = 60,
2090 MDS_SWAP_LAYOUTS = 61,
2091 MDS_LAST_OPC
2092} mds_cmd_t;
2093
2094#define MDS_FIRST_OPC MDS_GETATTR
2095
2096
2097/* opcodes for object update */
2098typedef enum {
2099 UPDATE_OBJ = 1000,
2100 UPDATE_LAST_OPC
2101} update_cmd_t;
2102
2103#define UPDATE_FIRST_OPC UPDATE_OBJ
2104
2105/*
2106 * Do not exceed 63
2107 */
2108
2109typedef enum {
2110 REINT_SETATTR = 1,
2111 REINT_CREATE = 2,
2112 REINT_LINK = 3,
2113 REINT_UNLINK = 4,
2114 REINT_RENAME = 5,
2115 REINT_OPEN = 6,
2116 REINT_SETXATTR = 7,
2117 REINT_RMENTRY = 8,
2118// REINT_WRITE = 9,
2119 REINT_MAX
2120} mds_reint_t, mdt_reint_t;
2121
2122extern void lustre_swab_generic_32s (__u32 *val);
2123
2124/* the disposition of the intent outlines what was executed */
2125#define DISP_IT_EXECD 0x00000001
2126#define DISP_LOOKUP_EXECD 0x00000002
2127#define DISP_LOOKUP_NEG 0x00000004
2128#define DISP_LOOKUP_POS 0x00000008
2129#define DISP_OPEN_CREATE 0x00000010
2130#define DISP_OPEN_OPEN 0x00000020
2131#define DISP_ENQ_COMPLETE 0x00400000
2132#define DISP_ENQ_OPEN_REF 0x00800000
2133#define DISP_ENQ_CREATE_REF 0x01000000
2134#define DISP_OPEN_LOCK 0x02000000
d3a8a4e2 2135#define DISP_OPEN_LEASE 0x04000000
d7e09d03
PT
2136
2137/* INODE LOCK PARTS */
2138#define MDS_INODELOCK_LOOKUP 0x000001 /* dentry, mode, owner, group */
2139#define MDS_INODELOCK_UPDATE 0x000002 /* size, links, timestamps */
2140#define MDS_INODELOCK_OPEN 0x000004 /* For opened files */
2141#define MDS_INODELOCK_LAYOUT 0x000008 /* for layout */
2142#define MDS_INODELOCK_PERM 0x000010 /* for permission */
2143
2144#define MDS_INODELOCK_MAXSHIFT 4
2145/* This FULL lock is useful to take on unlink sort of operations */
2146#define MDS_INODELOCK_FULL ((1<<(MDS_INODELOCK_MAXSHIFT+1))-1)
2147
2148extern void lustre_swab_ll_fid (struct ll_fid *fid);
2149
2150/* NOTE: until Lustre 1.8.7/2.1.1 the fid_ver() was packed into name[2],
2151 * but was moved into name[1] along with the OID to avoid consuming the
2152 * name[2,3] fields that need to be used for the quota id (also a FID). */
2153enum {
2154 LUSTRE_RES_ID_SEQ_OFF = 0,
2155 LUSTRE_RES_ID_VER_OID_OFF = 1,
2156 LUSTRE_RES_ID_WAS_VER_OFF = 2, /* see note above */
2157 LUSTRE_RES_ID_QUOTA_SEQ_OFF = 2,
2158 LUSTRE_RES_ID_QUOTA_VER_OID_OFF = 3,
2159 LUSTRE_RES_ID_HSH_OFF = 3
2160};
2161
2162#define MDS_STATUS_CONN 1
2163#define MDS_STATUS_LOV 2
2164
2165/* mdt_thread_info.mti_flags. */
2166enum md_op_flags {
2167 /* The flag indicates Size-on-MDS attributes are changed. */
2168 MF_SOM_CHANGE = (1 << 0),
2169 /* Flags indicates an epoch opens or closes. */
2170 MF_EPOCH_OPEN = (1 << 1),
2171 MF_EPOCH_CLOSE = (1 << 2),
2172 MF_MDC_CANCEL_FID1 = (1 << 3),
2173 MF_MDC_CANCEL_FID2 = (1 << 4),
2174 MF_MDC_CANCEL_FID3 = (1 << 5),
2175 MF_MDC_CANCEL_FID4 = (1 << 6),
2176 /* There is a pending attribute update. */
2177 MF_SOM_AU = (1 << 7),
2178 /* Cancel OST locks while getattr OST attributes. */
2179 MF_GETATTR_LOCK = (1 << 8),
2180 MF_GET_MDT_IDX = (1 << 9),
2181};
2182
2183#define MF_SOM_LOCAL_FLAGS (MF_SOM_CHANGE | MF_EPOCH_OPEN | MF_EPOCH_CLOSE)
2184
2185#define LUSTRE_BFLAG_UNCOMMITTED_WRITES 0x1
2186
2187/* these should be identical to their EXT4_*_FL counterparts, they are
2188 * redefined here only to avoid dragging in fs/ext4/ext4.h */
2189#define LUSTRE_SYNC_FL 0x00000008 /* Synchronous updates */
2190#define LUSTRE_IMMUTABLE_FL 0x00000010 /* Immutable file */
2191#define LUSTRE_APPEND_FL 0x00000020 /* writes to file may only append */
2192#define LUSTRE_NOATIME_FL 0x00000080 /* do not update atime */
2193#define LUSTRE_DIRSYNC_FL 0x00010000 /* dirsync behaviour (dir only) */
2194
2195/* Convert wire LUSTRE_*_FL to corresponding client local VFS S_* values
2196 * for the client inode i_flags. The LUSTRE_*_FL are the Lustre wire
2197 * protocol equivalents of LDISKFS_*_FL values stored on disk, while
2198 * the S_* flags are kernel-internal values that change between kernel
2199 * versions. These flags are set/cleared via FSFILT_IOC_{GET,SET}_FLAGS.
2200 * See b=16526 for a full history. */
2201static inline int ll_ext_to_inode_flags(int flags)
2202{
2203 return (((flags & LUSTRE_SYNC_FL) ? S_SYNC : 0) |
2204 ((flags & LUSTRE_NOATIME_FL) ? S_NOATIME : 0) |
2205 ((flags & LUSTRE_APPEND_FL) ? S_APPEND : 0) |
2206#if defined(S_DIRSYNC)
2207 ((flags & LUSTRE_DIRSYNC_FL) ? S_DIRSYNC : 0) |
2208#endif
2209 ((flags & LUSTRE_IMMUTABLE_FL) ? S_IMMUTABLE : 0));
2210}
2211
2212static inline int ll_inode_to_ext_flags(int iflags)
2213{
2214 return (((iflags & S_SYNC) ? LUSTRE_SYNC_FL : 0) |
2215 ((iflags & S_NOATIME) ? LUSTRE_NOATIME_FL : 0) |
2216 ((iflags & S_APPEND) ? LUSTRE_APPEND_FL : 0) |
2217#if defined(S_DIRSYNC)
2218 ((iflags & S_DIRSYNC) ? LUSTRE_DIRSYNC_FL : 0) |
2219#endif
2220 ((iflags & S_IMMUTABLE) ? LUSTRE_IMMUTABLE_FL : 0));
2221}
2222
5ea17d6c
JL
2223/* 64 possible states */
2224enum md_transient_state {
2225 MS_RESTORE = (1 << 0), /* restore is running */
2226};
2227
d7e09d03
PT
2228struct mdt_body {
2229 struct lu_fid fid1;
2230 struct lu_fid fid2;
2231 struct lustre_handle handle;
2232 __u64 valid;
2233 __u64 size; /* Offset, in the case of MDS_READPAGE */
2234 obd_time mtime;
2235 obd_time atime;
2236 obd_time ctime;
2237 __u64 blocks; /* XID, in the case of MDS_READPAGE */
2238 __u64 ioepoch;
5ea17d6c
JL
2239 __u64 t_state; /* transient file state defined in
2240 * enum md_transient_state
2241 * was "ino" until 2.4.0 */
d7e09d03
PT
2242 __u32 fsuid;
2243 __u32 fsgid;
2244 __u32 capability;
2245 __u32 mode;
2246 __u32 uid;
2247 __u32 gid;
2248 __u32 flags; /* from vfs for pin/unpin, LUSTRE_BFLAG close */
2249 __u32 rdev;
2250 __u32 nlink; /* #bytes to read in the case of MDS_READPAGE */
2251 __u32 unused2; /* was "generation" until 2.4.0 */
2252 __u32 suppgid;
2253 __u32 eadatasize;
2254 __u32 aclsize;
2255 __u32 max_mdsize;
2256 __u32 max_cookiesize;
2257 __u32 uid_h; /* high 32-bits of uid, for FUID */
2258 __u32 gid_h; /* high 32-bits of gid, for FUID */
2259 __u32 padding_5; /* also fix lustre_swab_mdt_body */
2260 __u64 padding_6;
2261 __u64 padding_7;
2262 __u64 padding_8;
2263 __u64 padding_9;
2264 __u64 padding_10;
2265}; /* 216 */
2266
2267extern void lustre_swab_mdt_body (struct mdt_body *b);
2268
2269struct mdt_ioepoch {
2270 struct lustre_handle handle;
2271 __u64 ioepoch;
2272 __u32 flags;
2273 __u32 padding;
2274};
2275
2276extern void lustre_swab_mdt_ioepoch (struct mdt_ioepoch *b);
2277
2278/* permissions for md_perm.mp_perm */
2279enum {
2280 CFS_SETUID_PERM = 0x01,
2281 CFS_SETGID_PERM = 0x02,
2282 CFS_SETGRP_PERM = 0x04,
2283 CFS_RMTACL_PERM = 0x08,
2284 CFS_RMTOWN_PERM = 0x10
2285};
2286
2287/* inode access permission for remote user, the inode info are omitted,
2288 * for client knows them. */
2289struct mdt_remote_perm {
2290 __u32 rp_uid;
2291 __u32 rp_gid;
2292 __u32 rp_fsuid;
2293 __u32 rp_fsuid_h;
2294 __u32 rp_fsgid;
2295 __u32 rp_fsgid_h;
2296 __u32 rp_access_perm; /* MAY_READ/WRITE/EXEC */
2297 __u32 rp_padding;
2298};
2299
2300extern void lustre_swab_mdt_remote_perm(struct mdt_remote_perm *p);
2301
2302struct mdt_rec_setattr {
2303 __u32 sa_opcode;
2304 __u32 sa_cap;
2305 __u32 sa_fsuid;
2306 __u32 sa_fsuid_h;
2307 __u32 sa_fsgid;
2308 __u32 sa_fsgid_h;
2309 __u32 sa_suppgid;
2310 __u32 sa_suppgid_h;
2311 __u32 sa_padding_1;
2312 __u32 sa_padding_1_h;
2313 struct lu_fid sa_fid;
2314 __u64 sa_valid;
2315 __u32 sa_uid;
2316 __u32 sa_gid;
2317 __u64 sa_size;
2318 __u64 sa_blocks;
2319 obd_time sa_mtime;
2320 obd_time sa_atime;
2321 obd_time sa_ctime;
2322 __u32 sa_attr_flags;
2323 __u32 sa_mode;
2324 __u32 sa_bias; /* some operation flags */
2325 __u32 sa_padding_3;
2326 __u32 sa_padding_4;
2327 __u32 sa_padding_5;
2328};
2329
2330extern void lustre_swab_mdt_rec_setattr (struct mdt_rec_setattr *sa);
2331
2332/*
2333 * Attribute flags used in mdt_rec_setattr::sa_valid.
