staging/lustre/libcfs: remove init_waitqueue_entry_current
[deliverable/linux.git] / drivers / staging / lustre / lustre / obdclass / lu_object.c
CommitLineData
d7e09d03
PT
1/*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19 *
20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21 * CA 95054 USA or visit www.sun.com if you need additional information or
22 * have any questions.
23 *
24 * GPL HEADER END
25 */
26/*
27 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
28 * Use is subject to license terms.
29 *
30 * Copyright (c) 2011, 2012, Intel Corporation.
31 */
32/*
33 * This file is part of Lustre, http://www.lustre.org/
34 * Lustre is a trademark of Sun Microsystems, Inc.
35 *
36 * lustre/obdclass/lu_object.c
37 *
38 * Lustre Object.
39 * These are the only exported functions, they provide some generic
40 * infrastructure for managing object devices
41 *
42 * Author: Nikita Danilov <nikita.danilov@sun.com>
43 */
44
45#define DEBUG_SUBSYSTEM S_CLASS
46
47#include <linux/libcfs/libcfs.h>
48
49# include <linux/module.h>
50
51/* hash_long() */
52#include <linux/libcfs/libcfs_hash.h>
53#include <obd_class.h>
54#include <obd_support.h>
55#include <lustre_disk.h>
56#include <lustre_fid.h>
57#include <lu_object.h>
58#include <lu_ref.h>
59#include <linux/list.h>
60
61static void lu_object_free(const struct lu_env *env, struct lu_object *o);
62
63/**
64 * Decrease reference counter on object. If last reference is freed, return
65 * object to the cache, unless lu_object_is_dying(o) holds. In the latter
66 * case, free object immediately.
67 */
68void lu_object_put(const struct lu_env *env, struct lu_object *o)
69{
70 struct lu_site_bkt_data *bkt;
71 struct lu_object_header *top;
72 struct lu_site *site;
73 struct lu_object *orig;
6ea510c1 74 struct cfs_hash_bd bd;
d7e09d03
PT
75 const struct lu_fid *fid;
76
77 top = o->lo_header;
78 site = o->lo_dev->ld_site;
79 orig = o;
80
81 /*
82 * till we have full fids-on-OST implemented anonymous objects
83 * are possible in OSP. such an object isn't listed in the site
84 * so we should not remove it from the site.
85 */
86 fid = lu_object_fid(o);
87 if (fid_is_zero(fid)) {
88 LASSERT(top->loh_hash.next == NULL
89 && top->loh_hash.pprev == NULL);
90 LASSERT(list_empty(&top->loh_lru));
91 if (!atomic_dec_and_test(&top->loh_ref))
92 return;
93 list_for_each_entry_reverse(o, &top->loh_layers, lo_linkage) {
94 if (o->lo_ops->loo_object_release != NULL)
95 o->lo_ops->loo_object_release(env, o);
96 }
97 lu_object_free(env, orig);
98 return;
99 }
100
101 cfs_hash_bd_get(site->ls_obj_hash, &top->loh_fid, &bd);
102 bkt = cfs_hash_bd_extra_get(site->ls_obj_hash, &bd);
103
104 if (!cfs_hash_bd_dec_and_lock(site->ls_obj_hash, &bd, &top->loh_ref)) {
105 if (lu_object_is_dying(top)) {
106
107 /*
108 * somebody may be waiting for this, currently only
109 * used for cl_object, see cl_object_put_last().
110 */
111 wake_up_all(&bkt->lsb_marche_funebre);
112 }
113 return;
114 }
115
116 LASSERT(bkt->lsb_busy > 0);
117 bkt->lsb_busy--;
118 /*
119 * When last reference is released, iterate over object
120 * layers, and notify them that object is no longer busy.
121 */
122 list_for_each_entry_reverse(o, &top->loh_layers, lo_linkage) {
123 if (o->lo_ops->loo_object_release != NULL)
124 o->lo_ops->loo_object_release(env, o);
125 }
126
127 if (!lu_object_is_dying(top)) {
128 LASSERT(list_empty(&top->loh_lru));
129 list_add_tail(&top->loh_lru, &bkt->lsb_lru);
130 cfs_hash_bd_unlock(site->ls_obj_hash, &bd, 1);
131 return;
132 }
133
134 /*
135 * If object is dying (will not be cached), removed it
136 * from hash table and LRU.
137 *
138 * This is done with hash table and LRU lists locked. As the only
139 * way to acquire first reference to previously unreferenced
140 * object is through hash-table lookup (lu_object_find()),
141 * or LRU scanning (lu_site_purge()), that are done under hash-table
142 * and LRU lock, no race with concurrent object lookup is possible
143 * and we can safely destroy object below.
144 */
145 if (!test_and_set_bit(LU_OBJECT_UNHASHED, &top->loh_flags))
146 cfs_hash_bd_del_locked(site->ls_obj_hash, &bd, &top->loh_hash);
147 cfs_hash_bd_unlock(site->ls_obj_hash, &bd, 1);
148 /*
149 * Object was already removed from hash and lru above, can
150 * kill it.
151 */
152 lu_object_free(env, orig);
153}
154EXPORT_SYMBOL(lu_object_put);
155
156/**
157 * Put object and don't keep in cache. This is temporary solution for
158 * multi-site objects when its layering is not constant.
159 */
160void lu_object_put_nocache(const struct lu_env *env, struct lu_object *o)
161{
162 set_bit(LU_OBJECT_HEARD_BANSHEE, &o->lo_header->loh_flags);
163 return lu_object_put(env, o);
164}
165EXPORT_SYMBOL(lu_object_put_nocache);
166
167/**
168 * Kill the object and take it out of LRU cache.
169 * Currently used by client code for layout change.
170 */
171void lu_object_unhash(const struct lu_env *env, struct lu_object *o)
172{
173 struct lu_object_header *top;
174
175 top = o->lo_header;
176 set_bit(LU_OBJECT_HEARD_BANSHEE, &top->loh_flags);
177 if (!test_and_set_bit(LU_OBJECT_UNHASHED, &top->loh_flags)) {
6da6eabe 178 struct cfs_hash *obj_hash = o->lo_dev->ld_site->ls_obj_hash;
6ea510c1 179 struct cfs_hash_bd bd;
d7e09d03
PT
180
181 cfs_hash_bd_get_and_lock(obj_hash, &top->loh_fid, &bd, 1);
182 list_del_init(&top->loh_lru);
183 cfs_hash_bd_del_locked(obj_hash, &bd, &top->loh_hash);
184 cfs_hash_bd_unlock(obj_hash, &bd, 1);
185 }
186}
187EXPORT_SYMBOL(lu_object_unhash);
188
189/**
190 * Allocate new object.
191 *
192 * This follows object creation protocol, described in the comment within
193 * struct lu_device_operations definition.
194 */
195static struct lu_object *lu_object_alloc(const struct lu_env *env,
196 struct lu_device *dev,
197 const struct lu_fid *f,
198 const struct lu_object_conf *conf)
199{
200 struct lu_object *scan;
201 struct lu_object *top;
202 struct list_head *layers;
7cd875d2
JH
203 unsigned int init_mask = 0;
204 unsigned int init_flag;
d7e09d03
PT
205 int clean;
206 int result;
d7e09d03
PT
207
208 /*
209 * Create top-level object slice. This will also create
210 * lu_object_header.
211 */
212 top = dev->ld_ops->ldo_object_alloc(env, NULL, dev);
213 if (top == NULL)
0a3bdb00 214 return ERR_PTR(-ENOMEM);
d7e09d03 215 if (IS_ERR(top))
0a3bdb00 216 return top;
d7e09d03
PT
217 /*
218 * This is the only place where object fid is assigned. It's constant
219 * after this point.
220 */
221 top->lo_header->loh_fid = *f;
222 layers = &top->lo_header->loh_layers;
7cd875d2 223
d7e09d03
PT
224 do {
225 /*
226 * Call ->loo_object_init() repeatedly, until no more new
227 * object slices are created.
228 */
229 clean = 1;
7cd875d2 230 init_flag = 1;
d7e09d03 231 list_for_each_entry(scan, layers, lo_linkage) {
7cd875d2
JH
232 if (init_mask & init_flag)
233 goto next;
d7e09d03
PT
234 clean = 0;
235 scan->lo_header = top->lo_header;
236 result = scan->lo_ops->loo_object_init(env, scan, conf);
237 if (result != 0) {
238 lu_object_free(env, top);
0a3bdb00 239 return ERR_PTR(result);
d7e09d03 240 }
7cd875d2
JH
241 init_mask |= init_flag;
242next:
243 init_flag <<= 1;
d7e09d03
PT
244 }
245 } while (!clean);
246
247 list_for_each_entry_reverse(scan, layers, lo_linkage) {
248 if (scan->lo_ops->loo_object_start != NULL) {
249 result = scan->lo_ops->loo_object_start(env, scan);
250 if (result != 0) {
251 lu_object_free(env, top);
0a3bdb00 252 return ERR_PTR(result);
d7e09d03
PT
253 }
254 }
255 }
256
257 lprocfs_counter_incr(dev->ld_site->ls_stats, LU_SS_CREATED);
0a3bdb00 258 return top;
d7e09d03
PT
259}
260
261/**
262 * Free an object.
263 */
264static void lu_object_free(const struct lu_env *env, struct lu_object *o)
265{
266 struct lu_site_bkt_data *bkt;
267 struct lu_site *site;
268 struct lu_object *scan;
269 struct list_head *layers;
270 struct list_head splice;
271
272 site = o->lo_dev->ld_site;
273 layers = &o->lo_header->loh_layers;
274 bkt = lu_site_bkt_from_fid(site, &o->lo_header->loh_fid);
275 /*
276 * First call ->loo_object_delete() method to release all resources.
277 */
278 list_for_each_entry_reverse(scan, layers, lo_linkage) {
279 if (scan->lo_ops->loo_object_delete != NULL)
280 scan->lo_ops->loo_object_delete(env, scan);
281 }
282
283 /*
284 * Then, splice object layers into stand-alone list, and call
285 * ->loo_object_free() on all layers to free memory. Splice is
286 * necessary, because lu_object_header is freed together with the
287 * top-level slice.
288 */
289 INIT_LIST_HEAD(&splice);
290 list_splice_init(layers, &splice);
291 while (!list_empty(&splice)) {
292 /*
293 * Free layers in bottom-to-top order, so that object header
294 * lives as long as possible and ->loo_object_free() methods
295 * can look at its contents.
