staging: add Lustre file system client support
[deliverable/linux.git] / drivers / staging / lustre / lustre / include / lustre_net.h
CommitLineData
d7e09d03
PT
1/*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19 *
20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21 * CA 95054 USA or visit www.sun.com if you need additional information or
22 * have any questions.
23 *
24 * GPL HEADER END
25 */
26/*
27 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
28 * Use is subject to license terms.
29 *
30 * Copyright (c) 2010, 2012, Intel Corporation.
31 */
32/*
33 * This file is part of Lustre, http://www.lustre.org/
34 * Lustre is a trademark of Sun Microsystems, Inc.
35 */
36/** \defgroup PtlRPC Portal RPC and networking module.
37 *
38 * PortalRPC is the layer used by rest of lustre code to achieve network
39 * communications: establish connections with corresponding export and import
40 * states, listen for a service, send and receive RPCs.
41 * PortalRPC also includes base recovery framework: packet resending and
42 * replaying, reconnections, pinger.
43 *
44 * PortalRPC utilizes LNet as its transport layer.
45 *
46 * @{
47 */
48
49
50#ifndef _LUSTRE_NET_H
51#define _LUSTRE_NET_H
52
53/** \defgroup net net
54 *
55 * @{
56 */
57
58#include <linux/lustre_net.h>
59
60#include <linux/libcfs/libcfs.h>
61// #include <obd.h>
62#include <linux/lnet/lnet.h>
63#include <lustre/lustre_idl.h>
64#include <lustre_ha.h>
65#include <lustre_sec.h>
66#include <lustre_import.h>
67#include <lprocfs_status.h>
68#include <lu_object.h>
69#include <lustre_req_layout.h>
70
71#include <obd_support.h>
72#include <lustre_ver.h>
73
74/* MD flags we _always_ use */
75#define PTLRPC_MD_OPTIONS 0
76
77/**
78 * Max # of bulk operations in one request.
79 * In order for the client and server to properly negotiate the maximum
80 * possible transfer size, PTLRPC_BULK_OPS_COUNT must be a power-of-two
81 * value. The client is free to limit the actual RPC size for any bulk
82 * transfer via cl_max_pages_per_rpc to some non-power-of-two value. */
83#define PTLRPC_BULK_OPS_BITS 2
84#define PTLRPC_BULK_OPS_COUNT (1U << PTLRPC_BULK_OPS_BITS)
85/**
86 * PTLRPC_BULK_OPS_MASK is for the convenience of the client only, and
87 * should not be used on the server at all. Otherwise, it imposes a
88 * protocol limitation on the maximum RPC size that can be used by any
89 * RPC sent to that server in the future. Instead, the server should
90 * use the negotiated per-client ocd_brw_size to determine the bulk
91 * RPC count. */
92#define PTLRPC_BULK_OPS_MASK (~((__u64)PTLRPC_BULK_OPS_COUNT - 1))
93
94/**
95 * Define maxima for bulk I/O.
96 *
97 * A single PTLRPC BRW request is sent via up to PTLRPC_BULK_OPS_COUNT
98 * of LNET_MTU sized RDMA transfers. Clients and servers negotiate the
99 * currently supported maximum between peers at connect via ocd_brw_size.
100 */
101#define PTLRPC_MAX_BRW_BITS (LNET_MTU_BITS + PTLRPC_BULK_OPS_BITS)
102#define PTLRPC_MAX_BRW_SIZE (1 << PTLRPC_MAX_BRW_BITS)
103#define PTLRPC_MAX_BRW_PAGES (PTLRPC_MAX_BRW_SIZE >> PAGE_CACHE_SHIFT)
104
105#define ONE_MB_BRW_SIZE (1 << LNET_MTU_BITS)
106#define MD_MAX_BRW_SIZE (1 << LNET_MTU_BITS)
107#define MD_MAX_BRW_PAGES (MD_MAX_BRW_SIZE >> PAGE_CACHE_SHIFT)
108#define DT_MAX_BRW_SIZE PTLRPC_MAX_BRW_SIZE
109#define DT_MAX_BRW_PAGES (DT_MAX_BRW_SIZE >> PAGE_CACHE_SHIFT)
110#define OFD_MAX_BRW_SIZE (1 << LNET_MTU_BITS)
111
112/* When PAGE_SIZE is a constant, we can check our arithmetic here with cpp! */
113# if ((PTLRPC_MAX_BRW_PAGES & (PTLRPC_MAX_BRW_PAGES - 1)) != 0)
114# error "PTLRPC_MAX_BRW_PAGES isn't a power of two"
115# endif
116# if (PTLRPC_MAX_BRW_SIZE != (PTLRPC_MAX_BRW_PAGES * PAGE_CACHE_SIZE))
117# error "PTLRPC_MAX_BRW_SIZE isn't PTLRPC_MAX_BRW_PAGES * PAGE_CACHE_SIZE"
118# endif
119# if (PTLRPC_MAX_BRW_SIZE > LNET_MTU * PTLRPC_BULK_OPS_COUNT)
120# error "PTLRPC_MAX_BRW_SIZE too big"
121# endif
122# if (PTLRPC_MAX_BRW_PAGES > LNET_MAX_IOV * PTLRPC_BULK_OPS_COUNT)
123# error "PTLRPC_MAX_BRW_PAGES too big"
124# endif
125
126#define PTLRPC_NTHRS_INIT 2
127
128/**
129 * Buffer Constants
130 *
131 * Constants determine how memory is used to buffer incoming service requests.
132 *
133 * ?_NBUFS # buffers to allocate when growing the pool
134 * ?_BUFSIZE # bytes in a single request buffer
135 * ?_MAXREQSIZE # maximum request service will receive
136 *
137 * When fewer than ?_NBUFS/2 buffers are posted for receive, another chunk
138 * of ?_NBUFS is added to the pool.
139 *
140 * Messages larger than ?_MAXREQSIZE are dropped. Request buffers are
141 * considered full when less than ?_MAXREQSIZE is left in them.
142 */
143/**
144 * Thread Constants
145 *
146 * Constants determine how threads are created for ptlrpc service.
147 *
148 * ?_NTHRS_INIT # threads to create for each service partition on
149 * initializing. If it's non-affinity service and
150 * there is only one partition, it's the overall #
151 * threads for the service while initializing.
152 * ?_NTHRS_BASE # threads should be created at least for each
153 * ptlrpc partition to keep the service healthy.
154 * It's the low-water mark of threads upper-limit
155 * for each partition.
156 * ?_THR_FACTOR # threads can be added on threads upper-limit for
157 * each CPU core. This factor is only for reference,
158 * we might decrease value of factor if number of cores
159 * per CPT is above a limit.
160 * ?_NTHRS_MAX # overall threads can be created for a service,
161 * it's a soft limit because if service is running
162 * on machine with hundreds of cores and tens of
163 * CPU partitions, we need to guarantee each partition
164 * has ?_NTHRS_BASE threads, which means total threads
165 * will be ?_NTHRS_BASE * number_of_cpts which can
166 * exceed ?_NTHRS_MAX.
167 *
168 * Examples
169 *
170 * #define MDS_NTHRS_INIT 2
171 * #define MDS_NTHRS_BASE 64
172 * #define MDS_NTHRS_FACTOR 8
173 * #define MDS_NTHRS_MAX 1024
174 *
175 * Example 1):
176 * ---------------------------------------------------------------------
177 * Server(A) has 16 cores, user configured it to 4 partitions so each
178 * partition has 4 cores, then actual number of service threads on each
179 * partition is:
180 * MDS_NTHRS_BASE(64) + cores(4) * MDS_NTHRS_FACTOR(8) = 96
181 *
182 * Total number of threads for the service is:
183 * 96 * partitions(4) = 384
184 *
185 * Example 2):
186 * ---------------------------------------------------------------------
187 * Server(B) has 32 cores, user configured it to 4 partitions so each
188 * partition has 8 cores, then actual number of service threads on each
189 * partition is:
190 * MDS_NTHRS_BASE(64) + cores(8) * MDS_NTHRS_FACTOR(8) = 128
191 *
192 * Total number of threads for the service is:
193 * 128 * partitions(4) = 512
194 *
195 * Example 3):
196 * ---------------------------------------------------------------------
197 * Server(B) has 96 cores, user configured it to 8 partitions so each
198 * partition has 12 cores, then actual number of service threads on each
199 * partition is:
200 * MDS_NTHRS_BASE(64) + cores(12) * MDS_NTHRS_FACTOR(8) = 160
201 *
202 * Total number of threads for the service is:
203 * 160 * partitions(8) = 1280
204 *
205 * However, it's above the soft limit MDS_NTHRS_MAX, so we choose this number
206 * as upper limit of threads number for each partition:
207 * MDS_NTHRS_MAX(1024) / partitions(8) = 128
208 *
209 * Example 4):
210 * ---------------------------------------------------------------------
211 * Server(C) have a thousand of cores and user configured it to 32 partitions
212 * MDS_NTHRS_BASE(64) * 32 = 2048
213 *
214 * which is already above soft limit MDS_NTHRS_MAX(1024), but we still need
215 * to guarantee that each partition has at least MDS_NTHRS_BASE(64) threads
216 * to keep service healthy, so total number of threads will just be 2048.
217 *
218 * NB: we don't suggest to choose server with that many cores because backend
219 * filesystem itself, buffer cache, or underlying network stack might
220 * have some SMP scalability issues at that large scale.
221 *
222 * If user already has a fat machine with hundreds or thousands of cores,
223 * there are two choices for configuration:
224 * a) create CPU table from subset of all CPUs and run Lustre on
225 * top of this subset
226 * b) bind service threads on a few partitions, see modparameters of
227 * MDS and OSS for details
228*
229 * NB: these calculations (and examples below) are simplified to help
230 * understanding, the real implementation is a little more complex,
231 * please see ptlrpc_server_nthreads_check() for details.
232 *
233 */
234
235 /*
236 * LDLM threads constants:
237 *
238 * Given 8 as factor and 24 as base threads number
239 *
240 * example 1)
241 * On 4-core machine we will have 24 + 8 * 4 = 56 threads.
242 *
243 * example 2)
244 * On 8-core machine with 2 partitions we will have 24 + 4 * 8 = 56
245 * threads for each partition and total threads number will be 112.
246 *
247 * example 3)
248 * On 64-core machine with 8 partitions we will need LDLM_NTHRS_BASE(24)
249 * threads for each partition to keep service healthy, so total threads
250 * number should be 24 * 8 = 192.
251 *
252 * So with these constants, threads number will be at the similar level
253 * of old versions, unless target machine has over a hundred cores
254 */
255#define LDLM_THR_FACTOR 8
256#define LDLM_NTHRS_INIT PTLRPC_NTHRS_INIT
257#define LDLM_NTHRS_BASE 24
258#define LDLM_NTHRS_MAX (num_online_cpus() == 1 ? 64 : 128)
259
260#define LDLM_BL_THREADS LDLM_NTHRS_AUTO_INIT
261#define LDLM_CLIENT_NBUFS 1
262#define LDLM_SERVER_NBUFS 64
263#define LDLM_BUFSIZE (8 * 1024)
264#define LDLM_MAXREQSIZE (5 * 1024)
265#define LDLM_MAXREPSIZE (1024)
266
267 /*
268 * MDS threads constants:
269 *
270 * Please see examples in "Thread Constants", MDS threads number will be at
271 * the comparable level of old versions, unless the server has many cores.
272 */
273#ifndef MDS_MAX_THREADS
274#define MDS_MAX_THREADS 1024
275#define MDS_MAX_OTHR_THREADS 256
276
277#else /* MDS_MAX_THREADS */
278#if MDS_MAX_THREADS < PTLRPC_NTHRS_INIT
279#undef MDS_MAX_THREADS
280#define MDS_MAX_THREADS PTLRPC_NTHRS_INIT
281#endif
282#define MDS_MAX_OTHR_THREADS max(PTLRPC_NTHRS_INIT, MDS_MAX_THREADS / 2)
283#endif
284
285/* default service */
286#define MDS_THR_FACTOR 8
287#define MDS_NTHRS_INIT PTLRPC_NTHRS_INIT
288#define MDS_NTHRS_MAX MDS_MAX_THREADS
289#define MDS_NTHRS_BASE min(64, MDS_NTHRS_MAX)
290
291/* read-page service */
292#define MDS_RDPG_THR_FACTOR 4
293#define MDS_RDPG_NTHRS_INIT PTLRPC_NTHRS_INIT
294#define MDS_RDPG_NTHRS_MAX MDS_MAX_OTHR_THREADS
295#define MDS_RDPG_NTHRS_BASE min(48, MDS_RDPG_NTHRS_MAX)
296
297/* these should be removed when we remove setattr service in the future */
298#define MDS_SETA_THR_FACTOR 4
299#define MDS_SETA_NTHRS_INIT PTLRPC_NTHRS_INIT
300#define MDS_SETA_NTHRS_MAX MDS_MAX_OTHR_THREADS
301#define MDS_SETA_NTHRS_BASE min(48, MDS_SETA_NTHRS_MAX)
302
303/* non-affinity threads */
304#define MDS_OTHR_NTHRS_INIT PTLRPC_NTHRS_INIT
305#define MDS_OTHR_NTHRS_MAX MDS_MAX_OTHR_THREADS
306
307#define MDS_NBUFS 64
308
309/**
310 * Assume file name length = FNAME_MAX = 256 (true for ext3).
311 * path name length = PATH_MAX = 4096
312 * LOV MD size max = EA_MAX = 24 * 2000
313 * (NB: 24 is size of lov_ost_data)
314 * LOV LOGCOOKIE size max = 32 * 2000
315 * (NB: 32 is size of llog_cookie)
316 * symlink: FNAME_MAX + PATH_MAX <- largest
317 * link: FNAME_MAX + PATH_MAX (mds_rec_link < mds_rec_create)
318 * rename: FNAME_MAX + FNAME_MAX
319 * open: FNAME_MAX + EA_MAX
320 *
321 * MDS_MAXREQSIZE ~= 4736 bytes =
322 * lustre_msg + ldlm_request + mdt_body + mds_rec_create + FNAME_MAX + PATH_MAX
323 * MDS_MAXREPSIZE ~= 8300 bytes = lustre_msg + llog_header
324 *
325 * Realistic size is about 512 bytes (20 character name + 128 char symlink),
326 * except in the open case where there are a large number of OSTs in a LOV.
327 */
328#define MDS_MAXREQSIZE (5 * 1024) /* >= 4736 */
329#define MDS_MAXREPSIZE (9 * 1024) /* >= 8300 */
330
331/**
332 * MDS incoming request with LOV EA
333 * 24 = sizeof(struct lov_ost_data), i.e: replay of opencreate
334 */
335#define MDS_LOV_MAXREQSIZE max(MDS_MAXREQSIZE, \
336 362 + LOV_MAX_STRIPE_COUNT * 24)
337/**
338 * MDS outgoing reply with LOV EA
339 *
340 * NB: max reply size Lustre 2.4+ client can get from old MDS is:
341 * LOV_MAX_STRIPE_COUNT * (llog_cookie + lov_ost_data) + extra bytes
342 *
343 * but 2.4 or later MDS will never send reply with llog_cookie to any
344 * version client. This macro is defined for server side reply buffer size.
345 */
346#define MDS_LOV_MAXREPSIZE MDS_LOV_MAXREQSIZE
347
348/**
349 * This is the size of a maximum REINT_SETXATTR request:
350 *
351 * lustre_msg 56 (32 + 4 x 5 + 4)
352 * ptlrpc_body 184
353 * mdt_rec_setxattr 136
354 * lustre_capa 120
355 * name 256 (XATTR_NAME_MAX)
356 * value 65536 (XATTR_SIZE_MAX)
357 */
358#define MDS_EA_MAXREQSIZE 66288
359
360/**
361 * These are the maximum request and reply sizes (rounded up to 1 KB
362 * boundaries) for the "regular" MDS_REQUEST_PORTAL and MDS_REPLY_PORTAL.
363 */
364#define MDS_REG_MAXREQSIZE (((max(MDS_EA_MAXREQSIZE, \
365 MDS_LOV_MAXREQSIZE) + 1023) >> 10) << 10)
366#define MDS_REG_MAXREPSIZE MDS_REG_MAXREQSIZE
367
368/**
369 * The update request includes all of updates from the create, which might
370 * include linkea (4K maxim), together with other updates, we set it to 9K:
371 * lustre_msg + ptlrpc_body + UPDATE_BUF_SIZE (8K)
372 */
373#define MDS_OUT_MAXREQSIZE (9 * 1024)
374#define MDS_OUT_MAXREPSIZE MDS_MAXREPSIZE
375
376/** MDS_BUFSIZE = max_reqsize (w/o LOV EA) + max sptlrpc payload size */
377#define MDS_BUFSIZE max(MDS_MAXREQSIZE + SPTLRPC_MAX_PAYLOAD, \
378 8 * 1024)
379
380/**
381 * MDS_REG_BUFSIZE should at least be MDS_REG_MAXREQSIZE + SPTLRPC_MAX_PAYLOAD.
382 * However, we need to allocate a much larger buffer for it because LNet
383 * requires each MD(rqbd) has at least MDS_REQ_MAXREQSIZE bytes left to avoid
384 * dropping of maximum-sized incoming request. So if MDS_REG_BUFSIZE is only a
385 * little larger than MDS_REG_MAXREQSIZE, then it can only fit in one request
386 * even there are about MDS_REG_MAX_REQSIZE bytes left in a rqbd, and memory
387 * utilization is very low.