2334 * The kernel's #defines for ATTR_* should not be used over the network
2335 * since the client and MDS may run different kernels (see bug 13828)
2336 * Therefore, we should only use MDS_ATTR_* attributes for sa_valid.
2337 */
2338#define MDS_ATTR_MODE 0x1ULL /* = 1 */
2339#define MDS_ATTR_UID 0x2ULL /* = 2 */
2340#define MDS_ATTR_GID 0x4ULL /* = 4 */
2341#define MDS_ATTR_SIZE 0x8ULL /* = 8 */
2342#define MDS_ATTR_ATIME 0x10ULL /* = 16 */
2343#define MDS_ATTR_MTIME 0x20ULL /* = 32 */
2344#define MDS_ATTR_CTIME 0x40ULL /* = 64 */
2345#define MDS_ATTR_ATIME_SET 0x80ULL /* = 128 */
2346#define MDS_ATTR_MTIME_SET 0x100ULL /* = 256 */
2347#define MDS_ATTR_FORCE 0x200ULL /* = 512, Not a change, but a change it */
2348#define MDS_ATTR_ATTR_FLAG 0x400ULL /* = 1024 */
2349#define MDS_ATTR_KILL_SUID 0x800ULL /* = 2048 */
2350#define MDS_ATTR_KILL_SGID 0x1000ULL /* = 4096 */
2351#define MDS_ATTR_CTIME_SET 0x2000ULL /* = 8192 */
2352#define MDS_ATTR_FROM_OPEN 0x4000ULL /* = 16384, called from open path, ie O_TRUNC */
2353#define MDS_ATTR_BLOCKS 0x8000ULL /* = 32768 */
2354
2355#ifndef FMODE_READ
2356#define FMODE_READ 00000001
2357#define FMODE_WRITE 00000002
2358#endif
2359
2360#define MDS_FMODE_CLOSED 00000000
2361#define MDS_FMODE_EXEC 00000004
2362/* IO Epoch is opened on a closed file. */
2363#define MDS_FMODE_EPOCH 01000000
2364/* IO Epoch is opened on a file truncate. */
2365#define MDS_FMODE_TRUNC 02000000
2366/* Size-on-MDS Attribute Update is pending. */
2367#define MDS_FMODE_SOM 04000000
2368
2369#define MDS_OPEN_CREATED 00000010
2370#define MDS_OPEN_CROSS 00000020
2371
2372#define MDS_OPEN_CREAT 00000100
2373#define MDS_OPEN_EXCL 00000200
2374#define MDS_OPEN_TRUNC 00001000
2375#define MDS_OPEN_APPEND 00002000
2376#define MDS_OPEN_SYNC 00010000
2377#define MDS_OPEN_DIRECTORY 00200000
2378
2379#define MDS_OPEN_BY_FID 040000000 /* open_by_fid for known object */
2380#define MDS_OPEN_DELAY_CREATE 0100000000 /* delay initial object create */
2381#define MDS_OPEN_OWNEROVERRIDE 0200000000 /* NFSD rw-reopen ro file for owner */
2382#define MDS_OPEN_JOIN_FILE 0400000000 /* open for join file.
2383 * We do not support JOIN FILE
2384 * anymore, reserve this flags
2385 * just for preventing such bit
2386 * to be reused. */
2387
2388#define MDS_OPEN_LOCK 04000000000 /* This open requires open lock */
2389#define MDS_OPEN_HAS_EA 010000000000 /* specify object create pattern */
2390#define MDS_OPEN_HAS_OBJS 020000000000 /* Just set the EA the obj exist */
2391#define MDS_OPEN_NORESTORE 0100000000000ULL /* Do not restore file at open */
2392#define MDS_OPEN_NEWSTRIPE 0200000000000ULL /* New stripe needed (restripe or
2393 * hsm restore) */
2394#define MDS_OPEN_VOLATILE 0400000000000ULL /* File is volatile = created
2395 unlinked */
d3a8a4e2
JX
2396#define MDS_OPEN_LEASE 01000000000000ULL /* Open the file and grant lease
2397 * delegation, succeed if it's not
2398 * being opened with conflict mode.
2399 */
d7e09d03
PT
2400
2401/* permission for create non-directory file */
2402#define MAY_CREATE (1 << 7)
2403/* permission for create directory file */
2404#define MAY_LINK (1 << 8)
2405/* permission for delete from the directory */
2406#define MAY_UNLINK (1 << 9)
2407/* source's permission for rename */
2408#define MAY_RENAME_SRC (1 << 10)
2409/* target's permission for rename */
2410#define MAY_RENAME_TAR (1 << 11)
2411/* part (parent's) VTX permission check */
2412#define MAY_VTX_PART (1 << 12)
2413/* full VTX permission check */
2414#define MAY_VTX_FULL (1 << 13)
2415/* lfs rgetfacl permission check */
2416#define MAY_RGETFACL (1 << 14)
2417
2418enum {
2419 MDS_CHECK_SPLIT = 1 << 0,
2420 MDS_CROSS_REF = 1 << 1,
2421 MDS_VTX_BYPASS = 1 << 2,
2422 MDS_PERM_BYPASS = 1 << 3,
2423 MDS_SOM = 1 << 4,
2424 MDS_QUOTA_IGNORE = 1 << 5,
2425 MDS_CLOSE_CLEANUP = 1 << 6,
2426 MDS_KEEP_ORPHAN = 1 << 7,
2427 MDS_RECOV_OPEN = 1 << 8,
2428 MDS_DATA_MODIFIED = 1 << 9,
2429 MDS_CREATE_VOLATILE = 1 << 10,
2430 MDS_OWNEROVERRIDE = 1 << 11,
2431};
2432
2433/* instance of mdt_reint_rec */
2434struct mdt_rec_create {
2435 __u32 cr_opcode;
2436 __u32 cr_cap;
2437 __u32 cr_fsuid;
2438 __u32 cr_fsuid_h;
2439 __u32 cr_fsgid;
2440 __u32 cr_fsgid_h;
2441 __u32 cr_suppgid1;
2442 __u32 cr_suppgid1_h;
2443 __u32 cr_suppgid2;
2444 __u32 cr_suppgid2_h;
2445 struct lu_fid cr_fid1;
2446 struct lu_fid cr_fid2;
2447 struct lustre_handle cr_old_handle; /* handle in case of open replay */
2448 obd_time cr_time;
2449 __u64 cr_rdev;
2450 __u64 cr_ioepoch;
2451 __u64 cr_padding_1; /* rr_blocks */
2452 __u32 cr_mode;
2453 __u32 cr_bias;
2454 /* use of helpers set/get_mrc_cr_flags() is needed to access
2455 * 64 bits cr_flags [cr_flags_l, cr_flags_h], this is done to
2456 * extend cr_flags size without breaking 1.8 compat */
2457 __u32 cr_flags_l; /* for use with open, low 32 bits */
2458 __u32 cr_flags_h; /* for use with open, high 32 bits */
2459 __u32 cr_umask; /* umask for create */
2460 __u32 cr_padding_4; /* rr_padding_4 */
2461};
2462
2463static inline void set_mrc_cr_flags(struct mdt_rec_create *mrc, __u64 flags)
2464{
2465 mrc->cr_flags_l = (__u32)(flags & 0xFFFFFFFFUll);
2466 mrc->cr_flags_h = (__u32)(flags >> 32);
2467}
2468
2469static inline __u64 get_mrc_cr_flags(struct mdt_rec_create *mrc)
2470{
2471 return ((__u64)(mrc->cr_flags_l) | ((__u64)mrc->cr_flags_h << 32));
2472}
2473
2474/* instance of mdt_reint_rec */
2475struct mdt_rec_link {