296 */
297 o = container_of0(splice.prev, struct lu_object, lo_linkage);
298 list_del_init(&o->lo_linkage);
299 LASSERT(o->lo_ops->loo_object_free != NULL);
300 o->lo_ops->loo_object_free(env, o);
301 }
302
303 if (waitqueue_active(&bkt->lsb_marche_funebre))
304 wake_up_all(&bkt->lsb_marche_funebre);
305}
306
307/**
308 * Free \a nr objects from the cold end of the site LRU list.
309 */
310int lu_site_purge(const struct lu_env *env, struct lu_site *s, int nr)
311{
312 struct lu_object_header *h;
313 struct lu_object_header *temp;
314 struct lu_site_bkt_data *bkt;
6ea510c1
LN
315 struct cfs_hash_bd bd;
316 struct cfs_hash_bd bd2;
d7e09d03
PT
317 struct list_head dispose;
318 int did_sth;
319 int start;
320 int count;
321 int bnr;
322 int i;
323
324 if (OBD_FAIL_CHECK(OBD_FAIL_OBD_NO_LRU))
0a3bdb00 325 return 0;
d7e09d03
PT
326
327 INIT_LIST_HEAD(&dispose);
328 /*
329 * Under LRU list lock, scan LRU list and move unreferenced objects to
330 * the dispose list, removing them from LRU and hash table.
331 */
332 start = s->ls_purge_start;
333 bnr = (nr == ~0) ? -1 : nr / CFS_HASH_NBKT(s->ls_obj_hash) + 1;
334 again:
335 did_sth = 0;
336 cfs_hash_for_each_bucket(s->ls_obj_hash, &bd, i) {
337 if (i < start)
338 continue;
339 count = bnr;
340 cfs_hash_bd_lock(s->ls_obj_hash, &bd, 1);
341 bkt = cfs_hash_bd_extra_get(s->ls_obj_hash, &bd);
342
343 list_for_each_entry_safe(h, temp, &bkt->lsb_lru, loh_lru) {
344 LASSERT(atomic_read(&h->loh_ref) == 0);
345
346 cfs_hash_bd_get(s->ls_obj_hash, &h->loh_fid, &bd2);
347 LASSERT(bd.bd_bucket == bd2.bd_bucket);
348
349 cfs_hash_bd_del_locked(s->ls_obj_hash,
350 &bd2, &h->loh_hash);
351 list_move(&h->loh_lru, &dispose);
352 if (did_sth == 0)
353 did_sth = 1;
354
355 if (nr != ~0 && --nr == 0)
356 break;
357
358 if (count > 0 && --count == 0)
359 break;
360
361 }
362 cfs_hash_bd_unlock(s->ls_obj_hash, &bd, 1);
363 cond_resched();
364 /*
365 * Free everything on the dispose list. This is safe against
366 * races due to the reasons described in lu_object_put().
367 */
368 while (!list_empty(&dispose)) {
369 h = container_of0(dispose.next,
370 struct lu_object_header, loh_lru);
371 list_del_init(&h->loh_lru);
372 lu_object_free(env, lu_object_top(h));
373 lprocfs_counter_incr(s->ls_stats, LU_SS_LRU_PURGED);
374 }
375
376 if (nr == 0)
377 break;
378 }
379
380 if (nr != 0 && did_sth && start != 0) {
381 start = 0; /* restart from the first bucket */
382 goto again;
383 }
384 /* race on s->ls_purge_start, but nobody cares */
385 s->ls_purge_start = i % CFS_HASH_NBKT(s->ls_obj_hash);
386
387 return nr;
388}
389EXPORT_SYMBOL(lu_site_purge);
390
391/*
392 * Object printing.
393 *
394 * Code below has to jump through certain loops to output object description
395 * into libcfs_debug_msg-based log. The problem is that lu_object_print()
396 * composes object description from strings that are parts of _lines_ of
397 * output (i.e., strings that are not terminated by newline). This doesn't fit
398 * very well into libcfs_debug_msg() interface that assumes that each message
399 * supplied to it is a self-contained output line.
400 *
401 * To work around this, strings are collected in a temporary buffer
402 * (implemented as a value of lu_cdebug_key key), until terminating newline
403 * character is detected.
404 *
405 */
406
407enum {
408 /**
409 * Maximal line size.
410 *
411 * XXX overflow is not handled correctly.
412 */
413 LU_CDEBUG_LINE = 512
414};
415
416struct lu_cdebug_data {
417 /**
418 * Temporary buffer.
419 */
420 char lck_area[LU_CDEBUG_LINE];
421};
422
423/* context key constructor/destructor: lu_global_key_init, lu_global_key_fini */
424LU_KEY_INIT_FINI(lu_global, struct lu_cdebug_data);
425
426/**
427 * Key, holding temporary buffer. This key is registered very early by
428 * lu_global_init().
429 */
430struct lu_context_key lu_global_key = {
431 .lct_tags = LCT_MD_THREAD | LCT_DT_THREAD |
aa4e3c8a 432 LCT_MG_THREAD | LCT_CL_THREAD | LCT_LOCAL,
d7e09d03
PT
433 .lct_init = lu_global_key_init,
434 .lct_fini = lu_global_key_fini
435};
436
437/**
438 * Printer function emitting messages through libcfs_debug_msg().
439 */
440int lu_cdebug_printer(const struct lu_env *env,
441 void *cookie, const char *format, ...)
442{
443 struct libcfs_debug_msg_data *msgdata = cookie;
444 struct lu_cdebug_data *key;
445 int used;
446 int complete;
447 va_list args;
448
449 va_start(args, format);
450
451 key = lu_context_key_get(&env->le_ctx, &lu_global_key);
452 LASSERT(key != NULL);
453
454 used = strlen(key->lck_area);
455 complete = format[strlen(format) - 1] == '\n';
456 /*
457 * Append new chunk to the buffer.
458 */
459 vsnprintf(key->lck_area + used,
460 ARRAY_SIZE(key->lck_area) - used, format, args);
461 if (complete) {
462 if (cfs_cdebug_show(msgdata->msg_mask, msgdata->msg_subsys))
463 libcfs_debug_msg(msgdata, "%s", key->lck_area);
464 key->lck_area[0] = 0;
465 }
466 va_end(args);
467 return 0;
468}
469EXPORT_SYMBOL(lu_cdebug_printer);
470
471/**
472 * Print object header.
473 */
474void lu_object_header_print(const struct lu_env *env, void *cookie,
475 lu_printer_t printer,
476 const struct lu_object_header *hdr)
477{
478 (*printer)(env, cookie, "header@%p[%#lx, %d, "DFID"%s%s%s]",
479 hdr, hdr->loh_flags, atomic_read(&hdr->loh_ref),
480 PFID(&hdr->loh_fid),
481 hlist_unhashed(&hdr->loh_hash) ? "" : " hash",
482 list_empty((struct list_head *)&hdr->loh_lru) ? \
483 "" : " lru",
484 hdr->loh_attr & LOHA_EXISTS ? " exist":"");
485}
486EXPORT_SYMBOL(lu_object_header_print);
487
488/**
489 * Print human readable representation of the \a o to the \a printer.
490 */
491void lu_object_print(const struct lu_env *env, void *cookie,
492 lu_printer_t printer, const struct lu_object *o)
493{
494 static const char ruler[] = "........................................";
495 struct lu_object_header *top;
7cd875d2 496 int depth = 4;
d7e09d03
PT
497
498 top = o->lo_header;
499 lu_object_header_print(env, cookie, printer, top);
7cd875d2 500 (*printer)(env, cookie, "{\n");
d7e09d03 501
7cd875d2 502 list_for_each_entry(o, &top->loh_layers, lo_linkage) {
d7e09d03
PT
503 /*
504 * print `.' \a depth times followed by type name and address
505 */
506 (*printer)(env, cookie, "%*.*s%s@%p", depth, depth, ruler,
507 o->lo_dev->ld_type->ldt_name, o);
7cd875d2 508
d7e09d03 509 if (o->lo_ops->loo_object_print != NULL)
7cd875d2
JH
510 (*o->lo_ops->loo_object_print)(env, cookie, printer, o);
511
d7e09d03
PT
512 (*printer)(env, cookie, "\n");
513 }
7cd875d2 514
d7e09d03
PT
515 (*printer)(env, cookie, "} header@%p\n", top);
516}
517EXPORT_SYMBOL(lu_object_print);
518
519/**
520 * Check object consistency.
521 */
522int lu_object_invariant(const struct lu_object *o)
523{
524 struct lu_object_header *top;
525
526 top = o->lo_header;
527 list_for_each_entry(o, &top->loh_layers, lo_linkage) {
528 if (o->lo_ops->loo_object_invariant != NULL &&
529 !o->lo_ops->loo_object_invariant(o))
530 return 0;
531 }
532 return 1;
533}
534EXPORT_SYMBOL(lu_object_invariant);
535
536static struct lu_object *htable_lookup(struct lu_site *s,
6ea510c1 537 struct cfs_hash_bd *bd,
d7e09d03
PT
538 const struct lu_fid *f,
539 wait_queue_t *waiter,
540 __u64 *version)
541{
542 struct lu_site_bkt_data *bkt;
543 struct lu_object_header *h;
544 struct hlist_node *hnode;
545 __u64 ver = cfs_hash_bd_version_get(bd);
546
547 if (*version == ver)
70b749d4 548 return ERR_PTR(-ENOENT);
d7e09d03
PT
549
550 *version = ver;
551 bkt = cfs_hash_bd_extra_get(s->ls_obj_hash, bd);
552 /* cfs_hash_bd_peek_locked is a somehow "internal" function
553 * of cfs_hash, it doesn't add refcount on object. */
554 hnode = cfs_hash_bd_peek_locked(s->ls_obj_hash, bd, (void *)f);
555 if (hnode == NULL) {
556 lprocfs_counter_incr(s->ls_stats, LU_SS_CACHE_MISS);
70b749d4 557 return ERR_PTR(-ENOENT);
d7e09d03
PT
558 }
559
560 h = container_of0(hnode, struct lu_object_header, loh_hash);
561 if (likely(!lu_object_is_dying(h))) {
562 cfs_hash_get(s->ls_obj_hash, hnode);
563 lprocfs_counter_incr(s->ls_stats, LU_SS_CACHE_HIT);
564 list_del_init(&h->loh_lru);
565 return lu_object_top(h);
566 }
567
568 /*
569 * Lookup found an object being destroyed this object cannot be
570 * returned (to assure that references to dying objects are eventually
571 * drained), and moreover, lookup has to wait until object is freed.
