staging: lustre: remove linux-prim.h
[deliverable/linux.git] / drivers / staging / lustre / lustre / include / lustre / lustre_idl.h
CommitLineData
d7e09d03
PT
1/*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19 *
20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21 * CA 95054 USA or visit www.sun.com if you need additional information or
22 * have any questions.
23 *
24 * GPL HEADER END
25 */
26/*
27 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
28 * Use is subject to license terms.
29 *
30 * Copyright (c) 2011, 2012, Intel Corporation.
31 */
32/*
33 * This file is part of Lustre, http://www.lustre.org/
34 * Lustre is a trademark of Sun Microsystems, Inc.
35 *
36 * lustre/include/lustre/lustre_idl.h
37 *
38 * Lustre wire protocol definitions.
39 */
40
41/** \defgroup lustreidl lustreidl
42 *
43 * Lustre wire protocol definitions.
44 *
45 * ALL structs passing over the wire should be declared here. Structs
46 * that are used in interfaces with userspace should go in lustre_user.h.
47 *
48 * All structs being declared here should be built from simple fixed-size
49 * types (__u8, __u16, __u32, __u64) or be built from other types or
50 * structs also declared in this file. Similarly, all flags and magic
51 * values in those structs should also be declared here. This ensures
52 * that the Lustre wire protocol is not influenced by external dependencies.
53 *
54 * The only other acceptable items in this file are VERY SIMPLE accessor
55 * functions to avoid callers grubbing inside the structures, and the
56 * prototypes of the swabber functions for each struct. Nothing that
57 * depends on external functions or definitions should be in here.
58 *
59 * Structs must be properly aligned to put 64-bit values on an 8-byte
60 * boundary. Any structs being added here must also be added to
61 * utils/wirecheck.c and "make newwiretest" run to regenerate the
62 * utils/wiretest.c sources. This allows us to verify that wire structs
63 * have the proper alignment/size on all architectures.
64 *
65 * DO NOT CHANGE any of the structs, flags, values declared here and used
66 * in released Lustre versions. Some structs may have padding fields that
67 * can be used. Some structs might allow addition at the end (verify this
68 * in the code to ensure that new/old clients that see this larger struct
69 * do not fail, otherwise you need to implement protocol compatibility).
70 *
71 * We assume all nodes are either little-endian or big-endian, and we
72 * always send messages in the sender's native format. The receiver
73 * detects the message format by checking the 'magic' field of the message
74 * (see lustre_msg_swabbed() below).
75 *
76 * Each wire type has corresponding 'lustre_swab_xxxtypexxx()' routines,
77 * implemented either here, inline (trivial implementations) or in
78 * ptlrpc/pack_generic.c. These 'swabbers' convert the type from "other"
79 * endian, in-place in the message buffer.
80 *
81 * A swabber takes a single pointer argument. The caller must already have
82 * verified that the length of the message buffer >= sizeof (type).
83 *
84 * For variable length types, a second 'lustre_swab_v_xxxtypexxx()' routine
85 * may be defined that swabs just the variable part, after the caller has
86 * verified that the message buffer is large enough.
87 *
88 * @{
89 */
90
91#ifndef _LUSTRE_IDL_H_
92#define _LUSTRE_IDL_H_
93
f3418ce8 94#if !defined(LPU64)
a8c495ac 95#include "../../../include/linux/libcfs/libcfs.h" /* for LPUX64, etc */
d7e09d03
PT
96#endif
97
98/* Defn's shared with user-space. */
1accaadf
GKH
99#include "lustre_user.h"
100#include "lustre_errno.h"
2d58de78 101
d7e09d03
PT
102/*
103 * GENERAL STUFF
104 */
105/* FOO_REQUEST_PORTAL is for incoming requests on the FOO
106 * FOO_REPLY_PORTAL is for incoming replies on the FOO
107 * FOO_BULK_PORTAL is for incoming bulk on the FOO
108 */
109
110#define CONNMGR_REQUEST_PORTAL 1
111#define CONNMGR_REPLY_PORTAL 2
112//#define OSC_REQUEST_PORTAL 3
113#define OSC_REPLY_PORTAL 4
114//#define OSC_BULK_PORTAL 5
115#define OST_IO_PORTAL 6
116#define OST_CREATE_PORTAL 7
117#define OST_BULK_PORTAL 8
118//#define MDC_REQUEST_PORTAL 9
119#define MDC_REPLY_PORTAL 10
120//#define MDC_BULK_PORTAL 11
121#define MDS_REQUEST_PORTAL 12
122//#define MDS_REPLY_PORTAL 13
123#define MDS_BULK_PORTAL 14
124#define LDLM_CB_REQUEST_PORTAL 15
125#define LDLM_CB_REPLY_PORTAL 16
126#define LDLM_CANCEL_REQUEST_PORTAL 17
127#define LDLM_CANCEL_REPLY_PORTAL 18
128//#define PTLBD_REQUEST_PORTAL 19
129//#define PTLBD_REPLY_PORTAL 20
130//#define PTLBD_BULK_PORTAL 21
131#define MDS_SETATTR_PORTAL 22
132#define MDS_READPAGE_PORTAL 23
133#define MDS_MDS_PORTAL 24
134
135#define MGC_REPLY_PORTAL 25
136#define MGS_REQUEST_PORTAL 26
137#define MGS_REPLY_PORTAL 27
138#define OST_REQUEST_PORTAL 28
139#define FLD_REQUEST_PORTAL 29
140#define SEQ_METADATA_PORTAL 30
141#define SEQ_DATA_PORTAL 31
142#define SEQ_CONTROLLER_PORTAL 32
143#define MGS_BULK_PORTAL 33
144
145/* Portal 63 is reserved for the Cray Inc DVS - nic@cray.com, roe@cray.com, n8851@cray.com */
146
147/* packet types */
148#define PTL_RPC_MSG_REQUEST 4711
149#define PTL_RPC_MSG_ERR 4712
150#define PTL_RPC_MSG_REPLY 4713
151
152/* DON'T use swabbed values of MAGIC as magic! */
153#define LUSTRE_MSG_MAGIC_V1 0x0BD00BD0
154#define LUSTRE_MSG_MAGIC_V2 0x0BD00BD3
155
156#define LUSTRE_MSG_MAGIC_V1_SWABBED 0xD00BD00B
157#define LUSTRE_MSG_MAGIC_V2_SWABBED 0xD30BD00B
158
159#define LUSTRE_MSG_MAGIC LUSTRE_MSG_MAGIC_V2
160
161#define PTLRPC_MSG_VERSION 0x00000003
162#define LUSTRE_VERSION_MASK 0xffff0000
163#define LUSTRE_OBD_VERSION 0x00010000
164#define LUSTRE_MDS_VERSION 0x00020000
165#define LUSTRE_OST_VERSION 0x00030000
166#define LUSTRE_DLM_VERSION 0x00040000
167#define LUSTRE_LOG_VERSION 0x00050000
168#define LUSTRE_MGS_VERSION 0x00060000
169
170typedef __u32 mdsno_t;
171typedef __u64 seqno_t;
172typedef __u64 obd_id;
173typedef __u64 obd_seq;
174typedef __s64 obd_time;
175typedef __u64 obd_size;
176typedef __u64 obd_off;
177typedef __u64 obd_blocks;
178typedef __u64 obd_valid;
179typedef __u32 obd_blksize;
180typedef __u32 obd_mode;
181typedef __u32 obd_uid;
182typedef __u32 obd_gid;
183typedef __u32 obd_flag;
184typedef __u32 obd_count;
185
186/**
187 * Describes a range of sequence, lsr_start is included but lsr_end is
188 * not in the range.
189 * Same structure is used in fld module where lsr_index field holds mdt id
190 * of the home mdt.
191 */
192struct lu_seq_range {
193 __u64 lsr_start;
194 __u64 lsr_end;
195 __u32 lsr_index;
196 __u32 lsr_flags;
197};
198
199#define LU_SEQ_RANGE_MDT 0x0
200#define LU_SEQ_RANGE_OST 0x1
201#define LU_SEQ_RANGE_ANY 0x3
202
203#define LU_SEQ_RANGE_MASK 0x3
204
205static inline unsigned fld_range_type(const struct lu_seq_range *range)
206{
207 return range->lsr_flags & LU_SEQ_RANGE_MASK;
208}
209
210static inline int fld_range_is_ost(const struct lu_seq_range *range)
211{
212 return fld_range_type(range) == LU_SEQ_RANGE_OST;
213}
214
215static inline int fld_range_is_mdt(const struct lu_seq_range *range)
216{
217 return fld_range_type(range) == LU_SEQ_RANGE_MDT;
218}
219
220/**
221 * This all range is only being used when fld client sends fld query request,
222 * but it does not know whether the seq is MDT or OST, so it will send req
223 * with ALL type, which means either seq type gotten from lookup can be
224 * expected.
225 */
226static inline unsigned fld_range_is_any(const struct lu_seq_range *range)
227{
228 return fld_range_type(range) == LU_SEQ_RANGE_ANY;
229}
230
231static inline void fld_range_set_type(struct lu_seq_range *range,
232 unsigned flags)
233{
d7e09d03
PT
234 range->lsr_flags |= flags;
235}
236
237static inline void fld_range_set_mdt(struct lu_seq_range *range)
238{
239 fld_range_set_type(range, LU_SEQ_RANGE_MDT);
240}
241
242static inline void fld_range_set_ost(struct lu_seq_range *range)
243{
244 fld_range_set_type(range, LU_SEQ_RANGE_OST);
245}
246
247static inline void fld_range_set_any(struct lu_seq_range *range)
248{
249 fld_range_set_type(range, LU_SEQ_RANGE_ANY);
250}
251
252/**
253 * returns width of given range \a r
254 */
255
256static inline __u64 range_space(const struct lu_seq_range *range)
257{
258 return range->lsr_end - range->lsr_start;
259}
260
261/**
262 * initialize range to zero
263 */
264
265static inline void range_init(struct lu_seq_range *range)
266{
a1e7e2d4 267 memset(range, 0, sizeof(*range));
d7e09d03
PT
268}
269
270/**
271 * check if given seq id \a s is within given range \a r
272 */
273
274static inline int range_within(const struct lu_seq_range *range,
275 __u64 s)
276{
277 return s >= range->lsr_start && s < range->lsr_end;
278}
279
280static inline int range_is_sane(const struct lu_seq_range *range)
281{
282 return (range->lsr_end >= range->lsr_start);
283}
284
285static inline int range_is_zero(const struct lu_seq_range *range)
286{
287 return (range->lsr_start == 0 && range->lsr_end == 0);
288}
289
290static inline int range_is_exhausted(const struct lu_seq_range *range)
291
292{
293 return range_space(range) == 0;
294}
295
296/* return 0 if two range have the same location */
297static inline int range_compare_loc(const struct lu_seq_range *r1,
298 const struct lu_seq_range *r2)
299{
300 return r1->lsr_index != r2->lsr_index ||
301 r1->lsr_flags != r2->lsr_flags;
302}
303
304#define DRANGE "[%#16.16"LPF64"x-%#16.16"LPF64"x):%x:%s"
305
306#define PRANGE(range) \
307 (range)->lsr_start, \
308 (range)->lsr_end, \
309 (range)->lsr_index, \
310 fld_range_is_mdt(range) ? "mdt" : "ost"
311
312
313/** \defgroup lu_fid lu_fid
314 * @{ */
315
316/**
317 * Flags for lustre_mdt_attrs::lma_compat and lustre_mdt_attrs::lma_incompat.
318 * Deprecated since HSM and SOM attributes are now stored in separate on-disk
319 * xattr.
320 */
321enum lma_compat {
c0ac76d9
FY
322 LMAC_HSM = 0x00000001,
323 LMAC_SOM = 0x00000002,
324 LMAC_NOT_IN_OI = 0x00000004, /* the object does NOT need OI mapping */
325 LMAC_FID_ON_OST = 0x00000008, /* For OST-object, its OI mapping is
326 * under /O/<seq>/d<x>. */
d7e09d03
PT
327};
328
329/**
330 * Masks for all features that should be supported by a Lustre version to
331 * access a specific file.
332 * This information is stored in lustre_mdt_attrs::lma_incompat.
333 */
334enum lma_incompat {
c03a98b4
FY
335 LMAI_RELEASED = 0x00000001, /* file is released */
336 LMAI_AGENT = 0x00000002, /* agent inode */
337 LMAI_REMOTE_PARENT = 0x00000004, /* the parent of the object
338 is on the remote MDT */
d7e09d03
PT
339};
340#define LMA_INCOMPAT_SUPP (LMAI_AGENT | LMAI_REMOTE_PARENT)
341
342extern void lustre_lma_swab(struct lustre_mdt_attrs *lma);
343extern void lustre_lma_init(struct lustre_mdt_attrs *lma,
344 const struct lu_fid *fid, __u32 incompat);
345/**
346 * SOM on-disk attributes stored in a separate xattr.
347 */
348struct som_attrs {
349 /** Bitfield for supported data in this structure. For future use. */
350 __u32 som_compat;
351
f16192ed 352 /** Incompat feature list. The supported feature mask is available in
d7e09d03
PT
353 * SOM_INCOMPAT_SUPP */
354 __u32 som_incompat;
355
356 /** IO Epoch SOM attributes belongs to */
357 __u64 som_ioepoch;
358 /** total file size in objects */
359 __u64 som_size;
360 /** total fs blocks in objects */
361 __u64 som_blocks;
362 /** mds mount id the size is valid for */
363 __u64 som_mountid;
364};
365extern void lustre_som_swab(struct som_attrs *attrs);
366
367#define SOM_INCOMPAT_SUPP 0x0
368
369/**
370 * HSM on-disk attributes stored in a separate xattr.
371 */
372struct hsm_attrs {
373 /** Bitfield for supported data in this structure. For future use. */
374 __u32 hsm_compat;
375
376 /** HSM flags, see hsm_flags enum below */
377 __u32 hsm_flags;
378 /** backend archive id associated with the file */
379 __u64 hsm_arch_id;
380 /** version associated with the last archiving, if any */
381 __u64 hsm_arch_ver;
382};
383extern void lustre_hsm_swab(struct hsm_attrs *attrs);
384
385/**
386 * fid constants
387 */
388enum {
66cc83e9
MP
389 /** LASTID file has zero OID */
390 LUSTRE_FID_LASTID_OID = 0UL,
d7e09d03
PT
391 /** initial fid id value */
392 LUSTRE_FID_INIT_OID = 1UL
393};
394
395/** returns fid object sequence */
396static inline __u64 fid_seq(const struct lu_fid *fid)
397{
398 return fid->f_seq;
399}
400
401/** returns fid object id */
402static inline __u32 fid_oid(const struct lu_fid *fid)
403{
404 return fid->f_oid;
405}
406
407/** returns fid object version */
408static inline __u32 fid_ver(const struct lu_fid *fid)
409{
410 return fid->f_ver;
411}
412
413static inline void fid_zero(struct lu_fid *fid)
414{
415 memset(fid, 0, sizeof(*fid));
416}
417
418static inline obd_id fid_ver_oid(const struct lu_fid *fid)
419{
420 return ((__u64)fid_ver(fid) << 32 | fid_oid(fid));
421}
422
423/**
424 * Note that reserved SEQ numbers below 12 will conflict with ldiskfs
425 * inodes in the IGIF namespace, so these reserved SEQ numbers can be
426 * used for other purposes and not risk collisions with existing inodes.
427 *
428 * Different FID Format
429 * http://arch.lustre.org/index.php?title=Interoperability_fids_zfs#NEW.0
430 */
431enum fid_seq {
432 FID_SEQ_OST_MDT0 = 0,
433 FID_SEQ_LLOG = 1, /* unnamed llogs */
434 FID_SEQ_ECHO = 2,
435 FID_SEQ_OST_MDT1 = 3,
436 FID_SEQ_OST_MAX = 9, /* Max MDT count before OST_on_FID */
437 FID_SEQ_LLOG_NAME = 10, /* named llogs */
438 FID_SEQ_RSVD = 11,
439 FID_SEQ_IGIF = 12,
440 FID_SEQ_IGIF_MAX = 0x0ffffffffULL,
441 FID_SEQ_IDIF = 0x100000000ULL,
442 FID_SEQ_IDIF_MAX = 0x1ffffffffULL,
443 /* Normal FID sequence starts from this value, i.e. 1<<33 */
444 FID_SEQ_START = 0x200000000ULL,
445 /* sequence for local pre-defined FIDs listed in local_oid */
446 FID_SEQ_LOCAL_FILE = 0x200000001ULL,
447 FID_SEQ_DOT_LUSTRE = 0x200000002ULL,
448 /* sequence is used for local named objects FIDs generated
449 * by local_object_storage library */
450 FID_SEQ_LOCAL_NAME = 0x200000003ULL,
451 /* Because current FLD will only cache the fid sequence, instead
452 * of oid on the client side, if the FID needs to be exposed to
453 * clients sides, it needs to make sure all of fids under one
454 * sequence will be located in one MDT. */
455 FID_SEQ_SPECIAL = 0x200000004ULL,
456 FID_SEQ_QUOTA = 0x200000005ULL,
457 FID_SEQ_QUOTA_GLB = 0x200000006ULL,
458 FID_SEQ_ROOT = 0x200000007ULL, /* Located on MDT0 */
459 FID_SEQ_NORMAL = 0x200000400ULL,
460 FID_SEQ_LOV_DEFAULT = 0xffffffffffffffffULL
461};
462
463#define OBIF_OID_MAX_BITS 32
464#define OBIF_MAX_OID (1ULL << OBIF_OID_MAX_BITS)
465#define OBIF_OID_MASK ((1ULL << OBIF_OID_MAX_BITS) - 1)
466#define IDIF_OID_MAX_BITS 48
467#define IDIF_MAX_OID (1ULL << IDIF_OID_MAX_BITS)
468#define IDIF_OID_MASK ((1ULL << IDIF_OID_MAX_BITS) - 1)
469
470/** OID for FID_SEQ_SPECIAL */
471enum special_oid {
472 /* Big Filesystem Lock to serialize rename operations */
473 FID_OID_SPECIAL_BFL = 1UL,
474};
475
476/** OID for FID_SEQ_DOT_LUSTRE */
477enum dot_lustre_oid {
478 FID_OID_DOT_LUSTRE = 1UL,
479 FID_OID_DOT_LUSTRE_OBF = 2UL,
480};
481
482static inline int fid_seq_is_mdt0(obd_seq seq)
483{
484 return (seq == FID_SEQ_OST_MDT0);
485}
486
487static inline int fid_seq_is_mdt(const __u64 seq)
488{
489 return seq == FID_SEQ_OST_MDT0 || seq >= FID_SEQ_NORMAL;
490};
491
492static inline int fid_seq_is_echo(obd_seq seq)
493{
494 return (seq == FID_SEQ_ECHO);
495}
496
497static inline int fid_is_echo(const struct lu_fid *fid)
498{
499 return fid_seq_is_echo(fid_seq(fid));
500}
501
502static inline int fid_seq_is_llog(obd_seq seq)
503{
504 return (seq == FID_SEQ_LLOG);
505}
506
507static inline int fid_is_llog(const struct lu_fid *fid)
508{
66cc83e9
MP
509 /* file with OID == 0 is not llog but contains last oid */
510 return fid_seq_is_llog(fid_seq(fid)) && fid_oid(fid) > 0;
d7e09d03
PT
511}
512
513static inline int fid_seq_is_rsvd(const __u64 seq)
514{
515 return (seq > FID_SEQ_OST_MDT0 && seq <= FID_SEQ_RSVD);
516};
517
518static inline int fid_seq_is_special(const __u64 seq)
519{
520 return seq == FID_SEQ_SPECIAL;
521};
522
523static inline int fid_seq_is_local_file(const __u64 seq)
524{
525 return seq == FID_SEQ_LOCAL_FILE ||
526 seq == FID_SEQ_LOCAL_NAME;
527};
528
529static inline int fid_seq_is_root(const __u64 seq)
530{
531 return seq == FID_SEQ_ROOT;
532}
533
534static inline int fid_seq_is_dot(const __u64 seq)
535{
536 return seq == FID_SEQ_DOT_LUSTRE;
537}
538
539static inline int fid_seq_is_default(const __u64 seq)
540{
541 return seq == FID_SEQ_LOV_DEFAULT;
542}
543
544static inline int fid_is_mdt0(const struct lu_fid *fid)
545{
546 return fid_seq_is_mdt0(fid_seq(fid));
547}
548
549static inline void lu_root_fid(struct lu_fid *fid)
550{
551 fid->f_seq = FID_SEQ_ROOT;
552 fid->f_oid = 1;
553 fid->f_ver = 0;
554}
555
556/**
557 * Check if a fid is igif or not.
558 * \param fid the fid to be tested.
559 * \return true if the fid is a igif; otherwise false.
560 */
561static inline int fid_seq_is_igif(const __u64 seq)
562{
563 return seq >= FID_SEQ_IGIF && seq <= FID_SEQ_IGIF_MAX;
564}
565
566static inline int fid_is_igif(const struct lu_fid *fid)
567{
568 return fid_seq_is_igif(fid_seq(fid));
569}
570
571/**
572 * Check if a fid is idif or not.
573 * \param fid the fid to be tested.
574 * \return true if the fid is a idif; otherwise false.
