staging: lustre: fix gfp_t/int coercion
[deliverable/linux.git] / drivers / staging / lustre / lustre / ptlrpc / client.c
CommitLineData
d7e09d03
PT
1/*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19 *
20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21 * CA 95054 USA or visit www.sun.com if you need additional information or
22 * have any questions.
23 *
24 * GPL HEADER END
25 */
26/*
27 * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
28 * Use is subject to license terms.
29 *
30 * Copyright (c) 2011, 2012, Intel Corporation.
31 */
32/*
33 * This file is part of Lustre, http://www.lustre.org/
34 * Lustre is a trademark of Sun Microsystems, Inc.
35 */
36
37/** Implementation of client-side PortalRPC interfaces */
38
39#define DEBUG_SUBSYSTEM S_RPC
40
e27db149
GKH
41#include "../include/obd_support.h"
42#include "../include/obd_class.h"
43#include "../include/lustre_lib.h"
44#include "../include/lustre_ha.h"
45#include "../include/lustre_import.h"
46#include "../include/lustre_req_layout.h"
d7e09d03
PT
47
48#include "ptlrpc_internal.h"
49
50static int ptlrpc_send_new_req(struct ptlrpc_request *req);
82a373ae 51static int ptlrpcd_check_work(struct ptlrpc_request *req);
d7e09d03
PT
52
53/**
54 * Initialize passed in client structure \a cl.
55 */
56void ptlrpc_init_client(int req_portal, int rep_portal, char *name,
57 struct ptlrpc_client *cl)
58{
59 cl->cli_request_portal = req_portal;
60 cl->cli_reply_portal = rep_portal;
61 cl->cli_name = name;
62}
63EXPORT_SYMBOL(ptlrpc_init_client);
64
65/**
930cef9a 66 * Return PortalRPC connection for remote uud \a uuid
d7e09d03
PT
67 */
68struct ptlrpc_connection *ptlrpc_uuid_to_connection(struct obd_uuid *uuid)
69{
70 struct ptlrpc_connection *c;
71 lnet_nid_t self;
72 lnet_process_id_t peer;
73 int err;
74
75 /* ptlrpc_uuid_to_peer() initializes its 2nd parameter
76 * before accessing its values. */
77 /* coverity[uninit_use_in_call] */
78 err = ptlrpc_uuid_to_peer(uuid, &peer, &self);
79 if (err != 0) {
80 CNETERR("cannot find peer %s!\n", uuid->uuid);
81 return NULL;
82 }
83
84 c = ptlrpc_connection_get(peer, self, uuid);
85 if (c) {
86 memcpy(c->c_remote_uuid.uuid,
87 uuid->uuid, sizeof(c->c_remote_uuid.uuid));
88 }
89
90 CDEBUG(D_INFO, "%s -> %p\n", uuid->uuid, c);
91
92 return c;
93}
94EXPORT_SYMBOL(ptlrpc_uuid_to_connection);
95
96/**
97 * Allocate and initialize new bulk descriptor on the sender.
98 * Returns pointer to the descriptor or NULL on error.
99 */
100struct ptlrpc_bulk_desc *ptlrpc_new_bulk(unsigned npages, unsigned max_brw,
101 unsigned type, unsigned portal)
102{
103 struct ptlrpc_bulk_desc *desc;
104 int i;
105
106 OBD_ALLOC(desc, offsetof(struct ptlrpc_bulk_desc, bd_iov[npages]));
107 if (!desc)
108 return NULL;
109
110 spin_lock_init(&desc->bd_lock);
111 init_waitqueue_head(&desc->bd_waitq);
112 desc->bd_max_iov = npages;
113 desc->bd_iov_count = 0;
114 desc->bd_portal = portal;
115 desc->bd_type = type;
116 desc->bd_md_count = 0;
117 LASSERT(max_brw > 0);
118 desc->bd_md_max_brw = min(max_brw, PTLRPC_BULK_OPS_COUNT);
119 /* PTLRPC_BULK_OPS_COUNT is the compile-time transfer limit for this
120 * node. Negotiated ocd_brw_size will always be <= this number. */
121 for (i = 0; i < PTLRPC_BULK_OPS_COUNT; i++)
122 LNetInvalidateHandle(&desc->bd_mds[i]);
123
124 return desc;
125}
126
127/**
128 * Prepare bulk descriptor for specified outgoing request \a req that
129 * can fit \a npages * pages. \a type is bulk type. \a portal is where
130 * the bulk to be sent. Used on client-side.
930cef9a 131 * Returns pointer to newly allocated initialized bulk descriptor or NULL on
d7e09d03
PT
132 * error.
133 */
134struct ptlrpc_bulk_desc *ptlrpc_prep_bulk_imp(struct ptlrpc_request *req,
135 unsigned npages, unsigned max_brw,
136 unsigned type, unsigned portal)
137{
138 struct obd_import *imp = req->rq_import;
139 struct ptlrpc_bulk_desc *desc;
140
d7e09d03
PT
141 LASSERT(type == BULK_PUT_SINK || type == BULK_GET_SOURCE);
142 desc = ptlrpc_new_bulk(npages, max_brw, type, portal);
143 if (desc == NULL)
0a3bdb00 144 return NULL;
d7e09d03
PT
145
146 desc->bd_import_generation = req->rq_import_generation;
147 desc->bd_import = class_import_get(imp);
148 desc->bd_req = req;
149
150 desc->bd_cbid.cbid_fn = client_bulk_callback;
151 desc->bd_cbid.cbid_arg = desc;
152
153 /* This makes req own desc, and free it when she frees herself */
154 req->rq_bulk = desc;
155
156 return desc;
157}
158EXPORT_SYMBOL(ptlrpc_prep_bulk_imp);
159
160/**
161 * Add a page \a page to the bulk descriptor \a desc.
162 * Data to transfer in the page starts at offset \a pageoffset and
163 * amount of data to transfer from the page is \a len
164 */
165void __ptlrpc_prep_bulk_page(struct ptlrpc_bulk_desc *desc,
166 struct page *page, int pageoffset, int len, int pin)
167{
168 LASSERT(desc->bd_iov_count < desc->bd_max_iov);
169 LASSERT(page != NULL);
170 LASSERT(pageoffset >= 0);
171 LASSERT(len > 0);
172 LASSERT(pageoffset + len <= PAGE_CACHE_SIZE);
173
174 desc->bd_nob += len;
175
176 if (pin)
177 page_cache_get(page);
178
179 ptlrpc_add_bulk_page(desc, page, pageoffset, len);
180}
181EXPORT_SYMBOL(__ptlrpc_prep_bulk_page);
182
183/**
184 * Uninitialize and free bulk descriptor \a desc.
185 * Works on bulk descriptors both from server and client side.
186 */
187void __ptlrpc_free_bulk(struct ptlrpc_bulk_desc *desc, int unpin)
188{
189 int i;
d7e09d03
PT
190
191 LASSERT(desc != NULL);
192 LASSERT(desc->bd_iov_count != LI_POISON); /* not freed already */
193 LASSERT(desc->bd_md_count == 0); /* network hands off */
194 LASSERT((desc->bd_export != NULL) ^ (desc->bd_import != NULL));
195
196 sptlrpc_enc_pool_put_pages(desc);
197
198 if (desc->bd_export)
199 class_export_put(desc->bd_export);
200 else
201 class_import_put(desc->bd_import);
202
203 if (unpin) {
7b8633de 204 for (i = 0; i < desc->bd_iov_count; i++)
d7e09d03
PT
205 page_cache_release(desc->bd_iov[i].kiov_page);
206 }
207
208 OBD_FREE(desc, offsetof(struct ptlrpc_bulk_desc,
209 bd_iov[desc->bd_max_iov]));
d7e09d03
PT
210}
211EXPORT_SYMBOL(__ptlrpc_free_bulk);
212
213/**
214 * Set server timelimit for this req, i.e. how long are we willing to wait
215 * for reply before timing out this request.
216 */
217void ptlrpc_at_set_req_timeout(struct ptlrpc_request *req)
218{
219 __u32 serv_est;
220 int idx;
221 struct imp_at *at;
222
223 LASSERT(req->rq_import);
224
225 if (AT_OFF) {
226 /* non-AT settings */
227 /**
228 * \a imp_server_timeout means this is reverse import and
229 * we send (currently only) ASTs to the client and cannot afford
230 * to wait too long for the reply, otherwise the other client
231 * (because of which we are sending this request) would
232 * timeout waiting for us
233 */
234 req->rq_timeout = req->rq_import->imp_server_timeout ?
235 obd_timeout / 2 : obd_timeout;
236 } else {
237 at = &req->rq_import->imp_at;
238 idx = import_at_get_index(req->rq_import,
239 req->rq_request_portal);
240 serv_est = at_get(&at->iat_service_estimate[idx]);
241 req->rq_timeout = at_est2timeout(serv_est);
242 }
243 /* We could get even fancier here, using history to predict increased
244 loading... */
245
246 /* Let the server know what this RPC timeout is by putting it in the
247 reqmsg*/
248 lustre_msg_set_timeout(req->rq_reqmsg, req->rq_timeout);
249}
250EXPORT_SYMBOL(ptlrpc_at_set_req_timeout);
251
252/* Adjust max service estimate based on server value */
253static void ptlrpc_at_adj_service(struct ptlrpc_request *req,
254 unsigned int serv_est)
255{
256 int idx;
257 unsigned int oldse;
258 struct imp_at *at;
259
260 LASSERT(req->rq_import);
261 at = &req->rq_import->imp_at;
262
263 idx = import_at_get_index(req->rq_import, req->rq_request_portal);
264 /* max service estimates are tracked on the server side,
265 so just keep minimal history here */
266 oldse = at_measured(&at->iat_service_estimate[idx], serv_est);
267 if (oldse != 0)
268 CDEBUG(D_ADAPTTO, "The RPC service estimate for %s ptl %d "
269 "has changed from %d to %d\n",
0ae015be 270 req->rq_import->imp_obd->obd_name, req->rq_request_portal,
d7e09d03
PT
271 oldse, at_get(&at->iat_service_estimate[idx]));
272}
273
274/* Expected network latency per remote node (secs) */
275int ptlrpc_at_get_net_latency(struct ptlrpc_request *req)
276{
277 return AT_OFF ? 0 : at_get(&req->rq_import->imp_at.iat_net_latency);
278}
279
280/* Adjust expected network latency */
281static void ptlrpc_at_adj_net_latency(struct ptlrpc_request *req,
282 unsigned int service_time)
283{
284 unsigned int nl, oldnl;
285 struct imp_at *at;
7264b8a5 286 time_t now = get_seconds();
d7e09d03
PT
287
288 LASSERT(req->rq_import);
289 at = &req->rq_import->imp_at;
290
291 /* Network latency is total time less server processing time */
b533ff4b 292 nl = max_t(int, now - req->rq_sent - service_time, 0) + 1/*st rounding*/;
d7e09d03
PT
293 if (service_time > now - req->rq_sent + 3 /* bz16408 */)
294 CWARN("Reported service time %u > total measured time "
295 CFS_DURATION_T"\n", service_time,
296 cfs_time_sub(now, req->rq_sent));
297
298 oldnl = at_measured(&at->iat_net_latency, nl);
299 if (oldnl != 0)
300 CDEBUG(D_ADAPTTO, "The network latency for %s (nid %s) "
301 "has changed from %d to %d\n",
302 req->rq_import->imp_obd->obd_name,
303 obd_uuid2str(
304 &req->rq_import->imp_connection->c_remote_uuid),
305 oldnl, at_get(&at->iat_net_latency));
306}
307
308static int unpack_reply(struct ptlrpc_request *req)
309{
310 int rc;
311
312 if (SPTLRPC_FLVR_POLICY(req->rq_flvr.sf_rpc) != SPTLRPC_POLICY_NULL) {
313 rc = ptlrpc_unpack_rep_msg(req, req->rq_replen);
314 if (rc) {
315 DEBUG_REQ(D_ERROR, req, "unpack_rep failed: %d", rc);
fbe7c6c7 316 return -EPROTO;
d7e09d03
PT
317 }
318 }
319
320 rc = lustre_unpack_rep_ptlrpc_body(req, MSG_PTLRPC_BODY_OFF);
321 if (rc) {
322 DEBUG_REQ(D_ERROR, req, "unpack ptlrpc body failed: %d", rc);
fbe7c6c7 323 return -EPROTO;
d7e09d03
PT
324 }
325 return 0;
326}
327
328/**
329 * Handle an early reply message, called with the rq_lock held.
330 * If anything goes wrong just ignore it - same as if it never happened
331 */
332static int ptlrpc_at_recv_early_reply(struct ptlrpc_request *req)
333{
334 struct ptlrpc_request *early_req;
335 time_t olddl;
336 int rc;
d7e09d03
PT
337
338 req->rq_early = 0;
339 spin_unlock(&req->rq_lock);
340
341 rc = sptlrpc_cli_unwrap_early_reply(req, &early_req);
342 if (rc) {
343 spin_lock(&req->rq_lock);
0a3bdb00 344 return rc;
d7e09d03
PT
345 }
346
347 rc = unpack_reply(early_req);
348 if (rc == 0) {
349 /* Expecting to increase the service time estimate here */
350 ptlrpc_at_adj_service(req,
351 lustre_msg_get_timeout(early_req->rq_repmsg));
352 ptlrpc_at_adj_net_latency(req,
353 lustre_msg_get_service_time(early_req->rq_repmsg));
354 }
355
356 sptlrpc_cli_finish_early_reply(early_req);
357
358 if (rc != 0) {
359 spin_lock(&req->rq_lock);
0a3bdb00 360 return rc;
d7e09d03
PT
361 }
362
363 /* Adjust the local timeout for this req */
364 ptlrpc_at_set_req_timeout(req);
365
366 spin_lock(&req->rq_lock);
367 olddl = req->rq_deadline;
368 /* server assumes it now has rq_timeout from when it sent the
369 * early reply, so client should give it at least that long. */
7264b8a5 370 req->rq_deadline = get_seconds() + req->rq_timeout +
d7e09d03
PT
371 ptlrpc_at_get_net_latency(req);
372
373 DEBUG_REQ(D_ADAPTTO, req,
374 "Early reply #%d, new deadline in "CFS_DURATION_T"s "
375 "("CFS_DURATION_T"s)", req->rq_early_count,
7264b8a5 376 cfs_time_sub(req->rq_deadline, get_seconds()),
d7e09d03
PT
377 cfs_time_sub(req->rq_deadline, olddl));
378
0a3bdb00 379 return rc;
d7e09d03
PT
380}
381
35b2e1b7
AS
382struct kmem_cache *request_cache;
383
384int ptlrpc_request_cache_init(void)
385{
386 request_cache = kmem_cache_create("ptlrpc_cache",
387 sizeof(struct ptlrpc_request),
388 0, SLAB_HWCACHE_ALIGN, NULL);
389 return request_cache == NULL ? -ENOMEM : 0;
390}
391
392void ptlrpc_request_cache_fini(void)
393{
394 kmem_cache_destroy(request_cache);
395}
396
f1c571dc 397struct ptlrpc_request *ptlrpc_request_cache_alloc(gfp_t flags)
35b2e1b7
AS
398{
399 struct ptlrpc_request *req;
400
401 OBD_SLAB_ALLOC_PTR_GFP(req, request_cache, flags);
402 return req;
403}
404
405void ptlrpc_request_cache_free(struct ptlrpc_request *req)
406{
407 OBD_SLAB_FREE_PTR(req, request_cache);
408}
409
d7e09d03
PT
410/**
411 * Wind down request pool \a pool.
