mtd: nand: pass page number to ecc->write_xxx() methods
[deliverable/linux.git] / drivers / staging / mt29f_spinand / mt29f_spinand.c
CommitLineData
d974ce4f
KP
1/*
2 * Copyright (c) 2003-2013 Broadcom Corporation
3 *
4 * Copyright (c) 2009-2010 Micron Technology, Inc.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 */
16
17#include <linux/module.h>
18#include <linux/delay.h>
19#include <linux/mtd/mtd.h>
20#include <linux/mtd/partitions.h>
21#include <linux/mtd/nand.h>
22#include <linux/spi/spi.h>
23
24#include "mt29f_spinand.h"
25
26#define BUFSIZE (10 * 64 * 2048)
27#define CACHE_BUF 2112
28/*
29 * OOB area specification layout: Total 32 available free bytes.
30 */
d974ce4f
KP
31
32static inline struct spinand_state *mtd_to_state(struct mtd_info *mtd)
33{
34 struct nand_chip *chip = (struct nand_chip *)mtd->priv;
35 struct spinand_info *info = (struct spinand_info *)chip->priv;
36 struct spinand_state *state = (struct spinand_state *)info->priv;
37
38 return state;
39}
40
3685ebc4
RD
41#ifdef CONFIG_MTD_SPINAND_ONDIEECC
42static int enable_hw_ecc;
43static int enable_read_hw_ecc;
44
d974ce4f
KP
45static struct nand_ecclayout spinand_oob_64 = {
46 .eccbytes = 24,
47 .eccpos = {
48 1, 2, 3, 4, 5, 6,
49 17, 18, 19, 20, 21, 22,
50 33, 34, 35, 36, 37, 38,
51 49, 50, 51, 52, 53, 54, },
52 .oobavail = 32,
53 .oobfree = {
54 {.offset = 8,
55 .length = 8},
56 {.offset = 24,
57 .length = 8},
58 {.offset = 40,
59 .length = 8},
60 {.offset = 56,
61 .length = 8},
62 }
63};
64#endif
65
66/*
67 * spinand_cmd - to process a command to send to the SPI Nand
68 * Description:
69 * Set up the command buffer to send to the SPI controller.
70 * The command buffer has to initialized to 0.
71 */
72
73static int spinand_cmd(struct spi_device *spi, struct spinand_cmd *cmd)
74{
75 struct spi_message message;
76 struct spi_transfer x[4];
77 u8 dummy = 0xff;
78
79 spi_message_init(&message);
80 memset(x, 0, sizeof(x));
81
82 x[0].len = 1;
83 x[0].tx_buf = &cmd->cmd;
84 spi_message_add_tail(&x[0], &message);
85
86 if (cmd->n_addr) {
87 x[1].len = cmd->n_addr;
88 x[1].tx_buf = cmd->addr;
89 spi_message_add_tail(&x[1], &message);
90 }
91
92 if (cmd->n_dummy) {
93 x[2].len = cmd->n_dummy;
94 x[2].tx_buf = &dummy;
95 spi_message_add_tail(&x[2], &message);
96 }
97
98 if (cmd->n_tx) {
99 x[3].len = cmd->n_tx;
100 x[3].tx_buf = cmd->tx_buf;
101 spi_message_add_tail(&x[3], &message);
102 }
103
104 if (cmd->n_rx) {
105 x[3].len = cmd->n_rx;
106 x[3].rx_buf = cmd->rx_buf;
107 spi_message_add_tail(&x[3], &message);
108 }
109
110 return spi_sync(spi, &message);
111}
112
113/*
114 * spinand_read_id- Read SPI Nand ID
115 * Description:
116 * Read ID: read two ID bytes from the SPI Nand device
117 */
118static int spinand_read_id(struct spi_device *spi_nand, u8 *id)
119{
120 int retval;
121 u8 nand_id[3];
122 struct spinand_cmd cmd = {0};
123
124 cmd.cmd = CMD_READ_ID;
125 cmd.n_rx = 3;
126 cmd.rx_buf = &nand_id[0];
127
128 retval = spinand_cmd(spi_nand, &cmd);
129 if (retval < 0) {
130 dev_err(&spi_nand->dev, "error %d reading id\n", retval);
131 return retval;
132 }
133 id[0] = nand_id[1];
134 id[1] = nand_id[2];
135 return retval;
136}
137
138/*
139 * spinand_read_status- send command 0xf to the SPI Nand status register
140 * Description:
141 * After read, write, or erase, the Nand device is expected to set the
142 * busy status.