2476 __u32 lk_opcode;
2477 __u32 lk_cap;
2478 __u32 lk_fsuid;
2479 __u32 lk_fsuid_h;
2480 __u32 lk_fsgid;
2481 __u32 lk_fsgid_h;
2482 __u32 lk_suppgid1;
2483 __u32 lk_suppgid1_h;
2484 __u32 lk_suppgid2;
2485 __u32 lk_suppgid2_h;
2486 struct lu_fid lk_fid1;
2487 struct lu_fid lk_fid2;
2488 obd_time lk_time;
2489 __u64 lk_padding_1; /* rr_atime */
2490 __u64 lk_padding_2; /* rr_ctime */
2491 __u64 lk_padding_3; /* rr_size */
2492 __u64 lk_padding_4; /* rr_blocks */
2493 __u32 lk_bias;
2494 __u32 lk_padding_5; /* rr_mode */
2495 __u32 lk_padding_6; /* rr_flags */
2496 __u32 lk_padding_7; /* rr_padding_2 */
2497 __u32 lk_padding_8; /* rr_padding_3 */
2498 __u32 lk_padding_9; /* rr_padding_4 */
2499};
2500
2501/* instance of mdt_reint_rec */
2502struct mdt_rec_unlink {
2503 __u32 ul_opcode;
2504 __u32 ul_cap;
2505 __u32 ul_fsuid;
2506 __u32 ul_fsuid_h;
2507 __u32 ul_fsgid;
2508 __u32 ul_fsgid_h;
2509 __u32 ul_suppgid1;
2510 __u32 ul_suppgid1_h;
2511 __u32 ul_suppgid2;
2512 __u32 ul_suppgid2_h;
2513 struct lu_fid ul_fid1;
2514 struct lu_fid ul_fid2;
2515 obd_time ul_time;
2516 __u64 ul_padding_2; /* rr_atime */
2517 __u64 ul_padding_3; /* rr_ctime */
2518 __u64 ul_padding_4; /* rr_size */
2519 __u64 ul_padding_5; /* rr_blocks */
2520 __u32 ul_bias;
2521 __u32 ul_mode;
2522 __u32 ul_padding_6; /* rr_flags */
2523 __u32 ul_padding_7; /* rr_padding_2 */
2524 __u32 ul_padding_8; /* rr_padding_3 */
2525 __u32 ul_padding_9; /* rr_padding_4 */
2526};
2527
2528/* instance of mdt_reint_rec */
2529struct mdt_rec_rename {
2530 __u32 rn_opcode;
2531 __u32 rn_cap;
2532 __u32 rn_fsuid;
2533 __u32 rn_fsuid_h;
2534 __u32 rn_fsgid;
2535 __u32 rn_fsgid_h;
2536 __u32 rn_suppgid1;
2537 __u32 rn_suppgid1_h;
2538 __u32 rn_suppgid2;
2539 __u32 rn_suppgid2_h;
2540 struct lu_fid rn_fid1;
2541 struct lu_fid rn_fid2;
2542 obd_time rn_time;
2543 __u64 rn_padding_1; /* rr_atime */
2544 __u64 rn_padding_2; /* rr_ctime */
2545 __u64 rn_padding_3; /* rr_size */
2546 __u64 rn_padding_4; /* rr_blocks */
2547 __u32 rn_bias; /* some operation flags */
2548 __u32 rn_mode; /* cross-ref rename has mode */
2549 __u32 rn_padding_5; /* rr_flags */
2550 __u32 rn_padding_6; /* rr_padding_2 */
2551 __u32 rn_padding_7; /* rr_padding_3 */
2552 __u32 rn_padding_8; /* rr_padding_4 */
2553};
2554
2555/* instance of mdt_reint_rec */
2556struct mdt_rec_setxattr {
2557 __u32 sx_opcode;
2558 __u32 sx_cap;
2559 __u32 sx_fsuid;
2560 __u32 sx_fsuid_h;
2561 __u32 sx_fsgid;
2562 __u32 sx_fsgid_h;
2563 __u32 sx_suppgid1;
2564 __u32 sx_suppgid1_h;
2565 __u32 sx_suppgid2;
2566 __u32 sx_suppgid2_h;
2567 struct lu_fid sx_fid;
2568 __u64 sx_padding_1; /* These three are rr_fid2 */
2569 __u32 sx_padding_2;
2570 __u32 sx_padding_3;
2571 __u64 sx_valid;
2572 obd_time sx_time;
2573 __u64 sx_padding_5; /* rr_ctime */
2574 __u64 sx_padding_6; /* rr_size */
2575 __u64 sx_padding_7; /* rr_blocks */
2576 __u32 sx_size;
2577 __u32 sx_flags;
2578 __u32 sx_padding_8; /* rr_flags */
2579 __u32 sx_padding_9; /* rr_padding_2 */
2580 __u32 sx_padding_10; /* rr_padding_3 */
2581 __u32 sx_padding_11; /* rr_padding_4 */
2582};
2583
2584/*
2585 * mdt_rec_reint is the template for all mdt_reint_xxx structures.
2586 * Do NOT change the size of various members, otherwise the value
2587 * will be broken in lustre_swab_mdt_rec_reint().
2588 *
2589 * If you add new members in other mdt_reint_xxx structres and need to use the
2590 * rr_padding_x fields, then update lustre_swab_mdt_rec_reint() also.
2591 */
2592struct mdt_rec_reint {
2593 __u32 rr_opcode;
2594 __u32 rr_cap;
2595 __u32 rr_fsuid;
2596 __u32 rr_fsuid_h;
2597 __u32 rr_fsgid;
2598 __u32 rr_fsgid_h;
2599 __u32 rr_suppgid1;
2600 __u32 rr_suppgid1_h;
2601 __u32 rr_suppgid2;
2602 __u32 rr_suppgid2_h;
2603 struct lu_fid rr_fid1;
2604 struct lu_fid rr_fid2;
2605 obd_time rr_mtime;
2606 obd_time rr_atime;
2607 obd_time rr_ctime;
2608 __u64 rr_size;
2609 __u64 rr_blocks;
2610 __u32 rr_bias;
2611 __u32 rr_mode;
2612 __u32 rr_flags;
2613 __u32 rr_flags_h;
2614 __u32 rr_umask;
2615 __u32 rr_padding_4; /* also fix lustre_swab_mdt_rec_reint */
2616};
2617
2618extern void lustre_swab_mdt_rec_reint(struct mdt_rec_reint *rr);
2619
2620struct lmv_desc {
2621 __u32 ld_tgt_count; /* how many MDS's */
2622 __u32 ld_active_tgt_count; /* how many active */
2623 __u32 ld_default_stripe_count; /* how many objects are used */
2624 __u32 ld_pattern; /* default MEA_MAGIC_* */
2625 __u64 ld_default_hash_size;
2626 __u64 ld_padding_1; /* also fix lustre_swab_lmv_desc */
2627 __u32 ld_padding_2; /* also fix lustre_swab_lmv_desc */
2628 __u32 ld_qos_maxage; /* in second */
2629 __u32 ld_padding_3; /* also fix lustre_swab_lmv_desc */
2630 __u32 ld_padding_4; /* also fix lustre_swab_lmv_desc */
2631 struct obd_uuid ld_uuid;
2632};
2633
2634extern void lustre_swab_lmv_desc (struct lmv_desc *ld);
2635
2636/* TODO: lmv_stripe_md should contain mds capabilities for all slave fids */
2637struct lmv_stripe_md {
2638 __u32 mea_magic;
2639 __u32 mea_count;
2640 __u32 mea_master;
2641 __u32 mea_padding;
2642 char mea_pool_name[LOV_MAXPOOLNAME];
2643 struct lu_fid mea_ids[0];
2644};
2645
2646extern void lustre_swab_lmv_stripe_md(struct lmv_stripe_md *mea);
2647
2648/* lmv structures */
2649#define MEA_MAGIC_LAST_CHAR 0xb2221ca1
2650#define MEA_MAGIC_ALL_CHARS 0xb222a11c
2651#define MEA_MAGIC_HASH_SEGMENT 0xb222a11b
2652
2653#define MAX_HASH_SIZE_32 0x7fffffffUL