412 * Frees all requests from the pool too
413 */
414void ptlrpc_free_rq_pool(struct ptlrpc_request_pool *pool)
415{
416 struct list_head *l, *tmp;
417 struct ptlrpc_request *req;
418
419 LASSERT(pool != NULL);
420
421 spin_lock(&pool->prp_lock);
422 list_for_each_safe(l, tmp, &pool->prp_req_list) {
423 req = list_entry(l, struct ptlrpc_request, rq_list);
424 list_del(&req->rq_list);
425 LASSERT(req->rq_reqbuf);
426 LASSERT(req->rq_reqbuf_len == pool->prp_rq_size);
427 OBD_FREE_LARGE(req->rq_reqbuf, pool->prp_rq_size);
35b2e1b7 428 ptlrpc_request_cache_free(req);
d7e09d03
PT
429 }
430 spin_unlock(&pool->prp_lock);
431 OBD_FREE(pool, sizeof(*pool));
432}
433EXPORT_SYMBOL(ptlrpc_free_rq_pool);
434
435/**
436 * Allocates, initializes and adds \a num_rq requests to the pool \a pool
437 */
438void ptlrpc_add_rqs_to_pool(struct ptlrpc_request_pool *pool, int num_rq)
439{
440 int i;
441 int size = 1;
442
443 while (size < pool->prp_rq_size)
444 size <<= 1;
445
446 LASSERTF(list_empty(&pool->prp_req_list) ||
447 size == pool->prp_rq_size,
448 "Trying to change pool size with nonempty pool "
449 "from %d to %d bytes\n", pool->prp_rq_size, size);
450
451 spin_lock(&pool->prp_lock);
452 pool->prp_rq_size = size;
453 for (i = 0; i < num_rq; i++) {
454 struct ptlrpc_request *req;
455 struct lustre_msg *msg;
456
457 spin_unlock(&pool->prp_lock);
0be19afa 458 req = ptlrpc_request_cache_alloc(GFP_NOFS);
d7e09d03
PT
459 if (!req)
460 return;
461 OBD_ALLOC_LARGE(msg, size);
462 if (!msg) {
35b2e1b7 463 ptlrpc_request_cache_free(req);
d7e09d03
PT
464 return;
465 }
466 req->rq_reqbuf = msg;
467 req->rq_reqbuf_len = size;
468 req->rq_pool = pool;
469 spin_lock(&pool->prp_lock);
470 list_add_tail(&req->rq_list, &pool->prp_req_list);
471 }
472 spin_unlock(&pool->prp_lock);
473 return;
474}
475EXPORT_SYMBOL(ptlrpc_add_rqs_to_pool);
476
477/**
478 * Create and initialize new request pool with given attributes:
479 * \a num_rq - initial number of requests to create for the pool
480 * \a msgsize - maximum message size possible for requests in thid pool
481 * \a populate_pool - function to be called when more requests need to be added
482 * to the pool
483 * Returns pointer to newly created pool or NULL on error.
484 */
485struct ptlrpc_request_pool *
486ptlrpc_init_rq_pool(int num_rq, int msgsize,
487 void (*populate_pool)(struct ptlrpc_request_pool *, int))
488{
489 struct ptlrpc_request_pool *pool;
490
3949015e 491 OBD_ALLOC(pool, sizeof(struct ptlrpc_request_pool));
d7e09d03
PT
492 if (!pool)
493 return NULL;
494
495 /* Request next power of two for the allocation, because internally
496 kernel would do exactly this */
497
498 spin_lock_init(&pool->prp_lock);
499 INIT_LIST_HEAD(&pool->prp_req_list);
500 pool->prp_rq_size = msgsize + SPTLRPC_MAX_PAYLOAD;
501 pool->prp_populate = populate_pool;
502
503 populate_pool(pool, num_rq);
504
505 if (list_empty(&pool->prp_req_list)) {
506 /* have not allocated a single request for the pool */
3949015e 507 OBD_FREE(pool, sizeof(struct ptlrpc_request_pool));
d7e09d03
PT
508 pool = NULL;
509 }
510 return pool;
511}
512EXPORT_SYMBOL(ptlrpc_init_rq_pool);
513
514/**
515 * Fetches one request from pool \a pool
516 */
517static struct ptlrpc_request *
518ptlrpc_prep_req_from_pool(struct ptlrpc_request_pool *pool)
519{
520 struct ptlrpc_request *request;
521 struct lustre_msg *reqbuf;
522
523 if (!pool)
524 return NULL;
525
526 spin_lock(&pool->prp_lock);
527
528 /* See if we have anything in a pool, and bail out if nothing,
529 * in writeout path, where this matters, this is safe to do, because
530 * nothing is lost in this case, and when some in-flight requests
531 * complete, this code will be called again. */
532 if (unlikely(list_empty(&pool->prp_req_list))) {
533 spin_unlock(&pool->prp_lock);
534 return NULL;
535 }
536
537 request = list_entry(pool->prp_req_list.next, struct ptlrpc_request,
538 rq_list);
539 list_del_init(&request->rq_list);
540 spin_unlock(&pool->prp_lock);
541
542 LASSERT(request->rq_reqbuf);
543 LASSERT(request->rq_pool);
544
545 reqbuf = request->rq_reqbuf;
546 memset(request, 0, sizeof(*request));
547 request->rq_reqbuf = reqbuf;
548 request->rq_reqbuf_len = pool->prp_rq_size;
549 request->rq_pool = pool;
550
551 return request;
552}
553
554/**
555 * Returns freed \a request to pool.
556 */
557static void __ptlrpc_free_req_to_pool(struct ptlrpc_request *request)
558{
559 struct ptlrpc_request_pool *pool = request->rq_pool;
560
561 spin_lock(&pool->prp_lock);
562 LASSERT(list_empty(&request->rq_list));
563 LASSERT(!request->rq_receiving_reply);
564 list_add_tail(&request->rq_list, &pool->prp_req_list);
565 spin_unlock(&pool->prp_lock);
566}
567
568static int __ptlrpc_request_bufs_pack(struct ptlrpc_request *request,
569 __u32 version, int opcode,
570 int count, __u32 *lengths, char **bufs,
571 struct ptlrpc_cli_ctx *ctx)
572{
573 struct obd_import *imp = request->rq_import;
574 int rc;
d7e09d03
PT
575
576 if (unlikely(ctx))
577 request->rq_cli_ctx = sptlrpc_cli_ctx_get(ctx);
578 else {
579 rc = sptlrpc_req_get_ctx(request);
580 if (rc)
a9b3e8f3 581 goto out_free;
d7e09d03
PT
582 }
583
584 sptlrpc_req_set_flavor(request, opcode);
585
586 rc = lustre_pack_request(request, imp->imp_msg_magic, count,
587 lengths, bufs);
588 if (rc) {
589 LASSERT(!request->rq_pool);
a9b3e8f3 590 goto out_ctx;
d7e09d03
PT
591 }
592
593 lustre_msg_add_version(request->rq_reqmsg, version);
594 request->rq_send_state = LUSTRE_IMP_FULL;
595 request->rq_type = PTL_RPC_MSG_REQUEST;
596 request->rq_export = NULL;
597
598 request->rq_req_cbid.cbid_fn = request_out_callback;
599 request->rq_req_cbid.cbid_arg = request;
600
601 request->rq_reply_cbid.cbid_fn = reply_in_callback;
602 request->rq_reply_cbid.cbid_arg = request;
603
604 request->rq_reply_deadline = 0;
605 request->rq_phase = RQ_PHASE_NEW;
606 request->rq_next_phase = RQ_PHASE_UNDEFINED;
607
608 request->rq_request_portal = imp->imp_client->cli_request_portal;
609 request->rq_reply_portal = imp->imp_client->cli_reply_portal;
610
611 ptlrpc_at_set_req_timeout(request);
612
613 spin_lock_init(&request->rq_lock);
614 INIT_LIST_HEAD(&request->rq_list);
615 INIT_LIST_HEAD(&request->rq_timed_list);
616 INIT_LIST_HEAD(&request->rq_replay_list);
617 INIT_LIST_HEAD(&request->rq_ctx_chain);
618 INIT_LIST_HEAD(&request->rq_set_chain);
619 INIT_LIST_HEAD(&request->rq_history_list);
620 INIT_LIST_HEAD(&request->rq_exp_list);
621 init_waitqueue_head(&request->rq_reply_waitq);
622 init_waitqueue_head(&request->rq_set_waitq);
623 request->rq_xid = ptlrpc_next_xid();
624 atomic_set(&request->rq_refcount, 1);
625
626 lustre_msg_set_opc(request->rq_reqmsg, opcode);
627
0a3bdb00 628 return 0;
d7e09d03
PT
629out_ctx:
630 sptlrpc_cli_ctx_put(request->rq_cli_ctx, 1);
631out_free:
632 class_import_put(imp);
633 return rc;
634}
635
636int ptlrpc_request_bufs_pack(struct ptlrpc_request *request,
637 __u32 version, int opcode, char **bufs,
638 struct ptlrpc_cli_ctx *ctx)
639{
640 int count;
641
642 count = req_capsule_filled_sizes(&request->rq_pill, RCL_CLIENT);
643 return __ptlrpc_request_bufs_pack(request, version, opcode, count,
644 request->rq_pill.rc_area[RCL_CLIENT],
645 bufs, ctx);
646}
647EXPORT_SYMBOL(ptlrpc_request_bufs_pack);
648
649/**
650 * Pack request buffers for network transfer, performing necessary encryption
651 * steps if necessary.
652 */
653int ptlrpc_request_pack(struct ptlrpc_request *request,
654 __u32 version, int opcode)
655{
656 int rc;
657 rc = ptlrpc_request_bufs_pack(request, version, opcode, NULL, NULL);
658 if (rc)
659 return rc;
660
661 /* For some old 1.8 clients (< 1.8.7), they will LASSERT the size of
662 * ptlrpc_body sent from server equal to local ptlrpc_body size, so we
930cef9a 663 * have to send old ptlrpc_body to keep interoperability with these
d7e09d03
PT
664 * clients.
665 *
666 * Only three kinds of server->client RPCs so far:
667 * - LDLM_BL_CALLBACK
668 * - LDLM_CP_CALLBACK
669 * - LDLM_GL_CALLBACK
670 *
930cef9a 671 * XXX This should be removed whenever we drop the interoperability with
d7e09d03
PT
672 * the these old clients.
673 */
674 if (opcode == LDLM_BL_CALLBACK || opcode == LDLM_CP_CALLBACK ||
675 opcode == LDLM_GL_CALLBACK)
676 req_capsule_shrink(&request->rq_pill, &RMF_PTLRPC_BODY,
677 sizeof(struct ptlrpc_body_v2), RCL_CLIENT);
678
679 return rc;
680}
681EXPORT_SYMBOL(ptlrpc_request_pack);
682
683/**
684 * Helper function to allocate new request on import \a imp
685 * and possibly using existing request from pool \a pool if provided.
686 * Returns allocated request structure with import field filled or
687 * NULL on error.
688 */
689static inline
690struct ptlrpc_request *__ptlrpc_request_alloc(struct obd_import *imp,
691 struct ptlrpc_request_pool *pool)
692{
693 struct ptlrpc_request *request = NULL;
694
695 if (pool)
696 request = ptlrpc_prep_req_from_pool(pool);
697
698 if (!request)
0be19afa 699 request = ptlrpc_request_cache_alloc(GFP_NOFS);
d7e09d03
PT
700
701 if (request) {
702 LASSERTF((unsigned long)imp > 0x1000, "%p", imp);
703 LASSERT(imp != LP_POISON);
704 LASSERTF((unsigned long)imp->imp_client > 0x1000, "%p",
705 imp->imp_client);
706 LASSERT(imp->imp_client != LP_POISON);
707
708 request->rq_import = class_import_get(imp);
709 } else {
710 CERROR("request allocation out of memory\n");
711 }
712
713 return request;
714}
715
716/**
717 * Helper function for creating a request.
930cef9a 718 * Calls __ptlrpc_request_alloc to allocate new request structure and inits
d7e09d03
PT
719 * buffer structures according to capsule template \a format.
720 * Returns allocated request structure pointer or NULL on error.
721 */
722static struct ptlrpc_request *
723ptlrpc_request_alloc_internal(struct obd_import *imp,
0028d585 724 struct ptlrpc_request_pool *pool,
d7e09d03
PT
725 const struct req_format *format)
726{
727 struct ptlrpc_request *request;
728
729 request = __ptlrpc_request_alloc(imp, pool);
730 if (request == NULL)
731 return NULL;
732
733 req_capsule_init(&request->rq_pill, request, RCL_CLIENT);
734 req_capsule_set(&request->rq_pill, format);
735 return request;
736}
737
738/**
739 * Allocate new request structure for import \a imp and initialize its
740 * buffer structure according to capsule template \a format.
741 */
742struct ptlrpc_request *ptlrpc_request_alloc(struct obd_import *imp,
743 const struct req_format *format)
744{
745 return ptlrpc_request_alloc_internal(imp, NULL, format);
746}
747EXPORT_SYMBOL(ptlrpc_request_alloc);
748
749/**
750 * Allocate new request structure for import \a imp from pool \a pool and
751 * initialize its buffer structure according to capsule template \a format.
752 */
753struct ptlrpc_request *ptlrpc_request_alloc_pool(struct obd_import *imp,
0028d585 754 struct ptlrpc_request_pool *pool,
d7e09d03
PT
755 const struct req_format *format)
756{
757 return ptlrpc_request_alloc_internal(imp, pool, format);
758}
759EXPORT_SYMBOL(ptlrpc_request_alloc_pool);
760
761/**
762 * For requests not from pool, free memory of the request structure.
763 * For requests obtained from a pool earlier, return request back to pool.
764 */
765void ptlrpc_request_free(struct ptlrpc_request *request)
766{
767 if (request->rq_pool)
768 __ptlrpc_free_req_to_pool(request);
769 else
35b2e1b7 770 ptlrpc_request_cache_free(request);
d7e09d03
PT
771}
772EXPORT_SYMBOL(ptlrpc_request_free);
773
774/**
930cef9a 775 * Allocate new request for operation \a opcode and immediately pack it for
d7e09d03
PT
776 * network transfer.
777 * Only used for simple requests like OBD_PING where the only important
778 * part of the request is operation itself.
779 * Returns allocated request or NULL on error.
780 */
781struct ptlrpc_request *ptlrpc_request_alloc_pack(struct obd_import *imp,
782 const struct req_format *format,
783 __u32 version, int opcode)
784{
785 struct ptlrpc_request *req = ptlrpc_request_alloc(imp, format);
786 int rc;
787
788 if (req) {
789 rc = ptlrpc_request_pack(req, version, opcode);
790 if (rc) {
791 ptlrpc_request_free(req);
792 req = NULL;
793 }
794 }
795 return req;
796}
797EXPORT_SYMBOL(ptlrpc_request_alloc_pack);
798
799/**
930cef9a 800 * Prepare request (fetched from pool \a pool if not NULL) on import \a imp
d7e09d03
PT
801 * for operation \a opcode. Request would contain \a count buffers.
802 * Sizes of buffers are described in array \a lengths and buffers themselves
803 * are provided by a pointer \a bufs.
804 * Returns prepared request structure pointer or NULL on error.
805 */
806struct ptlrpc_request *
807ptlrpc_prep_req_pool(struct obd_import *imp,
808 __u32 version, int opcode,
809 int count, __u32 *lengths, char **bufs,
810 struct ptlrpc_request_pool *pool)
811{
812 struct ptlrpc_request *request;
813 int rc;
814
815 request = __ptlrpc_request_alloc(imp, pool);
816 if (!request)
817 return NULL;
818
819 rc = __ptlrpc_request_bufs_pack(request, version, opcode, count,
820 lengths, bufs, NULL);
821 if (rc) {
822 ptlrpc_request_free(request);
823 request = NULL;
824 }
825 return request;
826}
827EXPORT_SYMBOL(ptlrpc_prep_req_pool);
828
829/**
830 * Same as ptlrpc_prep_req_pool, but without pool
831 */
832struct ptlrpc_request *
833ptlrpc_prep_req(struct obd_import *imp, __u32 version, int opcode, int count,
834 __u32 *lengths, char **bufs)
835{
836 return ptlrpc_prep_req_pool(imp, version, opcode, count, lengths, bufs,
837 NULL);
838}
839EXPORT_SYMBOL(ptlrpc_prep_req);
840
841/**
842 * Allocate and initialize new request set structure.
843 * Returns a pointer to the newly allocated set structure or NULL on error.