572 */
573
9e795d35 574 init_waitqueue_entry(waiter, current);
d7e09d03
PT
575 add_wait_queue(&bkt->lsb_marche_funebre, waiter);
576 set_current_state(TASK_UNINTERRUPTIBLE);
577 lprocfs_counter_incr(s->ls_stats, LU_SS_CACHE_DEATH_RACE);
578 return ERR_PTR(-EAGAIN);
579}
580
581/**
582 * Search cache for an object with the fid \a f. If such object is found,
583 * return it. Otherwise, create new object, insert it into cache and return
584 * it. In any case, additional reference is acquired on the returned object.
585 */
586struct lu_object *lu_object_find(const struct lu_env *env,
587 struct lu_device *dev, const struct lu_fid *f,
588 const struct lu_object_conf *conf)
589{
590 return lu_object_find_at(env, dev->ld_site->ls_top_dev, f, conf);
591}
592EXPORT_SYMBOL(lu_object_find);
593
594static struct lu_object *lu_object_new(const struct lu_env *env,
595 struct lu_device *dev,
596 const struct lu_fid *f,
597 const struct lu_object_conf *conf)
598{
599 struct lu_object *o;
6da6eabe 600 struct cfs_hash *hs;
6ea510c1 601 struct cfs_hash_bd bd;
d7e09d03
PT
602 struct lu_site_bkt_data *bkt;
603
604 o = lu_object_alloc(env, dev, f, conf);
605 if (unlikely(IS_ERR(o)))
606 return o;
607
608 hs = dev->ld_site->ls_obj_hash;
609 cfs_hash_bd_get_and_lock(hs, (void *)f, &bd, 1);
610 bkt = cfs_hash_bd_extra_get(hs, &bd);
611 cfs_hash_bd_add_locked(hs, &bd, &o->lo_header->loh_hash);
612 bkt->lsb_busy++;
613 cfs_hash_bd_unlock(hs, &bd, 1);
614 return o;
615}
616
617/**
618 * Core logic of lu_object_find*() functions.
619 */
620static struct lu_object *lu_object_find_try(const struct lu_env *env,
621 struct lu_device *dev,
622 const struct lu_fid *f,
623 const struct lu_object_conf *conf,
624 wait_queue_t *waiter)
625{
626 struct lu_object *o;
627 struct lu_object *shadow;
628 struct lu_site *s;
6da6eabe 629 struct cfs_hash *hs;
6ea510c1 630 struct cfs_hash_bd bd;
d7e09d03
PT
631 __u64 version = 0;
632
633 /*
634 * This uses standard index maintenance protocol:
635 *
636 * - search index under lock, and return object if found;
637 * - otherwise, unlock index, allocate new object;
638 * - lock index and search again;
639 * - if nothing is found (usual case), insert newly created
640 * object into index;
641 * - otherwise (race: other thread inserted object), free
642 * object just allocated.
643 * - unlock index;
644 * - return object.
645 *
646 * For "LOC_F_NEW" case, we are sure the object is new established.
647 * It is unnecessary to perform lookup-alloc-lookup-insert, instead,
648 * just alloc and insert directly.
649 *
650 * If dying object is found during index search, add @waiter to the
651 * site wait-queue and return ERR_PTR(-EAGAIN).
652 */
653 if (conf != NULL && conf->loc_flags & LOC_F_NEW)
654 return lu_object_new(env, dev, f, conf);
655
656 s = dev->ld_site;
657 hs = s->ls_obj_hash;
658 cfs_hash_bd_get_and_lock(hs, (void *)f, &bd, 1);
659 o = htable_lookup(s, &bd, f, waiter, &version);
660 cfs_hash_bd_unlock(hs, &bd, 1);
70b749d4 661 if (!IS_ERR(o) || PTR_ERR(o) != -ENOENT)
d7e09d03
PT
662 return o;
663
664 /*
665 * Allocate new object. This may result in rather complicated
666 * operations, including fld queries, inode loading, etc.
667 */
668 o = lu_object_alloc(env, dev, f, conf);
669 if (unlikely(IS_ERR(o)))
670 return o;
671
672 LASSERT(lu_fid_eq(lu_object_fid(o), f));
673
674 cfs_hash_bd_lock(hs, &bd, 1);
675
676 shadow = htable_lookup(s, &bd, f, waiter, &version);
70b749d4 677 if (likely(IS_ERR(shadow) && PTR_ERR(shadow) == -ENOENT)) {
d7e09d03
PT
678 struct lu_site_bkt_data *bkt;
679
680 bkt = cfs_hash_bd_extra_get(hs, &bd);
681 cfs_hash_bd_add_locked(hs, &bd, &o->lo_header->loh_hash);
682 bkt->lsb_busy++;
683 cfs_hash_bd_unlock(hs, &bd, 1);
684 return o;
685 }
686
687 lprocfs_counter_incr(s->ls_stats, LU_SS_CACHE_RACE);
688 cfs_hash_bd_unlock(hs, &bd, 1);
689 lu_object_free(env, o);
690 return shadow;
691}
692
693/**
694 * Much like lu_object_find(), but top level device of object is specifically
695 * \a dev rather than top level device of the site. This interface allows
696 * objects of different "stacking" to be created within the same site.
697 */
698struct lu_object *lu_object_find_at(const struct lu_env *env,
699 struct lu_device *dev,
700 const struct lu_fid *f,
701 const struct lu_object_conf *conf)
702{
703 struct lu_site_bkt_data *bkt;
704 struct lu_object *obj;
705 wait_queue_t wait;
706
707 while (1) {
708 obj = lu_object_find_try(env, dev, f, conf, &wait);
709 if (obj != ERR_PTR(-EAGAIN))
710 return obj;
711 /*
712 * lu_object_find_try() already added waiter into the
713 * wait queue.
714 */
715 waitq_wait(&wait, TASK_UNINTERRUPTIBLE);
716 bkt = lu_site_bkt_from_fid(dev->ld_site, (void *)f);
717 remove_wait_queue(&bkt->lsb_marche_funebre, &wait);
718 }
719}
720EXPORT_SYMBOL(lu_object_find_at);
721
722/**
723 * Find object with given fid, and return its slice belonging to given device.
724 */
725struct lu_object *lu_object_find_slice(const struct lu_env *env,
726 struct lu_device *dev,
727 const struct lu_fid *f,
728 const struct lu_object_conf *conf)
729{
730 struct lu_object *top;
731 struct lu_object *obj;
732
733 top = lu_object_find(env, dev, f, conf);
734 if (!IS_ERR(top)) {
735 obj = lu_object_locate(top->lo_header, dev->ld_type);
736 if (obj == NULL)
737 lu_object_put(env, top);
738 } else
739 obj = top;
740 return obj;
741}
742EXPORT_SYMBOL(lu_object_find_slice);
743
744/**
745 * Global list of all device types.
746 */
747static LIST_HEAD(lu_device_types);
748
749int lu_device_type_init(struct lu_device_type *ldt)
750{
751 int result = 0;
752
753 INIT_LIST_HEAD(&ldt->ldt_linkage);
754 if (ldt->ldt_ops->ldto_init)
755 result = ldt->ldt_ops->ldto_init(ldt);
756 if (result == 0)
757 list_add(&ldt->ldt_linkage, &lu_device_types);
758 return result;
759}
760EXPORT_SYMBOL(lu_device_type_init);
761
762void lu_device_type_fini(struct lu_device_type *ldt)
763{
764 list_del_init(&ldt->ldt_linkage);
765 if (ldt->ldt_ops->ldto_fini)
766 ldt->ldt_ops->ldto_fini(ldt);
767}
768EXPORT_SYMBOL(lu_device_type_fini);
769
770void lu_types_stop(void)
771{
772 struct lu_device_type *ldt;
773
774 list_for_each_entry(ldt, &lu_device_types, ldt_linkage) {
775 if (ldt->ldt_device_nr == 0 && ldt->ldt_ops->ldto_stop)
776 ldt->ldt_ops->ldto_stop(ldt);
777 }
778}
779EXPORT_SYMBOL(lu_types_stop);
780
781/**
782 * Global list of all sites on this node
783 */
784static LIST_HEAD(lu_sites);
785static DEFINE_MUTEX(lu_sites_guard);
786
787/**
788 * Global environment used by site shrinker.
789 */
790static struct lu_env lu_shrink_env;
791
792struct lu_site_print_arg {
793 struct lu_env *lsp_env;
794 void *lsp_cookie;
795 lu_printer_t lsp_printer;
796};
797
798static int
6da6eabe 799lu_site_obj_print(struct cfs_hash *hs, struct cfs_hash_bd *bd,
d7e09d03
PT
800 struct hlist_node *hnode, void *data)
801{
802 struct lu_site_print_arg *arg = (struct lu_site_print_arg *)data;
803 struct lu_object_header *h;
804
805 h = hlist_entry(hnode, struct lu_object_header, loh_hash);
806 if (!list_empty(&h->loh_layers)) {
807 const struct lu_object *o;
808
809 o = lu_object_top(h);
810 lu_object_print(arg->lsp_env, arg->lsp_cookie,
811 arg->lsp_printer, o);
812 } else {
813 lu_object_header_print(arg->lsp_env, arg->lsp_cookie,
814 arg->lsp_printer, h);
815 }
816 return 0;
817}
818
819/**
820 * Print all objects in \a s.
821 */
822void lu_site_print(const struct lu_env *env, struct lu_site *s, void *cookie,
823 lu_printer_t printer)
824{
825 struct lu_site_print_arg arg = {
826 .lsp_env = (struct lu_env *)env,
827 .lsp_cookie = cookie,
828 .lsp_printer = printer,
829 };
830
831 cfs_hash_for_each(s->ls_obj_hash, lu_site_obj_print, &arg);
832}
833EXPORT_SYMBOL(lu_site_print);
834
835enum {
836 LU_CACHE_PERCENT_MAX = 50,
837 LU_CACHE_PERCENT_DEFAULT = 20
838};
839
840static unsigned int lu_cache_percent = LU_CACHE_PERCENT_DEFAULT;
8cc7b4b9
PT
841module_param(lu_cache_percent, int, 0644);
842MODULE_PARM_DESC(lu_cache_percent, "Percentage of memory to be used as lu_object cache");
d7e09d03
PT
843
844/**
845 * Return desired hash table order.