575 */
576static inline int fid_seq_is_idif(const __u64 seq)
577{
578 return seq >= FID_SEQ_IDIF && seq <= FID_SEQ_IDIF_MAX;
579}
580
581static inline int fid_is_idif(const struct lu_fid *fid)
582{
583 return fid_seq_is_idif(fid_seq(fid));
584}
585
586static inline int fid_is_local_file(const struct lu_fid *fid)
587{
588 return fid_seq_is_local_file(fid_seq(fid));
589}
590
591static inline int fid_seq_is_norm(const __u64 seq)
592{
593 return (seq >= FID_SEQ_NORMAL);
594}
595
596static inline int fid_is_norm(const struct lu_fid *fid)
597{
598 return fid_seq_is_norm(fid_seq(fid));
599}
600
601/* convert an OST objid into an IDIF FID SEQ number */
602static inline obd_seq fid_idif_seq(obd_id id, __u32 ost_idx)
603{
604 return FID_SEQ_IDIF | (ost_idx << 16) | ((id >> 32) & 0xffff);
605}
606
607/* convert a packed IDIF FID into an OST objid */
608static inline obd_id fid_idif_id(obd_seq seq, __u32 oid, __u32 ver)
609{
610 return ((__u64)ver << 48) | ((seq & 0xffff) << 32) | oid;
611}
612
613/* extract ost index from IDIF FID */
614static inline __u32 fid_idif_ost_idx(const struct lu_fid *fid)
615{
d7e09d03
PT
616 return (fid_seq(fid) >> 16) & 0xffff;
617}
618
619/* extract OST sequence (group) from a wire ost_id (id/seq) pair */
620static inline obd_seq ostid_seq(const struct ost_id *ostid)
621{
622 if (fid_seq_is_mdt0(ostid->oi.oi_seq))
623 return FID_SEQ_OST_MDT0;
624
625 if (fid_seq_is_default(ostid->oi.oi_seq))
626 return FID_SEQ_LOV_DEFAULT;
627
628 if (fid_is_idif(&ostid->oi_fid))
629 return FID_SEQ_OST_MDT0;
630
631 return fid_seq(&ostid->oi_fid);
632}
633
634/* extract OST objid from a wire ost_id (id/seq) pair */
635static inline obd_id ostid_id(const struct ost_id *ostid)
636{
637 if (fid_seq_is_mdt0(ostid_seq(ostid)))
638 return ostid->oi.oi_id & IDIF_OID_MASK;
639
640 if (fid_is_idif(&ostid->oi_fid))
641 return fid_idif_id(fid_seq(&ostid->oi_fid),
642 fid_oid(&ostid->oi_fid), 0);
643
644 return fid_oid(&ostid->oi_fid);
645}
646
647static inline void ostid_set_seq(struct ost_id *oi, __u64 seq)
648{
649 if (fid_seq_is_mdt0(seq) || fid_seq_is_default(seq)) {
650 oi->oi.oi_seq = seq;
651 } else {
652 oi->oi_fid.f_seq = seq;
653 /* Note: if f_oid + f_ver is zero, we need init it
654 * to be 1, otherwise, ostid_seq will treat this
655 * as old ostid (oi_seq == 0) */
656 if (oi->oi_fid.f_oid == 0 && oi->oi_fid.f_ver == 0)
657 oi->oi_fid.f_oid = LUSTRE_FID_INIT_OID;
658 }
659}
660
661static inline void ostid_set_seq_mdt0(struct ost_id *oi)
662{
663 ostid_set_seq(oi, FID_SEQ_OST_MDT0);
664}
665
666static inline void ostid_set_seq_echo(struct ost_id *oi)
667{
668 ostid_set_seq(oi, FID_SEQ_ECHO);
669}
670
671static inline void ostid_set_seq_llog(struct ost_id *oi)
672{
673 ostid_set_seq(oi, FID_SEQ_LLOG);
674}
675
676/**
677 * Note: we need check oi_seq to decide where to set oi_id,
678 * so oi_seq should always be set ahead of oi_id.
679 */
680static inline void ostid_set_id(struct ost_id *oi, __u64 oid)
681{
682 if (fid_seq_is_mdt0(ostid_seq(oi))) {
683 if (oid >= IDIF_MAX_OID) {
684 CERROR("Bad "LPU64" to set "DOSTID"\n",
685 oid, POSTID(oi));
686 return;
687 }
688 oi->oi.oi_id = oid;
689 } else {
690 if (oid > OBIF_MAX_OID) {
691 CERROR("Bad "LPU64" to set "DOSTID"\n",
692 oid, POSTID(oi));
693 return;
694 }
695 oi->oi_fid.f_oid = oid;
696 }
697}
698
699static inline void ostid_inc_id(struct ost_id *oi)
700{
701 if (fid_seq_is_mdt0(ostid_seq(oi))) {
702 if (unlikely(ostid_id(oi) + 1 > IDIF_MAX_OID)) {
703 CERROR("Bad inc "DOSTID"\n", POSTID(oi));
704 return;
705 }
706 oi->oi.oi_id++;
707 } else {
708 oi->oi_fid.f_oid++;
709 }
710}
711
712static inline void ostid_dec_id(struct ost_id *oi)
713{
714 if (fid_seq_is_mdt0(ostid_seq(oi)))
715 oi->oi.oi_id--;
716 else
717 oi->oi_fid.f_oid--;
718}
719
720/**
721 * Unpack an OST object id/seq (group) into a FID. This is needed for
722 * converting all obdo, lmm, lsm, etc. 64-bit id/seq pairs into proper
723 * FIDs. Note that if an id/seq is already in FID/IDIF format it will
724 * be passed through unchanged. Only legacy OST objects in "group 0"
725 * will be mapped into the IDIF namespace so that they can fit into the
726 * struct lu_fid fields without loss. For reference see:
727 * http://arch.lustre.org/index.php?title=Interoperability_fids_zfs
728 */
729static inline int ostid_to_fid(struct lu_fid *fid, struct ost_id *ostid,
730 __u32 ost_idx)
731{
732 if (ost_idx > 0xffff) {
733 CERROR("bad ost_idx, "DOSTID" ost_idx:%u\n", POSTID(ostid),
734 ost_idx);
735 return -EBADF;
736 }
737
738 if (fid_seq_is_mdt0(ostid_seq(ostid))) {
739 /* This is a "legacy" (old 1.x/2.early) OST object in "group 0"
740 * that we map into the IDIF namespace. It allows up to 2^48
741 * objects per OST, as this is the object namespace that has
742 * been in production for years. This can handle create rates
743 * of 1M objects/s/OST for 9 years, or combinations thereof. */
744 if (ostid_id(ostid) >= IDIF_MAX_OID) {
745 CERROR("bad MDT0 id, "DOSTID" ost_idx:%u\n",
746 POSTID(ostid), ost_idx);
747 return -EBADF;
748 }
749 fid->f_seq = fid_idif_seq(ostid_id(ostid), ost_idx);
750 /* truncate to 32 bits by assignment */
751 fid->f_oid = ostid_id(ostid);
752 /* in theory, not currently used */
753 fid->f_ver = ostid_id(ostid) >> 48;
754 } else /* if (fid_seq_is_idif(seq) || fid_seq_is_norm(seq)) */ {
755 /* This is either an IDIF object, which identifies objects across
756 * all OSTs, or a regular FID. The IDIF namespace maps legacy
757 * OST objects into the FID namespace. In both cases, we just
758 * pass the FID through, no conversion needed. */
759 if (ostid->oi_fid.f_ver != 0) {
760 CERROR("bad MDT0 id, "DOSTID" ost_idx:%u\n",
761 POSTID(ostid), ost_idx);
762 return -EBADF;
763 }
764 *fid = ostid->oi_fid;
765 }
766
767 return 0;
768}
769
770/* pack any OST FID into an ostid (id/seq) for the wire/disk */
771static inline int fid_to_ostid(const struct lu_fid *fid, struct ost_id *ostid)
772{
773 if (unlikely(fid_seq_is_igif(fid->f_seq))) {
774 CERROR("bad IGIF, "DFID"\n", PFID(fid));
775 return -EBADF;
776 }
777
778 if (fid_is_idif(fid)) {
779 ostid_set_seq_mdt0(ostid);
780 ostid_set_id(ostid, fid_idif_id(fid_seq(fid), fid_oid(fid),
781 fid_ver(fid)));
782 } else {
783 ostid->oi_fid = *fid;
784 }
785
786 return 0;
787}
788
789/* Check whether the fid is for LAST_ID */
790static inline int fid_is_last_id(const struct lu_fid *fid)
791{
66cc83e9 792 return (fid_oid(fid) == 0);
d7e09d03
PT
793}
794
795/**
796 * Get inode number from a igif.
797 * \param fid a igif to get inode number from.
798 * \return inode number for the igif.
799 */
800static inline ino_t lu_igif_ino(const struct lu_fid *fid)
801{
802 return fid_seq(fid);
803}
804
805extern void lustre_swab_ost_id(struct ost_id *oid);
806
807/**
808 * Get inode generation from a igif.
809 * \param fid a igif to get inode generation from.
810 * \return inode generation for the igif.
811 */
812static inline __u32 lu_igif_gen(const struct lu_fid *fid)
813{
814 return fid_oid(fid);
815}
816
817/**
818 * Build igif from the inode number/generation.
819 */
820static inline void lu_igif_build(struct lu_fid *fid, __u32 ino, __u32 gen)
821{
822 fid->f_seq = ino;
823 fid->f_oid = gen;
824 fid->f_ver = 0;
825}
826
827/*
828 * Fids are transmitted across network (in the sender byte-ordering),
829 * and stored on disk in big-endian order.
830 */
831static inline void fid_cpu_to_le(struct lu_fid *dst, const struct lu_fid *src)
832{
d7e09d03
PT
833 dst->f_seq = cpu_to_le64(fid_seq(src));
834 dst->f_oid = cpu_to_le32(fid_oid(src));
835 dst->f_ver = cpu_to_le32(fid_ver(src));
836}
837
838static inline void fid_le_to_cpu(struct lu_fid *dst, const struct lu_fid *src)
839{
d7e09d03
PT
840 dst->f_seq = le64_to_cpu(fid_seq(src));
841 dst->f_oid = le32_to_cpu(fid_oid(src));
842 dst->f_ver = le32_to_cpu(fid_ver(src));
843}
844
845static inline void fid_cpu_to_be(struct lu_fid *dst, const struct lu_fid *src)
846{
d7e09d03
PT
847 dst->f_seq = cpu_to_be64(fid_seq(src));
848 dst->f_oid = cpu_to_be32(fid_oid(src));
849 dst->f_ver = cpu_to_be32(fid_ver(src));
850}
851
852static inline void fid_be_to_cpu(struct lu_fid *dst, const struct lu_fid *src)
853{
d7e09d03
PT
854 dst->f_seq = be64_to_cpu(fid_seq(src));
855 dst->f_oid = be32_to_cpu(fid_oid(src));
856 dst->f_ver = be32_to_cpu(fid_ver(src));
857}
858
859static inline int fid_is_sane(const struct lu_fid *fid)
860{
861 return fid != NULL &&
862 ((fid_seq(fid) >= FID_SEQ_START && fid_ver(fid) == 0) ||
863 fid_is_igif(fid) || fid_is_idif(fid) ||
864 fid_seq_is_rsvd(fid_seq(fid)));
865}
866
867static inline int fid_is_zero(const struct lu_fid *fid)
868{
869 return fid_seq(fid) == 0 && fid_oid(fid) == 0;
870}
871
872extern void lustre_swab_lu_fid(struct lu_fid *fid);
873extern void lustre_swab_lu_seq_range(struct lu_seq_range *range);
874
875static inline int lu_fid_eq(const struct lu_fid *f0, const struct lu_fid *f1)
876{
ec83e611 877 return memcmp(f0, f1, sizeof(*f0)) == 0;
d7e09d03
PT
878}
879
880#define __diff_normalize(val0, val1) \
881({ \
882 typeof(val0) __val0 = (val0); \
883 typeof(val1) __val1 = (val1); \
884 \
885 (__val0 == __val1 ? 0 : __val0 > __val1 ? +1 : -1); \
886})
887
888static inline int lu_fid_cmp(const struct lu_fid *f0,
889 const struct lu_fid *f1)
890{
891 return
892 __diff_normalize(fid_seq(f0), fid_seq(f1)) ?:
893 __diff_normalize(fid_oid(f0), fid_oid(f1)) ?:
894 __diff_normalize(fid_ver(f0), fid_ver(f1));
895}
896
c5b60ba7 897static inline void ostid_cpu_to_le(const struct ost_id *src_oi,
d7e09d03
PT
898 struct ost_id *dst_oi)
899{
900 if (fid_seq_is_mdt0(ostid_seq(src_oi))) {
901 dst_oi->oi.oi_id = cpu_to_le64(src_oi->oi.oi_id);
902 dst_oi->oi.oi_seq = cpu_to_le64(src_oi->oi.oi_seq);
903 } else {
904 fid_cpu_to_le(&dst_oi->oi_fid, &src_oi->oi_fid);
905 }
906}
907
c5b60ba7 908static inline void ostid_le_to_cpu(const struct ost_id *src_oi,
d7e09d03
PT
909 struct ost_id *dst_oi)
910{
911 if (fid_seq_is_mdt0(ostid_seq(src_oi))) {
912 dst_oi->oi.oi_id = le64_to_cpu(src_oi->oi.oi_id);
913 dst_oi->oi.oi_seq = le64_to_cpu(src_oi->oi.oi_seq);
914 } else {
915 fid_le_to_cpu(&dst_oi->oi_fid, &src_oi->oi_fid);
916 }
917}
918
919/** @} lu_fid */
920
921/** \defgroup lu_dir lu_dir
922 * @{ */
923
924/**
925 * Enumeration of possible directory entry attributes.
926 *
927 * Attributes follow directory entry header in the order they appear in this
928 * enumeration.
929 */
930enum lu_dirent_attrs {
931 LUDA_FID = 0x0001,
932 LUDA_TYPE = 0x0002,
933 LUDA_64BITHASH = 0x0004,
934
f16192ed 935 /* The following attrs are used for MDT internal only,
d7e09d03
PT
936 * not visible to client */
937
938 /* Verify the dirent consistency */
939 LUDA_VERIFY = 0x8000,
940 /* Only check but not repair the dirent inconsistency */
941 LUDA_VERIFY_DRYRUN = 0x4000,
942 /* The dirent has been repaired, or to be repaired (dryrun). */
943 LUDA_REPAIR = 0x2000,
944 /* The system is upgraded, has beed or to be repaired (dryrun). */
945 LUDA_UPGRADE = 0x1000,
946 /* Ignore this record, go to next directly. */
947 LUDA_IGNORE = 0x0800,
948};
949
950#define LU_DIRENT_ATTRS_MASK 0xf800
951
952/**
953 * Layout of readdir pages, as transmitted on wire.
954 */
955struct lu_dirent {
956 /** valid if LUDA_FID is set. */
957 struct lu_fid lde_fid;
958 /** a unique entry identifier: a hash or an offset. */
959 __u64 lde_hash;
960 /** total record length, including all attributes. */
961 __u16 lde_reclen;
962 /** name length */
963 __u16 lde_namelen;
964 /** optional variable size attributes following this entry.
965 * taken from enum lu_dirent_attrs.
966 */
967 __u32 lde_attrs;
968 /** name is followed by the attributes indicated in ->ldp_attrs, in
969 * their natural order. After the last attribute, padding bytes are
970 * added to make ->lde_reclen a multiple of 8.
971 */
972 char lde_name[0];
973};
974
975/*
976 * Definitions of optional directory entry attributes formats.
977 *
978 * Individual attributes do not have their length encoded in a generic way. It
979 * is assumed that consumer of an attribute knows its format. This means that
980 * it is impossible to skip over an unknown attribute, except by skipping over all
981 * remaining attributes (by using ->lde_reclen), which is not too
982 * constraining, because new server versions will append new attributes at
983 * the end of an entry.
984 */
985
986/**
987 * Fid directory attribute: a fid of an object referenced by the entry. This
988 * will be almost always requested by the client and supplied by the server.
989 *
990 * Aligned to 8 bytes.
991 */
992/* To have compatibility with 1.8, lets have fid in lu_dirent struct. */
993
994/**
995 * File type.
996 *
997 * Aligned to 2 bytes.
998 */
999struct luda_type {
1000 __u16 lt_type;
1001};
1002
79783924
PT
1003#ifndef IFSHIFT
1004#define IFSHIFT 12
1005#endif
1006
1007#ifndef IFTODT
1008#define IFTODT(type) (((type) & S_IFMT) >> IFSHIFT)
1009#endif
1010#ifndef DTTOIF
1011#define DTTOIF(dirtype) ((dirtype) << IFSHIFT)
1012#endif
1013
1014
d7e09d03
PT
1015struct lu_dirpage {
1016 __u64 ldp_hash_start;
1017 __u64 ldp_hash_end;
1018 __u32 ldp_flags;
1019 __u32 ldp_pad0;
1020 struct lu_dirent ldp_entries[0];
1021};
1022
1023enum lu_dirpage_flags {
1024 /**
1025 * dirpage contains no entry.
1026 */
1027 LDF_EMPTY = 1 << 0,
1028 /**
1029 * last entry's lde_hash equals ldp_hash_end.
1030 */
1031 LDF_COLLIDE = 1 << 1
1032};
1033
1034static inline struct lu_dirent *lu_dirent_start(struct lu_dirpage *dp)
1035{
1036 if (le32_to_cpu(dp->ldp_flags) & LDF_EMPTY)
1037 return NULL;
1038 else
1039 return dp->ldp_entries;
1040}
1041
1042static inline struct lu_dirent *lu_dirent_next(struct lu_dirent *ent)
1043{
1044 struct lu_dirent *next;
1045
1046 if (le16_to_cpu(ent->lde_reclen) != 0)
1047 next = ((void *)ent) + le16_to_cpu(ent->lde_reclen);
1048 else
1049 next = NULL;
1050
1051 return next;
1052}
1053
1054static inline int lu_dirent_calc_size(int namelen, __u16 attr)
1055{
1056 int size;
1057
1058 if (attr & LUDA_TYPE) {
1059 const unsigned align = sizeof(struct luda_type) - 1;
1060 size = (sizeof(struct lu_dirent) + namelen + align) & ~align;
1061 size += sizeof(struct luda_type);
1062 } else
1063 size = sizeof(struct lu_dirent) + namelen;
1064
1065 return (size + 7) & ~7;
1066}
1067
1068static inline int lu_dirent_size(struct lu_dirent *ent)
1069{
1070 if (le16_to_cpu(ent->lde_reclen) == 0) {
1071 return lu_dirent_calc_size(le16_to_cpu(ent->lde_namelen),
1072 le32_to_cpu(ent->lde_attrs));
1073 }
1074 return le16_to_cpu(ent->lde_reclen);
1075}
1076
1077#define MDS_DIR_END_OFF 0xfffffffffffffffeULL
1078
1079/**
1080 * MDS_READPAGE page size
1081 *
1082 * This is the directory page size packed in MDS_READPAGE RPC.
1083 * It's different than PAGE_CACHE_SIZE because the client needs to
1084 * access the struct lu_dirpage header packed at the beginning of
1085 * the "page" and without this there isn't any way to know find the
1086 * lu_dirpage header is if client and server PAGE_CACHE_SIZE differ.