388 *
389 * In the meanwhile, size of rqbd can't be too large, because rqbd can't be
390 * reused until all requests fit in it have been processed and released,
391 * which means one long blocked request can prevent the rqbd be reused.
392 * Now we set request buffer size to 160 KB, so even each rqbd is unlinked
393 * from LNet with unused 65 KB, buffer utilization will be about 59%.
394 * Please check LU-2432 for details.
395 */
396#define MDS_REG_BUFSIZE max(MDS_REG_MAXREQSIZE + SPTLRPC_MAX_PAYLOAD, \
397 160 * 1024)
398
399/**
400 * MDS_OUT_BUFSIZE = max_out_reqsize + max sptlrpc payload (~1K) which is
401 * about 10K, for the same reason as MDS_REG_BUFSIZE, we also give some
402 * extra bytes to each request buffer to improve buffer utilization rate.
403 */
404#define MDS_OUT_BUFSIZE max(MDS_OUT_MAXREQSIZE + SPTLRPC_MAX_PAYLOAD, \
405 24 * 1024)
406
407/** FLD_MAXREQSIZE == lustre_msg + __u32 padding + ptlrpc_body + opc */
408#define FLD_MAXREQSIZE (160)
409
410/** FLD_MAXREPSIZE == lustre_msg + ptlrpc_body */
411#define FLD_MAXREPSIZE (152)
412#define FLD_BUFSIZE (1 << 12)
413
414/**
415 * SEQ_MAXREQSIZE == lustre_msg + __u32 padding + ptlrpc_body + opc + lu_range +
416 * __u32 padding */
417#define SEQ_MAXREQSIZE (160)
418
419/** SEQ_MAXREPSIZE == lustre_msg + ptlrpc_body + lu_range */
420#define SEQ_MAXREPSIZE (152)
421#define SEQ_BUFSIZE (1 << 12)
422
423/** MGS threads must be >= 3, see bug 22458 comment #28 */
424#define MGS_NTHRS_INIT (PTLRPC_NTHRS_INIT + 1)
425#define MGS_NTHRS_MAX 32
426
427#define MGS_NBUFS 64
428#define MGS_BUFSIZE (8 * 1024)
429#define MGS_MAXREQSIZE (7 * 1024)
430#define MGS_MAXREPSIZE (9 * 1024)
431
432 /*
433 * OSS threads constants:
434 *
435 * Given 8 as factor and 64 as base threads number
436 *
437 * example 1):
438 * On 8-core server configured to 2 partitions, we will have
439 * 64 + 8 * 4 = 96 threads for each partition, 192 total threads.
440 *
441 * example 2):
442 * On 32-core machine configured to 4 partitions, we will have
443 * 64 + 8 * 8 = 112 threads for each partition, so total threads number
444 * will be 112 * 4 = 448.
445 *
446 * example 3):
447 * On 64-core machine configured to 4 partitions, we will have
448 * 64 + 16 * 8 = 192 threads for each partition, so total threads number
449 * will be 192 * 4 = 768 which is above limit OSS_NTHRS_MAX(512), so we
450 * cut off the value to OSS_NTHRS_MAX(512) / 4 which is 128 threads
451 * for each partition.
452 *
453 * So we can see that with these constants, threads number wil be at the
454 * similar level of old versions, unless the server has many cores.
455 */
456 /* depress threads factor for VM with small memory size */
457#define OSS_THR_FACTOR min_t(int, 8, \
458 NUM_CACHEPAGES >> (28 - PAGE_CACHE_SHIFT))
459#define OSS_NTHRS_INIT (PTLRPC_NTHRS_INIT + 1)
460#define OSS_NTHRS_BASE 64
461#define OSS_NTHRS_MAX 512
462
463/* threads for handling "create" request */
464#define OSS_CR_THR_FACTOR 1
465#define OSS_CR_NTHRS_INIT PTLRPC_NTHRS_INIT
466#define OSS_CR_NTHRS_BASE 8
467#define OSS_CR_NTHRS_MAX 64
468
469/**
470 * OST_IO_MAXREQSIZE ~=
471 * lustre_msg + ptlrpc_body + obdo + obd_ioobj +
472 * DT_MAX_BRW_PAGES * niobuf_remote
473 *
474 * - single object with 16 pages is 512 bytes
475 * - OST_IO_MAXREQSIZE must be at least 1 page of cookies plus some spillover
476 * - Must be a multiple of 1024
477 * - actual size is about 18K
478 */
479#define _OST_MAXREQSIZE_SUM (sizeof(struct lustre_msg) + \
480 sizeof(struct ptlrpc_body) + \
481 sizeof(struct obdo) + \
482 sizeof(struct obd_ioobj) + \
483 sizeof(struct niobuf_remote) * DT_MAX_BRW_PAGES)
484/**
485 * FIEMAP request can be 4K+ for now
486 */
487#define OST_MAXREQSIZE (5 * 1024)
488#define OST_IO_MAXREQSIZE max_t(int, OST_MAXREQSIZE, \
489 (((_OST_MAXREQSIZE_SUM - 1) | (1024 - 1)) + 1))
490
491#define OST_MAXREPSIZE (9 * 1024)
492#define OST_IO_MAXREPSIZE OST_MAXREPSIZE
493
494#define OST_NBUFS 64
495/** OST_BUFSIZE = max_reqsize + max sptlrpc payload size */
496#define OST_BUFSIZE max_t(int, OST_MAXREQSIZE + 1024, 16 * 1024)
497/**
498 * OST_IO_MAXREQSIZE is 18K, giving extra 46K can increase buffer utilization
499 * rate of request buffer, please check comment of MDS_LOV_BUFSIZE for details.
500 */
501#define OST_IO_BUFSIZE max_t(int, OST_IO_MAXREQSIZE + 1024, 64 * 1024)
502
503/* Macro to hide a typecast. */
504#define ptlrpc_req_async_args(req) ((void *)&req->rq_async_args)
505
506/**
507 * Structure to single define portal connection.
508 */
509struct ptlrpc_connection {
510 /** linkage for connections hash table */
511 struct hlist_node c_hash;
512 /** Our own lnet nid for this connection */
513 lnet_nid_t c_self;
514 /** Remote side nid for this connection */
515 lnet_process_id_t c_peer;
516 /** UUID of the other side */
517 struct obd_uuid c_remote_uuid;
518 /** reference counter for this connection */
519 atomic_t c_refcount;
520};
521
522/** Client definition for PortalRPC */
523struct ptlrpc_client {
524 /** What lnet portal does this client send messages to by default */
525 __u32 cli_request_portal;
526 /** What portal do we expect replies on */
527 __u32 cli_reply_portal;
528 /** Name of the client */
529 char *cli_name;
530};
531
532/** state flags of requests */
533/* XXX only ones left are those used by the bulk descs as well! */
534#define PTL_RPC_FL_INTR (1 << 0) /* reply wait was interrupted by user */
535#define PTL_RPC_FL_TIMEOUT (1 << 7) /* request timed out waiting for reply */
536
537#define REQ_MAX_ACK_LOCKS 8
538
539union ptlrpc_async_args {
540 /**
541 * Scratchpad for passing args to completion interpreter. Users
542 * cast to the struct of their choosing, and CLASSERT that this is
543 * big enough. For _tons_ of context, OBD_ALLOC a struct and store
544 * a pointer to it here. The pointer_arg ensures this struct is at
545 * least big enough for that.
546 */
547 void *pointer_arg[11];
548 __u64 space[7];
549};
550
551struct ptlrpc_request_set;
552typedef int (*set_interpreter_func)(struct ptlrpc_request_set *, void *, int);
553typedef int (*set_producer_func)(struct ptlrpc_request_set *, void *);
554
555/**
556 * Definition of request set structure.
557 * Request set is a list of requests (not necessary to the same target) that
558 * once populated with RPCs could be sent in parallel.
559 * There are two kinds of request sets. General purpose and with dedicated
560 * serving thread. Example of the latter is ptlrpcd set.
561 * For general purpose sets once request set started sending it is impossible
562 * to add new requests to such set.
563 * Provides a way to call "completion callbacks" when all requests in the set
564 * returned.
565 */
566struct ptlrpc_request_set {
567 atomic_t set_refcount;
568 /** number of in queue requests */
569 atomic_t set_new_count;
570 /** number of uncompleted requests */
571 atomic_t set_remaining;
572 /** wait queue to wait on for request events */
573 wait_queue_head_t set_waitq;
574 wait_queue_head_t *set_wakeup_ptr;
575 /** List of requests in the set */
576 struct list_head set_requests;
577 /**
578 * List of completion callbacks to be called when the set is completed
579 * This is only used if \a set_interpret is NULL.
580 * Links struct ptlrpc_set_cbdata.
581 */
582 struct list_head set_cblist;
583 /** Completion callback, if only one. */
584 set_interpreter_func set_interpret;
585 /** opaq argument passed to completion \a set_interpret callback. */
586 void *set_arg;
587 /**
588 * Lock for \a set_new_requests manipulations
589 * locked so that any old caller can communicate requests to
590 * the set holder who can then fold them into the lock-free set
591 */
592 spinlock_t set_new_req_lock;
593 /** List of new yet unsent requests. Only used with ptlrpcd now. */
594 struct list_head set_new_requests;
595
596 /** rq_status of requests that have been freed already */
597 int set_rc;
598 /** Additional fields used by the flow control extension */
599 /** Maximum number of RPCs in flight */
600 int set_max_inflight;
601 /** Callback function used to generate RPCs */
602 set_producer_func set_producer;
603 /** opaq argument passed to the producer callback */
604 void *set_producer_arg;
605};
606
607/**
608 * Description of a single ptrlrpc_set callback
609 */
610struct ptlrpc_set_cbdata {
611 /** List linkage item */
612 struct list_head psc_item;
613 /** Pointer to interpreting function */
614 set_interpreter_func psc_interpret;
615 /** Opaq argument to pass to the callback */
616 void *psc_data;
617};
618
619struct ptlrpc_bulk_desc;
620struct ptlrpc_service_part;
621struct ptlrpc_service;
622
623/**
624 * ptlrpc callback & work item stuff
625 */
626struct ptlrpc_cb_id {
627 void (*cbid_fn)(lnet_event_t *ev); /* specific callback fn */
628 void *cbid_arg; /* additional arg */
629};
630
631/** Maximum number of locks to fit into reply state */
632#define RS_MAX_LOCKS 8
633#define RS_DEBUG 0
634
635/**
636 * Structure to define reply state on the server
637 * Reply state holds various reply message information. Also for "difficult"
638 * replies (rep-ack case) we store the state after sending reply and wait
639 * for the client to acknowledge the reception. In these cases locks could be
640 * added to the state for replay/failover consistency guarantees.
641 */
642struct ptlrpc_reply_state {
643 /** Callback description */
644 struct ptlrpc_cb_id rs_cb_id;
645 /** Linkage for list of all reply states in a system */
646 struct list_head rs_list;
647 /** Linkage for list of all reply states on same export */
648 struct list_head rs_exp_list;
649 /** Linkage for list of all reply states for same obd */
650 struct list_head rs_obd_list;
651#if RS_DEBUG
652 struct list_head rs_debug_list;
653#endif
654 /** A spinlock to protect the reply state flags */
655 spinlock_t rs_lock;
656 /** Reply state flags */
657 unsigned long rs_difficult:1; /* ACK/commit stuff */
658 unsigned long rs_no_ack:1; /* no ACK, even for
659 difficult requests */
660 unsigned long rs_scheduled:1; /* being handled? */
661 unsigned long rs_scheduled_ever:1;/* any schedule attempts? */
662 unsigned long rs_handled:1; /* been handled yet? */
663 unsigned long rs_on_net:1; /* reply_out_callback pending? */
664 unsigned long rs_prealloc:1; /* rs from prealloc list */
665 unsigned long rs_committed:1;/* the transaction was committed
666 and the rs was dispatched
667 by ptlrpc_commit_replies */
668 /** Size of the state */
669 int rs_size;
670 /** opcode */
671 __u32 rs_opc;
672 /** Transaction number */
673 __u64 rs_transno;
674 /** xid */
675 __u64 rs_xid;
676 struct obd_export *rs_export;
677 struct ptlrpc_service_part *rs_svcpt;
678 /** Lnet metadata handle for the reply */
679 lnet_handle_md_t rs_md_h;
680 atomic_t rs_refcount;
681
682 /** Context for the sevice thread */
683 struct ptlrpc_svc_ctx *rs_svc_ctx;
684 /** Reply buffer (actually sent to the client), encoded if needed */
685 struct lustre_msg *rs_repbuf; /* wrapper */
686 /** Size of the reply buffer */
687 int rs_repbuf_len; /* wrapper buf length */
688 /** Size of the reply message */
689 int rs_repdata_len; /* wrapper msg length */
690 /**
691 * Actual reply message. Its content is encrupted (if needed) to
692 * produce reply buffer for actual sending. In simple case
693 * of no network encryption we jus set \a rs_repbuf to \a rs_msg
694 */
695 struct lustre_msg *rs_msg; /* reply message */
696
697 /** Number of locks awaiting client ACK */
698 int rs_nlocks;
699 /** Handles of locks awaiting client reply ACK */
700 struct lustre_handle rs_locks[RS_MAX_LOCKS];
701 /** Lock modes of locks in \a rs_locks */
702 ldlm_mode_t rs_modes[RS_MAX_LOCKS];
703};
704
705struct ptlrpc_thread;
706
707/** RPC stages */
708enum rq_phase {
709 RQ_PHASE_NEW = 0xebc0de00,
710 RQ_PHASE_RPC = 0xebc0de01,
711 RQ_PHASE_BULK = 0xebc0de02,
712 RQ_PHASE_INTERPRET = 0xebc0de03,
713 RQ_PHASE_COMPLETE = 0xebc0de04,
714 RQ_PHASE_UNREGISTERING = 0xebc0de05,
715 RQ_PHASE_UNDEFINED = 0xebc0de06
716};
717
718/** Type of request interpreter call-back */
719typedef int (*ptlrpc_interpterer_t)(const struct lu_env *env,
720 struct ptlrpc_request *req,
721 void *arg, int rc);
722
723/**
724 * Definition of request pool structure.
725 * The pool is used to store empty preallocated requests for the case
726 * when we would actually need to send something without performing
727 * any allocations (to avoid e.g. OOM).
728 */
729struct ptlrpc_request_pool {
730 /** Locks the list */
731 spinlock_t prp_lock;
732 /** list of ptlrpc_request structs */
733 struct list_head prp_req_list;
734 /** Maximum message size that would fit into a rquest from this pool */
735 int prp_rq_size;
736 /** Function to allocate more requests for this pool */
737 void (*prp_populate)(struct ptlrpc_request_pool *, int);
738};
739
740struct lu_context;
741struct lu_env;
742
743struct ldlm_lock;
744
745/**
746 * \defgroup nrs Network Request Scheduler
747 * @{
748 */
749struct ptlrpc_nrs_policy;
750struct ptlrpc_nrs_resource;
751struct ptlrpc_nrs_request;
752
753/**
754 * NRS control operations.
755 *
756 * These are common for all policies.
757 */
758enum ptlrpc_nrs_ctl {
759 /**
760 * Not a valid opcode.
761 */
762 PTLRPC_NRS_CTL_INVALID,
763 /**
764 * Activate the policy.
765 */
766 PTLRPC_NRS_CTL_START,
767 /**
768 * Reserved for multiple primary policies, which may be a possibility
769 * in the future.
770 */
771 PTLRPC_NRS_CTL_STOP,
772 /**
773 * Policies can start using opcodes from this value and onwards for
774 * their own purposes; the assigned value itself is arbitrary.
775 */
776 PTLRPC_NRS_CTL_1ST_POL_SPEC = 0x20,
777};
778
779/**
780 * ORR policy operations
781 */
782enum nrs_ctl_orr {
783 NRS_CTL_ORR_RD_QUANTUM = PTLRPC_NRS_CTL_1ST_POL_SPEC,
784 NRS_CTL_ORR_WR_QUANTUM,
785 NRS_CTL_ORR_RD_OFF_TYPE,
786 NRS_CTL_ORR_WR_OFF_TYPE,
787 NRS_CTL_ORR_RD_SUPP_REQ,
788 NRS_CTL_ORR_WR_SUPP_REQ,
789};
790
791/**
792 * NRS policy operations.
793 *
794 * These determine the behaviour of a policy, and are called in response to
795 * NRS core events.
796 */
797struct ptlrpc_nrs_pol_ops {
798 /**
799 * Called during policy registration; this operation is optional.
800 *
801 * \param[in,out] policy The policy being initialized
802 */
803 int (*op_policy_init) (struct ptlrpc_nrs_policy *policy);
804 /**
805 * Called during policy unregistration; this operation is optional.
806 *
807 * \param[in,out] policy The policy being unregistered/finalized
808 */
809 void (*op_policy_fini) (struct ptlrpc_nrs_policy *policy);
810 /**
811 * Called when activating a policy via lprocfs; policies allocate and
812 * initialize their resources here; this operation is optional.