846 */
847static int lu_htable_order(void)
848{
849 unsigned long cache_size;
850 int bits;
851
852 /*
853 * Calculate hash table size, assuming that we want reasonable
854 * performance when 20% of total memory is occupied by cache of
855 * lu_objects.
856 *
857 * Size of lu_object is (arbitrary) taken as 1K (together with inode).
858 */
4f6cc9ab 859 cache_size = totalram_pages;
d7e09d03
PT
860
861#if BITS_PER_LONG == 32
862 /* limit hashtable size for lowmem systems to low RAM */
863 if (cache_size > 1 << (30 - PAGE_CACHE_SHIFT))
864 cache_size = 1 << (30 - PAGE_CACHE_SHIFT) * 3 / 4;
865#endif
866
867 /* clear off unreasonable cache setting. */
868 if (lu_cache_percent == 0 || lu_cache_percent > LU_CACHE_PERCENT_MAX) {
869 CWARN("obdclass: invalid lu_cache_percent: %u, it must be in"
870 " the range of (0, %u]. Will use default value: %u.\n",
871 lu_cache_percent, LU_CACHE_PERCENT_MAX,
872 LU_CACHE_PERCENT_DEFAULT);
873
874 lu_cache_percent = LU_CACHE_PERCENT_DEFAULT;
875 }
876 cache_size = cache_size / 100 * lu_cache_percent *
877 (PAGE_CACHE_SIZE / 1024);
878
879 for (bits = 1; (1 << bits) < cache_size; ++bits) {
880 ;
881 }
882 return bits;
883}
884
6da6eabe 885static unsigned lu_obj_hop_hash(struct cfs_hash *hs,
d7e09d03
PT
886 const void *key, unsigned mask)
887{
888 struct lu_fid *fid = (struct lu_fid *)key;
889 __u32 hash;
890
891 hash = fid_flatten32(fid);
892 hash += (hash >> 4) + (hash << 12); /* mixing oid and seq */
72c0824a 893 hash = hash_long(hash, hs->hs_bkt_bits);
d7e09d03
PT
894
895 /* give me another random factor */
72c0824a 896 hash -= hash_long((unsigned long)hs, fid_oid(fid) % 11 + 3);
d7e09d03
PT
897
898 hash <<= hs->hs_cur_bits - hs->hs_bkt_bits;
899 hash |= (fid_seq(fid) + fid_oid(fid)) & (CFS_HASH_NBKT(hs) - 1);
900
901 return hash & mask;
902}
903
904static void *lu_obj_hop_object(struct hlist_node *hnode)
905{
906 return hlist_entry(hnode, struct lu_object_header, loh_hash);
907}
908
909static void *lu_obj_hop_key(struct hlist_node *hnode)
910{
911 struct lu_object_header *h;
912
913 h = hlist_entry(hnode, struct lu_object_header, loh_hash);
914 return &h->loh_fid;
915}
916
917static int lu_obj_hop_keycmp(const void *key, struct hlist_node *hnode)
918{
919 struct lu_object_header *h;
920
921 h = hlist_entry(hnode, struct lu_object_header, loh_hash);
922 return lu_fid_eq(&h->loh_fid, (struct lu_fid *)key);
923}
924
6da6eabe 925static void lu_obj_hop_get(struct cfs_hash *hs, struct hlist_node *hnode)
d7e09d03
PT
926{
927 struct lu_object_header *h;
928
929 h = hlist_entry(hnode, struct lu_object_header, loh_hash);
930 if (atomic_add_return(1, &h->loh_ref) == 1) {
931 struct lu_site_bkt_data *bkt;
6ea510c1 932 struct cfs_hash_bd bd;
d7e09d03
PT
933
934 cfs_hash_bd_get(hs, &h->loh_fid, &bd);
935 bkt = cfs_hash_bd_extra_get(hs, &bd);
936 bkt->lsb_busy++;
937 }
938}
939
6da6eabe 940static void lu_obj_hop_put_locked(struct cfs_hash *hs, struct hlist_node *hnode)
d7e09d03
PT
941{
942 LBUG(); /* we should never called it */
943}
944
945cfs_hash_ops_t lu_site_hash_ops = {
946 .hs_hash = lu_obj_hop_hash,
947 .hs_key = lu_obj_hop_key,
948 .hs_keycmp = lu_obj_hop_keycmp,
949 .hs_object = lu_obj_hop_object,
950 .hs_get = lu_obj_hop_get,
951 .hs_put_locked = lu_obj_hop_put_locked,
952};
953
954void lu_dev_add_linkage(struct lu_site *s, struct lu_device *d)
955{
956 spin_lock(&s->ls_ld_lock);
957 if (list_empty(&d->ld_linkage))
958 list_add(&d->ld_linkage, &s->ls_ld_linkage);
959 spin_unlock(&s->ls_ld_lock);
960}
961EXPORT_SYMBOL(lu_dev_add_linkage);
962
963void lu_dev_del_linkage(struct lu_site *s, struct lu_device *d)
964{
965 spin_lock(&s->ls_ld_lock);
966 list_del_init(&d->ld_linkage);
967 spin_unlock(&s->ls_ld_lock);
968}
969EXPORT_SYMBOL(lu_dev_del_linkage);
970
971/**
972 * Initialize site \a s, with \a d as the top level device.
973 */
974#define LU_SITE_BITS_MIN 12
975#define LU_SITE_BITS_MAX 24
976/**
977 * total 256 buckets, we don't want too many buckets because:
978 * - consume too much memory
979 * - avoid unbalanced LRU list
980 */
981#define LU_SITE_BKT_BITS 8
982
983int lu_site_init(struct lu_site *s, struct lu_device *top)
984{
985 struct lu_site_bkt_data *bkt;
6ea510c1 986 struct cfs_hash_bd bd;
d7e09d03
PT
987 char name[16];
988 int bits;
989 int i;
d7e09d03 990
ec83e611 991 memset(s, 0, sizeof(*s));
d7e09d03
PT
992 bits = lu_htable_order();
993 snprintf(name, 16, "lu_site_%s", top->ld_type->ldt_name);
994 for (bits = min(max(LU_SITE_BITS_MIN, bits), LU_SITE_BITS_MAX);
995 bits >= LU_SITE_BITS_MIN; bits--) {
996 s->ls_obj_hash = cfs_hash_create(name, bits, bits,
997 bits - LU_SITE_BKT_BITS,
998 sizeof(*bkt), 0, 0,
999 &lu_site_hash_ops,
1000 CFS_HASH_SPIN_BKTLOCK |
1001 CFS_HASH_NO_ITEMREF |
1002 CFS_HASH_DEPTH |
1003 CFS_HASH_ASSERT_EMPTY);
1004 if (s->ls_obj_hash != NULL)
1005 break;
1006 }
1007
1008 if (s->ls_obj_hash == NULL) {
1009 CERROR("failed to create lu_site hash with bits: %d\n", bits);
1010 return -ENOMEM;
1011 }
1012
1013 cfs_hash_for_each_bucket(s->ls_obj_hash, &bd, i) {
1014 bkt = cfs_hash_bd_extra_get(s->ls_obj_hash, &bd);
1015 INIT_LIST_HEAD(&bkt->lsb_lru);
1016 init_waitqueue_head(&bkt->lsb_marche_funebre);
1017 }
1018
1019 s->ls_stats = lprocfs_alloc_stats(LU_SS_LAST_STAT, 0);
1020 if (s->ls_stats == NULL) {
1021 cfs_hash_putref(s->ls_obj_hash);
1022 s->ls_obj_hash = NULL;
1023 return -ENOMEM;
1024 }
1025
1026 lprocfs_counter_init(s->ls_stats, LU_SS_CREATED,
1027 0, "created", "created");
1028 lprocfs_counter_init(s->ls_stats, LU_SS_CACHE_HIT,
1029 0, "cache_hit", "cache_hit");
1030 lprocfs_counter_init(s->ls_stats, LU_SS_CACHE_MISS,
1031 0, "cache_miss", "cache_miss");
1032 lprocfs_counter_init(s->ls_stats, LU_SS_CACHE_RACE,
1033 0, "cache_race", "cache_race");
1034 lprocfs_counter_init(s->ls_stats, LU_SS_CACHE_DEATH_RACE,
1035 0, "cache_death_race", "cache_death_race");
1036 lprocfs_counter_init(s->ls_stats, LU_SS_LRU_PURGED,
1037 0, "lru_purged", "lru_purged");
1038
1039 INIT_LIST_HEAD(&s->ls_linkage);
1040 s->ls_top_dev = top;
1041 top->ld_site = s;
1042 lu_device_get(top);
1043 lu_ref_add(&top->ld_reference, "site-top", s);
1044
1045 INIT_LIST_HEAD(&s->ls_ld_linkage);
1046 spin_lock_init(&s->ls_ld_lock);
1047
1048 lu_dev_add_linkage(s, top);
1049
0a3bdb00 1050 return 0;
d7e09d03
PT
1051}
1052EXPORT_SYMBOL(lu_site_init);
1053
1054/**
1055 * Finalize \a s and release its resources.
1056 */
1057void lu_site_fini(struct lu_site *s)
1058{
1059 mutex_lock(&lu_sites_guard);
1060 list_del_init(&s->ls_linkage);
1061 mutex_unlock(&lu_sites_guard);
1062
1063 if (s->ls_obj_hash != NULL) {
1064 cfs_hash_putref(s->ls_obj_hash);
1065 s->ls_obj_hash = NULL;
1066 }
1067
1068 if (s->ls_top_dev != NULL) {
1069 s->ls_top_dev->ld_site = NULL;
1070 lu_ref_del(&s->ls_top_dev->ld_reference, "site-top", s);
1071 lu_device_put(s->ls_top_dev);
1072 s->ls_top_dev = NULL;
1073 }
1074
1075 if (s->ls_stats != NULL)
1076 lprocfs_free_stats(&s->ls_stats);
1077}
1078EXPORT_SYMBOL(lu_site_fini);
1079
1080/**
1081 * Called when initialization of stack for this site is completed.