1087 */
1088#define LU_PAGE_SHIFT 12
1089#define LU_PAGE_SIZE (1UL << LU_PAGE_SHIFT)
1090#define LU_PAGE_MASK (~(LU_PAGE_SIZE - 1))
1091
1092#define LU_PAGE_COUNT (1 << (PAGE_CACHE_SHIFT - LU_PAGE_SHIFT))
1093
1094/** @} lu_dir */
1095
1096struct lustre_handle {
1097 __u64 cookie;
1098};
1099#define DEAD_HANDLE_MAGIC 0xdeadbeefcafebabeULL
1100
1101static inline int lustre_handle_is_used(struct lustre_handle *lh)
1102{
1103 return lh->cookie != 0ull;
1104}
1105
1106static inline int lustre_handle_equal(const struct lustre_handle *lh1,
1107 const struct lustre_handle *lh2)
1108{
1109 return lh1->cookie == lh2->cookie;
1110}
1111
1112static inline void lustre_handle_copy(struct lustre_handle *tgt,
1113 struct lustre_handle *src)
1114{
1115 tgt->cookie = src->cookie;
1116}
1117
1118/* flags for lm_flags */
1119#define MSGHDR_AT_SUPPORT 0x1
1120#define MSGHDR_CKSUM_INCOMPAT18 0x2
1121
1122#define lustre_msg lustre_msg_v2
1123/* we depend on this structure to be 8-byte aligned */
1124/* this type is only endian-adjusted in lustre_unpack_msg() */
1125struct lustre_msg_v2 {
1126 __u32 lm_bufcount;
1127 __u32 lm_secflvr;
1128 __u32 lm_magic;
1129 __u32 lm_repsize;
1130 __u32 lm_cksum;
1131 __u32 lm_flags;
1132 __u32 lm_padding_2;
1133 __u32 lm_padding_3;
1134 __u32 lm_buflens[0];
1135};
1136
1137/* without gss, ptlrpc_body is put at the first buffer. */
1138#define PTLRPC_NUM_VERSIONS 4
1139#define JOBSTATS_JOBID_SIZE 32 /* 32 bytes string */
1140struct ptlrpc_body_v3 {
1141 struct lustre_handle pb_handle;
1142 __u32 pb_type;
1143 __u32 pb_version;
1144 __u32 pb_opc;
1145 __u32 pb_status;
1146 __u64 pb_last_xid;
1147 __u64 pb_last_seen;
1148 __u64 pb_last_committed;
1149 __u64 pb_transno;
1150 __u32 pb_flags;
1151 __u32 pb_op_flags;
1152 __u32 pb_conn_cnt;
1153 __u32 pb_timeout; /* for req, the deadline, for rep, the service est */
1154 __u32 pb_service_time; /* for rep, actual service time */
1155 __u32 pb_limit;
1156 __u64 pb_slv;
1157 /* VBR: pre-versions */
1158 __u64 pb_pre_versions[PTLRPC_NUM_VERSIONS];
1159 /* padding for future needs */
1160 __u64 pb_padding[4];
1161 char pb_jobid[JOBSTATS_JOBID_SIZE];
1162};
1163#define ptlrpc_body ptlrpc_body_v3
1164
1165struct ptlrpc_body_v2 {
1166 struct lustre_handle pb_handle;
1167 __u32 pb_type;
1168 __u32 pb_version;
1169 __u32 pb_opc;
1170 __u32 pb_status;
1171 __u64 pb_last_xid;
1172 __u64 pb_last_seen;
1173 __u64 pb_last_committed;
1174 __u64 pb_transno;
1175 __u32 pb_flags;
1176 __u32 pb_op_flags;
1177 __u32 pb_conn_cnt;
1178 __u32 pb_timeout; /* for req, the deadline, for rep, the service est */
1179 __u32 pb_service_time; /* for rep, actual service time, also used for
1180 net_latency of req */
1181 __u32 pb_limit;
1182 __u64 pb_slv;
1183 /* VBR: pre-versions */
1184 __u64 pb_pre_versions[PTLRPC_NUM_VERSIONS];
1185 /* padding for future needs */
1186 __u64 pb_padding[4];
1187};
1188
1189extern void lustre_swab_ptlrpc_body(struct ptlrpc_body *pb);
1190
1191/* message body offset for lustre_msg_v2 */
1192/* ptlrpc body offset in all request/reply messages */
1193#define MSG_PTLRPC_BODY_OFF 0
1194
1195/* normal request/reply message record offset */
1196#define REQ_REC_OFF 1
1197#define REPLY_REC_OFF 1
1198
1199/* ldlm request message body offset */
1200#define DLM_LOCKREQ_OFF 1 /* lockreq offset */
1201#define DLM_REQ_REC_OFF 2 /* normal dlm request record offset */
1202
1203/* ldlm intent lock message body offset */
1204#define DLM_INTENT_IT_OFF 2 /* intent lock it offset */
1205#define DLM_INTENT_REC_OFF 3 /* intent lock record offset */
1206
1207/* ldlm reply message body offset */
1208#define DLM_LOCKREPLY_OFF 1 /* lockrep offset */
1209#define DLM_REPLY_REC_OFF 2 /* reply record offset */
1210
1211/** only use in req->rq_{req,rep}_swab_mask */
1212#define MSG_PTLRPC_HEADER_OFF 31
1213
1214/* Flags that are operation-specific go in the top 16 bits. */
1215#define MSG_OP_FLAG_MASK 0xffff0000
1216#define MSG_OP_FLAG_SHIFT 16
1217
1218/* Flags that apply to all requests are in the bottom 16 bits */
1219#define MSG_GEN_FLAG_MASK 0x0000ffff
1220#define MSG_LAST_REPLAY 0x0001
1221#define MSG_RESENT 0x0002
1222#define MSG_REPLAY 0x0004
1223/* #define MSG_AT_SUPPORT 0x0008
1224 * This was used in early prototypes of adaptive timeouts, and while there
1225 * shouldn't be any users of that code there also isn't a need for using this
1226 * bits. Defer usage until at least 1.10 to avoid potential conflict. */
1227#define MSG_DELAY_REPLAY 0x0010
1228#define MSG_VERSION_REPLAY 0x0020
1229#define MSG_REQ_REPLAY_DONE 0x0040
1230#define MSG_LOCK_REPLAY_DONE 0x0080
1231
1232/*
1233 * Flags for all connect opcodes (MDS_CONNECT, OST_CONNECT)
1234 */
1235
1236#define MSG_CONNECT_RECOVERING 0x00000001
1237#define MSG_CONNECT_RECONNECT 0x00000002
1238#define MSG_CONNECT_REPLAYABLE 0x00000004
1239//#define MSG_CONNECT_PEER 0x8
1240#define MSG_CONNECT_LIBCLIENT 0x00000010
1241#define MSG_CONNECT_INITIAL 0x00000020
1242#define MSG_CONNECT_ASYNC 0x00000040
1243#define MSG_CONNECT_NEXT_VER 0x00000080 /* use next version of lustre_msg */
1244#define MSG_CONNECT_TRANSNO 0x00000100 /* report transno */
1245
1246/* Connect flags */
1247#define OBD_CONNECT_RDONLY 0x1ULL /*client has read-only access*/
1248#define OBD_CONNECT_INDEX 0x2ULL /*connect specific LOV idx */
1249#define OBD_CONNECT_MDS 0x4ULL /*connect from MDT to OST */
1250#define OBD_CONNECT_GRANT 0x8ULL /*OSC gets grant at connect */
1251#define OBD_CONNECT_SRVLOCK 0x10ULL /*server takes locks for cli */
1252#define OBD_CONNECT_VERSION 0x20ULL /*Lustre versions in ocd */
1253#define OBD_CONNECT_REQPORTAL 0x40ULL /*Separate non-IO req portal */
1254#define OBD_CONNECT_ACL 0x80ULL /*access control lists */
1255#define OBD_CONNECT_XATTR 0x100ULL /*client use extended attr */
1256#define OBD_CONNECT_CROW 0x200ULL /*MDS+OST create obj on write*/
1257#define OBD_CONNECT_TRUNCLOCK 0x400ULL /*locks on server for punch */
1258#define OBD_CONNECT_TRANSNO 0x800ULL /*replay sends init transno */
1259#define OBD_CONNECT_IBITS 0x1000ULL /*support for inodebits locks*/
1260#define OBD_CONNECT_JOIN 0x2000ULL /*files can be concatenated.
1261 *We do not support JOIN FILE
1262 *anymore, reserve this flags
1263 *just for preventing such bit
1264 *to be reused.*/
1265#define OBD_CONNECT_ATTRFID 0x4000ULL /*Server can GetAttr By Fid*/
1266#define OBD_CONNECT_NODEVOH 0x8000ULL /*No open hndl on specl nodes*/
1267#define OBD_CONNECT_RMT_CLIENT 0x10000ULL /*Remote client */
1268#define OBD_CONNECT_RMT_CLIENT_FORCE 0x20000ULL /*Remote client by force */
1269#define OBD_CONNECT_BRW_SIZE 0x40000ULL /*Max bytes per rpc */
1270#define OBD_CONNECT_QUOTA64 0x80000ULL /*Not used since 2.4 */
1271#define OBD_CONNECT_MDS_CAPA 0x100000ULL /*MDS capability */
1272#define OBD_CONNECT_OSS_CAPA 0x200000ULL /*OSS capability */
1273#define OBD_CONNECT_CANCELSET 0x400000ULL /*Early batched cancels. */
1274#define OBD_CONNECT_SOM 0x800000ULL /*Size on MDS */
1275#define OBD_CONNECT_AT 0x1000000ULL /*client uses AT */
1276#define OBD_CONNECT_LRU_RESIZE 0x2000000ULL /*LRU resize feature. */
1277#define OBD_CONNECT_MDS_MDS 0x4000000ULL /*MDS-MDS connection */
1278#define OBD_CONNECT_REAL 0x8000000ULL /*real connection */
1279#define OBD_CONNECT_CHANGE_QS 0x10000000ULL /*Not used since 2.4 */
1280#define OBD_CONNECT_CKSUM 0x20000000ULL /*support several cksum algos*/
1281#define OBD_CONNECT_FID 0x40000000ULL /*FID is supported by server */
1282#define OBD_CONNECT_VBR 0x80000000ULL /*version based recovery */
1283#define OBD_CONNECT_LOV_V3 0x100000000ULL /*client supports LOV v3 EA */
1284#define OBD_CONNECT_GRANT_SHRINK 0x200000000ULL /* support grant shrink */
1285#define OBD_CONNECT_SKIP_ORPHAN 0x400000000ULL /* don't reuse orphan objids */
1286#define OBD_CONNECT_MAX_EASIZE 0x800000000ULL /* preserved for large EA */
1287#define OBD_CONNECT_FULL20 0x1000000000ULL /* it is 2.0 client */
1288#define OBD_CONNECT_LAYOUTLOCK 0x2000000000ULL /* client uses layout lock */
1289#define OBD_CONNECT_64BITHASH 0x4000000000ULL /* client supports 64-bits
1290 * directory hash */
1291#define OBD_CONNECT_MAXBYTES 0x8000000000ULL /* max stripe size */
1292#define OBD_CONNECT_IMP_RECOV 0x10000000000ULL /* imp recovery support */
1293#define OBD_CONNECT_JOBSTATS 0x20000000000ULL /* jobid in ptlrpc_body */
1294#define OBD_CONNECT_UMASK 0x40000000000ULL /* create uses client umask */
1295#define OBD_CONNECT_EINPROGRESS 0x80000000000ULL /* client handles -EINPROGRESS
1296 * RPC error properly */
1297#define OBD_CONNECT_GRANT_PARAM 0x100000000000ULL/* extra grant params used for
1298 * finer space reservation */
1299#define OBD_CONNECT_FLOCK_OWNER 0x200000000000ULL /* for the fixed 1.8
1300 * policy and 2.x server */
1301#define OBD_CONNECT_LVB_TYPE 0x400000000000ULL /* variable type of LVB */
1302#define OBD_CONNECT_NANOSEC_TIME 0x800000000000ULL /* nanosecond timestamps */
1303#define OBD_CONNECT_LIGHTWEIGHT 0x1000000000000ULL/* lightweight connection */
1304#define OBD_CONNECT_SHORTIO 0x2000000000000ULL/* short io */
1305#define OBD_CONNECT_PINGLESS 0x4000000000000ULL/* pings not required */
69342b78 1306#define OBD_CONNECT_FLOCK_DEAD 0x8000000000000ULL/* flock deadlock detection */
63d42578 1307#define OBD_CONNECT_DISP_STRIPE 0x10000000000000ULL/*create stripe disposition*/
69342b78 1308
d7e09d03
PT
1309/* XXX README XXX:
1310 * Please DO NOT add flag values here before first ensuring that this same
1311 * flag value is not in use on some other branch. Please clear any such
1312 * changes with senior engineers before starting to use a new flag. Then,
1313 * submit a small patch against EVERY branch that ONLY adds the new flag,
1314 * updates obd_connect_names[] for lprocfs_rd_connect_flags(), adds the
1315 * flag to check_obd_connect_data(), and updates wiretests accordingly, so it
1316 * can be approved and landed easily to reserve the flag for future use. */
1317
1318/* The MNE_SWAB flag is overloading the MDS_MDS bit only for the MGS
1319 * connection. It is a temporary bug fix for Imperative Recovery interop
1320 * between 2.2 and 2.3 x86/ppc nodes, and can be removed when interop for
1321 * 2.2 clients/servers is no longer needed. LU-1252/LU-1644. */
1322#define OBD_CONNECT_MNE_SWAB OBD_CONNECT_MDS_MDS
1323
1324#define OCD_HAS_FLAG(ocd, flg) \
1325 (!!((ocd)->ocd_connect_flags & OBD_CONNECT_##flg))
1326
1327
1328#define LRU_RESIZE_CONNECT_FLAG OBD_CONNECT_LRU_RESIZE
1329
1330#define MDT_CONNECT_SUPPORTED (OBD_CONNECT_RDONLY | OBD_CONNECT_VERSION | \
1331 OBD_CONNECT_ACL | OBD_CONNECT_XATTR | \
1332 OBD_CONNECT_IBITS | \
1333 OBD_CONNECT_NODEVOH | OBD_CONNECT_ATTRFID | \
1334 OBD_CONNECT_CANCELSET | OBD_CONNECT_AT | \
1335 OBD_CONNECT_RMT_CLIENT | \
1336 OBD_CONNECT_RMT_CLIENT_FORCE | \
1337 OBD_CONNECT_BRW_SIZE | OBD_CONNECT_MDS_CAPA | \
1338 OBD_CONNECT_OSS_CAPA | OBD_CONNECT_MDS_MDS | \
1339 OBD_CONNECT_FID | LRU_RESIZE_CONNECT_FLAG | \
1340 OBD_CONNECT_VBR | OBD_CONNECT_LOV_V3 | \
1341 OBD_CONNECT_SOM | OBD_CONNECT_FULL20 | \
1342 OBD_CONNECT_64BITHASH | OBD_CONNECT_JOBSTATS | \
1343 OBD_CONNECT_EINPROGRESS | \
1344 OBD_CONNECT_LIGHTWEIGHT | OBD_CONNECT_UMASK | \
1345 OBD_CONNECT_LVB_TYPE | OBD_CONNECT_LAYOUTLOCK |\
69342b78 1346 OBD_CONNECT_PINGLESS | OBD_CONNECT_MAX_EASIZE |\
63d42578
HZ
1347 OBD_CONNECT_FLOCK_DEAD | \
1348 OBD_CONNECT_DISP_STRIPE)
1349
d7e09d03
PT
1350#define OST_CONNECT_SUPPORTED (OBD_CONNECT_SRVLOCK | OBD_CONNECT_GRANT | \
1351 OBD_CONNECT_REQPORTAL | OBD_CONNECT_VERSION | \
1352 OBD_CONNECT_TRUNCLOCK | OBD_CONNECT_INDEX | \
1353 OBD_CONNECT_BRW_SIZE | OBD_CONNECT_OSS_CAPA | \
1354 OBD_CONNECT_CANCELSET | OBD_CONNECT_AT | \
1355 LRU_RESIZE_CONNECT_FLAG | OBD_CONNECT_CKSUM | \
1356 OBD_CONNECT_RMT_CLIENT | \
1357 OBD_CONNECT_RMT_CLIENT_FORCE | OBD_CONNECT_VBR | \
1358 OBD_CONNECT_MDS | OBD_CONNECT_SKIP_ORPHAN | \
1359 OBD_CONNECT_GRANT_SHRINK | OBD_CONNECT_FULL20 | \
1360 OBD_CONNECT_64BITHASH | OBD_CONNECT_MAXBYTES | \
1361 OBD_CONNECT_MAX_EASIZE | \
1362 OBD_CONNECT_EINPROGRESS | \
1363 OBD_CONNECT_JOBSTATS | \
1364 OBD_CONNECT_LIGHTWEIGHT | OBD_CONNECT_LVB_TYPE|\
1365 OBD_CONNECT_LAYOUTLOCK | OBD_CONNECT_FID | \
1366 OBD_CONNECT_PINGLESS)
1367#define ECHO_CONNECT_SUPPORTED (0)
1368#define MGS_CONNECT_SUPPORTED (OBD_CONNECT_VERSION | OBD_CONNECT_AT | \
1369 OBD_CONNECT_FULL20 | OBD_CONNECT_IMP_RECOV | \
1370 OBD_CONNECT_MNE_SWAB | OBD_CONNECT_PINGLESS)
1371
1372/* Features required for this version of the client to work with server */
1373#define CLIENT_CONNECT_MDT_REQD (OBD_CONNECT_IBITS | OBD_CONNECT_FID | \
1374 OBD_CONNECT_FULL20)
1375
1376#define OBD_OCD_VERSION(major,minor,patch,fix) (((major)<<24) + ((minor)<<16) +\
1377 ((patch)<<8) + (fix))
1378#define OBD_OCD_VERSION_MAJOR(version) ((int)((version)>>24)&255)
1379#define OBD_OCD_VERSION_MINOR(version) ((int)((version)>>16)&255)
1380#define OBD_OCD_VERSION_PATCH(version) ((int)((version)>>8)&255)
1381#define OBD_OCD_VERSION_FIX(version) ((int)(version)&255)
1382
1383/* This structure is used for both request and reply.
1384 *
1385 * If we eventually have separate connect data for different types, which we
1386 * almost certainly will, then perhaps we stick a union in here. */
1387struct obd_connect_data_v1 {
1388 __u64 ocd_connect_flags; /* OBD_CONNECT_* per above */
1389 __u32 ocd_version; /* lustre release version number */
1390 __u32 ocd_grant; /* initial cache grant amount (bytes) */
1391 __u32 ocd_index; /* LOV index to connect to */
1392 __u32 ocd_brw_size; /* Maximum BRW size in bytes, must be 2^n */
1393 __u64 ocd_ibits_known; /* inode bits this client understands */
1394 __u8 ocd_blocksize; /* log2 of the backend filesystem blocksize */
1395 __u8 ocd_inodespace; /* log2 of the per-inode space consumption */
1396 __u16 ocd_grant_extent; /* per-extent grant overhead, in 1K blocks */
1397 __u32 ocd_unused; /* also fix lustre_swab_connect */
1398 __u64 ocd_transno; /* first transno from client to be replayed */
1399 __u32 ocd_group; /* MDS group on OST */
1400 __u32 ocd_cksum_types; /* supported checksum algorithms */
1401 __u32 ocd_max_easize; /* How big LOV EA can be on MDS */
1402 __u32 ocd_instance; /* also fix lustre_swab_connect */
1403 __u64 ocd_maxbytes; /* Maximum stripe size in bytes */
1404};
1405
1406struct obd_connect_data {
1407 __u64 ocd_connect_flags; /* OBD_CONNECT_* per above */
1408 __u32 ocd_version; /* lustre release version number */
1409 __u32 ocd_grant; /* initial cache grant amount (bytes) */
1410 __u32 ocd_index; /* LOV index to connect to */
1411 __u32 ocd_brw_size; /* Maximum BRW size in bytes */
1412 __u64 ocd_ibits_known; /* inode bits this client understands */
1413 __u8 ocd_blocksize; /* log2 of the backend filesystem blocksize */
1414 __u8 ocd_inodespace; /* log2 of the per-inode space consumption */
1415 __u16 ocd_grant_extent; /* per-extent grant overhead, in 1K blocks */
1416 __u32 ocd_unused; /* also fix lustre_swab_connect */
1417 __u64 ocd_transno; /* first transno from client to be replayed */
1418 __u32 ocd_group; /* MDS group on OST */
1419 __u32 ocd_cksum_types; /* supported checksum algorithms */
1420 __u32 ocd_max_easize; /* How big LOV EA can be on MDS */
1421 __u32 ocd_instance; /* instance # of this target */
1422 __u64 ocd_maxbytes; /* Maximum stripe size in bytes */
1423 /* Fields after ocd_maxbytes are only accessible by the receiver
1424 * if the corresponding flag in ocd_connect_flags is set. Accessing
1425 * any field after ocd_maxbytes on the receiver without a valid flag
1426 * may result in out-of-bound memory access and kernel oops. */
1427 __u64 padding1; /* added 2.1.0. also fix lustre_swab_connect */
1428 __u64 padding2; /* added 2.1.0. also fix lustre_swab_connect */
1429 __u64 padding3; /* added 2.1.0. also fix lustre_swab_connect */
1430 __u64 padding4; /* added 2.1.0. also fix lustre_swab_connect */
1431 __u64 padding5; /* added 2.1.0. also fix lustre_swab_connect */
1432 __u64 padding6; /* added 2.1.0. also fix lustre_swab_connect */
1433 __u64 padding7; /* added 2.1.0. also fix lustre_swab_connect */
1434 __u64 padding8; /* added 2.1.0. also fix lustre_swab_connect */
1435 __u64 padding9; /* added 2.1.0. also fix lustre_swab_connect */
1436 __u64 paddingA; /* added 2.1.0. also fix lustre_swab_connect */
1437 __u64 paddingB; /* added 2.1.0. also fix lustre_swab_connect */
1438 __u64 paddingC; /* added 2.1.0. also fix lustre_swab_connect */
1439 __u64 paddingD; /* added 2.1.0. also fix lustre_swab_connect */
1440 __u64 paddingE; /* added 2.1.0. also fix lustre_swab_connect */
1441 __u64 paddingF; /* added 2.1.0. also fix lustre_swab_connect */
1442};
1443/* XXX README XXX:
1444 * Please DO NOT use any fields here before first ensuring that this same
1445 * field is not in use on some other branch. Please clear any such changes
1446 * with senior engineers before starting to use a new field. Then, submit
1447 * a small patch against EVERY branch that ONLY adds the new field along with
1448 * the matching OBD_CONNECT flag, so that can be approved and landed easily to
1449 * reserve the flag for future use. */
1450
1451
1452extern void lustre_swab_connect(struct obd_connect_data *ocd);
1453
1454/*
1455 * Supported checksum algorithms. Up to 32 checksum types are supported.
1456 * (32-bit mask stored in obd_connect_data::ocd_cksum_types)
1457 * Please update DECLARE_CKSUM_NAME/OBD_CKSUM_ALL in obd.h when adding a new
1458 * algorithm and also the OBD_FL_CKSUM* flags.