143 * This function is to allow reading the status of the command: read,
144 * write, and erase.
145 * Once the status turns to be ready, the other status bits also are
146 * valid status bits.
147 */
148static int spinand_read_status(struct spi_device *spi_nand, uint8_t *status)
149{
150 struct spinand_cmd cmd = {0};
151 int ret;
152
153 cmd.cmd = CMD_READ_REG;
154 cmd.n_addr = 1;
155 cmd.addr[0] = REG_STATUS;
156 cmd.n_rx = 1;
157 cmd.rx_buf = status;
158
159 ret = spinand_cmd(spi_nand, &cmd);
160 if (ret < 0)
161 dev_err(&spi_nand->dev, "err: %d read status register\n", ret);
162
163 return ret;
164}
165
166#define MAX_WAIT_JIFFIES (40 * HZ)
167static int wait_till_ready(struct spi_device *spi_nand)
168{
169 unsigned long deadline;
170 int retval;
171 u8 stat = 0;
172
173 deadline = jiffies + MAX_WAIT_JIFFIES;
174 do {
175 retval = spinand_read_status(spi_nand, &stat);
176 if (retval < 0)
177 return -1;
178 else if (!(stat & 0x1))
179 break;
180
181 cond_resched();
182 } while (!time_after_eq(jiffies, deadline));
183
184 if ((stat & 0x1) == 0)
185 return 0;
186
187 return -1;
188}
189/**
190 * spinand_get_otp- send command 0xf to read the SPI Nand OTP register
191 * Description:
192 * There is one bit( bit 0x10 ) to set or to clear the internal ECC.
193 * Enable chip internal ECC, set the bit to 1
194 * Disable chip internal ECC, clear the bit to 0
195 */
196static int spinand_get_otp(struct spi_device *spi_nand, u8 *otp)
197{
198 struct spinand_cmd cmd = {0};
199 int retval;
200
201 cmd.cmd = CMD_READ_REG;
202 cmd.n_addr = 1;
203 cmd.addr[0] = REG_OTP;
204 cmd.n_rx = 1;
205 cmd.rx_buf = otp;
206
207 retval = spinand_cmd(spi_nand, &cmd);
208 if (retval < 0)
209 dev_err(&spi_nand->dev, "error %d get otp\n", retval);
210 return retval;
211}
212
213/**
214 * spinand_set_otp- send command 0x1f to write the SPI Nand OTP register
215 * Description:
216 * There is one bit( bit 0x10 ) to set or to clear the internal ECC.
217 * Enable chip internal ECC, set the bit to 1
218 * Disable chip internal ECC, clear the bit to 0
219 */
220static int spinand_set_otp(struct spi_device *spi_nand, u8 *otp)
221{
222 int retval;
223 struct spinand_cmd cmd = {0};
224
225 cmd.cmd = CMD_WRITE_REG,
226 cmd.n_addr = 1,
227 cmd.addr[0] = REG_OTP,
228 cmd.n_tx = 1,
229 cmd.tx_buf = otp,
230
231 retval = spinand_cmd(spi_nand, &cmd);
232 if (retval < 0)
233 dev_err(&spi_nand->dev, "error %d set otp\n", retval);
234
235 return retval;
236}
237
238#ifdef CONFIG_MTD_SPINAND_ONDIEECC
239/**
240 * spinand_enable_ecc- send command 0x1f to write the SPI Nand OTP register
241 * Description:
242 * There is one bit( bit 0x10 ) to set or to clear the internal ECC.