1082 */
1083int lu_site_init_finish(struct lu_site *s)
1084{
1085 int result;
1086 mutex_lock(&lu_sites_guard);
1087 result = lu_context_refill(&lu_shrink_env.le_ctx);
1088 if (result == 0)
1089 list_add(&s->ls_linkage, &lu_sites);
1090 mutex_unlock(&lu_sites_guard);
1091 return result;
1092}
1093EXPORT_SYMBOL(lu_site_init_finish);
1094
1095/**
1096 * Acquire additional reference on device \a d
1097 */
1098void lu_device_get(struct lu_device *d)
1099{
1100 atomic_inc(&d->ld_ref);
1101}
1102EXPORT_SYMBOL(lu_device_get);
1103
1104/**
1105 * Release reference on device \a d.
1106 */
1107void lu_device_put(struct lu_device *d)
1108{
1109 LASSERT(atomic_read(&d->ld_ref) > 0);
1110 atomic_dec(&d->ld_ref);
1111}
1112EXPORT_SYMBOL(lu_device_put);
1113
1114/**
1115 * Initialize device \a d of type \a t.
1116 */
1117int lu_device_init(struct lu_device *d, struct lu_device_type *t)
1118{
1119 if (t->ldt_device_nr++ == 0 && t->ldt_ops->ldto_start != NULL)
1120 t->ldt_ops->ldto_start(t);
ec83e611 1121 memset(d, 0, sizeof(*d));
d7e09d03
PT
1122 atomic_set(&d->ld_ref, 0);
1123 d->ld_type = t;
1124 lu_ref_init(&d->ld_reference);
1125 INIT_LIST_HEAD(&d->ld_linkage);
1126 return 0;
1127}
1128EXPORT_SYMBOL(lu_device_init);
1129
1130/**
1131 * Finalize device \a d.
1132 */
1133void lu_device_fini(struct lu_device *d)
1134{
1135 struct lu_device_type *t;
1136
1137 t = d->ld_type;
1138 if (d->ld_obd != NULL) {
1139 d->ld_obd->obd_lu_dev = NULL;
1140 d->ld_obd = NULL;
1141 }
1142
1143 lu_ref_fini(&d->ld_reference);
1144 LASSERTF(atomic_read(&d->ld_ref) == 0,
1145 "Refcount is %u\n", atomic_read(&d->ld_ref));
1146 LASSERT(t->ldt_device_nr > 0);
1147 if (--t->ldt_device_nr == 0 && t->ldt_ops->ldto_stop != NULL)
1148 t->ldt_ops->ldto_stop(t);
1149}
1150EXPORT_SYMBOL(lu_device_fini);
1151
1152/**
1153 * Initialize object \a o that is part of compound object \a h and was created
1154 * by device \a d.
1155 */
631abc6e
JH
1156int lu_object_init(struct lu_object *o, struct lu_object_header *h,
1157 struct lu_device *d)
d7e09d03 1158{
631abc6e 1159 memset(o, 0, sizeof(*o));
d7e09d03 1160 o->lo_header = h;
631abc6e 1161 o->lo_dev = d;
d7e09d03 1162 lu_device_get(d);
631abc6e 1163 lu_ref_add_at(&d->ld_reference, &o->lo_dev_ref, "lu_object", o);
d7e09d03 1164 INIT_LIST_HEAD(&o->lo_linkage);
631abc6e 1165
d7e09d03
PT
1166 return 0;
1167}
1168EXPORT_SYMBOL(lu_object_init);
1169
1170/**
1171 * Finalize object and release its resources.
1172 */
1173void lu_object_fini(struct lu_object *o)
1174{
1175 struct lu_device *dev = o->lo_dev;
1176
1177 LASSERT(list_empty(&o->lo_linkage));
1178
1179 if (dev != NULL) {
631abc6e
JH
1180 lu_ref_del_at(&dev->ld_reference, &o->lo_dev_ref,
1181 "lu_object", o);
d7e09d03
PT
1182 lu_device_put(dev);
1183 o->lo_dev = NULL;
1184 }
1185}
1186EXPORT_SYMBOL(lu_object_fini);
1187
1188/**
1189 * Add object \a o as first layer of compound object \a h
1190 *
1191 * This is typically called by the ->ldo_object_alloc() method of top-level
1192 * device.
1193 */
1194void lu_object_add_top(struct lu_object_header *h, struct lu_object *o)
1195{
1196 list_move(&o->lo_linkage, &h->loh_layers);
1197}
1198EXPORT_SYMBOL(lu_object_add_top);
1199
1200/**
1201 * Add object \a o as a layer of compound object, going after \a before.
1202 *
1203 * This is typically called by the ->ldo_object_alloc() method of \a
1204 * before->lo_dev.
1205 */
1206void lu_object_add(struct lu_object *before, struct lu_object *o)
1207{
1208 list_move(&o->lo_linkage, &before->lo_linkage);
1209}
1210EXPORT_SYMBOL(lu_object_add);
1211
1212/**
1213 * Initialize compound object.
1214 */
1215int lu_object_header_init(struct lu_object_header *h)
1216{
ec83e611 1217 memset(h, 0, sizeof(*h));
d7e09d03
PT
1218 atomic_set(&h->loh_ref, 1);
1219 INIT_HLIST_NODE(&h->loh_hash);
1220 INIT_LIST_HEAD(&h->loh_lru);
1221 INIT_LIST_HEAD(&h->loh_layers);
1222 lu_ref_init(&h->loh_reference);
1223 return 0;
1224}
1225EXPORT_SYMBOL(lu_object_header_init);
1226
1227/**
1228 * Finalize compound object.
1229 */
1230void lu_object_header_fini(struct lu_object_header *h)
1231{
1232 LASSERT(list_empty(&h->loh_layers));
1233 LASSERT(list_empty(&h->loh_lru));
1234 LASSERT(hlist_unhashed(&h->loh_hash));
1235 lu_ref_fini(&h->loh_reference);
1236}
1237EXPORT_SYMBOL(lu_object_header_fini);
1238
1239/**
1240 * Given a compound object, find its slice, corresponding to the device type
1241 * \a dtype.
1242 */
1243struct lu_object *lu_object_locate(struct lu_object_header *h,
1244 const struct lu_device_type *dtype)
1245{
1246 struct lu_object *o;
1247
1248 list_for_each_entry(o, &h->loh_layers, lo_linkage) {
1249 if (o->lo_dev->ld_type == dtype)
1250 return o;
1251 }
1252 return NULL;
1253}
1254EXPORT_SYMBOL(lu_object_locate);
1255
1256
1257
1258/**
1259 * Finalize and free devices in the device stack.
1260 *
1261 * Finalize device stack by purging object cache, and calling
1262 * lu_device_type_operations::ldto_device_fini() and
1263 * lu_device_type_operations::ldto_device_free() on all devices in the stack.
1264 */
1265void lu_stack_fini(const struct lu_env *env, struct lu_device *top)
1266{
1267 struct lu_site *site = top->ld_site;
1268 struct lu_device *scan;
1269 struct lu_device *next;
1270
1271 lu_site_purge(env, site, ~0);
1272 for (scan = top; scan != NULL; scan = next) {
1273 next = scan->ld_type->ldt_ops->ldto_device_fini(env, scan);
1274 lu_ref_del(&scan->ld_reference, "lu-stack", &lu_site_init);
1275 lu_device_put(scan);
1276 }
1277
1278 /* purge again. */
1279 lu_site_purge(env, site, ~0);
1280
1281 for (scan = top; scan != NULL; scan = next) {
1282 const struct lu_device_type *ldt = scan->ld_type;
1283 struct obd_type *type;
1284
1285 next = ldt->ldt_ops->ldto_device_free(env, scan);
1286 type = ldt->ldt_obd_type;
1287 if (type != NULL) {
1288 type->typ_refcnt--;
1289 class_put_type(type);
1290 }
1291 }
1292}
1293EXPORT_SYMBOL(lu_stack_fini);
1294
1295enum {
1296 /**
1297 * Maximal number of tld slots.
1298 */
1299 LU_CONTEXT_KEY_NR = 40
1300};
1301
1302static struct lu_context_key *lu_keys[LU_CONTEXT_KEY_NR] = { NULL, };
1303
1304static DEFINE_SPINLOCK(lu_keys_guard);
1305
1306/**
1307 * Global counter incremented whenever key is registered, unregistered,
1308 * revived or quiesced. This is used to void unnecessary calls to
1309 * lu_context_refill(). No locking is provided, as initialization and shutdown
1310 * are supposed to be externally serialized.
1311 */
1312static unsigned key_set_version = 0;
1313
1314/**
1315 * Register new key.
1316 */
1317int lu_context_key_register(struct lu_context_key *key)
1318{
1319 int result;
1320 int i;
1321
1322 LASSERT(key->lct_init != NULL);
1323 LASSERT(key->lct_fini != NULL);
1324 LASSERT(key->lct_tags != 0);
d7e09d03
PT
1325
1326 result = -ENFILE;
1327 spin_lock(&lu_keys_guard);
1328 for (i = 0; i < ARRAY_SIZE(lu_keys); ++i) {
1329 if (lu_keys[i] == NULL) {
1330 key->lct_index = i;
1331 atomic_set(&key->lct_used, 1);
1332 lu_keys[i] = key;
1333 lu_ref_init(&key->lct_reference);
1334 result = 0;
1335 ++key_set_version;
1336 break;
1337 }
1338 }
1339 spin_unlock(&lu_keys_guard);
1340 return result;
1341}
1342EXPORT_SYMBOL(lu_context_key_register);
1343
1344static void key_fini(struct lu_context *ctx, int index)
1345{
1346 if (ctx->lc_value != NULL && ctx->lc_value[index] != NULL) {
1347 struct lu_context_key *key;
1348
1349 key = lu_keys[index];
1350 LASSERT(key != NULL);
1351 LASSERT(key->lct_fini != NULL);
1352 LASSERT(atomic_read(&key->lct_used) > 1);
1353
1354 key->lct_fini(ctx, key, ctx->lc_value[index]);
1355 lu_ref_del(&key->lct_reference, "ctx", ctx);
1356 atomic_dec(&key->lct_used);
1357
d7e09d03 1358 if ((ctx->lc_tags & LCT_NOREF) == 0) {
4a1a01ea 1359#ifdef CONFIG_MODULE_UNLOAD
d7e09d03 1360 LINVRNT(module_refcount(key->lct_owner) > 0);
4a1a01ea 1361#endif
d7e09d03
PT
1362 module_put(key->lct_owner);
1363 }
1364 ctx->lc_value[index] = NULL;
1365 }
1366}
1367
1368/**
1369 * Deregister key.