2654#define MAX_HASH_SIZE 0x7fffffffffffffffULL
2655#define MAX_HASH_HIGHEST_BIT 0x1000000000000000ULL
2656
2657enum fld_rpc_opc {
2658 FLD_QUERY = 900,
2659 FLD_LAST_OPC,
2660 FLD_FIRST_OPC = FLD_QUERY
2661};
2662
2663enum seq_rpc_opc {
2664 SEQ_QUERY = 700,
2665 SEQ_LAST_OPC,
2666 SEQ_FIRST_OPC = SEQ_QUERY
2667};
2668
2669enum seq_op {
2670 SEQ_ALLOC_SUPER = 0,
2671 SEQ_ALLOC_META = 1
2672};
2673
2674/*
2675 * LOV data structures
2676 */
2677
2678#define LOV_MAX_UUID_BUFFER_SIZE 8192
2679/* The size of the buffer the lov/mdc reserves for the
2680 * array of UUIDs returned by the MDS. With the current
2681 * protocol, this will limit the max number of OSTs per LOV */
2682
2683#define LOV_DESC_MAGIC 0xB0CCDE5C
2684
2685/* LOV settings descriptor (should only contain static info) */
2686struct lov_desc {
2687 __u32 ld_tgt_count; /* how many OBD's */
2688 __u32 ld_active_tgt_count; /* how many active */
2689 __u32 ld_default_stripe_count; /* how many objects are used */
2690 __u32 ld_pattern; /* default PATTERN_RAID0 */
2691 __u64 ld_default_stripe_size; /* in bytes */
2692 __u64 ld_default_stripe_offset; /* in bytes */
2693 __u32 ld_padding_0; /* unused */
2694 __u32 ld_qos_maxage; /* in second */
2695 __u32 ld_padding_1; /* also fix lustre_swab_lov_desc */
2696 __u32 ld_padding_2; /* also fix lustre_swab_lov_desc */
2697 struct obd_uuid ld_uuid;
2698};
2699
2700#define ld_magic ld_active_tgt_count /* for swabbing from llogs */
2701
2702extern void lustre_swab_lov_desc (struct lov_desc *ld);
2703
2704/*
2705 * LDLM requests:
2706 */
2707/* opcodes -- MUST be distinct from OST/MDS opcodes */
2708typedef enum {
2709 LDLM_ENQUEUE = 101,
2710 LDLM_CONVERT = 102,
2711 LDLM_CANCEL = 103,
2712 LDLM_BL_CALLBACK = 104,
2713 LDLM_CP_CALLBACK = 105,
2714 LDLM_GL_CALLBACK = 106,
2715 LDLM_SET_INFO = 107,
2716 LDLM_LAST_OPC
2717} ldlm_cmd_t;
2718#define LDLM_FIRST_OPC LDLM_ENQUEUE
2719
2720#define RES_NAME_SIZE 4
2721struct ldlm_res_id {
2722 __u64 name[RES_NAME_SIZE];
2723};
2724
ce74f92d
AD
2725#define DLDLMRES "["LPX64":"LPX64":"LPX64"]."LPX64i
2726#define PLDLMRES(res) (res)->lr_name.name[0], (res)->lr_name.name[1], \
2727 (res)->lr_name.name[2], (res)->lr_name.name[3]
2728
d7e09d03
PT
2729extern void lustre_swab_ldlm_res_id (struct ldlm_res_id *id);
2730
2731static inline int ldlm_res_eq(const struct ldlm_res_id *res0,
2732 const struct ldlm_res_id *res1)
2733{
2734 return !memcmp(res0, res1, sizeof(*res0));
2735}
2736
2737/* lock types */
2738typedef enum {
2739 LCK_MINMODE = 0,
2740 LCK_EX = 1,
2741 LCK_PW = 2,
2742 LCK_PR = 4,
2743 LCK_CW = 8,
2744 LCK_CR = 16,
2745 LCK_NL = 32,
2746 LCK_GROUP = 64,
2747 LCK_COS = 128,
2748 LCK_MAXMODE
2749} ldlm_mode_t;
2750
2751#define LCK_MODE_NUM 8
2752
2753typedef enum {
2754 LDLM_PLAIN = 10,
2755 LDLM_EXTENT = 11,
2756 LDLM_FLOCK = 12,
2757 LDLM_IBITS = 13,
2758 LDLM_MAX_TYPE
2759} ldlm_type_t;
2760
2761#define LDLM_MIN_TYPE LDLM_PLAIN
2762
2763struct ldlm_extent {
2764 __u64 start;
2765 __u64 end;
2766 __u64 gid;
2767};
2768
2769static inline int ldlm_extent_overlap(struct ldlm_extent *ex1,
2770 struct ldlm_extent *ex2)
2771{
2772 return (ex1->start <= ex2->end) && (ex2->start <= ex1->end);
2773}
2774
2775/* check if @ex1 contains @ex2 */
2776static inline int ldlm_extent_contain(struct ldlm_extent *ex1,
2777 struct ldlm_extent *ex2)
2778{
2779 return (ex1->start <= ex2->start) && (ex1->end >= ex2->end);
2780}
2781
2782struct ldlm_inodebits {
2783 __u64 bits;
2784};
2785
2786struct ldlm_flock_wire {
2787 __u64 lfw_start;
2788 __u64 lfw_end;
2789 __u64 lfw_owner;
2790 __u32 lfw_padding;
2791 __u32 lfw_pid;
2792};
2793
2794/* it's important that the fields of the ldlm_extent structure match
2795 * the first fields of the ldlm_flock structure because there is only
2796 * one ldlm_swab routine to process the ldlm_policy_data_t union. if
2797 * this ever changes we will need to swab the union differently based
2798 * on the resource type. */
2799
2800typedef union {
2801 struct ldlm_extent l_extent;
2802 struct ldlm_flock_wire l_flock;
2803 struct ldlm_inodebits l_inodebits;
2804} ldlm_wire_policy_data_t;
2805
2806extern void lustre_swab_ldlm_policy_data (ldlm_wire_policy_data_t *d);
2807
2808union ldlm_gl_desc {
2809 struct ldlm_gl_lquota_desc lquota_desc;
2810};
2811
2812extern void lustre_swab_gl_desc(union ldlm_gl_desc *);
2813
2814struct ldlm_intent {
2815 __u64 opc;
2816};
2817
2818extern void lustre_swab_ldlm_intent (struct ldlm_intent *i);
2819
2820struct ldlm_resource_desc {
2821 ldlm_type_t lr_type;
2822 __u32 lr_padding; /* also fix lustre_swab_ldlm_resource_desc */
2823 struct ldlm_res_id lr_name;
2824};
2825
2826extern void lustre_swab_ldlm_resource_desc (struct ldlm_resource_desc *r);
2827
2828struct ldlm_lock_desc {
2829 struct ldlm_resource_desc l_resource;
2830 ldlm_mode_t l_req_mode;
2831 ldlm_mode_t l_granted_mode;
2832 ldlm_wire_policy_data_t l_policy_data;
2833};
2834
2835extern void lustre_swab_ldlm_lock_desc (struct ldlm_lock_desc *l);
2836
2837#define LDLM_LOCKREQ_HANDLES 2
2838#define LDLM_ENQUEUE_CANCEL_OFF 1
2839
2840struct ldlm_request {
2841 __u32 lock_flags;
2842 __u32 lock_count;
2843 struct ldlm_lock_desc lock_desc;
2844 struct lustre_handle lock_handle[LDLM_LOCKREQ_HANDLES];
2845};
2846
2847extern void lustre_swab_ldlm_request (struct ldlm_request *rq);
2848
2849/* If LDLM_ENQUEUE, 1 slot is already occupied, 1 is available.