813 *
814 * \param[in,out] policy The policy being started
815 *
816 * \see nrs_policy_start_locked()
817 */
818 int (*op_policy_start) (struct ptlrpc_nrs_policy *policy);
819 /**
820 * Called when deactivating a policy via lprocfs; policies deallocate
821 * their resources here; this operation is optional
822 *
823 * \param[in,out] policy The policy being stopped
824 *
825 * \see nrs_policy_stop0()
826 */
827 void (*op_policy_stop) (struct ptlrpc_nrs_policy *policy);
828 /**
829 * Used for policy-specific operations; i.e. not generic ones like
830 * \e PTLRPC_NRS_CTL_START and \e PTLRPC_NRS_CTL_GET_INFO; analogous
831 * to an ioctl; this operation is optional.
832 *
833 * \param[in,out] policy The policy carrying out operation \a opc
834 * \param[in] opc The command operation being carried out
835 * \param[in,out] arg An generic buffer for communication between the
836 * user and the control operation
837 *
838 * \retval -ve error
839 * \retval 0 success
840 *
841 * \see ptlrpc_nrs_policy_control()
842 */
843 int (*op_policy_ctl) (struct ptlrpc_nrs_policy *policy,
844 enum ptlrpc_nrs_ctl opc, void *arg);
845
846 /**
847 * Called when obtaining references to the resources of the resource
848 * hierarchy for a request that has arrived for handling at the PTLRPC
849 * service. Policies should return -ve for requests they do not wish
850 * to handle. This operation is mandatory.
851 *
852 * \param[in,out] policy The policy we're getting resources for.
853 * \param[in,out] nrq The request we are getting resources for.
854 * \param[in] parent The parent resource of the resource being
855 * requested; set to NULL if none.
856 * \param[out] resp The resource is to be returned here; the
857 * fallback policy in an NRS head should
858 * \e always return a non-NULL pointer value.
859 * \param[in] moving_req When set, signifies that this is an attempt
860 * to obtain resources for a request being moved
861 * to the high-priority NRS head by
862 * ldlm_lock_reorder_req().
863 * This implies two things:
864 * 1. We are under obd_export::exp_rpc_lock and
865 * so should not sleep.
866 * 2. We should not perform non-idempotent or can
867 * skip performing idempotent operations that
868 * were carried out when resources were first
869 * taken for the request when it was initialized
870 * in ptlrpc_nrs_req_initialize().
871 *
872 * \retval 0, +ve The level of the returned resource in the resource
873 * hierarchy; currently only 0 (for a non-leaf resource)
874 * and 1 (for a leaf resource) are supported by the
875 * framework.
876 * \retval -ve error
877 *
878 * \see ptlrpc_nrs_req_initialize()
879 * \see ptlrpc_nrs_hpreq_add_nolock()
880 * \see ptlrpc_nrs_req_hp_move()
881 */
882 int (*op_res_get) (struct ptlrpc_nrs_policy *policy,
883 struct ptlrpc_nrs_request *nrq,
884 const struct ptlrpc_nrs_resource *parent,
885 struct ptlrpc_nrs_resource **resp,
886 bool moving_req);
887 /**
888 * Called when releasing references taken for resources in the resource
889 * hierarchy for the request; this operation is optional.
890 *
891 * \param[in,out] policy The policy the resource belongs to
892 * \param[in] res The resource to be freed
893 *
894 * \see ptlrpc_nrs_req_finalize()
895 * \see ptlrpc_nrs_hpreq_add_nolock()
896 * \see ptlrpc_nrs_req_hp_move()
897 */
898 void (*op_res_put) (struct ptlrpc_nrs_policy *policy,
899 const struct ptlrpc_nrs_resource *res);
900
901 /**
902 * Obtains a request for handling from the policy, and optionally
903 * removes the request from the policy; this operation is mandatory.
904 *
905 * \param[in,out] policy The policy to poll
906 * \param[in] peek When set, signifies that we just want to
907 * examine the request, and not handle it, so the
908 * request is not removed from the policy.
909 * \param[in] force When set, it will force a policy to return a
910 * request if it has one queued.
911 *
912 * \retval NULL No request available for handling
913 * \retval valid-pointer The request polled for handling
914 *
915 * \see ptlrpc_nrs_req_get_nolock()
916 */
917 struct ptlrpc_nrs_request *
918 (*op_req_get) (struct ptlrpc_nrs_policy *policy, bool peek,
919 bool force);
920 /**
921 * Called when attempting to add a request to a policy for later
922 * handling; this operation is mandatory.
923 *
924 * \param[in,out] policy The policy on which to enqueue \a nrq
925 * \param[in,out] nrq The request to enqueue
926 *
927 * \retval 0 success
928 * \retval != 0 error
929 *
930 * \see ptlrpc_nrs_req_add_nolock()
931 */
932 int (*op_req_enqueue) (struct ptlrpc_nrs_policy *policy,
933 struct ptlrpc_nrs_request *nrq);
934 /**
935 * Removes a request from the policy's set of pending requests. Normally
936 * called after a request has been polled successfully from the policy
937 * for handling; this operation is mandatory.
938 *
939 * \param[in,out] policy The policy the request \a nrq belongs to
940 * \param[in,out] nrq The request to dequeue
941 *
942 * \see ptlrpc_nrs_req_del_nolock()
943 */
944 void (*op_req_dequeue) (struct ptlrpc_nrs_policy *policy,
945 struct ptlrpc_nrs_request *nrq);
946 /**
947 * Called after the request being carried out. Could be used for
948 * job/resource control; this operation is optional.
949 *
950 * \param[in,out] policy The policy which is stopping to handle request
951 * \a nrq
952 * \param[in,out] nrq The request
953 *
954 * \pre spin_is_locked(&svcpt->scp_req_lock)
955 *
956 * \see ptlrpc_nrs_req_stop_nolock()
957 */
958 void (*op_req_stop) (struct ptlrpc_nrs_policy *policy,
959 struct ptlrpc_nrs_request *nrq);
960 /**
961 * Registers the policy's lprocfs interface with a PTLRPC service.
962 *
963 * \param[in] svc The service
964 *
965 * \retval 0 success
966 * \retval != 0 error
967 */
968 int (*op_lprocfs_init) (struct ptlrpc_service *svc);
969 /**
970 * Unegisters the policy's lprocfs interface with a PTLRPC service.
971 *
972 * In cases of failed policy registration in
973 * \e ptlrpc_nrs_policy_register(), this function may be called for a
974 * service which has not registered the policy successfully, so
975 * implementations of this method should make sure their operations are
976 * safe in such cases.
977 *
978 * \param[in] svc The service
979 */
980 void (*op_lprocfs_fini) (struct ptlrpc_service *svc);
981};
982
983/**
984 * Policy flags
985 */
986enum nrs_policy_flags {
987 /**
988 * Fallback policy, use this flag only on a single supported policy per
989 * service. The flag cannot be used on policies that use
990 * \e PTLRPC_NRS_FL_REG_EXTERN
991 */
992 PTLRPC_NRS_FL_FALLBACK = (1 << 0),
993 /**
994 * Start policy immediately after registering.
995 */
996 PTLRPC_NRS_FL_REG_START = (1 << 1),
997 /**
998 * This is a policy registering from a module different to the one NRS
999 * core ships in (currently ptlrpc).
1000 */
1001 PTLRPC_NRS_FL_REG_EXTERN = (1 << 2),
1002};
1003
1004/**
1005 * NRS queue type.
1006 *
1007 * Denotes whether an NRS instance is for handling normal or high-priority
1008 * RPCs, or whether an operation pertains to one or both of the NRS instances
1009 * in a service.
1010 */
1011enum ptlrpc_nrs_queue_type {
1012 PTLRPC_NRS_QUEUE_REG = (1 << 0),
1013 PTLRPC_NRS_QUEUE_HP = (1 << 1),
1014 PTLRPC_NRS_QUEUE_BOTH = (PTLRPC_NRS_QUEUE_REG | PTLRPC_NRS_QUEUE_HP)
1015};
1016
1017/**
1018 * NRS head
1019 *
1020 * A PTLRPC service has at least one NRS head instance for handling normal
1021 * priority RPCs, and may optionally have a second NRS head instance for
1022 * handling high-priority RPCs. Each NRS head maintains a list of available
1023 * policies, of which one and only one policy is acting as the fallback policy,
1024 * and optionally a different policy may be acting as the primary policy. For
1025 * all RPCs handled by this NRS head instance, NRS core will first attempt to
1026 * enqueue the RPC using the primary policy (if any). The fallback policy is
1027 * used in the following cases:
1028 * - when there was no primary policy in the
1029 * ptlrpc_nrs_pol_state::NRS_POL_STATE_STARTED state at the time the request
1030 * was initialized.
1031 * - when the primary policy that was at the
1032 * ptlrpc_nrs_pol_state::PTLRPC_NRS_POL_STATE_STARTED state at the time the
1033 * RPC was initialized, denoted it did not wish, or for some other reason was
1034 * not able to handle the request, by returning a non-valid NRS resource
1035 * reference.
1036 * - when the primary policy that was at the
1037 * ptlrpc_nrs_pol_state::PTLRPC_NRS_POL_STATE_STARTED state at the time the
1038 * RPC was initialized, fails later during the request enqueueing stage.
1039 *
1040 * \see nrs_resource_get_safe()
1041 * \see nrs_request_enqueue()
1042 */
1043struct ptlrpc_nrs {
1044 spinlock_t nrs_lock;
1045 /** XXX Possibly replace svcpt->scp_req_lock with another lock here. */
1046 /**
1047 * List of registered policies
1048 */
1049 struct list_head nrs_policy_list;
1050 /**
1051 * List of policies with queued requests. Policies that have any
1052 * outstanding requests are queued here, and this list is queried
1053 * in a round-robin manner from NRS core when obtaining a request
1054 * for handling. This ensures that requests from policies that at some
1055 * point transition away from the
1056 * ptlrpc_nrs_pol_state::NRS_POL_STATE_STARTED state are drained.
1057 */
1058 struct list_head nrs_policy_queued;
1059 /**
1060 * Service partition for this NRS head
1061 */
1062 struct ptlrpc_service_part *nrs_svcpt;
1063 /**
1064 * Primary policy, which is the preferred policy for handling RPCs
1065 */
1066 struct ptlrpc_nrs_policy *nrs_policy_primary;
1067 /**
1068 * Fallback policy, which is the backup policy for handling RPCs
1069 */
1070 struct ptlrpc_nrs_policy *nrs_policy_fallback;
1071 /**
1072 * This NRS head handles either HP or regular requests
1073 */
1074 enum ptlrpc_nrs_queue_type nrs_queue_type;
1075 /**
1076 * # queued requests from all policies in this NRS head
1077 */
1078 unsigned long nrs_req_queued;
1079 /**
1080 * # scheduled requests from all policies in this NRS head
1081 */
1082 unsigned long nrs_req_started;
1083 /**
1084 * # policies on this NRS
1085 */
1086 unsigned nrs_num_pols;
1087 /**
1088 * This NRS head is in progress of starting a policy
1089 */
1090 unsigned nrs_policy_starting:1;
1091 /**
1092 * In progress of shutting down the whole NRS head; used during
1093 * unregistration
1094 */
1095 unsigned nrs_stopping:1;
1096};
1097
1098#define NRS_POL_NAME_MAX 16
1099
1100struct ptlrpc_nrs_pol_desc;
1101
1102/**
1103 * Service compatibility predicate; this determines whether a policy is adequate
1104 * for handling RPCs of a particular PTLRPC service.
1105 *
1106 * XXX:This should give the same result during policy registration and
1107 * unregistration, and for all partitions of a service; so the result should not
1108 * depend on temporal service or other properties, that may influence the
1109 * result.
1110 */
1111typedef bool (*nrs_pol_desc_compat_t) (const struct ptlrpc_service *svc,
1112 const struct ptlrpc_nrs_pol_desc *desc);
1113
1114struct ptlrpc_nrs_pol_conf {
1115 /**
1116 * Human-readable policy name
1117 */
1118 char nc_name[NRS_POL_NAME_MAX];
1119 /**
1120 * NRS operations for this policy
1121 */
1122 const struct ptlrpc_nrs_pol_ops *nc_ops;
1123 /**
1124 * Service compatibility predicate
1125 */
1126 nrs_pol_desc_compat_t nc_compat;
1127 /**
1128 * Set for policies that support a single ptlrpc service, i.e. ones that
1129 * have \a pd_compat set to nrs_policy_compat_one(). The variable value
1130 * depicts the name of the single service that such policies are
1131 * compatible with.
1132 */
1133 const char *nc_compat_svc_name;
1134 /**
1135 * Owner module for this policy descriptor; policies registering from a
1136 * different module to the one the NRS framework is held within
1137 * (currently ptlrpc), should set this field to THIS_MODULE.
1138 */
1139 module_t *nc_owner;
1140 /**
1141 * Policy registration flags; a bitmast of \e nrs_policy_flags
1142 */
1143 unsigned nc_flags;
1144};
1145
1146/**
1147 * NRS policy registering descriptor
1148 *
1149 * Is used to hold a description of a policy that can be passed to NRS core in
1150 * order to register the policy with NRS heads in different PTLRPC services.
1151 */
1152struct ptlrpc_nrs_pol_desc {
1153 /**
1154 * Human-readable policy name
1155 */
1156 char pd_name[NRS_POL_NAME_MAX];
1157 /**
1158 * Link into nrs_core::nrs_policies
1159 */
1160 struct list_head pd_list;
1161 /**
1162 * NRS operations for this policy
1163 */
1164 const struct ptlrpc_nrs_pol_ops *pd_ops;
1165 /**
1166 * Service compatibility predicate
1167 */
1168 nrs_pol_desc_compat_t pd_compat;
1169 /**
1170 * Set for policies that are compatible with only one PTLRPC service.
1171 *
1172 * \see ptlrpc_nrs_pol_conf::nc_compat_svc_name
1173 */
1174 const char *pd_compat_svc_name;
1175 /**
1176 * Owner module for this policy descriptor.
1177 *
1178 * We need to hold a reference to the module whenever we might make use
1179 * of any of the module's contents, i.e.
1180 * - If one or more instances of the policy are at a state where they
1181 * might be handling a request, i.e.
1182 * ptlrpc_nrs_pol_state::NRS_POL_STATE_STARTED or
1183 * ptlrpc_nrs_pol_state::NRS_POL_STATE_STOPPING as we will have to
1184 * call into the policy's ptlrpc_nrs_pol_ops() handlers. A reference
1185 * is taken on the module when
1186 * \e ptlrpc_nrs_pol_desc::pd_refs becomes 1, and released when it
1187 * becomes 0, so that we hold only one reference to the module maximum
1188 * at any time.
1189 *
1190 * We do not need to hold a reference to the module, even though we
1191 * might use code and data from the module, in the following cases:
1192 * - During external policy registration, because this should happen in
1193 * the module's init() function, in which case the module is safe from
1194 * removal because a reference is being held on the module by the
1195 * kernel, and iirc kmod (and I guess module-init-tools also) will
1196 * serialize any racing processes properly anyway.
1197 * - During external policy unregistration, because this should happen
1198 * in a module's exit() function, and any attempts to start a policy
1199 * instance would need to take a reference on the module, and this is
1200 * not possible once we have reached the point where the exit()
1201 * handler is called.
1202 * - During service registration and unregistration, as service setup
1203 * and cleanup, and policy registration, unregistration and policy
1204 * instance starting, are serialized by \e nrs_core::nrs_mutex, so
1205 * as long as users adhere to the convention of registering policies
1206 * in init() and unregistering them in module exit() functions, there
1207 * should not be a race between these operations.
1208 * - During any policy-specific lprocfs operations, because a reference
1209 * is held by the kernel on a proc entry that has been entered by a
1210 * syscall, so as long as proc entries are removed during unregistration time,
1211 * then unregistration and lprocfs operations will be properly
1212 * serialized.
1213 */
1214 module_t *pd_owner;
1215 /**
1216 * Bitmask of \e nrs_policy_flags
1217 */
1218 unsigned pd_flags;
1219 /**
1220 * # of references on this descriptor
1221 */
1222 atomic_t pd_refs;
1223};
1224
1225/**
1226 * NRS policy state
1227 *
1228 * Policies transition from one state to the other during their lifetime
1229 */
1230enum ptlrpc_nrs_pol_state {
1231 /**
1232 * Not a valid policy state.
1233 */
1234 NRS_POL_STATE_INVALID,
1235 /**
1236 * Policies are at this state either at the start of their life, or
1237 * transition here when the user selects a different policy to act
1238 * as the primary one.
1239 */
1240 NRS_POL_STATE_STOPPED,
1241 /**
1242 * Policy is progress of stopping
1243 */
1244 NRS_POL_STATE_STOPPING,
1245 /**
1246 * Policy is in progress of starting
1247 */
1248 NRS_POL_STATE_STARTING,
1249 /**
1250 * A policy is in this state in two cases:
1251 * - it is the fallback policy, which is always in this state.
1252 * - it has been activated by the user; i.e. it is the primary policy,
1253 */
1254 NRS_POL_STATE_STARTED,
1255};
1256
1257/**
1258 * NRS policy information
1259 *
1260 * Used for obtaining information for the status of a policy via lprocfs
1261 */
1262struct ptlrpc_nrs_pol_info {
1263 /**
1264 * Policy name
1265 */
1266 char pi_name[NRS_POL_NAME_MAX];
1267 /**
1268 * Current policy state
1269 */
1270 enum ptlrpc_nrs_pol_state pi_state;
1271 /**
1272 * # RPCs enqueued for later dispatching by the policy
1273 */
1274 long pi_req_queued;
1275 /**
1276 * # RPCs started for dispatch by the policy
1277 */
1278 long pi_req_started;
1279 /**
1280 * Is this a fallback policy?