243 * Enable chip internal ECC, set the bit to 1
244 * Disable chip internal ECC, clear the bit to 0
245 */
246static int spinand_enable_ecc(struct spi_device *spi_nand)
247{
248 int retval;
249 u8 otp = 0;
250
251 retval = spinand_get_otp(spi_nand, &otp);
252 if (retval < 0)
253 return retval;
254
72267c27 255 if ((otp & OTP_ECC_MASK) == OTP_ECC_MASK)
d974ce4f 256 return 0;
72267c27 257 otp |= OTP_ECC_MASK;
258 retval = spinand_set_otp(spi_nand, &otp);
259 if (retval < 0)
260 return retval;
261 return spinand_get_otp(spi_nand, &otp);
d974ce4f
KP
262}
263#endif
264
265static int spinand_disable_ecc(struct spi_device *spi_nand)
266{
267 int retval;
268 u8 otp = 0;
269
270 retval = spinand_get_otp(spi_nand, &otp);
271 if (retval < 0)
272 return retval;
273
274 if ((otp & OTP_ECC_MASK) == OTP_ECC_MASK) {
275 otp &= ~OTP_ECC_MASK;
276 retval = spinand_set_otp(spi_nand, &otp);
277 if (retval < 0)
278 return retval;
279 return spinand_get_otp(spi_nand, &otp);
72267c27 280 }
281 return 0;
d974ce4f
KP
282}
283
284/**
285 * spinand_write_enable- send command 0x06 to enable write or erase the
286 * Nand cells
287 * Description:
288 * Before write and erase the Nand cells, the write enable has to be set.
289 * After the write or erase, the write enable bit is automatically
290 * cleared (status register bit 2)
291 * Set the bit 2 of the status register has the same effect
292 */
293static int spinand_write_enable(struct spi_device *spi_nand)
294{
295 struct spinand_cmd cmd = {0};
296
297 cmd.cmd = CMD_WR_ENABLE;
298 return spinand_cmd(spi_nand, &cmd);
299}
300
301static int spinand_read_page_to_cache(struct spi_device *spi_nand, u16 page_id)
302{
303 struct spinand_cmd cmd = {0};
304 u16 row;
305
306 row = page_id;
307 cmd.cmd = CMD_READ;
308 cmd.n_addr = 3;
309 cmd.addr[1] = (u8)((row & 0xff00) >> 8);
310 cmd.addr[2] = (u8)(row & 0x00ff);
311
312 return spinand_cmd(spi_nand, &cmd);
313}
314
315/*
316 * spinand_read_from_cache- send command 0x03 to read out the data from the
317 * cache register(2112 bytes max)
318 * Description:
319 * The read can specify 1 to 2112 bytes of data read at the corresponding
320 * locations.
321 * No tRd delay.
322 */
323static int spinand_read_from_cache(struct spi_device *spi_nand, u16 page_id,
324 u16 byte_id, u16 len, u8 *rbuf)
325{
326 struct spinand_cmd cmd = {0};
327 u16 column;
328
329 column = byte_id;
330 cmd.cmd = CMD_READ_RDM;
331 cmd.n_addr = 3;
332 cmd.addr[0] = (u8)((column & 0xff00) >> 8);
333 cmd.addr[0] |= (u8)(((page_id >> 6) & 0x1) << 4);
334 cmd.addr[1] = (u8)(column & 0x00ff);
335 cmd.addr[2] = (u8)(0xff);
336 cmd.n_dummy = 0;
337 cmd.n_rx = len;
338 cmd.rx_buf = rbuf;
339
340 return spinand_cmd(spi_nand, &cmd);
341}
342
343/*
344 * spinand_read_page-to read a page with:
345 * @page_id: the physical page number
346 * @offset: the location from 0 to 2111
347 * @len: number of bytes to read
348 * @rbuf: read buffer to hold @len bytes
349 *
350 * Description:
351 * The read includes two commands to the Nand: 0x13 and 0x03 commands
352 * Poll to read status to wait for tRD time.