2850 * Otherwise, 2 are available. */
2851#define ldlm_request_bufsize(count,type) \
2852({ \
2853 int _avail = LDLM_LOCKREQ_HANDLES; \
2854 _avail -= (type == LDLM_ENQUEUE ? LDLM_ENQUEUE_CANCEL_OFF : 0); \
2855 sizeof(struct ldlm_request) + \
2856 (count > _avail ? count - _avail : 0) * \
2857 sizeof(struct lustre_handle); \
2858})
2859
2860struct ldlm_reply {
2861 __u32 lock_flags;
2862 __u32 lock_padding; /* also fix lustre_swab_ldlm_reply */
2863 struct ldlm_lock_desc lock_desc;
2864 struct lustre_handle lock_handle;
2865 __u64 lock_policy_res1;
2866 __u64 lock_policy_res2;
2867};
2868
2869extern void lustre_swab_ldlm_reply (struct ldlm_reply *r);
2870
2871#define ldlm_flags_to_wire(flags) ((__u32)(flags))
2872#define ldlm_flags_from_wire(flags) ((__u64)(flags))
2873
2874/*
2875 * Opcodes for mountconf (mgs and mgc)
2876 */
2877typedef enum {
2878 MGS_CONNECT = 250,
2879 MGS_DISCONNECT,
2880 MGS_EXCEPTION, /* node died, etc. */
2881 MGS_TARGET_REG, /* whenever target starts up */
2882 MGS_TARGET_DEL,
2883 MGS_SET_INFO,
2884 MGS_CONFIG_READ,
2885 MGS_LAST_OPC
2886} mgs_cmd_t;
2887#define MGS_FIRST_OPC MGS_CONNECT
2888
2889#define MGS_PARAM_MAXLEN 1024
2890#define KEY_SET_INFO "set_info"
2891
2892struct mgs_send_param {
2893 char mgs_param[MGS_PARAM_MAXLEN];
2894};
2895
2896/* We pass this info to the MGS so it can write config logs */
2897#define MTI_NAME_MAXLEN 64
2898#define MTI_PARAM_MAXLEN 4096
2899#define MTI_NIDS_MAX 32
2900struct mgs_target_info {
2901 __u32 mti_lustre_ver;
2902 __u32 mti_stripe_index;
2903 __u32 mti_config_ver;
2904 __u32 mti_flags;
2905 __u32 mti_nid_count;
2906 __u32 mti_instance; /* Running instance of target */
2907 char mti_fsname[MTI_NAME_MAXLEN];
2908 char mti_svname[MTI_NAME_MAXLEN];
2909 char mti_uuid[sizeof(struct obd_uuid)];
2910 __u64 mti_nids[MTI_NIDS_MAX]; /* host nids (lnet_nid_t)*/
2911 char mti_params[MTI_PARAM_MAXLEN];
2912};
2913extern void lustre_swab_mgs_target_info(struct mgs_target_info *oinfo);
2914
2915struct mgs_nidtbl_entry {
2916 __u64 mne_version; /* table version of this entry */
2917 __u32 mne_instance; /* target instance # */
2918 __u32 mne_index; /* target index */
2919 __u32 mne_length; /* length of this entry - by bytes */
2920 __u8 mne_type; /* target type LDD_F_SV_TYPE_OST/MDT */
2921 __u8 mne_nid_type; /* type of nid(mbz). for ipv6. */
2922 __u8 mne_nid_size; /* size of each NID, by bytes */
2923 __u8 mne_nid_count; /* # of NIDs in buffer */
2924 union {
2925 lnet_nid_t nids[0]; /* variable size buffer for NIDs. */
2926 } u;
2927};
2928extern void lustre_swab_mgs_nidtbl_entry(struct mgs_nidtbl_entry *oinfo);
2929
2930struct mgs_config_body {
2931 char mcb_name[MTI_NAME_MAXLEN]; /* logname */
2932 __u64 mcb_offset; /* next index of config log to request */
2933 __u16 mcb_type; /* type of log: CONFIG_T_[CONFIG|RECOVER] */
2934 __u8 mcb_reserved;
2935 __u8 mcb_bits; /* bits unit size of config log */
2936 __u32 mcb_units; /* # of units for bulk transfer */
2937};
2938extern void lustre_swab_mgs_config_body(struct mgs_config_body *body);
2939
2940struct mgs_config_res {
2941 __u64 mcr_offset; /* index of last config log */
2942 __u64 mcr_size; /* size of the log */
2943};
2944extern void lustre_swab_mgs_config_res(struct mgs_config_res *body);
2945
2946/* Config marker flags (in config log) */
2947#define CM_START 0x01
2948#define CM_END 0x02
2949#define CM_SKIP 0x04
2950#define CM_UPGRADE146 0x08
2951#define CM_EXCLUDE 0x10
2952#define CM_START_SKIP (CM_START | CM_SKIP)
2953
2954struct cfg_marker {
2955 __u32 cm_step; /* aka config version */
2956 __u32 cm_flags;
2957 __u32 cm_vers; /* lustre release version number */
2958 __u32 cm_padding; /* 64 bit align */
2959 obd_time cm_createtime; /*when this record was first created */
2960 obd_time cm_canceltime; /*when this record is no longer valid*/
2961 char cm_tgtname[MTI_NAME_MAXLEN];
2962 char cm_comment[MTI_NAME_MAXLEN];
2963};
2964
2965extern void lustre_swab_cfg_marker(struct cfg_marker *marker,
2966 int swab, int size);
2967
2968/*
2969 * Opcodes for multiple servers.
2970 */
2971
2972typedef enum {
2973 OBD_PING = 400,
2974 OBD_LOG_CANCEL,
2975 OBD_QC_CALLBACK,
2976 OBD_IDX_READ,
2977 OBD_LAST_OPC
2978} obd_cmd_t;
2979#define OBD_FIRST_OPC OBD_PING
2980
2981/* catalog of log objects */
2982
2983/** Identifier for a single log object */
2984struct llog_logid {
2985 struct ost_id lgl_oi;
2986 __u32 lgl_ogen;
2987} __attribute__((packed));
2988
2989/** Records written to the CATALOGS list */
2990#define CATLIST "CATALOGS"
2991struct llog_catid {
2992 struct llog_logid lci_logid;
2993 __u32 lci_padding1;
2994 __u32 lci_padding2;
2995 __u32 lci_padding3;
2996} __attribute__((packed));
2997
2998/* Log data record types - there is no specific reason that these need to
2999 * be related to the RPC opcodes, but no reason not to (may be handy later?)
3000 */
3001#define LLOG_OP_MAGIC 0x10600000
3002#define LLOG_OP_MASK 0xfff00000
3003
3004typedef enum {
3005 LLOG_PAD_MAGIC = LLOG_OP_MAGIC | 0x00000,
3006 OST_SZ_REC = LLOG_OP_MAGIC | 0x00f00,
3007 /* OST_RAID1_REC = LLOG_OP_MAGIC | 0x01000, never used */
3008 MDS_UNLINK_REC = LLOG_OP_MAGIC | 0x10000 | (MDS_REINT << 8) |
3009 REINT_UNLINK, /* obsolete after 2.5.0 */
3010 MDS_UNLINK64_REC = LLOG_OP_MAGIC | 0x90000 | (MDS_REINT << 8) |
3011 REINT_UNLINK,
3012 /* MDS_SETATTR_REC = LLOG_OP_MAGIC | 0x12401, obsolete 1.8.0 */
3013 MDS_SETATTR64_REC = LLOG_OP_MAGIC | 0x90000 | (MDS_REINT << 8) |
3014 REINT_SETATTR,
3015 OBD_CFG_REC = LLOG_OP_MAGIC | 0x20000,
3016 /* PTL_CFG_REC = LLOG_OP_MAGIC | 0x30000, obsolete 1.4.0 */
3017 LLOG_GEN_REC = LLOG_OP_MAGIC | 0x40000,
3018 /* LLOG_JOIN_REC = LLOG_OP_MAGIC | 0x50000, obsolete 1.8.0 */
3019 CHANGELOG_REC = LLOG_OP_MAGIC | 0x60000,
3020 CHANGELOG_USER_REC = LLOG_OP_MAGIC | 0x70000,
99a92265 3021 HSM_AGENT_REC = LLOG_OP_MAGIC | 0x80000,
d7e09d03
PT
3022 LLOG_HDR_MAGIC = LLOG_OP_MAGIC | 0x45539,
3023 LLOG_LOGID_MAGIC = LLOG_OP_MAGIC | 0x4553b,
3024} llog_op_type;
3025
3026#define LLOG_REC_HDR_NEEDS_SWABBING(r) \
3027 (((r)->lrh_type & __swab32(LLOG_OP_MASK)) == __swab32(LLOG_OP_MAGIC))
3028
3029/** Log record header - stored in little endian order.
3030 * Each record must start with this struct, end with a llog_rec_tail,
3031 * and be a multiple of 256 bits in size.
3032 */
3033struct llog_rec_hdr {
3034 __u32 lrh_len;
3035 __u32 lrh_index;
3036 __u32 lrh_type;
3037 __u32 lrh_id;
3038};
3039
3040struct llog_rec_tail {
3041 __u32 lrt_len;
3042 __u32 lrt_index;
3043};
3044
3045/* Where data follow just after header */
3046#define REC_DATA(ptr) \
3047 ((void *)((char *)ptr + sizeof(struct llog_rec_hdr)))
3048
3049#define REC_DATA_LEN(rec) \
3050 (rec->lrh_len - sizeof(struct llog_rec_hdr) - \
3051 sizeof(struct llog_rec_tail))
3052
3053struct llog_logid_rec {
3054 struct llog_rec_hdr lid_hdr;
3055 struct llog_logid lid_id;
3056 __u32 lid_padding1;
3057 __u64 lid_padding2;
3058 __u64 lid_padding3;
3059 struct llog_rec_tail lid_tail;
3060} __attribute__((packed));
3061
3062struct llog_unlink_rec {
3063 struct llog_rec_hdr lur_hdr;
3064 obd_id lur_oid;
3065 obd_count lur_oseq;
3066 obd_count lur_count;
3067 struct llog_rec_tail lur_tail;
3068} __attribute__((packed));
3069