1459 */
1460typedef enum {
1461 OBD_CKSUM_CRC32 = 0x00000001,
1462 OBD_CKSUM_ADLER = 0x00000002,
1463 OBD_CKSUM_CRC32C= 0x00000004,
1464} cksum_type_t;
1465
1466/*
1467 * OST requests: OBDO & OBD request records
1468 */
1469
1470/* opcodes */
1471typedef enum {
1472 OST_REPLY = 0, /* reply ? */
1473 OST_GETATTR = 1,
1474 OST_SETATTR = 2,
1475 OST_READ = 3,
1476 OST_WRITE = 4,
1477 OST_CREATE = 5,
1478 OST_DESTROY = 6,
1479 OST_GET_INFO = 7,
1480 OST_CONNECT = 8,
1481 OST_DISCONNECT = 9,
1482 OST_PUNCH = 10,
1483 OST_OPEN = 11,
1484 OST_CLOSE = 12,
1485 OST_STATFS = 13,
1486 OST_SYNC = 16,
1487 OST_SET_INFO = 17,
1488 OST_QUOTACHECK = 18,
1489 OST_QUOTACTL = 19,
1490 OST_QUOTA_ADJUST_QUNIT = 20, /* not used since 2.4 */
1491 OST_LAST_OPC
1492} ost_cmd_t;
1493#define OST_FIRST_OPC OST_REPLY
1494
1495enum obdo_flags {
1496 OBD_FL_INLINEDATA = 0x00000001,
1497 OBD_FL_OBDMDEXISTS = 0x00000002,
1498 OBD_FL_DELORPHAN = 0x00000004, /* if set in o_flags delete orphans */
1499 OBD_FL_NORPC = 0x00000008, /* set in o_flags do in OSC not OST */
1500 OBD_FL_IDONLY = 0x00000010, /* set in o_flags only adjust obj id*/
1501 OBD_FL_RECREATE_OBJS= 0x00000020, /* recreate missing obj */
1502 OBD_FL_DEBUG_CHECK = 0x00000040, /* echo client/server debug check */
1503 OBD_FL_NO_USRQUOTA = 0x00000100, /* the object's owner is over quota */
1504 OBD_FL_NO_GRPQUOTA = 0x00000200, /* the object's group is over quota */
1505 OBD_FL_CREATE_CROW = 0x00000400, /* object should be create on write */
1506 OBD_FL_SRVLOCK = 0x00000800, /* delegate DLM locking to server */
1507 OBD_FL_CKSUM_CRC32 = 0x00001000, /* CRC32 checksum type */
1508 OBD_FL_CKSUM_ADLER = 0x00002000, /* ADLER checksum type */
1509 OBD_FL_CKSUM_CRC32C = 0x00004000, /* CRC32C checksum type */
1510 OBD_FL_CKSUM_RSVD2 = 0x00008000, /* for future cksum types */
1511 OBD_FL_CKSUM_RSVD3 = 0x00010000, /* for future cksum types */
1512 OBD_FL_SHRINK_GRANT = 0x00020000, /* object shrink the grant */
1513 OBD_FL_MMAP = 0x00040000, /* object is mmapped on the client.
1514 * XXX: obsoleted - reserved for old
1515 * clients prior than 2.2 */
1516 OBD_FL_RECOV_RESEND = 0x00080000, /* recoverable resent */
1517 OBD_FL_NOSPC_BLK = 0x00100000, /* no more block space on OST */
1518
1519 /* Note that while these checksum values are currently separate bits,
1520 * in 2.x we can actually allow all values from 1-31 if we wanted. */
1521 OBD_FL_CKSUM_ALL = OBD_FL_CKSUM_CRC32 | OBD_FL_CKSUM_ADLER |
1522 OBD_FL_CKSUM_CRC32C,
1523
1524 /* mask for local-only flag, which won't be sent over network */
1525 OBD_FL_LOCAL_MASK = 0xF0000000,
1526};
1527
1528#define LOV_MAGIC_V1 0x0BD10BD0
1529#define LOV_MAGIC LOV_MAGIC_V1
1530#define LOV_MAGIC_JOIN_V1 0x0BD20BD0
1531#define LOV_MAGIC_V3 0x0BD30BD0
1532
1533/*
1534 * magic for fully defined striping
1535 * the idea is that we should have different magics for striping "hints"
1536 * (struct lov_user_md_v[13]) and defined ready-to-use striping (struct
1537 * lov_mds_md_v[13]). at the moment the magics are used in wire protocol,
1538 * we can't just change it w/o long way preparation, but we still need a
1539 * mechanism to allow LOD to differentiate hint versus ready striping.
1540 * so, at the moment we do a trick: MDT knows what to expect from request
1541 * depending on the case (replay uses ready striping, non-replay req uses
1542 * hints), so MDT replaces magic with appropriate one and now LOD can
1543 * easily understand what's inside -bzzz
1544 */
1545#define LOV_MAGIC_V1_DEF 0x0CD10BD0
1546#define LOV_MAGIC_V3_DEF 0x0CD30BD0
1547
5dd16419
JX
1548#define LOV_PATTERN_RAID0 0x001 /* stripes are used round-robin */
1549#define LOV_PATTERN_RAID1 0x002 /* stripes are mirrors of each other */
1550#define LOV_PATTERN_FIRST 0x100 /* first stripe is not in round-robin */
1551#define LOV_PATTERN_CMOBD 0x200
1552
1553#define LOV_PATTERN_F_MASK 0xffff0000
1554#define LOV_PATTERN_F_RELEASED 0x80000000 /* HSM released file */
1555
1556#define lov_pattern(pattern) (pattern & ~LOV_PATTERN_F_MASK)
1557#define lov_pattern_flags(pattern) (pattern & LOV_PATTERN_F_MASK)
d7e09d03
PT
1558
1559#define lov_ost_data lov_ost_data_v1
1560struct lov_ost_data_v1 { /* per-stripe data structure (little-endian)*/
1561 struct ost_id l_ost_oi; /* OST object ID */
1562 __u32 l_ost_gen; /* generation of this l_ost_idx */
1563 __u32 l_ost_idx; /* OST index in LOV (lov_tgt_desc->tgts) */
1564};
1565
1566#define lov_mds_md lov_mds_md_v1
1567struct lov_mds_md_v1 { /* LOV EA mds/wire data (little-endian) */
1568 __u32 lmm_magic; /* magic number = LOV_MAGIC_V1 */
1569 __u32 lmm_pattern; /* LOV_PATTERN_RAID0, LOV_PATTERN_RAID1 */
1570 struct ost_id lmm_oi; /* LOV object ID */
1571 __u32 lmm_stripe_size; /* size of stripe in bytes */
1572 /* lmm_stripe_count used to be __u32 */
1573 __u16 lmm_stripe_count; /* num stripes in use for this object */
1574 __u16 lmm_layout_gen; /* layout generation number */
1575 struct lov_ost_data_v1 lmm_objects[0]; /* per-stripe data */
1576};
1577
1578/**
1579 * Sigh, because pre-2.4 uses
1580 * struct lov_mds_md_v1 {
1581 * ........
1582 * __u64 lmm_object_id;
1583 * __u64 lmm_object_seq;
1584 * ......
1585 * }
1586 * to identify the LOV(MDT) object, and lmm_object_seq will
1587 * be normal_fid, which make it hard to combine these conversion
1588 * to ostid_to FID. so we will do lmm_oi/fid conversion separately
1589 *
1590 * We can tell the lmm_oi by this way,
1591 * 1.8: lmm_object_id = {inode}, lmm_object_gr = 0
1592 * 2.1: lmm_object_id = {oid < 128k}, lmm_object_seq = FID_SEQ_NORMAL
1593 * 2.4: lmm_oi.f_seq = FID_SEQ_NORMAL, lmm_oi.f_oid = {oid < 128k},
1594 * lmm_oi.f_ver = 0
1595 *
1596 * But currently lmm_oi/lsm_oi does not have any "real" usages,
1597 * except for printing some information, and the user can always
1598 * get the real FID from LMA, besides this multiple case check might
1599 * make swab more complicate. So we will keep using id/seq for lmm_oi.
1600 */
1601
1602static inline void fid_to_lmm_oi(const struct lu_fid *fid,
1603 struct ost_id *oi)
1604{
1605 oi->oi.oi_id = fid_oid(fid);
1606 oi->oi.oi_seq = fid_seq(fid);
1607}
1608
1609static inline void lmm_oi_set_seq(struct ost_id *oi, __u64 seq)
1610{
1611 oi->oi.oi_seq = seq;
1612}
1613
1614static inline __u64 lmm_oi_id(struct ost_id *oi)
1615{
1616 return oi->oi.oi_id;
1617}
1618
1619static inline __u64 lmm_oi_seq(struct ost_id *oi)
1620{
1621 return oi->oi.oi_seq;
1622}
1623
1624static inline void lmm_oi_le_to_cpu(struct ost_id *dst_oi,
1625 struct ost_id *src_oi)
1626{
1627 dst_oi->oi.oi_id = le64_to_cpu(src_oi->oi.oi_id);
1628 dst_oi->oi.oi_seq = le64_to_cpu(src_oi->oi.oi_seq);
1629}
1630
1631static inline void lmm_oi_cpu_to_le(struct ost_id *dst_oi,
1632 struct ost_id *src_oi)
1633{
1634 dst_oi->oi.oi_id = cpu_to_le64(src_oi->oi.oi_id);
1635 dst_oi->oi.oi_seq = cpu_to_le64(src_oi->oi.oi_seq);
1636}
1637
1638/* extern void lustre_swab_lov_mds_md(struct lov_mds_md *llm); */
1639
ec83e611
JP
1640#define MAX_MD_SIZE \
1641 (sizeof(struct lov_mds_md) + 4 * sizeof(struct lov_ost_data))
1642#define MIN_MD_SIZE \
1643 (sizeof(struct lov_mds_md) + 1 * sizeof(struct lov_ost_data))
d7e09d03
PT
1644
1645#define XATTR_NAME_ACL_ACCESS "system.posix_acl_access"
1646#define XATTR_NAME_ACL_DEFAULT "system.posix_acl_default"
1647#define XATTR_USER_PREFIX "user."
1648#define XATTR_TRUSTED_PREFIX "trusted."
1649#define XATTR_SECURITY_PREFIX "security."
1650#define XATTR_LUSTRE_PREFIX "lustre."
1651
1652#define XATTR_NAME_LOV "trusted.lov"
1653#define XATTR_NAME_LMA "trusted.lma"
1654#define XATTR_NAME_LMV "trusted.lmv"
1655#define XATTR_NAME_LINK "trusted.link"
1656#define XATTR_NAME_FID "trusted.fid"
1657#define XATTR_NAME_VERSION "trusted.version"
1658#define XATTR_NAME_SOM "trusted.som"
1659#define XATTR_NAME_HSM "trusted.hsm"
1660#define XATTR_NAME_LFSCK_NAMESPACE "trusted.lfsck_namespace"
1661
1662struct lov_mds_md_v3 { /* LOV EA mds/wire data (little-endian) */
1663 __u32 lmm_magic; /* magic number = LOV_MAGIC_V3 */
1664 __u32 lmm_pattern; /* LOV_PATTERN_RAID0, LOV_PATTERN_RAID1 */
1665 struct ost_id lmm_oi; /* LOV object ID */
1666 __u32 lmm_stripe_size; /* size of stripe in bytes */
1667 /* lmm_stripe_count used to be __u32 */
1668 __u16 lmm_stripe_count; /* num stripes in use for this object */
1669 __u16 lmm_layout_gen; /* layout generation number */
1670 char lmm_pool_name[LOV_MAXPOOLNAME]; /* must be 32bit aligned */
1671 struct lov_ost_data_v1 lmm_objects[0]; /* per-stripe data */
1672};
1673
bc06a678 1674static inline __u32 lov_mds_md_size(__u16 stripes, __u32 lmm_magic)
1675{
1676 if (lmm_magic == LOV_MAGIC_V3)
1677 return sizeof(struct lov_mds_md_v3) +
1678 stripes * sizeof(struct lov_ost_data_v1);
1679 else
1680 return sizeof(struct lov_mds_md_v1) +
1681 stripes * sizeof(struct lov_ost_data_v1);
1682}
1683
081b7265
JH
1684static inline __u32
1685lov_mds_md_max_stripe_count(size_t buf_size, __u32 lmm_magic)
1686{
1687 switch (lmm_magic) {
1688 case LOV_MAGIC_V1: {
1689 struct lov_mds_md_v1 lmm;
1690
1691 if (buf_size < sizeof(lmm))
1692 return 0;
1693
1694 return (buf_size - sizeof(lmm)) / sizeof(lmm.lmm_objects[0]);
1695 }
1696 case LOV_MAGIC_V3: {
1697 struct lov_mds_md_v3 lmm;
1698
1699 if (buf_size < sizeof(lmm))
1700 return 0;
1701
1702 return (buf_size - sizeof(lmm)) / sizeof(lmm.lmm_objects[0]);
1703 }
1704 default:
1705 return 0;
1706 }
1707}
bc06a678 1708
d7e09d03
PT
1709#define OBD_MD_FLID (0x00000001ULL) /* object ID */
1710#define OBD_MD_FLATIME (0x00000002ULL) /* access time */
1711#define OBD_MD_FLMTIME (0x00000004ULL) /* data modification time */
1712#define OBD_MD_FLCTIME (0x00000008ULL) /* change time */
1713#define OBD_MD_FLSIZE (0x00000010ULL) /* size */
1714#define OBD_MD_FLBLOCKS (0x00000020ULL) /* allocated blocks count */
1715#define OBD_MD_FLBLKSZ (0x00000040ULL) /* block size */
1716#define OBD_MD_FLMODE (0x00000080ULL) /* access bits (mode & ~S_IFMT) */
1717#define OBD_MD_FLTYPE (0x00000100ULL) /* object type (mode & S_IFMT) */
1718#define OBD_MD_FLUID (0x00000200ULL) /* user ID */
1719#define OBD_MD_FLGID (0x00000400ULL) /* group ID */
1720#define OBD_MD_FLFLAGS (0x00000800ULL) /* flags word */
1721#define OBD_MD_FLNLINK (0x00002000ULL) /* link count */
1722#define OBD_MD_FLGENER (0x00004000ULL) /* generation number */
1723/*#define OBD_MD_FLINLINE (0x00008000ULL) inline data. used until 1.6.5 */
1724#define OBD_MD_FLRDEV (0x00010000ULL) /* device number */
1725#define OBD_MD_FLEASIZE (0x00020000ULL) /* extended attribute data */
1726#define OBD_MD_LINKNAME (0x00040000ULL) /* symbolic link target */
1727#define OBD_MD_FLHANDLE (0x00080000ULL) /* file/lock handle */
1728#define OBD_MD_FLCKSUM (0x00100000ULL) /* bulk data checksum */
1729#define OBD_MD_FLQOS (0x00200000ULL) /* quality of service stats */
1730/*#define OBD_MD_FLOSCOPQ (0x00400000ULL) osc opaque data, never used */
1731#define OBD_MD_FLCOOKIE (0x00800000ULL) /* log cancellation cookie */
1732#define OBD_MD_FLGROUP (0x01000000ULL) /* group */
1733#define OBD_MD_FLFID (0x02000000ULL) /* ->ost write inline fid */
1734#define OBD_MD_FLEPOCH (0x04000000ULL) /* ->ost write with ioepoch */
1735 /* ->mds if epoch opens or closes */
1736#define OBD_MD_FLGRANT (0x08000000ULL) /* ost preallocation space grant */
1737#define OBD_MD_FLDIREA (0x10000000ULL) /* dir's extended attribute data */
1738#define OBD_MD_FLUSRQUOTA (0x20000000ULL) /* over quota flags sent from ost */
1739#define OBD_MD_FLGRPQUOTA (0x40000000ULL) /* over quota flags sent from ost */
1740#define OBD_MD_FLMODEASIZE (0x80000000ULL) /* EA size will be changed */
1741
1742#define OBD_MD_MDS (0x0000000100000000ULL) /* where an inode lives on */
1743#define OBD_MD_REINT (0x0000000200000000ULL) /* reintegrate oa */
1744#define OBD_MD_MEA (0x0000000400000000ULL) /* CMD split EA */
5ea17d6c 1745#define OBD_MD_TSTATE (0x0000000800000000ULL) /* transient state field */
d7e09d03
PT
1746
1747#define OBD_MD_FLXATTR (0x0000001000000000ULL) /* xattr */
1748#define OBD_MD_FLXATTRLS (0x0000002000000000ULL) /* xattr list */
1749#define OBD_MD_FLXATTRRM (0x0000004000000000ULL) /* xattr remove */
1750#define OBD_MD_FLACL (0x0000008000000000ULL) /* ACL */
1751#define OBD_MD_FLRMTPERM (0x0000010000000000ULL) /* remote permission */
1752#define OBD_MD_FLMDSCAPA (0x0000020000000000ULL) /* MDS capability */
1753#define OBD_MD_FLOSSCAPA (0x0000040000000000ULL) /* OSS capability */
1754#define OBD_MD_FLCKSPLIT (0x0000080000000000ULL) /* Check split on server */
1755#define OBD_MD_FLCROSSREF (0x0000100000000000ULL) /* Cross-ref case */
1756#define OBD_MD_FLGETATTRLOCK (0x0000200000000000ULL) /* Get IOEpoch attributes
7fc1f831
AP
1757 * under lock; for xattr
1758 * requests means the
1759 * client holds the lock */
d7e09d03
PT
1760#define OBD_MD_FLOBJCOUNT (0x0000400000000000ULL) /* for multiple destroy */
1761
1762#define OBD_MD_FLRMTLSETFACL (0x0001000000000000ULL) /* lfs lsetfacl case */
1763#define OBD_MD_FLRMTLGETFACL (0x0002000000000000ULL) /* lfs lgetfacl case */
1764#define OBD_MD_FLRMTRSETFACL (0x0004000000000000ULL) /* lfs rsetfacl case */
1765#define OBD_MD_FLRMTRGETFACL (0x0008000000000000ULL) /* lfs rgetfacl case */
1766
1767#define OBD_MD_FLDATAVERSION (0x0010000000000000ULL) /* iversion sum */
48d23e61 1768#define OBD_MD_FLRELEASED (0x0020000000000000ULL) /* file released */
d7e09d03
PT
1769
1770#define OBD_MD_FLGETATTR (OBD_MD_FLID | OBD_MD_FLATIME | OBD_MD_FLMTIME | \
1771 OBD_MD_FLCTIME | OBD_MD_FLSIZE | OBD_MD_FLBLKSZ | \
1772 OBD_MD_FLMODE | OBD_MD_FLTYPE | OBD_MD_FLUID | \
1773 OBD_MD_FLGID | OBD_MD_FLFLAGS | OBD_MD_FLNLINK | \
1774 OBD_MD_FLGENER | OBD_MD_FLRDEV | OBD_MD_FLGROUP)
1775
7fc1f831
AP
1776#define OBD_MD_FLXATTRALL (OBD_MD_FLXATTR | OBD_MD_FLXATTRLS)
1777
d7e09d03
PT
1778/* don't forget obdo_fid which is way down at the bottom so it can
1779 * come after the definition of llog_cookie */
1780
1781enum hss_valid {
1782 HSS_SETMASK = 0x01,
1783 HSS_CLEARMASK = 0x02,
1784 HSS_ARCHIVE_ID = 0x04,
1785};
1786
1787struct hsm_state_set {
1788 __u32 hss_valid;
1789 __u32 hss_archive_id;
1790 __u64 hss_setmask;
1791 __u64 hss_clearmask;
1792};
1793
1794extern void lustre_swab_hsm_user_state(struct hsm_user_state *hus);
1795extern void lustre_swab_hsm_state_set(struct hsm_state_set *hss);
1796
1797extern void lustre_swab_obd_statfs (struct obd_statfs *os);
1798
1799/* ost_body.data values for OST_BRW */
1800
1801#define OBD_BRW_READ 0x01
1802#define OBD_BRW_WRITE 0x02
1803#define OBD_BRW_RWMASK (OBD_BRW_READ | OBD_BRW_WRITE)
1804#define OBD_BRW_SYNC 0x08 /* this page is a part of synchronous
1805 * transfer and is not accounted in
1806 * the grant. */
1807#define OBD_BRW_CHECK 0x10
1808#define OBD_BRW_FROM_GRANT 0x20 /* the osc manages this under llite */
1809#define OBD_BRW_GRANTED 0x40 /* the ost manages this */
1810#define OBD_BRW_NOCACHE 0x80 /* this page is a part of non-cached IO */
1811#define OBD_BRW_NOQUOTA 0x100
1812#define OBD_BRW_SRVLOCK 0x200 /* Client holds no lock over this page */
1813#define OBD_BRW_ASYNC 0x400 /* Server may delay commit to disk */
1814#define OBD_BRW_MEMALLOC 0x800 /* Client runs in the "kswapd" context */
1815#define OBD_BRW_OVER_USRQUOTA 0x1000 /* Running out of user quota */
1816#define OBD_BRW_OVER_GRPQUOTA 0x2000 /* Running out of group quota */
1817
1818#define OBD_OBJECT_EOF 0xffffffffffffffffULL
1819
1820#define OST_MIN_PRECREATE 32
1821#define OST_MAX_PRECREATE 20000
1822
1823struct obd_ioobj {
1824 struct ost_id ioo_oid; /* object ID, if multi-obj BRW */
1825 __u32 ioo_max_brw; /* low 16 bits were o_mode before 2.4,
1826 * now (PTLRPC_BULK_OPS_COUNT - 1) in
1827 * high 16 bits in 2.4 and later */
1828 __u32 ioo_bufcnt; /* number of niobufs for this object */
1829};
1830
1831#define IOOBJ_MAX_BRW_BITS 16
1832#define IOOBJ_TYPE_MASK ((1U << IOOBJ_MAX_BRW_BITS) - 1)
1833#define ioobj_max_brw_get(ioo) (((ioo)->ioo_max_brw >> IOOBJ_MAX_BRW_BITS) + 1)
1834#define ioobj_max_brw_set(ioo, num) \
1835do { (ioo)->ioo_max_brw = ((num) - 1) << IOOBJ_MAX_BRW_BITS; } while (0)
1836
1837extern void lustre_swab_obd_ioobj (struct obd_ioobj *ioo);
1838
1839/* multiple of 8 bytes => can array */
1840struct niobuf_remote {
1841 __u64 offset;
1842 __u32 len;
1843 __u32 flags;
1844};
1845
1846extern void lustre_swab_niobuf_remote (struct niobuf_remote *nbr);
1847
1848/* lock value block communicated between the filter and llite */
1849
1850/* OST_LVB_ERR_INIT is needed because the return code in rc is
1851 * negative, i.e. because ((MASK + rc) & MASK) != MASK. */
1852#define OST_LVB_ERR_INIT 0xffbadbad80000000ULL