1281 */
1282 unsigned pi_fallback:1;
1283};
1284
1285/**
1286 * NRS policy
1287 *
1288 * There is one instance of this for each policy in each NRS head of each
1289 * PTLRPC service partition.
1290 */
1291struct ptlrpc_nrs_policy {
1292 /**
1293 * Linkage into the NRS head's list of policies,
1294 * ptlrpc_nrs:nrs_policy_list
1295 */
1296 struct list_head pol_list;
1297 /**
1298 * Linkage into the NRS head's list of policies with enqueued
1299 * requests ptlrpc_nrs:nrs_policy_queued
1300 */
1301 struct list_head pol_list_queued;
1302 /**
1303 * Current state of this policy
1304 */
1305 enum ptlrpc_nrs_pol_state pol_state;
1306 /**
1307 * Bitmask of nrs_policy_flags
1308 */
1309 unsigned pol_flags;
1310 /**
1311 * # RPCs enqueued for later dispatching by the policy
1312 */
1313 long pol_req_queued;
1314 /**
1315 * # RPCs started for dispatch by the policy
1316 */
1317 long pol_req_started;
1318 /**
1319 * Usage Reference count taken on the policy instance
1320 */
1321 long pol_ref;
1322 /**
1323 * The NRS head this policy has been created at
1324 */
1325 struct ptlrpc_nrs *pol_nrs;
1326 /**
1327 * Private policy data; varies by policy type
1328 */
1329 void *pol_private;
1330 /**
1331 * Policy descriptor for this policy instance.
1332 */
1333 struct ptlrpc_nrs_pol_desc *pol_desc;
1334};
1335
1336/**
1337 * NRS resource
1338 *
1339 * Resources are embedded into two types of NRS entities:
1340 * - Inside NRS policies, in the policy's private data in
1341 * ptlrpc_nrs_policy::pol_private
1342 * - In objects that act as prime-level scheduling entities in different NRS
1343 * policies; e.g. on a policy that performs round robin or similar order
1344 * scheduling across client NIDs, there would be one NRS resource per unique
1345 * client NID. On a policy which performs round robin scheduling across
1346 * backend filesystem objects, there would be one resource associated with
1347 * each of the backend filesystem objects partaking in the scheduling
1348 * performed by the policy.
1349 *
1350 * NRS resources share a parent-child relationship, in which resources embedded
1351 * in policy instances are the parent entities, with all scheduling entities
1352 * a policy schedules across being the children, thus forming a simple resource
1353 * hierarchy. This hierarchy may be extended with one or more levels in the
1354 * future if the ability to have more than one primary policy is added.
1355 *
1356 * Upon request initialization, references to the then active NRS policies are
1357 * taken and used to later handle the dispatching of the request with one of
1358 * these policies.
1359 *
1360 * \see nrs_resource_get_safe()
1361 * \see ptlrpc_nrs_req_add()
1362 */
1363struct ptlrpc_nrs_resource {
1364 /**
1365 * This NRS resource's parent; is NULL for resources embedded in NRS
1366 * policy instances; i.e. those are top-level ones.
1367 */
1368 struct ptlrpc_nrs_resource *res_parent;
1369 /**
1370 * The policy associated with this resource.
1371 */
1372 struct ptlrpc_nrs_policy *res_policy;
1373};
1374
1375enum {
1376 NRS_RES_FALLBACK,
1377 NRS_RES_PRIMARY,
1378 NRS_RES_MAX
1379};
1380
1381/* \name fifo
1382 *
1383 * FIFO policy
1384 *
1385 * This policy is a logical wrapper around previous, non-NRS functionality.
1386 * It dispatches RPCs in the same order as they arrive from the network. This
1387 * policy is currently used as the fallback policy, and the only enabled policy
1388 * on all NRS heads of all PTLRPC service partitions.
1389 * @{
1390 */
1391
1392/**
1393 * Private data structure for the FIFO policy
1394 */
1395struct nrs_fifo_head {
1396 /**
1397 * Resource object for policy instance.
1398 */
1399 struct ptlrpc_nrs_resource fh_res;
1400 /**
1401 * List of queued requests.
1402 */
1403 struct list_head fh_list;
1404 /**
1405 * For debugging purposes.
1406 */
1407 __u64 fh_sequence;
1408};
1409
1410struct nrs_fifo_req {
1411 struct list_head fr_list;
1412 __u64 fr_sequence;
1413};
1414
1415/** @} fifo */
1416
1417/**
1418 * \name CRR-N
1419 *
1420 * CRR-N, Client Round Robin over NIDs
1421 * @{
1422 */
1423
1424/**
1425 * private data structure for CRR-N NRS
1426 */
1427struct nrs_crrn_net {
1428 struct ptlrpc_nrs_resource cn_res;
1429 cfs_binheap_t *cn_binheap;
1430 cfs_hash_t *cn_cli_hash;
1431 /**
1432 * Used when a new scheduling round commences, in order to synchronize
1433 * all clients with the new round number.
1434 */
1435 __u64 cn_round;
1436 /**
1437 * Determines the relevant ordering amongst request batches within a
1438 * scheduling round.
1439 */
1440 __u64 cn_sequence;
1441 /**
1442 * Round Robin quantum; the maximum number of RPCs that each request
1443 * batch for each client can have in a scheduling round.
1444 */
1445 __u16 cn_quantum;
1446};
1447
1448/**
1449 * Object representing a client in CRR-N, as identified by its NID
1450 */
1451struct nrs_crrn_client {
1452 struct ptlrpc_nrs_resource cc_res;
1453 struct hlist_node cc_hnode;
1454 lnet_nid_t cc_nid;
1455 /**
1456 * The round number against which this client is currently scheduling
1457 * requests.
1458 */
1459 __u64 cc_round;
1460 /**
1461 * The sequence number used for requests scheduled by this client during
1462 * the current round number.
1463 */
1464 __u64 cc_sequence;
1465 atomic_t cc_ref;
1466 /**
1467 * Round Robin quantum; the maximum number of RPCs the client is allowed
1468 * to schedule in a single batch of each round.
1469 */
1470 __u16 cc_quantum;
1471 /**
1472 * # of pending requests for this client, on all existing rounds
1473 */
1474 __u16 cc_active;
1475};
1476
1477/**
1478 * CRR-N NRS request definition
1479 */
1480struct nrs_crrn_req {
1481 /**
1482 * Round number for this request; shared with all other requests in the
1483 * same batch.
1484 */
1485 __u64 cr_round;
1486 /**
1487 * Sequence number for this request; shared with all other requests in
1488 * the same batch.
1489 */
1490 __u64 cr_sequence;
1491};
1492
1493/**
1494 * CRR-N policy operations.
1495 */
1496enum nrs_ctl_crr {
1497 /**
1498 * Read the RR quantum size of a CRR-N policy.
1499 */
1500 NRS_CTL_CRRN_RD_QUANTUM = PTLRPC_NRS_CTL_1ST_POL_SPEC,
1501 /**
1502 * Write the RR quantum size of a CRR-N policy.
1503 */
1504 NRS_CTL_CRRN_WR_QUANTUM,
1505};
1506
1507/** @} CRR-N */
1508
1509/**
1510 * \name ORR/TRR
1511 *
1512 * ORR/TRR (Object-based Round Robin/Target-based Round Robin) NRS policies
1513 * @{
1514 */
1515
1516/**
1517 * Lower and upper byte offsets of a brw RPC
1518 */
1519struct nrs_orr_req_range {
1520 __u64 or_start;
1521 __u64 or_end;
1522};
1523
1524/**
1525 * RPC types supported by the ORR/TRR policies
1526 */
1527enum nrs_orr_supp {
1528 NOS_OST_READ = (1 << 0),
1529 NOS_OST_WRITE = (1 << 1),
1530 NOS_OST_RW = (NOS_OST_READ | NOS_OST_WRITE),
1531 /**
1532 * Default value for policies.
1533 */
1534 NOS_DFLT = NOS_OST_READ
1535};
1536
1537/**
1538 * As unique keys for grouping RPCs together, we use the object's OST FID for
1539 * the ORR policy, and the OST index for the TRR policy.
1540 *
1541 * XXX: We waste some space for TRR policy instances by using a union, but it
1542 * allows to consolidate some of the code between ORR and TRR, and these
1543 * policies will probably eventually merge into one anyway.
1544 */
1545struct nrs_orr_key {
1546 union {
1547 /** object FID for ORR */
1548 struct lu_fid ok_fid;
1549 /** OST index for TRR */
1550 __u32 ok_idx;
1551 };
1552};
1553
1554/**
1555 * The largest base string for unique hash/slab object names is
1556 * "nrs_orr_reg_", so 13 characters. We add 3 to this to be used for the CPT
1557 * id number, so this _should_ be more than enough for the maximum number of
1558 * CPTs on any system. If it does happen that this statement is incorrect,
1559 * nrs_orr_genobjname() will inevitably yield a non-unique name and cause
1560 * kmem_cache_create() to complain (on Linux), so the erroneous situation
1561 * will hopefully not go unnoticed.
1562 */
1563#define NRS_ORR_OBJ_NAME_MAX (sizeof("nrs_orr_reg_") + 3)
1564
1565/**
1566 * private data structure for ORR and TRR NRS
1567 */
1568struct nrs_orr_data {
1569 struct ptlrpc_nrs_resource od_res;
1570 cfs_binheap_t *od_binheap;
1571 cfs_hash_t *od_obj_hash;
1572 struct kmem_cache *od_cache;
1573 /**
1574 * Used when a new scheduling round commences, in order to synchronize
1575 * all object or OST batches with the new round number.
1576 */
1577 __u64 od_round;
1578 /**
1579 * Determines the relevant ordering amongst request batches within a
1580 * scheduling round.
1581 */
1582 __u64 od_sequence;
1583 /**
1584 * RPC types that are currently supported.
1585 */
1586 enum nrs_orr_supp od_supp;
1587 /**
1588 * Round Robin quantum; the maxium number of RPCs that each request
1589 * batch for each object or OST can have in a scheduling round.
1590 */
1591 __u16 od_quantum;
1592 /**
1593 * Whether to use physical disk offsets or logical file offsets.
1594 */
1595 bool od_physical;
1596 /**
1597 * XXX: We need to provide a persistently allocated string to hold
1598 * unique object names for this policy, since in currently supported
1599 * versions of Linux by Lustre, kmem_cache_create() just sets a pointer
1600 * to the name string provided. kstrdup() is used in the version of
1601 * kmeme_cache_create() in current Linux mainline, so we may be able to
1602 * remove this in the future.
1603 */
1604 char od_objname[NRS_ORR_OBJ_NAME_MAX];
1605};
1606
1607/**
1608 * Represents a backend-fs object or OST in the ORR and TRR policies
1609 * respectively
1610 */
1611struct nrs_orr_object {
1612 struct ptlrpc_nrs_resource oo_res;
1613 struct hlist_node oo_hnode;
1614 /**
1615 * The round number against which requests are being scheduled for this
1616 * object or OST
1617 */
1618 __u64 oo_round;
1619 /**
1620 * The sequence number used for requests scheduled for this object or
1621 * OST during the current round number.
1622 */
1623 __u64 oo_sequence;
1624 /**
1625 * The key of the object or OST for which this structure instance is
1626 * scheduling RPCs
1627 */
1628 struct nrs_orr_key oo_key;
1629 atomic_t oo_ref;
1630 /**
1631 * Round Robin quantum; the maximum number of RPCs that are allowed to
1632 * be scheduled for the object or OST in a single batch of each round.
1633 */
1634 __u16 oo_quantum;
1635 /**
1636 * # of pending requests for this object or OST, on all existing rounds
1637 */
1638 __u16 oo_active;
1639};
1640
1641/**
1642 * ORR/TRR NRS request definition
1643 */
1644struct nrs_orr_req {
1645 /**
1646 * The offset range this request covers
1647 */
1648 struct nrs_orr_req_range or_range;
1649 /**
1650 * Round number for this request; shared with all other requests in the
1651 * same batch.
1652 */
1653 __u64 or_round;
1654 /**
1655 * Sequence number for this request; shared with all other requests in
1656 * the same batch.
1657 */
1658 __u64 or_sequence;
1659 /**
1660 * For debugging purposes.
1661 */
1662 struct nrs_orr_key or_key;
1663 /**
1664 * An ORR policy instance has filled in request information while
1665 * enqueueing the request on the service partition's regular NRS head.
1666 */
1667 unsigned int or_orr_set:1;
1668 /**
1669 * A TRR policy instance has filled in request information while
1670 * enqueueing the request on the service partition's regular NRS head.
1671 */
1672 unsigned int or_trr_set:1;
1673 /**
1674 * Request offset ranges have been filled in with logical offset
1675 * values.
1676 */
1677 unsigned int or_logical_set:1;
1678 /**
1679 * Request offset ranges have been filled in with physical offset
1680 * values.
1681 */
1682 unsigned int or_physical_set:1;
1683};
1684
1685/** @} ORR/TRR */
1686
1687/**
1688 * NRS request
1689 *
1690 * Instances of this object exist embedded within ptlrpc_request; the main
1691 * purpose of this object is to hold references to the request's resources
1692 * for the lifetime of the request, and to hold properties that policies use
1693 * use for determining the request's scheduling priority.
1694 * */
1695struct ptlrpc_nrs_request {
1696 /**
1697 * The request's resource hierarchy.
1698 */
1699 struct ptlrpc_nrs_resource *nr_res_ptrs[NRS_RES_MAX];
1700 /**
1701 * Index into ptlrpc_nrs_request::nr_res_ptrs of the resource of the
1702 * policy that was used to enqueue the request.
1703 *
1704 * \see nrs_request_enqueue()
1705 */
1706 unsigned nr_res_idx;
1707 unsigned nr_initialized:1;
1708 unsigned nr_enqueued:1;
1709 unsigned nr_started:1;
1710 unsigned nr_finalized:1;
1711 cfs_binheap_node_t nr_node;
1712
1713 /**
1714 * Policy-specific fields, used for determining a request's scheduling
1715 * priority, and other supporting functionality.
1716 */
1717 union {
1718 /**
1719 * Fields for the FIFO policy
1720 */
1721 struct nrs_fifo_req fifo;
1722 /**
1723 * CRR-N request defintion
1724 */
1725 struct nrs_crrn_req crr;
1726 /** ORR and TRR share the same request definition */
1727 struct nrs_orr_req orr;
1728 } nr_u;
1729 /**
1730 * Externally-registering policies may want to use this to allocate
1731 * their own request properties.
1732 */
1733 void *ext;
1734};
1735
1736/** @} nrs */
1737
1738/**
1739 * Basic request prioritization operations structure.
1740 * The whole idea is centered around locks and RPCs that might affect locks.
1741 * When a lock is contended we try to give priority to RPCs that might lead
1742 * to fastest release of that lock.
1743 * Currently only implemented for OSTs only in a way that makes all
1744 * IO and truncate RPCs that are coming from a locked region where a lock is
1745 * contended a priority over other requests.
1746 */
1747struct ptlrpc_hpreq_ops {
1748 /**
1749 * Check if the lock handle of the given lock is the same as
1750 * taken from the request.
1751 */
1752 int (*hpreq_lock_match)(struct ptlrpc_request *, struct ldlm_lock *);
1753 /**
1754 * Check if the request is a high priority one.
1755 */
1756 int (*hpreq_check)(struct ptlrpc_request *);
1757 /**
1758 * Called after the request has been handled.
1759 */
1760 void (*hpreq_fini)(struct ptlrpc_request *);
1761};
1762
1763/**
1764 * Represents remote procedure call.
1765 *
1766 * This is a staple structure used by everybody wanting to send a request
1767 * in Lustre.
1768 */
1769struct ptlrpc_request {
1770 /* Request type: one of PTL_RPC_MSG_* */
1771 int rq_type;
1772 /** Result of request processing */
1773 int rq_status;
1774 /**
1775 * Linkage item through which this request is included into
1776 * sending/delayed lists on client and into rqbd list on server
1777 */
1778 struct list_head rq_list;
1779 /**
1780 * Server side list of incoming unserved requests sorted by arrival
1781 * time. Traversed from time to time to notice about to expire
1782 * requests and sent back "early replies" to clients to let them
1783 * know server is alive and well, just very busy to service their
1784 * requests in time
1785 */
1786 struct list_head rq_timed_list;
1787 /** server-side history, used for debuging purposes. */
1788 struct list_head rq_history_list;
1789 /** server-side per-export list */
1790 struct list_head rq_exp_list;
1791 /** server-side hp handlers */
1792 struct ptlrpc_hpreq_ops *rq_ops;
1793
1794 /** initial thread servicing this request */
1795 struct ptlrpc_thread *rq_svc_thread;
1796
1797 /** history sequence # */
1798 __u64 rq_history_seq;
1799 /** \addtogroup nrs
1800 * @{
1801 */
1802 /** stub for NRS request */
1803 struct ptlrpc_nrs_request rq_nrq;
1804 /** @} nrs */
1805 /** the index of service's srv_at_array into which request is linked */
1806 time_t rq_at_index;
1807 /** Lock to protect request flags and some other important bits, like
1808 * rq_list
1809 */
1810 spinlock_t rq_lock;
1811 /** client-side flags are serialized by rq_lock */
1812 unsigned int rq_intr:1, rq_replied:1, rq_err:1,
1813 rq_timedout:1, rq_resend:1, rq_restart:1,
1814 /**
1815 * when ->rq_replay is set, request is kept by the client even
1816 * after server commits corresponding transaction. This is
1817 * used for operations that require sequence of multiple
1818 * requests to be replayed. The only example currently is file
1819 * open/close. When last request in such a sequence is
1820 * committed, ->rq_replay is cleared on all requests in the
1821 * sequence.