1370 */
1371void lu_context_key_degister(struct lu_context_key *key)
1372{
1373 LASSERT(atomic_read(&key->lct_used) >= 1);
1374 LINVRNT(0 <= key->lct_index && key->lct_index < ARRAY_SIZE(lu_keys));
1375
1376 lu_context_key_quiesce(key);
1377
1378 ++key_set_version;
1379 spin_lock(&lu_keys_guard);
1380 key_fini(&lu_shrink_env.le_ctx, key->lct_index);
1381 if (lu_keys[key->lct_index]) {
1382 lu_keys[key->lct_index] = NULL;
1383 lu_ref_fini(&key->lct_reference);
1384 }
1385 spin_unlock(&lu_keys_guard);
1386
1387 LASSERTF(atomic_read(&key->lct_used) == 1,
1388 "key has instances: %d\n",
1389 atomic_read(&key->lct_used));
1390}
1391EXPORT_SYMBOL(lu_context_key_degister);
1392
1393/**
1394 * Register a number of keys. This has to be called after all keys have been
1395 * initialized by a call to LU_CONTEXT_KEY_INIT().
1396 */
1397int lu_context_key_register_many(struct lu_context_key *k, ...)
1398{
1399 struct lu_context_key *key = k;
1400 va_list args;
1401 int result;
1402
1403 va_start(args, k);
1404 do {
1405 result = lu_context_key_register(key);
1406 if (result)
1407 break;
1408 key = va_arg(args, struct lu_context_key *);
1409 } while (key != NULL);
1410 va_end(args);
1411
1412 if (result != 0) {
1413 va_start(args, k);
1414 while (k != key) {
1415 lu_context_key_degister(k);
1416 k = va_arg(args, struct lu_context_key *);
1417 }
1418 va_end(args);
1419 }
1420
1421 return result;
1422}
1423EXPORT_SYMBOL(lu_context_key_register_many);
1424
1425/**
1426 * De-register a number of keys. This is a dual to
1427 * lu_context_key_register_many().
1428 */
1429void lu_context_key_degister_many(struct lu_context_key *k, ...)
1430{
1431 va_list args;
1432
1433 va_start(args, k);
1434 do {
1435 lu_context_key_degister(k);
1436 k = va_arg(args, struct lu_context_key*);
1437 } while (k != NULL);
1438 va_end(args);
1439}
1440EXPORT_SYMBOL(lu_context_key_degister_many);
1441
1442/**
1443 * Revive a number of keys.
1444 */
1445void lu_context_key_revive_many(struct lu_context_key *k, ...)
1446{
1447 va_list args;
1448
1449 va_start(args, k);
1450 do {
1451 lu_context_key_revive(k);
1452 k = va_arg(args, struct lu_context_key*);
1453 } while (k != NULL);
1454 va_end(args);
1455}
1456EXPORT_SYMBOL(lu_context_key_revive_many);
1457
1458/**
1459 * Quiescent a number of keys.
1460 */
1461void lu_context_key_quiesce_many(struct lu_context_key *k, ...)
1462{
1463 va_list args;
1464
1465 va_start(args, k);
1466 do {
1467 lu_context_key_quiesce(k);
1468 k = va_arg(args, struct lu_context_key*);
1469 } while (k != NULL);
1470 va_end(args);
1471}
1472EXPORT_SYMBOL(lu_context_key_quiesce_many);
1473
1474/**
1475 * Return value associated with key \a key in context \a ctx.
1476 */
1477void *lu_context_key_get(const struct lu_context *ctx,
1478 const struct lu_context_key *key)
1479{
1480 LINVRNT(ctx->lc_state == LCS_ENTERED);
1481 LINVRNT(0 <= key->lct_index && key->lct_index < ARRAY_SIZE(lu_keys));
1482 LASSERT(lu_keys[key->lct_index] == key);
1483 return ctx->lc_value[key->lct_index];
1484}
1485EXPORT_SYMBOL(lu_context_key_get);
1486
1487/**
1488 * List of remembered contexts. XXX document me.
1489 */
1490static LIST_HEAD(lu_context_remembered);
1491
1492/**
1493 * Destroy \a key in all remembered contexts. This is used to destroy key
1494 * values in "shared" contexts (like service threads), when a module owning
1495 * the key is about to be unloaded.
1496 */
1497void lu_context_key_quiesce(struct lu_context_key *key)
1498{
1499 struct lu_context *ctx;
1500
1501 if (!(key->lct_tags & LCT_QUIESCENT)) {
1502 /*
1503 * XXX layering violation.
1504 */
1505 key->lct_tags |= LCT_QUIESCENT;
1506 /*
1507 * XXX memory barrier has to go here.
1508 */
1509 spin_lock(&lu_keys_guard);
1510 list_for_each_entry(ctx, &lu_context_remembered,
1511 lc_remember)
1512 key_fini(ctx, key->lct_index);
1513 spin_unlock(&lu_keys_guard);
1514 ++key_set_version;
1515 }
1516}
1517EXPORT_SYMBOL(lu_context_key_quiesce);
1518
1519void lu_context_key_revive(struct lu_context_key *key)
1520{
1521 key->lct_tags &= ~LCT_QUIESCENT;
1522 ++key_set_version;
1523}
1524EXPORT_SYMBOL(lu_context_key_revive);
1525
1526static void keys_fini(struct lu_context *ctx)
1527{
1528 int i;
1529
1530 if (ctx->lc_value == NULL)
1531 return;
1532
1533 for (i = 0; i < ARRAY_SIZE(lu_keys); ++i)
1534 key_fini(ctx, i);
1535
ec83e611 1536 OBD_FREE(ctx->lc_value, ARRAY_SIZE(lu_keys) * sizeof(ctx->lc_value[0]));
d7e09d03
PT
1537 ctx->lc_value = NULL;
1538}
1539
1540static int keys_fill(struct lu_context *ctx)
1541{
1542 int i;
1543
1544 LINVRNT(ctx->lc_value != NULL);
1545 for (i = 0; i < ARRAY_SIZE(lu_keys); ++i) {
1546 struct lu_context_key *key;
1547
1548 key = lu_keys[i];
1549 if (ctx->lc_value[i] == NULL && key != NULL &&
1550 (key->lct_tags & ctx->lc_tags) &&
1551 /*
1552 * Don't create values for a LCT_QUIESCENT key, as this
1553 * will pin module owning a key.
1554 */
1555 !(key->lct_tags & LCT_QUIESCENT)) {
1556 void *value;
1557
1558 LINVRNT(key->lct_init != NULL);
1559 LINVRNT(key->lct_index == i);
1560
1561 value = key->lct_init(ctx, key);
1562 if (unlikely(IS_ERR(value)))
1563 return PTR_ERR(value);
1564
d7e09d03
PT
1565 if (!(ctx->lc_tags & LCT_NOREF))
1566 try_module_get(key->lct_owner);
1567 lu_ref_add_atomic(&key->lct_reference, "ctx", ctx);
1568 atomic_inc(&key->lct_used);
1569 /*
1570 * This is the only place in the code, where an
1571 * element of ctx->lc_value[] array is set to non-NULL
1572 * value.
1573 */
1574 ctx->lc_value[i] = value;
1575 if (key->lct_exit != NULL)
1576 ctx->lc_tags |= LCT_HAS_EXIT;
1577 }
1578 ctx->lc_version = key_set_version;
1579 }
1580 return 0;
1581}
1582
1583static int keys_init(struct lu_context *ctx)
1584{
ec83e611
JP
1585 OBD_ALLOC(ctx->lc_value,
1586 ARRAY_SIZE(lu_keys) * sizeof(ctx->lc_value[0]));
d7e09d03
PT
1587 if (likely(ctx->lc_value != NULL))
1588 return keys_fill(ctx);
1589
1590 return -ENOMEM;
1591}
1592
1593/**
1594 * Initialize context data-structure. Create values for all keys.
1595 */
1596int lu_context_init(struct lu_context *ctx, __u32 tags)
1597{
1598 int rc;
1599
ec83e611 1600 memset(ctx, 0, sizeof(*ctx));
d7e09d03
PT
1601 ctx->lc_state = LCS_INITIALIZED;
1602 ctx->lc_tags = tags;
1603 if (tags & LCT_REMEMBER) {
1604 spin_lock(&lu_keys_guard);
1605 list_add(&ctx->lc_remember, &lu_context_remembered);
1606 spin_unlock(&lu_keys_guard);
1607 } else {
1608 INIT_LIST_HEAD(&ctx->lc_remember);
1609 }
1610
1611 rc = keys_init(ctx);
1612 if (rc != 0)
1613 lu_context_fini(ctx);
1614
1615 return rc;
1616}
1617EXPORT_SYMBOL(lu_context_init);
1618
1619/**
1620 * Finalize context data-structure. Destroy key values.
1621 */
1622void lu_context_fini(struct lu_context *ctx)
1623{
1624 LINVRNT(ctx->lc_state == LCS_INITIALIZED || ctx->lc_state == LCS_LEFT);
1625 ctx->lc_state = LCS_FINALIZED;
1626
1627 if ((ctx->lc_tags & LCT_REMEMBER) == 0) {
1628 LASSERT(list_empty(&ctx->lc_remember));
1629 keys_fini(ctx);
1630
1631 } else { /* could race with key degister */
1632 spin_lock(&lu_keys_guard);
1633 keys_fini(ctx);
1634 list_del_init(&ctx->lc_remember);
1635 spin_unlock(&lu_keys_guard);
1636 }
1637}
1638EXPORT_SYMBOL(lu_context_fini);
1639
1640/**
1641 * Called before entering context.