844 */
845struct ptlrpc_request_set *ptlrpc_prep_set(void)
846{
847 struct ptlrpc_request_set *set;
848
ec83e611 849 OBD_ALLOC(set, sizeof(*set));
d7e09d03 850 if (!set)
0a3bdb00 851 return NULL;
d7e09d03
PT
852 atomic_set(&set->set_refcount, 1);
853 INIT_LIST_HEAD(&set->set_requests);
854 init_waitqueue_head(&set->set_waitq);
855 atomic_set(&set->set_new_count, 0);
856 atomic_set(&set->set_remaining, 0);
857 spin_lock_init(&set->set_new_req_lock);
858 INIT_LIST_HEAD(&set->set_new_requests);
859 INIT_LIST_HEAD(&set->set_cblist);
860 set->set_max_inflight = UINT_MAX;
861 set->set_producer = NULL;
862 set->set_producer_arg = NULL;
863 set->set_rc = 0;
864
0a3bdb00 865 return set;
d7e09d03
PT
866}
867EXPORT_SYMBOL(ptlrpc_prep_set);
868
869/**
870 * Allocate and initialize new request set structure with flow control
871 * extension. This extension allows to control the number of requests in-flight
872 * for the whole set. A callback function to generate requests must be provided
873 * and the request set will keep the number of requests sent over the wire to
874 * @max_inflight.
875 * Returns a pointer to the newly allocated set structure or NULL on error.
876 */
877struct ptlrpc_request_set *ptlrpc_prep_fcset(int max, set_producer_func func,
878 void *arg)
879
880{
881 struct ptlrpc_request_set *set;
882
883 set = ptlrpc_prep_set();
884 if (!set)
0a3bdb00 885 return NULL;
d7e09d03
PT
886
887 set->set_max_inflight = max;
888 set->set_producer = func;
889 set->set_producer_arg = arg;
890
0a3bdb00 891 return set;
d7e09d03
PT
892}
893EXPORT_SYMBOL(ptlrpc_prep_fcset);
894
895/**
896 * Wind down and free request set structure previously allocated with
897 * ptlrpc_prep_set.
898 * Ensures that all requests on the set have completed and removes
899 * all requests from the request list in a set.
900 * If any unsent request happen to be on the list, pretends that they got
901 * an error in flight and calls their completion handler.
902 */
903void ptlrpc_set_destroy(struct ptlrpc_request_set *set)
904{
905 struct list_head *tmp;
906 struct list_head *next;
907 int expected_phase;
908 int n = 0;
d7e09d03
PT
909
910 /* Requests on the set should either all be completed, or all be new */
911 expected_phase = (atomic_read(&set->set_remaining) == 0) ?
912 RQ_PHASE_COMPLETE : RQ_PHASE_NEW;
3949015e 913 list_for_each(tmp, &set->set_requests) {
d7e09d03
PT
914 struct ptlrpc_request *req =
915 list_entry(tmp, struct ptlrpc_request,
916 rq_set_chain);
917
918 LASSERT(req->rq_phase == expected_phase);
919 n++;
920 }
921
922 LASSERTF(atomic_read(&set->set_remaining) == 0 ||
923 atomic_read(&set->set_remaining) == n, "%d / %d\n",
924 atomic_read(&set->set_remaining), n);
925
926 list_for_each_safe(tmp, next, &set->set_requests) {
927 struct ptlrpc_request *req =
928 list_entry(tmp, struct ptlrpc_request,
929 rq_set_chain);
930 list_del_init(&req->rq_set_chain);
931
932 LASSERT(req->rq_phase == expected_phase);
933
934 if (req->rq_phase == RQ_PHASE_NEW) {
935 ptlrpc_req_interpret(NULL, req, -EBADR);
936 atomic_dec(&set->set_remaining);
937 }
938
939 spin_lock(&req->rq_lock);
940 req->rq_set = NULL;
941 req->rq_invalid_rqset = 0;
942 spin_unlock(&req->rq_lock);
943
3949015e 944 ptlrpc_req_finished(req);
d7e09d03
PT
945 }
946
947 LASSERT(atomic_read(&set->set_remaining) == 0);
948
949 ptlrpc_reqset_put(set);
d7e09d03
PT
950}
951EXPORT_SYMBOL(ptlrpc_set_destroy);
952
953/**
954 * Add a callback function \a fn to the set.
955 * This function would be called when all requests on this set are completed.
956 * The function will be passed \a data argument.
957 */
958int ptlrpc_set_add_cb(struct ptlrpc_request_set *set,
959 set_interpreter_func fn, void *data)
960{
961 struct ptlrpc_set_cbdata *cbdata;
962
963 OBD_ALLOC_PTR(cbdata);
964 if (cbdata == NULL)
0a3bdb00 965 return -ENOMEM;
d7e09d03
PT
966
967 cbdata->psc_interpret = fn;
968 cbdata->psc_data = data;
969 list_add_tail(&cbdata->psc_item, &set->set_cblist);
970
0a3bdb00 971 return 0;
d7e09d03
PT
972}
973EXPORT_SYMBOL(ptlrpc_set_add_cb);
974
975/**
976 * Add a new request to the general purpose request set.
977 * Assumes request reference from the caller.
978 */
979void ptlrpc_set_add_req(struct ptlrpc_request_set *set,
980 struct ptlrpc_request *req)
981{
982 LASSERT(list_empty(&req->rq_set_chain));
983
984 /* The set takes over the caller's request reference */
985 list_add_tail(&req->rq_set_chain, &set->set_requests);
986 req->rq_set = set;
987 atomic_inc(&set->set_remaining);
988 req->rq_queued_time = cfs_time_current();
989
990 if (req->rq_reqmsg != NULL)
991 lustre_msg_set_jobid(req->rq_reqmsg, NULL);
992
993 if (set->set_producer != NULL)
994 /* If the request set has a producer callback, the RPC must be
995 * sent straight away */
996 ptlrpc_send_new_req(req);
997}
998EXPORT_SYMBOL(ptlrpc_set_add_req);
999
1000/**
1001 * Add a request to a request with dedicated server thread
1002 * and wake the thread to make any necessary processing.
1003 * Currently only used for ptlrpcd.
1004 */
1005void ptlrpc_set_add_new_req(struct ptlrpcd_ctl *pc,
1006 struct ptlrpc_request *req)
1007{
1008 struct ptlrpc_request_set *set = pc->pc_set;
1009 int count, i;
1010
1011 LASSERT(req->rq_set == NULL);
1012 LASSERT(test_bit(LIOD_STOP, &pc->pc_flags) == 0);
1013
1014 spin_lock(&set->set_new_req_lock);
1015 /*
1016 * The set takes over the caller's request reference.
1017 */
1018 req->rq_set = set;
1019 req->rq_queued_time = cfs_time_current();
1020 list_add_tail(&req->rq_set_chain, &set->set_new_requests);
1021 count = atomic_inc_return(&set->set_new_count);
1022 spin_unlock(&set->set_new_req_lock);
1023
1024 /* Only need to call wakeup once for the first entry. */
1025 if (count == 1) {
1026 wake_up(&set->set_waitq);
1027
1028 /* XXX: It maybe unnecessary to wakeup all the partners. But to
1029 * guarantee the async RPC can be processed ASAP, we have
1030 * no other better choice. It maybe fixed in future. */
1031 for (i = 0; i < pc->pc_npartners; i++)
1032 wake_up(&pc->pc_partners[i]->pc_set->set_waitq);
1033 }
1034}
1035EXPORT_SYMBOL(ptlrpc_set_add_new_req);
1036
1037/**
1038 * Based on the current state of the import, determine if the request
1039 * can be sent, is an error, or should be delayed.
1040 *
1041 * Returns true if this request should be delayed. If false, and
1042 * *status is set, then the request can not be sent and *status is the
1043 * error code. If false and status is 0, then request can be sent.
1044 *
1045 * The imp->imp_lock must be held.
1046 */
1047static int ptlrpc_import_delay_req(struct obd_import *imp,
1048 struct ptlrpc_request *req, int *status)
1049{
1050 int delay = 0;
d7e09d03 1051
3949015e 1052 LASSERT(status != NULL);
d7e09d03
PT
1053 *status = 0;
1054
1055 if (req->rq_ctx_init || req->rq_ctx_fini) {
1056 /* always allow ctx init/fini rpc go through */
1057 } else if (imp->imp_state == LUSTRE_IMP_NEW) {
1058 DEBUG_REQ(D_ERROR, req, "Uninitialized import.");
1059 *status = -EIO;
1060 } else if (imp->imp_state == LUSTRE_IMP_CLOSED) {
1061 /* pings may safely race with umount */
1062 DEBUG_REQ(lustre_msg_get_opc(req->rq_reqmsg) == OBD_PING ?
1063 D_HA : D_ERROR, req, "IMP_CLOSED ");
1064 *status = -EIO;
1065 } else if (ptlrpc_send_limit_expired(req)) {
1066 /* probably doesn't need to be a D_ERROR after initial testing */
1067 DEBUG_REQ(D_ERROR, req, "send limit expired ");
1068 *status = -EIO;
1069 } else if (req->rq_send_state == LUSTRE_IMP_CONNECTING &&
1070 imp->imp_state == LUSTRE_IMP_CONNECTING) {
7b8633de 1071 /* allow CONNECT even if import is invalid */
d7e09d03
PT
1072 if (atomic_read(&imp->imp_inval_count) != 0) {
1073 DEBUG_REQ(D_ERROR, req, "invalidate in flight");
1074 *status = -EIO;
1075 }
1076 } else if (imp->imp_invalid || imp->imp_obd->obd_no_recov) {
1077 if (!imp->imp_deactive)
1078 DEBUG_REQ(D_NET, req, "IMP_INVALID");
1079 *status = -ESHUTDOWN; /* bz 12940 */
1080 } else if (req->rq_import_generation != imp->imp_generation) {
1081 DEBUG_REQ(D_ERROR, req, "req wrong generation:");
1082 *status = -EIO;
1083 } else if (req->rq_send_state != imp->imp_state) {
1084 /* invalidate in progress - any requests should be drop */
1085 if (atomic_read(&imp->imp_inval_count) != 0) {
1086 DEBUG_REQ(D_ERROR, req, "invalidate in flight");
1087 *status = -EIO;
1088 } else if (imp->imp_dlm_fake || req->rq_no_delay) {
1089 *status = -EWOULDBLOCK;
1090 } else if (req->rq_allow_replay &&
1091 (imp->imp_state == LUSTRE_IMP_REPLAY ||
1092 imp->imp_state == LUSTRE_IMP_REPLAY_LOCKS ||
1093 imp->imp_state == LUSTRE_IMP_REPLAY_WAIT ||
1094 imp->imp_state == LUSTRE_IMP_RECOVER)) {
1095 DEBUG_REQ(D_HA, req, "allow during recovery.\n");
1096 } else {
1097 delay = 1;
1098 }
1099 }
1100
0a3bdb00 1101 return delay;
d7e09d03
PT
1102}
1103
1104/**
930cef9a 1105 * Decide if the error message regarding provided request \a req
d7e09d03
PT
1106 * should be printed to the console or not.
1107 * Makes it's decision on request status and other properties.
1108 * Returns 1 to print error on the system console or 0 if not.
1109 */
1110static int ptlrpc_console_allow(struct ptlrpc_request *req)
1111{
1112 __u32 opc;
1113 int err;
1114
1115 LASSERT(req->rq_reqmsg != NULL);
1116 opc = lustre_msg_get_opc(req->rq_reqmsg);
1117
1118 /* Suppress particular reconnect errors which are to be expected. No
1119 * errors are suppressed for the initial connection on an import */
1120 if ((lustre_handle_is_used(&req->rq_import->imp_remote_handle)) &&
1121 (opc == OST_CONNECT || opc == MDS_CONNECT || opc == MGS_CONNECT)) {
1122
1123 /* Suppress timed out reconnect requests */
1124 if (req->rq_timedout)
1125 return 0;
1126
1127 /* Suppress unavailable/again reconnect requests */
1128 err = lustre_msg_get_status(req->rq_repmsg);
1129 if (err == -ENODEV || err == -EAGAIN)
1130 return 0;
1131 }
1132
1133 return 1;
1134}
1135
1136/**
1137 * Check request processing status.
1138 * Returns the status.
1139 */
1140static int ptlrpc_check_status(struct ptlrpc_request *req)
1141{
1142 int err;
d7e09d03
PT
1143
1144 err = lustre_msg_get_status(req->rq_repmsg);
1145 if (lustre_msg_get_type(req->rq_repmsg) == PTL_RPC_MSG_ERR) {
1146 struct obd_import *imp = req->rq_import;
1147 __u32 opc = lustre_msg_get_opc(req->rq_reqmsg);
1148 if (ptlrpc_console_allow(req))
1149 LCONSOLE_ERROR_MSG(0x011, "%s: Communicating with %s,"
1150 " operation %s failed with %d.\n",
1151 imp->imp_obd->obd_name,
1152 libcfs_nid2str(
1153 imp->imp_connection->c_peer.nid),
1154 ll_opcode2str(opc), err);
0a3bdb00 1155 return err < 0 ? err : -EINVAL;
d7e09d03
PT
1156 }
1157
1158 if (err < 0) {
1159 DEBUG_REQ(D_INFO, req, "status is %d", err);
1160 } else if (err > 0) {
1161 /* XXX: translate this error from net to host */
1162 DEBUG_REQ(D_INFO, req, "status is %d", err);
1163 }
1164
0a3bdb00 1165 return err;
d7e09d03
PT
1166}
1167
1168/**
1169 * save pre-versions of objects into request for replay.
1170 * Versions are obtained from server reply.
1171 * used for VBR.
1172 */
1173static void ptlrpc_save_versions(struct ptlrpc_request *req)
1174{
1175 struct lustre_msg *repmsg = req->rq_repmsg;
1176 struct lustre_msg *reqmsg = req->rq_reqmsg;
1177 __u64 *versions = lustre_msg_get_versions(repmsg);
d7e09d03
PT
1178
1179 if (lustre_msg_get_flags(req->rq_reqmsg) & MSG_REPLAY)
1180 return;
1181
1182 LASSERT(versions);
1183 lustre_msg_set_versions(reqmsg, versions);
55f5a824 1184 CDEBUG(D_INFO, "Client save versions [%#llx/%#llx]\n",
d7e09d03 1185 versions[0], versions[1]);
d7e09d03
PT
1186}
1187
1188/**
1189 * Callback function called when client receives RPC reply for \a req.
1190 * Returns 0 on success or error code.
930cef9a 1191 * The return value would be assigned to req->rq_status by the caller
d7e09d03
PT
1192 * as request processing status.
1193 * This function also decides if the request needs to be saved for later replay.
1194 */
1195static int after_reply(struct ptlrpc_request *req)
1196{
1197 struct obd_import *imp = req->rq_import;
1198 struct obd_device *obd = req->rq_import->imp_obd;
1199 int rc;
1200 struct timeval work_start;
1201 long timediff;
d7e09d03
PT
1202
1203 LASSERT(obd != NULL);
1204 /* repbuf must be unlinked */
cf378ff7 1205 LASSERT(!req->rq_receiving_reply && !req->rq_reply_unlink);
d7e09d03
PT
1206
1207 if (req->rq_reply_truncate) {
1208 if (ptlrpc_no_resend(req)) {
1209 DEBUG_REQ(D_ERROR, req, "reply buffer overflow,"
1210 " expected: %d, actual size: %d",
1211 req->rq_nob_received, req->rq_repbuf_len);
0a3bdb00 1212 return -EOVERFLOW;
d7e09d03
PT
1213 }
1214
1215 sptlrpc_cli_free_repbuf(req);
1216 /* Pass the required reply buffer size (include
1217 * space for early reply).
1218 * NB: no need to roundup because alloc_repbuf
1219 * will roundup it */
1220 req->rq_replen = req->rq_nob_received;
1221 req->rq_nob_received = 0;
15c50ccc 1222 spin_lock(&req->rq_lock);
d7e09d03 1223 req->rq_resend = 1;
15c50ccc 1224 spin_unlock(&req->rq_lock);
0a3bdb00 1225 return 0;
d7e09d03
PT
1226 }
1227
1228 /*
1229 * NB Until this point, the whole of the incoming message,
1230 * including buflens, status etc is in the sender's byte order.