3070struct llog_unlink64_rec {
3071 struct llog_rec_hdr lur_hdr;
3072 struct lu_fid lur_fid;
3073 obd_count lur_count; /* to destroy the lost precreated */
3074 __u32 lur_padding1;
3075 __u64 lur_padding2;
3076 __u64 lur_padding3;
3077 struct llog_rec_tail lur_tail;
3078} __attribute__((packed));
3079
3080struct llog_setattr64_rec {
3081 struct llog_rec_hdr lsr_hdr;
3082 struct ost_id lsr_oi;
3083 __u32 lsr_uid;
3084 __u32 lsr_uid_h;
3085 __u32 lsr_gid;
3086 __u32 lsr_gid_h;
3087 __u64 lsr_padding;
3088 struct llog_rec_tail lsr_tail;
3089} __attribute__((packed));
3090
3091struct llog_size_change_rec {
3092 struct llog_rec_hdr lsc_hdr;
3093 struct ll_fid lsc_fid;
3094 __u32 lsc_ioepoch;
3095 __u32 lsc_padding1;
3096 __u64 lsc_padding2;
3097 __u64 lsc_padding3;
3098 struct llog_rec_tail lsc_tail;
3099} __attribute__((packed));
3100
3101#define CHANGELOG_MAGIC 0xca103000
3102
3103/** \a changelog_rec_type's that can't be masked */
3104#define CHANGELOG_MINMASK (1 << CL_MARK)
3105/** bits covering all \a changelog_rec_type's */
3106#define CHANGELOG_ALLMASK 0XFFFFFFFF
3107/** default \a changelog_rec_type mask */
3108#define CHANGELOG_DEFMASK CHANGELOG_ALLMASK & ~(1 << CL_ATIME | 1 << CL_CLOSE)
3109
3110/* changelog llog name, needed by client replicators */
3111#define CHANGELOG_CATALOG "changelog_catalog"
3112
3113struct changelog_setinfo {
3114 __u64 cs_recno;
3115 __u32 cs_id;
3116} __attribute__((packed));
3117
3118/** changelog record */
3119struct llog_changelog_rec {
3120 struct llog_rec_hdr cr_hdr;
3121 struct changelog_rec cr;
3122 struct llog_rec_tail cr_tail; /**< for_sizezof_only */
3123} __attribute__((packed));
3124
3125struct llog_changelog_ext_rec {
3126 struct llog_rec_hdr cr_hdr;
3127 struct changelog_ext_rec cr;
3128 struct llog_rec_tail cr_tail; /**< for_sizezof_only */
3129} __attribute__((packed));
3130
3131#define CHANGELOG_USER_PREFIX "cl"
3132
3133struct llog_changelog_user_rec {
3134 struct llog_rec_hdr cur_hdr;
3135 __u32 cur_id;
3136 __u32 cur_padding;
3137 __u64 cur_endrec;
3138 struct llog_rec_tail cur_tail;
3139} __attribute__((packed));
3140
99a92265 3141enum agent_req_status {
3142 ARS_WAITING,
3143 ARS_STARTED,
3144 ARS_FAILED,
3145 ARS_CANCELED,
3146 ARS_SUCCEED,
3147};
3148
3149static inline char *agent_req_status2name(enum agent_req_status ars)
3150{
3151 switch (ars) {
3152 case ARS_WAITING:
3153 return "WAITING";
3154 case ARS_STARTED:
3155 return "STARTED";
3156 case ARS_FAILED:
3157 return "FAILED";
3158 case ARS_CANCELED:
3159 return "CANCELED";
3160 case ARS_SUCCEED:
3161 return "SUCCEED";
3162 default:
3163 return "UNKNOWN";
3164 }
3165}
3166
3167static inline bool agent_req_in_final_state(enum agent_req_status ars)
3168{
3169 return ((ars == ARS_SUCCEED) || (ars == ARS_FAILED) ||
3170 (ars == ARS_CANCELED));
3171}
3172
3173struct llog_agent_req_rec {
3174 struct llog_rec_hdr arr_hdr; /**< record header */
3175 __u32 arr_status; /**< status of the request */
3176 /* must match enum
3177 * agent_req_status */
3178 __u32 arr_archive_id; /**< backend archive number */
3179 __u64 arr_flags; /**< req flags */
3180 __u64 arr_compound_id; /**< compound cookie */
3181 __u64 arr_req_create; /**< req. creation time */
3182 __u64 arr_req_change; /**< req. status change time */
3183 struct hsm_action_item arr_hai; /**< req. to the agent */
3184 struct llog_rec_tail arr_tail; /**< record tail for_sizezof_only */
3185} __attribute__((packed));
3186
d7e09d03
PT
3187/* Old llog gen for compatibility */
3188struct llog_gen {
3189 __u64 mnt_cnt;
3190 __u64 conn_cnt;
3191} __attribute__((packed));
3192
3193struct llog_gen_rec {
3194 struct llog_rec_hdr lgr_hdr;
3195 struct llog_gen lgr_gen;
3196 __u64 padding1;
3197 __u64 padding2;
3198 __u64 padding3;
3199 struct llog_rec_tail lgr_tail;
3200};
3201
3202/* On-disk header structure of each log object, stored in little endian order */
3203#define LLOG_CHUNK_SIZE 8192
3204#define LLOG_HEADER_SIZE (96)
3205#define LLOG_BITMAP_BYTES (LLOG_CHUNK_SIZE - LLOG_HEADER_SIZE)
3206
3207#define LLOG_MIN_REC_SIZE (24) /* round(llog_rec_hdr + llog_rec_tail) */
3208
3209/* flags for the logs */
3210enum llog_flag {
3211 LLOG_F_ZAP_WHEN_EMPTY = 0x1,
3212 LLOG_F_IS_CAT = 0x2,
3213 LLOG_F_IS_PLAIN = 0x4,
3214};
3215
3216struct llog_log_hdr {
3217 struct llog_rec_hdr llh_hdr;
3218 obd_time llh_timestamp;
3219 __u32 llh_count;
3220 __u32 llh_bitmap_offset;
3221 __u32 llh_size;
3222 __u32 llh_flags;
3223 __u32 llh_cat_idx;
3224 /* for a catalog the first plain slot is next to it */
3225 struct obd_uuid llh_tgtuuid;
3226 __u32 llh_reserved[LLOG_HEADER_SIZE/sizeof(__u32) - 23];
3227 __u32 llh_bitmap[LLOG_BITMAP_BYTES/sizeof(__u32)];
3228 struct llog_rec_tail llh_tail;
3229} __attribute__((packed));
3230
3231#define LLOG_BITMAP_SIZE(llh) (__u32)((llh->llh_hdr.lrh_len - \
3232 llh->llh_bitmap_offset - \
3233 sizeof(llh->llh_tail)) * 8)
3234
3235/** log cookies are used to reference a specific log file and a record therein */
3236struct llog_cookie {
3237 struct llog_logid lgc_lgl;
3238 __u32 lgc_subsys;
3239 __u32 lgc_index;
3240 __u32 lgc_padding;
3241} __attribute__((packed));
3242
3243/** llog protocol */
3244enum llogd_rpc_ops {
3245 LLOG_ORIGIN_HANDLE_CREATE = 501,
3246 LLOG_ORIGIN_HANDLE_NEXT_BLOCK = 502,
3247 LLOG_ORIGIN_HANDLE_READ_HEADER = 503,
3248 LLOG_ORIGIN_HANDLE_WRITE_REC = 504,
3249 LLOG_ORIGIN_HANDLE_CLOSE = 505,
3250 LLOG_ORIGIN_CONNECT = 506,
3251 LLOG_CATINFO = 507, /* deprecated */
3252 LLOG_ORIGIN_HANDLE_PREV_BLOCK = 508,
3253 LLOG_ORIGIN_HANDLE_DESTROY = 509, /* for destroy llog object*/
3254 LLOG_LAST_OPC,
3255 LLOG_FIRST_OPC = LLOG_ORIGIN_HANDLE_CREATE
3256};
3257
3258struct llogd_body {
3259 struct llog_logid lgd_logid;
3260 __u32 lgd_ctxt_idx;
3261 __u32 lgd_llh_flags;
3262 __u32 lgd_index;
3263 __u32 lgd_saved_index;
3264 __u32 lgd_len;
3265 __u64 lgd_cur_offset;
3266} __attribute__((packed));
3267
3268struct llogd_conn_body {
3269 struct llog_gen lgdc_gen;
3270 struct llog_logid lgdc_logid;
3271 __u32 lgdc_ctxt_idx;
3272} __attribute__((packed));
3273
3274/* Note: 64-bit types are 64-bit aligned in structure */
3275struct obdo {
3276 obd_valid o_valid; /* hot fields in this obdo */
3277 struct ost_id o_oi;
3278 obd_id o_parent_seq;
3279 obd_size o_size; /* o_size-o_blocks == ost_lvb */
3280 obd_time o_mtime;
3281 obd_time o_atime;
3282 obd_time o_ctime;
3283 obd_blocks o_blocks; /* brw: cli sent cached bytes */
3284 obd_size o_grant;
3285
3286 /* 32-bit fields start here: keep an even number of them via padding */
3287 obd_blksize o_blksize; /* optimal IO blocksize */
3288 obd_mode o_mode; /* brw: cli sent cache remain */
3289 obd_uid o_uid;
3290 obd_gid o_gid;
3291 obd_flag o_flags;
3292 obd_count o_nlink; /* brw: checksum */
3293 obd_count o_parent_oid;
3294 obd_count o_misc; /* brw: o_dropped */
3295
3296 __u64 o_ioepoch; /* epoch in ost writes */
3297 __u32 o_stripe_idx; /* holds stripe idx */
3298 __u32 o_parent_ver;
3299 struct lustre_handle o_handle; /* brw: lock handle to prolong
3300 * locks */
3301 struct llog_cookie o_lcookie; /* destroy: unlink cookie from
3302 * MDS */
3303 __u32 o_uid_h;
3304 __u32 o_gid_h;
3305
3306 __u64 o_data_version; /* getattr: sum of iversion for
3307 * each stripe.