1642 */
1643void lu_context_enter(struct lu_context *ctx)
1644{
1645 LINVRNT(ctx->lc_state == LCS_INITIALIZED || ctx->lc_state == LCS_LEFT);
1646 ctx->lc_state = LCS_ENTERED;
1647}
1648EXPORT_SYMBOL(lu_context_enter);
1649
1650/**
1651 * Called after exiting from \a ctx
1652 */
1653void lu_context_exit(struct lu_context *ctx)
1654{
1655 int i;
1656
1657 LINVRNT(ctx->lc_state == LCS_ENTERED);
1658 ctx->lc_state = LCS_LEFT;
1659 if (ctx->lc_tags & LCT_HAS_EXIT && ctx->lc_value != NULL) {
1660 for (i = 0; i < ARRAY_SIZE(lu_keys); ++i) {
1661 if (ctx->lc_value[i] != NULL) {
1662 struct lu_context_key *key;
1663
1664 key = lu_keys[i];
1665 LASSERT(key != NULL);
1666 if (key->lct_exit != NULL)
1667 key->lct_exit(ctx,
1668 key, ctx->lc_value[i]);
1669 }
1670 }
1671 }
1672}
1673EXPORT_SYMBOL(lu_context_exit);
1674
1675/**
1676 * Allocate for context all missing keys that were registered after context
1677 * creation. key_set_version is only changed in rare cases when modules
1678 * are loaded and removed.
1679 */
1680int lu_context_refill(struct lu_context *ctx)
1681{
1682 return likely(ctx->lc_version == key_set_version) ? 0 : keys_fill(ctx);
1683}
1684EXPORT_SYMBOL(lu_context_refill);
1685
1686/**
1687 * lu_ctx_tags/lu_ses_tags will be updated if there are new types of
1688 * obd being added. Currently, this is only used on client side, specifically
1689 * for echo device client, for other stack (like ptlrpc threads), context are
1690 * predefined when the lu_device type are registered, during the module probe
1691 * phase.
1692 */
1693__u32 lu_context_tags_default = 0;
1694__u32 lu_session_tags_default = 0;
1695
1696void lu_context_tags_update(__u32 tags)
1697{
1698 spin_lock(&lu_keys_guard);
1699 lu_context_tags_default |= tags;
1700 key_set_version++;
1701 spin_unlock(&lu_keys_guard);
1702}
1703EXPORT_SYMBOL(lu_context_tags_update);
1704
1705void lu_context_tags_clear(__u32 tags)
1706{
1707 spin_lock(&lu_keys_guard);
1708 lu_context_tags_default &= ~tags;
1709 key_set_version++;
1710 spin_unlock(&lu_keys_guard);
1711}
1712EXPORT_SYMBOL(lu_context_tags_clear);
1713
1714void lu_session_tags_update(__u32 tags)
1715{
1716 spin_lock(&lu_keys_guard);
1717 lu_session_tags_default |= tags;
1718 key_set_version++;
1719 spin_unlock(&lu_keys_guard);
1720}
1721EXPORT_SYMBOL(lu_session_tags_update);
1722
1723void lu_session_tags_clear(__u32 tags)
1724{
1725 spin_lock(&lu_keys_guard);
1726 lu_session_tags_default &= ~tags;
1727 key_set_version++;
1728 spin_unlock(&lu_keys_guard);
1729}
1730EXPORT_SYMBOL(lu_session_tags_clear);
1731
1732int lu_env_init(struct lu_env *env, __u32 tags)
1733{
1734 int result;
1735
1736 env->le_ses = NULL;
1737 result = lu_context_init(&env->le_ctx, tags);
1738 if (likely(result == 0))
1739 lu_context_enter(&env->le_ctx);
1740 return result;
1741}
1742EXPORT_SYMBOL(lu_env_init);
1743
1744void lu_env_fini(struct lu_env *env)
1745{
1746 lu_context_exit(&env->le_ctx);
1747 lu_context_fini(&env->le_ctx);
1748 env->le_ses = NULL;
1749}
1750EXPORT_SYMBOL(lu_env_fini);
1751
1752int lu_env_refill(struct lu_env *env)
1753{
1754 int result;
1755
1756 result = lu_context_refill(&env->le_ctx);
1757 if (result == 0 && env->le_ses != NULL)
1758 result = lu_context_refill(env->le_ses);
1759 return result;
1760}
1761EXPORT_SYMBOL(lu_env_refill);
1762
1763/**
1764 * Currently, this API will only be used by echo client.
1765 * Because echo client and normal lustre client will share
1766 * same cl_env cache. So echo client needs to refresh
1767 * the env context after it get one from the cache, especially
1768 * when normal client and echo client co-exist in the same client.
1769 */
1770int lu_env_refill_by_tags(struct lu_env *env, __u32 ctags,
1771 __u32 stags)
1772{
1773 int result;
1774
1775 if ((env->le_ctx.lc_tags & ctags) != ctags) {
1776 env->le_ctx.lc_version = 0;
1777 env->le_ctx.lc_tags |= ctags;
1778 }
1779
1780 if (env->le_ses && (env->le_ses->lc_tags & stags) != stags) {
1781 env->le_ses->lc_version = 0;
1782 env->le_ses->lc_tags |= stags;
1783 }
1784
1785 result = lu_env_refill(env);
1786
1787 return result;
1788}
1789EXPORT_SYMBOL(lu_env_refill_by_tags);
1790
d7e09d03
PT
1791
1792typedef struct lu_site_stats{
1793 unsigned lss_populated;
1794 unsigned lss_max_search;
1795 unsigned lss_total;
1796 unsigned lss_busy;
1797} lu_site_stats_t;
1798
6da6eabe 1799static void lu_site_stats_get(struct cfs_hash *hs,
d7e09d03
PT
1800 lu_site_stats_t *stats, int populated)
1801{
6ea510c1 1802 struct cfs_hash_bd bd;
d7e09d03
PT
1803 int i;
1804
1805 cfs_hash_for_each_bucket(hs, &bd, i) {
1806 struct lu_site_bkt_data *bkt = cfs_hash_bd_extra_get(hs, &bd);
1807 struct hlist_head *hhead;
1808
1809 cfs_hash_bd_lock(hs, &bd, 1);
1810 stats->lss_busy += bkt->lsb_busy;
1811 stats->lss_total += cfs_hash_bd_count_get(&bd);
1812 stats->lss_max_search = max((int)stats->lss_max_search,
1813 cfs_hash_bd_depmax_get(&bd));
1814 if (!populated) {
1815 cfs_hash_bd_unlock(hs, &bd, 1);
1816 continue;
1817 }
1818
1819 cfs_hash_bd_for_each_hlist(hs, &bd, hhead) {
1820 if (!hlist_empty(hhead))
1821 stats->lss_populated++;
1822 }
1823 cfs_hash_bd_unlock(hs, &bd, 1);
1824 }
1825}
1826
1827
1828/*
1829 * There exists a potential lock inversion deadlock scenario when using
1830 * Lustre on top of ZFS. This occurs between one of ZFS's
1831 * buf_hash_table.ht_lock's, and Lustre's lu_sites_guard lock. Essentially,
1832 * thread A will take the lu_sites_guard lock and sleep on the ht_lock,
1833 * while thread B will take the ht_lock and sleep on the lu_sites_guard
1834 * lock. Obviously neither thread will wake and drop their respective hold
1835 * on their lock.
1836 *
1837 * To prevent this from happening we must ensure the lu_sites_guard lock is
1838 * not taken while down this code path. ZFS reliably does not set the
1839 * __GFP_FS bit in its code paths, so this can be used to determine if it
1840 * is safe to take the lu_sites_guard lock.
1841 *
1842 * Ideally we should accurately return the remaining number of cached
1843 * objects without taking the lu_sites_guard lock, but this is not
1844 * possible in the current implementation.
1845 */
fe92a055
PT
1846static unsigned long lu_cache_shrink_count(struct shrinker *sk,
1847 struct shrink_control *sc)
d7e09d03
PT
1848{
1849 lu_site_stats_t stats;
1850 struct lu_site *s;
1851 struct lu_site *tmp;
fe92a055 1852 unsigned long cached = 0;
d7e09d03 1853
fe92a055
PT
1854 if (!(sc->gfp_mask & __GFP_FS))
1855 return 0;
d7e09d03
PT
1856
1857 mutex_lock(&lu_sites_guard);
1858 list_for_each_entry_safe(s, tmp, &lu_sites, ls_linkage) {
d7e09d03
PT
1859 memset(&stats, 0, sizeof(stats));
1860 lu_site_stats_get(s->ls_obj_hash, &stats, 0);
1861 cached += stats.lss_total - stats.lss_busy;
d7e09d03 1862 }
d7e09d03
PT
1863 mutex_unlock(&lu_sites_guard);
1864
1865 cached = (cached / 100) * sysctl_vfs_cache_pressure;
fe92a055 1866 CDEBUG(D_INODE, "%ld objects cached\n", cached);
d7e09d03
PT
1867 return cached;
1868}
1869
fe92a055
PT
1870static unsigned long lu_cache_shrink_scan(struct shrinker *sk,
1871 struct shrink_control *sc)
1872{
1873 struct lu_site *s;
1874 struct lu_site *tmp;
1875 unsigned long remain = sc->nr_to_scan, freed = 0;
1876 LIST_HEAD(splice);
1877
1878 if (!(sc->gfp_mask & __GFP_FS))
1879 /* We must not take the lu_sites_guard lock when
1880 * __GFP_FS is *not* set because of the deadlock
1881 * possibility detailed above. Additionally,
1882 * since we cannot determine the number of
1883 * objects in the cache without taking this
1884 * lock, we're in a particularly tough spot. As
1885 * a result, we'll just lie and say our cache is
1886 * empty. This _should_ be ok, as we can't
1887 * reclaim objects when __GFP_FS is *not* set
1888 * anyways.
1889 */
1890 return SHRINK_STOP;
1891
1892 mutex_lock(&lu_sites_guard);
1893 list_for_each_entry_safe(s, tmp, &lu_sites, ls_linkage) {
1894 freed = lu_site_purge(&lu_shrink_env, s, remain);
1895 remain -= freed;
1896 /*
1897 * Move just shrunk site to the tail of site list to
1898 * assure shrinking fairness.
1899 */
1900 list_move_tail(&s->ls_linkage, &splice);
1901 }
1902 list_splice(&splice, lu_sites.prev);
1903 mutex_unlock(&lu_sites_guard);
1904
1905 return sc->nr_to_scan - remain;
1906}
1907
d7e09d03
PT
1908/*
1909 * Debugging stuff.
1910 */
1911
1912/**
1913 * Environment to be used in debugger, contains all tags.
1914 */
1915struct lu_env lu_debugging_env;
1916
1917/**
1918 * Debugging printer function using printk().
1919 */
1920int lu_printk_printer(const struct lu_env *env,
1921 void *unused, const char *format, ...)