1231 */
1232 rc = sptlrpc_cli_unwrap_reply(req);
1233 if (rc) {
1234 DEBUG_REQ(D_ERROR, req, "unwrap reply failed (%d):", rc);
0a3bdb00 1235 return rc;
d7e09d03
PT
1236 }
1237
1238 /*
1239 * Security layer unwrap might ask resend this request.
1240 */
1241 if (req->rq_resend)
0a3bdb00 1242 return 0;
d7e09d03
PT
1243
1244 rc = unpack_reply(req);
1245 if (rc)
0a3bdb00 1246 return rc;
d7e09d03
PT
1247
1248 /* retry indefinitely on EINPROGRESS */
1249 if (lustre_msg_get_status(req->rq_repmsg) == -EINPROGRESS &&
1250 ptlrpc_no_resend(req) == 0 && !req->rq_no_retry_einprogress) {
7264b8a5 1251 time_t now = get_seconds();
d7e09d03
PT
1252
1253 DEBUG_REQ(D_RPCTRACE, req, "Resending request on EINPROGRESS");
1254 req->rq_resend = 1;
1255 req->rq_nr_resend++;
1256
1257 /* allocate new xid to avoid reply reconstruction */
1258 if (!req->rq_bulk) {
1259 /* new xid is already allocated for bulk in
1260 * ptlrpc_check_set() */
1261 req->rq_xid = ptlrpc_next_xid();
1262 DEBUG_REQ(D_RPCTRACE, req, "Allocating new xid for "
1263 "resend on EINPROGRESS");
1264 }
1265
1266 /* Readjust the timeout for current conditions */
1267 ptlrpc_at_set_req_timeout(req);
1268 /* delay resend to give a chance to the server to get ready.
1269 * The delay is increased by 1s on every resend and is capped to
1270 * the current request timeout (i.e. obd_timeout if AT is off,
1271 * or AT service time x 125% + 5s, see at_est2timeout) */
1272 if (req->rq_nr_resend > req->rq_timeout)
1273 req->rq_sent = now + req->rq_timeout;
1274 else
1275 req->rq_sent = now + req->rq_nr_resend;
1276
0a3bdb00 1277 return 0;
d7e09d03
PT
1278 }
1279
1280 do_gettimeofday(&work_start);
1281 timediff = cfs_timeval_sub(&work_start, &req->rq_arrival_time, NULL);
1282 if (obd->obd_svc_stats != NULL) {
1283 lprocfs_counter_add(obd->obd_svc_stats, PTLRPC_REQWAIT_CNTR,
1284 timediff);
1285 ptlrpc_lprocfs_rpc_sent(req, timediff);
1286 }
1287
1288 if (lustre_msg_get_type(req->rq_repmsg) != PTL_RPC_MSG_REPLY &&
1289 lustre_msg_get_type(req->rq_repmsg) != PTL_RPC_MSG_ERR) {
1290 DEBUG_REQ(D_ERROR, req, "invalid packet received (type=%u)",
1291 lustre_msg_get_type(req->rq_repmsg));
0a3bdb00 1292 return -EPROTO;
d7e09d03
PT
1293 }
1294
1295 if (lustre_msg_get_opc(req->rq_reqmsg) != OBD_PING)
1296 CFS_FAIL_TIMEOUT(OBD_FAIL_PTLRPC_PAUSE_REP, cfs_fail_val);
1297 ptlrpc_at_adj_service(req, lustre_msg_get_timeout(req->rq_repmsg));
1298 ptlrpc_at_adj_net_latency(req,
1299 lustre_msg_get_service_time(req->rq_repmsg));
1300
1301 rc = ptlrpc_check_status(req);
1302 imp->imp_connect_error = rc;
1303
1304 if (rc) {
1305 /*
1306 * Either we've been evicted, or the server has failed for
1307 * some reason. Try to reconnect, and if that fails, punt to
1308 * the upcall.
1309 */
1310 if (ll_rpc_recoverable_error(rc)) {
1311 if (req->rq_send_state != LUSTRE_IMP_FULL ||
1312 imp->imp_obd->obd_no_recov || imp->imp_dlm_fake) {
0a3bdb00 1313 return rc;
d7e09d03
PT
1314 }
1315 ptlrpc_request_handle_notconn(req);
0a3bdb00 1316 return rc;
d7e09d03
PT
1317 }
1318 } else {
1319 /*
1320 * Let's look if server sent slv. Do it only for RPC with
1321 * rc == 0.
1322 */
1323 ldlm_cli_update_pool(req);
1324 }
1325
1326 /*
1327 * Store transno in reqmsg for replay.
1328 */
1329 if (!(lustre_msg_get_flags(req->rq_reqmsg) & MSG_REPLAY)) {
1330 req->rq_transno = lustre_msg_get_transno(req->rq_repmsg);
1331 lustre_msg_set_transno(req->rq_reqmsg, req->rq_transno);
1332 }
1333
1334 if (imp->imp_replayable) {
1335 spin_lock(&imp->imp_lock);
1336 /*
1337 * No point in adding already-committed requests to the replay
1338 * list, we will just remove them immediately. b=9829
1339 */
1340 if (req->rq_transno != 0 &&
1341 (req->rq_transno >
1342 lustre_msg_get_last_committed(req->rq_repmsg) ||
1343 req->rq_replay)) {
1344 /** version recovery */
1345 ptlrpc_save_versions(req);
1346 ptlrpc_retain_replayable_request(req, imp);
503a1ac7
LZ
1347 } else if (req->rq_commit_cb != NULL &&
1348 list_empty(&req->rq_replay_list)) {
1349 /* NB: don't call rq_commit_cb if it's already on
1350 * rq_replay_list, ptlrpc_free_committed() will call
1351 * it later, see LU-3618 for details */
d7e09d03
PT
1352 spin_unlock(&imp->imp_lock);
1353 req->rq_commit_cb(req);
1354 spin_lock(&imp->imp_lock);
1355 }
1356
1357 /*
1358 * Replay-enabled imports return commit-status information.
1359 */
1360 if (lustre_msg_get_last_committed(req->rq_repmsg)) {
1361 imp->imp_peer_committed_transno =
1362 lustre_msg_get_last_committed(req->rq_repmsg);
1363 }
1364
1365 ptlrpc_free_committed(imp);
1366
1367 if (!list_empty(&imp->imp_replay_list)) {
1368 struct ptlrpc_request *last;
1369
1370 last = list_entry(imp->imp_replay_list.prev,
1371 struct ptlrpc_request,
1372 rq_replay_list);
1373 /*
1374 * Requests with rq_replay stay on the list even if no
1375 * commit is expected.
1376 */
1377 if (last->rq_transno > imp->imp_peer_committed_transno)
1378 ptlrpc_pinger_commit_expected(imp);
1379 }
1380
1381 spin_unlock(&imp->imp_lock);
1382 }
1383
0a3bdb00 1384 return rc;
d7e09d03
PT
1385}
1386
1387/**
1388 * Helper function to send request \a req over the network for the first time
1389 * Also adjusts request phase.
1390 * Returns 0 on success or error code.
1391 */
1392static int ptlrpc_send_new_req(struct ptlrpc_request *req)
1393{
1394 struct obd_import *imp = req->rq_import;
1395 int rc;
d7e09d03
PT
1396
1397 LASSERT(req->rq_phase == RQ_PHASE_NEW);
7264b8a5 1398 if (req->rq_sent && (req->rq_sent > get_seconds()) &&
d7e09d03
PT
1399 (!req->rq_generation_set ||
1400 req->rq_import_generation == imp->imp_generation))
0a3bdb00 1401 return 0;
d7e09d03
PT
1402
1403 ptlrpc_rqphase_move(req, RQ_PHASE_RPC);
1404
1405 spin_lock(&imp->imp_lock);
1406
1407 if (!req->rq_generation_set)
1408 req->rq_import_generation = imp->imp_generation;
1409
1410 if (ptlrpc_import_delay_req(imp, req, &rc)) {
1411 spin_lock(&req->rq_lock);
1412 req->rq_waiting = 1;
1413 spin_unlock(&req->rq_lock);
1414
1415 DEBUG_REQ(D_HA, req, "req from PID %d waiting for recovery: "
1416 "(%s != %s)", lustre_msg_get_status(req->rq_reqmsg),
1417 ptlrpc_import_state_name(req->rq_send_state),
1418 ptlrpc_import_state_name(imp->imp_state));
1419 LASSERT(list_empty(&req->rq_list));
1420 list_add_tail(&req->rq_list, &imp->imp_delayed_list);
1421 atomic_inc(&req->rq_import->imp_inflight);
1422 spin_unlock(&imp->imp_lock);
0a3bdb00 1423 return 0;
d7e09d03
PT
1424 }
1425
1426 if (rc != 0) {
1427 spin_unlock(&imp->imp_lock);
1428 req->rq_status = rc;
1429 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
0a3bdb00 1430 return rc;
d7e09d03
PT
1431 }
1432
1433 LASSERT(list_empty(&req->rq_list));
1434 list_add_tail(&req->rq_list, &imp->imp_sending_list);
1435 atomic_inc(&req->rq_import->imp_inflight);
1436 spin_unlock(&imp->imp_lock);
1437
1438 lustre_msg_set_status(req->rq_reqmsg, current_pid());
1439
1440 rc = sptlrpc_req_refresh_ctx(req, -1);
1441 if (rc) {
1442 if (req->rq_err) {
1443 req->rq_status = rc;
0a3bdb00 1444 return 1;
d7e09d03 1445 } else {
15c50ccc 1446 spin_lock(&req->rq_lock);
d7e09d03 1447 req->rq_wait_ctx = 1;
15c50ccc 1448 spin_unlock(&req->rq_lock);
0a3bdb00 1449 return 0;
d7e09d03
PT
1450 }
1451 }
1452
1453 CDEBUG(D_RPCTRACE, "Sending RPC pname:cluuid:pid:xid:nid:opc"
b0f5aad5 1454 " %s:%s:%d:%llu:%s:%d\n", current_comm(),
d7e09d03
PT
1455 imp->imp_obd->obd_uuid.uuid,
1456 lustre_msg_get_status(req->rq_reqmsg), req->rq_xid,
1457 libcfs_nid2str(imp->imp_connection->c_peer.nid),
1458 lustre_msg_get_opc(req->rq_reqmsg));
1459
1460 rc = ptl_send_rpc(req, 0);
1461 if (rc) {
1462 DEBUG_REQ(D_HA, req, "send failed (%d); expect timeout", rc);
15c50ccc 1463 spin_lock(&req->rq_lock);
d7e09d03 1464 req->rq_net_err = 1;
15c50ccc 1465 spin_unlock(&req->rq_lock);
0a3bdb00 1466 return rc;
d7e09d03 1467 }
0a3bdb00 1468 return 0;
d7e09d03
PT
1469}
1470
1471static inline int ptlrpc_set_producer(struct ptlrpc_request_set *set)
1472{
1473 int remaining, rc;
d7e09d03
PT
1474
1475 LASSERT(set->set_producer != NULL);
1476
1477 remaining = atomic_read(&set->set_remaining);
1478
1479 /* populate the ->set_requests list with requests until we
1480 * reach the maximum number of RPCs in flight for this set */
1481 while (atomic_read(&set->set_remaining) < set->set_max_inflight) {
1482 rc = set->set_producer(set, set->set_producer_arg);
1483 if (rc == -ENOENT) {
1484 /* no more RPC to produce */
1485 set->set_producer = NULL;
1486 set->set_producer_arg = NULL;
0a3bdb00 1487 return 0;
d7e09d03
PT
1488 }
1489 }
1490
0a3bdb00 1491 return (atomic_read(&set->set_remaining) - remaining);
d7e09d03
PT
1492}
1493
1494/**
1495 * this sends any unsent RPCs in \a set and returns 1 if all are sent
1496 * and no more replies are expected.
1497 * (it is possible to get less replies than requests sent e.g. due to timed out
1498 * requests or requests that we had trouble to send out)
da9e33c9
CM
1499 *
1500 * NOTE: This function contains a potential schedule point (cond_resched()).
d7e09d03
PT
1501 */
1502int ptlrpc_check_set(const struct lu_env *env, struct ptlrpc_request_set *set)
1503{
1504 struct list_head *tmp, *next;
1505 int force_timer_recalc = 0;
d7e09d03
PT
1506
1507 if (atomic_read(&set->set_remaining) == 0)
0a3bdb00 1508 return 1;
d7e09d03
PT
1509
1510 list_for_each_safe(tmp, next, &set->set_requests) {
1511 struct ptlrpc_request *req =
1512 list_entry(tmp, struct ptlrpc_request,
1513 rq_set_chain);
1514 struct obd_import *imp = req->rq_import;
1515 int unregistered = 0;
1516 int rc = 0;
1517
da9e33c9
CM
1518 /* This schedule point is mainly for the ptlrpcd caller of this
1519 * function. Most ptlrpc sets are not long-lived and unbounded
1520 * in length, but at the least the set used by the ptlrpcd is.
1521 * Since the processing time is unbounded, we need to insert an
1522 * explicit schedule point to make the thread well-behaved.
1523 */
1524 cond_resched();
1525
d7e09d03
PT
1526 if (req->rq_phase == RQ_PHASE_NEW &&
1527 ptlrpc_send_new_req(req)) {
1528 force_timer_recalc = 1;
1529 }
1530
1531 /* delayed send - skip */
1532 if (req->rq_phase == RQ_PHASE_NEW && req->rq_sent)
1533 continue;
1534
1535 /* delayed resend - skip */
1536 if (req->rq_phase == RQ_PHASE_RPC && req->rq_resend &&
7264b8a5 1537 req->rq_sent > get_seconds())
d7e09d03
PT
1538 continue;
1539
1540 if (!(req->rq_phase == RQ_PHASE_RPC ||
1541 req->rq_phase == RQ_PHASE_BULK ||
1542 req->rq_phase == RQ_PHASE_INTERPRET ||
1543 req->rq_phase == RQ_PHASE_UNREGISTERING ||
1544 req->rq_phase == RQ_PHASE_COMPLETE)) {
1545 DEBUG_REQ(D_ERROR, req, "bad phase %x", req->rq_phase);
1546 LBUG();
1547 }
1548
1549 if (req->rq_phase == RQ_PHASE_UNREGISTERING) {
1550 LASSERT(req->rq_next_phase != req->rq_phase);
1551 LASSERT(req->rq_next_phase != RQ_PHASE_UNDEFINED);
1552
1553 /*
1554 * Skip processing until reply is unlinked. We
1555 * can't return to pool before that and we can't
1556 * call interpret before that. We need to make
1557 * sure that all rdma transfers finished and will
1558 * not corrupt any data.
1559 */
1560 if (ptlrpc_client_recv_or_unlink(req) ||
1561 ptlrpc_client_bulk_active(req))
1562 continue;
1563
1564 /*
1565 * Turn fail_loc off to prevent it from looping
1566 * forever.
1567 */
1568 if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK)) {
1569 OBD_FAIL_CHECK_ORSET(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK,
1570 OBD_FAIL_ONCE);
1571 }
1572 if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK)) {
1573 OBD_FAIL_CHECK_ORSET(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK,
1574 OBD_FAIL_ONCE);
1575 }
1576
1577 /*
1578 * Move to next phase if reply was successfully
1579 * unlinked.
1580 */
1581 ptlrpc_rqphase_move(req, req->rq_next_phase);
1582 }
1583
1584 if (req->rq_phase == RQ_PHASE_COMPLETE)
1585 continue;
1586
1587 if (req->rq_phase == RQ_PHASE_INTERPRET)
a9b3e8f3 1588 goto interpret;
d7e09d03
PT
1589
1590 /*
1591 * Note that this also will start async reply unlink.
1592 */
1593 if (req->rq_net_err && !req->rq_timedout) {
1594 ptlrpc_expire_one_request(req, 1);
1595
1596 /*
1597 * Check if we still need to wait for unlink.