1853#define OST_LVB_ERR_MASK 0xffbadbad00000000ULL
1854#define OST_LVB_IS_ERR(blocks) \
1855 ((blocks & OST_LVB_ERR_MASK) == OST_LVB_ERR_MASK)
1856#define OST_LVB_SET_ERR(blocks, rc) \
1857 do { blocks = OST_LVB_ERR_INIT + rc; } while (0)
1858#define OST_LVB_GET_ERR(blocks) (int)(blocks - OST_LVB_ERR_INIT)
1859
1860struct ost_lvb_v1 {
1861 __u64 lvb_size;
1862 obd_time lvb_mtime;
1863 obd_time lvb_atime;
1864 obd_time lvb_ctime;
1865 __u64 lvb_blocks;
1866};
1867
1868extern void lustre_swab_ost_lvb_v1(struct ost_lvb_v1 *lvb);
1869
1870struct ost_lvb {
1871 __u64 lvb_size;
1872 obd_time lvb_mtime;
1873 obd_time lvb_atime;
1874 obd_time lvb_ctime;
1875 __u64 lvb_blocks;
1876 __u32 lvb_mtime_ns;
1877 __u32 lvb_atime_ns;
1878 __u32 lvb_ctime_ns;
1879 __u32 lvb_padding;
1880};
1881
1882extern void lustre_swab_ost_lvb(struct ost_lvb *lvb);
1883
1884/*
1885 * lquota data structures
1886 */
1887
1888#ifndef QUOTABLOCK_BITS
1889#define QUOTABLOCK_BITS 10
1890#endif
1891
1892#ifndef QUOTABLOCK_SIZE
1893#define QUOTABLOCK_SIZE (1 << QUOTABLOCK_BITS)
1894#endif
1895
1896#ifndef toqb
1897#define toqb(x) (((x) + QUOTABLOCK_SIZE - 1) >> QUOTABLOCK_BITS)
1898#endif
1899
1900/* The lquota_id structure is an union of all the possible identifier types that
1901 * can be used with quota, this includes:
1902 * - 64-bit user ID
1903 * - 64-bit group ID
1904 * - a FID which can be used for per-directory quota in the future */
1905union lquota_id {
1906 struct lu_fid qid_fid; /* FID for per-directory quota */
1907 __u64 qid_uid; /* user identifier */
1908 __u64 qid_gid; /* group identifier */
1909};
1910
1911/* quotactl management */
1912struct obd_quotactl {
1913 __u32 qc_cmd;
1914 __u32 qc_type; /* see Q_* flag below */
1915 __u32 qc_id;
1916 __u32 qc_stat;
1917 struct obd_dqinfo qc_dqinfo;
1918 struct obd_dqblk qc_dqblk;
1919};
1920
1921extern void lustre_swab_obd_quotactl(struct obd_quotactl *q);
1922
1923#define Q_QUOTACHECK 0x800100 /* deprecated as of 2.4 */
1924#define Q_INITQUOTA 0x800101 /* deprecated as of 2.4 */
1925#define Q_GETOINFO 0x800102 /* get obd quota info */
1926#define Q_GETOQUOTA 0x800103 /* get obd quotas */
1927#define Q_FINVALIDATE 0x800104 /* deprecated as of 2.4 */
1928
1929#define Q_COPY(out, in, member) (out)->member = (in)->member
1930
1931#define QCTL_COPY(out, in) \
1932do { \
1933 Q_COPY(out, in, qc_cmd); \
1934 Q_COPY(out, in, qc_type); \
1935 Q_COPY(out, in, qc_id); \
1936 Q_COPY(out, in, qc_stat); \
1937 Q_COPY(out, in, qc_dqinfo); \
1938 Q_COPY(out, in, qc_dqblk); \
1939} while (0)
1940
1941/* Body of quota request used for quota acquire/release RPCs between quota
1942 * master (aka QMT) and slaves (ak QSD). */
1943struct quota_body {
1944 struct lu_fid qb_fid; /* FID of global index packing the pool ID
1945 * and type (data or metadata) as well as
1946 * the quota type (user or group). */
1947 union lquota_id qb_id; /* uid or gid or directory FID */
1948 __u32 qb_flags; /* see below */
1949 __u32 qb_padding;
1950 __u64 qb_count; /* acquire/release count (kbytes/inodes) */
1951 __u64 qb_usage; /* current slave usage (kbytes/inodes) */
1952 __u64 qb_slv_ver; /* slave index file version */
1953 struct lustre_handle qb_lockh; /* per-ID lock handle */
1954 struct lustre_handle qb_glb_lockh; /* global lock handle */
1955 __u64 qb_padding1[4];
1956};
1957
1958/* When the quota_body is used in the reply of quota global intent
1959 * lock (IT_QUOTA_CONN) reply, qb_fid contains slave index file FID. */
1960#define qb_slv_fid qb_fid
1961/* qb_usage is the current qunit (in kbytes/inodes) when quota_body is used in
1962 * quota reply */
1963#define qb_qunit qb_usage
1964
1965#define QUOTA_DQACQ_FL_ACQ 0x1 /* acquire quota */
1966#define QUOTA_DQACQ_FL_PREACQ 0x2 /* pre-acquire */
1967#define QUOTA_DQACQ_FL_REL 0x4 /* release quota */
1968#define QUOTA_DQACQ_FL_REPORT 0x8 /* report usage */
1969
1970extern void lustre_swab_quota_body(struct quota_body *b);
1971
1972/* Quota types currently supported */
1973enum {
1974 LQUOTA_TYPE_USR = 0x00, /* maps to USRQUOTA */
1975 LQUOTA_TYPE_GRP = 0x01, /* maps to GRPQUOTA */
1976 LQUOTA_TYPE_MAX
1977};
1978
1979/* There are 2 different resource types on which a quota limit can be enforced:
1980 * - inodes on the MDTs
1981 * - blocks on the OSTs */
1982enum {
1983 LQUOTA_RES_MD = 0x01, /* skip 0 to avoid null oid in FID */
1984 LQUOTA_RES_DT = 0x02,
1985 LQUOTA_LAST_RES,
1986 LQUOTA_FIRST_RES = LQUOTA_RES_MD
1987};
1988#define LQUOTA_NR_RES (LQUOTA_LAST_RES - LQUOTA_FIRST_RES + 1)
1989
1990/*
1991 * Space accounting support
1992 * Format of an accounting record, providing disk usage information for a given
1993 * user or group
1994 */
1995struct lquota_acct_rec { /* 16 bytes */
1996 __u64 bspace; /* current space in use */
1997 __u64 ispace; /* current # inodes in use */
1998};
1999
2000/*
2001 * Global quota index support
2002 * Format of a global record, providing global quota settings for a given quota
2003 * identifier
2004 */
2005struct lquota_glb_rec { /* 32 bytes */
2006 __u64 qbr_hardlimit; /* quota hard limit, in #inodes or kbytes */
2007 __u64 qbr_softlimit; /* quota soft limit, in #inodes or kbytes */
2008 __u64 qbr_time; /* grace time, in seconds */
2009 __u64 qbr_granted; /* how much is granted to slaves, in #inodes or
2010 * kbytes */
2011};
2012
2013/*
2014 * Slave index support
2015 * Format of a slave record, recording how much space is granted to a given
2016 * slave
2017 */
2018struct lquota_slv_rec { /* 8 bytes */
2019 __u64 qsr_granted; /* space granted to the slave for the key=ID,
2020 * in #inodes or kbytes */
2021};
2022
2023/* Data structures associated with the quota locks */
2024
2025/* Glimpse descriptor used for the index & per-ID quota locks */
2026struct ldlm_gl_lquota_desc {
2027 union lquota_id gl_id; /* quota ID subject to the glimpse */
2028 __u64 gl_flags; /* see LQUOTA_FL* below */
2029 __u64 gl_ver; /* new index version */
2030 __u64 gl_hardlimit; /* new hardlimit or qunit value */
2031 __u64 gl_softlimit; /* new softlimit */
2032 __u64 gl_time;
2033 __u64 gl_pad2;
2034};
2035#define gl_qunit gl_hardlimit /* current qunit value used when
2036 * glimpsing per-ID quota locks */
2037
2038/* quota glimpse flags */
2039#define LQUOTA_FL_EDQUOT 0x1 /* user/group out of quota space on QMT */
2040
2041/* LVB used with quota (global and per-ID) locks */
2042struct lquota_lvb {
2043 __u64 lvb_flags; /* see LQUOTA_FL* above */
2044 __u64 lvb_id_may_rel; /* space that might be released later */
2045 __u64 lvb_id_rel; /* space released by the slave for this ID */
2046 __u64 lvb_id_qunit; /* current qunit value */
2047 __u64 lvb_pad1;
2048};
2049
2050extern void lustre_swab_lquota_lvb(struct lquota_lvb *lvb);
2051
2052/* LVB used with global quota lock */
2053#define lvb_glb_ver lvb_id_may_rel /* current version of the global index */
2054
2055/* op codes */
2056typedef enum {
2057 QUOTA_DQACQ = 601,
2058 QUOTA_DQREL = 602,
2059 QUOTA_LAST_OPC
2060} quota_cmd_t;
2061#define QUOTA_FIRST_OPC QUOTA_DQACQ
2062
2063/*
2064 * MDS REQ RECORDS
2065 */
2066
2067/* opcodes */
2068typedef enum {
2069 MDS_GETATTR = 33,
2070 MDS_GETATTR_NAME = 34,
2071 MDS_CLOSE = 35,
2072 MDS_REINT = 36,
2073 MDS_READPAGE = 37,
2074 MDS_CONNECT = 38,
2075 MDS_DISCONNECT = 39,
2076 MDS_GETSTATUS = 40,
2077 MDS_STATFS = 41,
2078 MDS_PIN = 42,
2079 MDS_UNPIN = 43,
2080 MDS_SYNC = 44,
2081 MDS_DONE_WRITING = 45,
2082 MDS_SET_INFO = 46,
2083 MDS_QUOTACHECK = 47,
2084 MDS_QUOTACTL = 48,
2085 MDS_GETXATTR = 49,
2086 MDS_SETXATTR = 50, /* obsolete, now it's MDS_REINT op */
2087 MDS_WRITEPAGE = 51,
2088 MDS_IS_SUBDIR = 52,
2089 MDS_GET_INFO = 53,
2090 MDS_HSM_STATE_GET = 54,
2091 MDS_HSM_STATE_SET = 55,
2092 MDS_HSM_ACTION = 56,
2093 MDS_HSM_PROGRESS = 57,
2094 MDS_HSM_REQUEST = 58,
2095 MDS_HSM_CT_REGISTER = 59,
2096 MDS_HSM_CT_UNREGISTER = 60,
2097 MDS_SWAP_LAYOUTS = 61,
2098 MDS_LAST_OPC
2099} mds_cmd_t;
2100
2101#define MDS_FIRST_OPC MDS_GETATTR
2102
2103
2104/* opcodes for object update */
2105typedef enum {
2106 UPDATE_OBJ = 1000,
2107 UPDATE_LAST_OPC
2108} update_cmd_t;
2109
2110#define UPDATE_FIRST_OPC UPDATE_OBJ
2111
2112/*
2113 * Do not exceed 63
2114 */
2115
2116typedef enum {
2117 REINT_SETATTR = 1,
2118 REINT_CREATE = 2,
2119 REINT_LINK = 3,
2120 REINT_UNLINK = 4,
2121 REINT_RENAME = 5,
2122 REINT_OPEN = 6,
2123 REINT_SETXATTR = 7,
2124 REINT_RMENTRY = 8,
2125// REINT_WRITE = 9,
2126 REINT_MAX
2127} mds_reint_t, mdt_reint_t;
2128
2129extern void lustre_swab_generic_32s (__u32 *val);
2130
2131/* the disposition of the intent outlines what was executed */
2132#define DISP_IT_EXECD 0x00000001
2133#define DISP_LOOKUP_EXECD 0x00000002
2134#define DISP_LOOKUP_NEG 0x00000004
2135#define DISP_LOOKUP_POS 0x00000008
2136#define DISP_OPEN_CREATE 0x00000010
2137#define DISP_OPEN_OPEN 0x00000020
f236f69b 2138#define DISP_ENQ_COMPLETE 0x00400000 /* obsolete and unused */
d7e09d03
PT
2139#define DISP_ENQ_OPEN_REF 0x00800000
2140#define DISP_ENQ_CREATE_REF 0x01000000
2141#define DISP_OPEN_LOCK 0x02000000
d3a8a4e2 2142#define DISP_OPEN_LEASE 0x04000000
63d42578 2143#define DISP_OPEN_STRIPE 0x08000000
d7e09d03
PT
2144
2145/* INODE LOCK PARTS */
fe4c58af 2146#define MDS_INODELOCK_LOOKUP 0x000001 /* For namespace, dentry etc, and also
2147 * was used to protect permission (mode,
2148 * owner, group etc) before 2.4. */
2149#define MDS_INODELOCK_UPDATE 0x000002 /* size, links, timestamps */
2150#define MDS_INODELOCK_OPEN 0x000004 /* For opened files */
2151#define MDS_INODELOCK_LAYOUT 0x000008 /* for layout */
2152
2153/* The PERM bit is added int 2.4, and it is used to protect permission(mode,
2154 * owner, group, acl etc), so to separate the permission from LOOKUP lock.
2155 * Because for remote directories(in DNE), these locks will be granted by
2156 * different MDTs(different ldlm namespace).
2157 *
2158 * For local directory, MDT will always grant UPDATE_LOCK|PERM_LOCK together.
2159 * For Remote directory, the master MDT, where the remote directory is, will
2160 * grant UPDATE_LOCK|PERM_LOCK, and the remote MDT, where the name entry is,
2161 * will grant LOOKUP_LOCK. */
2162#define MDS_INODELOCK_PERM 0x000010
2163#define MDS_INODELOCK_XATTR 0x000020 /* extended attributes */
d7e09d03 2164
7fc1f831 2165#define MDS_INODELOCK_MAXSHIFT 5
d7e09d03
PT
2166/* This FULL lock is useful to take on unlink sort of operations */
2167#define MDS_INODELOCK_FULL ((1<<(MDS_INODELOCK_MAXSHIFT+1))-1)
2168
2169extern void lustre_swab_ll_fid (struct ll_fid *fid);
2170
2171/* NOTE: until Lustre 1.8.7/2.1.1 the fid_ver() was packed into name[2],
2172 * but was moved into name[1] along with the OID to avoid consuming the
2173 * name[2,3] fields that need to be used for the quota id (also a FID). */
2174enum {
2175 LUSTRE_RES_ID_SEQ_OFF = 0,
2176 LUSTRE_RES_ID_VER_OID_OFF = 1,
2177 LUSTRE_RES_ID_WAS_VER_OFF = 2, /* see note above */
2178 LUSTRE_RES_ID_QUOTA_SEQ_OFF = 2,
2179 LUSTRE_RES_ID_QUOTA_VER_OID_OFF = 3,
2180 LUSTRE_RES_ID_HSH_OFF = 3
2181};
2182
2183#define MDS_STATUS_CONN 1
2184#define MDS_STATUS_LOV 2
2185
2186/* mdt_thread_info.mti_flags. */
2187enum md_op_flags {
2188 /* The flag indicates Size-on-MDS attributes are changed. */
2189 MF_SOM_CHANGE = (1 << 0),
2190 /* Flags indicates an epoch opens or closes. */
2191 MF_EPOCH_OPEN = (1 << 1),
2192 MF_EPOCH_CLOSE = (1 << 2),
2193 MF_MDC_CANCEL_FID1 = (1 << 3),
2194 MF_MDC_CANCEL_FID2 = (1 << 4),
2195 MF_MDC_CANCEL_FID3 = (1 << 5),
2196 MF_MDC_CANCEL_FID4 = (1 << 6),
2197 /* There is a pending attribute update. */
2198 MF_SOM_AU = (1 << 7),
2199 /* Cancel OST locks while getattr OST attributes. */
2200 MF_GETATTR_LOCK = (1 << 8),
2201 MF_GET_MDT_IDX = (1 << 9),
2202};
2203
2204#define MF_SOM_LOCAL_FLAGS (MF_SOM_CHANGE | MF_EPOCH_OPEN | MF_EPOCH_CLOSE)
2205
2206#define LUSTRE_BFLAG_UNCOMMITTED_WRITES 0x1
2207
2208/* these should be identical to their EXT4_*_FL counterparts, they are
2209 * redefined here only to avoid dragging in fs/ext4/ext4.h */
2210#define LUSTRE_SYNC_FL 0x00000008 /* Synchronous updates */
2211#define LUSTRE_IMMUTABLE_FL 0x00000010 /* Immutable file */
2212#define LUSTRE_APPEND_FL 0x00000020 /* writes to file may only append */
2213#define LUSTRE_NOATIME_FL 0x00000080 /* do not update atime */
2214#define LUSTRE_DIRSYNC_FL 0x00010000 /* dirsync behaviour (dir only) */
2215
2216/* Convert wire LUSTRE_*_FL to corresponding client local VFS S_* values
2217 * for the client inode i_flags. The LUSTRE_*_FL are the Lustre wire
2218 * protocol equivalents of LDISKFS_*_FL values stored on disk, while
2219 * the S_* flags are kernel-internal values that change between kernel
2220 * versions. These flags are set/cleared via FSFILT_IOC_{GET,SET}_FLAGS.
2221 * See b=16526 for a full history. */
2222static inline int ll_ext_to_inode_flags(int flags)
2223{
2224 return (((flags & LUSTRE_SYNC_FL) ? S_SYNC : 0) |
2225 ((flags & LUSTRE_NOATIME_FL) ? S_NOATIME : 0) |
2226 ((flags & LUSTRE_APPEND_FL) ? S_APPEND : 0) |
2227#if defined(S_DIRSYNC)
2228 ((flags & LUSTRE_DIRSYNC_FL) ? S_DIRSYNC : 0) |
2229#endif
2230 ((flags & LUSTRE_IMMUTABLE_FL) ? S_IMMUTABLE : 0));
2231}
2232
2233static inline int ll_inode_to_ext_flags(int iflags)
2234{
2235 return (((iflags & S_SYNC) ? LUSTRE_SYNC_FL : 0) |
2236 ((iflags & S_NOATIME) ? LUSTRE_NOATIME_FL : 0) |
2237 ((iflags & S_APPEND) ? LUSTRE_APPEND_FL : 0) |
2238#if defined(S_DIRSYNC)
2239 ((iflags & S_DIRSYNC) ? LUSTRE_DIRSYNC_FL : 0) |
2240#endif
2241 ((iflags & S_IMMUTABLE) ? LUSTRE_IMMUTABLE_FL : 0));
2242}
2243
5ea17d6c
JL
2244/* 64 possible states */
2245enum md_transient_state {
2246 MS_RESTORE = (1 << 0), /* restore is running */
2247};
2248
d7e09d03
PT
2249struct mdt_body {
2250 struct lu_fid fid1;
2251 struct lu_fid fid2;
2252 struct lustre_handle handle;
2253 __u64 valid;
2254 __u64 size; /* Offset, in the case of MDS_READPAGE */
2255 obd_time mtime;
2256 obd_time atime;
2257 obd_time ctime;
2258 __u64 blocks; /* XID, in the case of MDS_READPAGE */
2259 __u64 ioepoch;
5ea17d6c
JL
2260 __u64 t_state; /* transient file state defined in
2261 * enum md_transient_state
2262 * was "ino" until 2.4.0 */
d7e09d03
PT
2263 __u32 fsuid;
2264 __u32 fsgid;
2265 __u32 capability;
2266 __u32 mode;
2267 __u32 uid;
2268 __u32 gid;
2269 __u32 flags; /* from vfs for pin/unpin, LUSTRE_BFLAG close */
2270 __u32 rdev;
2271 __u32 nlink; /* #bytes to read in the case of MDS_READPAGE */
2272 __u32 unused2; /* was "generation" until 2.4.0 */
2273 __u32 suppgid;
2274 __u32 eadatasize;
2275 __u32 aclsize;
2276 __u32 max_mdsize;
2277 __u32 max_cookiesize;
2278 __u32 uid_h; /* high 32-bits of uid, for FUID */
2279 __u32 gid_h; /* high 32-bits of gid, for FUID */
2280 __u32 padding_5; /* also fix lustre_swab_mdt_body */
2281 __u64 padding_6;
2282 __u64 padding_7;
2283 __u64 padding_8;
2284 __u64 padding_9;
2285 __u64 padding_10;
2286}; /* 216 */
2287
2288extern void lustre_swab_mdt_body (struct mdt_body *b);
2289
2290struct mdt_ioepoch {
2291 struct lustre_handle handle;
2292 __u64 ioepoch;
2293 __u32 flags;
2294 __u32 padding;
2295};
2296
2297extern void lustre_swab_mdt_ioepoch (struct mdt_ioepoch *b);
2298
2299/* permissions for md_perm.mp_perm */
2300enum {
2301 CFS_SETUID_PERM = 0x01,
2302 CFS_SETGID_PERM = 0x02,
2303 CFS_SETGRP_PERM = 0x04,
2304 CFS_RMTACL_PERM = 0x08,
2305 CFS_RMTOWN_PERM = 0x10
2306};
2307
2308/* inode access permission for remote user, the inode info are omitted,
2309 * for client knows them. */
2310struct mdt_remote_perm {
2311 __u32 rp_uid;
2312 __u32 rp_gid;
2313 __u32 rp_fsuid;
2314 __u32 rp_fsuid_h;
2315 __u32 rp_fsgid;
2316 __u32 rp_fsgid_h;
2317 __u32 rp_access_perm; /* MAY_READ/WRITE/EXEC */
2318 __u32 rp_padding;
2319};
2320
2321extern void lustre_swab_mdt_remote_perm(struct mdt_remote_perm *p);
2322
2323struct mdt_rec_setattr {
2324 __u32 sa_opcode;
2325 __u32 sa_cap;
2326 __u32 sa_fsuid;
2327 __u32 sa_fsuid_h;
2328 __u32 sa_fsgid;
2329 __u32 sa_fsgid_h;
2330 __u32 sa_suppgid;
2331 __u32 sa_suppgid_h;
2332 __u32 sa_padding_1;
2333 __u32 sa_padding_1_h;
2334 struct lu_fid sa_fid;
2335 __u64 sa_valid;
2336 __u32 sa_uid;
2337 __u32 sa_gid;
2338 __u64 sa_size;
2339 __u64 sa_blocks;
2340 obd_time sa_mtime;
2341 obd_time sa_atime;
2342 obd_time sa_ctime;
2343 __u32 sa_attr_flags;
2344 __u32 sa_mode;
2345 __u32 sa_bias; /* some operation flags */
2346 __u32 sa_padding_3;
2347 __u32 sa_padding_4;
2348 __u32 sa_padding_5;
2349};
2350
2351extern void lustre_swab_mdt_rec_setattr (struct mdt_rec_setattr *sa);
2352
2353/*
2354 * Attribute flags used in mdt_rec_setattr::sa_valid.