1822 */
1823 rq_replay:1,
1824 rq_no_resend:1, rq_waiting:1, rq_receiving_reply:1,
1825 rq_no_delay:1, rq_net_err:1, rq_wait_ctx:1,
1826 rq_early:1, rq_must_unlink:1,
1827 rq_memalloc:1, /* req originated from "kswapd" */
1828 /* server-side flags */
1829 rq_packed_final:1, /* packed final reply */
1830 rq_hp:1, /* high priority RPC */
1831 rq_at_linked:1, /* link into service's srv_at_array */
1832 rq_reply_truncate:1,
1833 rq_committed:1,
1834 /* whether the "rq_set" is a valid one */
1835 rq_invalid_rqset:1,
1836 rq_generation_set:1,
1837 /* do not resend request on -EINPROGRESS */
1838 rq_no_retry_einprogress:1,
1839 /* allow the req to be sent if the import is in recovery
1840 * status */
1841 rq_allow_replay:1,
1842 /* bulk request, sent to server, but uncommitted */
1843 rq_unstable:1;
1844
1845 unsigned int rq_nr_resend;
1846
1847 enum rq_phase rq_phase; /* one of RQ_PHASE_* */
1848 enum rq_phase rq_next_phase; /* one of RQ_PHASE_* to be used next */
1849 atomic_t rq_refcount;/* client-side refcount for SENT race,
1850 server-side refcounf for multiple replies */
1851
1852 /** Portal to which this request would be sent */
1853 short rq_request_portal; /* XXX FIXME bug 249 */
1854 /** Portal where to wait for reply and where reply would be sent */
1855 short rq_reply_portal; /* XXX FIXME bug 249 */
1856
1857 /**
1858 * client-side:
1859 * !rq_truncate : # reply bytes actually received,
1860 * rq_truncate : required repbuf_len for resend
1861 */
1862 int rq_nob_received;
1863 /** Request length */
1864 int rq_reqlen;
1865 /** Reply length */
1866 int rq_replen;
1867 /** Request message - what client sent */
1868 struct lustre_msg *rq_reqmsg;
1869 /** Reply message - server response */
1870 struct lustre_msg *rq_repmsg;
1871 /** Transaction number */
1872 __u64 rq_transno;
1873 /** xid */
1874 __u64 rq_xid;
1875 /**
1876 * List item to for replay list. Not yet commited requests get linked
1877 * there.
1878 * Also see \a rq_replay comment above.
1879 */
1880 struct list_head rq_replay_list;
1881
1882 /**
1883 * security and encryption data
1884 * @{ */
1885 struct ptlrpc_cli_ctx *rq_cli_ctx; /**< client's half ctx */
1886 struct ptlrpc_svc_ctx *rq_svc_ctx; /**< server's half ctx */
1887 struct list_head rq_ctx_chain; /**< link to waited ctx */
1888
1889 struct sptlrpc_flavor rq_flvr; /**< for client & server */
1890 enum lustre_sec_part rq_sp_from;
1891
1892 /* client/server security flags */
1893 unsigned int
1894 rq_ctx_init:1, /* context initiation */
1895 rq_ctx_fini:1, /* context destroy */
1896 rq_bulk_read:1, /* request bulk read */
1897 rq_bulk_write:1, /* request bulk write */
1898 /* server authentication flags */
1899 rq_auth_gss:1, /* authenticated by gss */
1900 rq_auth_remote:1, /* authed as remote user */
1901 rq_auth_usr_root:1, /* authed as root */
1902 rq_auth_usr_mdt:1, /* authed as mdt */
1903 rq_auth_usr_ost:1, /* authed as ost */
1904 /* security tfm flags */
1905 rq_pack_udesc:1,
1906 rq_pack_bulk:1,
1907 /* doesn't expect reply FIXME */
1908 rq_no_reply:1,
1909 rq_pill_init:1; /* pill initialized */
1910
1911 uid_t rq_auth_uid; /* authed uid */
1912 uid_t rq_auth_mapped_uid; /* authed uid mapped to */
1913
1914 /* (server side), pointed directly into req buffer */
1915 struct ptlrpc_user_desc *rq_user_desc;
1916
1917 /* various buffer pointers */
1918 struct lustre_msg *rq_reqbuf; /* req wrapper */
1919 char *rq_repbuf; /* rep buffer */
1920 struct lustre_msg *rq_repdata; /* rep wrapper msg */
1921 struct lustre_msg *rq_clrbuf; /* only in priv mode */
1922 int rq_reqbuf_len; /* req wrapper buf len */
1923 int rq_reqdata_len; /* req wrapper msg len */
1924 int rq_repbuf_len; /* rep buffer len */
1925 int rq_repdata_len; /* rep wrapper msg len */
1926 int rq_clrbuf_len; /* only in priv mode */
1927 int rq_clrdata_len; /* only in priv mode */
1928
1929 /** early replies go to offset 0, regular replies go after that */
1930 unsigned int rq_reply_off;
1931
1932 /** @} */
1933
1934 /** Fields that help to see if request and reply were swabbed or not */
1935 __u32 rq_req_swab_mask;
1936 __u32 rq_rep_swab_mask;
1937
1938 /** What was import generation when this request was sent */
1939 int rq_import_generation;
1940 enum lustre_imp_state rq_send_state;
1941
1942 /** how many early replies (for stats) */
1943 int rq_early_count;
1944
1945 /** client+server request */
1946 lnet_handle_md_t rq_req_md_h;
1947 struct ptlrpc_cb_id rq_req_cbid;
1948 /** optional time limit for send attempts */
1949 cfs_duration_t rq_delay_limit;
1950 /** time request was first queued */
1951 cfs_time_t rq_queued_time;
1952
1953 /* server-side... */
1954 /** request arrival time */
1955 struct timeval rq_arrival_time;
1956 /** separated reply state */
1957 struct ptlrpc_reply_state *rq_reply_state;
1958 /** incoming request buffer */
1959 struct ptlrpc_request_buffer_desc *rq_rqbd;
1960
1961 /** client-only incoming reply */
1962 lnet_handle_md_t rq_reply_md_h;
1963 wait_queue_head_t rq_reply_waitq;
1964 struct ptlrpc_cb_id rq_reply_cbid;
1965
1966 /** our LNet NID */
1967 lnet_nid_t rq_self;
1968 /** Peer description (the other side) */
1969 lnet_process_id_t rq_peer;
1970 /** Server-side, export on which request was received */
1971 struct obd_export *rq_export;
1972 /** Client side, import where request is being sent */
1973 struct obd_import *rq_import;
1974
1975 /** Replay callback, called after request is replayed at recovery */
1976 void (*rq_replay_cb)(struct ptlrpc_request *);
1977 /**
1978 * Commit callback, called when request is committed and about to be
1979 * freed.
1980 */
1981 void (*rq_commit_cb)(struct ptlrpc_request *);
1982 /** Opaq data for replay and commit callbacks. */
1983 void *rq_cb_data;
1984
1985 /** For bulk requests on client only: bulk descriptor */
1986 struct ptlrpc_bulk_desc *rq_bulk;
1987
1988 /** client outgoing req */
1989 /**
1990 * when request/reply sent (secs), or time when request should be sent
1991 */
1992 time_t rq_sent;
1993 /** time for request really sent out */
1994 time_t rq_real_sent;
1995
1996 /** when request must finish. volatile
1997 * so that servers' early reply updates to the deadline aren't
1998 * kept in per-cpu cache */
1999 volatile time_t rq_deadline;
2000 /** when req reply unlink must finish. */
2001 time_t rq_reply_deadline;
2002 /** when req bulk unlink must finish. */
2003 time_t rq_bulk_deadline;
2004 /**
2005 * service time estimate (secs)
2006 * If the requestsis not served by this time, it is marked as timed out.
2007 */
2008 int rq_timeout;
2009
2010 /** Multi-rpc bits */
2011 /** Per-request waitq introduced by bug 21938 for recovery waiting */
2012 wait_queue_head_t rq_set_waitq;
2013 /** Link item for request set lists */
2014 struct list_head rq_set_chain;
2015 /** Link back to the request set */
2016 struct ptlrpc_request_set *rq_set;
2017 /** Async completion handler, called when reply is received */
2018 ptlrpc_interpterer_t rq_interpret_reply;
2019 /** Async completion context */
2020 union ptlrpc_async_args rq_async_args;
2021
2022 /** Pool if request is from preallocated list */
2023 struct ptlrpc_request_pool *rq_pool;
2024
2025 struct lu_context rq_session;
2026 struct lu_context rq_recov_session;
2027
2028 /** request format description */
2029 struct req_capsule rq_pill;
2030};
2031
2032/**
2033 * Call completion handler for rpc if any, return it's status or original
2034 * rc if there was no handler defined for this request.
2035 */
2036static inline int ptlrpc_req_interpret(const struct lu_env *env,
2037 struct ptlrpc_request *req, int rc)
2038{
2039 if (req->rq_interpret_reply != NULL) {
2040 req->rq_status = req->rq_interpret_reply(env, req,
2041 &req->rq_async_args,
2042 rc);
2043 return req->rq_status;
2044 }
2045 return rc;
2046}
2047
2048/** \addtogroup nrs
2049 * @{
2050 */
2051int ptlrpc_nrs_policy_register(struct ptlrpc_nrs_pol_conf *conf);
2052int ptlrpc_nrs_policy_unregister(struct ptlrpc_nrs_pol_conf *conf);
2053void ptlrpc_nrs_req_hp_move(struct ptlrpc_request *req);
2054void nrs_policy_get_info_locked(struct ptlrpc_nrs_policy *policy,
2055 struct ptlrpc_nrs_pol_info *info);
2056
2057/*
2058 * Can the request be moved from the regular NRS head to the high-priority NRS
2059 * head (of the same PTLRPC service partition), if any?
2060 *
2061 * For a reliable result, this should be checked under svcpt->scp_req lock.
2062 */
2063static inline bool ptlrpc_nrs_req_can_move(struct ptlrpc_request *req)
2064{
2065 struct ptlrpc_nrs_request *nrq = &req->rq_nrq;
2066
2067 /**
2068 * LU-898: Check ptlrpc_nrs_request::nr_enqueued to make sure the
2069 * request has been enqueued first, and ptlrpc_nrs_request::nr_started
2070 * to make sure it has not been scheduled yet (analogous to previous
2071 * (non-NRS) checking of !list_empty(&ptlrpc_request::rq_list).
2072 */
2073 return nrq->nr_enqueued && !nrq->nr_started && !req->rq_hp;
2074}
2075/** @} nrs */
2076
2077/**
2078 * Returns 1 if request buffer at offset \a index was already swabbed
2079 */
2080static inline int lustre_req_swabbed(struct ptlrpc_request *req, int index)
2081{
2082 LASSERT(index < sizeof(req->rq_req_swab_mask) * 8);
2083 return req->rq_req_swab_mask & (1 << index);
2084}
2085
2086/**
2087 * Returns 1 if request reply buffer at offset \a index was already swabbed
2088 */
2089static inline int lustre_rep_swabbed(struct ptlrpc_request *req, int index)
2090{
2091 LASSERT(index < sizeof(req->rq_rep_swab_mask) * 8);
2092 return req->rq_rep_swab_mask & (1 << index);
2093}
2094
2095/**
2096 * Returns 1 if request needs to be swabbed into local cpu byteorder
2097 */
2098static inline int ptlrpc_req_need_swab(struct ptlrpc_request *req)
2099{
2100 return lustre_req_swabbed(req, MSG_PTLRPC_HEADER_OFF);
2101}
2102
2103/**
2104 * Returns 1 if request reply needs to be swabbed into local cpu byteorder
2105 */
2106static inline int ptlrpc_rep_need_swab(struct ptlrpc_request *req)
2107{
2108 return lustre_rep_swabbed(req, MSG_PTLRPC_HEADER_OFF);
2109}
2110
2111/**
2112 * Mark request buffer at offset \a index that it was already swabbed
2113 */
2114static inline void lustre_set_req_swabbed(struct ptlrpc_request *req, int index)
2115{
2116 LASSERT(index < sizeof(req->rq_req_swab_mask) * 8);
2117 LASSERT((req->rq_req_swab_mask & (1 << index)) == 0);
2118 req->rq_req_swab_mask |= 1 << index;
2119}
2120
2121/**
2122 * Mark request reply buffer at offset \a index that it was already swabbed
2123 */
2124static inline void lustre_set_rep_swabbed(struct ptlrpc_request *req, int index)
2125{
2126 LASSERT(index < sizeof(req->rq_rep_swab_mask) * 8);
2127 LASSERT((req->rq_rep_swab_mask & (1 << index)) == 0);
2128 req->rq_rep_swab_mask |= 1 << index;
2129}
2130
2131/**
2132 * Convert numerical request phase value \a phase into text string description
2133 */
2134static inline const char *
2135ptlrpc_phase2str(enum rq_phase phase)
2136{
2137 switch (phase) {
2138 case RQ_PHASE_NEW:
2139 return "New";
2140 case RQ_PHASE_RPC:
2141 return "Rpc";
2142 case RQ_PHASE_BULK:
2143 return "Bulk";
2144 case RQ_PHASE_INTERPRET:
2145 return "Interpret";
2146 case RQ_PHASE_COMPLETE:
2147 return "Complete";
2148 case RQ_PHASE_UNREGISTERING:
2149 return "Unregistering";
2150 default:
2151 return "?Phase?";
2152 }
2153}
2154
2155/**
2156 * Convert numerical request phase of the request \a req into text stringi
2157 * description
2158 */
2159static inline const char *
2160ptlrpc_rqphase2str(struct ptlrpc_request *req)
2161{
2162 return ptlrpc_phase2str(req->rq_phase);
2163}
2164
2165/**
2166 * Debugging functions and helpers to print request structure into debug log
2167 * @{
2168 */
2169/* Spare the preprocessor, spoil the bugs. */
2170#define FLAG(field, str) (field ? str : "")
2171
2172/** Convert bit flags into a string */
2173#define DEBUG_REQ_FLAGS(req) \
2174 ptlrpc_rqphase2str(req), \
2175 FLAG(req->rq_intr, "I"), FLAG(req->rq_replied, "R"), \
2176 FLAG(req->rq_err, "E"), \
2177 FLAG(req->rq_timedout, "X") /* eXpired */, FLAG(req->rq_resend, "S"), \
2178 FLAG(req->rq_restart, "T"), FLAG(req->rq_replay, "P"), \
2179 FLAG(req->rq_no_resend, "N"), \
2180 FLAG(req->rq_waiting, "W"), \
2181 FLAG(req->rq_wait_ctx, "C"), FLAG(req->rq_hp, "H"), \
2182 FLAG(req->rq_committed, "M")
2183
2184#define REQ_FLAGS_FMT "%s:%s%s%s%s%s%s%s%s%s%s%s%s"
2185
2186void _debug_req(struct ptlrpc_request *req,
2187 struct libcfs_debug_msg_data *data, const char *fmt, ...)
2188 __attribute__ ((format (printf, 3, 4)));
2189
2190/**
2191 * Helper that decides if we need to print request accordig to current debug
2192 * level settings
2193 */
2194#define debug_req(msgdata, mask, cdls, req, fmt, a...) \
2195do { \
2196 CFS_CHECK_STACK(msgdata, mask, cdls); \
2197 \
2198 if (((mask) & D_CANTMASK) != 0 || \
2199 ((libcfs_debug & (mask)) != 0 && \
2200 (libcfs_subsystem_debug & DEBUG_SUBSYSTEM) != 0)) \
2201 _debug_req((req), msgdata, fmt, ##a); \
2202} while(0)
2203
2204/**
2205 * This is the debug print function you need to use to print request sturucture
2206 * content into lustre debug log.
2207 * for most callers (level is a constant) this is resolved at compile time */
2208#define DEBUG_REQ(level, req, fmt, args...) \
2209do { \
2210 if ((level) & (D_ERROR | D_WARNING)) { \
2211 static cfs_debug_limit_state_t cdls; \
2212 LIBCFS_DEBUG_MSG_DATA_DECL(msgdata, level, &cdls); \
2213 debug_req(&msgdata, level, &cdls, req, "@@@ "fmt" ", ## args);\
2214 } else { \
2215 LIBCFS_DEBUG_MSG_DATA_DECL(msgdata, level, NULL); \
2216 debug_req(&msgdata, level, NULL, req, "@@@ "fmt" ", ## args); \
2217 } \
2218} while (0)
2219/** @} */
2220
2221/**
2222 * Structure that defines a single page of a bulk transfer
2223 */
2224struct ptlrpc_bulk_page {
2225 /** Linkage to list of pages in a bulk */
2226 struct list_head bp_link;
2227 /**
2228 * Number of bytes in a page to transfer starting from \a bp_pageoffset
2229 */
2230 int bp_buflen;
2231 /** offset within a page */
2232 int bp_pageoffset;
2233 /** The page itself */
2234 struct page *bp_page;
2235};
2236
2237#define BULK_GET_SOURCE 0
2238#define BULK_PUT_SINK 1
2239#define BULK_GET_SINK 2
2240#define BULK_PUT_SOURCE 3
2241
2242/**
2243 * Definition of bulk descriptor.