353 */
354static int spinand_read_page(struct spi_device *spi_nand, u16 page_id,
355 u16 offset, u16 len, u8 *rbuf)
356{
357 int ret;
358 u8 status = 0;
359
360#ifdef CONFIG_MTD_SPINAND_ONDIEECC
361 if (enable_read_hw_ecc) {
362 if (spinand_enable_ecc(spi_nand) < 0)
363 dev_err(&spi_nand->dev, "enable HW ECC failed!");
364 }
365#endif
366 ret = spinand_read_page_to_cache(spi_nand, page_id);
367 if (ret < 0)
368 return ret;
369
370 if (wait_till_ready(spi_nand))
371 dev_err(&spi_nand->dev, "WAIT timedout!!!\n");
372
373 while (1) {
374 ret = spinand_read_status(spi_nand, &status);
375 if (ret < 0) {
376 dev_err(&spi_nand->dev,
377 "err %d read status register\n", ret);
378 return ret;
379 }
380
381 if ((status & STATUS_OIP_MASK) == STATUS_READY) {
382 if ((status & STATUS_ECC_MASK) == STATUS_ECC_ERROR) {
383 dev_err(&spi_nand->dev, "ecc error, page=%d\n",
384 page_id);
385 return 0;
386 }
387 break;
388 }
389 }
390
391 ret = spinand_read_from_cache(spi_nand, page_id, offset, len, rbuf);
392 if (ret < 0) {
393 dev_err(&spi_nand->dev, "read from cache failed!!\n");
394 return ret;
395 }
396
397#ifdef CONFIG_MTD_SPINAND_ONDIEECC
398 if (enable_read_hw_ecc) {
399 ret = spinand_disable_ecc(spi_nand);
400 if (ret < 0) {
401 dev_err(&spi_nand->dev, "disable ecc failed!!\n");
402 return ret;
403 }
404 enable_read_hw_ecc = 0;
405 }
406#endif
407 return ret;
408}
409
410/*
411 * spinand_program_data_to_cache--to write a page to cache with:
412 * @byte_id: the location to write to the cache
413 * @len: number of bytes to write
414 * @rbuf: read buffer to hold @len bytes
415 *
416 * Description:
417 * The write command used here is 0x84--indicating that the cache is
418 * not cleared first.
419 * Since it is writing the data to cache, there is no tPROG time.
420 */
421static int spinand_program_data_to_cache(struct spi_device *spi_nand,
422 u16 page_id, u16 byte_id, u16 len, u8 *wbuf)
423{
424 struct spinand_cmd cmd = {0};
425 u16 column;
426
427 column = byte_id;
428 cmd.cmd = CMD_PROG_PAGE_CLRCACHE;
429 cmd.n_addr = 2;
430 cmd.addr[0] = (u8)((column & 0xff00) >> 8);
431 cmd.addr[0] |= (u8)(((page_id >> 6) & 0x1) << 4);
432 cmd.addr[1] = (u8)(column & 0x00ff);
433 cmd.n_tx = len;
434 cmd.tx_buf = wbuf;
435
436 return spinand_cmd(spi_nand, &cmd);
437}
438
439/**
440 * spinand_program_execute--to write a page from cache to the Nand array with
441 * @page_id: the physical page location to write the page.
442 *
443 * Description:
444 * The write command used here is 0x10--indicating the cache is writing to
445 * the Nand array.
446 * Need to wait for tPROG time to finish the transaction.
447 */
448static int spinand_program_execute(struct spi_device *spi_nand, u16 page_id)
449{
450 struct spinand_cmd cmd = {0};
451 u16 row;
452
453 row = page_id;
454 cmd.cmd = CMD_PROG_PAGE_EXC;
455 cmd.n_addr = 3;
456 cmd.addr[1] = (u8)((row & 0xff00) >> 8);
457 cmd.addr[2] = (u8)(row & 0x00ff);
458
459 return spinand_cmd(spi_nand, &cmd);
460}
461
462/**
463 * spinand_program_page--to write a page with:
464 * @page_id: the physical page location to write the page.
465 * @offset: the location from the cache starting from 0 to 2111
466 * @len: the number of bytes to write
467 * @wbuf: the buffer to hold the number of bytes
468 *
469 * Description:
470 * The commands used here are 0x06, 0x84, and 0x10--indicating that
471 * the write enable is first sent, the write cache command, and the
472 * write execute command.
473 * Poll to wait for the tPROG time to finish the transaction.