2355 * The kernel's #defines for ATTR_* should not be used over the network
2356 * since the client and MDS may run different kernels (see bug 13828)
2357 * Therefore, we should only use MDS_ATTR_* attributes for sa_valid.
2358 */
2359#define MDS_ATTR_MODE 0x1ULL /* = 1 */
2360#define MDS_ATTR_UID 0x2ULL /* = 2 */
2361#define MDS_ATTR_GID 0x4ULL /* = 4 */
2362#define MDS_ATTR_SIZE 0x8ULL /* = 8 */
2363#define MDS_ATTR_ATIME 0x10ULL /* = 16 */
2364#define MDS_ATTR_MTIME 0x20ULL /* = 32 */
2365#define MDS_ATTR_CTIME 0x40ULL /* = 64 */
2366#define MDS_ATTR_ATIME_SET 0x80ULL /* = 128 */
2367#define MDS_ATTR_MTIME_SET 0x100ULL /* = 256 */
2368#define MDS_ATTR_FORCE 0x200ULL /* = 512, Not a change, but a change it */
2369#define MDS_ATTR_ATTR_FLAG 0x400ULL /* = 1024 */
2370#define MDS_ATTR_KILL_SUID 0x800ULL /* = 2048 */
2371#define MDS_ATTR_KILL_SGID 0x1000ULL /* = 4096 */
2372#define MDS_ATTR_CTIME_SET 0x2000ULL /* = 8192 */
2373#define MDS_ATTR_FROM_OPEN 0x4000ULL /* = 16384, called from open path, ie O_TRUNC */
2374#define MDS_ATTR_BLOCKS 0x8000ULL /* = 32768 */
2375
2376#ifndef FMODE_READ
2377#define FMODE_READ 00000001
2378#define FMODE_WRITE 00000002
2379#endif
2380
2381#define MDS_FMODE_CLOSED 00000000
2382#define MDS_FMODE_EXEC 00000004
2383/* IO Epoch is opened on a closed file. */
2384#define MDS_FMODE_EPOCH 01000000
2385/* IO Epoch is opened on a file truncate. */
2386#define MDS_FMODE_TRUNC 02000000
2387/* Size-on-MDS Attribute Update is pending. */
2388#define MDS_FMODE_SOM 04000000
2389
2390#define MDS_OPEN_CREATED 00000010
2391#define MDS_OPEN_CROSS 00000020
2392
2393#define MDS_OPEN_CREAT 00000100
2394#define MDS_OPEN_EXCL 00000200
2395#define MDS_OPEN_TRUNC 00001000
2396#define MDS_OPEN_APPEND 00002000
2397#define MDS_OPEN_SYNC 00010000
2398#define MDS_OPEN_DIRECTORY 00200000
2399
2400#define MDS_OPEN_BY_FID 040000000 /* open_by_fid for known object */
2401#define MDS_OPEN_DELAY_CREATE 0100000000 /* delay initial object create */
2402#define MDS_OPEN_OWNEROVERRIDE 0200000000 /* NFSD rw-reopen ro file for owner */
2403#define MDS_OPEN_JOIN_FILE 0400000000 /* open for join file.
2404 * We do not support JOIN FILE
2405 * anymore, reserve this flags
2406 * just for preventing such bit
2407 * to be reused. */
2408
2409#define MDS_OPEN_LOCK 04000000000 /* This open requires open lock */
2410#define MDS_OPEN_HAS_EA 010000000000 /* specify object create pattern */
2411#define MDS_OPEN_HAS_OBJS 020000000000 /* Just set the EA the obj exist */
2412#define MDS_OPEN_NORESTORE 0100000000000ULL /* Do not restore file at open */
2413#define MDS_OPEN_NEWSTRIPE 0200000000000ULL /* New stripe needed (restripe or
2414 * hsm restore) */
2415#define MDS_OPEN_VOLATILE 0400000000000ULL /* File is volatile = created
2416 unlinked */
d3a8a4e2
JX
2417#define MDS_OPEN_LEASE 01000000000000ULL /* Open the file and grant lease
2418 * delegation, succeed if it's not
2419 * being opened with conflict mode.
2420 */
48d23e61 2421#define MDS_OPEN_RELEASE 02000000000000ULL /* Open the file for HSM release */
d7e09d03
PT
2422
2423/* permission for create non-directory file */
2424#define MAY_CREATE (1 << 7)
2425/* permission for create directory file */
2426#define MAY_LINK (1 << 8)
2427/* permission for delete from the directory */
2428#define MAY_UNLINK (1 << 9)
2429/* source's permission for rename */
2430#define MAY_RENAME_SRC (1 << 10)
2431/* target's permission for rename */
2432#define MAY_RENAME_TAR (1 << 11)
2433/* part (parent's) VTX permission check */
2434#define MAY_VTX_PART (1 << 12)
2435/* full VTX permission check */
2436#define MAY_VTX_FULL (1 << 13)
2437/* lfs rgetfacl permission check */
2438#define MAY_RGETFACL (1 << 14)
2439
48d23e61 2440enum mds_op_bias {
d7e09d03
PT
2441 MDS_CHECK_SPLIT = 1 << 0,
2442 MDS_CROSS_REF = 1 << 1,
2443 MDS_VTX_BYPASS = 1 << 2,
2444 MDS_PERM_BYPASS = 1 << 3,
2445 MDS_SOM = 1 << 4,
2446 MDS_QUOTA_IGNORE = 1 << 5,
2447 MDS_CLOSE_CLEANUP = 1 << 6,
2448 MDS_KEEP_ORPHAN = 1 << 7,
2449 MDS_RECOV_OPEN = 1 << 8,
2450 MDS_DATA_MODIFIED = 1 << 9,
2451 MDS_CREATE_VOLATILE = 1 << 10,
2452 MDS_OWNEROVERRIDE = 1 << 11,
48d23e61 2453 MDS_HSM_RELEASE = 1 << 12,
d7e09d03
PT
2454};
2455
2456/* instance of mdt_reint_rec */
2457struct mdt_rec_create {
2458 __u32 cr_opcode;
2459 __u32 cr_cap;
2460 __u32 cr_fsuid;
2461 __u32 cr_fsuid_h;
2462 __u32 cr_fsgid;
2463 __u32 cr_fsgid_h;
2464 __u32 cr_suppgid1;
2465 __u32 cr_suppgid1_h;
2466 __u32 cr_suppgid2;
2467 __u32 cr_suppgid2_h;
2468 struct lu_fid cr_fid1;
2469 struct lu_fid cr_fid2;
2470 struct lustre_handle cr_old_handle; /* handle in case of open replay */
2471 obd_time cr_time;
2472 __u64 cr_rdev;
2473 __u64 cr_ioepoch;
2474 __u64 cr_padding_1; /* rr_blocks */
2475 __u32 cr_mode;
2476 __u32 cr_bias;
2477 /* use of helpers set/get_mrc_cr_flags() is needed to access
2478 * 64 bits cr_flags [cr_flags_l, cr_flags_h], this is done to
2479 * extend cr_flags size without breaking 1.8 compat */
2480 __u32 cr_flags_l; /* for use with open, low 32 bits */
2481 __u32 cr_flags_h; /* for use with open, high 32 bits */
2482 __u32 cr_umask; /* umask for create */
2483 __u32 cr_padding_4; /* rr_padding_4 */
2484};
2485
2486static inline void set_mrc_cr_flags(struct mdt_rec_create *mrc, __u64 flags)
2487{
2488 mrc->cr_flags_l = (__u32)(flags & 0xFFFFFFFFUll);
2489 mrc->cr_flags_h = (__u32)(flags >> 32);
2490}
2491
2492static inline __u64 get_mrc_cr_flags(struct mdt_rec_create *mrc)
2493{
2494 return ((__u64)(mrc->cr_flags_l) | ((__u64)mrc->cr_flags_h << 32));
2495}
2496
2497/* instance of mdt_reint_rec */
2498struct mdt_rec_link {
2499 __u32 lk_opcode;
2500 __u32 lk_cap;
2501 __u32 lk_fsuid;
2502 __u32 lk_fsuid_h;
2503 __u32 lk_fsgid;
2504 __u32 lk_fsgid_h;
2505 __u32 lk_suppgid1;
2506 __u32 lk_suppgid1_h;
2507 __u32 lk_suppgid2;
2508 __u32 lk_suppgid2_h;
2509 struct lu_fid lk_fid1;
2510 struct lu_fid lk_fid2;
2511 obd_time lk_time;
2512 __u64 lk_padding_1; /* rr_atime */
2513 __u64 lk_padding_2; /* rr_ctime */
2514 __u64 lk_padding_3; /* rr_size */
2515 __u64 lk_padding_4; /* rr_blocks */
2516 __u32 lk_bias;
2517 __u32 lk_padding_5; /* rr_mode */
2518 __u32 lk_padding_6; /* rr_flags */
2519 __u32 lk_padding_7; /* rr_padding_2 */
2520 __u32 lk_padding_8; /* rr_padding_3 */
2521 __u32 lk_padding_9; /* rr_padding_4 */
2522};
2523
2524/* instance of mdt_reint_rec */
2525struct mdt_rec_unlink {
2526 __u32 ul_opcode;
2527 __u32 ul_cap;
2528 __u32 ul_fsuid;
2529 __u32 ul_fsuid_h;
2530 __u32 ul_fsgid;
2531 __u32 ul_fsgid_h;
2532 __u32 ul_suppgid1;
2533 __u32 ul_suppgid1_h;
2534 __u32 ul_suppgid2;
2535 __u32 ul_suppgid2_h;
2536 struct lu_fid ul_fid1;
2537 struct lu_fid ul_fid2;
2538 obd_time ul_time;
2539 __u64 ul_padding_2; /* rr_atime */
2540 __u64 ul_padding_3; /* rr_ctime */
2541 __u64 ul_padding_4; /* rr_size */
2542 __u64 ul_padding_5; /* rr_blocks */
2543 __u32 ul_bias;
2544 __u32 ul_mode;
2545 __u32 ul_padding_6; /* rr_flags */
2546 __u32 ul_padding_7; /* rr_padding_2 */
2547 __u32 ul_padding_8; /* rr_padding_3 */
2548 __u32 ul_padding_9; /* rr_padding_4 */
2549};
2550
2551/* instance of mdt_reint_rec */
2552struct mdt_rec_rename {
2553 __u32 rn_opcode;
2554 __u32 rn_cap;
2555 __u32 rn_fsuid;
2556 __u32 rn_fsuid_h;
2557 __u32 rn_fsgid;
2558 __u32 rn_fsgid_h;
2559 __u32 rn_suppgid1;
2560 __u32 rn_suppgid1_h;
2561 __u32 rn_suppgid2;
2562 __u32 rn_suppgid2_h;
2563 struct lu_fid rn_fid1;
2564 struct lu_fid rn_fid2;
2565 obd_time rn_time;
2566 __u64 rn_padding_1; /* rr_atime */
2567 __u64 rn_padding_2; /* rr_ctime */
2568 __u64 rn_padding_3; /* rr_size */
2569 __u64 rn_padding_4; /* rr_blocks */
2570 __u32 rn_bias; /* some operation flags */
2571 __u32 rn_mode; /* cross-ref rename has mode */
2572 __u32 rn_padding_5; /* rr_flags */
2573 __u32 rn_padding_6; /* rr_padding_2 */
2574 __u32 rn_padding_7; /* rr_padding_3 */
2575 __u32 rn_padding_8; /* rr_padding_4 */
2576};
2577
2578/* instance of mdt_reint_rec */
2579struct mdt_rec_setxattr {
2580 __u32 sx_opcode;
2581 __u32 sx_cap;
2582 __u32 sx_fsuid;
2583 __u32 sx_fsuid_h;
2584 __u32 sx_fsgid;
2585 __u32 sx_fsgid_h;
2586 __u32 sx_suppgid1;
2587 __u32 sx_suppgid1_h;
2588 __u32 sx_suppgid2;
2589 __u32 sx_suppgid2_h;
2590 struct lu_fid sx_fid;
2591 __u64 sx_padding_1; /* These three are rr_fid2 */
2592 __u32 sx_padding_2;
2593 __u32 sx_padding_3;
2594 __u64 sx_valid;
2595 obd_time sx_time;
2596 __u64 sx_padding_5; /* rr_ctime */
2597 __u64 sx_padding_6; /* rr_size */
2598 __u64 sx_padding_7; /* rr_blocks */
2599 __u32 sx_size;
2600 __u32 sx_flags;
2601 __u32 sx_padding_8; /* rr_flags */
2602 __u32 sx_padding_9; /* rr_padding_2 */
2603 __u32 sx_padding_10; /* rr_padding_3 */
2604 __u32 sx_padding_11; /* rr_padding_4 */
2605};
2606
2607/*
2608 * mdt_rec_reint is the template for all mdt_reint_xxx structures.
2609 * Do NOT change the size of various members, otherwise the value
2610 * will be broken in lustre_swab_mdt_rec_reint().
2611 *
f16192ed 2612 * If you add new members in other mdt_reint_xxx structures and need to use the
d7e09d03
PT
2613 * rr_padding_x fields, then update lustre_swab_mdt_rec_reint() also.
2614 */
2615struct mdt_rec_reint {
2616 __u32 rr_opcode;
2617 __u32 rr_cap;
2618 __u32 rr_fsuid;
2619 __u32 rr_fsuid_h;
2620 __u32 rr_fsgid;
2621 __u32 rr_fsgid_h;
2622 __u32 rr_suppgid1;
2623 __u32 rr_suppgid1_h;
2624 __u32 rr_suppgid2;
2625 __u32 rr_suppgid2_h;
2626 struct lu_fid rr_fid1;
2627 struct lu_fid rr_fid2;
2628 obd_time rr_mtime;
2629 obd_time rr_atime;
2630 obd_time rr_ctime;
2631 __u64 rr_size;
2632 __u64 rr_blocks;
2633 __u32 rr_bias;
2634 __u32 rr_mode;
2635 __u32 rr_flags;
2636 __u32 rr_flags_h;
2637 __u32 rr_umask;
2638 __u32 rr_padding_4; /* also fix lustre_swab_mdt_rec_reint */
2639};
2640
2641extern void lustre_swab_mdt_rec_reint(struct mdt_rec_reint *rr);
2642
2643struct lmv_desc {
2644 __u32 ld_tgt_count; /* how many MDS's */
2645 __u32 ld_active_tgt_count; /* how many active */
2646 __u32 ld_default_stripe_count; /* how many objects are used */
2647 __u32 ld_pattern; /* default MEA_MAGIC_* */
2648 __u64 ld_default_hash_size;
2649 __u64 ld_padding_1; /* also fix lustre_swab_lmv_desc */
2650 __u32 ld_padding_2; /* also fix lustre_swab_lmv_desc */
2651 __u32 ld_qos_maxage; /* in second */
2652 __u32 ld_padding_3; /* also fix lustre_swab_lmv_desc */
2653 __u32 ld_padding_4; /* also fix lustre_swab_lmv_desc */
2654 struct obd_uuid ld_uuid;
2655};
2656
2657extern void lustre_swab_lmv_desc (struct lmv_desc *ld);
2658
2659/* TODO: lmv_stripe_md should contain mds capabilities for all slave fids */
2660struct lmv_stripe_md {
2661 __u32 mea_magic;
2662 __u32 mea_count;
2663 __u32 mea_master;
2664 __u32 mea_padding;
2665 char mea_pool_name[LOV_MAXPOOLNAME];
2666 struct lu_fid mea_ids[0];
2667};
2668
2669extern void lustre_swab_lmv_stripe_md(struct lmv_stripe_md *mea);
2670
2671/* lmv structures */
2672#define MEA_MAGIC_LAST_CHAR 0xb2221ca1
2673#define MEA_MAGIC_ALL_CHARS 0xb222a11c
2674#define MEA_MAGIC_HASH_SEGMENT 0xb222a11b
2675
2676#define MAX_HASH_SIZE_32 0x7fffffffUL
2677#define MAX_HASH_SIZE 0x7fffffffffffffffULL
2678#define MAX_HASH_HIGHEST_BIT 0x1000000000000000ULL
2679
2680enum fld_rpc_opc {
2681 FLD_QUERY = 900,
2682 FLD_LAST_OPC,
2683 FLD_FIRST_OPC = FLD_QUERY
2684};
2685
2686enum seq_rpc_opc {
2687 SEQ_QUERY = 700,
2688 SEQ_LAST_OPC,
2689 SEQ_FIRST_OPC = SEQ_QUERY
2690};
2691
2692enum seq_op {
2693 SEQ_ALLOC_SUPER = 0,
2694 SEQ_ALLOC_META = 1
2695};
2696
2697/*
2698 * LOV data structures
2699 */
2700
2701#define LOV_MAX_UUID_BUFFER_SIZE 8192
2702/* The size of the buffer the lov/mdc reserves for the
2703 * array of UUIDs returned by the MDS. With the current
2704 * protocol, this will limit the max number of OSTs per LOV */
2705
2706#define LOV_DESC_MAGIC 0xB0CCDE5C
081b7265
JH
2707#define LOV_DESC_QOS_MAXAGE_DEFAULT 5 /* Seconds */
2708#define LOV_DESC_STRIPE_SIZE_DEFAULT (1 << LNET_MTU_BITS)
d7e09d03
PT
2709
2710/* LOV settings descriptor (should only contain static info) */
2711struct lov_desc {
2712 __u32 ld_tgt_count; /* how many OBD's */
2713 __u32 ld_active_tgt_count; /* how many active */
2714 __u32 ld_default_stripe_count; /* how many objects are used */
2715 __u32 ld_pattern; /* default PATTERN_RAID0 */
2716 __u64 ld_default_stripe_size; /* in bytes */
2717 __u64 ld_default_stripe_offset; /* in bytes */
2718 __u32 ld_padding_0; /* unused */
2719 __u32 ld_qos_maxage; /* in second */
2720 __u32 ld_padding_1; /* also fix lustre_swab_lov_desc */
2721 __u32 ld_padding_2; /* also fix lustre_swab_lov_desc */
2722 struct obd_uuid ld_uuid;
2723};
2724
2725#define ld_magic ld_active_tgt_count /* for swabbing from llogs */
2726
2727extern void lustre_swab_lov_desc (struct lov_desc *ld);
2728
2729/*
2730 * LDLM requests:
2731 */
2732/* opcodes -- MUST be distinct from OST/MDS opcodes */
2733typedef enum {
2734 LDLM_ENQUEUE = 101,
2735 LDLM_CONVERT = 102,
2736 LDLM_CANCEL = 103,
2737 LDLM_BL_CALLBACK = 104,
2738 LDLM_CP_CALLBACK = 105,
2739 LDLM_GL_CALLBACK = 106,
2740 LDLM_SET_INFO = 107,
2741 LDLM_LAST_OPC
2742} ldlm_cmd_t;
2743#define LDLM_FIRST_OPC LDLM_ENQUEUE
2744
2745#define RES_NAME_SIZE 4
2746struct ldlm_res_id {
2747 __u64 name[RES_NAME_SIZE];
2748};
2749
ce74f92d
AD
2750#define DLDLMRES "["LPX64":"LPX64":"LPX64"]."LPX64i
2751#define PLDLMRES(res) (res)->lr_name.name[0], (res)->lr_name.name[1], \
2752 (res)->lr_name.name[2], (res)->lr_name.name[3]
2753
d7e09d03
PT
2754extern void lustre_swab_ldlm_res_id (struct ldlm_res_id *id);
2755
2756static inline int ldlm_res_eq(const struct ldlm_res_id *res0,
2757 const struct ldlm_res_id *res1)
2758{
2759 return !memcmp(res0, res1, sizeof(*res0));
2760}
2761
2762/* lock types */
2763typedef enum {
2764 LCK_MINMODE = 0,
2765 LCK_EX = 1,
2766 LCK_PW = 2,
2767 LCK_PR = 4,
2768 LCK_CW = 8,
2769 LCK_CR = 16,
2770 LCK_NL = 32,
2771 LCK_GROUP = 64,
2772 LCK_COS = 128,
2773 LCK_MAXMODE
2774} ldlm_mode_t;
2775
2776#define LCK_MODE_NUM 8
2777
2778typedef enum {
2779 LDLM_PLAIN = 10,
2780 LDLM_EXTENT = 11,
2781 LDLM_FLOCK = 12,
2782 LDLM_IBITS = 13,
2783 LDLM_MAX_TYPE
2784} ldlm_type_t;
2785
2786#define LDLM_MIN_TYPE LDLM_PLAIN
2787
2788struct ldlm_extent {
2789 __u64 start;
2790 __u64 end;
2791 __u64 gid;
2792};
2793
2794static inline int ldlm_extent_overlap(struct ldlm_extent *ex1,
2795 struct ldlm_extent *ex2)
2796{
2797 return (ex1->start <= ex2->end) && (ex2->start <= ex1->end);
2798}
2799
2800/* check if @ex1 contains @ex2 */
2801static inline int ldlm_extent_contain(struct ldlm_extent *ex1,
2802 struct ldlm_extent *ex2)
2803{
2804 return (ex1->start <= ex2->start) && (ex1->end >= ex2->end);
2805}
2806
2807struct ldlm_inodebits {
2808 __u64 bits;
2809};
2810
2811struct ldlm_flock_wire {
2812 __u64 lfw_start;
2813 __u64 lfw_end;
2814 __u64 lfw_owner;
2815 __u32 lfw_padding;
2816 __u32 lfw_pid;
2817};
2818
2819/* it's important that the fields of the ldlm_extent structure match
2820 * the first fields of the ldlm_flock structure because there is only
2821 * one ldlm_swab routine to process the ldlm_policy_data_t union. if
2822 * this ever changes we will need to swab the union differently based
2823 * on the resource type. */
2824
2825typedef union {
2826 struct ldlm_extent l_extent;
2827 struct ldlm_flock_wire l_flock;
2828 struct ldlm_inodebits l_inodebits;
2829} ldlm_wire_policy_data_t;
2830
2831extern void lustre_swab_ldlm_policy_data (ldlm_wire_policy_data_t *d);
2832
2833union ldlm_gl_desc {
2834 struct ldlm_gl_lquota_desc lquota_desc;
2835};
2836
2837extern void lustre_swab_gl_desc(union ldlm_gl_desc *);
2838
2839struct ldlm_intent {
2840 __u64 opc;
2841};
2842
2843extern void lustre_swab_ldlm_intent (struct ldlm_intent *i);
2844
2845struct ldlm_resource_desc {
2846 ldlm_type_t lr_type;
2847 __u32 lr_padding; /* also fix lustre_swab_ldlm_resource_desc */
2848 struct ldlm_res_id lr_name;
2849};
2850
2851extern void lustre_swab_ldlm_resource_desc (struct ldlm_resource_desc *r);
2852
2853struct ldlm_lock_desc {
2854 struct ldlm_resource_desc l_resource;
2855 ldlm_mode_t l_req_mode;
2856 ldlm_mode_t l_granted_mode;
2857 ldlm_wire_policy_data_t l_policy_data;
2858};
2859
2860extern void lustre_swab_ldlm_lock_desc (struct ldlm_lock_desc *l);
2861
2862#define LDLM_LOCKREQ_HANDLES 2
2863#define LDLM_ENQUEUE_CANCEL_OFF 1
2864
2865struct ldlm_request {
2866 __u32 lock_flags;
2867 __u32 lock_count;
2868 struct ldlm_lock_desc lock_desc;
2869 struct lustre_handle lock_handle[LDLM_LOCKREQ_HANDLES];
2870};
2871
2872extern void lustre_swab_ldlm_request (struct ldlm_request *rq);
2873
2874/* If LDLM_ENQUEUE, 1 slot is already occupied, 1 is available.