1598 */
1599 if (ptlrpc_client_recv_or_unlink(req) ||
1600 ptlrpc_client_bulk_active(req))
1601 continue;
1602 /* If there is no need to resend, fail it now. */
1603 if (req->rq_no_resend) {
1604 if (req->rq_status == 0)
1605 req->rq_status = -EIO;
1606 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
a9b3e8f3 1607 goto interpret;
d7e09d03
PT
1608 } else {
1609 continue;
1610 }
1611 }
1612
1613 if (req->rq_err) {
1614 spin_lock(&req->rq_lock);
1615 req->rq_replied = 0;
1616 spin_unlock(&req->rq_lock);
1617 if (req->rq_status == 0)
1618 req->rq_status = -EIO;
1619 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
a9b3e8f3 1620 goto interpret;
d7e09d03
PT
1621 }
1622
1623 /* ptlrpc_set_wait->l_wait_event sets lwi_allow_intr
1624 * so it sets rq_intr regardless of individual rpc
1625 * timeouts. The synchronous IO waiting path sets
1626 * rq_intr irrespective of whether ptlrpcd
1627 * has seen a timeout. Our policy is to only interpret
1628 * interrupted rpcs after they have timed out, so we
1629 * need to enforce that here.
1630 */
1631
1632 if (req->rq_intr && (req->rq_timedout || req->rq_waiting ||
1633 req->rq_wait_ctx)) {
1634 req->rq_status = -EINTR;
1635 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
a9b3e8f3 1636 goto interpret;
d7e09d03
PT
1637 }
1638
1639 if (req->rq_phase == RQ_PHASE_RPC) {
1640 if (req->rq_timedout || req->rq_resend ||
1641 req->rq_waiting || req->rq_wait_ctx) {
1642 int status;
1643
1644 if (!ptlrpc_unregister_reply(req, 1))
1645 continue;
1646
1647 spin_lock(&imp->imp_lock);
cb68dd2d
KM
1648 if (ptlrpc_import_delay_req(imp, req,
1649 &status)) {
d7e09d03
PT
1650 /* put on delay list - only if we wait
1651 * recovery finished - before send */
1652 list_del_init(&req->rq_list);
1653 list_add_tail(&req->rq_list,
1654 &imp->
1655 imp_delayed_list);
1656 spin_unlock(&imp->imp_lock);
1657 continue;
1658 }
1659
1660 if (status != 0) {
1661 req->rq_status = status;
1662 ptlrpc_rqphase_move(req,
1663 RQ_PHASE_INTERPRET);
1664 spin_unlock(&imp->imp_lock);
a9b3e8f3 1665 goto interpret;
d7e09d03
PT
1666 }
1667 if (ptlrpc_no_resend(req) &&
1668 !req->rq_wait_ctx) {
1669 req->rq_status = -ENOTCONN;
1670 ptlrpc_rqphase_move(req,
1671 RQ_PHASE_INTERPRET);
1672 spin_unlock(&imp->imp_lock);
a9b3e8f3 1673 goto interpret;
d7e09d03
PT
1674 }
1675
1676 list_del_init(&req->rq_list);
1677 list_add_tail(&req->rq_list,
1678 &imp->imp_sending_list);
1679
1680 spin_unlock(&imp->imp_lock);
1681
1682 spin_lock(&req->rq_lock);
1683 req->rq_waiting = 0;
1684 spin_unlock(&req->rq_lock);
1685
1686 if (req->rq_timedout || req->rq_resend) {
1687 /* This is re-sending anyways,
1688 * let's mark req as resend. */
1689 spin_lock(&req->rq_lock);
1690 req->rq_resend = 1;
1691 spin_unlock(&req->rq_lock);
1692 if (req->rq_bulk) {
1693 __u64 old_xid;
1694
1695 if (!ptlrpc_unregister_bulk(req, 1))
1696 continue;
1697
1698 /* ensure previous bulk fails */
1699 old_xid = req->rq_xid;
1700 req->rq_xid = ptlrpc_next_xid();
b0f5aad5 1701 CDEBUG(D_HA, "resend bulk old x%llu new x%llu\n",
d7e09d03
PT
1702 old_xid, req->rq_xid);
1703 }
1704 }
1705 /*
1706 * rq_wait_ctx is only touched by ptlrpcd,
1707 * so no lock is needed here.
1708 */
1709 status = sptlrpc_req_refresh_ctx(req, -1);
1710 if (status) {
1711 if (req->rq_err) {
1712 req->rq_status = status;
1713 spin_lock(&req->rq_lock);
1714 req->rq_wait_ctx = 0;
1715 spin_unlock(&req->rq_lock);
1716 force_timer_recalc = 1;
1717 } else {
1718 spin_lock(&req->rq_lock);
1719 req->rq_wait_ctx = 1;
1720 spin_unlock(&req->rq_lock);
1721 }
1722
1723 continue;
1724 } else {
1725 spin_lock(&req->rq_lock);
1726 req->rq_wait_ctx = 0;
1727 spin_unlock(&req->rq_lock);
1728 }
1729
1730 rc = ptl_send_rpc(req, 0);
1731 if (rc) {
1732 DEBUG_REQ(D_HA, req,
1733 "send failed: rc = %d", rc);
1734 force_timer_recalc = 1;
1735 spin_lock(&req->rq_lock);
1736 req->rq_net_err = 1;
1737 spin_unlock(&req->rq_lock);
e3bceb23 1738 continue;
d7e09d03
PT
1739 }
1740 /* need to reset the timeout */
1741 force_timer_recalc = 1;
1742 }
1743
1744 spin_lock(&req->rq_lock);
1745
1746 if (ptlrpc_client_early(req)) {
1747 ptlrpc_at_recv_early_reply(req);
1748 spin_unlock(&req->rq_lock);
1749 continue;
1750 }
1751
1752 /* Still waiting for a reply? */
1753 if (ptlrpc_client_recv(req)) {
1754 spin_unlock(&req->rq_lock);
1755 continue;
1756 }
1757
1758 /* Did we actually receive a reply? */
1759 if (!ptlrpc_client_replied(req)) {
1760 spin_unlock(&req->rq_lock);
1761 continue;
1762 }
1763
1764 spin_unlock(&req->rq_lock);
1765
1766 /* unlink from net because we are going to
1767 * swab in-place of reply buffer */
1768 unregistered = ptlrpc_unregister_reply(req, 1);
1769 if (!unregistered)
1770 continue;
1771
1772 req->rq_status = after_reply(req);
1773 if (req->rq_resend)
1774 continue;
1775
1776 /* If there is no bulk associated with this request,
1777 * then we're done and should let the interpreter
1778 * process the reply. Similarly if the RPC returned
1779 * an error, and therefore the bulk will never arrive.
1780 */
1781 if (req->rq_bulk == NULL || req->rq_status < 0) {
1782 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
a9b3e8f3 1783 goto interpret;
d7e09d03
PT
1784 }
1785
1786 ptlrpc_rqphase_move(req, RQ_PHASE_BULK);
1787 }
1788
1789 LASSERT(req->rq_phase == RQ_PHASE_BULK);
1790 if (ptlrpc_client_bulk_active(req))
1791 continue;
1792
1793 if (req->rq_bulk->bd_failure) {
1794 /* The RPC reply arrived OK, but the bulk screwed
1795 * up! Dead weird since the server told us the RPC
1796 * was good after getting the REPLY for her GET or
1797 * the ACK for her PUT. */
1798 DEBUG_REQ(D_ERROR, req, "bulk transfer failed");
1799 req->rq_status = -EIO;
1800 }
1801
1802 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1803
7f1d15a8 1804interpret:
d7e09d03
PT
1805 LASSERT(req->rq_phase == RQ_PHASE_INTERPRET);
1806
1807 /* This moves to "unregistering" phase we need to wait for
1808 * reply unlink. */
1809 if (!unregistered && !ptlrpc_unregister_reply(req, 1)) {
1810 /* start async bulk unlink too */
1811 ptlrpc_unregister_bulk(req, 1);
1812 continue;
1813 }
1814
1815 if (!ptlrpc_unregister_bulk(req, 1))
1816 continue;
1817
1818 /* When calling interpret receiving already should be
1819 * finished. */
1820 LASSERT(!req->rq_receiving_reply);
1821
1822 ptlrpc_req_interpret(env, req, req->rq_status);
1823
82a373ae
LZ
1824 if (ptlrpcd_check_work(req)) {
1825 atomic_dec(&set->set_remaining);
1826 continue;
1827 }
d7e09d03
PT
1828 ptlrpc_rqphase_move(req, RQ_PHASE_COMPLETE);
1829
1830 CDEBUG(req->rq_reqmsg != NULL ? D_RPCTRACE : 0,
1831 "Completed RPC pname:cluuid:pid:xid:nid:"
b0f5aad5 1832 "opc %s:%s:%d:%llu:%s:%d\n",
d7e09d03
PT
1833 current_comm(), imp->imp_obd->obd_uuid.uuid,
1834 lustre_msg_get_status(req->rq_reqmsg), req->rq_xid,
1835 libcfs_nid2str(imp->imp_connection->c_peer.nid),
1836 lustre_msg_get_opc(req->rq_reqmsg));
1837
1838 spin_lock(&imp->imp_lock);
1839 /* Request already may be not on sending or delaying list. This
1840 * may happen in the case of marking it erroneous for the case
1841 * ptlrpc_import_delay_req(req, status) find it impossible to
1842 * allow sending this rpc and returns *status != 0. */
1843 if (!list_empty(&req->rq_list)) {
1844 list_del_init(&req->rq_list);
1845 atomic_dec(&imp->imp_inflight);
1846 }
1847 spin_unlock(&imp->imp_lock);
1848
1849 atomic_dec(&set->set_remaining);
1850 wake_up_all(&imp->imp_recovery_waitq);
1851
1852 if (set->set_producer) {
1853 /* produce a new request if possible */
1854 if (ptlrpc_set_producer(set) > 0)
1855 force_timer_recalc = 1;
1856
1857 /* free the request that has just been completed
1858 * in order not to pollute set->set_requests */
1859 list_del_init(&req->rq_set_chain);
1860 spin_lock(&req->rq_lock);
1861 req->rq_set = NULL;
1862 req->rq_invalid_rqset = 0;
1863 spin_unlock(&req->rq_lock);
1864
1865 /* record rq_status to compute the final status later */
1866 if (req->rq_status != 0)
1867 set->set_rc = req->rq_status;
1868 ptlrpc_req_finished(req);
1869 }
1870 }
1871
1872 /* If we hit an error, we want to recover promptly. */
0a3bdb00 1873 return atomic_read(&set->set_remaining) == 0 || force_timer_recalc;
d7e09d03
PT
1874}
1875EXPORT_SYMBOL(ptlrpc_check_set);
1876
1877/**
1878 * Time out request \a req. is \a async_unlink is set, that means do not wait
1879 * until LNet actually confirms network buffer unlinking.
1880 * Return 1 if we should give up further retrying attempts or 0 otherwise.
1881 */
1882int ptlrpc_expire_one_request(struct ptlrpc_request *req, int async_unlink)
1883{
1884 struct obd_import *imp = req->rq_import;
1885 int rc = 0;
d7e09d03
PT
1886
1887 spin_lock(&req->rq_lock);
1888 req->rq_timedout = 1;
1889 spin_unlock(&req->rq_lock);
1890
1891 DEBUG_REQ(D_WARNING, req, "Request sent has %s: [sent "CFS_DURATION_T
1892 "/real "CFS_DURATION_T"]",
1893 req->rq_net_err ? "failed due to network error" :
1894 ((req->rq_real_sent == 0 ||
699503bc 1895 time_before((unsigned long)req->rq_real_sent, (unsigned long)req->rq_sent) ||
d7e09d03
PT
1896 cfs_time_aftereq(req->rq_real_sent, req->rq_deadline)) ?
1897 "timed out for sent delay" : "timed out for slow reply"),
1898 req->rq_sent, req->rq_real_sent);
1899
1900 if (imp != NULL && obd_debug_peer_on_timeout)
1901 LNetCtl(IOC_LIBCFS_DEBUG_PEER, &imp->imp_connection->c_peer);
1902
1903 ptlrpc_unregister_reply(req, async_unlink);
1904 ptlrpc_unregister_bulk(req, async_unlink);
1905
1906 if (obd_dump_on_timeout)
1907 libcfs_debug_dumplog();
1908
1909 if (imp == NULL) {
1910 DEBUG_REQ(D_HA, req, "NULL import: already cleaned up?");
0a3bdb00 1911 return 1;
d7e09d03
PT
1912 }
1913
1914 atomic_inc(&imp->imp_timeouts);
1915
1916 /* The DLM server doesn't want recovery run on its imports. */
1917 if (imp->imp_dlm_fake)
0a3bdb00 1918 return 1;
d7e09d03
PT
1919
1920 /* If this request is for recovery or other primordial tasks,
1921 * then error it out here. */
1922 if (req->rq_ctx_init || req->rq_ctx_fini ||
1923 req->rq_send_state != LUSTRE_IMP_FULL ||
1924 imp->imp_obd->obd_no_recov) {
1925 DEBUG_REQ(D_RPCTRACE, req, "err -110, sent_state=%s (now=%s)",
1926 ptlrpc_import_state_name(req->rq_send_state),
1927 ptlrpc_import_state_name(imp->imp_state));
1928 spin_lock(&req->rq_lock);
1929 req->rq_status = -ETIMEDOUT;
1930 req->rq_err = 1;
1931 spin_unlock(&req->rq_lock);
0a3bdb00 1932 return 1;
d7e09d03
PT
1933 }
1934
1935 /* if a request can't be resent we can't wait for an answer after
1936 the timeout */
1937 if (ptlrpc_no_resend(req)) {
1938 DEBUG_REQ(D_RPCTRACE, req, "TIMEOUT-NORESEND:");
1939 rc = 1;
1940 }
1941
1942 ptlrpc_fail_import(imp, lustre_msg_get_conn_cnt(req->rq_reqmsg));
1943
0a3bdb00 1944 return rc;
d7e09d03
PT
1945}
1946
1947/**
1948 * Time out all uncompleted requests in request set pointed by \a data
1949 * Callback used when waiting on sets with l_wait_event.
1950 * Always returns 1.
1951 */
1952int ptlrpc_expired_set(void *data)
1953{
1954 struct ptlrpc_request_set *set = data;
1955 struct list_head *tmp;
7264b8a5 1956 time_t now = get_seconds();
d7e09d03
PT
1957
1958 LASSERT(set != NULL);
1959
1960 /*
1961 * A timeout expired. See which reqs it applies to...
1962 */
3949015e 1963 list_for_each(tmp, &set->set_requests) {
d7e09d03
PT
1964 struct ptlrpc_request *req =
1965 list_entry(tmp, struct ptlrpc_request,
1966 rq_set_chain);
1967
1968 /* don't expire request waiting for context */
1969 if (req->rq_wait_ctx)
1970 continue;
1971
1972 /* Request in-flight? */
1973 if (!((req->rq_phase == RQ_PHASE_RPC &&
1974 !req->rq_waiting && !req->rq_resend) ||
1975 (req->rq_phase == RQ_PHASE_BULK)))
1976 continue;
1977
1978 if (req->rq_timedout || /* already dealt with */
1979 req->rq_deadline > now) /* not expired */
1980 continue;
1981
1982 /* Deal with this guy. Do it asynchronously to not block
1983 * ptlrpcd thread. */
1984 ptlrpc_expire_one_request(req, 1);
1985 }
1986
1987 /*
1988 * When waiting for a whole set, we always break out of the
1989 * sleep so we can recalculate the timeout, or enable interrupts
1990 * if everyone's timed out.
1991 */
0a3bdb00 1992 return 1;
d7e09d03
PT
1993}
1994EXPORT_SYMBOL(ptlrpc_expired_set);
1995
1996/**
1997 * Sets rq_intr flag in \a req under spinlock.