474 */
475static int spinand_program_page(struct spi_device *spi_nand,
476 u16 page_id, u16 offset, u16 len, u8 *buf)
477{
478 int retval;
479 u8 status = 0;
480 uint8_t *wbuf;
481#ifdef CONFIG_MTD_SPINAND_ONDIEECC
482 unsigned int i, j;
483
484 enable_read_hw_ecc = 0;
485 wbuf = devm_kzalloc(&spi_nand->dev, CACHE_BUF, GFP_KERNEL);
486 spinand_read_page(spi_nand, page_id, 0, CACHE_BUF, wbuf);
487
488 for (i = offset, j = 0; i < len; i++, j++)
489 wbuf[i] &= buf[j];
490
491 if (enable_hw_ecc) {
492 retval = spinand_enable_ecc(spi_nand);
493 if (retval < 0) {
494 dev_err(&spi_nand->dev, "enable ecc failed!!\n");
495 return retval;
496 }
497 }
498#else
499 wbuf = buf;
500#endif
501 retval = spinand_write_enable(spi_nand);
502 if (retval < 0) {
503 dev_err(&spi_nand->dev, "write enable failed!!\n");
504 return retval;
505 }
506 if (wait_till_ready(spi_nand))
507 dev_err(&spi_nand->dev, "wait timedout!!!\n");
508
509 retval = spinand_program_data_to_cache(spi_nand, page_id,
510 offset, len, wbuf);
511 if (retval < 0)
512 return retval;
513 retval = spinand_program_execute(spi_nand, page_id);
514 if (retval < 0)
515 return retval;
516 while (1) {
517 retval = spinand_read_status(spi_nand, &status);
518 if (retval < 0) {
519 dev_err(&spi_nand->dev,
520 "error %d reading status register\n",
521 retval);
522 return retval;
523 }
524
525 if ((status & STATUS_OIP_MASK) == STATUS_READY) {
526 if ((status & STATUS_P_FAIL_MASK) == STATUS_P_FAIL) {
527 dev_err(&spi_nand->dev,
528 "program error, page %d\n", page_id);
529 return -1;
72267c27 530 }
531 break;
d974ce4f
KP
532 }
533 }
534#ifdef CONFIG_MTD_SPINAND_ONDIEECC
535 if (enable_hw_ecc) {
536 retval = spinand_disable_ecc(spi_nand);
537 if (retval < 0) {
538 dev_err(&spi_nand->dev, "disable ecc failed!!\n");
539 return retval;
540 }
541 enable_hw_ecc = 0;
542 }
543#endif
544
545 return 0;
546}
547
548/**
549 * spinand_erase_block_erase--to erase a page with:
550 * @block_id: the physical block location to erase.
551 *
552 * Description:
553 * The command used here is 0xd8--indicating an erase command to erase
554 * one block--64 pages
555 * Need to wait for tERS.
556 */
557static int spinand_erase_block_erase(struct spi_device *spi_nand, u16 block_id)
558{
559 struct spinand_cmd cmd = {0};
560 u16 row;
561
562 row = block_id;
563 cmd.cmd = CMD_ERASE_BLK;
564 cmd.n_addr = 3;
565 cmd.addr[1] = (u8)((row & 0xff00) >> 8);
566 cmd.addr[2] = (u8)(row & 0x00ff);
567
568 return spinand_cmd(spi_nand, &cmd);
569}
570
571/**
572 * spinand_erase_block--to erase a page with:
573 * @block_id: the physical block location to erase.
574 *
575 * Description:
576 * The commands used here are 0x06 and 0xd8--indicating an erase
577 * command to erase one block--64 pages
578 * It will first to enable the write enable bit (0x06 command),
579 * and then send the 0xd8 erase command
580 * Poll to wait for the tERS time to complete the tranaction.