3308 * brw: grant space consumed on
3309 * the client for the write */
3310 __u64 o_padding_4;
3311 __u64 o_padding_5;
3312 __u64 o_padding_6;
3313};
3314
3315#define o_dirty o_blocks
3316#define o_undirty o_mode
3317#define o_dropped o_misc
3318#define o_cksum o_nlink
3319#define o_grant_used o_data_version
3320
3b2f75fd 3321static inline void lustre_set_wire_obdo(struct obd_connect_data *ocd,
3322 struct obdo *wobdo, struct obdo *lobdo)
d7e09d03
PT
3323{
3324 memcpy(wobdo, lobdo, sizeof(*lobdo));
3325 wobdo->o_flags &= ~OBD_FL_LOCAL_MASK;
3b2f75fd 3326 if (ocd == NULL)
3327 return;
3328
3329 if (unlikely(!(ocd->ocd_connect_flags & OBD_CONNECT_FID)) &&
6752a53e 3330 fid_seq_is_echo(ostid_seq(&lobdo->o_oi))) {
3b2f75fd 3331 /* Currently OBD_FL_OSTID will only be used when 2.4 echo
3332 * client communicate with pre-2.4 server */
3333 wobdo->o_oi.oi.oi_id = fid_oid(&lobdo->o_oi.oi_fid);
3334 wobdo->o_oi.oi.oi_seq = fid_seq(&lobdo->o_oi.oi_fid);
3335 }
d7e09d03
PT
3336}
3337
3b2f75fd 3338static inline void lustre_get_wire_obdo(struct obd_connect_data *ocd,
3339 struct obdo *lobdo, struct obdo *wobdo)
d7e09d03
PT
3340{
3341 obd_flag local_flags = 0;
3342
3343 if (lobdo->o_valid & OBD_MD_FLFLAGS)
3344 local_flags = lobdo->o_flags & OBD_FL_LOCAL_MASK;
3345
3346 LASSERT(!(wobdo->o_flags & OBD_FL_LOCAL_MASK));
3347
3348 memcpy(lobdo, wobdo, sizeof(*lobdo));
3349 if (local_flags != 0) {
3b2f75fd 3350 lobdo->o_valid |= OBD_MD_FLFLAGS;
3351 lobdo->o_flags &= ~OBD_FL_LOCAL_MASK;
3352 lobdo->o_flags |= local_flags;
3353 }
3354 if (ocd == NULL)
3355 return;
3356
3357 if (unlikely(!(ocd->ocd_connect_flags & OBD_CONNECT_FID)) &&
3358 fid_seq_is_echo(wobdo->o_oi.oi.oi_seq)) {
3359 /* see above */
3360 lobdo->o_oi.oi_fid.f_seq = wobdo->o_oi.oi.oi_seq;
3361 lobdo->o_oi.oi_fid.f_oid = wobdo->o_oi.oi.oi_id;
3362 lobdo->o_oi.oi_fid.f_ver = 0;
d7e09d03
PT
3363 }
3364}
3365
3366extern void lustre_swab_obdo (struct obdo *o);
3367
3368/* request structure for OST's */
3369struct ost_body {
3370 struct obdo oa;
3371};
3372
3373/* Key for FIEMAP to be used in get_info calls */
3374struct ll_fiemap_info_key {
3375 char name[8];
3376 struct obdo oa;
3377 struct ll_user_fiemap fiemap;
3378};
3379
3380extern void lustre_swab_ost_body (struct ost_body *b);
3381extern void lustre_swab_ost_last_id(obd_id *id);
3382extern void lustre_swab_fiemap(struct ll_user_fiemap *fiemap);
3383
3384extern void lustre_swab_lov_user_md_v1(struct lov_user_md_v1 *lum);
3385extern void lustre_swab_lov_user_md_v3(struct lov_user_md_v3 *lum);
3386extern void lustre_swab_lov_user_md_objects(struct lov_user_ost_data *lod,
3387 int stripe_count);
3388extern void lustre_swab_lov_mds_md(struct lov_mds_md *lmm);
3389
3390/* llog_swab.c */
3391extern void lustre_swab_llogd_body (struct llogd_body *d);
3392extern void lustre_swab_llog_hdr (struct llog_log_hdr *h);
3393extern void lustre_swab_llogd_conn_body (struct llogd_conn_body *d);
3394extern void lustre_swab_llog_rec(struct llog_rec_hdr *rec);
ff8c39b2 3395extern void lustre_swab_llog_id(struct llog_logid *lid);
d7e09d03
PT
3396
3397struct lustre_cfg;
3398extern void lustre_swab_lustre_cfg(struct lustre_cfg *lcfg);
3399
3400/* Functions for dumping PTLRPC fields */
3401void dump_rniobuf(struct niobuf_remote *rnb);
3402void dump_ioo(struct obd_ioobj *nb);
3403void dump_obdo(struct obdo *oa);
3404void dump_ost_body(struct ost_body *ob);
3405void dump_rcs(__u32 *rc);
3406
3407#define IDX_INFO_MAGIC 0x3D37CC37
3408
3409/* Index file transfer through the network. The server serializes the index into
3410 * a byte stream which is sent to the client via a bulk transfer */
3411struct idx_info {
3412 __u32 ii_magic;
3413
3414 /* reply: see idx_info_flags below */
3415 __u32 ii_flags;
3416
3417 /* request & reply: number of lu_idxpage (to be) transferred */
3418 __u16 ii_count;
3419 __u16 ii_pad0;
3420
3421 /* request: requested attributes passed down to the iterator API */
3422 __u32 ii_attrs;
3423
3424 /* request & reply: index file identifier (FID) */
3425 struct lu_fid ii_fid;
3426
3427 /* reply: version of the index file before starting to walk the index.
3428 * Please note that the version can be modified at any time during the
3429 * transfer */
3430 __u64 ii_version;
3431
3432 /* request: hash to start with:
3433 * reply: hash of the first entry of the first lu_idxpage and hash
3434 * of the entry to read next if any */
3435 __u64 ii_hash_start;
3436 __u64 ii_hash_end;
3437
3438 /* reply: size of keys in lu_idxpages, minimal one if II_FL_VARKEY is
3439 * set */
3440 __u16 ii_keysize;
3441
3442 /* reply: size of records in lu_idxpages, minimal one if II_FL_VARREC
3443 * is set */
3444 __u16 ii_recsize;
3445
3446 __u32 ii_pad1;
3447 __u64 ii_pad2;
3448 __u64 ii_pad3;
3449};
3450extern void lustre_swab_idx_info(struct idx_info *ii);
3451
3452#define II_END_OFF MDS_DIR_END_OFF /* all entries have been read */
3453
3454/* List of flags used in idx_info::ii_flags */
3455enum idx_info_flags {
3456 II_FL_NOHASH = 1 << 0, /* client doesn't care about hash value */
3457 II_FL_VARKEY = 1 << 1, /* keys can be of variable size */
3458 II_FL_VARREC = 1 << 2, /* records can be of variable size */
3459 II_FL_NONUNQ = 1 << 3, /* index supports non-unique keys */
3460};
3461
3462#define LIP_MAGIC 0x8A6D6B6C
3463
3464/* 4KB (= LU_PAGE_SIZE) container gathering key/record pairs */
3465struct lu_idxpage {
3466 /* 16-byte header */
3467 __u32 lip_magic;
3468 __u16 lip_flags;
3469 __u16 lip_nr; /* number of entries in the container */
3470 __u64 lip_pad0; /* additional padding for future use */
3471
3472 /* key/record pairs are stored in the remaining 4080 bytes.
3473 * depending upon the flags in idx_info::ii_flags, each key/record
3474 * pair might be preceded by:
3475 * - a hash value
3476 * - the key size (II_FL_VARKEY is set)
3477 * - the record size (II_FL_VARREC is set)
3478 *
3479 * For the time being, we only support fixed-size key & record. */
3480 char lip_entries[0];
3481};
3482extern void lustre_swab_lip_header(struct lu_idxpage *lip);
3483
3484#define LIP_HDR_SIZE (offsetof(struct lu_idxpage, lip_entries))
3485
3486/* Gather all possible type associated with a 4KB container */
3487union lu_page {
3488 struct lu_dirpage lp_dir; /* for MDS_READPAGE */
3489 struct lu_idxpage lp_idx; /* for OBD_IDX_READ */
3490 char lp_array[LU_PAGE_SIZE];
3491};
3492
3493/* security opcodes */
3494typedef enum {
3495 SEC_CTX_INIT = 801,
3496 SEC_CTX_INIT_CONT = 802,
3497 SEC_CTX_FINI = 803,
3498 SEC_LAST_OPC,
3499 SEC_FIRST_OPC = SEC_CTX_INIT
3500} sec_cmd_t;
3501
3502/*
3503 * capa related definitions
3504 */
3505#define CAPA_HMAC_MAX_LEN 64
3506#define CAPA_HMAC_KEY_MAX_LEN 56
3507
3508/* NB take care when changing the sequence of elements this struct,
3509 * because the offset info is used in find_capa() */
3510struct lustre_capa {
3511 struct lu_fid lc_fid; /** fid */
3512 __u64 lc_opc; /** operations allowed */
3513 __u64 lc_uid; /** file owner */
3514 __u64 lc_gid; /** file group */
3515 __u32 lc_flags; /** HMAC algorithm & flags */
3516 __u32 lc_keyid; /** key# used for the capability */
3517 __u32 lc_timeout; /** capa timeout value (sec) */
3518 __u32 lc_expiry; /** expiry time (sec) */
3519 __u8 lc_hmac[CAPA_HMAC_MAX_LEN]; /** HMAC */
3520} __attribute__((packed));
3521
3522extern void lustre_swab_lustre_capa(struct lustre_capa *c);
3523
3524/** lustre_capa::lc_opc */
3525enum {
3526 CAPA_OPC_BODY_WRITE = 1<<0, /**< write object data */
3527 CAPA_OPC_BODY_READ = 1<<1, /**< read object data */
3528 CAPA_OPC_INDEX_LOOKUP = 1<<2, /**< lookup object fid */
3529 CAPA_OPC_INDEX_INSERT = 1<<3, /**< insert object fid */
3530 CAPA_OPC_INDEX_DELETE = 1<<4, /**< delete object fid */
3531 CAPA_OPC_OSS_WRITE = 1<<5, /**< write oss object data */
3532 CAPA_OPC_OSS_READ = 1<<6, /**< read oss object data */
3533 CAPA_OPC_OSS_TRUNC = 1<<7, /**< truncate oss object */
3534 CAPA_OPC_OSS_DESTROY = 1<<8, /**< destroy oss object */
3535 CAPA_OPC_META_WRITE = 1<<9, /**< write object meta data */
3536 CAPA_OPC_META_READ = 1<<10, /**< read object meta data */
3537};
3538
3539#define CAPA_OPC_OSS_RW (CAPA_OPC_OSS_READ | CAPA_OPC_OSS_WRITE)
3540#define CAPA_OPC_MDS_ONLY \
3541 (CAPA_OPC_BODY_WRITE | CAPA_OPC_BODY_READ | CAPA_OPC_INDEX_LOOKUP | \
3542 CAPA_OPC_INDEX_INSERT | CAPA_OPC_INDEX_DELETE)
3543#define CAPA_OPC_OSS_ONLY \
3544 (CAPA_OPC_OSS_WRITE | CAPA_OPC_OSS_READ | CAPA_OPC_OSS_TRUNC | \
3545 CAPA_OPC_OSS_DESTROY)
3546#define CAPA_OPC_MDS_DEFAULT ~CAPA_OPC_OSS_ONLY
3547#define CAPA_OPC_OSS_DEFAULT ~(CAPA_OPC_MDS_ONLY | CAPA_OPC_OSS_ONLY)
3548
3549/* MDS capability covers object capability for operations of body r/w
3550 * (dir readpage/sendpage), index lookup/insert/delete and meta data r/w,
3551 * while OSS capability only covers object capability for operations of
3552 * oss data(file content) r/w/truncate.