2244 * Bulks are special "Two phase" RPCs where initial request message
2245 * is sent first and it is followed bt a transfer (o receiving) of a large
2246 * amount of data to be settled into pages referenced from the bulk descriptors.
2247 * Bulks transfers (the actual data following the small requests) are done
2248 * on separate LNet portals.
2249 * In lustre we use bulk transfers for READ and WRITE transfers from/to OSTs.
2250 * Another user is readpage for MDT.
2251 */
2252struct ptlrpc_bulk_desc {
2253 /** completed with failure */
2254 unsigned long bd_failure:1;
2255 /** {put,get}{source,sink} */
2256 unsigned long bd_type:2;
2257 /** client side */
2258 unsigned long bd_registered:1;
2259 /** For serialization with callback */
2260 spinlock_t bd_lock;
2261 /** Import generation when request for this bulk was sent */
2262 int bd_import_generation;
2263 /** LNet portal for this bulk */
2264 __u32 bd_portal;
2265 /** Server side - export this bulk created for */
2266 struct obd_export *bd_export;
2267 /** Client side - import this bulk was sent on */
2268 struct obd_import *bd_import;
2269 /** Back pointer to the request */
2270 struct ptlrpc_request *bd_req;
2271 wait_queue_head_t bd_waitq; /* server side only WQ */
2272 int bd_iov_count; /* # entries in bd_iov */
2273 int bd_max_iov; /* allocated size of bd_iov */
2274 int bd_nob; /* # bytes covered */
2275 int bd_nob_transferred; /* # bytes GOT/PUT */
2276
2277 __u64 bd_last_xid;
2278
2279 struct ptlrpc_cb_id bd_cbid; /* network callback info */
2280 lnet_nid_t bd_sender; /* stash event::sender */
2281 int bd_md_count; /* # valid entries in bd_mds */
2282 int bd_md_max_brw; /* max entries in bd_mds */
2283 /** array of associated MDs */
2284 lnet_handle_md_t bd_mds[PTLRPC_BULK_OPS_COUNT];
2285
2286 /*
2287 * encrypt iov, size is either 0 or bd_iov_count.
2288 */
2289 lnet_kiov_t *bd_enc_iov;
2290
2291 lnet_kiov_t bd_iov[0];
2292};
2293
2294enum {
2295 SVC_STOPPED = 1 << 0,
2296 SVC_STOPPING = 1 << 1,
2297 SVC_STARTING = 1 << 2,
2298 SVC_RUNNING = 1 << 3,
2299 SVC_EVENT = 1 << 4,
2300 SVC_SIGNAL = 1 << 5,
2301};
2302
2303#define PTLRPC_THR_NAME_LEN 32
2304/**
2305 * Definition of server service thread structure
2306 */
2307struct ptlrpc_thread {
2308 /**
2309 * List of active threads in svc->srv_threads
2310 */
2311 struct list_head t_link;
2312 /**
2313 * thread-private data (preallocated memory)
2314 */
2315 void *t_data;
2316 __u32 t_flags;
2317 /**
2318 * service thread index, from ptlrpc_start_threads
2319 */
2320 unsigned int t_id;
2321 /**
2322 * service thread pid
2323 */
2324 pid_t t_pid;
2325 /**
2326 * put watchdog in the structure per thread b=14840
2327 */
2328 struct lc_watchdog *t_watchdog;
2329 /**
2330 * the svc this thread belonged to b=18582
2331 */
2332 struct ptlrpc_service_part *t_svcpt;
2333 wait_queue_head_t t_ctl_waitq;
2334 struct lu_env *t_env;
2335 char t_name[PTLRPC_THR_NAME_LEN];
2336};
2337
2338static inline int thread_is_init(struct ptlrpc_thread *thread)
2339{
2340 return thread->t_flags == 0;
2341}
2342
2343static inline int thread_is_stopped(struct ptlrpc_thread *thread)
2344{
2345 return !!(thread->t_flags & SVC_STOPPED);
2346}
2347
2348static inline int thread_is_stopping(struct ptlrpc_thread *thread)
2349{
2350 return !!(thread->t_flags & SVC_STOPPING);
2351}
2352
2353static inline int thread_is_starting(struct ptlrpc_thread *thread)
2354{
2355 return !!(thread->t_flags & SVC_STARTING);
2356}
2357
2358static inline int thread_is_running(struct ptlrpc_thread *thread)
2359{
2360 return !!(thread->t_flags & SVC_RUNNING);
2361}
2362
2363static inline int thread_is_event(struct ptlrpc_thread *thread)
2364{
2365 return !!(thread->t_flags & SVC_EVENT);
2366}
2367
2368static inline int thread_is_signal(struct ptlrpc_thread *thread)
2369{
2370 return !!(thread->t_flags & SVC_SIGNAL);
2371}
2372
2373static inline void thread_clear_flags(struct ptlrpc_thread *thread, __u32 flags)
2374{
2375 thread->t_flags &= ~flags;
2376}
2377
2378static inline void thread_set_flags(struct ptlrpc_thread *thread, __u32 flags)
2379{
2380 thread->t_flags = flags;
2381}
2382
2383static inline void thread_add_flags(struct ptlrpc_thread *thread, __u32 flags)
2384{
2385 thread->t_flags |= flags;
2386}
2387
2388static inline int thread_test_and_clear_flags(struct ptlrpc_thread *thread,
2389 __u32 flags)
2390{
2391 if (thread->t_flags & flags) {
2392 thread->t_flags &= ~flags;
2393 return 1;
2394 }
2395 return 0;
2396}
2397
2398/**
2399 * Request buffer descriptor structure.
2400 * This is a structure that contains one posted request buffer for service.
2401 * Once data land into a buffer, event callback creates actual request and
2402 * notifies wakes one of the service threads to process new incoming request.
2403 * More than one request can fit into the buffer.
2404 */
2405struct ptlrpc_request_buffer_desc {
2406 /** Link item for rqbds on a service */
2407 struct list_head rqbd_list;
2408 /** History of requests for this buffer */
2409 struct list_head rqbd_reqs;
2410 /** Back pointer to service for which this buffer is registered */
2411 struct ptlrpc_service_part *rqbd_svcpt;
2412 /** LNet descriptor */
2413 lnet_handle_md_t rqbd_md_h;
2414 int rqbd_refcount;
2415 /** The buffer itself */
2416 char *rqbd_buffer;
2417 struct ptlrpc_cb_id rqbd_cbid;
2418 /**
2419 * This "embedded" request structure is only used for the
2420 * last request to fit into the buffer
2421 */
2422 struct ptlrpc_request rqbd_req;
2423};
2424
2425typedef int (*svc_handler_t)(struct ptlrpc_request *req);
2426
2427struct ptlrpc_service_ops {
2428 /**
2429 * if non-NULL called during thread creation (ptlrpc_start_thread())
2430 * to initialize service specific per-thread state.
2431 */
2432 int (*so_thr_init)(struct ptlrpc_thread *thr);
2433 /**
2434 * if non-NULL called during thread shutdown (ptlrpc_main()) to
2435 * destruct state created by ->srv_init().
2436 */
2437 void (*so_thr_done)(struct ptlrpc_thread *thr);
2438 /**
2439 * Handler function for incoming requests for this service
2440 */
2441 int (*so_req_handler)(struct ptlrpc_request *req);
2442 /**
2443 * function to determine priority of the request, it's called
2444 * on every new request
2445 */
2446 int (*so_hpreq_handler)(struct ptlrpc_request *);
2447 /**
2448 * service-specific print fn
2449 */
2450 void (*so_req_printer)(void *, struct ptlrpc_request *);
2451};
2452
2453#ifndef __cfs_cacheline_aligned
2454/* NB: put it here for reducing patche dependence */
2455# define __cfs_cacheline_aligned
2456#endif
2457
2458/**
2459 * How many high priority requests to serve before serving one normal
2460 * priority request
2461 */
2462#define PTLRPC_SVC_HP_RATIO 10
2463
2464/**
2465 * Definition of PortalRPC service.
2466 * The service is listening on a particular portal (like tcp port)
2467 * and perform actions for a specific server like IO service for OST
2468 * or general metadata service for MDS.
2469 */
2470struct ptlrpc_service {
2471 /** serialize /proc operations */
2472 spinlock_t srv_lock;
2473 /** most often accessed fields */
2474 /** chain thru all services */
2475 struct list_head srv_list;
2476 /** service operations table */
2477 struct ptlrpc_service_ops srv_ops;
2478 /** only statically allocated strings here; we don't clean them */
2479 char *srv_name;
2480 /** only statically allocated strings here; we don't clean them */
2481 char *srv_thread_name;
2482 /** service thread list */
2483 struct list_head srv_threads;
2484 /** threads # should be created for each partition on initializing */
2485 int srv_nthrs_cpt_init;
2486 /** limit of threads number for each partition */
2487 int srv_nthrs_cpt_limit;
2488 /** Root of /proc dir tree for this service */
2489 proc_dir_entry_t *srv_procroot;
2490 /** Pointer to statistic data for this service */
2491 struct lprocfs_stats *srv_stats;
2492 /** # hp per lp reqs to handle */
2493 int srv_hpreq_ratio;
2494 /** biggest request to receive */
2495 int srv_max_req_size;
2496 /** biggest reply to send */
2497 int srv_max_reply_size;
2498 /** size of individual buffers */
2499 int srv_buf_size;
2500 /** # buffers to allocate in 1 group */
2501 int srv_nbuf_per_group;
2502 /** Local portal on which to receive requests */
2503 __u32 srv_req_portal;
2504 /** Portal on the client to send replies to */
2505 __u32 srv_rep_portal;
2506 /**
2507 * Tags for lu_context associated with this thread, see struct
2508 * lu_context.
2509 */
2510 __u32 srv_ctx_tags;
2511 /** soft watchdog timeout multiplier */
2512 int srv_watchdog_factor;
2513 /** under unregister_service */
2514 unsigned srv_is_stopping:1;
2515
2516 /** max # request buffers in history per partition */
2517 int srv_hist_nrqbds_cpt_max;
2518 /** number of CPTs this service bound on */
2519 int srv_ncpts;
2520 /** CPTs array this service bound on */
2521 __u32 *srv_cpts;
2522 /** 2^srv_cptab_bits >= cfs_cpt_numbert(srv_cptable) */
2523 int srv_cpt_bits;
2524 /** CPT table this service is running over */
2525 struct cfs_cpt_table *srv_cptable;
2526 /**
2527 * partition data for ptlrpc service
2528 */
2529 struct ptlrpc_service_part *srv_parts[0];
2530};
2531
2532/**
2533 * Definition of PortalRPC service partition data.
2534 * Although a service only has one instance of it right now, but we
2535 * will have multiple instances very soon (instance per CPT).
2536 *
2537 * it has four locks:
2538 * \a scp_lock
2539 * serialize operations on rqbd and requests waiting for preprocess
2540 * \a scp_req_lock
2541 * serialize operations active requests sent to this portal
2542 * \a scp_at_lock
2543 * serialize adaptive timeout stuff
2544 * \a scp_rep_lock
2545 * serialize operations on RS list (reply states)
2546 *
2547 * We don't have any use-case to take two or more locks at the same time
2548 * for now, so there is no lock order issue.
2549 */
2550struct ptlrpc_service_part {
2551 /** back reference to owner */
2552 struct ptlrpc_service *scp_service __cfs_cacheline_aligned;
2553 /* CPT id, reserved */
2554 int scp_cpt;
2555 /** always increasing number */
2556 int scp_thr_nextid;
2557 /** # of starting threads */
2558 int scp_nthrs_starting;
2559 /** # of stopping threads, reserved for shrinking threads */
2560 int scp_nthrs_stopping;
2561 /** # running threads */
2562 int scp_nthrs_running;
2563 /** service threads list */
2564 struct list_head scp_threads;
2565
2566 /**
2567 * serialize the following fields, used for protecting
2568 * rqbd list and incoming requests waiting for preprocess,
2569 * threads starting & stopping are also protected by this lock.
2570 */
2571 spinlock_t scp_lock __cfs_cacheline_aligned;
2572 /** total # req buffer descs allocated */
2573 int scp_nrqbds_total;
2574 /** # posted request buffers for receiving */
2575 int scp_nrqbds_posted;
2576 /** in progress of allocating rqbd */
2577 int scp_rqbd_allocating;
2578 /** # incoming reqs */
2579 int scp_nreqs_incoming;
2580 /** request buffers to be reposted */
2581 struct list_head scp_rqbd_idle;
2582 /** req buffers receiving */
2583 struct list_head scp_rqbd_posted;
2584 /** incoming reqs */
2585 struct list_head scp_req_incoming;
2586 /** timeout before re-posting reqs, in tick */
2587 cfs_duration_t scp_rqbd_timeout;
2588 /**
2589 * all threads sleep on this. This wait-queue is signalled when new
2590 * incoming request arrives and when difficult reply has to be handled.
2591 */
2592 wait_queue_head_t scp_waitq;
2593
2594 /** request history */
2595 struct list_head scp_hist_reqs;
2596 /** request buffer history */
2597 struct list_head scp_hist_rqbds;
2598 /** # request buffers in history */
2599 int scp_hist_nrqbds;
2600 /** sequence number for request */
2601 __u64 scp_hist_seq;
2602 /** highest seq culled from history */
2603 __u64 scp_hist_seq_culled;
2604
2605 /**
2606 * serialize the following fields, used for processing requests
2607 * sent to this portal
2608 */
2609 spinlock_t scp_req_lock __cfs_cacheline_aligned;
2610 /** # reqs in either of the NRS heads below */
2611 /** # reqs being served */
2612 int scp_nreqs_active;
2613 /** # HPreqs being served */
2614 int scp_nhreqs_active;
2615 /** # hp requests handled */
2616 int scp_hreq_count;
2617
2618 /** NRS head for regular requests */
2619 struct ptlrpc_nrs scp_nrs_reg;
2620 /** NRS head for HP requests; this is only valid for services that can
2621 * handle HP requests */
2622 struct ptlrpc_nrs *scp_nrs_hp;
2623
2624 /** AT stuff */
2625 /** @{ */
2626 /**
2627 * serialize the following fields, used for changes on
2628 * adaptive timeout
2629 */
2630 spinlock_t scp_at_lock __cfs_cacheline_aligned;
2631 /** estimated rpc service time */
2632 struct adaptive_timeout scp_at_estimate;
2633 /** reqs waiting for replies */
2634 struct ptlrpc_at_array scp_at_array;
2635 /** early reply timer */
2636 timer_list_t scp_at_timer;
2637 /** debug */
2638 cfs_time_t scp_at_checktime;
2639 /** check early replies */
2640 unsigned scp_at_check;
2641 /** @} */
2642
2643 /**
2644 * serialize the following fields, used for processing
2645 * replies for this portal
2646 */
2647 spinlock_t scp_rep_lock __cfs_cacheline_aligned;
2648 /** all the active replies */
2649 struct list_head scp_rep_active;
2650 /** List of free reply_states */
2651 struct list_head scp_rep_idle;
2652 /** waitq to run, when adding stuff to srv_free_rs_list */
2653 wait_queue_head_t scp_rep_waitq;
2654 /** # 'difficult' replies */
2655 atomic_t scp_nreps_difficult;
2656};
2657
2658#define ptlrpc_service_for_each_part(part, i, svc) \
2659 for (i = 0; \
2660 i < (svc)->srv_ncpts && \
2661 (svc)->srv_parts != NULL && \
2662 ((part) = (svc)->srv_parts[i]) != NULL; i++)
2663
2664/**
2665 * Declaration of ptlrpcd control structure
2666 */
2667struct ptlrpcd_ctl {
2668 /**
2669 * Ptlrpc thread control flags (LIOD_START, LIOD_STOP, LIOD_FORCE)
2670 */
2671 unsigned long pc_flags;
2672 /**
2673 * Thread lock protecting structure fields.
2674 */
2675 spinlock_t pc_lock;
2676 /**
2677 * Start completion.
2678 */
2679 struct completion pc_starting;
2680 /**
2681 * Stop completion.
2682 */
2683 struct completion pc_finishing;
2684 /**
2685 * Thread requests set.
2686 */
2687 struct ptlrpc_request_set *pc_set;
2688 /**
2689 * Thread name used in cfs_daemonize()
2690 */
2691 char pc_name[16];
2692 /**
2693 * Environment for request interpreters to run in.
2694 */
2695 struct lu_env pc_env;
2696 /**
2697 * Index of ptlrpcd thread in the array.
2698 */
2699 int pc_index;
2700 /**
2701 * Number of the ptlrpcd's partners.
2702 */
2703 int pc_npartners;
2704 /**
2705 * Pointer to the array of partners' ptlrpcd_ctl structure.
2706 */
2707 struct ptlrpcd_ctl **pc_partners;
2708 /**
2709 * Record the partner index to be processed next.
2710 */
2711 int pc_cursor;
2712};
2713
2714/* Bits for pc_flags */
2715enum ptlrpcd_ctl_flags {
2716 /**
2717 * Ptlrpc thread start flag.