581 */
582static int spinand_erase_block(struct spi_device *spi_nand, u16 block_id)
583{
584 int retval;
585 u8 status = 0;
586
587 retval = spinand_write_enable(spi_nand);
588 if (wait_till_ready(spi_nand))
589 dev_err(&spi_nand->dev, "wait timedout!!!\n");
590
591 retval = spinand_erase_block_erase(spi_nand, block_id);
592 while (1) {
593 retval = spinand_read_status(spi_nand, &status);
594 if (retval < 0) {
595 dev_err(&spi_nand->dev,
596 "error %d reading status register\n",
597 (int) retval);
598 return retval;
599 }
600
601 if ((status & STATUS_OIP_MASK) == STATUS_READY) {
602 if ((status & STATUS_E_FAIL_MASK) == STATUS_E_FAIL) {
603 dev_err(&spi_nand->dev,
604 "erase error, block %d\n", block_id);
605 return -1;
72267c27 606 }
607 break;
d974ce4f
KP
608 }
609 }
610 return 0;
611}
612
613#ifdef CONFIG_MTD_SPINAND_ONDIEECC
614static int spinand_write_page_hwecc(struct mtd_info *mtd,
45aaeff9
BB
615 struct nand_chip *chip, const uint8_t *buf, int oob_required,
616 int page)
d974ce4f
KP
617{
618 const uint8_t *p = buf;
619 int eccsize = chip->ecc.size;
620 int eccsteps = chip->ecc.steps;
621
622 enable_hw_ecc = 1;
623 chip->write_buf(mtd, p, eccsize * eccsteps);
624 return 0;
625}
626
627static int spinand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
628 uint8_t *buf, int oob_required, int page)
629{
1f5cf802
DN
630 int retval;
631 u8 status;
d974ce4f
KP
632 uint8_t *p = buf;
633 int eccsize = chip->ecc.size;
634 int eccsteps = chip->ecc.steps;
635 struct spinand_info *info = (struct spinand_info *)chip->priv;
636
637 enable_read_hw_ecc = 1;
638
639 chip->read_buf(mtd, p, eccsize * eccsteps);
640 if (oob_required)
641 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
642
643 while (1) {
644 retval = spinand_read_status(info->spi, &status);
1f5cf802
DN
645 if (retval < 0) {
646 dev_err(&mtd->dev,
647 "error %d reading status register\n",
648 retval);
649 return retval;
650 }
651
d974ce4f
KP
652 if ((status & STATUS_OIP_MASK) == STATUS_READY) {
653 if ((status & STATUS_ECC_MASK) == STATUS_ECC_ERROR) {
654 pr_info("spinand: ECC error\n");
655 mtd->ecc_stats.failed++;
656 } else if ((status & STATUS_ECC_MASK) ==
657 STATUS_ECC_1BIT_CORRECTED)
658 mtd->ecc_stats.corrected++;
659 break;
660 }
661 }
662 return 0;
663
664}
665#endif
666
667static void spinand_select_chip(struct mtd_info *mtd, int dev)
668{
669}
670
671static uint8_t spinand_read_byte(struct mtd_info *mtd)
672{
673 struct spinand_state *state = mtd_to_state(mtd);
674 u8 data;
675
676 data = state->buf[state->buf_ptr];
677 state->buf_ptr++;
678 return data;
679}
680
681
682static int spinand_wait(struct mtd_info *mtd, struct nand_chip *chip)
683{
684 struct spinand_info *info = (struct spinand_info *)chip->priv;
685
686 unsigned long timeo = jiffies;
687 int retval, state = chip->state;
688 u8 status;
689
690 if (state == FL_ERASING)
691 timeo += (HZ * 400) / 1000;
692 else
693 timeo += (HZ * 20) / 1000;
694
695 while (time_before(jiffies, timeo)) {
696 retval = spinand_read_status(info->spi, &status);
1f5cf802
DN
697 if (retval < 0) {
698 dev_err(&mtd->dev,
699 "error %d reading status register\n",
700 retval);
701 return retval;
702 }
703
d974ce4f
KP
704 if ((status & STATUS_OIP_MASK) == STATUS_READY)
705 return 0;
706
707 cond_resched();
708 }
709 return 0;
710}
711
712static void spinand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
713{
714
715 struct spinand_state *state = mtd_to_state(mtd);
aeb49155 716
d974ce4f
KP
717 memcpy(state->buf + state->buf_ptr, buf, len);
718 state->buf_ptr += len;
719}
720
721static void spinand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
722{
723 struct spinand_state *state = mtd_to_state(mtd);
aeb49155 724
d974ce4f
KP
725 memcpy(buf, state->buf + state->buf_ptr, len);
726 state->buf_ptr += len;
727}
728
729/*
730 * spinand_reset- send RESET command "0xff" to the Nand device.