1922{
1923 va_list args;
1924
1925 va_start(args, format);
1926 vprintk(format, args);
1927 va_end(args);
1928 return 0;
1929}
1930
fe92a055
PT
1931static struct shrinker lu_site_shrinker = {
1932 .count_objects = lu_cache_shrink_count,
1933 .scan_objects = lu_cache_shrink_scan,
1934 .seeks = DEFAULT_SEEKS,
1935};
1936
d7e09d03
PT
1937/**
1938 * Initialization of global lu_* data.
1939 */
1940int lu_global_init(void)
1941{
1942 int result;
1943
1944 CDEBUG(D_INFO, "Lustre LU module (%p).\n", &lu_keys);
1945
1946 result = lu_ref_global_init();
1947 if (result != 0)
1948 return result;
1949
1950 LU_CONTEXT_KEY_INIT(&lu_global_key);
1951 result = lu_context_key_register(&lu_global_key);
1952 if (result != 0)
1953 return result;
1954
1955 /*
1956 * At this level, we don't know what tags are needed, so allocate them
1957 * conservatively. This should not be too bad, because this
1958 * environment is global.
1959 */
1960 mutex_lock(&lu_sites_guard);
1961 result = lu_env_init(&lu_shrink_env, LCT_SHRINKER);
1962 mutex_unlock(&lu_sites_guard);
1963 if (result != 0)
1964 return result;
1965
1966 /*
1967 * seeks estimation: 3 seeks to read a record from oi, one to read
1968 * inode, one for ea. Unfortunately setting this high value results in
1969 * lu_object/inode cache consuming all the memory.
1970 */
fe92a055 1971 register_shrinker(&lu_site_shrinker);
d7e09d03
PT
1972
1973 return result;
1974}
1975
1976/**
1977 * Dual to lu_global_init().
1978 */
1979void lu_global_fini(void)
1980{
fe92a055 1981 unregister_shrinker(&lu_site_shrinker);
d7e09d03
PT
1982 lu_context_key_degister(&lu_global_key);
1983
1984 /*
1985 * Tear shrinker environment down _after_ de-registering
1986 * lu_global_key, because the latter has a value in the former.
1987 */
1988 mutex_lock(&lu_sites_guard);
1989 lu_env_fini(&lu_shrink_env);
1990 mutex_unlock(&lu_sites_guard);
1991
1992 lu_ref_global_fini();
1993}
1994
1995static __u32 ls_stats_read(struct lprocfs_stats *stats, int idx)
1996{
1997#ifdef LPROCFS
1998 struct lprocfs_counter ret;
1999
2000 lprocfs_stats_collect(stats, idx, &ret);
2001 return (__u32)ret.lc_count;
2002#else
2003 return 0;
2004#endif
2005}
2006
2007/**
2008 * Output site statistical counters into a buffer. Suitable for
2009 * lprocfs_rd_*()-style functions.
2010 */
73bb1da6 2011int lu_site_stats_print(const struct lu_site *s, struct seq_file *m)
d7e09d03
PT
2012{
2013 lu_site_stats_t stats;
2014
2015 memset(&stats, 0, sizeof(stats));
2016 lu_site_stats_get(s->ls_obj_hash, &stats, 1);
2017
73bb1da6 2018 return seq_printf(m, "%d/%d %d/%d %d %d %d %d %d %d %d\n",
d7e09d03
PT
2019 stats.lss_busy,
2020 stats.lss_total,
2021 stats.lss_populated,
2022 CFS_HASH_NHLIST(s->ls_obj_hash),
2023 stats.lss_max_search,
2024 ls_stats_read(s->ls_stats, LU_SS_CREATED),
2025 ls_stats_read(s->ls_stats, LU_SS_CACHE_HIT),
2026 ls_stats_read(s->ls_stats, LU_SS_CACHE_MISS),
2027 ls_stats_read(s->ls_stats, LU_SS_CACHE_RACE),
2028 ls_stats_read(s->ls_stats, LU_SS_CACHE_DEATH_RACE),
2029 ls_stats_read(s->ls_stats, LU_SS_LRU_PURGED));
2030}
2031EXPORT_SYMBOL(lu_site_stats_print);
2032
2033/**
2034 * Helper function to initialize a number of kmem slab caches at once.
2035 */
2036int lu_kmem_init(struct lu_kmem_descr *caches)
2037{
2038 int result;
2039 struct lu_kmem_descr *iter = caches;
2040
2041 for (result = 0; iter->ckd_cache != NULL; ++iter) {
2042 *iter->ckd_cache = kmem_cache_create(iter->ckd_name,
2043 iter->ckd_size,
2044 0, 0, NULL);
2045 if (*iter->ckd_cache == NULL) {
2046 result = -ENOMEM;
2047 /* free all previously allocated caches */
2048 lu_kmem_fini(caches);
2049 break;
2050 }
2051 }
2052 return result;
2053}
2054EXPORT_SYMBOL(lu_kmem_init);
2055
2056/**
2057 * Helper function to finalize a number of kmem slab cached at once. Dual to
2058 * lu_kmem_init().
2059 */
2060void lu_kmem_fini(struct lu_kmem_descr *caches)
2061{
2062 for (; caches->ckd_cache != NULL; ++caches) {
2063 if (*caches->ckd_cache != NULL) {
2064 kmem_cache_destroy(*caches->ckd_cache);
2065 *caches->ckd_cache = NULL;
2066 }
2067 }
2068}
2069EXPORT_SYMBOL(lu_kmem_fini);
2070
2071/**
2072 * Temporary solution to be able to assign fid in ->do_create()
2073 * till we have fully-functional OST fids
2074 */
2075void lu_object_assign_fid(const struct lu_env *env, struct lu_object *o,
2076 const struct lu_fid *fid)
2077{
2078 struct lu_site *s = o->lo_dev->ld_site;
2079 struct lu_fid *old = &o->lo_header->loh_fid;
2080 struct lu_site_bkt_data *bkt;
2081 struct lu_object *shadow;
2082 wait_queue_t waiter;
6da6eabe 2083 struct cfs_hash *hs;
6ea510c1 2084 struct cfs_hash_bd bd;
d7e09d03
PT
2085 __u64 version = 0;
2086
2087 LASSERT(fid_is_zero(old));
2088
2089 hs = s->ls_obj_hash;
2090 cfs_hash_bd_get_and_lock(hs, (void *)fid, &bd, 1);
2091 shadow = htable_lookup(s, &bd, fid, &waiter, &version);
2092 /* supposed to be unique */
70b749d4 2093 LASSERT(IS_ERR(shadow) && PTR_ERR(shadow) == -ENOENT);
d7e09d03
PT
2094 *old = *fid;
2095 bkt = cfs_hash_bd_extra_get(hs, &bd);
2096 cfs_hash_bd_add_locked(hs, &bd, &o->lo_header->loh_hash);
2097 bkt->lsb_busy++;
2098 cfs_hash_bd_unlock(hs, &bd, 1);
2099}
2100EXPORT_SYMBOL(lu_object_assign_fid);
2101
2102/**
52cf6acf 2103 * allocates object with 0 (non-assigned) fid
d7e09d03
PT
2104 * XXX: temporary solution to be able to assign fid in ->do_create()
2105 * till we have fully-functional OST fids
2106 */
2107struct lu_object *lu_object_anon(const struct lu_env *env,
2108 struct lu_device *dev,
2109 const struct lu_object_conf *conf)
2110{
2111 struct lu_fid fid;
2112 struct lu_object *o;
2113
2114 fid_zero(&fid);
2115 o = lu_object_alloc(env, dev, &fid, conf);
2116
2117 return o;
2118}
2119EXPORT_SYMBOL(lu_object_anon);
2120
2121struct lu_buf LU_BUF_NULL = {
2122 .lb_buf = NULL,
2123 .lb_len = 0
2124};
2125EXPORT_SYMBOL(LU_BUF_NULL);
2126
2127void lu_buf_free(struct lu_buf *buf)
2128{
2129 LASSERT(buf);
2130 if (buf->lb_buf) {
2131 LASSERT(buf->lb_len > 0);
2132 OBD_FREE_LARGE(buf->lb_buf, buf->lb_len);
2133 buf->lb_buf = NULL;
2134 buf->lb_len = 0;
2135 }
2136}
2137EXPORT_SYMBOL(lu_buf_free);
2138
2139void lu_buf_alloc(struct lu_buf *buf, int size)
2140{
2141 LASSERT(buf);
2142 LASSERT(buf->lb_buf == NULL);
2143 LASSERT(buf->lb_len == 0);
2144 OBD_ALLOC_LARGE(buf->lb_buf, size);
2145 if (likely(buf->lb_buf))
2146 buf->lb_len = size;
2147}
2148EXPORT_SYMBOL(lu_buf_alloc);
2149
2150void lu_buf_realloc(struct lu_buf *buf, int size)
2151{
2152 lu_buf_free(buf);
2153 lu_buf_alloc(buf, size);
2154}
2155EXPORT_SYMBOL(lu_buf_realloc);
2156
2157struct lu_buf *lu_buf_check_and_alloc(struct lu_buf *buf, int len)
2158{
2159 if (buf->lb_buf == NULL && buf->lb_len == 0)
2160 lu_buf_alloc(buf, len);
2161
2162 if ((len > buf->lb_len) && (buf->lb_buf != NULL))
2163 lu_buf_realloc(buf, len);
2164
2165 return buf;
2166}
2167EXPORT_SYMBOL(lu_buf_check_and_alloc);
2168
2169/**
2170 * Increase the size of the \a buf.
2171 * preserves old data in buffer
2172 * old buffer remains unchanged on error
2173 * \retval 0 or -ENOMEM
2174 */
2175int lu_buf_check_and_grow(struct lu_buf *buf, int len)
2176{
2177 char *ptr;
2178
2179 if (len <= buf->lb_len)
2180 return 0;
2181
2182 OBD_ALLOC_LARGE(ptr, len);
2183 if (ptr == NULL)
2184 return -ENOMEM;
2185
2186 /* Free the old buf */
2187 if (buf->lb_buf != NULL) {
2188 memcpy(ptr, buf->lb_buf, buf->lb_len);
2189 OBD_FREE_LARGE(buf->lb_buf, buf->lb_len);
2190 }
2191
2192 buf->lb_buf = ptr;
2193 buf->lb_len = len;
2194 return 0;
2195}
2196EXPORT_SYMBOL(lu_buf_check_and_grow);
This page took 0.4137 seconds and 5 git commands to generate.