2718 */
2719 LIOD_START = 1 << 0,
2720 /**
2721 * Ptlrpc thread stop flag.
2722 */
2723 LIOD_STOP = 1 << 1,
2724 /**
2725 * Ptlrpc thread force flag (only stop force so far).
2726 * This will cause aborting any inflight rpcs handled
2727 * by thread if LIOD_STOP is specified.
2728 */
2729 LIOD_FORCE = 1 << 2,
2730 /**
2731 * This is a recovery ptlrpc thread.
2732 */
2733 LIOD_RECOVERY = 1 << 3,
2734 /**
2735 * The ptlrpcd is bound to some CPU core.
2736 */
2737 LIOD_BIND = 1 << 4,
2738};
2739
2740/**
2741 * \addtogroup nrs
2742 * @{
2743 *
2744 * Service compatibility function; the policy is compatible with all services.
2745 *
2746 * \param[in] svc The service the policy is attempting to register with.
2747 * \param[in] desc The policy descriptor
2748 *
2749 * \retval true The policy is compatible with the service
2750 *
2751 * \see ptlrpc_nrs_pol_desc::pd_compat()
2752 */
2753static inline bool nrs_policy_compat_all(const struct ptlrpc_service *svc,
2754 const struct ptlrpc_nrs_pol_desc *desc)
2755{
2756 return true;
2757}
2758
2759/**
2760 * Service compatibility function; the policy is compatible with only a specific
2761 * service which is identified by its human-readable name at
2762 * ptlrpc_service::srv_name.
2763 *
2764 * \param[in] svc The service the policy is attempting to register with.
2765 * \param[in] desc The policy descriptor
2766 *
2767 * \retval false The policy is not compatible with the service
2768 * \retval true The policy is compatible with the service
2769 *
2770 * \see ptlrpc_nrs_pol_desc::pd_compat()
2771 */
2772static inline bool nrs_policy_compat_one(const struct ptlrpc_service *svc,
2773 const struct ptlrpc_nrs_pol_desc *desc)
2774{
2775 LASSERT(desc->pd_compat_svc_name != NULL);
2776 return strcmp(svc->srv_name, desc->pd_compat_svc_name) == 0;
2777}
2778
2779/** @} nrs */
2780
2781/* ptlrpc/events.c */
2782extern lnet_handle_eq_t ptlrpc_eq_h;
2783extern int ptlrpc_uuid_to_peer(struct obd_uuid *uuid,
2784 lnet_process_id_t *peer, lnet_nid_t *self);
2785/**
2786 * These callbacks are invoked by LNet when something happened to
2787 * underlying buffer
2788 * @{
2789 */
2790extern void request_out_callback(lnet_event_t *ev);
2791extern void reply_in_callback(lnet_event_t *ev);
2792extern void client_bulk_callback(lnet_event_t *ev);
2793extern void request_in_callback(lnet_event_t *ev);
2794extern void reply_out_callback(lnet_event_t *ev);
2795/** @} */
2796
2797/* ptlrpc/connection.c */
2798struct ptlrpc_connection *ptlrpc_connection_get(lnet_process_id_t peer,
2799 lnet_nid_t self,
2800 struct obd_uuid *uuid);
2801int ptlrpc_connection_put(struct ptlrpc_connection *c);
2802struct ptlrpc_connection *ptlrpc_connection_addref(struct ptlrpc_connection *);
2803int ptlrpc_connection_init(void);
2804void ptlrpc_connection_fini(void);
2805extern lnet_pid_t ptl_get_pid(void);
2806
2807/* ptlrpc/niobuf.c */
2808/**
2809 * Actual interfacing with LNet to put/get/register/unregister stuff
2810 * @{
2811 */
2812
2813int ptlrpc_register_bulk(struct ptlrpc_request *req);
2814int ptlrpc_unregister_bulk(struct ptlrpc_request *req, int async);
2815
2816static inline int ptlrpc_client_bulk_active(struct ptlrpc_request *req)
2817{
2818 struct ptlrpc_bulk_desc *desc;
2819 int rc;
2820
2821 LASSERT(req != NULL);
2822 desc = req->rq_bulk;
2823
2824 if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK) &&
2825 req->rq_bulk_deadline > cfs_time_current_sec())
2826 return 1;
2827
2828 if (!desc)
2829 return 0;
2830
2831 spin_lock(&desc->bd_lock);
2832 rc = desc->bd_md_count;
2833 spin_unlock(&desc->bd_lock);
2834 return rc;
2835}
2836
2837#define PTLRPC_REPLY_MAYBE_DIFFICULT 0x01
2838#define PTLRPC_REPLY_EARLY 0x02
2839int ptlrpc_send_reply(struct ptlrpc_request *req, int flags);
2840int ptlrpc_reply(struct ptlrpc_request *req);
2841int ptlrpc_send_error(struct ptlrpc_request *req, int difficult);
2842int ptlrpc_error(struct ptlrpc_request *req);
2843void ptlrpc_resend_req(struct ptlrpc_request *request);
2844int ptlrpc_at_get_net_latency(struct ptlrpc_request *req);
2845int ptl_send_rpc(struct ptlrpc_request *request, int noreply);
2846int ptlrpc_register_rqbd(struct ptlrpc_request_buffer_desc *rqbd);
2847/** @} */
2848
2849/* ptlrpc/client.c */
2850/**
2851 * Client-side portals API. Everything to send requests, receive replies,
2852 * request queues, request management, etc.
2853 * @{
2854 */
2855void ptlrpc_init_client(int req_portal, int rep_portal, char *name,
2856 struct ptlrpc_client *);
2857void ptlrpc_cleanup_client(struct obd_import *imp);
2858struct ptlrpc_connection *ptlrpc_uuid_to_connection(struct obd_uuid *uuid);
2859
2860int ptlrpc_queue_wait(struct ptlrpc_request *req);
2861int ptlrpc_replay_req(struct ptlrpc_request *req);
2862int ptlrpc_unregister_reply(struct ptlrpc_request *req, int async);
2863void ptlrpc_restart_req(struct ptlrpc_request *req);
2864void ptlrpc_abort_inflight(struct obd_import *imp);
2865void ptlrpc_cleanup_imp(struct obd_import *imp);
2866void ptlrpc_abort_set(struct ptlrpc_request_set *set);
2867
2868struct ptlrpc_request_set *ptlrpc_prep_set(void);
2869struct ptlrpc_request_set *ptlrpc_prep_fcset(int max, set_producer_func func,
2870 void *arg);
2871int ptlrpc_set_add_cb(struct ptlrpc_request_set *set,
2872 set_interpreter_func fn, void *data);
2873int ptlrpc_set_next_timeout(struct ptlrpc_request_set *);
2874int ptlrpc_check_set(const struct lu_env *env, struct ptlrpc_request_set *set);
2875int ptlrpc_set_wait(struct ptlrpc_request_set *);
2876int ptlrpc_expired_set(void *data);
2877void ptlrpc_interrupted_set(void *data);
2878void ptlrpc_mark_interrupted(struct ptlrpc_request *req);
2879void ptlrpc_set_destroy(struct ptlrpc_request_set *);
2880void ptlrpc_set_add_req(struct ptlrpc_request_set *, struct ptlrpc_request *);
2881void ptlrpc_set_add_new_req(struct ptlrpcd_ctl *pc,
2882 struct ptlrpc_request *req);
2883
2884void ptlrpc_free_rq_pool(struct ptlrpc_request_pool *pool);
2885void ptlrpc_add_rqs_to_pool(struct ptlrpc_request_pool *pool, int num_rq);
2886
2887struct ptlrpc_request_pool *
2888ptlrpc_init_rq_pool(int, int,
2889 void (*populate_pool)(struct ptlrpc_request_pool *, int));
2890
2891void ptlrpc_at_set_req_timeout(struct ptlrpc_request *req);
2892struct ptlrpc_request *ptlrpc_request_alloc(struct obd_import *imp,
2893 const struct req_format *format);
2894struct ptlrpc_request *ptlrpc_request_alloc_pool(struct obd_import *imp,
2895 struct ptlrpc_request_pool *,
2896 const struct req_format *format);
2897void ptlrpc_request_free(struct ptlrpc_request *request);
2898int ptlrpc_request_pack(struct ptlrpc_request *request,
2899 __u32 version, int opcode);
2900struct ptlrpc_request *ptlrpc_request_alloc_pack(struct obd_import *imp,
2901 const struct req_format *format,
2902 __u32 version, int opcode);
2903int ptlrpc_request_bufs_pack(struct ptlrpc_request *request,
2904 __u32 version, int opcode, char **bufs,
2905 struct ptlrpc_cli_ctx *ctx);
2906struct ptlrpc_request *ptlrpc_prep_req(struct obd_import *imp, __u32 version,
2907 int opcode, int count, __u32 *lengths,
2908 char **bufs);
2909struct ptlrpc_request *ptlrpc_prep_req_pool(struct obd_import *imp,
2910 __u32 version, int opcode,
2911 int count, __u32 *lengths, char **bufs,
2912 struct ptlrpc_request_pool *pool);
2913void ptlrpc_req_finished(struct ptlrpc_request *request);
2914void ptlrpc_req_finished_with_imp_lock(struct ptlrpc_request *request);
2915struct ptlrpc_request *ptlrpc_request_addref(struct ptlrpc_request *req);
2916struct ptlrpc_bulk_desc *ptlrpc_prep_bulk_imp(struct ptlrpc_request *req,
2917 unsigned npages, unsigned max_brw,
2918 unsigned type, unsigned portal);
2919void __ptlrpc_free_bulk(struct ptlrpc_bulk_desc *bulk, int pin);
2920static inline void ptlrpc_free_bulk_pin(struct ptlrpc_bulk_desc *bulk)
2921{
2922 __ptlrpc_free_bulk(bulk, 1);
2923}
2924static inline void ptlrpc_free_bulk_nopin(struct ptlrpc_bulk_desc *bulk)
2925{
2926 __ptlrpc_free_bulk(bulk, 0);
2927}
2928void __ptlrpc_prep_bulk_page(struct ptlrpc_bulk_desc *desc,
2929 struct page *page, int pageoffset, int len, int);
2930static inline void ptlrpc_prep_bulk_page_pin(struct ptlrpc_bulk_desc *desc,
2931 struct page *page, int pageoffset,
2932 int len)
2933{
2934 __ptlrpc_prep_bulk_page(desc, page, pageoffset, len, 1);
2935}
2936
2937static inline void ptlrpc_prep_bulk_page_nopin(struct ptlrpc_bulk_desc *desc,
2938 struct page *page, int pageoffset,
2939 int len)
2940{
2941 __ptlrpc_prep_bulk_page(desc, page, pageoffset, len, 0);
2942}
2943
2944void ptlrpc_retain_replayable_request(struct ptlrpc_request *req,
2945 struct obd_import *imp);
2946__u64 ptlrpc_next_xid(void);
2947__u64 ptlrpc_sample_next_xid(void);
2948__u64 ptlrpc_req_xid(struct ptlrpc_request *request);
2949
2950/* Set of routines to run a function in ptlrpcd context */
2951void *ptlrpcd_alloc_work(struct obd_import *imp,
2952 int (*cb)(const struct lu_env *, void *), void *data);
2953void ptlrpcd_destroy_work(void *handler);
2954int ptlrpcd_queue_work(void *handler);
2955
2956/** @} */
2957struct ptlrpc_service_buf_conf {
2958 /* nbufs is buffers # to allocate when growing the pool */
2959 unsigned int bc_nbufs;
2960 /* buffer size to post */
2961 unsigned int bc_buf_size;
2962 /* portal to listed for requests on */
2963 unsigned int bc_req_portal;
2964 /* portal of where to send replies to */
2965 unsigned int bc_rep_portal;
2966 /* maximum request size to be accepted for this service */
2967 unsigned int bc_req_max_size;
2968 /* maximum reply size this service can ever send */
2969 unsigned int bc_rep_max_size;
2970};
2971
2972struct ptlrpc_service_thr_conf {
2973 /* threadname should be 8 characters or less - 6 will be added on */
2974 char *tc_thr_name;
2975 /* threads increasing factor for each CPU */
2976 unsigned int tc_thr_factor;
2977 /* service threads # to start on each partition while initializing */
2978 unsigned int tc_nthrs_init;
2979 /*
2980 * low water of threads # upper-limit on each partition while running,
2981 * service availability may be impacted if threads number is lower
2982 * than this value. It can be ZERO if the service doesn't require
2983 * CPU affinity or there is only one partition.