1998 */
1999void ptlrpc_mark_interrupted(struct ptlrpc_request *req)
2000{
2001 spin_lock(&req->rq_lock);
2002 req->rq_intr = 1;
2003 spin_unlock(&req->rq_lock);
2004}
2005EXPORT_SYMBOL(ptlrpc_mark_interrupted);
2006
2007/**
2008 * Interrupts (sets interrupted flag) all uncompleted requests in
2009 * a set \a data. Callback for l_wait_event for interruptible waits.
2010 */
2011void ptlrpc_interrupted_set(void *data)
2012{
2013 struct ptlrpc_request_set *set = data;
2014 struct list_head *tmp;
2015
2016 LASSERT(set != NULL);
2017 CDEBUG(D_RPCTRACE, "INTERRUPTED SET %p\n", set);
2018
2019 list_for_each(tmp, &set->set_requests) {
2020 struct ptlrpc_request *req =
2021 list_entry(tmp, struct ptlrpc_request,
2022 rq_set_chain);
2023
2024 if (req->rq_phase != RQ_PHASE_RPC &&
2025 req->rq_phase != RQ_PHASE_UNREGISTERING)
2026 continue;
2027
2028 ptlrpc_mark_interrupted(req);
2029 }
2030}
2031EXPORT_SYMBOL(ptlrpc_interrupted_set);
2032
2033/**
2034 * Get the smallest timeout in the set; this does NOT set a timeout.
2035 */
2036int ptlrpc_set_next_timeout(struct ptlrpc_request_set *set)
2037{
2038 struct list_head *tmp;
7264b8a5 2039 time_t now = get_seconds();
d7e09d03
PT
2040 int timeout = 0;
2041 struct ptlrpc_request *req;
2042 int deadline;
d7e09d03 2043
d7e09d03
PT
2044 list_for_each(tmp, &set->set_requests) {
2045 req = list_entry(tmp, struct ptlrpc_request, rq_set_chain);
2046
2047 /*
2048 * Request in-flight?
2049 */
2050 if (!(((req->rq_phase == RQ_PHASE_RPC) && !req->rq_waiting) ||
2051 (req->rq_phase == RQ_PHASE_BULK) ||
2052 (req->rq_phase == RQ_PHASE_NEW)))
2053 continue;
2054
2055 /*
2056 * Already timed out.
2057 */
2058 if (req->rq_timedout)
2059 continue;
2060
2061 /*
2062 * Waiting for ctx.
2063 */
2064 if (req->rq_wait_ctx)
2065 continue;
2066
2067 if (req->rq_phase == RQ_PHASE_NEW)
2068 deadline = req->rq_sent;
2069 else if (req->rq_phase == RQ_PHASE_RPC && req->rq_resend)
2070 deadline = req->rq_sent;
2071 else
2072 deadline = req->rq_sent + req->rq_timeout;
2073
2074 if (deadline <= now) /* actually expired already */
2075 timeout = 1; /* ASAP */
2076 else if (timeout == 0 || timeout > deadline - now)
2077 timeout = deadline - now;
2078 }
0a3bdb00 2079 return timeout;
d7e09d03
PT
2080}
2081EXPORT_SYMBOL(ptlrpc_set_next_timeout);
2082
2083/**
930cef9a 2084 * Send all unset request from the set and then wait until all
d7e09d03
PT
2085 * requests in the set complete (either get a reply, timeout, get an
2086 * error or otherwise be interrupted).
2087 * Returns 0 on success or error code otherwise.
2088 */
2089int ptlrpc_set_wait(struct ptlrpc_request_set *set)
2090{
2091 struct list_head *tmp;
2092 struct ptlrpc_request *req;
2093 struct l_wait_info lwi;
2094 int rc, timeout;
d7e09d03
PT
2095
2096 if (set->set_producer)
2097 (void)ptlrpc_set_producer(set);
2098 else
2099 list_for_each(tmp, &set->set_requests) {
2100 req = list_entry(tmp, struct ptlrpc_request,
2101 rq_set_chain);
2102 if (req->rq_phase == RQ_PHASE_NEW)
2103 (void)ptlrpc_send_new_req(req);
2104 }
2105
2106 if (list_empty(&set->set_requests))
0a3bdb00 2107 return 0;
d7e09d03
PT
2108
2109 do {
2110 timeout = ptlrpc_set_next_timeout(set);
2111
2112 /* wait until all complete, interrupted, or an in-flight
2113 * req times out */
2114 CDEBUG(D_RPCTRACE, "set %p going to sleep for %d seconds\n",
2115 set, timeout);
2116
2117 if (timeout == 0 && !cfs_signal_pending())
2118 /*
2119 * No requests are in-flight (ether timed out
2120 * or delayed), so we can allow interrupts.
2121 * We still want to block for a limited time,
2122 * so we allow interrupts during the timeout.
2123 */
2124 lwi = LWI_TIMEOUT_INTR_ALL(cfs_time_seconds(1),
2125 ptlrpc_expired_set,
2126 ptlrpc_interrupted_set, set);
2127 else
2128 /*
2129 * At least one request is in flight, so no
2130 * interrupts are allowed. Wait until all
2131 * complete, or an in-flight req times out.
2132 */
0ae015be 2133 lwi = LWI_TIMEOUT(cfs_time_seconds(timeout ? timeout : 1),
d7e09d03
PT
2134 ptlrpc_expired_set, set);
2135
2136 rc = l_wait_event(set->set_waitq, ptlrpc_check_set(NULL, set), &lwi);
2137
2138 /* LU-769 - if we ignored the signal because it was already
2139 * pending when we started, we need to handle it now or we risk
2140 * it being ignored forever */
2141 if (rc == -ETIMEDOUT && !lwi.lwi_allow_intr &&
2142 cfs_signal_pending()) {
2143 sigset_t blocked_sigs =
2144 cfs_block_sigsinv(LUSTRE_FATAL_SIGS);
2145
2146 /* In fact we only interrupt for the "fatal" signals
2147 * like SIGINT or SIGKILL. We still ignore less
2148 * important signals since ptlrpc set is not easily
2149 * reentrant from userspace again */
2150 if (cfs_signal_pending())
2151 ptlrpc_interrupted_set(set);
2152 cfs_restore_sigs(blocked_sigs);
2153 }
2154
2155 LASSERT(rc == 0 || rc == -EINTR || rc == -ETIMEDOUT);
2156
2157 /* -EINTR => all requests have been flagged rq_intr so next
2158 * check completes.
2159 * -ETIMEDOUT => someone timed out. When all reqs have
2160 * timed out, signals are enabled allowing completion with
2161 * EINTR.
2162 * I don't really care if we go once more round the loop in
2163 * the error cases -eeb. */
2164 if (rc == 0 && atomic_read(&set->set_remaining) == 0) {
2165 list_for_each(tmp, &set->set_requests) {
2166 req = list_entry(tmp, struct ptlrpc_request,
2167 rq_set_chain);
2168 spin_lock(&req->rq_lock);
2169 req->rq_invalid_rqset = 1;
2170 spin_unlock(&req->rq_lock);
2171 }
2172 }
2173 } while (rc != 0 || atomic_read(&set->set_remaining) != 0);
2174
2175 LASSERT(atomic_read(&set->set_remaining) == 0);
2176
2177 rc = set->set_rc; /* rq_status of already freed requests if any */
2178 list_for_each(tmp, &set->set_requests) {
2179 req = list_entry(tmp, struct ptlrpc_request, rq_set_chain);
2180
2181 LASSERT(req->rq_phase == RQ_PHASE_COMPLETE);
2182 if (req->rq_status != 0)
2183 rc = req->rq_status;
2184 }
2185
2186 if (set->set_interpret != NULL) {
0ae015be 2187 int (*interpreter)(struct ptlrpc_request_set *set, void *, int) =
d7e09d03
PT
2188 set->set_interpret;
2189 rc = interpreter (set, set->set_arg, rc);
2190 } else {
2191 struct ptlrpc_set_cbdata *cbdata, *n;
2192 int err;
2193
2194 list_for_each_entry_safe(cbdata, n,
2195 &set->set_cblist, psc_item) {
2196 list_del_init(&cbdata->psc_item);
2197 err = cbdata->psc_interpret(set, cbdata->psc_data, rc);
2198 if (err && !rc)
2199 rc = err;
2200 OBD_FREE_PTR(cbdata);
2201 }
2202 }
2203
0a3bdb00 2204 return rc;
d7e09d03
PT
2205}
2206EXPORT_SYMBOL(ptlrpc_set_wait);
2207
2208/**
930cef9a 2209 * Helper function for request freeing.
d7e09d03
PT
2210 * Called when request count reached zero and request needs to be freed.
2211 * Removes request from all sorts of sending/replay lists it might be on,
2212 * frees network buffers if any are present.
2213 * If \a locked is set, that means caller is already holding import imp_lock
2214 * and so we no longer need to reobtain it (for certain lists manipulations)
2215 */
2216static void __ptlrpc_free_req(struct ptlrpc_request *request, int locked)
2217{
d7e09d03 2218 if (request == NULL) {
d7e09d03
PT
2219 return;
2220 }
2221
2222 LASSERTF(!request->rq_receiving_reply, "req %p\n", request);
0ae015be 2223 LASSERTF(request->rq_rqbd == NULL, "req %p\n", request);/* client-side */
d7e09d03
PT
2224 LASSERTF(list_empty(&request->rq_list), "req %p\n", request);
2225 LASSERTF(list_empty(&request->rq_set_chain), "req %p\n", request);
2226 LASSERTF(list_empty(&request->rq_exp_list), "req %p\n", request);
2227 LASSERTF(!request->rq_replay, "req %p\n", request);
2228
2229 req_capsule_fini(&request->rq_pill);
2230
2231 /* We must take it off the imp_replay_list first. Otherwise, we'll set
2232 * request->rq_reqmsg to NULL while osc_close is dereferencing it. */
2233 if (request->rq_import != NULL) {
2234 if (!locked)
2235 spin_lock(&request->rq_import->imp_lock);
2236 list_del_init(&request->rq_replay_list);
2237 if (!locked)
2238 spin_unlock(&request->rq_import->imp_lock);
2239 }
2240 LASSERTF(list_empty(&request->rq_replay_list), "req %p\n", request);
2241
2242 if (atomic_read(&request->rq_refcount) != 0) {
2243 DEBUG_REQ(D_ERROR, request,
2244 "freeing request with nonzero refcount");
2245 LBUG();
2246 }
2247
2248 if (request->rq_repbuf != NULL)
2249 sptlrpc_cli_free_repbuf(request);
2250 if (request->rq_export != NULL) {
2251 class_export_put(request->rq_export);
2252 request->rq_export = NULL;
2253 }
2254 if (request->rq_import != NULL) {
2255 class_import_put(request->rq_import);
2256 request->rq_import = NULL;
2257 }
2258 if (request->rq_bulk != NULL)
2259 ptlrpc_free_bulk_pin(request->rq_bulk);
2260
2261 if (request->rq_reqbuf != NULL || request->rq_clrbuf != NULL)
2262 sptlrpc_cli_free_reqbuf(request);
2263
2264 if (request->rq_cli_ctx)
2265 sptlrpc_req_put_ctx(request, !locked);
2266
2267 if (request->rq_pool)
2268 __ptlrpc_free_req_to_pool(request);
2269 else
35b2e1b7 2270 ptlrpc_request_cache_free(request);
d7e09d03
PT
2271}
2272
2273static int __ptlrpc_req_finished(struct ptlrpc_request *request, int locked);
2274/**
2275 * Drop one request reference. Must be called with import imp_lock held.
930cef9a 2276 * When reference count drops to zero, request is freed.
d7e09d03
PT
2277 */
2278void ptlrpc_req_finished_with_imp_lock(struct ptlrpc_request *request)
2279{
5e42bc9d 2280 assert_spin_locked(&request->rq_import->imp_lock);
d7e09d03
PT
2281 (void)__ptlrpc_req_finished(request, 1);
2282}
2283EXPORT_SYMBOL(ptlrpc_req_finished_with_imp_lock);
2284
2285/**
2286 * Helper function
2287 * Drops one reference count for request \a request.
2288 * \a locked set indicates that caller holds import imp_lock.
930cef9a 2289 * Frees the request when reference count reaches zero.
d7e09d03
PT
2290 */
2291static int __ptlrpc_req_finished(struct ptlrpc_request *request, int locked)
2292{
d7e09d03 2293 if (request == NULL)
0a3bdb00 2294 return 1;
d7e09d03
PT
2295
2296 if (request == LP_POISON ||
2297 request->rq_reqmsg == LP_POISON) {
2298 CERROR("dereferencing freed request (bug 575)\n");
2299 LBUG();
0a3bdb00 2300 return 1;
d7e09d03
PT
2301 }
2302
2303 DEBUG_REQ(D_INFO, request, "refcount now %u",
2304 atomic_read(&request->rq_refcount) - 1);
2305
2306 if (atomic_dec_and_test(&request->rq_refcount)) {
2307 __ptlrpc_free_req(request, locked);
0a3bdb00 2308 return 1;
d7e09d03
PT
2309 }
2310
0a3bdb00 2311 return 0;
d7e09d03
PT
2312}
2313
2314/**
2315 * Drops one reference count for a request.
2316 */
2317void ptlrpc_req_finished(struct ptlrpc_request *request)
2318{
2319 __ptlrpc_req_finished(request, 0);
2320}
2321EXPORT_SYMBOL(ptlrpc_req_finished);
2322
2323/**
2324 * Returns xid of a \a request
2325 */
2326__u64 ptlrpc_req_xid(struct ptlrpc_request *request)
2327{
2328 return request->rq_xid;
2329}
2330EXPORT_SYMBOL(ptlrpc_req_xid);
2331
2332/**
2333 * Disengage the client's reply buffer from the network
2334 * NB does _NOT_ unregister any client-side bulk.
2335 * IDEMPOTENT, but _not_ safe against concurrent callers.
2336 * The request owner (i.e. the thread doing the I/O) must call...
2337 * Returns 0 on success or 1 if unregistering cannot be made.
2338 */
2339int ptlrpc_unregister_reply(struct ptlrpc_request *request, int async)
2340{
2341 int rc;
2342 wait_queue_head_t *wq;
2343 struct l_wait_info lwi;
2344
2345 /*
2346 * Might sleep.
2347 */
2348 LASSERT(!in_interrupt());
2349
2350 /*
2351 * Let's setup deadline for reply unlink.
2352 */
2353 if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK) &&
2354 async && request->rq_reply_deadline == 0)
7264b8a5 2355 request->rq_reply_deadline = get_seconds()+LONG_UNLINK;
d7e09d03
PT
2356
2357 /*
2358 * Nothing left to do.
2359 */
2360 if (!ptlrpc_client_recv_or_unlink(request))
0a3bdb00 2361 return 1;
d7e09d03
PT
2362
2363 LNetMDUnlink(request->rq_reply_md_h);
2364
2365 /*
2366 * Let's check it once again.
2367 */
2368 if (!ptlrpc_client_recv_or_unlink(request))
0a3bdb00 2369 return 1;
d7e09d03
PT
2370
2371 /*
2372 * Move to "Unregistering" phase as reply was not unlinked yet.
2373 */
2374 ptlrpc_rqphase_move(request, RQ_PHASE_UNREGISTERING);
2375
2376 /*
2377 * Do not wait for unlink to finish.
2378 */
2379 if (async)
0a3bdb00 2380 return 0;
d7e09d03
PT
2381
2382 /*
2383 * We have to l_wait_event() whatever the result, to give liblustre
2384 * a chance to run reply_in_callback(), and to make sure we've
2385 * unlinked before returning a req to the pool.