731 */
732static void spinand_reset(struct spi_device *spi_nand)
733{
734 struct spinand_cmd cmd = {0};
735
736 cmd.cmd = CMD_RESET;
737
738 if (spinand_cmd(spi_nand, &cmd) < 0)
739 pr_info("spinand reset failed!\n");
740
741 /* elapse 1ms before issuing any other command */
742 udelay(1000);
743
744 if (wait_till_ready(spi_nand))
745 dev_err(&spi_nand->dev, "wait timedout!\n");
746}
747
748static void spinand_cmdfunc(struct mtd_info *mtd, unsigned int command,
749 int column, int page)
750{
751 struct nand_chip *chip = (struct nand_chip *)mtd->priv;
752 struct spinand_info *info = (struct spinand_info *)chip->priv;
753 struct spinand_state *state = (struct spinand_state *)info->priv;
754
755 switch (command) {
756 /*
757 * READ0 - read in first 0x800 bytes
758 */
759 case NAND_CMD_READ1:
760 case NAND_CMD_READ0:
761 state->buf_ptr = 0;
762 spinand_read_page(info->spi, page, 0x0, 0x840, state->buf);
763 break;
764 /* READOOB reads only the OOB because no ECC is performed. */
765 case NAND_CMD_READOOB:
766 state->buf_ptr = 0;
767 spinand_read_page(info->spi, page, 0x800, 0x40, state->buf);
768 break;
769 case NAND_CMD_RNDOUT:
770 state->buf_ptr = column;
771 break;
772 case NAND_CMD_READID:
773 state->buf_ptr = 0;
a511536f 774 spinand_read_id(info->spi, state->buf);
d974ce4f
KP
775 break;
776 case NAND_CMD_PARAM:
777 state->buf_ptr = 0;
778 break;
779 /* ERASE1 stores the block and page address */
780 case NAND_CMD_ERASE1:
781 spinand_erase_block(info->spi, page);
782 break;
783 /* ERASE2 uses the block and page address from ERASE1 */
784 case NAND_CMD_ERASE2:
785 break;
786 /* SEQIN sets up the addr buffer and all registers except the length */
787 case NAND_CMD_SEQIN:
788 state->col = column;
789 state->row = page;
790 state->buf_ptr = 0;
791 break;
792 /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
793 case NAND_CMD_PAGEPROG:
794 spinand_program_page(info->spi, state->row, state->col,
795 state->buf_ptr, state->buf);
796 break;
797 case NAND_CMD_STATUS:
798 spinand_get_otp(info->spi, state->buf);
799 if (!(state->buf[0] & 0x80))
800 state->buf[0] = 0x80;
801 state->buf_ptr = 0;
802 break;
803 /* RESET command */
804 case NAND_CMD_RESET:
805 if (wait_till_ready(info->spi))
806 dev_err(&info->spi->dev, "WAIT timedout!!!\n");
807 /* a minimum of 250us must elapse before issuing RESET cmd*/
808 udelay(250);
809 spinand_reset(info->spi);
810 break;
811 default:
812 dev_err(&mtd->dev, "Unknown CMD: 0x%x\n", command);
813 }
814}
815
816/**
817 * spinand_lock_block- send write register 0x1f command to the Nand device
818 *
819 * Description:
820 * After power up, all the Nand blocks are locked. This function allows
821 * one to unlock the blocks, and so it can be written or erased.
822 */
823static int spinand_lock_block(struct spi_device *spi_nand, u8 lock)
824{
825 struct spinand_cmd cmd = {0};
826 int ret;
827 u8 otp = 0;
828
829 ret = spinand_get_otp(spi_nand, &otp);
830
831 cmd.cmd = CMD_WRITE_REG;
832 cmd.n_addr = 1;
833 cmd.addr[0] = REG_BLOCK_LOCK;
834 cmd.n_tx = 1;
835 cmd.tx_buf = &lock;
836
837 ret = spinand_cmd(spi_nand, &cmd);
838 if (ret < 0)
839 dev_err(&spi_nand->dev, "error %d lock block\n", ret);
840
841 return ret;
842}
843/*
844 * spinand_probe - [spinand Interface]
845 * @spi_nand: registered device driver.
846 *
847 * Description:
848 * To set up the device driver parameters to make the device available.