2984 */
2985 unsigned int tc_nthrs_base;
2986 /* "soft" limit for total threads number */
2987 unsigned int tc_nthrs_max;
2988 /* user specified threads number, it will be validated due to
2989 * other members of this structure. */
2990 unsigned int tc_nthrs_user;
2991 /* set NUMA node affinity for service threads */
2992 unsigned int tc_cpu_affinity;
2993 /* Tags for lu_context associated with service thread */
2994 __u32 tc_ctx_tags;
2995};
2996
2997struct ptlrpc_service_cpt_conf {
2998 struct cfs_cpt_table *cc_cptable;
2999 /* string pattern to describe CPTs for a service */
3000 char *cc_pattern;
3001};
3002
3003struct ptlrpc_service_conf {
3004 /* service name */
3005 char *psc_name;
3006 /* soft watchdog timeout multiplifier to print stuck service traces */
3007 unsigned int psc_watchdog_factor;
3008 /* buffer information */
3009 struct ptlrpc_service_buf_conf psc_buf;
3010 /* thread information */
3011 struct ptlrpc_service_thr_conf psc_thr;
3012 /* CPU partition information */
3013 struct ptlrpc_service_cpt_conf psc_cpt;
3014 /* function table */
3015 struct ptlrpc_service_ops psc_ops;
3016};
3017
3018/* ptlrpc/service.c */
3019/**
3020 * Server-side services API. Register/unregister service, request state
3021 * management, service thread management
3022 *
3023 * @{
3024 */
3025void ptlrpc_save_lock(struct ptlrpc_request *req,
3026 struct lustre_handle *lock, int mode, int no_ack);
3027void ptlrpc_commit_replies(struct obd_export *exp);
3028void ptlrpc_dispatch_difficult_reply(struct ptlrpc_reply_state *rs);
3029void ptlrpc_schedule_difficult_reply(struct ptlrpc_reply_state *rs);
3030int ptlrpc_hpreq_handler(struct ptlrpc_request *req);
3031struct ptlrpc_service *ptlrpc_register_service(
3032 struct ptlrpc_service_conf *conf,
3033 struct proc_dir_entry *proc_entry);
3034void ptlrpc_stop_all_threads(struct ptlrpc_service *svc);
3035
3036int ptlrpc_start_threads(struct ptlrpc_service *svc);
3037int ptlrpc_unregister_service(struct ptlrpc_service *service);
3038int liblustre_check_services(void *arg);
3039void ptlrpc_daemonize(char *name);
3040int ptlrpc_service_health_check(struct ptlrpc_service *);
3041void ptlrpc_server_drop_request(struct ptlrpc_request *req);
3042void ptlrpc_request_change_export(struct ptlrpc_request *req,
3043 struct obd_export *export);
3044
3045int ptlrpc_hr_init(void);
3046void ptlrpc_hr_fini(void);
3047
3048/** @} */
3049
3050/* ptlrpc/import.c */
3051/**
3052 * Import API
3053 * @{
3054 */
3055int ptlrpc_connect_import(struct obd_import *imp);
3056int ptlrpc_init_import(struct obd_import *imp);
3057int ptlrpc_disconnect_import(struct obd_import *imp, int noclose);
3058int ptlrpc_import_recovery_state_machine(struct obd_import *imp);
3059void deuuidify(char *uuid, const char *prefix, char **uuid_start,
3060 int *uuid_len);
3061
3062/* ptlrpc/pack_generic.c */
3063int ptlrpc_reconnect_import(struct obd_import *imp);
3064/** @} */
3065
3066/**
3067 * ptlrpc msg buffer and swab interface
3068 *
3069 * @{
3070 */
3071int ptlrpc_buf_need_swab(struct ptlrpc_request *req, const int inout,
3072 int index);
3073void ptlrpc_buf_set_swabbed(struct ptlrpc_request *req, const int inout,
3074 int index);
3075int ptlrpc_unpack_rep_msg(struct ptlrpc_request *req, int len);
3076int ptlrpc_unpack_req_msg(struct ptlrpc_request *req, int len);
3077
3078int lustre_msg_check_version(struct lustre_msg *msg, __u32 version);
3079void lustre_init_msg_v2(struct lustre_msg_v2 *msg, int count, __u32 *lens,
3080 char **bufs);
3081int lustre_pack_request(struct ptlrpc_request *, __u32 magic, int count,
3082 __u32 *lens, char **bufs);
3083int lustre_pack_reply(struct ptlrpc_request *, int count, __u32 *lens,
3084 char **bufs);
3085int lustre_pack_reply_v2(struct ptlrpc_request *req, int count,
3086 __u32 *lens, char **bufs, int flags);
3087#define LPRFL_EARLY_REPLY 1
3088int lustre_pack_reply_flags(struct ptlrpc_request *, int count, __u32 *lens,
3089 char **bufs, int flags);
3090int lustre_shrink_msg(struct lustre_msg *msg, int segment,
3091 unsigned int newlen, int move_data);
3092void lustre_free_reply_state(struct ptlrpc_reply_state *rs);
3093int __lustre_unpack_msg(struct lustre_msg *m, int len);
3094int lustre_msg_hdr_size(__u32 magic, int count);
3095int lustre_msg_size(__u32 magic, int count, __u32 *lengths);
3096int lustre_msg_size_v2(int count, __u32 *lengths);
3097int lustre_packed_msg_size(struct lustre_msg *msg);
3098int lustre_msg_early_size(void);
3099void *lustre_msg_buf_v2(struct lustre_msg_v2 *m, int n, int min_size);
3100void *lustre_msg_buf(struct lustre_msg *m, int n, int minlen);
3101int lustre_msg_buflen(struct lustre_msg *m, int n);
3102void lustre_msg_set_buflen(struct lustre_msg *m, int n, int len);
3103int lustre_msg_bufcount(struct lustre_msg *m);
3104char *lustre_msg_string(struct lustre_msg *m, int n, int max_len);
3105__u32 lustre_msghdr_get_flags(struct lustre_msg *msg);
3106void lustre_msghdr_set_flags(struct lustre_msg *msg, __u32 flags);
3107__u32 lustre_msg_get_flags(struct lustre_msg *msg);
3108void lustre_msg_add_flags(struct lustre_msg *msg, int flags);
3109void lustre_msg_set_flags(struct lustre_msg *msg, int flags);
3110void lustre_msg_clear_flags(struct lustre_msg *msg, int flags);
3111__u32 lustre_msg_get_op_flags(struct lustre_msg *msg);
3112void lustre_msg_add_op_flags(struct lustre_msg *msg, int flags);
3113void lustre_msg_set_op_flags(struct lustre_msg *msg, int flags);
3114struct lustre_handle *lustre_msg_get_handle(struct lustre_msg *msg);
3115__u32 lustre_msg_get_type(struct lustre_msg *msg);
3116__u32 lustre_msg_get_version(struct lustre_msg *msg);
3117void lustre_msg_add_version(struct lustre_msg *msg, int version);
3118__u32 lustre_msg_get_opc(struct lustre_msg *msg);
3119__u64 lustre_msg_get_last_xid(struct lustre_msg *msg);
3120__u64 lustre_msg_get_last_committed(struct lustre_msg *msg);
3121__u64 *lustre_msg_get_versions(struct lustre_msg *msg);
3122__u64 lustre_msg_get_transno(struct lustre_msg *msg);
3123__u64 lustre_msg_get_slv(struct lustre_msg *msg);
3124__u32 lustre_msg_get_limit(struct lustre_msg *msg);
3125void lustre_msg_set_slv(struct lustre_msg *msg, __u64 slv);
3126void lustre_msg_set_limit(struct lustre_msg *msg, __u64 limit);
3127int lustre_msg_get_status(struct lustre_msg *msg);
3128__u32 lustre_msg_get_conn_cnt(struct lustre_msg *msg);
3129int lustre_msg_is_v1(struct lustre_msg *msg);
3130__u32 lustre_msg_get_magic(struct lustre_msg *msg);
3131__u32 lustre_msg_get_timeout(struct lustre_msg *msg);
3132__u32 lustre_msg_get_service_time(struct lustre_msg *msg);
3133char *lustre_msg_get_jobid(struct lustre_msg *msg);
3134__u32 lustre_msg_get_cksum(struct lustre_msg *msg);
3135#if LUSTRE_VERSION_CODE < OBD_OCD_VERSION(2, 7, 50, 0)
3136__u32 lustre_msg_calc_cksum(struct lustre_msg *msg, int compat18);
3137#else
3138# warning "remove checksum compatibility support for b1_8"
3139__u32 lustre_msg_calc_cksum(struct lustre_msg *msg);
3140#endif
3141void lustre_msg_set_handle(struct lustre_msg *msg,struct lustre_handle *handle);
3142void lustre_msg_set_type(struct lustre_msg *msg, __u32 type);
3143void lustre_msg_set_opc(struct lustre_msg *msg, __u32 opc);
3144void lustre_msg_set_last_xid(struct lustre_msg *msg, __u64 last_xid);
3145void lustre_msg_set_last_committed(struct lustre_msg *msg,__u64 last_committed);
3146void lustre_msg_set_versions(struct lustre_msg *msg, __u64 *versions);
3147void lustre_msg_set_transno(struct lustre_msg *msg, __u64 transno);
3148void lustre_msg_set_status(struct lustre_msg *msg, __u32 status);
3149void lustre_msg_set_conn_cnt(struct lustre_msg *msg, __u32 conn_cnt);
3150void ptlrpc_req_set_repsize(struct ptlrpc_request *req, int count, __u32 *sizes);
3151void ptlrpc_request_set_replen(struct ptlrpc_request *req);
3152void lustre_msg_set_timeout(struct lustre_msg *msg, __u32 timeout);
3153void lustre_msg_set_service_time(struct lustre_msg *msg, __u32 service_time);
3154void lustre_msg_set_jobid(struct lustre_msg *msg, char *jobid);
3155void lustre_msg_set_cksum(struct lustre_msg *msg, __u32 cksum);
3156
3157static inline void
3158lustre_shrink_reply(struct ptlrpc_request *req, int segment,
3159 unsigned int newlen, int move_data)
3160{
3161 LASSERT(req->rq_reply_state);
3162 LASSERT(req->rq_repmsg);
3163 req->rq_replen = lustre_shrink_msg(req->rq_repmsg, segment,
3164 newlen, move_data);
3165}
3166/** @} */
3167
3168/** Change request phase of \a req to \a new_phase */
3169static inline void
3170ptlrpc_rqphase_move(struct ptlrpc_request *req, enum rq_phase new_phase)
3171{
3172 if (req->rq_phase == new_phase)
3173 return;
3174
3175 if (new_phase == RQ_PHASE_UNREGISTERING) {
3176 req->rq_next_phase = req->rq_phase;
3177 if (req->rq_import)
3178 atomic_inc(&req->rq_import->imp_unregistering);
3179 }
3180
3181 if (req->rq_phase == RQ_PHASE_UNREGISTERING) {
3182 if (req->rq_import)
3183 atomic_dec(&req->rq_import->imp_unregistering);
3184 }
3185
3186 DEBUG_REQ(D_INFO, req, "move req \"%s\" -> \"%s\"",
3187 ptlrpc_rqphase2str(req), ptlrpc_phase2str(new_phase));
3188
3189 req->rq_phase = new_phase;
3190}
3191
3192/**
3193 * Returns true if request \a req got early reply and hard deadline is not met
3194 */
3195static inline int
3196ptlrpc_client_early(struct ptlrpc_request *req)
3197{
3198 if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK) &&
3199 req->rq_reply_deadline > cfs_time_current_sec())
3200 return 0;
3201 return req->rq_early;
3202}
3203
3204/**
3205 * Returns true if we got real reply from server for this request
3206 */
3207static inline int
3208ptlrpc_client_replied(struct ptlrpc_request *req)
3209{
3210 if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK) &&
3211 req->rq_reply_deadline > cfs_time_current_sec())
3212 return 0;
3213 return req->rq_replied;
3214}
3215
3216/** Returns true if request \a req is in process of receiving server reply */
3217static inline int
3218ptlrpc_client_recv(struct ptlrpc_request *req)
3219{
3220 if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK) &&
3221 req->rq_reply_deadline > cfs_time_current_sec())
3222 return 1;
3223 return req->rq_receiving_reply;
3224}
3225
3226static inline int
3227ptlrpc_client_recv_or_unlink(struct ptlrpc_request *req)
3228{
3229 int rc;
3230
3231 spin_lock(&req->rq_lock);
3232 if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK) &&
3233 req->rq_reply_deadline > cfs_time_current_sec()) {
3234 spin_unlock(&req->rq_lock);
3235 return 1;
3236 }
3237 rc = req->rq_receiving_reply || req->rq_must_unlink;
3238 spin_unlock(&req->rq_lock);
3239 return rc;
3240}
3241
3242static inline void
3243ptlrpc_client_wake_req(struct ptlrpc_request *req)
3244{
3245 if (req->rq_set == NULL)
3246 wake_up(&req->rq_reply_waitq);
3247 else
3248 wake_up(&req->rq_set->set_waitq);
3249}
3250
3251static inline void
3252ptlrpc_rs_addref(struct ptlrpc_reply_state *rs)
3253{
3254 LASSERT(atomic_read(&rs->rs_refcount) > 0);
3255 atomic_inc(&rs->rs_refcount);
3256}
3257
3258static inline void
3259ptlrpc_rs_decref(struct ptlrpc_reply_state *rs)
3260{
3261 LASSERT(atomic_read(&rs->rs_refcount) > 0);
3262 if (atomic_dec_and_test(&rs->rs_refcount))
3263 lustre_free_reply_state(rs);
3264}
3265
3266/* Should only be called once per req */
3267static inline void ptlrpc_req_drop_rs(struct ptlrpc_request *req)
3268{
3269 if (req->rq_reply_state == NULL)
3270 return; /* shouldn't occur */
3271 ptlrpc_rs_decref(req->rq_reply_state);
3272 req->rq_reply_state = NULL;
3273 req->rq_repmsg = NULL;
3274}
3275
3276static inline __u32 lustre_request_magic(struct ptlrpc_request *req)
3277{
3278 return lustre_msg_get_magic(req->rq_reqmsg);
3279}
3280
3281static inline int ptlrpc_req_get_repsize(struct ptlrpc_request *req)
3282{
3283 switch (req->rq_reqmsg->lm_magic) {
3284 case LUSTRE_MSG_MAGIC_V2:
3285 return req->rq_reqmsg->lm_repsize;
3286 default:
3287 LASSERTF(0, "incorrect message magic: %08x\n",
3288 req->rq_reqmsg->lm_magic);
3289 return -EFAULT;
3290 }
3291}
3292
3293static inline int ptlrpc_send_limit_expired(struct ptlrpc_request *req)
3294{
3295 if (req->rq_delay_limit != 0 &&
3296 cfs_time_before(cfs_time_add(req->rq_queued_time,
3297 cfs_time_seconds(req->rq_delay_limit)),
3298 cfs_time_current())) {
3299 return 1;
3300 }
3301 return 0;
3302}
3303
3304static inline int ptlrpc_no_resend(struct ptlrpc_request *req)
3305{
3306 if (!req->rq_no_resend && ptlrpc_send_limit_expired(req)) {
3307 spin_lock(&req->rq_lock);
3308 req->rq_no_resend = 1;
3309 spin_unlock(&req->rq_lock);
3310 }
3311 return req->rq_no_resend;
3312}
3313
3314static inline int
3315ptlrpc_server_get_timeout(struct ptlrpc_service_part *svcpt)
3316{
3317 int at = AT_OFF ? 0 : at_get(&svcpt->scp_at_estimate);
3318
3319 return svcpt->scp_service->srv_watchdog_factor *
3320 max_t(int, at, obd_timeout);
3321}
3322
3323static inline struct ptlrpc_service *
3324ptlrpc_req2svc(struct ptlrpc_request *req)
3325{
3326 LASSERT(req->rq_rqbd != NULL);
3327 return req->rq_rqbd->rqbd_svcpt->scp_service;
3328}
3329
3330/* ldlm/ldlm_lib.c */
3331/**
3332 * Target client logic
3333 * @{
3334 */
3335int client_obd_setup(struct obd_device *obddev, struct lustre_cfg *lcfg);
3336int client_obd_cleanup(struct obd_device *obddev);
3337int client_connect_import(const struct lu_env *env,
3338 struct obd_export **exp, struct obd_device *obd,
3339 struct obd_uuid *cluuid, struct obd_connect_data *,
3340 void *localdata);
3341int client_disconnect_export(struct obd_export *exp);
3342int client_import_add_conn(struct obd_import *imp, struct obd_uuid *uuid,
3343 int priority);
3344int client_import_del_conn(struct obd_import *imp, struct obd_uuid *uuid);
3345int client_import_find_conn(struct obd_import *imp, lnet_nid_t peer,
3346 struct obd_uuid *uuid);
3347int import_set_conn_priority(struct obd_import *imp, struct obd_uuid *uuid);
3348void client_destroy_import(struct obd_import *imp);
3349/** @} */
3350
3351
3352/* ptlrpc/pinger.c */
3353/**
3354 * Pinger API (client side only)
3355 * @{
3356 */
3357enum timeout_event {
3358 TIMEOUT_GRANT = 1
3359};
3360struct timeout_item;
3361typedef int (*timeout_cb_t)(struct timeout_item *, void *);
3362int ptlrpc_pinger_add_import(struct obd_import *imp);
3363int ptlrpc_pinger_del_import(struct obd_import *imp);
3364int ptlrpc_add_timeout_client(int time, enum timeout_event event,
3365 timeout_cb_t cb, void *data,
3366 struct list_head *obd_list);
3367int ptlrpc_del_timeout_client(struct list_head *obd_list,
3368 enum timeout_event event);
3369struct ptlrpc_request * ptlrpc_prep_ping(struct obd_import *imp);
3370int ptlrpc_obd_ping(struct obd_device *obd);
3371cfs_time_t ptlrpc_suspend_wakeup_time(void);
3372void ping_evictor_start(void);
3373void ping_evictor_stop(void);
3374int ptlrpc_check_and_wait_suspend(struct ptlrpc_request *req);
3375void ptlrpc_pinger_ir_up(void);
3376void ptlrpc_pinger_ir_down(void);
3377/** @} */
3378int ptlrpc_pinger_suppress_pings(void);
3379
3380/* ptlrpc daemon bind policy */
3381typedef enum {
3382 /* all ptlrpcd threads are free mode */
3383 PDB_POLICY_NONE = 1,
3384 /* all ptlrpcd threads are bound mode */
3385 PDB_POLICY_FULL = 2,
3386 /* <free1 bound1> <free2 bound2> ... <freeN boundN> */
3387 PDB_POLICY_PAIR = 3,
3388 /* <free1 bound1> <bound1 free2> ... <freeN boundN> <boundN free1>,
3389 * means each ptlrpcd[X] has two partners: thread[X-1] and thread[X+1].
3390 * If kernel supports NUMA, pthrpcd threads are binded and
3391 * grouped by NUMA node */
3392 PDB_POLICY_NEIGHBOR = 4,
3393} pdb_policy_t;
3394
3395/* ptlrpc daemon load policy
3396 * It is caller's duty to specify how to push the async RPC into some ptlrpcd
3397 * queue, but it is not enforced, affected by "ptlrpcd_bind_policy". If it is
3398 * "PDB_POLICY_FULL", then the RPC will be processed by the selected ptlrpcd,
3399 * Otherwise, the RPC may be processed by the selected ptlrpcd or its partner,
3400 * depends on which is scheduled firstly, to accelerate the RPC processing. */
3401typedef enum {
3402 /* on the same CPU core as the caller */
3403 PDL_POLICY_SAME = 1,
3404 /* within the same CPU partition, but not the same core as the caller */
3405 PDL_POLICY_LOCAL = 2,
3406 /* round-robin on all CPU cores, but not the same core as the caller */
3407 PDL_POLICY_ROUND = 3,
3408 /* the specified CPU core is preferred, but not enforced */
3409 PDL_POLICY_PREFERRED = 4,
3410} pdl_policy_t;
3411
3412/* ptlrpc/ptlrpcd.c */
3413void ptlrpcd_stop(struct ptlrpcd_ctl *pc, int force);
3414void ptlrpcd_free(struct ptlrpcd_ctl *pc);
3415void ptlrpcd_wake(struct ptlrpc_request *req);
3416void ptlrpcd_add_req(struct ptlrpc_request *req, pdl_policy_t policy, int idx);
3417void ptlrpcd_add_rqset(struct ptlrpc_request_set *set);
3418int ptlrpcd_addref(void);
3419void ptlrpcd_decref(void);
3420
3421/* ptlrpc/lproc_ptlrpc.c */
3422/**
3423 * procfs output related functions
3424 * @{
3425 */
3426const char* ll_opcode2str(__u32 opcode);
3427#ifdef LPROCFS
3428void ptlrpc_lprocfs_register_obd(struct obd_device *obd);
3429void ptlrpc_lprocfs_unregister_obd(struct obd_device *obd);
3430void ptlrpc_lprocfs_brw(struct ptlrpc_request *req, int bytes);
3431#else
3432static inline void ptlrpc_lprocfs_register_obd(struct obd_device *obd) {}
3433static inline void ptlrpc_lprocfs_unregister_obd(struct obd_device *obd) {}
3434static inline void ptlrpc_lprocfs_brw(struct ptlrpc_request *req, int bytes) {}
3435#endif
3436/** @} */
3437
3438/* ptlrpc/llog_server.c */
3439int llog_origin_handle_open(struct ptlrpc_request *req);
3440int llog_origin_handle_destroy(struct ptlrpc_request *req);
3441int llog_origin_handle_prev_block(struct ptlrpc_request *req);
3442int llog_origin_handle_next_block(struct ptlrpc_request *req);
3443int llog_origin_handle_read_header(struct ptlrpc_request *req);
3444int llog_origin_handle_close(struct ptlrpc_request *req);
3445int llog_origin_handle_cancel(struct ptlrpc_request *req);
3446
3447/* ptlrpc/llog_client.c */
3448extern struct llog_operations llog_client_ops;
3449
3450/** @} net */
3451
3452#endif
3453/** @} PtlRPC */
This page took 0.15498 seconds and 5 git commands to generate.