3553 */
3554static inline int capa_for_mds(struct lustre_capa *c)
3555{
3556 return (c->lc_opc & CAPA_OPC_INDEX_LOOKUP) != 0;
3557}
3558
3559static inline int capa_for_oss(struct lustre_capa *c)
3560{
3561 return (c->lc_opc & CAPA_OPC_INDEX_LOOKUP) == 0;
3562}
3563
3564/* lustre_capa::lc_hmac_alg */
3565enum {
3566 CAPA_HMAC_ALG_SHA1 = 1, /**< sha1 algorithm */
3567 CAPA_HMAC_ALG_MAX,
3568};
3569
3570#define CAPA_FL_MASK 0x00ffffff
3571#define CAPA_HMAC_ALG_MASK 0xff000000
3572
3573struct lustre_capa_key {
3574 __u64 lk_seq; /**< mds# */
3575 __u32 lk_keyid; /**< key# */
3576 __u32 lk_padding;
3577 __u8 lk_key[CAPA_HMAC_KEY_MAX_LEN]; /**< key */
3578} __attribute__((packed));
3579
3580extern void lustre_swab_lustre_capa_key(struct lustre_capa_key *k);
3581
3582/** The link ea holds 1 \a link_ea_entry for each hardlink */
3583#define LINK_EA_MAGIC 0x11EAF1DFUL
3584struct link_ea_header {
3585 __u32 leh_magic;
3586 __u32 leh_reccount;
3587 __u64 leh_len; /* total size */
3588 /* future use */
3589 __u32 padding1;
3590 __u32 padding2;
3591};
3592
3593/** Hardlink data is name and parent fid.
3594 * Stored in this crazy struct for maximum packing and endian-neutrality
3595 */
3596struct link_ea_entry {
3597 /** __u16 stored big-endian, unaligned */
3598 unsigned char lee_reclen[2];
3599 unsigned char lee_parent_fid[sizeof(struct lu_fid)];
3600 char lee_name[0];
3601}__attribute__((packed));
3602
3603/** fid2path request/reply structure */
3604struct getinfo_fid2path {
3605 struct lu_fid gf_fid;
3606 __u64 gf_recno;
3607 __u32 gf_linkno;
3608 __u32 gf_pathlen;
3609 char gf_path[0];
3610} __attribute__((packed));
3611
3612void lustre_swab_fid2path (struct getinfo_fid2path *gf);
3613
3614enum {
3615 LAYOUT_INTENT_ACCESS = 0,
3616 LAYOUT_INTENT_READ = 1,
3617 LAYOUT_INTENT_WRITE = 2,
3618 LAYOUT_INTENT_GLIMPSE = 3,
3619 LAYOUT_INTENT_TRUNC = 4,
3620 LAYOUT_INTENT_RELEASE = 5,
3621 LAYOUT_INTENT_RESTORE = 6
3622};
3623
3624/* enqueue layout lock with intent */
3625struct layout_intent {
3626 __u32 li_opc; /* intent operation for enqueue, read, write etc */
3627 __u32 li_flags;
3628 __u64 li_start;
3629 __u64 li_end;
3630};
3631
3632void lustre_swab_layout_intent(struct layout_intent *li);
3633
3634/**
3635 * On the wire version of hsm_progress structure.
3636 *
3637 * Contains the userspace hsm_progress and some internal fields.
3638 */
3639struct hsm_progress_kernel {
3640 /* Field taken from struct hsm_progress */
3641 lustre_fid hpk_fid;
3642 __u64 hpk_cookie;
3643 struct hsm_extent hpk_extent;
3644 __u16 hpk_flags;
3645 __u16 hpk_errval; /* positive val */
3646 __u32 hpk_padding1;
3647 /* Additional fields */
3648 __u64 hpk_data_version;
3649 __u64 hpk_padding2;
3650} __attribute__((packed));
3651
3652extern void lustre_swab_hsm_user_state(struct hsm_user_state *hus);
3653extern void lustre_swab_hsm_current_action(struct hsm_current_action *action);
3654extern void lustre_swab_hsm_progress_kernel(struct hsm_progress_kernel *hpk);
3655extern void lustre_swab_hsm_user_state(struct hsm_user_state *hus);
3656extern void lustre_swab_hsm_user_item(struct hsm_user_item *hui);
3657extern void lustre_swab_hsm_request(struct hsm_request *hr);
3658
3659/**
3660 * These are object update opcode under UPDATE_OBJ, which is currently
3661 * being used by cross-ref operations between MDT.
3662 *
3663 * During the cross-ref operation, the Master MDT, which the client send the
3664 * request to, will disassembly the operation into object updates, then OSP
3665 * will send these updates to the remote MDT to be executed.
3666 *
3667 * Update request format
3668 * magic: UPDATE_BUFFER_MAGIC_V1
3669 * Count: How many updates in the req.
3670 * bufs[0] : following are packets of object.
3671 * update[0]:
3672 * type: object_update_op, the op code of update
3673 * fid: The object fid of the update.
3674 * lens/bufs: other parameters of the update.
3675 * update[1]:
3676 * type: object_update_op, the op code of update
3677 * fid: The object fid of the update.
3678 * lens/bufs: other parameters of the update.
3679 * ..........
3680 * update[7]: type: object_update_op, the op code of update
3681 * fid: The object fid of the update.
3682 * lens/bufs: other parameters of the update.
3683 * Current 8 maxim updates per object update request.
3684 *
3685 *******************************************************************
3686 * update reply format:
3687 *
3688 * ur_version: UPDATE_REPLY_V1
3689 * ur_count: The count of the reply, which is usually equal
3690 * to the number of updates in the request.
3691 * ur_lens: The reply lengths of each object update.
3692 *
3693 * replies: 1st update reply [4bytes_ret: other body]
3694 * 2nd update reply [4bytes_ret: other body]
3695 * .....
3696 * nth update reply [4bytes_ret: other body]
3697 *
3698 * For each reply of the update, the format would be
3699 * result(4 bytes):Other stuff
3700 */
3701
3702#define UPDATE_MAX_OPS 10
3703#define UPDATE_BUFFER_MAGIC_V1 0xBDDE0001
3704#define UPDATE_BUFFER_MAGIC UPDATE_BUFFER_MAGIC_V1
3705#define UPDATE_BUF_COUNT 8
3706enum object_update_op {
3707 OBJ_CREATE = 1,
3708 OBJ_DESTROY = 2,
3709 OBJ_REF_ADD = 3,
3710 OBJ_REF_DEL = 4,
3711 OBJ_ATTR_SET = 5,
3712 OBJ_ATTR_GET = 6,
3713 OBJ_XATTR_SET = 7,
3714 OBJ_XATTR_GET = 8,
3715 OBJ_INDEX_LOOKUP = 9,
3716 OBJ_INDEX_INSERT = 10,
3717 OBJ_INDEX_DELETE = 11,
3718 OBJ_LAST
3719};
3720
3721struct update {
3722 __u32 u_type;
3723 __u32 u_batchid;
3724 struct lu_fid u_fid;
3725 __u32 u_lens[UPDATE_BUF_COUNT];
3726 __u32 u_bufs[0];
3727};
3728
3729struct update_buf {
3730 __u32 ub_magic;
3731 __u32 ub_count;
3732 __u32 ub_bufs[0];
3733};
3734
3735#define UPDATE_REPLY_V1 0x00BD0001
3736struct update_reply {
3737 __u32 ur_version;
3738 __u32 ur_count;
3739 __u32 ur_lens[0];
3740};
3741
3742void lustre_swab_update_buf(struct update_buf *ub);
3743void lustre_swab_update_reply_buf(struct update_reply *ur);
3744
3745/** layout swap request structure
3746 * fid1 and fid2 are in mdt_body
3747 */
3748struct mdc_swap_layouts {
3749 __u64 msl_flags;
3750} __packed;
3751
3752void lustre_swab_swap_layouts(struct mdc_swap_layouts *msl);
3753
3754#endif
3755/** @} lustreidl */
This page took 0.538933 seconds and 5 git commands to generate.