849 */
850static int spinand_probe(struct spi_device *spi_nand)
851{
852 struct mtd_info *mtd;
853 struct nand_chip *chip;
854 struct spinand_info *info;
855 struct spinand_state *state;
856 struct mtd_part_parser_data ppdata;
857
858 info = devm_kzalloc(&spi_nand->dev, sizeof(struct spinand_info),
859 GFP_KERNEL);
860 if (!info)
861 return -ENOMEM;
862
863 info->spi = spi_nand;
864
865 spinand_lock_block(spi_nand, BL_ALL_UNLOCKED);
866
867 state = devm_kzalloc(&spi_nand->dev, sizeof(struct spinand_state),
868 GFP_KERNEL);
869 if (!state)
870 return -ENOMEM;
871
872 info->priv = state;
873 state->buf_ptr = 0;
874 state->buf = devm_kzalloc(&spi_nand->dev, BUFSIZE, GFP_KERNEL);
875 if (!state->buf)
876 return -ENOMEM;
877
878 chip = devm_kzalloc(&spi_nand->dev, sizeof(struct nand_chip),
879 GFP_KERNEL);
880 if (!chip)
881 return -ENOMEM;
882
883#ifdef CONFIG_MTD_SPINAND_ONDIEECC
884 chip->ecc.mode = NAND_ECC_HW;
885 chip->ecc.size = 0x200;
886 chip->ecc.bytes = 0x6;
887 chip->ecc.steps = 0x4;
888
889 chip->ecc.strength = 1;
890 chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
891 chip->ecc.layout = &spinand_oob_64;
892 chip->ecc.read_page = spinand_read_page_hwecc;
893 chip->ecc.write_page = spinand_write_page_hwecc;
894#else
895 chip->ecc.mode = NAND_ECC_SOFT;
896 if (spinand_disable_ecc(spi_nand) < 0)
897 pr_info("%s: disable ecc failed!\n", __func__);
898#endif
899
900 chip->priv = info;
901 chip->read_buf = spinand_read_buf;
902 chip->write_buf = spinand_write_buf;
903 chip->read_byte = spinand_read_byte;
904 chip->cmdfunc = spinand_cmdfunc;
905 chip->waitfunc = spinand_wait;
906 chip->options |= NAND_CACHEPRG;
907 chip->select_chip = spinand_select_chip;
908
909 mtd = devm_kzalloc(&spi_nand->dev, sizeof(struct mtd_info), GFP_KERNEL);
910 if (!mtd)
911 return -ENOMEM;
912
913 dev_set_drvdata(&spi_nand->dev, mtd);
914
915 mtd->priv = chip;
efefcaee 916 mtd->dev.parent = &spi_nand->dev;
d974ce4f
KP
917 mtd->oobsize = 64;
918
919 if (nand_scan(mtd, 1))
920 return -ENXIO;
921
922 ppdata.of_node = spi_nand->dev.of_node;
923 return mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
924}
925
926/*
927 * spinand_remove: Remove the device driver
928 * @spi: the spi device.
929 *
930 * Description:
931 * To remove the device driver parameters and free up allocated memories.
932 */
933static int spinand_remove(struct spi_device *spi)
934{
935 mtd_device_unregister(dev_get_drvdata(&spi->dev));
936
937 return 0;
938}
939
940static const struct of_device_id spinand_dt[] = {
941 { .compatible = "spinand,mt29f", },
ffd07de6 942 {}
d974ce4f
KP
943};
944
945/*
946 * Device name structure description
947 */
948static struct spi_driver spinand_driver = {
949 .driver = {
950 .name = "mt29f",
d974ce4f
KP
951 .owner = THIS_MODULE,
952 .of_match_table = spinand_dt,
953 },
954 .probe = spinand_probe,
955 .remove = spinand_remove,
956};
957
4a54b615 958module_spi_driver(spinand_driver);
d974ce4f
KP
959
960MODULE_DESCRIPTION("SPI NAND driver for Micron");
961MODULE_AUTHOR("Henry Pan <hspan@micron.com>, Kamlakant Patel <kamlakant.patel@broadcom.com>");
962MODULE_LICENSE("GPL v2");
This page took 0.261223 seconds and 5 git commands to generate.