2875 * Otherwise, 2 are available. */
2876#define ldlm_request_bufsize(count,type) \
2877({ \
2878 int _avail = LDLM_LOCKREQ_HANDLES; \
2879 _avail -= (type == LDLM_ENQUEUE ? LDLM_ENQUEUE_CANCEL_OFF : 0); \
2880 sizeof(struct ldlm_request) + \
2881 (count > _avail ? count - _avail : 0) * \
2882 sizeof(struct lustre_handle); \
2883})
2884
2885struct ldlm_reply {
2886 __u32 lock_flags;
2887 __u32 lock_padding; /* also fix lustre_swab_ldlm_reply */
2888 struct ldlm_lock_desc lock_desc;
2889 struct lustre_handle lock_handle;
2890 __u64 lock_policy_res1;
2891 __u64 lock_policy_res2;
2892};
2893
2894extern void lustre_swab_ldlm_reply (struct ldlm_reply *r);
2895
2896#define ldlm_flags_to_wire(flags) ((__u32)(flags))
2897#define ldlm_flags_from_wire(flags) ((__u64)(flags))
2898
2899/*
2900 * Opcodes for mountconf (mgs and mgc)
2901 */
2902typedef enum {
2903 MGS_CONNECT = 250,
2904 MGS_DISCONNECT,
2905 MGS_EXCEPTION, /* node died, etc. */
2906 MGS_TARGET_REG, /* whenever target starts up */
2907 MGS_TARGET_DEL,
2908 MGS_SET_INFO,
2909 MGS_CONFIG_READ,
2910 MGS_LAST_OPC
2911} mgs_cmd_t;
2912#define MGS_FIRST_OPC MGS_CONNECT
2913
2914#define MGS_PARAM_MAXLEN 1024
2915#define KEY_SET_INFO "set_info"
2916
2917struct mgs_send_param {
2918 char mgs_param[MGS_PARAM_MAXLEN];
2919};
2920
2921/* We pass this info to the MGS so it can write config logs */
2922#define MTI_NAME_MAXLEN 64
2923#define MTI_PARAM_MAXLEN 4096
2924#define MTI_NIDS_MAX 32
2925struct mgs_target_info {
2926 __u32 mti_lustre_ver;
2927 __u32 mti_stripe_index;
2928 __u32 mti_config_ver;
2929 __u32 mti_flags;
2930 __u32 mti_nid_count;
2931 __u32 mti_instance; /* Running instance of target */
2932 char mti_fsname[MTI_NAME_MAXLEN];
2933 char mti_svname[MTI_NAME_MAXLEN];
2934 char mti_uuid[sizeof(struct obd_uuid)];
2935 __u64 mti_nids[MTI_NIDS_MAX]; /* host nids (lnet_nid_t)*/
2936 char mti_params[MTI_PARAM_MAXLEN];
2937};
2938extern void lustre_swab_mgs_target_info(struct mgs_target_info *oinfo);
2939
2940struct mgs_nidtbl_entry {
2941 __u64 mne_version; /* table version of this entry */
2942 __u32 mne_instance; /* target instance # */
2943 __u32 mne_index; /* target index */
2944 __u32 mne_length; /* length of this entry - by bytes */
2945 __u8 mne_type; /* target type LDD_F_SV_TYPE_OST/MDT */
2946 __u8 mne_nid_type; /* type of nid(mbz). for ipv6. */
2947 __u8 mne_nid_size; /* size of each NID, by bytes */
2948 __u8 mne_nid_count; /* # of NIDs in buffer */
2949 union {
2950 lnet_nid_t nids[0]; /* variable size buffer for NIDs. */
2951 } u;
2952};
2953extern void lustre_swab_mgs_nidtbl_entry(struct mgs_nidtbl_entry *oinfo);
2954
2955struct mgs_config_body {
2956 char mcb_name[MTI_NAME_MAXLEN]; /* logname */
2957 __u64 mcb_offset; /* next index of config log to request */
2958 __u16 mcb_type; /* type of log: CONFIG_T_[CONFIG|RECOVER] */
2959 __u8 mcb_reserved;
2960 __u8 mcb_bits; /* bits unit size of config log */
2961 __u32 mcb_units; /* # of units for bulk transfer */
2962};
2963extern void lustre_swab_mgs_config_body(struct mgs_config_body *body);
2964
2965struct mgs_config_res {
2966 __u64 mcr_offset; /* index of last config log */
2967 __u64 mcr_size; /* size of the log */
2968};
2969extern void lustre_swab_mgs_config_res(struct mgs_config_res *body);
2970
2971/* Config marker flags (in config log) */
2972#define CM_START 0x01
2973#define CM_END 0x02
2974#define CM_SKIP 0x04
2975#define CM_UPGRADE146 0x08
2976#define CM_EXCLUDE 0x10
2977#define CM_START_SKIP (CM_START | CM_SKIP)
2978
2979struct cfg_marker {
2980 __u32 cm_step; /* aka config version */
2981 __u32 cm_flags;
2982 __u32 cm_vers; /* lustre release version number */
2983 __u32 cm_padding; /* 64 bit align */
2984 obd_time cm_createtime; /*when this record was first created */
2985 obd_time cm_canceltime; /*when this record is no longer valid*/
2986 char cm_tgtname[MTI_NAME_MAXLEN];
2987 char cm_comment[MTI_NAME_MAXLEN];
2988};
2989
2990extern void lustre_swab_cfg_marker(struct cfg_marker *marker,
2991 int swab, int size);
2992
2993/*
2994 * Opcodes for multiple servers.
2995 */
2996
2997typedef enum {
2998 OBD_PING = 400,
2999 OBD_LOG_CANCEL,
3000 OBD_QC_CALLBACK,
3001 OBD_IDX_READ,
3002 OBD_LAST_OPC
3003} obd_cmd_t;
3004#define OBD_FIRST_OPC OBD_PING
3005
3006/* catalog of log objects */
3007
3008/** Identifier for a single log object */
3009struct llog_logid {
3010 struct ost_id lgl_oi;
3011 __u32 lgl_ogen;
3012} __attribute__((packed));
3013
3014/** Records written to the CATALOGS list */
3015#define CATLIST "CATALOGS"
3016struct llog_catid {
3017 struct llog_logid lci_logid;
3018 __u32 lci_padding1;
3019 __u32 lci_padding2;
3020 __u32 lci_padding3;
3021} __attribute__((packed));
3022
3023/* Log data record types - there is no specific reason that these need to
3024 * be related to the RPC opcodes, but no reason not to (may be handy later?)
3025 */
3026#define LLOG_OP_MAGIC 0x10600000
3027#define LLOG_OP_MASK 0xfff00000
3028
3029typedef enum {
3030 LLOG_PAD_MAGIC = LLOG_OP_MAGIC | 0x00000,
3031 OST_SZ_REC = LLOG_OP_MAGIC | 0x00f00,
3032 /* OST_RAID1_REC = LLOG_OP_MAGIC | 0x01000, never used */
3033 MDS_UNLINK_REC = LLOG_OP_MAGIC | 0x10000 | (MDS_REINT << 8) |
3034 REINT_UNLINK, /* obsolete after 2.5.0 */
3035 MDS_UNLINK64_REC = LLOG_OP_MAGIC | 0x90000 | (MDS_REINT << 8) |
3036 REINT_UNLINK,
3037 /* MDS_SETATTR_REC = LLOG_OP_MAGIC | 0x12401, obsolete 1.8.0 */
3038 MDS_SETATTR64_REC = LLOG_OP_MAGIC | 0x90000 | (MDS_REINT << 8) |
3039 REINT_SETATTR,
3040 OBD_CFG_REC = LLOG_OP_MAGIC | 0x20000,
3041 /* PTL_CFG_REC = LLOG_OP_MAGIC | 0x30000, obsolete 1.4.0 */
3042 LLOG_GEN_REC = LLOG_OP_MAGIC | 0x40000,
3043 /* LLOG_JOIN_REC = LLOG_OP_MAGIC | 0x50000, obsolete 1.8.0 */
3044 CHANGELOG_REC = LLOG_OP_MAGIC | 0x60000,
3045 CHANGELOG_USER_REC = LLOG_OP_MAGIC | 0x70000,
99a92265 3046 HSM_AGENT_REC = LLOG_OP_MAGIC | 0x80000,
d7e09d03
PT
3047 LLOG_HDR_MAGIC = LLOG_OP_MAGIC | 0x45539,
3048 LLOG_LOGID_MAGIC = LLOG_OP_MAGIC | 0x4553b,
3049} llog_op_type;
3050
3051#define LLOG_REC_HDR_NEEDS_SWABBING(r) \
3052 (((r)->lrh_type & __swab32(LLOG_OP_MASK)) == __swab32(LLOG_OP_MAGIC))
3053
3054/** Log record header - stored in little endian order.
3055 * Each record must start with this struct, end with a llog_rec_tail,
3056 * and be a multiple of 256 bits in size.
3057 */
3058struct llog_rec_hdr {
3059 __u32 lrh_len;
3060 __u32 lrh_index;
3061 __u32 lrh_type;
3062 __u32 lrh_id;
3063};
3064
3065struct llog_rec_tail {
3066 __u32 lrt_len;
3067 __u32 lrt_index;
3068};
3069
3070/* Where data follow just after header */
3071#define REC_DATA(ptr) \
3072 ((void *)((char *)ptr + sizeof(struct llog_rec_hdr)))
3073
3074#define REC_DATA_LEN(rec) \
3075 (rec->lrh_len - sizeof(struct llog_rec_hdr) - \
3076 sizeof(struct llog_rec_tail))
3077
3078struct llog_logid_rec {
3079 struct llog_rec_hdr lid_hdr;
3080 struct llog_logid lid_id;
3081 __u32 lid_padding1;
3082 __u64 lid_padding2;
3083 __u64 lid_padding3;
3084 struct llog_rec_tail lid_tail;
3085} __attribute__((packed));
3086
3087struct llog_unlink_rec {
3088 struct llog_rec_hdr lur_hdr;
3089 obd_id lur_oid;
3090 obd_count lur_oseq;
3091 obd_count lur_count;
3092 struct llog_rec_tail lur_tail;
3093} __attribute__((packed));
3094
3095struct llog_unlink64_rec {
3096 struct llog_rec_hdr lur_hdr;
3097 struct lu_fid lur_fid;
3098 obd_count lur_count; /* to destroy the lost precreated */
3099 __u32 lur_padding1;
3100 __u64 lur_padding2;
3101 __u64 lur_padding3;
3102 struct llog_rec_tail lur_tail;
3103} __attribute__((packed));
3104
3105struct llog_setattr64_rec {
3106 struct llog_rec_hdr lsr_hdr;
3107 struct ost_id lsr_oi;
3108 __u32 lsr_uid;
3109 __u32 lsr_uid_h;
3110 __u32 lsr_gid;
3111 __u32 lsr_gid_h;
3112 __u64 lsr_padding;
3113 struct llog_rec_tail lsr_tail;
3114} __attribute__((packed));
3115
3116struct llog_size_change_rec {
3117 struct llog_rec_hdr lsc_hdr;
3118 struct ll_fid lsc_fid;
3119 __u32 lsc_ioepoch;
3120 __u32 lsc_padding1;
3121 __u64 lsc_padding2;
3122 __u64 lsc_padding3;
3123 struct llog_rec_tail lsc_tail;
3124} __attribute__((packed));
3125
3126#define CHANGELOG_MAGIC 0xca103000
3127
3128/** \a changelog_rec_type's that can't be masked */
3129#define CHANGELOG_MINMASK (1 << CL_MARK)
3130/** bits covering all \a changelog_rec_type's */
3131#define CHANGELOG_ALLMASK 0XFFFFFFFF
3132/** default \a changelog_rec_type mask */
3133#define CHANGELOG_DEFMASK CHANGELOG_ALLMASK & ~(1 << CL_ATIME | 1 << CL_CLOSE)
3134
3135/* changelog llog name, needed by client replicators */
3136#define CHANGELOG_CATALOG "changelog_catalog"
3137
3138struct changelog_setinfo {
3139 __u64 cs_recno;
3140 __u32 cs_id;
3141} __attribute__((packed));
3142
3143/** changelog record */
3144struct llog_changelog_rec {
3145 struct llog_rec_hdr cr_hdr;
3146 struct changelog_rec cr;
3147 struct llog_rec_tail cr_tail; /**< for_sizezof_only */
3148} __attribute__((packed));
3149
3150struct llog_changelog_ext_rec {
3151 struct llog_rec_hdr cr_hdr;
3152 struct changelog_ext_rec cr;
3153 struct llog_rec_tail cr_tail; /**< for_sizezof_only */
3154} __attribute__((packed));
3155
3156#define CHANGELOG_USER_PREFIX "cl"
3157
3158struct llog_changelog_user_rec {
3159 struct llog_rec_hdr cur_hdr;
3160 __u32 cur_id;
3161 __u32 cur_padding;
3162 __u64 cur_endrec;
3163 struct llog_rec_tail cur_tail;
3164} __attribute__((packed));
3165
99a92265 3166enum agent_req_status {
3167 ARS_WAITING,
3168 ARS_STARTED,
3169 ARS_FAILED,
3170 ARS_CANCELED,
3171 ARS_SUCCEED,
3172};
3173
3174static inline char *agent_req_status2name(enum agent_req_status ars)
3175{
3176 switch (ars) {
3177 case ARS_WAITING:
3178 return "WAITING";
3179 case ARS_STARTED:
3180 return "STARTED";
3181 case ARS_FAILED:
3182 return "FAILED";
3183 case ARS_CANCELED:
3184 return "CANCELED";
3185 case ARS_SUCCEED:
3186 return "SUCCEED";
3187 default:
3188 return "UNKNOWN";
3189 }
3190}
3191
3192static inline bool agent_req_in_final_state(enum agent_req_status ars)
3193{
3194 return ((ars == ARS_SUCCEED) || (ars == ARS_FAILED) ||
3195 (ars == ARS_CANCELED));
3196}
3197
3198struct llog_agent_req_rec {
3199 struct llog_rec_hdr arr_hdr; /**< record header */
3200 __u32 arr_status; /**< status of the request */
3201 /* must match enum
3202 * agent_req_status */
3203 __u32 arr_archive_id; /**< backend archive number */
3204 __u64 arr_flags; /**< req flags */
3205 __u64 arr_compound_id; /**< compound cookie */
3206 __u64 arr_req_create; /**< req. creation time */
3207 __u64 arr_req_change; /**< req. status change time */
3208 struct hsm_action_item arr_hai; /**< req. to the agent */
3209 struct llog_rec_tail arr_tail; /**< record tail for_sizezof_only */
3210} __attribute__((packed));
3211
d7e09d03
PT
3212/* Old llog gen for compatibility */
3213struct llog_gen {
3214 __u64 mnt_cnt;
3215 __u64 conn_cnt;
3216} __attribute__((packed));
3217
3218struct llog_gen_rec {
3219 struct llog_rec_hdr lgr_hdr;
3220 struct llog_gen lgr_gen;
3221 __u64 padding1;
3222 __u64 padding2;
3223 __u64 padding3;
3224 struct llog_rec_tail lgr_tail;
3225};
3226
3227/* On-disk header structure of each log object, stored in little endian order */
3228#define LLOG_CHUNK_SIZE 8192
3229#define LLOG_HEADER_SIZE (96)
3230#define LLOG_BITMAP_BYTES (LLOG_CHUNK_SIZE - LLOG_HEADER_SIZE)
3231
3232#define LLOG_MIN_REC_SIZE (24) /* round(llog_rec_hdr + llog_rec_tail) */
3233
3234/* flags for the logs */
3235enum llog_flag {
3236 LLOG_F_ZAP_WHEN_EMPTY = 0x1,
3237 LLOG_F_IS_CAT = 0x2,
3238 LLOG_F_IS_PLAIN = 0x4,
3239};
3240
3241struct llog_log_hdr {
3242 struct llog_rec_hdr llh_hdr;
3243 obd_time llh_timestamp;
3244 __u32 llh_count;
3245 __u32 llh_bitmap_offset;
3246 __u32 llh_size;
3247 __u32 llh_flags;
3248 __u32 llh_cat_idx;
3249 /* for a catalog the first plain slot is next to it */
3250 struct obd_uuid llh_tgtuuid;
3251 __u32 llh_reserved[LLOG_HEADER_SIZE/sizeof(__u32) - 23];
3252 __u32 llh_bitmap[LLOG_BITMAP_BYTES/sizeof(__u32)];
3253 struct llog_rec_tail llh_tail;
3254} __attribute__((packed));
3255
3256#define LLOG_BITMAP_SIZE(llh) (__u32)((llh->llh_hdr.lrh_len - \
3257 llh->llh_bitmap_offset - \
3258 sizeof(llh->llh_tail)) * 8)
3259
3260/** log cookies are used to reference a specific log file and a record therein */
3261struct llog_cookie {
3262 struct llog_logid lgc_lgl;
3263 __u32 lgc_subsys;
3264 __u32 lgc_index;
3265 __u32 lgc_padding;
3266} __attribute__((packed));
3267
3268/** llog protocol */
3269enum llogd_rpc_ops {
3270 LLOG_ORIGIN_HANDLE_CREATE = 501,
3271 LLOG_ORIGIN_HANDLE_NEXT_BLOCK = 502,
3272 LLOG_ORIGIN_HANDLE_READ_HEADER = 503,
3273 LLOG_ORIGIN_HANDLE_WRITE_REC = 504,
3274 LLOG_ORIGIN_HANDLE_CLOSE = 505,
3275 LLOG_ORIGIN_CONNECT = 506,
3276 LLOG_CATINFO = 507, /* deprecated */
3277 LLOG_ORIGIN_HANDLE_PREV_BLOCK = 508,
3278 LLOG_ORIGIN_HANDLE_DESTROY = 509, /* for destroy llog object*/
3279 LLOG_LAST_OPC,
3280 LLOG_FIRST_OPC = LLOG_ORIGIN_HANDLE_CREATE
3281};
3282
3283struct llogd_body {
3284 struct llog_logid lgd_logid;
3285 __u32 lgd_ctxt_idx;
3286 __u32 lgd_llh_flags;
3287 __u32 lgd_index;
3288 __u32 lgd_saved_index;
3289 __u32 lgd_len;
3290 __u64 lgd_cur_offset;
3291} __attribute__((packed));
3292
3293struct llogd_conn_body {
3294 struct llog_gen lgdc_gen;
3295 struct llog_logid lgdc_logid;
3296 __u32 lgdc_ctxt_idx;
3297} __attribute__((packed));
3298
3299/* Note: 64-bit types are 64-bit aligned in structure */
3300struct obdo {
3301 obd_valid o_valid; /* hot fields in this obdo */
3302 struct ost_id o_oi;
3303 obd_id o_parent_seq;
3304 obd_size o_size; /* o_size-o_blocks == ost_lvb */
3305 obd_time o_mtime;
3306 obd_time o_atime;
3307 obd_time o_ctime;
3308 obd_blocks o_blocks; /* brw: cli sent cached bytes */
3309 obd_size o_grant;
3310
3311 /* 32-bit fields start here: keep an even number of them via padding */
3312 obd_blksize o_blksize; /* optimal IO blocksize */
3313 obd_mode o_mode; /* brw: cli sent cache remain */
3314 obd_uid o_uid;
3315 obd_gid o_gid;
3316 obd_flag o_flags;
3317 obd_count o_nlink; /* brw: checksum */
3318 obd_count o_parent_oid;
3319 obd_count o_misc; /* brw: o_dropped */
3320
3321 __u64 o_ioepoch; /* epoch in ost writes */
3322 __u32 o_stripe_idx; /* holds stripe idx */
3323 __u32 o_parent_ver;
3324 struct lustre_handle o_handle; /* brw: lock handle to prolong
3325 * locks */
3326 struct llog_cookie o_lcookie; /* destroy: unlink cookie from
3327 * MDS */
3328 __u32 o_uid_h;
3329 __u32 o_gid_h;
3330
3331 __u64 o_data_version; /* getattr: sum of iversion for
3332 * each stripe.