2386 */
2387 if (request->rq_set != NULL)
2388 wq = &request->rq_set->set_waitq;
2389 else
2390 wq = &request->rq_reply_waitq;
2391
2392 for (;;) {
2393 /* Network access will complete in finite time but the HUGE
2394 * timeout lets us CWARN for visibility of sluggish NALs */
2395 lwi = LWI_TIMEOUT_INTERVAL(cfs_time_seconds(LONG_UNLINK),
2396 cfs_time_seconds(1), NULL, NULL);
2397 rc = l_wait_event(*wq, !ptlrpc_client_recv_or_unlink(request),
2398 &lwi);
2399 if (rc == 0) {
2400 ptlrpc_rqphase_move(request, request->rq_next_phase);
0a3bdb00 2401 return 1;
d7e09d03
PT
2402 }
2403
2404 LASSERT(rc == -ETIMEDOUT);
cf378ff7
AL
2405 DEBUG_REQ(D_WARNING, request,
2406 "Unexpectedly long timeout rvcng=%d unlnk=%d/%d",
2407 request->rq_receiving_reply,
2408 request->rq_req_unlink, request->rq_reply_unlink);
d7e09d03 2409 }
0a3bdb00 2410 return 0;
d7e09d03
PT
2411}
2412EXPORT_SYMBOL(ptlrpc_unregister_reply);
2413
63d42578
HZ
2414static void ptlrpc_free_request(struct ptlrpc_request *req)
2415{
2416 spin_lock(&req->rq_lock);
2417 req->rq_replay = 0;
2418 spin_unlock(&req->rq_lock);
2419
2420 if (req->rq_commit_cb != NULL)
2421 req->rq_commit_cb(req);
2422 list_del_init(&req->rq_replay_list);
2423
2424 __ptlrpc_req_finished(req, 1);
2425}
2426
2427/**
2428 * the request is committed and dropped from the replay list of its import
2429 */
2430void ptlrpc_request_committed(struct ptlrpc_request *req, int force)
2431{
2432 struct obd_import *imp = req->rq_import;
2433
2434 spin_lock(&imp->imp_lock);
2435 if (list_empty(&req->rq_replay_list)) {
2436 spin_unlock(&imp->imp_lock);
2437 return;
2438 }
2439
2440 if (force || req->rq_transno <= imp->imp_peer_committed_transno)
2441 ptlrpc_free_request(req);
2442
2443 spin_unlock(&imp->imp_lock);
2444}
2445EXPORT_SYMBOL(ptlrpc_request_committed);
2446
d7e09d03
PT
2447/**
2448 * Iterates through replay_list on import and prunes
2449 * all requests have transno smaller than last_committed for the
2450 * import and don't have rq_replay set.
930cef9a 2451 * Since requests are sorted in transno order, stops when meeting first
d7e09d03
PT
2452 * transno bigger than last_committed.
2453 * caller must hold imp->imp_lock
2454 */
2455void ptlrpc_free_committed(struct obd_import *imp)
2456{
63d42578 2457 struct ptlrpc_request *req, *saved;
d7e09d03 2458 struct ptlrpc_request *last_req = NULL; /* temporary fire escape */
63d42578 2459 bool skip_committed_list = true;
d7e09d03
PT
2460
2461 LASSERT(imp != NULL);
5e42bc9d 2462 assert_spin_locked(&imp->imp_lock);
d7e09d03
PT
2463
2464 if (imp->imp_peer_committed_transno == imp->imp_last_transno_checked &&
2465 imp->imp_generation == imp->imp_last_generation_checked) {
b0f5aad5 2466 CDEBUG(D_INFO, "%s: skip recheck: last_committed %llu\n",
d7e09d03 2467 imp->imp_obd->obd_name, imp->imp_peer_committed_transno);
d7e09d03
PT
2468 return;
2469 }
b0f5aad5 2470 CDEBUG(D_RPCTRACE, "%s: committing for last_committed %llu gen %d\n",
d7e09d03
PT
2471 imp->imp_obd->obd_name, imp->imp_peer_committed_transno,
2472 imp->imp_generation);
63d42578
HZ
2473
2474 if (imp->imp_generation != imp->imp_last_generation_checked)
2475 skip_committed_list = false;
2476
d7e09d03
PT
2477 imp->imp_last_transno_checked = imp->imp_peer_committed_transno;
2478 imp->imp_last_generation_checked = imp->imp_generation;
2479
63d42578
HZ
2480 list_for_each_entry_safe(req, saved, &imp->imp_replay_list,
2481 rq_replay_list) {
d7e09d03
PT
2482 /* XXX ok to remove when 1357 resolved - rread 05/29/03 */
2483 LASSERT(req != last_req);
2484 last_req = req;
2485
2486 if (req->rq_transno == 0) {
2487 DEBUG_REQ(D_EMERG, req, "zero transno during replay");
2488 LBUG();
2489 }
2490 if (req->rq_import_generation < imp->imp_generation) {
2491 DEBUG_REQ(D_RPCTRACE, req, "free request with old gen");
a9b3e8f3 2492 goto free_req;
d7e09d03
PT
2493 }
2494
d7e09d03
PT
2495 /* not yet committed */
2496 if (req->rq_transno > imp->imp_peer_committed_transno) {
2497 DEBUG_REQ(D_RPCTRACE, req, "stopping search");
2498 break;
2499 }
2500
63d42578
HZ
2501 if (req->rq_replay) {
2502 DEBUG_REQ(D_RPCTRACE, req, "keeping (FL_REPLAY)");
2503 list_move_tail(&req->rq_replay_list,
2504 &imp->imp_committed_list);
2505 continue;
2506 }
2507
b0f5aad5 2508 DEBUG_REQ(D_INFO, req, "commit (last_committed %llu)",
d7e09d03
PT
2509 imp->imp_peer_committed_transno);
2510free_req:
63d42578
HZ
2511 ptlrpc_free_request(req);
2512 }
2513 if (skip_committed_list)
2514 return;
2515
2516 list_for_each_entry_safe(req, saved, &imp->imp_committed_list,
2517 rq_replay_list) {
2518 LASSERT(req->rq_transno != 0);
2519 if (req->rq_import_generation < imp->imp_generation) {
2520 DEBUG_REQ(D_RPCTRACE, req, "free stale open request");
2521 ptlrpc_free_request(req);
2522 }
d7e09d03 2523 }
d7e09d03
PT
2524}
2525
2526void ptlrpc_cleanup_client(struct obd_import *imp)
2527{
d7e09d03
PT
2528}
2529EXPORT_SYMBOL(ptlrpc_cleanup_client);
2530
2531/**
2532 * Schedule previously sent request for resend.
2533 * For bulk requests we assign new xid (to avoid problems with
2534 * lost replies and therefore several transfers landing into same buffer
2535 * from different sending attempts).
2536 */
2537void ptlrpc_resend_req(struct ptlrpc_request *req)
2538{
2539 DEBUG_REQ(D_HA, req, "going to resend");
5c689e68
AB
2540 spin_lock(&req->rq_lock);
2541
2542 /* Request got reply but linked to the import list still.
2543 Let ptlrpc_check_set() to process it. */
2544 if (ptlrpc_client_replied(req)) {
2545 spin_unlock(&req->rq_lock);
2546 DEBUG_REQ(D_HA, req, "it has reply, so skip it");
2547 return;
2548 }
2549
d7e09d03
PT
2550 lustre_msg_set_handle(req->rq_reqmsg, &(struct lustre_handle){ 0 });
2551 req->rq_status = -EAGAIN;
2552
d7e09d03
PT
2553 req->rq_resend = 1;
2554 req->rq_net_err = 0;
2555 req->rq_timedout = 0;
2556 if (req->rq_bulk) {
2557 __u64 old_xid = req->rq_xid;
2558
2559 /* ensure previous bulk fails */
2560 req->rq_xid = ptlrpc_next_xid();
b0f5aad5 2561 CDEBUG(D_HA, "resend bulk old x%llu new x%llu\n",
d7e09d03
PT
2562 old_xid, req->rq_xid);
2563 }
2564 ptlrpc_client_wake_req(req);
2565 spin_unlock(&req->rq_lock);
2566}
2567EXPORT_SYMBOL(ptlrpc_resend_req);
2568
2569/* XXX: this function and rq_status are currently unused */
2570void ptlrpc_restart_req(struct ptlrpc_request *req)
2571{
2572 DEBUG_REQ(D_HA, req, "restarting (possibly-)completed request");
2573 req->rq_status = -ERESTARTSYS;
2574
2575 spin_lock(&req->rq_lock);
2576 req->rq_restart = 1;
2577 req->rq_timedout = 0;
2578 ptlrpc_client_wake_req(req);
2579 spin_unlock(&req->rq_lock);
2580}
2581EXPORT_SYMBOL(ptlrpc_restart_req);
2582
2583/**
2584 * Grab additional reference on a request \a req
2585 */
2586struct ptlrpc_request *ptlrpc_request_addref(struct ptlrpc_request *req)
2587{
d7e09d03 2588 atomic_inc(&req->rq_refcount);
0a3bdb00 2589 return req;
d7e09d03
PT
2590}
2591EXPORT_SYMBOL(ptlrpc_request_addref);
2592
2593/**
2594 * Add a request to import replay_list.
2595 * Must be called under imp_lock
2596 */
2597void ptlrpc_retain_replayable_request(struct ptlrpc_request *req,
2598 struct obd_import *imp)
2599{
2600 struct list_head *tmp;
2601
5e42bc9d 2602 assert_spin_locked(&imp->imp_lock);
d7e09d03
PT
2603
2604 if (req->rq_transno == 0) {
2605 DEBUG_REQ(D_EMERG, req, "saving request with zero transno");
2606 LBUG();
2607 }
2608
2609 /* clear this for new requests that were resent as well
2610 as resent replayed requests. */
2611 lustre_msg_clear_flags(req->rq_reqmsg, MSG_RESENT);
2612
2613 /* don't re-add requests that have been replayed */
2614 if (!list_empty(&req->rq_replay_list))
2615 return;
2616
2617 lustre_msg_add_flags(req->rq_reqmsg, MSG_REPLAY);
2618
2619 LASSERT(imp->imp_replayable);
2620 /* Balanced in ptlrpc_free_committed, usually. */
2621 ptlrpc_request_addref(req);
2622 list_for_each_prev(tmp, &imp->imp_replay_list) {
2623 struct ptlrpc_request *iter =
2624 list_entry(tmp, struct ptlrpc_request,
2625 rq_replay_list);
2626
2627 /* We may have duplicate transnos if we create and then
2628 * open a file, or for closes retained if to match creating
2629 * opens, so use req->rq_xid as a secondary key.
2630 * (See bugs 684, 685, and 428.)
2631 * XXX no longer needed, but all opens need transnos!
2632 */
2633 if (iter->rq_transno > req->rq_transno)
2634 continue;
2635
2636 if (iter->rq_transno == req->rq_transno) {
2637 LASSERT(iter->rq_xid != req->rq_xid);
2638 if (iter->rq_xid > req->rq_xid)
2639 continue;
2640 }
2641
2642 list_add(&req->rq_replay_list, &iter->rq_replay_list);
2643 return;
2644 }
2645
2646 list_add(&req->rq_replay_list, &imp->imp_replay_list);
2647}
2648EXPORT_SYMBOL(ptlrpc_retain_replayable_request);
2649
2650/**
2651 * Send request and wait until it completes.
2652 * Returns request processing status.
2653 */
2654int ptlrpc_queue_wait(struct ptlrpc_request *req)
2655{
2656 struct ptlrpc_request_set *set;
2657 int rc;
d7e09d03
PT
2658
2659 LASSERT(req->rq_set == NULL);
2660 LASSERT(!req->rq_receiving_reply);
2661
2662 set = ptlrpc_prep_set();
2663 if (set == NULL) {
2664 CERROR("Unable to allocate ptlrpc set.");
0a3bdb00 2665 return -ENOMEM;
d7e09d03
PT
2666 }
2667
2668 /* for distributed debugging */
2669 lustre_msg_set_status(req->rq_reqmsg, current_pid());
2670
2671 /* add a ref for the set (see comment in ptlrpc_set_add_req) */
2672 ptlrpc_request_addref(req);
2673 ptlrpc_set_add_req(set, req);
2674 rc = ptlrpc_set_wait(set);
2675 ptlrpc_set_destroy(set);
2676
0a3bdb00 2677 return rc;
d7e09d03
PT
2678}
2679EXPORT_SYMBOL(ptlrpc_queue_wait);
2680
2681struct ptlrpc_replay_async_args {
2682 int praa_old_state;
2683 int praa_old_status;
2684};
2685
2686/**
2687 * Callback used for replayed requests reply processing.
930cef9a 2688 * In case of successful reply calls registered request replay callback.
d7e09d03
PT
2689 * In case of error restart replay process.
2690 */
2691static int ptlrpc_replay_interpret(const struct lu_env *env,
2692 struct ptlrpc_request *req,
0028d585 2693 void *data, int rc)
d7e09d03
PT
2694{
2695 struct ptlrpc_replay_async_args *aa = data;
2696 struct obd_import *imp = req->rq_import;
2697
d7e09d03
PT
2698 atomic_dec(&imp->imp_replay_inflight);
2699
2700 if (!ptlrpc_client_replied(req)) {
2701 CERROR("request replay timed out, restarting recovery\n");
a9b3e8f3
JL
2702 rc = -ETIMEDOUT;
2703 goto out;
d7e09d03
PT
2704 }
2705
2706 if (lustre_msg_get_type(req->rq_repmsg) == PTL_RPC_MSG_ERR &&
2707 (lustre_msg_get_status(req->rq_repmsg) == -ENOTCONN ||
a9b3e8f3
JL
2708 lustre_msg_get_status(req->rq_repmsg) == -ENODEV)) {
2709 rc = lustre_msg_get_status(req->rq_repmsg);
2710 goto out;
2711 }
d7e09d03
PT
2712
2713 /** VBR: check version failure */
2714 if (lustre_msg_get_status(req->rq_repmsg) == -EOVERFLOW) {
2715 /** replay was failed due to version mismatch */
2716 DEBUG_REQ(D_WARNING, req, "Version mismatch during replay\n");
2717 spin_lock(&imp->imp_lock);
2718 imp->imp_vbr_failed = 1;
2719 imp->imp_no_lock_replay = 1;
2720 spin_unlock(&imp->imp_lock);
2721 lustre_msg_set_status(req->rq_repmsg, aa->praa_old_status);
2722 } else {
2723 /** The transno had better not change over replay. */
2724 LASSERTF(lustre_msg_get_transno(req->rq_reqmsg) ==
2725 lustre_msg_get_transno(req->rq_repmsg) ||
2726 lustre_msg_get_transno(req->rq_repmsg) == 0,
55f5a824 2727 "%#llx/%#llx\n",
d7e09d03
PT
2728 lustre_msg_get_transno(req->rq_reqmsg),
2729 lustre_msg_get_transno(req->rq_repmsg));
2730 }
2731
2732 spin_lock(&imp->imp_lock);
2733 /** if replays by version then gap occur on server, no trust to locks */
2734 if (lustre_msg_get_flags(req->rq_repmsg) & MSG_VERSION_REPLAY)
2735 imp->imp_no_lock_replay = 1;
2736 imp->imp_last_replay_transno = lustre_msg_get_transno(req->rq_reqmsg);
2737 spin_unlock(&imp->imp_lock);
2738 LASSERT(imp->imp_last_replay_transno);
2739
2740 /* transaction number shouldn't be bigger than the latest replayed */
2741 if (req->rq_transno > lustre_msg_get_transno(req->rq_reqmsg)) {
2742 DEBUG_REQ(D_ERROR, req,
b0f5aad5
GKH
2743 "Reported transno %llu is bigger than the replayed one: %llu",
2744 req->rq_transno,
d7e09d03 2745 lustre_msg_get_transno(req->rq_reqmsg));
a9b3e8f3
JL
2746 rc = -EINVAL;
2747 goto out;
d7e09d03
PT
2748 }
2749
2750 DEBUG_REQ(D_HA, req, "got rep");
2751
2752 /* let the callback do fixups, possibly including in the request */
2753 if (req->rq_replay_cb)
2754 req->rq_replay_cb(req);
2755
2756 if (ptlrpc_client_replied(req) &&
2757 lustre_msg_get_status(req->rq_repmsg) != aa->praa_old_status) {
2758 DEBUG_REQ(D_ERROR, req, "status %d, old was %d",
2759 lustre_msg_get_status(req->rq_repmsg),
2760 aa->praa_old_status);
2761 } else {
2762 /* Put it back for re-replay. */
2763 lustre_msg_set_status(req->rq_repmsg, aa->praa_old_status);
2764 }
2765
2766 /*
2767 * Errors while replay can set transno to 0, but
2768 * imp_last_replay_transno shouldn't be set to 0 anyway
2769 */
2770 if (req->rq_transno == 0)
2771 CERROR("Transno is 0 during replay!\n");
2772
2773 /* continue with recovery */
2774 rc = ptlrpc_import_recovery_state_machine(imp);
2775 out:
2776 req->rq_send_state = aa->praa_old_state;
2777
2778 if (rc != 0)
2779 /* this replay failed, so restart recovery */
2780 ptlrpc_connect_import(imp);
2781
0a3bdb00 2782 return rc;
d7e09d03
PT
2783}
2784
2785/**
2786 * Prepares and queues request for replay.