3333 * brw: grant space consumed on
3334 * the client for the write */
3335 __u64 o_padding_4;
3336 __u64 o_padding_5;
3337 __u64 o_padding_6;
3338};
3339
3340#define o_dirty o_blocks
3341#define o_undirty o_mode
3342#define o_dropped o_misc
3343#define o_cksum o_nlink
3344#define o_grant_used o_data_version
3345
3b2f75fd 3346static inline void lustre_set_wire_obdo(struct obd_connect_data *ocd,
f3418ce8
AD
3347 struct obdo *wobdo,
3348 const struct obdo *lobdo)
d7e09d03 3349{
f3418ce8 3350 *wobdo = *lobdo;
d7e09d03 3351 wobdo->o_flags &= ~OBD_FL_LOCAL_MASK;
3b2f75fd 3352 if (ocd == NULL)
3353 return;
3354
3355 if (unlikely(!(ocd->ocd_connect_flags & OBD_CONNECT_FID)) &&
6752a53e 3356 fid_seq_is_echo(ostid_seq(&lobdo->o_oi))) {
3b2f75fd 3357 /* Currently OBD_FL_OSTID will only be used when 2.4 echo
3358 * client communicate with pre-2.4 server */
3359 wobdo->o_oi.oi.oi_id = fid_oid(&lobdo->o_oi.oi_fid);
3360 wobdo->o_oi.oi.oi_seq = fid_seq(&lobdo->o_oi.oi_fid);
3361 }
d7e09d03
PT
3362}
3363
3b2f75fd 3364static inline void lustre_get_wire_obdo(struct obd_connect_data *ocd,
f3418ce8
AD
3365 struct obdo *lobdo,
3366 const struct obdo *wobdo)
d7e09d03
PT
3367{
3368 obd_flag local_flags = 0;
3369
3370 if (lobdo->o_valid & OBD_MD_FLFLAGS)
3371 local_flags = lobdo->o_flags & OBD_FL_LOCAL_MASK;
3372
f3418ce8 3373 *lobdo = *wobdo;
d7e09d03 3374 if (local_flags != 0) {
3b2f75fd 3375 lobdo->o_valid |= OBD_MD_FLFLAGS;
3376 lobdo->o_flags &= ~OBD_FL_LOCAL_MASK;
3377 lobdo->o_flags |= local_flags;
3378 }
3379 if (ocd == NULL)
3380 return;
3381
3382 if (unlikely(!(ocd->ocd_connect_flags & OBD_CONNECT_FID)) &&
3383 fid_seq_is_echo(wobdo->o_oi.oi.oi_seq)) {
3384 /* see above */
3385 lobdo->o_oi.oi_fid.f_seq = wobdo->o_oi.oi.oi_seq;
3386 lobdo->o_oi.oi_fid.f_oid = wobdo->o_oi.oi.oi_id;
3387 lobdo->o_oi.oi_fid.f_ver = 0;
d7e09d03
PT
3388 }
3389}
3390
3391extern void lustre_swab_obdo (struct obdo *o);
3392
3393/* request structure for OST's */
3394struct ost_body {
3395 struct obdo oa;
3396};
3397
3398/* Key for FIEMAP to be used in get_info calls */
3399struct ll_fiemap_info_key {
3400 char name[8];
3401 struct obdo oa;
3402 struct ll_user_fiemap fiemap;
3403};
3404
3405extern void lustre_swab_ost_body (struct ost_body *b);
3406extern void lustre_swab_ost_last_id(obd_id *id);
3407extern void lustre_swab_fiemap(struct ll_user_fiemap *fiemap);
3408
3409extern void lustre_swab_lov_user_md_v1(struct lov_user_md_v1 *lum);
3410extern void lustre_swab_lov_user_md_v3(struct lov_user_md_v3 *lum);
3411extern void lustre_swab_lov_user_md_objects(struct lov_user_ost_data *lod,
3412 int stripe_count);
3413extern void lustre_swab_lov_mds_md(struct lov_mds_md *lmm);
3414
3415/* llog_swab.c */
3416extern void lustre_swab_llogd_body (struct llogd_body *d);
3417extern void lustre_swab_llog_hdr (struct llog_log_hdr *h);
3418extern void lustre_swab_llogd_conn_body (struct llogd_conn_body *d);
3419extern void lustre_swab_llog_rec(struct llog_rec_hdr *rec);
ff8c39b2 3420extern void lustre_swab_llog_id(struct llog_logid *lid);
d7e09d03
PT
3421
3422struct lustre_cfg;
3423extern void lustre_swab_lustre_cfg(struct lustre_cfg *lcfg);
3424
3425/* Functions for dumping PTLRPC fields */
3426void dump_rniobuf(struct niobuf_remote *rnb);
3427void dump_ioo(struct obd_ioobj *nb);
3428void dump_obdo(struct obdo *oa);
3429void dump_ost_body(struct ost_body *ob);
3430void dump_rcs(__u32 *rc);
3431
3432#define IDX_INFO_MAGIC 0x3D37CC37
3433
3434/* Index file transfer through the network. The server serializes the index into
3435 * a byte stream which is sent to the client via a bulk transfer */
3436struct idx_info {
3437 __u32 ii_magic;
3438
3439 /* reply: see idx_info_flags below */
3440 __u32 ii_flags;
3441
3442 /* request & reply: number of lu_idxpage (to be) transferred */
3443 __u16 ii_count;
3444 __u16 ii_pad0;
3445
3446 /* request: requested attributes passed down to the iterator API */
3447 __u32 ii_attrs;
3448
3449 /* request & reply: index file identifier (FID) */
3450 struct lu_fid ii_fid;
3451
3452 /* reply: version of the index file before starting to walk the index.
3453 * Please note that the version can be modified at any time during the
3454 * transfer */
3455 __u64 ii_version;
3456
3457 /* request: hash to start with:
3458 * reply: hash of the first entry of the first lu_idxpage and hash
3459 * of the entry to read next if any */
3460 __u64 ii_hash_start;
3461 __u64 ii_hash_end;
3462
3463 /* reply: size of keys in lu_idxpages, minimal one if II_FL_VARKEY is
3464 * set */
3465 __u16 ii_keysize;
3466
3467 /* reply: size of records in lu_idxpages, minimal one if II_FL_VARREC
3468 * is set */
3469 __u16 ii_recsize;
3470
3471 __u32 ii_pad1;
3472 __u64 ii_pad2;
3473 __u64 ii_pad3;
3474};
3475extern void lustre_swab_idx_info(struct idx_info *ii);
3476
3477#define II_END_OFF MDS_DIR_END_OFF /* all entries have been read */
3478
3479/* List of flags used in idx_info::ii_flags */
3480enum idx_info_flags {
3481 II_FL_NOHASH = 1 << 0, /* client doesn't care about hash value */
3482 II_FL_VARKEY = 1 << 1, /* keys can be of variable size */
3483 II_FL_VARREC = 1 << 2, /* records can be of variable size */
3484 II_FL_NONUNQ = 1 << 3, /* index supports non-unique keys */
3485};
3486
3487#define LIP_MAGIC 0x8A6D6B6C
3488
3489/* 4KB (= LU_PAGE_SIZE) container gathering key/record pairs */
3490struct lu_idxpage {
3491 /* 16-byte header */
3492 __u32 lip_magic;
3493 __u16 lip_flags;
3494 __u16 lip_nr; /* number of entries in the container */
3495 __u64 lip_pad0; /* additional padding for future use */
3496
3497 /* key/record pairs are stored in the remaining 4080 bytes.
3498 * depending upon the flags in idx_info::ii_flags, each key/record
3499 * pair might be preceded by:
3500 * - a hash value
3501 * - the key size (II_FL_VARKEY is set)
3502 * - the record size (II_FL_VARREC is set)
3503 *
3504 * For the time being, we only support fixed-size key & record. */
3505 char lip_entries[0];
3506};
3507extern void lustre_swab_lip_header(struct lu_idxpage *lip);
3508
3509#define LIP_HDR_SIZE (offsetof(struct lu_idxpage, lip_entries))
3510
3511/* Gather all possible type associated with a 4KB container */
3512union lu_page {
3513 struct lu_dirpage lp_dir; /* for MDS_READPAGE */
3514 struct lu_idxpage lp_idx; /* for OBD_IDX_READ */
3515 char lp_array[LU_PAGE_SIZE];
3516};
3517
3518/* security opcodes */
3519typedef enum {
3520 SEC_CTX_INIT = 801,
3521 SEC_CTX_INIT_CONT = 802,
3522 SEC_CTX_FINI = 803,
3523 SEC_LAST_OPC,
3524 SEC_FIRST_OPC = SEC_CTX_INIT
3525} sec_cmd_t;
3526
3527/*
3528 * capa related definitions
3529 */
3530#define CAPA_HMAC_MAX_LEN 64
3531#define CAPA_HMAC_KEY_MAX_LEN 56
3532
3533/* NB take care when changing the sequence of elements this struct,
3534 * because the offset info is used in find_capa() */
3535struct lustre_capa {
3536 struct lu_fid lc_fid; /** fid */
3537 __u64 lc_opc; /** operations allowed */
3538 __u64 lc_uid; /** file owner */
3539 __u64 lc_gid; /** file group */
3540 __u32 lc_flags; /** HMAC algorithm & flags */
3541 __u32 lc_keyid; /** key# used for the capability */
3542 __u32 lc_timeout; /** capa timeout value (sec) */
3543 __u32 lc_expiry; /** expiry time (sec) */
3544 __u8 lc_hmac[CAPA_HMAC_MAX_LEN]; /** HMAC */
3545} __attribute__((packed));
3546
3547extern void lustre_swab_lustre_capa(struct lustre_capa *c);
3548
3549/** lustre_capa::lc_opc */
3550enum {
3551 CAPA_OPC_BODY_WRITE = 1<<0, /**< write object data */
3552 CAPA_OPC_BODY_READ = 1<<1, /**< read object data */
3553 CAPA_OPC_INDEX_LOOKUP = 1<<2, /**< lookup object fid */
3554 CAPA_OPC_INDEX_INSERT = 1<<3, /**< insert object fid */
3555 CAPA_OPC_INDEX_DELETE = 1<<4, /**< delete object fid */
3556 CAPA_OPC_OSS_WRITE = 1<<5, /**< write oss object data */
3557 CAPA_OPC_OSS_READ = 1<<6, /**< read oss object data */
3558 CAPA_OPC_OSS_TRUNC = 1<<7, /**< truncate oss object */
3559 CAPA_OPC_OSS_DESTROY = 1<<8, /**< destroy oss object */
3560 CAPA_OPC_META_WRITE = 1<<9, /**< write object meta data */
3561 CAPA_OPC_META_READ = 1<<10, /**< read object meta data */
3562};
3563
3564#define CAPA_OPC_OSS_RW (CAPA_OPC_OSS_READ | CAPA_OPC_OSS_WRITE)
3565#define CAPA_OPC_MDS_ONLY \
3566 (CAPA_OPC_BODY_WRITE | CAPA_OPC_BODY_READ | CAPA_OPC_INDEX_LOOKUP | \
3567 CAPA_OPC_INDEX_INSERT | CAPA_OPC_INDEX_DELETE)
3568#define CAPA_OPC_OSS_ONLY \
3569 (CAPA_OPC_OSS_WRITE | CAPA_OPC_OSS_READ | CAPA_OPC_OSS_TRUNC | \
3570 CAPA_OPC_OSS_DESTROY)
3571#define CAPA_OPC_MDS_DEFAULT ~CAPA_OPC_OSS_ONLY
3572#define CAPA_OPC_OSS_DEFAULT ~(CAPA_OPC_MDS_ONLY | CAPA_OPC_OSS_ONLY)
3573
3574/* MDS capability covers object capability for operations of body r/w
3575 * (dir readpage/sendpage), index lookup/insert/delete and meta data r/w,
3576 * while OSS capability only covers object capability for operations of
3577 * oss data(file content) r/w/truncate.
3578 */
3579static inline int capa_for_mds(struct lustre_capa *c)
3580{
3581 return (c->lc_opc & CAPA_OPC_INDEX_LOOKUP) != 0;
3582}
3583
3584static inline int capa_for_oss(struct lustre_capa *c)
3585{
3586 return (c->lc_opc & CAPA_OPC_INDEX_LOOKUP) == 0;
3587}
3588
3589/* lustre_capa::lc_hmac_alg */
3590enum {
3591 CAPA_HMAC_ALG_SHA1 = 1, /**< sha1 algorithm */
3592 CAPA_HMAC_ALG_MAX,
3593};
3594
3595#define CAPA_FL_MASK 0x00ffffff
3596#define CAPA_HMAC_ALG_MASK 0xff000000
3597
3598struct lustre_capa_key {
3599 __u64 lk_seq; /**< mds# */
3600 __u32 lk_keyid; /**< key# */
3601 __u32 lk_padding;
3602 __u8 lk_key[CAPA_HMAC_KEY_MAX_LEN]; /**< key */
3603} __attribute__((packed));
3604
3605extern void lustre_swab_lustre_capa_key(struct lustre_capa_key *k);
3606
3607/** The link ea holds 1 \a link_ea_entry for each hardlink */
3608#define LINK_EA_MAGIC 0x11EAF1DFUL
3609struct link_ea_header {
3610 __u32 leh_magic;
3611 __u32 leh_reccount;
3612 __u64 leh_len; /* total size */
3613 /* future use */
3614 __u32 padding1;
3615 __u32 padding2;
3616};
3617
3618/** Hardlink data is name and parent fid.
3619 * Stored in this crazy struct for maximum packing and endian-neutrality
3620 */
3621struct link_ea_entry {
3622 /** __u16 stored big-endian, unaligned */
3623 unsigned char lee_reclen[2];
3624 unsigned char lee_parent_fid[sizeof(struct lu_fid)];
3625 char lee_name[0];
3626}__attribute__((packed));
3627
3628/** fid2path request/reply structure */
3629struct getinfo_fid2path {
3630 struct lu_fid gf_fid;
3631 __u64 gf_recno;
3632 __u32 gf_linkno;
3633 __u32 gf_pathlen;
3634 char gf_path[0];
3635} __attribute__((packed));
3636
3637void lustre_swab_fid2path (struct getinfo_fid2path *gf);
3638
3639enum {
3640 LAYOUT_INTENT_ACCESS = 0,
3641 LAYOUT_INTENT_READ = 1,
3642 LAYOUT_INTENT_WRITE = 2,
3643 LAYOUT_INTENT_GLIMPSE = 3,
3644 LAYOUT_INTENT_TRUNC = 4,
3645 LAYOUT_INTENT_RELEASE = 5,
3646 LAYOUT_INTENT_RESTORE = 6
3647};
3648
3649/* enqueue layout lock with intent */
3650struct layout_intent {
3651 __u32 li_opc; /* intent operation for enqueue, read, write etc */
3652 __u32 li_flags;
3653 __u64 li_start;
3654 __u64 li_end;
3655};
3656
3657void lustre_swab_layout_intent(struct layout_intent *li);
3658
3659/**
3660 * On the wire version of hsm_progress structure.
3661 *
3662 * Contains the userspace hsm_progress and some internal fields.
3663 */
3664struct hsm_progress_kernel {
3665 /* Field taken from struct hsm_progress */
3666 lustre_fid hpk_fid;
3667 __u64 hpk_cookie;
3668 struct hsm_extent hpk_extent;
3669 __u16 hpk_flags;
3670 __u16 hpk_errval; /* positive val */
3671 __u32 hpk_padding1;
3672 /* Additional fields */
3673 __u64 hpk_data_version;
3674 __u64 hpk_padding2;
3675} __attribute__((packed));
3676
3677extern void lustre_swab_hsm_user_state(struct hsm_user_state *hus);
3678extern void lustre_swab_hsm_current_action(struct hsm_current_action *action);
3679extern void lustre_swab_hsm_progress_kernel(struct hsm_progress_kernel *hpk);
3680extern void lustre_swab_hsm_user_state(struct hsm_user_state *hus);
3681extern void lustre_swab_hsm_user_item(struct hsm_user_item *hui);
3682extern void lustre_swab_hsm_request(struct hsm_request *hr);
3683
3684/**
3685 * These are object update opcode under UPDATE_OBJ, which is currently
3686 * being used by cross-ref operations between MDT.
3687 *
3688 * During the cross-ref operation, the Master MDT, which the client send the
3689 * request to, will disassembly the operation into object updates, then OSP
3690 * will send these updates to the remote MDT to be executed.
3691 *
3692 * Update request format
3693 * magic: UPDATE_BUFFER_MAGIC_V1
3694 * Count: How many updates in the req.
3695 * bufs[0] : following are packets of object.
3696 * update[0]:
3697 * type: object_update_op, the op code of update
3698 * fid: The object fid of the update.
3699 * lens/bufs: other parameters of the update.
3700 * update[1]:
3701 * type: object_update_op, the op code of update
3702 * fid: The object fid of the update.
3703 * lens/bufs: other parameters of the update.
3704 * ..........
3705 * update[7]: type: object_update_op, the op code of update
3706 * fid: The object fid of the update.
3707 * lens/bufs: other parameters of the update.
3708 * Current 8 maxim updates per object update request.
3709 *
3710 *******************************************************************
3711 * update reply format:
3712 *
3713 * ur_version: UPDATE_REPLY_V1
3714 * ur_count: The count of the reply, which is usually equal
3715 * to the number of updates in the request.
3716 * ur_lens: The reply lengths of each object update.
3717 *
3718 * replies: 1st update reply [4bytes_ret: other body]
3719 * 2nd update reply [4bytes_ret: other body]
3720 * .....
3721 * nth update reply [4bytes_ret: other body]
3722 *
3723 * For each reply of the update, the format would be
3724 * result(4 bytes):Other stuff
3725 */
3726
3727#define UPDATE_MAX_OPS 10
3728#define UPDATE_BUFFER_MAGIC_V1 0xBDDE0001
3729#define UPDATE_BUFFER_MAGIC UPDATE_BUFFER_MAGIC_V1
3730#define UPDATE_BUF_COUNT 8
3731enum object_update_op {
3732 OBJ_CREATE = 1,
3733 OBJ_DESTROY = 2,
3734 OBJ_REF_ADD = 3,
3735 OBJ_REF_DEL = 4,
3736 OBJ_ATTR_SET = 5,
3737 OBJ_ATTR_GET = 6,
3738 OBJ_XATTR_SET = 7,
3739 OBJ_XATTR_GET = 8,
3740 OBJ_INDEX_LOOKUP = 9,
3741 OBJ_INDEX_INSERT = 10,
3742 OBJ_INDEX_DELETE = 11,
3743 OBJ_LAST
3744};
3745
3746struct update {
3747 __u32 u_type;
3748 __u32 u_batchid;
3749 struct lu_fid u_fid;
3750 __u32 u_lens[UPDATE_BUF_COUNT];
3751 __u32 u_bufs[0];
3752};
3753
3754struct update_buf {
3755 __u32 ub_magic;
3756 __u32 ub_count;
3757 __u32 ub_bufs[0];
3758};
3759
3760#define UPDATE_REPLY_V1 0x00BD0001
3761struct update_reply {
3762 __u32 ur_version;
3763 __u32 ur_count;
3764 __u32 ur_lens[0];
3765};
3766
3767void lustre_swab_update_buf(struct update_buf *ub);
3768void lustre_swab_update_reply_buf(struct update_reply *ur);
3769
3770/** layout swap request structure
3771 * fid1 and fid2 are in mdt_body
3772 */
3773struct mdc_swap_layouts {
3774 __u64 msl_flags;
3775} __packed;
3776
3777void lustre_swab_swap_layouts(struct mdc_swap_layouts *msl);
3778
48d23e61
JX
3779struct close_data {
3780 struct lustre_handle cd_handle;
3781 struct lu_fid cd_fid;
3782 __u64 cd_data_version;
3783 __u64 cd_reserved[8];
3784};
3785
3786void lustre_swab_close_data(struct close_data *data);
3787
d7e09d03
PT
3788#endif
3789/** @} lustreidl */
This page took 0.367161 seconds and 5 git commands to generate.