2787 * Adds it to ptlrpcd queue for actual sending.
2788 * Returns 0 on success.
2789 */
2790int ptlrpc_replay_req(struct ptlrpc_request *req)
2791{
2792 struct ptlrpc_replay_async_args *aa;
d7e09d03
PT
2793
2794 LASSERT(req->rq_import->imp_state == LUSTRE_IMP_REPLAY);
2795
3949015e 2796 LASSERT(sizeof(*aa) <= sizeof(req->rq_async_args));
d7e09d03 2797 aa = ptlrpc_req_async_args(req);
ec83e611 2798 memset(aa, 0, sizeof(*aa));
d7e09d03
PT
2799
2800 /* Prepare request to be resent with ptlrpcd */
2801 aa->praa_old_state = req->rq_send_state;
2802 req->rq_send_state = LUSTRE_IMP_REPLAY;
2803 req->rq_phase = RQ_PHASE_NEW;
2804 req->rq_next_phase = RQ_PHASE_UNDEFINED;
2805 if (req->rq_repmsg)
2806 aa->praa_old_status = lustre_msg_get_status(req->rq_repmsg);
2807 req->rq_status = 0;
2808 req->rq_interpret_reply = ptlrpc_replay_interpret;
2809 /* Readjust the timeout for current conditions */
2810 ptlrpc_at_set_req_timeout(req);
2811
2812 /* Tell server the net_latency, so the server can calculate how long
2813 * it should wait for next replay */
2814 lustre_msg_set_service_time(req->rq_reqmsg,
2815 ptlrpc_at_get_net_latency(req));
2816 DEBUG_REQ(D_HA, req, "REPLAY");
2817
2818 atomic_inc(&req->rq_import->imp_replay_inflight);
2819 ptlrpc_request_addref(req); /* ptlrpcd needs a ref */
2820
2821 ptlrpcd_add_req(req, PDL_POLICY_LOCAL, -1);
0a3bdb00 2822 return 0;
d7e09d03
PT
2823}
2824EXPORT_SYMBOL(ptlrpc_replay_req);
2825
2826/**
2827 * Aborts all in-flight request on import \a imp sending and delayed lists
2828 */
2829void ptlrpc_abort_inflight(struct obd_import *imp)
2830{
2831 struct list_head *tmp, *n;
d7e09d03
PT
2832
2833 /* Make sure that no new requests get processed for this import.
2834 * ptlrpc_{queue,set}_wait must (and does) hold imp_lock while testing
2835 * this flag and then putting requests on sending_list or delayed_list.
2836 */
2837 spin_lock(&imp->imp_lock);
2838
2839 /* XXX locking? Maybe we should remove each request with the list
2840 * locked? Also, how do we know if the requests on the list are
2841 * being freed at this time?
2842 */
2843 list_for_each_safe(tmp, n, &imp->imp_sending_list) {
2844 struct ptlrpc_request *req =
2845 list_entry(tmp, struct ptlrpc_request, rq_list);
2846
2847 DEBUG_REQ(D_RPCTRACE, req, "inflight");
2848
2849 spin_lock(&req->rq_lock);
2850 if (req->rq_import_generation < imp->imp_generation) {
2851 req->rq_err = 1;
2852 req->rq_status = -EIO;
2853 ptlrpc_client_wake_req(req);
2854 }
2855 spin_unlock(&req->rq_lock);
2856 }
2857
2858 list_for_each_safe(tmp, n, &imp->imp_delayed_list) {
2859 struct ptlrpc_request *req =
2860 list_entry(tmp, struct ptlrpc_request, rq_list);
2861
2862 DEBUG_REQ(D_RPCTRACE, req, "aborting waiting req");
2863
2864 spin_lock(&req->rq_lock);
2865 if (req->rq_import_generation < imp->imp_generation) {
2866 req->rq_err = 1;
2867 req->rq_status = -EIO;
2868 ptlrpc_client_wake_req(req);
2869 }
2870 spin_unlock(&req->rq_lock);
2871 }
2872
2873 /* Last chance to free reqs left on the replay list, but we
2874 * will still leak reqs that haven't committed. */
2875 if (imp->imp_replayable)
2876 ptlrpc_free_committed(imp);
2877
2878 spin_unlock(&imp->imp_lock);
d7e09d03
PT
2879}
2880EXPORT_SYMBOL(ptlrpc_abort_inflight);
2881
2882/**
2883 * Abort all uncompleted requests in request set \a set
2884 */
2885void ptlrpc_abort_set(struct ptlrpc_request_set *set)
2886{
2887 struct list_head *tmp, *pos;
2888
2889 LASSERT(set != NULL);
2890
2891 list_for_each_safe(pos, tmp, &set->set_requests) {
2892 struct ptlrpc_request *req =
2893 list_entry(pos, struct ptlrpc_request,
2894 rq_set_chain);
2895
2896 spin_lock(&req->rq_lock);
2897 if (req->rq_phase != RQ_PHASE_RPC) {
2898 spin_unlock(&req->rq_lock);
2899 continue;
2900 }
2901
2902 req->rq_err = 1;
2903 req->rq_status = -EINTR;
2904 ptlrpc_client_wake_req(req);
2905 spin_unlock(&req->rq_lock);
2906 }
2907}
2908
2909static __u64 ptlrpc_last_xid;
2910static spinlock_t ptlrpc_last_xid_lock;
2911
2912/**
2913 * Initialize the XID for the node. This is common among all requests on
2914 * this node, and only requires the property that it is monotonically
2915 * increasing. It does not need to be sequential. Since this is also used
2916 * as the RDMA match bits, it is important that a single client NOT have
2917 * the same match bits for two different in-flight requests, hence we do
2918 * NOT want to have an XID per target or similar.
2919 *
2920 * To avoid an unlikely collision between match bits after a client reboot
2921 * (which would deliver old data into the wrong RDMA buffer) initialize
2922 * the XID based on the current time, assuming a maximum RPC rate of 1M RPC/s.
2923 * If the time is clearly incorrect, we instead use a 62-bit random number.
2924 * In the worst case the random number will overflow 1M RPCs per second in
2925 * 9133 years, or permutations thereof.
2926 */
2927#define YEAR_2004 (1ULL << 30)
2928void ptlrpc_init_xid(void)
2929{
7264b8a5 2930 time_t now = get_seconds();
d7e09d03
PT
2931
2932 spin_lock_init(&ptlrpc_last_xid_lock);
2933 if (now < YEAR_2004) {
2934 cfs_get_random_bytes(&ptlrpc_last_xid, sizeof(ptlrpc_last_xid));
2935 ptlrpc_last_xid >>= 2;
2936 ptlrpc_last_xid |= (1ULL << 61);
2937 } else {
2938 ptlrpc_last_xid = (__u64)now << 20;
2939 }
2940
930cef9a 2941 /* Always need to be aligned to a power-of-two for multi-bulk BRW */
d7e09d03
PT
2942 CLASSERT((PTLRPC_BULK_OPS_COUNT & (PTLRPC_BULK_OPS_COUNT - 1)) == 0);
2943 ptlrpc_last_xid &= PTLRPC_BULK_OPS_MASK;
2944}
2945
2946/**
2947 * Increase xid and returns resulting new value to the caller.
2948 *
2949 * Multi-bulk BRW RPCs consume multiple XIDs for each bulk transfer, starting
2950 * at the returned xid, up to xid + PTLRPC_BULK_OPS_COUNT - 1. The BRW RPC
2951 * itself uses the last bulk xid needed, so the server can determine the
2952 * the number of bulk transfers from the RPC XID and a bitmask. The starting
2953 * xid must align to a power-of-two value.
2954 *
2955 * This is assumed to be true due to the initial ptlrpc_last_xid
2956 * value also being initialized to a power-of-two value. LU-1431
2957 */
2958__u64 ptlrpc_next_xid(void)
2959{
2960 __u64 next;
2961
2962 spin_lock(&ptlrpc_last_xid_lock);
2963 next = ptlrpc_last_xid + PTLRPC_BULK_OPS_COUNT;
2964 ptlrpc_last_xid = next;
2965 spin_unlock(&ptlrpc_last_xid_lock);
2966
2967 return next;
2968}
2969EXPORT_SYMBOL(ptlrpc_next_xid);
2970
2971/**
2972 * Get a glimpse at what next xid value might have been.
2973 * Returns possible next xid.
2974 */
2975__u64 ptlrpc_sample_next_xid(void)
2976{
2977#if BITS_PER_LONG == 32
2978 /* need to avoid possible word tearing on 32-bit systems */
2979 __u64 next;
2980
2981 spin_lock(&ptlrpc_last_xid_lock);
2982 next = ptlrpc_last_xid + PTLRPC_BULK_OPS_COUNT;
2983 spin_unlock(&ptlrpc_last_xid_lock);
2984
2985 return next;
2986#else
2987 /* No need to lock, since returned value is racy anyways */
2988 return ptlrpc_last_xid + PTLRPC_BULK_OPS_COUNT;
2989#endif
2990}
2991EXPORT_SYMBOL(ptlrpc_sample_next_xid);
2992
2993/**
2994 * Functions for operating ptlrpc workers.
2995 *
2996 * A ptlrpc work is a function which will be running inside ptlrpc context.
2997 * The callback shouldn't sleep otherwise it will block that ptlrpcd thread.
2998 *
2999 * 1. after a work is created, it can be used many times, that is:
3000 * handler = ptlrpcd_alloc_work();
3001 * ptlrpcd_queue_work();
3002 *
3003 * queue it again when necessary:
3004 * ptlrpcd_queue_work();
3005 * ptlrpcd_destroy_work();
3006 * 2. ptlrpcd_queue_work() can be called by multiple processes meanwhile, but
3007 * it will only be queued once in any time. Also as its name implies, it may
3008 * have delay before it really runs by ptlrpcd thread.
3009 */
3010struct ptlrpc_work_async_args {
d7e09d03
PT
3011 int (*cb)(const struct lu_env *, void *);
3012 void *cbdata;
3013};
3014
82a373ae
LZ
3015static void ptlrpcd_add_work_req(struct ptlrpc_request *req)
3016{
3017 /* re-initialize the req */
3018 req->rq_timeout = obd_timeout;
7264b8a5 3019 req->rq_sent = get_seconds();
82a373ae
LZ
3020 req->rq_deadline = req->rq_sent + req->rq_timeout;
3021 req->rq_reply_deadline = req->rq_deadline;
3022 req->rq_phase = RQ_PHASE_INTERPRET;
3023 req->rq_next_phase = RQ_PHASE_COMPLETE;
3024 req->rq_xid = ptlrpc_next_xid();
3025 req->rq_import_generation = req->rq_import->imp_generation;
3026
3027 ptlrpcd_add_req(req, PDL_POLICY_ROUND, -1);
3028}
d7e09d03
PT
3029
3030static int work_interpreter(const struct lu_env *env,
3031 struct ptlrpc_request *req, void *data, int rc)
3032{
3033 struct ptlrpc_work_async_args *arg = data;
3034
82a373ae 3035 LASSERT(ptlrpcd_check_work(req));
d7e09d03
PT
3036 LASSERT(arg->cb != NULL);
3037
82a373ae
LZ
3038 rc = arg->cb(env, arg->cbdata);
3039
3040 list_del_init(&req->rq_set_chain);
3041 req->rq_set = NULL;
3042
3043 if (atomic_dec_return(&req->rq_refcount) > 1) {
3044 atomic_set(&req->rq_refcount, 2);
3045 ptlrpcd_add_work_req(req);
3046 }
3047 return rc;
3048}
3049
3050static int worker_format;
3051
3052static int ptlrpcd_check_work(struct ptlrpc_request *req)
3053{
3054 return req->rq_pill.rc_fmt == (void *)&worker_format;
d7e09d03
PT
3055}
3056
3057/**
3058 * Create a work for ptlrpc.
3059 */
3060void *ptlrpcd_alloc_work(struct obd_import *imp,
3061 int (*cb)(const struct lu_env *, void *), void *cbdata)
3062{
3063 struct ptlrpc_request *req = NULL;
3064 struct ptlrpc_work_async_args *args;
d7e09d03
PT
3065
3066 might_sleep();
3067
3068 if (cb == NULL)
0a3bdb00 3069 return ERR_PTR(-EINVAL);
d7e09d03
PT
3070
3071 /* copy some code from deprecated fakereq. */
0be19afa 3072 req = ptlrpc_request_cache_alloc(GFP_NOFS);
d7e09d03
PT
3073 if (req == NULL) {
3074 CERROR("ptlrpc: run out of memory!\n");
0a3bdb00 3075 return ERR_PTR(-ENOMEM);
d7e09d03
PT
3076 }
3077
3078 req->rq_send_state = LUSTRE_IMP_FULL;
3079 req->rq_type = PTL_RPC_MSG_REQUEST;
3080 req->rq_import = class_import_get(imp);
3081 req->rq_export = NULL;
3082 req->rq_interpret_reply = work_interpreter;
3083 /* don't want reply */
3084 req->rq_receiving_reply = 0;
cf378ff7 3085 req->rq_req_unlink = req->rq_reply_unlink = 0;
d7e09d03 3086 req->rq_no_delay = req->rq_no_resend = 1;
82a373ae 3087 req->rq_pill.rc_fmt = (void *)&worker_format;
d7e09d03
PT
3088
3089 spin_lock_init(&req->rq_lock);
3090 INIT_LIST_HEAD(&req->rq_list);
3091 INIT_LIST_HEAD(&req->rq_replay_list);
3092 INIT_LIST_HEAD(&req->rq_set_chain);
3093 INIT_LIST_HEAD(&req->rq_history_list);
3094 INIT_LIST_HEAD(&req->rq_exp_list);
3095 init_waitqueue_head(&req->rq_reply_waitq);
3096 init_waitqueue_head(&req->rq_set_waitq);
3097 atomic_set(&req->rq_refcount, 1);
3098
3949015e 3099 CLASSERT(sizeof(*args) <= sizeof(req->rq_async_args));
d7e09d03 3100 args = ptlrpc_req_async_args(req);
d7e09d03
PT
3101 args->cb = cb;
3102 args->cbdata = cbdata;
3103
0a3bdb00 3104 return req;
d7e09d03
PT
3105}
3106EXPORT_SYMBOL(ptlrpcd_alloc_work);
3107
3108void ptlrpcd_destroy_work(void *handler)
3109{
3110 struct ptlrpc_request *req = handler;
3111
3112 if (req)
3113 ptlrpc_req_finished(req);
3114}
3115EXPORT_SYMBOL(ptlrpcd_destroy_work);
3116
3117int ptlrpcd_queue_work(void *handler)
3118{
3119 struct ptlrpc_request *req = handler;
3120
3121 /*
3122 * Check if the req is already being queued.
3123 *
3124 * Here comes a trick: it lacks a way of checking if a req is being
3125 * processed reliably in ptlrpc. Here I have to use refcount of req
3126 * for this purpose. This is okay because the caller should use this
3127 * req as opaque data. - Jinshan
3128 */
3129 LASSERT(atomic_read(&req->rq_refcount) > 0);
82a373ae
LZ
3130 if (atomic_inc_return(&req->rq_refcount) == 2)
3131 ptlrpcd_add_work_req(req);
d7e09d03
PT
3132 return 0;
3133}
3134EXPORT_SYMBOL(ptlrpcd_queue_work);
This page took 0.387547 seconds and 5 git commands to generate.